WO2019221235A1 - 吸水性樹脂の製造方法 - Google Patents

吸水性樹脂の製造方法 Download PDF

Info

Publication number
WO2019221235A1
WO2019221235A1 PCT/JP2019/019517 JP2019019517W WO2019221235A1 WO 2019221235 A1 WO2019221235 A1 WO 2019221235A1 JP 2019019517 W JP2019019517 W JP 2019019517W WO 2019221235 A1 WO2019221235 A1 WO 2019221235A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
mass
drying
fine powder
water
Prior art date
Application number
PCT/JP2019/019517
Other languages
English (en)
French (fr)
Inventor
智嗣 松本
角永 憲資
邦彦 石▲崎▼
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to KR1020207035703A priority Critical patent/KR102589018B1/ko
Priority to JP2020519919A priority patent/JP6931744B2/ja
Priority to EP19802522.3A priority patent/EP3795613A4/en
Priority to US17/055,174 priority patent/US11970585B2/en
Priority to CN201980032510.8A priority patent/CN112119112B/zh
Publication of WO2019221235A1 publication Critical patent/WO2019221235A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/68Superabsorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/14Water soluble or water swellable polymers, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a method for producing a water-absorbent resin, and more particularly to a method for producing a water-absorbent resin obtained by recycling fine powder obtained in the process of producing a water-absorbent resin.
  • the water-absorbing resin is a water-swelling, water-insoluble polymer gelling agent, and has a variety of absorbent articles such as disposable diapers and sanitary napkins, soil and water retention agents for agriculture and horticulture, and industrial water-stopping agents. It is used for purposes.
  • the water-absorbent resin employs many types of monomers and hydrophilic polymers as raw materials, acrylic acid and / or a salt thereof (hereinafter referred to as “acrylic acid”) from the viewpoint of water absorption performance and production cost.
  • acrylic acid acrylic acid and / or a salt thereof
  • the water-absorbing resin is more preferable as the content of fine powder having a particle size of 150 ⁇ m or less is smaller.
  • Such fine powder becomes a factor in which physical properties are lowered due to clogging even in absorbent articles such as disposable diapers.
  • various physical properties such as absorption capacity under pressure are difficult to improve. For this reason, a water-absorbent resin with less fine powder is desired.
  • Patent Documents 1 to 14 proposals have been made to solve the above-mentioned problems by granulating or regenerating fine powder that is inevitably generated in the water-absorbent resin production process.
  • Patent Documents 1 to 14 techniques for granulating fine powder using water vapor (Patent Document 5 and Patent Document 7) require less water to be added, reducing the drying cost and improving the drying efficiency.
  • JP-A-11-106514 JP-A-11-140194 Japanese Patent Laid-Open No. 11-254429 JP-A-11-240959 Japanese Patent Laid-Open No. 2005-054151 JP 2006-299234 A Special table 2010-538095 European Patent Application No. 2957576 European Patent Application No. 2787025 US Patent Application Publication No. 2017/0166707 Japanese Patent Laid-Open No. 03-152104 Japanese Patent Laid-Open No. 04-041532 JP 04-227934 A International Publication No. 2006/098271 Pamphlet
  • the present inventors dried together a granulated gel obtained by adding water to a fine powder and granulated, and a hydrogel crosslinked polymer obtained by polymerizing an aqueous monomer solution.
  • a problem has been found that poor drying tends to occur, such as undried material remaining after drying.
  • the present inventors have an advantage that the drying cost can be reduced if the gel solid content is high, but it has been found that a new problem arises if the solid content is high.
  • the inventors further examined that a granulated gel with a low water content has high tackiness and tends to form coarse aggregates, and the presence of coarse aggregates reduces the specific surface area, resulting in low water content.
  • a granulated gel with a low water content has high tackiness and tends to form coarse aggregates, and the presence of coarse aggregates reduces the specific surface area, resulting in low water content.
  • the water-containing gel obtained by polymerization water-containing gel-like cross-linked polymer
  • fine powder-granulated gel fine powder-granulated gel
  • the present invention has been made paying attention to the circumstances as described above, and the purpose thereof is a problem in the case of granulating the water-absorbent resin fine powder and recycling, specifically, an undried product after drying. It is to provide a technique capable of reducing the residue, particularly an efficient technique for drying together the hydrogel obtained by polymerization and the granulated gel obtained by fine powder recovery.
  • the production method [1] of the present invention that has solved the above-mentioned problems is: i) a polymerization step for polymerizing an aqueous monomer solution to obtain a hydrogel crosslinked polymer; ii) a gel pulverization step for pulverizing the hydrogel crosslinked polymer, which is performed during and / or after the polymerization step i), iii) a drying step of drying the hydrogel crosslinked polymer after the gel grinding step ii) iv) a pulverizing step of pulverizing the dried polymer after the drying step iii) v) A classification step for removing fine powder from the dried polymer after the drying step iii).
  • vi) a method for producing a water-absorbing resin, comprising: a fine powder recycling step in which the fine powder removed in the classification step v) is recycled before the drying step iii) In the fine powder recycling step vi), vi-1) A granulation step of mixing the removed fine powder with an aqueous liquid to obtain a granulated gel; vi-2) A structure in which the granulated gel is added to the hydrogel crosslinked polymer between at least one and / or between the steps i) to iii) until the drying is completed in the drying step iii).
  • Grain gel addition process vi-3
  • Gel mixing step, Including In the granulation gel addition step vi-2) The solid content of the granulated gel is 50% by mass or more and 90% by mass or less,
  • the temperature of the granulated gel and the temperature of the hydrogel crosslinked polymer are 50 ° C. or higher and 100 ° C. or lower.
  • Another production method [2] of the present invention that has solved the above problems i) a polymerization step for polymerizing an aqueous monomer solution to obtain a hydrogel crosslinked polymer; ii) a gel pulverization step for pulverizing the hydrogel crosslinked polymer, which is performed during and / or after the polymerization step i), iii) a drying step of drying the hydrogel crosslinked polymer after the gel grinding step ii) iv) a pulverizing step of pulverizing the dried polymer after the drying step iii) v) Classification step of removing fine powder from the dried polymer after the drying step iii) vi) a method for producing a water-absorbing resin, comprising: a fine powder recycling step in which the fine powder removed in the classification step v) is recycled before the drying step iii) In the fine powder recycling step vi), vi-1) A granulation step of mixing the removed fine powder with an aqueous liquid to obtain a granul
  • the solid content of the granulated gel is 50% by mass or more and 90% by mass or less
  • the gel grinding energy (GGE) is 20 J / g or more and 100 J / g or less.
  • the production method according to [2], wherein the hydrogel crosslinked polymer after the gel grinding step ii) has a mass average particle diameter of 0.1 mm or more and 1.0 mm or less.
  • any one of [1] to [3], wherein in the granulated gel addition step vi-2), the solid content of the granulated gel is 55% by mass or more and 85% by mass or less.
  • the mechanical mixing is performed by a neck belt feeder or rotary stirring performed before the drying step iii) or until the drying is completed in the drying step iii) [1] or [3]
  • the production method according to any one of [5].
  • the drying step iii) is carried out with an aeration band dryer.
  • the dew point of the atmosphere of the granulated gel is 50 ° C. or more between the granulation step vi-1) and the granulation gel addition step vi-2).
  • the time from the start of mixing the fine powder and the aqueous liquid to the addition of the granulation gel to the hydrogel crosslinked polymer in the step vi-2) The production method according to any one of [1] to [9], wherein is 5 minutes or less.
  • the granulated gel obtained by adding a surfactant and / or containing the surfactant in the aqueous liquid and mixing the fine powder and the aqueous liquid in the granulation step vi-1) [1]
  • an aqueous liquid is added a plurality of times, and a granulated gel obtained by mixing the aqueous liquid added first and the fine powder.
  • the surface tension of the extract extracted with 0.9% by mass sodium chloride aqueous solution is 70 mN / m or more, and among the aqueous liquids added after the second time, at least one time contains a surfactant.
  • the surface tension of an extract extracted from a granulated gel obtained by adding an aqueous solution containing the surfactant with a 0.9% by mass sodium chloride aqueous solution is 60 mN / m or more, [1] to [1] 11]
  • the mass of the hydrogel crosslinked polymer after the gel grinding step ii) with respect to the mass average particle diameter of the primary particles of the granulated gel The production method according to [2] or [3], wherein the average particle size is 1 to 10 times.
  • the polymer gel and the fine-granulated gel were difficult to dry together because of their different properties, whereas according to the production method of the present invention, the water-absorbent resin was not increased without increasing the drying load. It is possible to reduce, preferably eliminate, the residue of undried matter that becomes a problem when recycling fine powder. In particular, it is possible to provide an efficient technique for drying together the hydrogel obtained by polymerization and the granulated gel obtained by fine powder recovery.
  • Water-absorbing resin in the present specification means a water-swelling, water-insoluble polymer gelling agent, generally in a powder form. is there.
  • water swellability means that the absorption capacity under no pressure (hereinafter sometimes referred to as “CRC”) defined by WSP 241.3 (10) is 5 g / g or more.
  • WSP270.3 Water-insoluble means that the soluble content (hereinafter sometimes referred to as “Ext”) defined by WSP270.3 (10) is 50% by mass or less.
  • the “water-absorbent resin” is preferably a hydrophilic crosslinked polymer obtained by crosslinking polymerization of an unsaturated monomer having a carboxyl group, but the total amount thereof, that is, 100% by mass, needs to be a crosslinked polymer.
  • an additive or the like can be contained within a range satisfying the required performance such as CRC and Ext.
  • the “water-absorbing resin” is “a polymer in which only the inside is crosslinked, that is, a polymer in which the crosslinking density of the inside and the surface is substantially the same” or “a polymer in which the inside and the surface are crosslinked. That is, it may refer to a “polymer whose surface crosslink density is relatively higher than the internal crosslink density”.
  • Before surface cross-linking means “before adding a surface cross-linking agent” or “before the cross-linking reaction by heat treatment starts even after the surface cross-linking agent is added”.
  • the “water-absorbing resin” may refer only to a resin component, but may contain components other than a resin such as an additive.
  • the “water-absorbing agent” in the present specification means a water-absorbing resin that is ready for shipment as a final product. Accordingly, if the “water-absorbing resin” can be shipped, it corresponds to “water-absorbing agent”, and “water-absorbing resin” and “water-absorbing agent” are treated synonymously at this time.
  • Acrylic acid (salt) monomer polyacrylic acid (salt) water-absorbent resin
  • acrylic acid (salt) means acrylic acid and / or a salt thereof
  • the term “acrylic acid (salt) monomer” means a monomer containing 50 mol% or more of acrylic acid (salt) with respect to the whole monomer excluding the crosslinking agent.
  • the “polyacrylic acid (salt) -based water-absorbing resin” means a polymer made of acrylic acid (salt) as a raw material.
  • the “polyacrylic acid (salt) -based water-absorbing resin” is a polymer having a structural unit derived from acrylic acid (salt), and a polymer having a graft component as an optional component.
  • the polyacrylic acid (salt) -based water-absorbing resin is preferably 50 mol% or more, more preferably 70 mol, with respect to the portion of the monomer involved in the polymerization reaction excluding the internal crosslinking agent. % Or more, more preferably 90 mol% or more, preferably 100 mol% or less, particularly preferably a polymer containing 100 mol% of acrylic acid (salt).
  • EDANA and “WSP” “EDANA” is an abbreviation for the European Disposables and Nonwovens Associations.
  • WSP is an abbreviation for “Worldwide Strategic Partners” and indicates a world standard measurement method for water-absorbing resins provided by EDANA. In this specification, the physical properties of the water-absorbent resin are measured based on the WSP original (revised in 2010). In the present specification, unless otherwise stated, the measurement methods in the following examples are followed.
  • CRC is an abbreviation for Centrifugation Retention Capacity and means the absorption capacity of the water-absorbent resin under no pressure. Specifically, after 0.2 g of the water-absorbing resin is put in a non-woven bag, the water-absorbing resin is freely swollen by immersing in a large excess of 0.9 mass% sodium chloride aqueous solution for 30 minutes, and then centrifuged. Absorption capacity (unit: g / g) after dehydration using a separator (centrifugal force: 250 G).
  • Ext is an abbreviation for Extractables and means the water-soluble component of the water-absorbent resin, that is, the amount of water-soluble component. Specifically, it refers to the amount of dissolved polymer (unit: mass%) after adding 1.0 g of water absorbent resin to 200 ml of 0.9 mass% sodium chloride aqueous solution and stirring at 250 rpm for 1 hour or 16 hours. The amount of dissolved polymer is measured using pH titration. The agitation time is stated when reporting the results.
  • PSD (WSP220.3 (10))
  • PSD is an abbreviation for Particle Size Distribution, and means a particle size distribution of a water-absorbent resin measured by sieving classification.
  • the mass average particle diameter (D50) and the logarithmic standard deviation ( ⁇ ) of the particle size distribution are described in US Pat. No. 7,638,570 “(3) Mass-Average Particle Diameter (D50) and Logical Standard Deviation ( ⁇ ) of”.
  • the fine particle size distribution, D50, and logarithmic standard deviation ( ⁇ ) of the particle size distribution are measured by using a JIS standard sieve having openings of 38 ⁇ m, 45 ⁇ m, 75 ⁇ m, 106 ⁇ m, 150 ⁇ m, 180 ⁇ m, etc. .
  • “Moisture Content” (WSP230.3 (10)) “Moisture Content” means the water content of the water-absorbent resin.
  • the amount of water-absorbent resin specified in WSP230.3 (10) and the drying time were changed from 4.0 g to 1.0 g and from 105 ° C. to 180 ° C., respectively, and then dried for 3 hours. It is a value (unit: mass%) calculated from the subsequent loss on drying.
  • the moisture content of a dry polymer it measures according to the said measuring method, after crushing a dry polymer suitably.
  • about the moisture content of a hydrogel crosslinked polymer or granulated gel it measures according to the said measuring method except having changed the sample amount into 2.0 g.
  • the solid content is defined as [100-water content] (unit: mass%).
  • t (ton) which is a unit of mass, means “Metric ton” (metric ton).
  • ppm (mass standard) means “mass ppm”.
  • ⁇ acid (salt) means “ ⁇ acid and / or salt thereof”
  • (meth) acryl means “acryl and / or methacryl”.
  • a preferred method for producing the water-absorbent resin of the present invention is: i) a polymerization step for polymerizing an aqueous monomer solution to obtain a hydrogel crosslinked polymer; ii) a gel pulverization step for pulverizing the hydrogel crosslinked polymer, which is performed during and / or after the polymerization step i), iii) a drying step of drying the hydrogel crosslinked polymer after the gel grinding step ii) iv) a pulverizing step of pulverizing the dried polymer after the drying step iii) v) A classification step for removing fine powder from the dried polymer after the drying step iii). vi) a fine powder recycling step in which the fine powder removed in the classification step v) is recycled before the drying step iii).
  • This step is a step of preparing a monomer aqueous solution containing a monomer containing acrylic acid (salt) as a main component and at least one polymerizable internal crosslinking agent. is there.
  • a monomer slurry liquid can be used as long as it does not affect the water absorption performance of the water absorbing agent obtained as the final product.
  • the monomer aqueous solution will be described for convenience.
  • (Monomer) As monomers used in the present invention, acrylic acid, (anhydrous) maleic acid, itaconic acid, cinnamic acid, vinyl sulfonic acid, allyl toluene sulfonic acid, vinyl toluene sulfonic acid, styrene sulfonic acid, 2- (meth) acrylamide
  • Anionic unsaturated monomers such as 2-methylpropanesulfonic acid, 2- (meth) acryloylethanesulfonic acid, 2- (meth) acryloylpropanesulfonic acid, 2-hydroxyethyl (meth) acryloyl phosphate and / or Its salt; mercaptan group-containing unsaturated monomer; phenolic hydroxyl group-containing unsaturated monomer; non-amide group-containing unsaturated monomer such as (meth) acrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (me
  • the monomer includes a water-soluble or hydrophobic unsaturated monomer.
  • acrylic acid (salt) is preferable.
  • Acrylic acid (salt) and other monomers may be used in combination.
  • the amount of acrylic acid (salt) used is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, particularly preferably based on the whole monomer excluding the crosslinking agent. Is substantially 100 mol%.
  • the acrylic acid is preferably partially neutralized using a basic compound. That is, in the present invention, a water absorbent resin in which the acid group of polyacrylic acid is partially neutralized is preferable.
  • the basic compound examples include alkali metal carbonates and hydrogen carbonates, alkali metal hydroxides, ammonia, and organic amines.
  • a strongly basic compound is selected from the viewpoint of the water absorbing performance of the water absorbing agent or the water absorbing resin. Therefore, alkali metal hydroxides such as sodium, potassium and lithium are preferred, and sodium hydroxide is more preferred.
  • the said basic compound is made into aqueous solution from a viewpoint of handleability.
  • Commercially available sodium hydroxide contains heavy metals such as zinc, lead, and iron in the order of ppm (mass basis), and can be strictly expressed as a composition. In the present invention, such a composition is also treated as being included in the category of basic compounds.
  • the timing for the neutralization may be any before, during or after the polymerization, and the neutralization may be performed at a plurality of times or locations. Moreover, it is preferable to neutralize by a continuous type from a viewpoint of the production efficiency of a water absorbing resin.
  • the neutralization rate is preferably 10 mol% or more, more preferably 40 mol% or more, and still more preferably 50 mol% or more, based on the acid group of the monomer. In particular, it is 60 mol% or more, preferably 90 mol% or less, more preferably 85 mol% or less, still more preferably 80 mol% or less, and particularly preferably 75 mol% or less.
  • the range of the neutralization rate it is possible to suppress a decrease in water absorption performance of the water absorbent resin.
  • the neutralization rate is applied in any neutralization before, during, or after polymerization. The same applies to the water absorbent as the final product.
  • an internal crosslinking agent In the preferred production method of the present invention, an internal crosslinking agent is used.
  • the internal crosslinking agent include N, N′-methylenebis (meth) acrylamide, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, and trimethylolpropane di (meth).
  • an internal crosslinking agent having two or more polymerizable unsaturated groups more preferably two polymerizable unsaturated groups having a (poly) alkylene glycol structure.
  • One or more internal cross-linking agents are selected.
  • Specific examples of the polymerizable unsaturated group include an allyl group and a (meth) acrylate group. Of these, a (meth) acrylate group is preferred.
  • Specific examples of the internal crosslinking agent having two or more polymerizable unsaturated groups having the (poly) alkylene glycol structure include polyethylene glycol di (meth) acrylate.
  • the number of alkylene glycol units is preferably 1 or more, more preferably 2 or more, still more preferably 4 or more, and particularly preferably 6 or more. Preferably it is 100 or less, More preferably, it is 50 or less, More preferably, it is 20 or less, Most preferably, it is 10 or less.
  • the amount of the internal crosslinking agent used is preferably 0.0001 mol% or more, more preferably 0.001 mol% or more, and still more preferably 0.01 mol% or more, with respect to the monomer excluding the internal crosslinking agent. Thus, it is preferably at most 10 mol%, more preferably at most 5 mol%, still more preferably at most 1 mol%.
  • the amount to be used within the range a water absorbent resin having a desired water absorption performance can be obtained.
  • an increase in water-soluble content and a decrease in absorption capacity may occur due to a decrease in gel strength.
  • the timing of adding the internal cross-linking agent is only required to uniformly cross-link the polymer, and the internal cross-linking agent is added to the monomer aqueous solution before polymerization or the hydrogel cross-linked polymer during or after polymerization.
  • a method is mentioned. Among these, a method of adding a predetermined amount of an internal cross-linking agent to the monomer aqueous solution in advance is preferable.
  • the substance include hydrophilic polymers such as starch, starch derivatives, cellulose, cellulose derivatives, polyvinyl alcohol (PVA), polyacrylic acid (salt), and a cross-linked product of polyacrylic acid (salt); And compounds such as salts, azo compounds, foaming agents that generate various bubbles, surfactants, chelating agents, chain transfer agents, and the like.
  • hydrophilic polymers such as starch, starch derivatives, cellulose, cellulose derivatives, polyvinyl alcohol (PVA), polyacrylic acid (salt), and a cross-linked product of polyacrylic acid (salt);
  • compounds such as salts, azo compounds, foaming agents that generate various bubbles, surfactants, chelating agents, chain transfer agents, and the like.
  • the addition amount of the hydrophilic polymer is preferably 50% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less, and particularly preferably 5% by mass or less with respect to the monomer aqueous solution. Thus, it is preferably 0% by mass or more, more preferably more than 0% by mass.
  • the amount of the compound added is preferably 5% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, and preferably 0% by mass with respect to the monomer aqueous solution. % Or more, more preferably more than 0% by mass.
  • a graft polymer or a water-absorbing resin composition such as a starch-acrylic acid (salt) copolymer, a PVA-acrylic acid (salt) copolymer is used. Etc. are obtained.
  • graft polymers or water-absorbing resin compositions are also included in the category of the polyacrylic acid (salt) -based water-absorbing resin according to the present invention.
  • a monomer aqueous solution is prepared.
  • it can also be set as the mixed solution of water and a hydrophilic solvent other than making a monomer into aqueous solution.
  • the total concentration of the monomer components is preferably 10% by mass or more, more preferably 20% by mass or more, and further preferably 30% by mass or more, preferably 80%, from the viewpoint of the properties of the water absorbent resin. It is not more than mass%, more preferably not more than 75 mass%, still more preferably not more than 70 mass%.
  • This step is i) a step of polymerizing an aqueous monomer solution to obtain a hydrogel crosslinked polymer.
  • the monomer aqueous solution containing acrylic acid (salt) as a main component and the monomer aqueous solution containing at least one polymerizable internal cross-linking agent obtained in the monomer aqueous solution preparation step is polymerized to contain water.
  • This is a step of obtaining a gel-like crosslinked polymer (hereinafter sometimes referred to as “hydrated gel”).
  • the polymerization initiator used in the present invention can be selected from one or two or more selected from those used in the production of ordinary water-absorbent resins according to the type of monomer to be polymerized, polymerization conditions, and the like.
  • Examples of the polymerization initiator include a thermal decomposition type initiator and a photodecomposition type initiator.
  • persulfate sodium persulfate, potassium persulfate, ammonium persulfate
  • peroxide hydrogen peroxide, t-butyl peroxide, methyl ethyl ketone peroxide
  • azo compound azonitrile compound, azoamidine compound, cyclic Examples include azoamidine compounds, azoamide compounds, alkylazo compounds, 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, etc.
  • the photolytic initiator examples include benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, azo compounds and the like.
  • persulfates are preferable in view of cost and ability to reduce residual monomers.
  • a reducing agent that accelerates the decomposition of the oxidative polymerization initiator such as persulfate or peroxide may be used in combination, and a redox initiator may be obtained by combining the two.
  • reducing agent examples include (bi) sulfite (salt) such as sodium sulfite and sodium hydrogen sulfite, reductive metal (salt) such as L-ascorbic acid (salt) and ferrous salt, amines, and the like.
  • salt such as sodium sulfite and sodium hydrogen sulfite
  • reductive metal such as L-ascorbic acid (salt) and ferrous salt
  • amines and the like.
  • the amount of the polymerization initiator used is preferably 0.001 mol% or more, more preferably 0.01 mol% or more, preferably 1 mol% or less, with respect to the monomer excluding the internal crosslinking agent. More preferably, it is 0.5 mol% or less, More preferably, it is 0.1 mol% or less.
  • the amount of the reducing agent used is preferably 0.0001 mol% or more, more preferably 0.0005 mol% or more, and preferably 0.02 mol% with respect to the monomer excluding the internal crosslinking agent. % Or less, more preferably 0.015 mol% or less.
  • the polymerization reaction may be initiated by irradiation with active energy rays such as radiation, electron beams, and ultraviolet rays. Moreover, you may use together irradiation of an active energy ray, and the said polymerization initiator.
  • active energy rays such as radiation, electron beams, and ultraviolet rays.
  • polymerization form examples of the polymerization form applied to the present invention include aqueous solution polymerization, reverse phase suspension polymerization, spray polymerization, droplet polymerization, bulk polymerization, and precipitation polymerization.
  • aqueous solution polymerization or reverse phase suspension polymerization more preferably aqueous solution polymerization, and still more preferably continuous aqueous solution polymerization is selected.
  • Reverse phase suspension polymerization is described in International Publication No. 2007/004529, International Publication No. 2012/023433, and the like.
  • Continuous aqueous polymerization can produce a water-absorbing agent or a water-absorbing resin with high productivity.
  • Preferred forms of the continuous aqueous solution polymerization include high temperature initiation polymerization, high concentration polymerization, foam polymerization and the like.
  • the “high temperature initiation polymerization” means that the temperature of the monomer aqueous solution at the start of polymerization is preferably 35 ° C. or higher, more preferably 40 ° C. or higher, still more preferably 45 ° C. or higher, particularly preferably 50 ° C. or higher. In this case, it means a polymerization form that is preferably below the boiling point of the aqueous monomer solution.
  • “High concentration polymerization” means that the monomer concentration at the start of polymerization is preferably 30% by mass or more, more preferably 35% by mass or more, still more preferably 40% by mass or more, and particularly preferably 45% by mass or more. Preferably, it means a polymerization form in which the monomer aqueous solution is not more than the saturated concentration. “Foaming polymerization” means a polymerization form in which the monomer aqueous solution containing a foaming agent or bubbles is polymerized. These polymerization forms may be carried out alone or in combination of two or more.
  • a method for dispersing bubbles in the foam polymerization a method in which a gas dissolved in a monomer aqueous solution is dispersed as bubbles by a decrease in solubility, a method in which gas is introduced from the outside and dispersed as bubbles, and a monomer aqueous solution is dispersed.
  • a foaming agent may be added and foamed.
  • examples of the gas include oxygen, air, nitrogen, carbon dioxide gas, ozone, and the like, and a mixed gas of these gases.
  • an inert gas such as nitrogen or carbon dioxide is preferably used, and more preferably nitrogen is used.
  • foaming agent examples include azo compounds, organic or inorganic carbonate solutions, dispersions, and powders having a particle size of 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • inorganic carbonates are preferable. Specifically, carbonates such as sodium carbonate, ammonium carbonate, and magnesium carbonate, and hydrogen carbonates can be used.
  • Drying is facilitated by gel-pulverizing the foamed hydrous gel obtained by foam polymerization.
  • a foamed water-absorbing resin by using a foamed water-absorbing resin, the water-absorbing speed of the water-absorbing resin can be improved, and immobilization with an absorbent article is facilitated.
  • the foamed shape can be confirmed by a hole on the particle surface with an electron microscope, for example, a hole having a diameter of 1 ⁇ m to 100 ⁇ m.
  • the number of pores is preferably 1 or more, more preferably 10 or more, preferably 10,000 or less, more preferably 1000 or less per one water-absorbing resin, and can be controlled by the foam polymerization.
  • Gel pulverization step This step may be referred to as a hydrated gel-like cross-linked polymer (hereinafter referred to as “polymerization gel”) that is carried out during and / or after the polymerization step i). ).
  • the hydrogel may be pulverized in the polymerization step, or the hydrogel may be pulverized after the polymerization step. That is, this step is a step of obtaining a particulate hydrated gel (hereinafter sometimes referred to as “particulate hydrated gel” or “particulate polymer gel”) by gel-pulverizing the hydrated gel.
  • this step is expressed as “gel pulverization”.
  • the object of gel grinding is not limited to the water-containing gel (polymerized gel) obtained in the polymerization step, but unless otherwise specified, the water-absorbent resin fine powder obtained after drying is recycled as described below. Gel) ”may be included. Other processes have the same purpose unless otherwise specified.
  • the gel pulverization refers to adjusting the hydrogel to a predetermined size using a screw pulverizer such as a kneader or meat chopper, or a gel pulverizer such as a cutter mill.
  • the temperature of the hot water is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, still more preferably 60 ° C. or higher, and preferably 100 ° C. or lower.
  • the contents described in the pamphlet of International Publication No. 2011-126079 are preferably applied to the present invention.
  • polymerization form is kneader polymerization
  • pulverization process are implemented simultaneously.
  • an irregularly crushed water-absorbing resin can be obtained through the gel grinding step in the present invention.
  • the production method of the present invention is a fine powder recycling process, in which the fine powder removed and an aqueous liquid are mixed to obtain a granulated gel, at least one process from the end of the gel crushing process to the completion of drying in the drying process And / or a granulated gel addition step of adding the granulated gel to the hydrogel crosslinked polymer between the steps, in the gel pulverization step of the present invention, particularly in the gel pulverization in the second form of the present invention. It is more preferable to appropriately control the gel grinding energy.
  • the particulate hydrogel obtained by gel pulverization with the following predetermined gel pulverization energy is obtained by drying a mixture of the particulate hydrogel (polymerized gel) and the granulated gel (fine powder granulated gel) with a vent band dryer. Even when laminated, the mixture is difficult to be densely laminated, and can be dried in a very short time compared to the case of using a granular hydrogel obtained by gel pulverization under normal conditions. Further, the particulate hydrous gel is easily compatible with the granulated gel described later, and is easily dried uniformly. Further, in terms of physical properties of the water-absorbing resin obtained, the water absorption rate, for example, FSR disclosed in International Publication No. 2009/016055 and JIS K 7224 (1996) “Test method for water absorption rate of high water-absorbing resin” is described. Evaluation improves with Vortex.
  • gel grinding energy in the present invention means a unit mass required by the gel grinding device when gelling the hydrogel, that is, mechanical energy per unit mass of the hydrogel, and heating the jacket It does not include cooling energy or water / steam energy input.
  • Gel grinding energy is abbreviated as “GGE” from “Gel Grinding Energy” in English. GGE is calculated by the following formula (1) when the gel crusher is driven by three-phase AC power.
  • the above-mentioned “power factor” and “motor efficiency” are values unique to the apparatus that vary depending on the operating conditions of the gel crushing apparatus, and take values from 0 to 1 inclusive. These values can be obtained by inquiries to the device manufacturer.
  • GGE When the gel crusher is driven by single-phase AC power, GGE can be calculated by changing “ ⁇ 3” in the above formula to “1”.
  • the unit of voltage is [V]
  • the unit of current is [A]
  • the unit of weight (mass) of the hydrogel crosslinked polymer is [g / s].
  • the “power factor” and “motor efficiency” in the GGE adopt values at the time of gel crushing. Note that the values of the power factor and the motor efficiency during the idling operation are approximately defined as in the above formula because the current value during the idling operation may be small.
  • “mass of hydrogel crosslinked polymer charged into the gel grinder per second” [g / s] is, for example, a hydrogel crosslinked polymer supplied continuously by a quantitative feeder. When the supply amount is [t / hr], it is a value converted to [g / s].
  • the hydrated gel-like crosslinked polymer may contain a granulated gel recycled later.
  • the gel grinding energy (GGE) for gel grinding is preferably 100 J / g or less, more preferably 80 J / g or less, still more preferably 60 J / g or less, and preferably 20 J / g or more. Preferably it is 25 J / g or more, more preferably 30 J / g or more.
  • the total energy consumed by each device is the gel grinding energy. (GGE).
  • gel grinding energy when the gel grinding energy is controlled as described above, a superior effect can be obtained by combining with the addition of warm water in the above range. Further, after normal gel grinding, gel grinding based on the gel grinding energy may be performed.
  • the particle diameter of the particulate hydrous gel refined by the gel pulverization step is preferably in the range of 0.1 mm or more and 10 mm or less from the viewpoint of easy drying and physical properties of the resulting water-absorbent resin.
  • the mass average particle diameter (D50) of the particulate hydrous gel is preferably 0.1 mm or more, preferably 5 mm or less, more preferably 2 mm or less.
  • the mass average particle diameter (D50) of the particulate hydrous gel is preferably 0.1 mm or more and 1.0 mm or less.
  • the mass average particle size of the hydrogel subjected to the drying step iii) is preferably within the above range, and more preferably satisfies both the particle size and the mass average particle size.
  • the logarithmic standard deviation ( ⁇ ) indicating the narrowness of the particle size distribution is preferably 0.2 or more, preferably 1.5 or less, more preferably 1.3 or less, More preferably, it is 1.2 or less.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution has an advantage that the smaller the value, the more uniform the particle size, and the more uniform drying can be.
  • special operations such as particle size control during polymerization before gel pulverization and classification of the particulate hydrous gel after gel pulverization are required. Therefore, it is practically difficult to implement from the viewpoint of productivity and cost.
  • the gel pulverization method described in International Publication No. 2011/126079 pamphlet it is preferable to use the gel pulverization method described in International Publication No. 2011/126079 pamphlet. Further, the gel grinding technique may be combined with the aforementioned foam polymerization.
  • the measurement method of the mass average particle diameter (D50) and the logarithmic standard deviation ( ⁇ ) of the particulate water-containing gel is performed by the method described in International Publication No. 2011/126079 pamphlet.
  • the water content of the particulate hydrogel is preferably 30% by mass or more, more preferably 45% by mass or more, preferably 70% by mass or less, more preferably 55% by mass. It is as follows.
  • This step is a step of iii) drying the pulverized hydrogel crosslinked polymer. Specifically, the particulate hydrogel, or the granulated gel (fine powder) is further added to the particulate hydrogel. In the case of adding (granulated gel), both the granulated gel and the particulate hydrogel are dried to a desired solid content to obtain a dry polymer.
  • the solid content that is, the value obtained by subtracting the moisture content from 100% by mass of the gel is preferably 80% by mass or more, more preferably 85% by mass or more, still more preferably 90% by mass or more, and particularly preferably 92% by mass or more.
  • the dried polymer is preferably 99% by mass or less, more preferably 98% by mass or less, and particularly preferably 97% by mass or less.
  • pulverization, classification, and surface crosslinking can be carried out efficiently.
  • stationary drying such as a ventilation band type dryer in this drying step, the dried polymer is likely to become a block-like dried product due to agglomeration at the time of drying.
  • the moisture content may be different, but the dried polymer may be obtained from various positions as appropriate, and may be crushed if necessary before measuring and averaging the moisture content.
  • the time for adding the granulated gel is defined as “until drying is completed in the drying step iii)”, but “drying completion” here is an extent that can be regarded as a dry polymer.
  • drying completion is an extent that can be regarded as a dry polymer.
  • a dry state specifically a state in which the solid content has reached 80% by mass, and is irrelevant to the end of the drying step.
  • the drying process can be continued until the drying is completed, that is, after reaching the solid content of 80% by mass to the preferable solid content range.
  • a dry polymer having a content lower than the predetermined solid content may be referred to as an undried product.
  • the “substance to be dried” or “particulate hydrated gel” in the drying step may include both the particulate hydrated gel and the granulated gel.
  • the drying step of the present invention is a more effective condition especially when both the particulate hydrous gel (polymerization gel) and the granulation gel (fine powder granulation gel) are included.
  • the hydrogel and the processed product thereof may contain the granulated gel and the processed product in the same manner. As described above, granulation gel (fine powder granulation) and particulate water-containing gel (polymerization gel) have different properties and drying efficiencies, so it is difficult to dry them together. it can.
  • Drying methods in the drying process include, for example, heat drying, hot air drying, vacuum drying, fluidized bed drying, infrared drying, microwave drying, drying by azeotropic dehydration with a hydrophobic organic solvent, and high-humidity drying using high-temperature steam.
  • Examples of the drying method include stirring and drying to move the material to be dried. Among these, stirring drying and hot air drying are preferable from the viewpoint of drying efficiency.
  • the stirring and drying is preferably performed with a stirring dryer such as a paddle dryer or a rotary drum dryer.
  • it is preferable to perform hot air drying with the ventilation band type dryer which performs hot-air drying on a ventilation belt.
  • the stirring and drying is preferably a rotary drum dryer from the viewpoint of reducing mechanical damage to an object to be dried.
  • a rotary drum type having one or more heating means selected from aeration heating type for direct heat transfer and an outer wall heating type and tubular heating type for indirect heat transfer. It is a dryer.
  • aeration heating type when heating only by aeration heating type, problems, such as scattering of the dried material by ventilation
  • the tubular heating type is more preferable because a heat transfer area inside the dryer can be increased by using a plurality of heating tubes, and thus efficient drying is possible.
  • An example of such a rotary drum dryer is a rotary drum dryer with a heating tube.
  • the rotary drum dryer may include other flow means for flowing the contents. Examples of other flow means include a scraping plate and a stirring blade installed on the inner surface of the rotating container.
  • the drying temperature in the present invention that is, the temperature of hot air is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 150 ° C. or higher, preferably 250 ° C. or lower, more preferably. It is 230 degrees C or less, More preferably, it is 200 degrees C or less.
  • the drying time is preferably 10 minutes or more, more preferably 20 minutes or more, still more preferably 30 minutes or more, preferably 2 hours or less, more preferably 1.5 hours or less, and even more preferably 1 hour or less. is there.
  • Ventilation band dryer When drying an object to be dried with a ventilated band dryer, supply it continuously so that the object to be dried is layered on the band of the band dryer (hereinafter sometimes referred to as “gel layer”), and then dry with hot air Is done.
  • the width of the band of this dryer is preferably 0.5 m or more, more preferably 1 m or more, preferably 10 m or less, more preferably 5 m or less.
  • the length of the band is preferably 20 m or more, more preferably 40 m or more, preferably 100 m or less, more preferably 50 m or less.
  • the moving speed of the object to be dried on the band may be appropriately set depending on the belt width, belt length, production amount, drying time, etc., but preferably 0.3 m from the viewpoint of the load and durability of the belt driving device.
  • / Min or more more preferably 0.5 m / min or more, still more preferably 0.7 m / min or more, preferably 5 m / min or less, more preferably 2.5 m / min or less, still more preferably 2 m / min.
  • it is particularly preferably 1.5 m / min or less.
  • the average thickness of the gel layer of the material to be dried dispersed on the ventilation band type dryer is preferably 3 cm or more, more preferably 5 cm or more, still more preferably 8 cm or more, preferably 30 cm or less, more preferably 20 cm or less. More preferably, it is 15 cm or less. In order to achieve the solid content efficiently under the above conditions, it is desirable that the thickness of the gel layer be in the above range. On the other hand, if the gel layer becomes too thick, it is likely that undried material remains or is non-uniformly dried, so that the ratio of the dry polymer that does not satisfy the preferred solid content may increase even if the predetermined drying step is performed. is there.
  • the thickness change rate obtained from the following formula of the ventilation band type dryer is preferably 1.05 or more, more preferably 1.1 or more, preferably 3 or less, more preferably 2.5 or less. More preferably, it is 2 or less.
  • the rate of change in thickness of the gel layer is the thickness in the cross section perpendicular to the band traveling direction, and is the thickness of the polymer gel in the width direction measured in a certain section in the traveling direction of the ventilation belt.
  • the thickness of the gel layer of the present invention is the thickness before drying starts on the ventilation belt, in other words, the thickness of the material to be dried until the solid content concentration of the material to be dried increases.
  • “until the solid content concentration rises” means that the solid content concentration is preferably increased by 1% by mass, more preferably by 0.5% by mass relative to the solid content concentration of the material to be dried before drying. It means until it rises more preferably exceeding 0 mass%.
  • Thickness change rate (maximum thickness in the width direction of the material to be dried / average thickness)
  • a thickness control operation on the material to be dried spread on the ventilation band type dryer.
  • Performing a thickness control operation preferably the gel layer thickness, more preferably the thickness change rate, more preferably the gel layer thickness and thickness change rate, satisfying the thickness and thickness change rate, resulting in poor drying due to coarse aggregates, etc. Can be further suppressed.
  • the thickness control operation is not particularly limited as long as the thickness of an object to be dried on the band can be adjusted, and examples include a rake (hand grip), a rotary type leveling machine, and the like.
  • the pulverization step is a step of iv) pulverizing the polymer after drying
  • the classification step is v) a classification step of removing fine powder from the pulverized polymer.
  • this is a step of obtaining a water-absorbent resin by pulverizing a dry polymer obtained through the drying step in a pulverization step and adjusting the particle size to a desired range in a classification step.
  • Examples of the pulverizer used in the pulverization step include a high-speed rotary pulverizer such as a roll mill, a hammer mill, a screw mill, and a pin mill, a vibration mill, a knuckle type pulverizer, and a cylindrical mixer.
  • a roll mill is preferably selected from the viewpoint of grinding efficiency.
  • a plurality of these pulverizers can be used in combination.
  • Examples of the method for adjusting the particle size in the classification step include sieve classification and airflow classification using a JIS standard sieve (JIS Z8801-1 (2000)). Among these, from the viewpoint of classification efficiency, sieve classification is preferably selected. In addition, from the viewpoint of ease of pulverization, a classification step may be additionally performed before the pulverization step.
  • the particle size distribution of the water-absorbent resin is such that the mass average particle diameter (D50) is preferably 300 ⁇ m or more and 600 ⁇ m or less, and the proportion of particles less than 150 ⁇ m is 5% by mass or less.
  • the upper limit of the mass average particle diameter (D50) is more preferably 500 ⁇ m or less, still more preferably 450 ⁇ m or less, and particularly preferably 400 ⁇ m or less.
  • the proportion of particles less than 150 ⁇ m is more preferably 4% by mass or less, still more preferably 3% by mass or less, and particularly preferably 2% by mass or less.
  • the logarithmic standard deviation ( ⁇ ) indicating the narrowness of the particle size distribution is preferably 0.20 or less, more preferably 0.25 or less, still more preferably 0.27 or more, and preferably 0.50 or less. Preferably it is 0.40 or less, More preferably, it is 0.35 or less.
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution has an advantage that the smaller the value, the more uniform the particle size and the less the segregation of particles.
  • the mass average particle size (D50) and the proportion of particles less than 150 ⁇ m are satisfied, more preferably the mass average particle size (D50), the proportion of particles less than 150 ⁇ m, and the logarithmic standard deviation are satisfied. Yes, and can be appropriately combined within the above ranges.
  • the above-mentioned particle size is applied not only to the water absorbent resin after the pulverization step and the classification step, but also to the water absorbent as the final product. Therefore, when performing surface cross-linking, the surface cross-linking treatment is performed in the surface cross-linking step so as to maintain the particle size in the above range adjusted with the water-absorbent resin before surface cross-linking. It is more preferable that the particle size is adjusted by providing.
  • This step is a step of providing a portion having a higher cross-linking density in the surface layer of the water-absorbent resin before surface cross-linking obtained through the above-described steps as necessary.
  • the heat treatment process, the cooling process, and the like are included.
  • radical cross-linking, surface polymerization, cross-linking reaction with a surface cross-linking agent, and the like occur on the surface of the water-absorbing resin before surface cross-linking, and a surface cross-linked water-absorbing resin is obtained.
  • a solution containing a surface cross-linking agent (hereinafter referred to as “surface cross-linking agent solution”) is mixed with a water-absorbing resin before surface cross-linking in a mixing apparatus.
  • surface cross-linking agent solution a solution containing a surface cross-linking agent
  • a surface crosslinking agent is used during surface crosslinking.
  • Specific examples of the surface cross-linking agent include the surface cross-linking agents described in US Pat. No. 7,183,456. Among these surface cross-linking agents, at least one surface cross-linking agent is selected in consideration of reactivity and the like.
  • the surface cross-linking agent preferably has two or more functional groups that react with a carboxyl group, and an organic compound that forms a covalent bond is Selected.
  • the surface cross-linking agent is preferably added as an aqueous solution to the water-absorbing resin before surface cross-linking.
  • the amount of water used is preferably 0.1 parts by mass or more, more preferably 0.3 parts by mass or more, and still more preferably 0.5 parts by mass with respect to 100 parts by mass of the water absorbent resin before surface crosslinking. It is above, Preferably it is 20 mass parts or less, More preferably, it is 15 mass parts or less, More preferably, it is 10 mass parts or less.
  • a hydrophilic organic solvent can be used in combination with the water as necessary to form the surface cross-linking agent solution.
  • the amount of the hydrophilic organic solvent used is preferably 5 parts by mass or less, more preferably 3 parts by mass or less, and still more preferably 1 part by mass or less with respect to 100 parts by mass of the water absorbent resin before surface crosslinking.
  • Specific examples of the hydrophilic organic solvent include lower alcohols such as methyl alcohol; ketones such as acetone; ethers such as dioxane; amides such as N, N-dimethylformamide; sulfoxides such as dimethyl sulfoxide. Polyhydric alcohols such as ethylene glycol; and the like.
  • the amount used is limited to the smallest possible amount even when used.
  • additives added in the following “[2-7] Additive and its adding step” are added to the surface cross-linking agent solution within a range of 5 parts by mass or less, or added separately in the mixing step. You can also do it.
  • the mixing of the water-absorbing resin before surface cross-linking and the surface cross-linking agent solution is carried out by preparing a surface cross-linking agent solution in advance and spraying or dropping the solution on the water-absorbing resin before surface cross-linking. More preferably, a method of spraying and mixing is selected.
  • the mixing apparatus for performing the mixing has a torque necessary for uniformly and reliably mixing the water-absorbing resin before the surface crosslinking and the surface crosslinking agent.
  • the mixing apparatus is preferably a high-speed stirring type mixer, and more preferably a high-speed stirring type continuous mixer.
  • the rotation speed of the high-speed stirring mixer is preferably 100 rpm or more, more preferably 300 rpm or more, preferably 10,000 rpm or less, more preferably 2000 rpm or less.
  • the temperature of the water-absorbent resin before surface cross-linking supplied to this step is preferably 35 ° C. or higher, and preferably 80 ° C. or lower, from the viewpoint of the mixing property with the surface cross-linking agent solution and the cohesiveness of the humidified mixture. More preferably, it is 70 degrees C or less, More preferably, it is 60 degrees C or less.
  • the mixing time is preferably 1 second or longer, more preferably 5 seconds or longer, preferably 1 hour or shorter, more preferably 10 minutes or shorter.
  • Heat treatment step This step is a step in which heat is applied to the humidified mixture obtained in the mixing step to cause a crosslinking reaction on the surface of the water-absorbent resin before surface crosslinking.
  • the humidified mixture may be heated in a stationary state, or may be heated in a fluidized state using power such as agitation, but stirring is performed in that the entire humidified mixture can be heated uniformly. Heating under is preferred.
  • the heat treatment apparatus that performs the heat treatment include a paddle dryer, a multi-fin processor, and a tward dryer from the above viewpoint.
  • the heating temperature in this step is preferably 150 ° C. or higher, more preferably 170 ° C. or higher, more preferably 180 ° C. or higher, from the viewpoint of the type and amount of the surface cross-linking agent and the water absorption performance of the water absorbent resin. Preferably it is 250 degrees C or less, More preferably, it is 230 degrees C or less. Also, the heating time is preferably at least 5 minutes, more preferably at least 7 minutes. Controlling the heating temperature and the heating time within the above ranges is preferable because the water absorption performance of the resulting water absorbent resin is improved.
  • Cooling step This step is an optional step provided as necessary after the heat treatment step. This step is a step of forcibly cooling the high-temperature water-absorbent resin that has undergone the heat treatment step to a predetermined temperature, thereby quickly terminating the surface crosslinking reaction.
  • the water-absorbing resin may be cooled in a stationary state, or may be cooled in a fluidized state using power such as stirring, but under stirring, the whole water-absorbing resin can be cooled uniformly. It is preferable to cool.
  • the cooling device that performs the cooling include a paddle dryer, a multi-fin processor, and a tward dryer from the above viewpoint. Note that these cooling devices can have the same specifications as the heat treatment device used in the heat treatment step. This is because the heat medium of the heat treatment apparatus can be used as a cooling apparatus by changing to a refrigerant.
  • the cooling temperature in this step may be appropriately set according to the heating temperature in the heat treatment step, the water absorption performance of the water absorbent resin, etc., but is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, preferably 100 ° C or lower, more preferably 90 ° C or lower, and still more preferably 70 ° C or lower.
  • a surface modifier is an additive added for the purpose of modifying the particle surface of the water-absorbent resin.
  • examples thereof include a liquid permeability improver, an anti-caking agent under moisture absorption, a powder flow control agent, and a binder for a water absorbent resin.
  • at least one compound selected from the group consisting of polyvalent metal salts, cationic polymers, and inorganic fine particles can be used, and two or more types can be used in combination as required.
  • the amount of the surface modifier added is appropriately set according to the selected compound.
  • the step of adding the surface modifier is preferably performed after the polymerization step, more preferably after the drying step, and still more preferably after the surface cross-linking step, for the purpose of modifying the particle surface of the water-absorbent resin. Further, the surface modifier can be added in any one or more steps.
  • the polyvalent metal cation of the polyvalent metal salt is preferably divalent or higher, more preferably divalent or higher and tetravalent or lower, and even more preferably trivalent or tetravalent.
  • the polyvalent metal that can be used include aluminum and zirconium. Therefore, examples of the polyvalent metal salt that can be used in this step include aluminum lactate, zirconium lactate, aluminum sulfate, and zirconium sulfate. Among these, aluminum lactate or aluminum sulfate is more preferable, and aluminum sulfate is more preferable from the viewpoint of the effect of improving SFC.
  • the addition amount of the polyvalent metal salt is preferably 0 mol or more, preferably less than 3.6 ⁇ 10 ⁇ 5 mol, more preferably 1.4 ⁇ 10 ⁇ 5 with respect to 1 g of the water absorbent resin. Less than mol, more preferably less than 1.0 ⁇ 10 ⁇ 5 mol.
  • the solution containing the polyvalent metal further includes monohydric acid such as sodium hydroxide, sodium carbonate, sodium bicarbonate, sodium acetate, sodium lactate as an agent for adjusting the permeability of the polyvalent metal into the water-absorbent resin.
  • monohydric acid such as sodium hydroxide, sodium carbonate, sodium bicarbonate, sodium acetate, sodium lactate as an agent for adjusting the permeability of the polyvalent metal into the water-absorbent resin.
  • a metal compound may be included.
  • the cationic polymer includes materials described in US Pat. No. 7,098,284. Among these, a vinylamine polymer is more preferable from the viewpoint of improving liquid permeability.
  • the mass average molecular weight of the cationic polymer is preferably 5000 or more and 1000000 or less.
  • the cationic polymer is preferably 0 parts by mass or more, more preferably more than 0 parts by mass, preferably less than 2.5 parts by mass, more preferably 2.0 parts by mass with respect to 100 parts by mass of the water absorbent resin. It may be added so as to be less than part, more preferably less than 1.0 part by weight.
  • the inorganic fine particles include substances described in US Pat. No. 7,638,570. Among these, silicon dioxide is preferable from the viewpoint of improving liquid permeability.
  • the inorganic fine particles are preferably 0 parts by mass or more, more preferably more than 0 parts by mass, and preferably 1.2 parts by mass with respect to 100 parts by mass of the water absorbent resin. It may be added so as to be less than, more preferably less than 1.0 part by mass, and still more preferably less than 0.5 part by mass.
  • the primary particle diameter is 20 nm or more, it is preferably 0 parts by mass or more, more preferably more than 0 parts by mass, and preferably less than 2.0 parts by mass, with respect to 100 parts by mass of the water absorbent resin. Preferably, it may be added so as to be less than 1.5 parts by mass, more preferably less than 1.0 part by mass.
  • additives include chelating agents, reducing agents, hydroxycarboxylic acid compounds, surfactants, compounds having phosphorus atoms, oxidizing agents, organic powders such as metal soaps, Examples include odorants, antibacterial agents, pulps, thermoplastic fibers, terpene aromatic compounds, and aromatic substances such as phenolic aromatic compounds. One or more of these can be used.
  • the other additive is preferably a chelating agent, more preferably an amino polyvalent carboxylic acid or an amino polyvalent phosphoric acid.
  • JP 2013-213083 A JP 59-105448 A, JP 60-158861 A, JP 11-244103 A, JP 2-41155 A, and the like.
  • Other additives, preferably chelating agents, are preferably added or contained in the range of 0.001% by mass or more and 1% by mass or less with respect to the monomer or the water absorbent resin.
  • the additive is before or after at least one step selected from the above-described steps, that is, a monomer aqueous solution preparation step, a polymerization step, a gel pulverization step, a drying step, a pulverization step, a classification step, and a surface cross-linking step. It can be added during the process. Preferably, it is added before or after any step after the polymerization step or during the step.
  • Addition step of additive When the additive is added to the water absorbent resin, when the additive is a liquid or a solution of an aqueous medium such as water, the liquid or the solution is added to the water absorbent resin. It is preferable to spray and apply sufficient torque to uniformly and reliably mix the water-absorbent resin and the additive. On the other hand, when the additive is a solid such as powder, it may be dry blended with a water absorbent resin, or an aqueous liquid such as water may be used as a binder.
  • the apparatus used for the mixing include a stirring mixer, a cylindrical mixer, a double wall conical mixer, a V-shaped mixer, a ribbon mixer, a screw mixer, and a fluid rotary desk.
  • examples thereof include a type mixer, an airflow type mixer, a double arm type kneader, an internal mixer, a pulverizing type kneader, a rotary mixer, and a screw type extruder.
  • the rotation speed becomes like this.
  • it is 5 rpm or more, More preferably, it is 10 rpm or more, Preferably it is 10000 rpm or less, More preferably, it is 2000 rpm or less.
  • the sizing step is a step of adjusting the water-absorbing resin after surface cross-linking obtained through the surface cross-linking step to a desired particle size and obtaining a water-absorbing resin ready for shipment as a final product, that is, a water-absorbing agent. It is.
  • the operations described later after the surface cross-linking step are referred to as a pulverization step and a classification step.
  • the preparation method similar to the said classification process can be employ
  • the water-absorbing resin when the water-absorbing resin is aggregated in the surface cross-linking step or the surface modifier adding step, crushing, for example, light pulverization may be performed.
  • the particle size distribution after the particle size adjustment can be appropriately adjusted according to the use, and preferably the classification step and the identification degree. Therefore, classification by a sieve or the like may be performed so as to satisfy a desired mass average particle diameter (D50), a ratio of the mass average particle diameter (D50), a logarithmic standard deviation, and the like.
  • Fine powder recycling process vi) completes the drying process iii) after the polymerization process and the drying process, and further the fine powder (the fine powder of the water-absorbent resin) removed in the classification process v). It is a process to recycle before.
  • the completion of drying means drying to a solid content of 80% by mass.
  • the fine powder to be recycled is preferably the fine powder removed in the classification step, more preferably in the classification step and the sizing step.
  • the fine powder generated in a certain production line may be recycled to the adjacent production line, or the polymerization conditions may be changed from the removal of the fine powder in the same production line to the recycling.
  • vi-1) A granulation step of mixing the removed fine powder with an aqueous liquid to obtain a granulated gel; vi-2) A structure in which the granulated gel is added to the hydrogel crosslinked polymer between at least one and / or between the steps i) to iii) until the drying is completed in the drying step iii). Grain gel addition process, vi-3) Mechanically mixing the hydrated gel-like crosslinked polymer and the added granulated gel between at least one step and / or between steps from the granulated gel addition step to the drying step iii).
  • the granulation gel addition step which will be described later, including the gel mixing step, it is desirable that the solid content of the granulation gel is a predetermined amount, and the temperature of the granulation gel and the hydrous gel is within a predetermined range.
  • the granulation step is a step of vi-1) obtaining a granulated gel by mixing the removed fine powder and an aqueous liquid.
  • a granulated gel is a gel in which a plurality of individual particles are aggregated or fused to form large particles when observed with an optical microscope, and preferably has a strength that does not cause damage due to classification or transport operations. Is.
  • the present invention is intended for all fine powders obtained in the production of a water-absorbent resin.
  • the aqueous liquid is added to the fine powders removed in the classification step, more preferably the classification step and the granulation step. Add and granulate.
  • the mixing ratio (mass ratio) of the fine powder removed from the classification process and the fine powder removed from the sizing process is preferably 99: 1 to 50:50, more preferably 98: 2 to 60:40, and still more preferably 95. : 5 to 70:30.
  • the fine powder removed in the sizing process is subjected to the surface cross-linking process, and in some cases the surface cross-linking process, and in addition to the surface-modifying agent addition process described in [2-7-1] Surface modifier, granulation.
  • the agglomeration property of the granulated gel is reduced, which is advantageous.
  • fine powder removed by a back filter or the like in each production process may be used for granulation, and fine powder obtained in a separate process or another production process (another production process). It is also possible to mix and use the fine powder obtained by removing with the apparatus).
  • the fine powder may have the same composition as the hydrated gel that dries together or may have a different composition, but it is preferable to use a fine powder having the same composition derived from the hydrated gel that dries together.
  • the size of the fine powder used for granulation is preferably less than the final product size of the water absorbent resin.
  • the fine powder preferably has a mass average particle size (D50) defined by JIS standard sieve classification of 150 ⁇ m or less, more preferably 106 ⁇ m or less.
  • the lower limit of the fine powder is preferably 38 ⁇ m or more, more preferably 45 ⁇ m or more.
  • the particles having a particle size of less than 150 ⁇ m defined by JIS standard sieve classification are preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, and preferably 100% by mass. % Or less is desirable.
  • the shape of the fine powder is preferably an indeterminate shape obtained by aqueous solution polymerization rather than a spherical shape obtained by reverse phase suspension polymerization in terms of granulation strength.
  • the fine powder may be removed after the surface cross-linking step generally performed in the production of the water-absorbent resin, or may be removed before the surface cross-linking step. It may be a mixture thereof.
  • An aqueous liquid is added to the fine powder, preferably the fine powder (fine powder before surface crosslinking and fine powder after surface crosslinking) mixed at a predetermined ratio to obtain a granulated gel (fine powder granulated gel).
  • the granulated gel uses fine powders having various particle sizes obtained from the single step or a plurality of steps.
  • the number average particle diameter of the granulated gel is preferably 0.15 mm or more, more preferably 0.2 mm or more, further preferably 0.3 mm or more, preferably 20 mm or less, more preferably 5 mm or less, still more preferably 2 mm. It is as follows.
  • the number average particle size of the granulated gel is obtained by measuring the particle size of the granulated gel selected from 10 to 100 at random. When the granulated gel is agglomerated, it is measured after decomposing each particle. When a huge gel-like material exceeding the above range is obtained by mixing the fine powder and the aqueous liquid in the granulation step, the huge gel-like material can be removed by classification means such as grinding or sieving. preferable. Further, the removed giant gel can be reused by drying, pulverizing, and the like as necessary.
  • the temperature of the fine powder when mixing with the aqueous liquid is preferably 40 ° C. or higher, preferably 50 ° C. or higher, more preferably 60 ° C. or higher, preferably 120 ° C. or lower, more preferably 100 ° C. or lower, and still more preferably 90 ° C. It is below °C.
  • the temperature of the fine powder can be appropriately adjusted as necessary by external heating with hot air or the like, heat retention after heating in the drying step, or cooling by blowing air at room temperature.
  • the fine powder is heated or kept warm in a container having a heating means such as a steam tress.
  • aqueous liquids used for mixing with fine powders include lower alcohols such as water, methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, and t-butyl alcohol; acetone and the like Ketones; ethers such as dioxane and tetrahydrofuran; amides such as N, N-dimethylformamide; aqueous solutions containing sulfoxides such as dimethyl sulfoxide and the like.
  • the aqueous liquid may contain a small amount of other additives such as a crosslinking agent, a chelating agent, a surfactant, a polymerization initiator, an oxidizing agent, and a reducing agent, as long as the effects of the present invention are not impaired.
  • additives such as a crosslinking agent, a chelating agent, a surfactant, a polymerization initiator, an oxidizing agent, and a reducing agent, as long as the effects of the present invention are not impaired.
  • One kind or two or more kinds of additives may be added, and the difference in the case of adding two kinds or more does not matter.
  • residual monomers in the granulated gel and hydrous gel can be reduced by using an aqueous liquid to which a polymerization initiator or a reducing agent described in the polymerization step is added.
  • the preferred polymerization initiator is persulfate
  • the preferred reducing agent is (bi) sulfurous acid (salt).
  • a preferred oxidizing agent is at least one oxidizing agent selected from chlorite, hypochlorite, and peroxide, and more preferably hydrogen peroxide.
  • the granulated gel can contain a surfactant or a polymer dispersant, and aggregation of the granulated gel can be effectively suppressed.
  • surfactant examples include surfactants such as anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants, and non-polymeric surfactants.
  • anionic surfactant examples include fatty acid salts such as mixed fatty acid sodium soap, semi-cured tallow fatty acid sodium soap, sodium stearate soap, potassium oleate soap, and castor oil potassium soap; sodium lauryl sulfate, higher alcohol sulfate Alkyl sulfate salts such as sodium and lauryl sulfate triethanolamine; alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate; alkylnaphthalene sulfonates such as sodium alkylnaphthalenesulfonate; alkylsulfosuccinates such as sodium dialkylsulfosuccinate; Alkyl diphenyl ether disulfonate such as sodium alkyl diphenyl ether; alkyl phosphate such as potassium alkyl phosphate; polyoxy Polyoxyethylene alkyl (or alkylallyl) sulfate esters such as sodium sodium fatty
  • nonionic surfactant examples include polyolefin oxides such as polyethylene glycol, polypropylene glycol, and polyethylene glycol-polypropylene glycol block copolymers; polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, Polyoxyethylene alkyl ethers such as polyoxyethylene oleyl ether and polyoxyethylene higher alcohol ether; polyoxyethylene alkyl aryl ethers such as polyoxyethylene nonylphenyl ether; polyoxyethylene derivatives; sorbitan monolaurate, sorbitan monopalmitate, Sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sol Sorbitan fatty acid esters such as tan trioleate, sorbitan sesquioleate, sorbitan distearate, etc .; polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan
  • cationic surfactant and the amphoteric surfactant include alkylamine salts such as coconutamine acetate and stearylamine acetate; lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, cetyltrimethylammonium chloride, distearyldimethyl. Quaternary ammonium salts such as ammonium chloride and alkylbenzyldimethylammonium chloride; alkylbetaines such as laurylbetaine, stearylbetaine, laurylcarboxymethylhydroxyethylimidazolinium betaine; amine oxides such as lauryldimethylamine oxide;
  • a fluorine-based surfactant or a siloxane-based surfactant can also be used.
  • a polymer dispersant can also be used.
  • specific examples of the polymer lubricant include maleic anhydride-modified polyethylene, maleic anhydride-modified polypropylene, maleic anhydride-modified ethylene / propylene copolymer, maleic anhydride-modified ethylene / propylene / diene terpolymer ( EPDM), maleic anhydride modified polybutadiene, maleic anhydride / ethylene copolymer, maleic anhydride propylene copolymer, maleic anhydride / ethylene / propylene copolymer, maleic anhydride / butadiene copolymer, polyethylene, polypropylene, Polyalkylene such as ethylene / propylene copolymer, oxidized polyethylene, oxidized polypropylene, oxidized ethylene / propy
  • the total content of additives such as a surfactant in the aqueous liquid is preferably 0.0001% by mass or more and 0.5% by mass or less with respect to the fine powder. If the amount is less than 0.0001% by mass, the desired effect of the additive such as aggregation suppression of the granulated gel may not be obtained. On the other hand, excessive addition may adversely affect the properties of the final water absorbent resin. Sometimes.
  • the fine powder contains additives such as the above-mentioned cross-linking agent, chelating agent, surfactant, polymerization initiator, oxidizing agent, reducing agent, etc.
  • the additive may be added only for the shortage.
  • the chelating agent, the surfactant, the oxidizing agent, the reducing agent and the like described in the section of the additive addition step are contained in the fine powder.
  • the surface tension of the granulated gel may decrease, but if the surface tension becomes too low, the amount of liquid that is absorbed by the water-absorbent resin when used as a product May adversely affect physical properties, such as an increase in. Therefore, it is preferable to control the surface tension of the granulated gel so that the physical properties do not vary even when the granulated gel is reused.
  • the surface tension of an extract hereinafter referred to as “extract” extracted with a 0.9% by mass aqueous sodium chloride solution from a granulated gel obtained by mixing a fine powder or an aqueous solution containing a surfactant is preferred.
  • the surface tension of the granulated gel can be appropriately controlled depending on the amount of fine powder, the physical properties of the granulated gel and the production conditions.
  • the surface tension of the granulated gel may be adjusted by using a plurality of aqueous liquids having different surfactant contents or different contents.
  • a surfactant is added before, during or after one step selected from the polymerization step, the gel pulverization step, the drying step, the pulverization step, and the classification step, and / or the granulation step.
  • an extract from a granulated gel obtained by adding a surfactant to an aqueous liquid and mixing the fine powder and the aqueous liquid has the surface tension.
  • the aqueous liquid and the fine powder added at the first time are mixed.
  • the aqueous liquid added contains the surfactant at least once among the aqueous liquids added after the second time.
  • the surface tension of the extract extracted from the granulated gel obtained by adding the aqueous liquid containing the surfactant is 60 mN / m or more.
  • the preferable range of the surface tension of the granulated gel extract obtained by the first mixing and the surface tension of the granulated gel extract obtained by the first mixing is more preferably 71 mN / m. That's it.
  • the aqueous liquid is preferably added a plurality of times in the granulation step.
  • the surface tension of the granulated gel is a value obtained by measuring an extract extracted with a 0.9 mass% sodium chloride aqueous solution from the granulated gel obtained by mixing fine powder and an aqueous liquid containing a surfactant. is there. Specifically, a 0.9-% by weight sodium chloride aqueous solution adjusted to a temperature of 23 ° C. or higher and 25 ° C. or lower, for example, 50 ml of physiological saline, is introduced into a well-washed 100 ml beaker.
  • the surface tension is measured using a surface tension meter (manufactured by Cruz, automatic surface tension meter K11), and a physiological saline having a measured value of the surface tension within a range of 71 mN / m or more and 75 mN / m or less is used. Subsequently, a 25 mm long fluororesin rotor and 0.5 g of granulated gel are charged into the physiological saline, and stirred at 500 rpm for 4 minutes. Then, stirring is stopped, the granulated gel is allowed to settle, and the surface tension is measured in the same manner as described above for the supernatant.
  • a surface tension meter manufactured by Cruz, automatic surface tension meter K11
  • the temperature of the aqueous liquid is usually preferably in the order of melting point to boiling point, more preferably 10 ° C. or higher, 20 ° C. or higher, 30 ° C. or higher, more preferably 40 ° C. or higher, still more preferably 50 ° C. or higher, and still more preferably 60 ° C. As described above, it is particularly preferably 70 ° C.
  • the boiling point can be adjusted by the addition of salts or solvents, pressure such as reduced pressure or increased pressure.
  • water vapor and an aqueous liquid at room temperature may be added at the same time to substantially reach the temperature.
  • the addition amount of the aqueous liquid is preferably less than 100 parts by mass, more preferably 80 parts by mass or less, still more preferably 50 parts by mass or less, and preferably 10 parts by mass or more with respect to 100 parts by mass (solid) of the fine powder. More preferably, it is 15 parts by mass or more, and still more preferably 20 parts by mass or more.
  • the solid is simply the mass of the fine powder, and even if the fine powder of the water absorbent resin contains other trace components (for example, water or inorganic fine particles as a raw material of the water absorbent resin), the fine powder weight. Therefore, the whole amount is taken as the mass of the fine powder without correcting the amount of the trace components.
  • the drying load increases.
  • the addition amount of the aqueous liquid is less than 10 parts by mass, the granulation strength may be insufficient and the mixing of fine powder may be uneven and the granulated product may be easily damaged.
  • the mixing apparatus used for mixing the aqueous liquid and the fine powder of any of the above embodiments is not particularly limited.
  • a mechanical stirring type mixer is preferable.
  • a turbulizer manufactured by Hosokawa Micron
  • a radige mixer manufactured by Radige
  • a mortar mixer manufactured by West Japan Testing Machine Co., Ltd.
  • the mixing may be either a batch type mixer or a continuous type mixer.
  • the heated aqueous liquid and the heated fine powder are mixed by the mixing device. More preferably, in addition to the heating of the aqueous liquid and the fine powder, the inside of the mixing device, specifically, the wall surface of the mixing device and / or The stirring means such as the stirring blade is heated.
  • the mixing device, the aqueous liquid, and the fine powder are all mixed while being heated to a predetermined temperature, the structure having a desired particle size can be more efficiently suppressed while suppressing the formation of the huge gel. A granular gel can be obtained easily.
  • such an effect can be obtained even if none of the fine powder, the aqueous liquid, and the mixing device is heated, but preferably at least one, more preferably two, and even more preferably all are heated to a predetermined temperature. As a result, a better effect can be obtained.
  • the heating temperature of the mixing apparatus during the mixing is preferably 50 ° C. or higher, more preferably 55 ° C. or higher, still more preferably 60 ° C. or higher, particularly preferably 65 ° C. As described above, the temperature is most preferably 70 ° C. or higher, preferably 120 ° C. or lower, more preferably 100 ° C. or lower, and further preferably 90 ° C. or lower.
  • the temperature in the mixing apparatus can be adjusted as appropriate by, for example, supplying heated gas or conducting electric heat.
  • the fine powder and the aqueous liquid when the fine powder and the aqueous liquid are mixed, it is preferably granulated by high speed mixing. Since the formation of the huge gel-like material can be suppressed by high-speed mixing, the huge mixing force required when the huge gel-like material is generated becomes unnecessary, and the gel-like lump is in a kneaded state. As a result, the main chain is broken or entangled, and as a result, the problem of deterioration of the water absorbent resin can be avoided.
  • the high speed mixing means that the time from the contact point of the fine powder as the raw material and the aqueous liquid in the mixing apparatus to the formation of the granulated gel is short. That is, it means that the time from when the raw material is charged into the mixing apparatus until the granulated gel is taken out is short.
  • the mixing time is preferably 3 minutes or less, more preferably 1 minute or less, preferably 1 second or more, more preferably 5 seconds or more. If the mixing time is long, uniform mixing of the aqueous liquid and the fine powder becomes difficult, and it tends to be an integrated huge gel. In addition, when the mixing time is long, the water-absorbent resin may be deteriorated in performance, such as an increase in water-soluble content of the water-absorbent resin and a decrease in water absorption capacity under pressure.
  • the mixing apparatus As a means for achieving high speed mixing, it is desirable to feed the raw material into the mixing apparatus in a short time. Addition of either one or both of the raw materials is long, such as by gradually adding an aqueous liquid, etc., so that the mixing time becomes long. The water absorbent resin may be deteriorated.
  • the fine powder and the aqueous liquid may be charged at the same time or after one is charged at a different timing. Accordingly, the time from the start of charging to the end of charging of both raw materials when the charging is simultaneous or at the same time is preferably 60 seconds or less, more preferably 30 seconds or less, and even more preferably 10 seconds. It is as follows.
  • the paddle rotation speed is preferably 100 rpm or more, more preferably 200 rpm or more, still more preferably 300 rpm or more, preferably 5000 rpm or less, more preferably 4000 rpm or less, still more preferably 3000 rpm or less.
  • the direction of the paddle rotation axis is not limited, but the vertical direction is preferable from the viewpoint of easy discharge of the granulated gel. Further, the number of paddle rotation axes is not limited, but one or two axes are preferable and one axis is more preferable in terms of ease of maintenance.
  • a material having a contact angle with water of 90 degrees or more for the inner wall of the mixer in order to prevent adhesion, it is preferable to use a material having a contact angle with water of 90 degrees or more for the inner wall of the mixer.
  • a preferred material is a fluororesin such as Teflon (registered trademark).
  • Teflon registered trademark
  • a preferred material from the viewpoint of durability is stainless steel.
  • each manufacturing process of the water-absorbent resin is connected, and a transport process is not necessarily required for all of the connections of each process.
  • a transport process is not necessarily required for all of the connections of each process.
  • a step of transporting to a predetermined addition position can be included.
  • the granulated gel is transported continuously or batchwise, preferably continuous.
  • the transport machine used in the transport process include a bucket conveyor, a belt conveyor, a screw conveyor, a chain conveyor, a vibration conveyor, a pneumatic conveyor, and the like, and preferably a bucket conveyor.
  • the granulated gel to be transported is heated from the outside of the transporter and / or kept warm, and the temperature of the granulated gel is maintained at the high temperature even during transportation.
  • Such heating and / or heat retention can be achieved by providing means for heating and / or heat retaining the inner wall surface of the transporter from the outside.
  • the granulated gel fine powdered granulated gel
  • the granulated gels stick together until they are mixed with the hydrogel (polymerized gel), resulting in coarse aggregates. If the temperature of the gel is lowered and hardened, these cause non-uniform drying in the drying process, and an undried product is likely to be generated. Occurrence of undried substances in the drying process is likely to cause problems such as a decrease in productivity, a decrease in physical properties of the water-absorbent resin due to non-uniform drying, and a production trouble or stoppage due to mixing in undried substances after the drying process.
  • the present invention can solve this problem.
  • the temperature of the produced granulated gel is preferably maintained, and more preferably heated and / or kept at the same level as the temperature of the hydrous gel to be mixed.
  • the distance from the mixing device to the mixing position with the hydrated gel is preferably within 10 m, more preferably within 5 m, and even more preferably within 3 m.
  • the piping through which the granulated gel passes is heated and / or kept warm for the same reason as the transport machine.
  • the surface of the granulated gel may be dried and hardened. Therefore, it is preferable that the granulated gel obtained in the granulation step is mixed with the hydrous gel as quickly as possible at a predetermined temperature.
  • the time until the granulation gel obtained from the start of mixing the fine powder and the aqueous liquid in the granulation step is added to the hydrogel in the re-addition step vi-2) is preferably within 5 minutes, more preferably Within 3 minutes, more preferably within 1 minute.
  • the granulated gel after granulation is added to the hydrous gel between the granulation step vi-1) and the re-addition step vi-2).
  • the dew point of the granulated gel atmosphere is preferably 50 ° C or higher, more preferably 55 ° C or higher, still more preferably 60 ° C or higher, preferably 99 ° C or lower, more preferably 95 ° C or lower. More preferably, the temperature is 90 ° C. or lower.
  • the dew point of the atmosphere of the granulation step and / or the re-addition step in the above range in addition to the transport step, specifically, the fine powder and the aqueous liquid in the granulation step Is to control the atmosphere in the apparatus when mixing and the atmosphere in the apparatus when adding the granulated gel to the hydrogel.
  • “Atmosphere dew point” refers to the dew point of air present in the atmosphere.
  • the atmospheric dew point can be set in the above range, for example, by blowing water vapor or controlling the circulation rate of hot air.
  • Granulated gel addition step vi-2) At least one of the polymerization step i) to the drying step iii) until the drying is completed in the drying step iii) and / or water content between the steps.
  • the granulated gel is added to the gel-like crosslinked polymer.
  • the group consisting of the polymerization step after the polymerization step and before the gel grinding step, during the gel grinding step, after the gel grinding step and before the drying step, and during the drying step. It is preferable to add granulated gel to one or more.
  • a granulated gel may be added during the polymerization step.
  • the polymer whose solid content of a polymer is less than 80 mass% in a drying process can be normally regarded as a hydrogel. That is, since a hydrous gel exists until the middle of the drying process, the granulated gel may be added during the drying process. Preferably after the gel pulverization step and before the drying step, or during the drying step, more preferably after the gel pulverization step ii), the granulation gel is added to the hydrous gel before the drying step iii) . When the granulated gel is added to the hydrogel after pulverization in this way, the difference in particle size between the two is small, so that the mixture is easy to mix and the drying is difficult to be uneven.
  • the hydrogel becomes a granulated shape, and therefore, more uneven drying can be suppressed.
  • a granulated gel is added before or during the gel pulverization step, the load on the gel pulverizer may be increased, or the gel pulverization may become unstable, and the gel particle size may not be controlled.
  • Before process” and “after process” include all processes before or after the process, and adding a granulated gel in any process such as a transport process or a storage process between processes. Means.
  • the term “after the gel pulverization step” includes the time during which the gel pulverization step is transported to the next step and the next step.
  • the solid content of the granulation gel is 50% by mass or more and 90% by mass or less, but details of the solid content of the granulation gel will be described later.
  • the temperature of the granulation gel is controlled together with the solid content of the granulation gel.
  • the solid content of the granulated gel is controlled in the granulation gel addition step, and the gel pulverization step is controlled to a predetermined gel pulverization energy.
  • the particle size of the hydrogel may be further controlled.
  • the granulated gel is added to the water-containing gel.
  • the temperature of the granulated gel and the temperature of the water-containing gel at that time are both in the range of 50 ° C. or higher and 100 ° C. or lower, preferably 55 ° C. As mentioned above, More preferably, it is 60 degreeC or more, Preferably it is 95 degrees C or less, More preferably, it is 90 degrees C or less. Within such a temperature range, a good mixed state of both can be obtained. If the temperature of the granulated gel or hydrous gel is below 50 ° C., the granulated gel may become hard as described above, or an aggregate may be formed when the hydrous gel and the granulated gel are mixed.
  • the hydrogel or granulated gel is further adhered to form larger aggregates, resulting in poor mixing. Even if they can be mixed, if there is an aggregate during drying, poor drying, i.e., an undried product is likely to occur.
  • the aggregate is continuously dried until the desired moisture content is obtained, other already dried granulated gel and hydrous gel are overdried, resulting in thermal degradation and increased soluble content. The quality of the water-absorbing resin is deteriorated. Such a problem occurs even when one temperature is 50 ° C. or higher and the other temperature is lower than 50 ° C.
  • the temperature of the granulated gel or hydrous gel exceeds 100 ° C., the gel surface may be dried, and the gel may be hardened.
  • the temperature difference between the granulated gel and the hydrogel is preferably as small as possible within the above temperature range, and the temperature difference between the two is preferably within 40 ° C., more preferably 30 ° C. It is within 20 ° C, more preferably within 20 ° C.
  • the temperature of the granulated gel and the temperature of the hydrated gel can be adjusted as appropriate by heating and holding during the production process, heating with hot air from the outside, or cooling, cooling with low-temperature air or the like.
  • the mass average particle diameter of the particulate hydrous gel relative to the mass average particle diameter of the primary particles of the granulated gel is: Preferably it is 1 time or more, preferably 10 times or less, more preferably 5 times or less. Preferably, it is the value of the mass average particle diameter of the hydrogel crosslinked polymer after the gel pulverization step in the granulation gel addition step.
  • the uniform presence may be a mixed state in which the granulated gel and the hydrous gel are stirred, or a state in which the granulated gel and the hydrous gel are evenly dispersed so that the ratio per unit area is substantially the same.
  • the time from the addition of the granulated gel to the hydrogel to the start of mechanical mixing is preferably within 5 minutes, more preferably within 2 minutes, and even more preferably 1 Within minutes.
  • the time from the granulation step to the start of mechanical mixing is preferably within 10 minutes, more preferably within 5 minutes, and even more preferably within 2 minutes.
  • the temperature of the hydrogel to which the granulated gel is added is in the range of 50 ° C. or higher and 100 ° C. or lower, preferably 55 ° C. or higher, more preferably 60 ° C. or higher, preferably 95 It is 90 degrees C or less, More preferably, it is 90 degrees C or less.
  • the granulated gel and / or the hydrous gel are mechanically mixed in order to make the granulated gel and the hydrous gel as uniform as possible.
  • any device that can achieve any of the above coexisting states may be used, for example, rotating stirring by rotating a stirring blade or the container itself, stirring by a pendulum-like feeder, etc.
  • a slip belt type feeder and a pendulum type conveyor are exemplified.
  • the rotary stirring device is preferably a kneader polymerization machine.
  • the rotary stirring device is preferably a kneader or a meat chopper, for example.
  • Neck belt feeder or rotary stirring preferably mechanical mixing is performed after the gel grinding step ii) and before the drying step iii), during the drying step iii), or until the drying is completed in the drying step iii) It is desirable that the granulated gel and the hydrogel crosslinked polymer are supplied to a neck belt feeder or rotary stirring. Specifically, after the gel crushing step ii) and before the drying step iii), the mechanical mixing is performed using a swing belt type feeder or a rotary stirring device, or using a rotary stirring device in the drying step iii). Therefore, it is possible to dry in a more homogeneous state, so that uneven drying and generation of undried material can be suppressed.
  • hydrous gel may be added to the granulated gel transported on the conveyor belt by a swinging feeder, or c) the granulated gel and hydrous gel are supplied to the swinging feeder, You may supply on a conveyance belt with a swing feeder. Since the swing belt type feeder moves back and forth on the conveyor belt, even if the distribution of granulated gel and hydrous gel is uneven on the swing belt feeder, it seems to be distributed almost evenly on the conveyor belt. become.
  • the swinging angle ⁇ of the swinging feeder, the belt speed, and the like can be arbitrarily selected in consideration of the speed and supply amount of the transport belt, but the travel of the transport belt during one reciprocation is preferably within 1 m, 0.5 m Within is more preferable. If the traveling distance of the conveyor belt during one reciprocation is too large, the distribution of the granulated gel becomes uneven.
  • the said conveyance belt is a ventilation band dryer.
  • examples of the rotary agitator include a type in which the rotation axis is horizontal and the container itself rotates, a type in which the rotation axis is horizontal and the container itself is fixed, a type in which the rotation axis is vertical and the container itself is fixed. These may be either a continuous type or a batch type. Moreover, you may mix, leveling the hydrogel laminated
  • the number of stirring rotations and the like of the apparatus is not particularly limited, but is preferably 50 rpm or more, more preferably 100 rpm or more, preferably 500 rpm or less, more preferably 300 rpm or less.
  • the mixing (residence) time in the mixing apparatus is preferably within 180 seconds, more preferably within 60 seconds, still more preferably within 30 seconds, preferably 0.1 seconds or more, more preferably 1 second. That's it.
  • Solid content In the present invention, it is preferable that the solid content of the granulated gel and the solid content of the hydrated gel are appropriately controlled under the above conditions in the re-addition step. That is, if the solid content of the granulated gel or hydrous gel is too small, drying is partially incomplete or aggregates are likely to be generated. Further, if the solid content is excessive, the amount of residual monomer tends to increase.
  • the solid content of the granulated gel and / or the solid content of the hydrated gel is preferably within an appropriate range, and the solid content of the hydrated gel is preferably 30% by mass or more, more preferably 45% by mass or more.
  • the solid content of the granulated gel is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 60% by mass or more, preferably 90% by mass or less, more preferably 85% by mass or less, Preferably it is 80 mass% or less.
  • the solid content of the granulated gel in the re-addition step is within the above range, more preferably the solid content of the granulated gel is within the above range, and the temperatures of the granulated gel and the hydrous gel are within the above range.
  • the granulated gel solid content of the granulated gel in the re-addition step is within the above range, and the GGE in the gel pulverization step is within the above range.
  • the present invention in consideration of achieving more uniform drying, it is preferable to satisfy any one of the solid contents, more preferably to satisfy both the solid contents. Is preferably higher than the solid content of the hydrogel.
  • the reason why the solid content of the granulated gel is high is that the drying load is lowered, and the residual monomer of the granulated gel is usually less than the solid content of the hydrogel.
  • the difference (AB) between the solid content A (%) of the granulated gel and the solid content B (%) of the hydrous gel is preferably 6 or more, more preferably 11 or more, and still more preferably. 16 or more, preferably 60 or less, more preferably 50 or less, still more preferably 40 or less.
  • the drying load is small, and the unevenness of drying is further suppressed, so that manufacturing troubles and quality problems can be avoided.
  • the difference in solid content is large, drying is uneven.
  • the drying load can be reduced without causing a problem.
  • the ratio between the granulated gel and the hydrous gel may be appropriately determined depending on the amount of fine powder separated and the solid content of the granulated gel.
  • the granulated gel is usually 10 parts by mass or more, preferably 15 parts by mass or more, more preferably 20 parts by mass or more, and preferably 50 parts by mass with respect to 100 parts by mass (solid) of the hydrogel. It is preferable to add so that it may become below 30 parts by mass, more preferably below 40 parts by mass, and still more preferably below 30 parts by mass.
  • uneven drying can be suppressed even if the amount is 10 parts by mass or more of the granulated gel. If the proportion of the granulated gel is too large, the final quality and physical properties of the water-absorbent resin that is the final product are greatly influenced by the recycled fine powder, that is, the granulated gel.
  • the hydrogel crosslinked polymer added with the granulated gel is treated in the drying step. Since the drying conditions and the like of the mixed gel are the same as those in the drying step iii), description thereof is omitted.
  • the pulverization step iv) and the classification step v) performed after the drying step are also as described above. If necessary, the surface cross-linking step, the sizing step and the like are performed to obtain a water-absorbing resin as a product.
  • the fine powder obtained in the classification step v) or the like may also be treated in the recycling step vi).
  • Steps in the present invention may further include at least one step selected from a transport step, a storage step, a packing step, a storage step, etc. as necessary. Good.
  • Moisture content was measured according to the method described in ERT430.2-02.
  • the sample amount is 1 g
  • the drying temperature is 180 ° C.
  • the water content of the granulated gel and the particulate water-containing gel is 2 g
  • the drying temperature is 180 ° C. Measurements were made with each change.
  • the block-shaped dry polymer is obtained by obtaining five-point samples from various positions, crushed so that the particle diameter is 5 mm or less, and measuring the moisture content in the same manner as in the powdered water-absorbing resin, the average value It was adopted.
  • Mass average particle diameter of hydrous gel (D50) was measured by the following method. First, 20 g of a hydrogel having a solid content of ⁇ mass% at a temperature of 20 ° C. or more and 25 ° C. or less was added to 500 g of an aqueous surfactant solution to obtain a dispersion.
  • the surfactant aqueous solution is a solution prepared by adding a surfactant (manufactured by Kao Corporation: Emar 20C) to a 20% by mass sodium chloride aqueous solution so as to be 0.08% by mass.
  • a polypropylene container having a capacity of about 1.14 L was used.
  • a stirrer chip (length 50 mm ⁇ diameter 7 mm) was added to the dispersion and stirred at 300 rpm for 60 minutes.
  • the opening of the JIS standard sieve used in the operation was converted into the opening when the hydrogel having a solid content of ⁇ mass% was classified according to the following formula (3).
  • the particle size distribution of the water-containing gel obtained from the formulas (2) and (3) is plotted on a logarithmic probability paper, and the particle diameter corresponding to 50% by mass on the integrated sieve% R is the mass average particle diameter (D50) of the water-containing gel. It was.
  • Mass average particle diameter of primary particles of granulated gel (D50) Mass average particle diameter of primary particles of granulated gel (D50)
  • the “mass average particle diameter (D50)” of the hydrogel was performed by using a granulated gel instead of the hydrogel in the measurement method of the mass average particle diameter (D50) of the (c) hydrogel.
  • the mass average particle diameter is referred to as “primary particles”.
  • Cohesive disintegration degree Poor: 10 cm or less: Difficult to loosen Cohesive disintegration degree: Good: 11 cm or more, 15 cm or less: Easy to loosen Cohesive disintegration degree: Excellent: 16 cm or more: Pretty easy to loosen
  • the monomer aqueous solution had a monomer concentration of 43% by mass, a neutralization rate of 71 mol%, a PEGDA concentration of 0.07 mol% (with respect to the monomer), and a NaPS concentration of 0.05 mol% (with respect to the single concentration). (Mer).
  • a polymerization reaction started immediately after the addition of the aqueous sodium persulfate solution, and a sheet-like hydrogel crosslinked polymer (hereinafter referred to as “hydrogel”) was obtained 3 minutes later.
  • the particulate hydrous gel (1) obtained in the gel pulverization step is laminated on a 20-mesh wire mesh so that the average thickness is 5 cm, and a ventilation dryer (produced by Satake Chemical Machinery Co., Ltd.): No. 71-S6) and dried. Drying conditions were as follows: a hot polymer at 190 ° C. was aerated for 20 minutes to dry the polymer. The drying was completed without any problem, and no undried product was found in the dried polymer. The water content of the dry polymer was 5% by mass.
  • the aeration dryer used in this example has almost the same drying behavior as the aeration band dryer except for the difference between the batch type and the continuous type, and therefore the present results can be applied to the aeration band dryer.
  • the dried polymer obtained in the drying step was pulverized with a roll mill and then classified using two types of sieves having openings of 850 ⁇ m and 150 ⁇ m.
  • the dried polymer remaining on the sieve having an opening of 850 ⁇ m was repeatedly pulverized and classified until the entire amount passed through the sieve having an opening of 850 ⁇ m.
  • a water-absorbing resin before surface cross-linking on the powder remaining on the sieve having an opening of 150 ⁇ m and fine powder (A) having passed through the sieve having an opening of 150 ⁇ m were obtained.
  • a surface crosslinking agent aqueous solution consisting of 0.3 parts by mass of ethylene carbonate, 0.5 parts by mass of propylene glycol and 2.7 parts by mass of deionized water was prepared. While stirring 100 parts by mass of the water-absorbing resin before the surface crosslinking, 3.5 parts by mass of the surface crosslinking agent aqueous solution was sprayed and mixed. Thereafter, the obtained mixture was heat-treated at 200 ° C. for 40 minutes to carry out surface crosslinking.
  • an aqueous additive solution consisting of 1 part by mass of a 27% by mass aqueous solution of aluminum sulfate and 0.2 part by mass of a 60% by mass aqueous solution of sodium lactate was added. ).
  • the surface-crosslinked water-absorbent resin (1) obtained by the above operation was classified using two types of sieves having openings of 850 ⁇ m and 150 ⁇ m. Aggregate-like water-absorbent resin remaining on the sieve having an opening of 850 ⁇ m was deagglomerated and classified until the entire amount passed through the sieve having an opening of 850 ⁇ m. By this operation, the water-absorbing resin (1) remaining on the sieve having an opening of 150 ⁇ m and fine powder (B) having passed through the sieve having an opening of 150 ⁇ m were obtained.
  • the water absorbent resin (1) has a water absorption capacity (CRC) of 27 g / g under no pressure, a water absorption capacity (AAP) of 24 g / g under pressure at 0.7 psi, and a saline flow conductivity (SFC) of 120 ⁇ 10. It was ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 .
  • Example 1 (Granulation process) Fine powder (A) and fine powder (B) obtained in Production Example 1 were mixed at a ratio of 17: 3 to obtain fine powder (1).
  • the mass average particle diameter of the fine powder (1) was 91 ⁇ m.
  • 40 g of deionized water at 78 ° C. was added as an aqueous solution for 5 seconds while stirring the fine powder (1) with a food cutter heated to 80 ° C. in an oven.
  • the mixture was further granulated by stirring for 5 seconds.
  • the granulated product obtained by this operation was designated as granulated gel (1).
  • the moisture content of the granulated gel (1) was 40% by mass.
  • the number average particle size of the granulated gel (1) was 2.5 mm, and the mass average particle size of the primary particles was 138 ⁇ m.
  • the obtained mixture (1) was used as a mixed gel (1).
  • the temperatures of the granulated gel (1) and the particulate hydrogel (1) immediately before mixing with the mortar mixer were 64 ° C. and 55 ° C., respectively.
  • the mixability of the granulated gel (1) and particulate water-containing gel (1) in a mortar mixer was good.
  • a water-absorbing resin was manufactured by performing the same operation as in the pulverization step of Production Example 1 and thereafter.
  • the degree of aggregation and disintegration was 12 cm.
  • the degree of cohesive disintegration was 15 cm for 1 minute and 11 cm for 4 minutes.
  • Example 1 Except having changed to the conditions described in Table 1, the same granulation step, granulation gel addition step, and drying step as in Example 1 were carried out, and the granulation gel (1a), mixed gel (1a), and dried polymer ( 1a) was prepared.
  • the granulation gel (1a) and the particulate hydrous gel (1) were mixed with a mortar mixer, but a part of the granulated gel (1a) and the particulate hydrous gel (1) adhered to form an aggregate.
  • the granulated gel (1a) was a hard lump, and the particulate hydrogel (1) adhered to and aggregated around it. Moreover, when the mixed gel (1a) was laminated on the wire mesh in the drying process, the average thickness of the gel layer on the wire mesh was 4 cm, but the gel thickness at the place where the agglomerates were 6 cm. could not. Although it dried in this state, the dried polymer (1a) obtained had a mixture of dried and undried products. As a result of evaluating the fluidity of the granulated gel (1a), the degree of aggregation and collapse was 10 cm. The moisture content of the dried polymer (1a) was approximately 5% by mass, but there were a plurality of undried products having a moisture content of 20% by mass or more.
  • Example 2 A granulated gel (2) was produced by changing the conditions described in Table 1 and performing the same operation as in Example 1.
  • the temperature of the granulated gel (2) was lowered due to cooling.
  • the granulated gel (2) was reheated so as not to evaporate.
  • the granulated gel (2) showed good mixing properties with the particulate hydrous gel (1).
  • the average thickness of the gel layer on the wire net was 5 cm. Drying finished without problems, and there was no undried product in the dried polymer (2).
  • the water content of the dry polymer was approximately 5% by mass.
  • the degree of aggregation and disintegration was 12 cm.
  • Example 2 Except having changed into the conditions described in Table 1, the same operation as Example 1 was performed and the granulated gel (2a) was manufactured.
  • the temperature of the particulate hydrous gel (1) during mixing was particularly lowered.
  • the granulated gel (2a) and the particulate water-containing gel were mixed with a mortar mixer, but agglomerated during the mixing to form a huge gel lump, and the mortar mixer stopped due to overload, so mixing was stopped.
  • the agglomerated gel lump was manually pulled to a diameter of about 5 cm and placed on a wire mesh so that the average thickness of the gel layer was 5 cm and dried.
  • the dry polymer (2a) had a water content of 20% by mass or more. There were many undried products.
  • Example 3 A surfactant aqueous solution was used as the aqueous liquid, and the same conditions as in Table 1 were used. Specifically, 28 g of deionized water at 82 ° C. was first added in 3 seconds to fine powder (1) obtained in the same manner as in Example 1, and then 0.1 mass% polyoxy at 25 ° C. in 2 seconds. A granulated gel (3) was produced in the same manner as in Example 1 except that 200 ppm was added to 12 g of an aqueous solution of ethylene sorbitan monostearate (TWEEN 60), that is, fine powder (1).
  • TWEEN 60 ethylene sorbitan monostearate
  • the particle size and primary particle size of the obtained granulated gel (3) were the same as those of the granulated gel (1), and the moisture content of the granulated gel (3) was 40% by mass. . Then, the granulation gel addition process was performed like Example 1 on the conditions of Table 1, and mixed gel (3) was obtained. At this time, the granulated gel (3) has better fluidity than the granulated gel (1), and when mixed with a mortar mixer, the granulated gel (3) is mixed with the particulate hydrous gel (1). The property was also good. Then, the drying process was performed for the mixed gel (3) in the same manner as in Example 1. The average thickness of the gel layer on the wire mesh was 5 cm.
  • Example 4 A surfactant aqueous solution was used as the aqueous liquid, and the same conditions as in Table 1 were used. Specifically, 28 g of 79 ° C. deionized water was first added in 4 seconds to fine powder (1) obtained in the same manner as in Example 1, followed by 1% by mass lauryldimethylaminoacetic acid at 25 ° C. in 2 seconds. A granulated gel (4) was produced in the same manner as in Example 1, except that 6 ppm of betaine aqueous solution, that is, 1000 ppm was added to the fine powder (1).
  • the obtained granulated gel (4) had a number average particle diameter of 1 mm, the same primary particle diameter as that of the granulated gel (1), and the moisture content of the granulated gel (4) was 40% by mass. It was. Then, the granulation gel addition process was performed like Example 1 on the conditions of Table 1, and mixed gel (4) was obtained. At this time, the granulated gel (4) has better fluidity than the granulated gel (1), and when mixed with the mortar mixer, the mixing property of the granulated gel (4) and the particulate hydrous gel (1) is also improved. It was good. In the drying step, the average gel thickness on the wire net was 5 cm. Drying was completed without any problem, and there was no undried product in the dried polymer (4). The water content of the dry polymer (4) was approximately 5% by mass. As a result of evaluating the fluidity of the granulated gel (4), the degree of aggregation and disintegration was 19 cm.
  • Example 5-1 In Example 1, the particulate water-containing gel (1) was changed to a particulate water-containing gel (2) obtained by further finely pulverizing the gel, and the same conditions as shown in Table 1 were used.
  • the particulate hydrogel (2) was obtained by re-gel pulverizing the particulate hydrogel of Production Example 1 with a meat chopper having a die diameter of 7.5 mm without adding warm water.
  • the gel grinding energy (total GGE twice gel grinding) at this time is 35 J / g.
  • the mass average particle diameter (D50) of the particulate hydrous gel (2) was 0.4 mm, and the water content was 53% by mass.
  • a granulation step and a granulation gel addition step were performed in the same manner as in Example 1 under the conditions described in Table 1 to obtain a mixed gel (5).
  • the mass average particle diameter of the primary particles of the granulated gel (5) was 138 ⁇ m, and the granulated gel (5) had better fluidity than the granulated gel (1).
  • the mixability of the granulation gel (5) and the particulate water-containing gel (2) was also favorable.
  • the drying process was performed for the mixed gel (5) in the same manner as in Example 1.
  • the average gel thickness on the wire mesh was 6 cm. Drying was completed without any problem, and there was no undried product in the dry polymer (5-1).
  • the water content of the dried polymer (5-1) was about 4% by mass.
  • the degree of aggregation and disintegration was 12 cm.
  • Example 5-2 A dry polymer (5-2) was obtained in the same manner as in Example 5-1, except that the drying time was reduced to 15 minutes. There was no undried product in the dried polymer (5-2). The water content of the dried polymer (5-2) was approximately 5% by mass.
  • Example 6 A dry polymer (6) was produced in the same manner as in Example 5-1, except that the conditions described in Table 1 were used. Thereafter, the mixed gel (6) was dried in the same manner as in Example 5-1. The average gel thickness on the wire mesh was 6 cm. Drying was completed without any problem, and there was no undried product in the dried polymer (6). The water content of the dry polymer (6) was approximately 4% by mass. As a result of evaluating the fluidity of the granulated gel (6), the degree of aggregation collapse was 10 cm.
  • the particulate hydrous gel (P2) obtained in the gel pulverization step was laminated on a 20-mesh wire mesh so that the average thickness was 4 cm, and a ventilation dryer (produced by Satake Chemical Machinery Co., Ltd.): No. 71-S6) and dried. Drying conditions were as follows. The dried polymer (P2) was dried by allowing hot air of 190 ° C. to flow for 20 minutes. The drying was completed without any problem, and no undried product was found in the dried polymer (P2). The water content of the dry polymer (P2) was 5% by mass.
  • the dry polymer (P2) was subjected to a pulverization step, classification step, surface cross-linking step, surface modifier addition step, and granulation step in the same manner as in Production Example 1.
  • a water-absorbent resin (P2) having the same CRC, AAP and SFC as in Production Example 1 was obtained.
  • fine powder (A2) that passed through a sieve having an opening of 150 ⁇ m was obtained, and in the granulation process, fine powder (B2) that passed through a sieve having an opening of 150 ⁇ m was obtained.
  • Example 7 (Granulation process) Fine powder (A2) obtained in Production Example 2 and fine powder (B2) were mixed at a ratio of 16: 4 to obtain fine powder (7).
  • the mass average particle diameter of the fine powder (7) was 87 ⁇ m.
  • 120 g of deionized water at 81 ° C. was added as an aqueous solution for 10 seconds while stirring the fine powder (7) with a food cutter heated to 80 ° C. in an oven. Then, the mixture was further granulated by stirring for 5 seconds.
  • the granulated product obtained by this operation was designated as granulated gel (7).
  • the moisture content of the granulated gel (7) was 40% by mass.
  • the number average particle diameter of the granulated gel (7) was 1.8 mm, and the mass average particle diameter of the primary particles was 130 ⁇ m.
  • the temperatures of the granulated gel (7) and the particulate hydrous gel (P2) immediately before mixing with the kneader were 62 ° C. and 63 ° C., respectively. Moreover, the mixing property of the granulated gel (7) and the particulate hydrous gel (2A) was good. As a result of evaluating the fluidity of the granulated gel (7), the degree of agglomeration collapse was 12 cm.
  • the mixed gel (7) was laminated on a 20-mesh wire mesh and dried using the same ventilation dryer as in Production Example 1.
  • the drying conditions were a hot air temperature of 190 ° C. and a drying time of 20 minutes.
  • the average thickness on the wire mesh was 5 cm.
  • the drying was completed without any problem, and there was no undried product in the dried polymer (7).
  • the water content of the dry polymer (7) was 5% by mass.
  • a water-absorbing resin (7) was manufactured by performing the same operations as those in the pulverization step and after of Production Example 2.
  • Example 3 A granulation gel (7A), a mixed gel (7A), and a dry polymer (the same as in Example 7 except that the conditions described in Table 1 were used) 7A) was produced.
  • the elapsed time from mixing the granulated gel (7A) to the particulate hydrous gel (P2) was particularly long, it was allowed to cool and the temperature of the granulated gel (7A) decreased. It was.
  • the granulated gel (7A) and the particulate hydrous gel (P2) were mixed with a mortar mixer, but a part of the granulated gel (7A) and the particulate hydrous gel (P2) adhered to form an aggregate.
  • the granulated gel (7A) was a hard lump, and the particulate hydrous gel (P2) adhered to and aggregated around it. Moreover, when the mixed gel (7A) was laminated on the wire mesh in the drying process, the average thickness of the gel layer on the wire mesh was 4 cm, but the gel thickness at the place where the agglomerates were 7 cm. could not. Although it dried in this state, the dried product and the undried product were mixed in the obtained dry polymer (7A). As a result of evaluating the fluidity of the granulated gel (7A), the degree of aggregation and collapse was 10 cm. Although the moisture content of the dried polymer (7A) was approximately 5% by mass, a plurality of undried products having a moisture content of 20% by mass or more were present.
  • the strip-shaped hydrous gel (P3) obtained in the polymerization step and a 3.1% by mass lauryldimethylaminoacetic acid betaine aqueous solution were gel-pulverized while simultaneously supplying to a meat chopper.
  • the supply amount of the lauryldimethylaminoacetic acid betaine aqueous solution was 0.15% by mass with respect to the solid content of the hydrous gel (P3).
  • the obtained hydrogel was again crushed with the meat chopper.
  • the gel grinding energy required for the second grinding was 51 J / g.
  • the obtained particulate hydrous gel (P3) had a solid content of 44% by mass (moisture content of 56% by mass) and a mass average particle size (D50) of 170 ⁇ m.
  • the particulate hydrous gel (P3) was dried using a stirring dryer.
  • This dryer is a rotary drum dryer with a heating tube.
  • a cylindrical container having a water-containing gel inlet and a dry polymer outlet is rotated, and the particulate water-containing gel is heated by a heating tube inside the container.
  • First, 2.7 MPa (temperature: 228.1 ° C.) of water vapor is introduced into each heating tube, and the inside of the rotating container (specified by a contact thermometer) is preheated to over 200 ° C., and the outer wall of the rotating container is further steamed. Fully heated with a tress.
  • the particulate hydrous gel (P3) was supplied to a dryer, and the rotating container was rotated so as to have a fluid number Fr of 0.07, and continuous drying was performed with an average residence time of 50 minutes.
  • the dry polymer (P3) had a solid content of 98.5% by mass, and the proportion of particles remaining on the sieve having an opening of 2800 ⁇ m was 7.4% by mass in terms of solid content.
  • the dry polymer (P3) discharged from the discharge port of the dryer was forcibly cooled to 80 ° C. or less with cold air, and then pulverized with a roll mill to obtain a dry polymer pulverized product (P3).
  • Example 8 Fine powder granulation was performed using a vertical rotary disk mixer having an internal volume of 7 L (agitator effective volume 5 L) equipped with stirring blades, crushing blades, discharge blades and nozzles.
  • the fine powder (A3) obtained in Production Example 3 was supplied to a vertical rotary disk type mixer at 200 kg / hr using a quantitative feeder (manufactured by Accurate Inc.).
  • the aqueous solution of 0.253 mass% lauryldimethylaminoacetic acid betaine at 166 kg / hr and water vapor (gauge pressure 0.6 MPa, Granulation was performed by injecting 15 kg / hr and mixing continuously.
  • the granulated gel (8) obtained by this operation is placed in a cylindrical plastic container (diameter: 8 cm) used for (e) evaluation of the fluidity of the granulated gel, covered and kept warm, and after collection, 60 After a minute, it was used for the next experiment.
  • the granulated gel (8) had a water content of 50% by mass.
  • the number average particle size of the granulated gel (8) was 1.7 mm, and the degree of aggregation and disintegration at 60 ° C. after collection was 20 cm.
  • the particulate hydrous gel (P3) and the granulated gel (8) were made to have a mass ratio of 85/15 and dried in the same manner as in Production Example 3 except that they were put into the dryer while mixing with a screw feeder and mixed in the dryer. .
  • the temperature of the particulate hydrogel (P3) and the granulated gel (8) was 95 ° C. and 60 ° C., respectively, immediately before being put into the feeder.
  • the proportion of the particles remaining on the sieve having an opening of 2800 ⁇ m in the obtained dried polymer (8) was 12.1% by mass in terms of solid content. There was no hindrance to roll milling.
  • hydrotalcite product name “DHT-6” manufactured by Kyowa Chemical Industry Co., Ltd., Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, volume average particle size 0.5 ⁇ m
  • P4 pulverized polymer
  • P4 powdered surface-crosslinked water-absorbing resin
  • B4 fine powder
  • the particulate hydrogel (P3) at the time of addition of the surface crosslinking agent solution had a water content of 30% by mass and a temperature of 110 ° C.
  • the surface-crosslinked dry polymer (P4) had a solid content of 98.5% by mass and the proportion of particles remaining on the sieve having an opening of 2800 ⁇ m was 7.5% by mass in terms of solid content.
  • the fine powder (B4) had a solid content of 95.4% by mass and a mass average particle size (D50) of 114 ⁇ m.
  • Example 9 In Example 8, it operated similarly to Example 8 except having changed the fine powder (A3) into the fine powder (B4).
  • the granulated gel (9) had a water content of 50% by mass, a number average particle size of 1.3 mm, and a degree of aggregation and disintegration 60 minutes after collection. The granulated gel was used for the next experiment after 60 minutes had passed after collection.
  • the temperature of the particulate hydrogel (P3) and the granulated gel (9) was 95 ° C. and 60 ° C., respectively, immediately before entering the feeder.
  • the proportion of the particles remaining on the sieve having an opening of 2800 ⁇ m in the obtained dried polymer (9) was 4.8% by mass in terms of solid content. There was no hindrance to roll milling.
  • Example 10 In Example 9, it operated similarly except having replaced with 166 kg / hr of 0.253 mass% lauryl dimethylamino acetic acid betaine aqueous solution 69 kg / hr of 1.38 mass% lauryl dimethylamino acetic acid betaine aqueous solution.
  • the obtained granulated gel (10) had a water content of 30% by mass, a number average particle size of 1.6 mm, and a degree of aggregation and disintegration 60 minutes after collection. The granulated gel was used for the next experiment after 60 minutes had passed after collection.
  • the temperature of the particulate hydrogel (P3) and the granulated gel (9) was 95 ° C.
  • the present invention can be applied to drying with a stirring dryer. It can also be seen that the use of fine powder (B) after the surface cross-linking step reduces the number of large particles having a particle diameter of 2800 ⁇ m or more, which tends to cause undried matter, compared to the use of fine powder (A) before the surface cross-linking step.
  • Example 10 the present invention is applicable even when the moisture content of the granulated gel is as low as 30% by mass (high solid content).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

吸水性樹脂の微粉をリサイクルした際に未乾燥物の残留を低減することを課題とし、本発明は吸水性樹脂の製造方法であって、微粉リサイクル工程において、vi-1)造粒ゲルを得る造粒工程、vi-2)造粒ゲル添加工程、vi-3)ゲル混合工程を含み、前記造粒ゲル添加工程において、前記造粒ゲルの固形分が50質量%以上、90質量%以下であり、前記造粒ゲルの温度、及び前記含水ゲル状架橋重合体の温度が50℃以上、100℃以下である。

Description

吸水性樹脂の製造方法
 本発明は吸水性樹脂の製造方法に関し、詳細には吸水性樹脂の製造過程で得られた微粉をリサイクルした吸水性樹脂の製造方法に関するものである。
 吸水性樹脂は、水膨潤性水不溶性の高分子ゲル化剤であり、使い捨てオムツや生理用ナプキン等の吸収性物品や、農園芸用の土壌保水剤、工業用の止水剤等、様々な用途に利用されている。当該吸水性樹脂は、原料として多くの種類の単量体や親水性高分子が採用されているものの、その吸水性能や製造コストの観点から、アクリル酸及び/又はその塩(以下、「アクリル酸(塩)」と表記する)を単量体として用いたポリアクリル酸(塩)系吸水性樹脂が最も多く使用されている。
 一方、一般的に、吸水性樹脂は、150μm以下の粒径を有する微粉の含有量が少ない程好ましい。かかる微粉は、使い捨てオムツ等の吸収性物品中でも目詰まりによって物性が低下する要因となる。また、取り扱い時の粉塵としてのロスに加え、該微粉に表面架橋を施したとしても、加圧下の吸収倍率等の諸物性が向上し難いという問題を有している。このため、微粉の少ない吸水性樹脂が切望されている。
 従来、微粉の少ない吸水性樹脂の製造方法としては、重合や粉砕の条件を最適化して粒度を調整する方法や、発生した微粉を篩や気流等により分級、除去する方法が知られている。しかしながら、前記の方法でも、製造工程中に、10数質量%以上、数10質量%以下といった多量の微粉が発生するため、この方法で発生した微粉を廃棄することは、収率を大きく低下させると共に、廃棄コストの面からも不利となる。
 そこで、吸水性樹脂の製造工程で必然的に発生してしまう微粉を造粒又は再生することで前記の問題を解決しようとする提案がなされている(特許文献1~14)。中でも水蒸気を用いて微粉を造粒する技術(特許文献5、特許文献7)は、添加する水分が少なくなり、乾燥コストの低減や乾燥効率の向上が謳われている。
特開平11-106514号公報 特開平11-140194号公報 特開平11-254429号公報 特開平11-240959号公報 特開2005-054151号公報 特開2006-299234号公報 特表2010-538095号公報 欧州特許出願公開第2957576号明細書 欧州特許出願公開第2787025号明細書 米国特許出願公開第2017/0166707号明細書 特開平03-152104号公報 特開平04-041532号公報 特開平04-227934号公報 国際公開第2006/098271号パンフレット
 前記技術は更に改善の余地がある。すなわち、本発明者らは微粉に水を添加して造粒することにより得られる造粒ゲルと単量体水溶液を重合して得られる含水ゲル状架橋重合体を一緒に乾燥させることは、乾燥機が1台で済むため有利であるが、乾燥後に未乾燥物が残存する等、乾燥不良が生じやすいという問題を見つけた。本発明者らはゲル固形分が高いと乾燥コストを低減できるというメリットがあるが、固形分を高くすると新たな問題が生じることがわかった。本発明者らは更に検討したところ、含水率の低い造粒ゲルは粘着性が高くて粗大な凝集物を形成しやすく、粗大な凝集物が存在すると比表面積が小さいために含水量が低い場合でも顕著に局所的な乾燥不良が起こることが分かった。すなわち、重合で得られた含水ゲル(含水ゲル状架橋重合体)と微粉回収で得られた造粒ゲル(微粉造粒ゲル)は互いにその性状や乾燥効率が異なるため、一緒に乾燥することは乾燥効率から困難であり、生産性の低下や物性低下の原因ともなりやすかった。
 本発明は前記の様な事情に着目してなされたものであって、その目的は、吸水性樹脂の微粉を造粒してリサイクルした場合の問題、具体的には乾燥後の未乾燥物の残留を低減できる技術、特に重合で得られた含水ゲルと微粉回収で得られた造粒ゲルを一緒に乾燥する効率的な技術を提供することである。
 上記課題を解決し得た本発明の製造方法[1]は、
 i)単量体水溶液を重合させて含水ゲル状架橋重合体を得る重合工程、
 ii)前記重合工程i)の途中に及び/又は後に、実施される含水ゲル状架橋重合体を粉砕するゲル粉砕工程、
 iii)前記ゲル粉砕工程ii)の後に含水ゲル状架橋重合体を乾燥する乾燥工程、
 iv)前記乾燥工程iii)の後に乾燥重合体を粉砕する粉砕工程、
 v)前記乾燥工程iii)の後に乾燥重合体から微粉を取り除く分級工程、
 vi)前記分級工程v)で取り除かれた微粉を前記乾燥工程iii)以前にリサイクルする微粉リサイクル工程、を含む吸水性樹脂の製造方法であって、
 前記微粉リサイクル工程vi)において、
 vi-1)前記取り除かれた微粉と水性液を混合して造粒ゲルを得る造粒工程、
 vi-2)前記乾燥工程iii)で乾燥完了するまでの前記工程i)~iii)の少なくとも1つの工程及び/又は工程間で、含水ゲル状架橋重合体に、前記造粒ゲルを添加する造粒ゲル添加工程、
 vi-3)前記造粒ゲル添加工程から乾燥工程iii)で乾燥完了するまでの少なくとも1つの工程及び/又は工程間で、含水ゲル状架橋重合体と前記添加した造粒ゲルを機械的混合するゲル混合工程、
を含み、
 前記造粒ゲル添加工程vi-2)において、
 前記造粒ゲルの固形分が50質量%以上、90質量%以下であり、
 前記造粒ゲルの温度、及び前記含水ゲル状架橋重合体の温度が50℃以上、100℃以下である。
 また上記課題を解決し得た本発明の他の製造方法[2]は、
 i)単量体水溶液を重合させて含水ゲル状架橋重合体を得る重合工程、
 ii)前記重合工程i)の途中に及び/又は後に、実施される含水ゲル状架橋重合体を粉砕するゲル粉砕工程、
 iii)前記ゲル粉砕工程ii)後に含水ゲル状架橋重合体を乾燥する乾燥工程、
 iv)前記乾燥工程iii)後に乾燥重合体を粉砕する粉砕工程、
 v)前記乾燥工程iii)後に乾燥重合体から微粉を取り除く分級工程、
 vi)前記分級工程v)で取り除かれた微粉を前記乾燥工程iii)以前にリサイクルする微粉リサイクル工程、を含む吸水性樹脂の製造方法であって、
 前記微粉リサイクル工程vi)において、
 vi-1)前記取り除かれた微粉と水性液を混合して造粒ゲルを得る造粒工程、
 vi-2)前記ゲル粉砕工程ii)終了後から乾燥工程iii)で乾燥完了するまでの少なくとも1つの工程及び/又は工程間で、含水ゲル状架橋重合体に、前記造粒ゲルを添加する造粒ゲル添加工程、
を含み、
 前記造粒ゲル添加工程vi-2)において、
 前記造粒ゲルの固形分が50質量%以上、90質量%以下であり、
 前記ゲル粉砕工程ii)において、ゲル粉砕エネルギー(GGE)が20J/g以上、100J/g以下である。
 好ましい実施態様[3]として、前記ゲル粉砕工程ii)後の含水ゲル状架橋重合体の質量平均粒子径が0.1mm以上、1.0mm以下である、[2]に記載の製造方法。
 好ましい実施態様[4]として、前記造粒ゲル添加工程vi-2)において、前記造粒ゲルの固形分が55質量%以上、85質量%以下である、[1]~[3]の何れか1に記載の製造方法。
 好ましい実施態様[5]として、前記分級工程v)で微粉が取り除かれた吸水性樹脂を表面架橋する表面架橋工程vii)と、該表面架橋工程vii)後に吸水性樹脂から微粉を取り除く整粒工程viii)とを更に含み、
 前記分級工程v)から取り除かれた前記微粉と前記整粒工程viii)から取り除かれた前記微粉とを、混合比率(質量比)99:1~50:50で混合した混合物を前記微粉リサイクル工程vi)で前記水性液と混合する前記微粉として使用する、[1]~[4]の何れか1に記載の製造方法。
 好ましい実施態様[6]として、前記機械的混合が、前記乾燥工程iii)前又は前記乾燥工程iii)で乾燥完了までにおいて行われる首ふりベルト式フィーダー又は回転攪拌による混合である、[1]又は[3]~[5]の何れか1に記載の製造方法。
 好ましい実施態様[7]として、前記乾燥工程iii)が攪拌乾燥機で行われる、[1]~[6]の何れか1に記載の製造方法。
 好ましい実施態様[8]として、前記乾燥工程iii)が通気バンド式乾燥機で行われ、
 通気バンド上の平均ゲル厚みが3cm以上でゲル厚み変化率が1.05以上、3以下である、[1]~[6]の何れか1に記載の製造方法。
 好ましい実施態様[9]として、前記造粒工程vi-1)と造粒ゲル添加工程vi-2)の間において、前記造粒ゲルの雰囲気の露点が50℃以上である、[1]~[8]の何れか1に記載の製造方法。
 好ましい実施態様[10]として、前記造粒工程vi-1)において、微粉と水性液の混合開始から前記工程vi-2)において前記含水ゲル状架橋重合体に造粒ゲルを添加するまでの時間が5分以内である、[1]~[9]の何れか1に記載の製造方法。
 好ましい実施態様[11]として、前記重合工程i)、前記ゲル粉砕工程ii)、前記乾燥工程iii)、前記粉砕工程iv)、前記分級工程v)から選ばれる1の工程より前、途中又は後に、界面活性剤を添加し、及び/又は、前記造粒工程vi-1)において、水性液に界面活性剤を含有させ、前記微粉と前記水性液とを混合して得られた造粒ゲルから0.9質量%塩化ナトリウム水溶液で抽出した抽出液の表面張力が65mN/m以上である、[1]~[10]の何れか1に記載の製造方法。
 好ましい実施態様[12]として、前記造粒工程vi-1)において、水性液が複数回添加されると共に、1回目に添加された水性液と前記微粉とを混合して得られた造粒ゲルから0.9質量%塩化ナトリウム水溶液で抽出した抽出液の表面張力が70mN/m以上であり、2回目以降に添加される水性液のうち、少なくとも1回は界面活性剤を含有していると共に、該界面活性剤を含有する水性液を添加して得られた造粒ゲルから0.9質量%塩化ナトリウム水溶液で抽出した抽出液の表面張力が60mN/m以上である、[1]~[11]の何れか1に記載の製造方法。
 好ましい実施態様[13]として、前記造粒ゲル添加工程vi-2)において、前記造粒ゲルの一次粒子の質量平均粒子径に対する、前記ゲル粉砕工程ii)後の含水ゲル状架橋重合体の質量平均粒子径は、1倍以上、10倍以下である、[2]又は[3]に記載の製造方法。
 従来、重合ゲルと微粉造粒ゲルは性状が異なるため一緒に乾燥することが困難であったのに対して、本発明の製造方法によれば、乾燥負荷を増加させることなく、吸水性樹脂の微粉をリサイクルする際に問題となる未乾燥物の残留を従来よりも低減、好ましくは解消することができる。特に重合で得られた含水ゲルと微粉回収で得られた造粒ゲルを一緒に乾燥する効率的な技術を提供できる。
 以下、本発明に係る吸水性樹脂の製造方法に関して詳しく説明するが、本発明の範囲はこれら説明に拘束されることなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更、実施し得る。具体的には、本発明は、以下の各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
 [1]用語の定義
 [1-1]吸水性樹脂、吸水剤
 本明細書における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を意味し、一般的に粉末状である。また、「水膨潤性」とは、WSP241.3(10)で規定される無加圧下吸収倍率(以下、「CRC」と表記することがある。)が5g/g以上であることを、「水不溶性」とは、WSP270.3(10)で規定される可溶分(以下、「Ext」と表記することがある。)が50質量%以下であることを、それぞれ意味する。
 前記「吸水性樹脂」は、好ましくはカルボキシル基を有する不飽和単量体を架橋重合させてなる親水性の架橋重合体であるが、その全量、すなわち100質量%が架橋重合体である必要はなく、前記CRCやExt等の要求性能を満たす範囲内で添加剤等を含有することもできる。
 また、前記「吸水性樹脂」は、「内部のみが架橋された重合体、つまり、内部と表面の架橋密度が実質的に同じである重合体」又は「内部と表面とが架橋された重合体、つまり、表面の架橋密度が内部の架橋密度に対して相対的に高い重合体」を指す場合がある。
 本明細書においては、上記「内部のみが架橋された重合体」と上記「内部と表面とが架橋された重合体」は原則、区別することなく、何れも「吸水性樹脂」と表記する。ただし、表面架橋の有無について明確に区別する必要がある場合は、上記「内部のみが架橋された重合体」は表面架橋が施される前であるため「表面架橋前の吸水性樹脂」と、上記「内部と表面とが架橋された重合体」は表面架橋が施された後であるため「表面架橋後の吸水性樹脂」と、それぞれ表記する。なお、「表面架橋前」とは、「表面架橋剤を添加する前」又は「表面架橋剤が添加された後であっても加熱処理による架橋反応が始まる前」のことを意味する。
 また、前記「吸水性樹脂」は、樹脂成分のみを指す場合もあるが、添加剤等の樹脂以外の成分を含んでいてもよい。
 本明細書における「吸水剤」とは、最終製品として出荷可能な状態にある吸水性樹脂を意味する。従って、前記「吸水性樹脂」が出荷可能な状態であれば「吸水剤」に該当し、このとき「吸水性樹脂」と「吸水剤」は同義で扱われる。
 [1-2]アクリル酸(塩)系単量体、ポリアクリル酸(塩)系吸水性樹脂
 本明細書における「アクリル酸(塩)」とはアクリル酸及び/又はその塩を意味し、「アクリル酸(塩)系単量体」とは架橋剤を除く単量体全体に対して、アクリル酸(塩)を50モル%以上含む単量体を意味する。
 本明細書における「ポリアクリル酸(塩)系吸水性樹脂」とは、アクリル酸(塩)を原料とする重合体を意味する。つまり、「ポリアクリル酸(塩)系吸水性樹脂」とは、アクリル酸(塩)由来の構造単位を有する重合体であり、任意成分としてグラフト成分を有する重合体である。
 具体的には、ポリアクリル酸(塩)系吸水性樹脂は、重合反応に関与する単量体のうち内部架橋剤を除いた部分に対して、好ましくは50モル%以上、より好ましくは70モル%以上、更に好ましくは90モル%以上であって、好ましくは100モル%以下、特に好ましくは実質100モル%のアクリル酸(塩)を含む、重合体である。
 [1-3]「EDANA」及び「WSP」
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称である。また「WSP」は、Worldwide Strategic Partnersの略称であり、EDANAが提供する、吸水性樹脂の世界標準の測定法を示すものである。本明細書では、WSP原本(2010年改定)に準拠して、吸水性樹脂の物性を測定する。なお、本明細書では別途言及しない限り、下記実施例での測定方法に従う。
 [1-4]「CRC」(WSP241.3(10))
 「CRC」は、Centrifuge Retention Capacityの略称であり、吸水性樹脂の無加圧下での吸収倍率を意味する。具体的には、吸水性樹脂0.2gを不織布製の袋に入れた後、大過剰の0.9質量%塩化ナトリウム水溶液中に30分間浸漬して吸水性樹脂を自由膨潤させ、その後、遠心分離機(遠心力:250G)を用いて脱水した後の吸収倍率(単位:g/g)のことである。
 [1-5]「Ext」(WSP270.3(10))
 「Ext」は、Extractablesの略称であり、吸水性樹脂の水可溶分、すなわち、水可溶成分量を意味する。具体的には、吸水性樹脂1.0gを0.9質量%塩化ナトリウム水溶液200mlに添加し、250rpmで1時間又は16時間攪拌した後の溶解ポリマー量(単位:質量%)のことをいう。溶解ポリマー量の測定は、pH滴定を用いて行う。攪拌時間は結果の報告時に記載される。
 [1-6]「PSD」(WSP220.3(10))
 「PSD」は、Particle Size Distributionの略称であり、篩分級により測定される、吸水性樹脂の粒度分布を意味する。なお、質量平均粒子径(D50)及び粒度分布の対数標準偏差(σζ)は、米国特許第7638570号に記載された「(3)Mass-Average Particle Diameter (D50) and Logarithmic Standard Deviation (σζ) of Particle Diameter Distribution」と同様の方法で測定する。
 また、微粉の粒度分布、D50、及び、粒度分布の対数標準偏差(σζ)は前記条件において、目開きが38μm、45μm、75μm、106μm、150μm、180μm等のJIS標準篩を用いることにより測定する。
 [1-7]「Moisture Content」(WSP230.3(10))
 「Moisture Content」は、吸水性樹脂の含水率を意味する。本発明においては、WSP230.3(10)で規定される吸水性樹脂の量及び乾燥時間をそれぞれ4.0gから1.0gに、105℃から180℃に変更した上で、3時間乾燥させた後の乾燥減量から算出される値(単位:質量%)である。なお、乾燥重合体の含水率については、乾燥重合体を適宜砕いた後に前記測定方法にしたがって測定する。
 また、含水ゲル状架橋重合体又は造粒ゲルの含水率については、試料量を2.0gに変更した以外は、前記測定方法にしたがって測定する。固形分は[100-含水率](単位:質量%)で定義される。
 [1-8]その他
 本明細書において、質量の単位である「t(トン)」は「Metric ton(メトリック トン)」を意味する。また、「ppm(質量基準)」は「質量ppm」を意味する。また、「~酸(塩)」は「~酸及び/又はその塩」を意味し、「(メタ)アクリル」は「アクリル及び/又はメタクリル」を意味する。
 [2]吸水性樹脂の製造方法
 本発明に係る吸水性樹脂の好ましい製造方法に関して詳細に説明する。好ましい本発明の吸水性樹脂の製造方法は、
 i)単量体水溶液を重合させて含水ゲル状架橋重合体を得る重合工程、
 ii)前記重合工程i)の途中に及び/又は後に、実施される含水ゲル状架橋重合体を粉砕するゲル粉砕工程、
 iii)前記ゲル粉砕工程ii)の後に含水ゲル状架橋重合体を乾燥する乾燥工程、
 iv)前記乾燥工程iii)の後に乾燥重合体を粉砕する粉砕工程、
 v)前記乾燥工程iii)の後に乾燥重合体から微粉を取り除く分級工程、
 vi)前記分級工程v)で取り除かれた微粉を前記乾燥工程iii)以前にリサイクルする微粉リサイクル工程、を含む。
 [2-1]単量体水溶液の調製工程
 本工程は、アクリル酸(塩)を主成分として含む単量体及び少なくとも1種類の重合性内部架橋剤を含む単量体水溶液を調製する工程である。なお、最終製品として得られる吸水剤の吸水性能に影響しない範囲内で、単量体のスラリー液を使用することもできるが、本明細書では便宜上、単量体水溶液について説明する。
 (単量体)
 本発明において用いられる単量体として、アクリル酸、(無水)マレイン酸、イタコン酸、ケイ皮酸、ビニルスルホン酸、アリルトルエンスルホン酸、ビニルトルエンスルホン酸、スチレンスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-(メタ)アクリロイルエタンスルホン酸、2-(メタ)アクリロイルプロパンスルホン酸、2-ヒドロキシエチル(メタ)アクリロイルフォスフェート等のアニオン性不飽和単量体及び/又はその塩;メルカプタン基含有不飽和単量体;フェノール性水酸基含有不飽和単量体;(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド等のアミド基含有不飽和単量体;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等のアミノ基含有不飽和単量体が挙げられる。また、当該単量体には、水溶性又は疎水性の不飽和単量体が含まれる。これらの中でもアクリル酸(塩)が好ましい。また、アクリル酸(塩)とその他の単量体を併用してもよい。この場合、アクリル酸(塩)の使用量は、架橋剤を除く単量体全体に対して、好ましくは50モル%以上、より好ましくは70モル%以上、更に好ましくは90モル%以上、特に好ましくは実質100モル%である。
 (塩基性化合物による中和)
 本発明においてアクリル酸(塩)系単量体を用いる場合、アクリル酸は塩基性化合物を用いて部分的に中和されることが好ましい。即ち、本発明ではポリアクリル酸の酸基が部分的に中和されている吸水性樹脂が好ましい。
 前記塩基性化合物の具体例として、アルカリ金属の炭酸塩や炭酸水素塩、アルカリ金属の水酸化物、アンモニア、有機アミン等が挙げられる。中でも、吸水剤又は吸水性樹脂の吸水性能の観点から、強塩基性の化合物が選択される。従って、ナトリウム、カリウム、リチウム等のアルカリ金属の水酸化物が好ましく、水酸化ナトリウムがより好ましい。なお、当該塩基性化合物は、取り扱い性の観点から、水溶液とされることが好ましい。なお、市販の水酸化ナトリウムには、亜鉛、鉛、鉄等の重金属がppm(質量基準)オーダーで含まれており、厳密には組成物と表現することもできる。本発明では、このような組成物に関しても塩基性化合物の範疇に含めることとして扱う。
 前記中和を行う時機は、重合前、重合中、重合後の何れでもよく、複数の時機又は箇所で中和を行うこともできる。また、吸水性樹脂の生産効率の観点から、連続式で中和することが好ましい。
 本発明においてアクリル酸(塩)を用いる場合、その中和率は、単量体の酸基に対して、好ましくは10モル%以上、より好ましくは40モル%以上、更に好ましくは50モル%以上、特に好ましくは60モル%以上であって、好ましくは90モル%以下、より好ましくは85モル%以下、更に好ましくは80モル%以下、特に好ましくは75モル%以下である。当該中和率の範囲とすることで、吸水性樹脂の吸水性能の低下を抑制することができる。
 なお、前記中和率は、上述した重合前、重合中、重合後の何れの中和においても適用される。また、最終製品としての吸水剤に関しても同様に適用される。
 (内部架橋剤)
 本発明の好ましい製造方法において、内部架橋剤が使用される。当該内部架橋剤として具体的には、N,N’-メチレンビス(メタ)アクリルアミド、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンアクリレートメタクリレート、エチレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルホスフェート、トリアリルアミン、ポリ(メタ)アリロキシアルカン、(ポリ)エチレングリコールジグリシジルエーテル、グリセロールジグリシジルエーテル、エチレングリコール、ポリエチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、エチレンジアミン、ポリエチレンイミン、グリシジル(メタ)アクリレート等が挙げられる。これらの内部架橋剤の中から、反応性等を考慮して少なくとも1種類の内部架橋剤が選択される。
 本発明においては、吸水性樹脂の吸水性能等の観点から、好ましくは重合性不飽和基を二つ以上有する内部架橋剤、より好ましくは(ポリ)アルキレングリコール構造を有する重合性不飽和基を二つ以上有する内部架橋剤が選択される。前記重合性不飽和基として具体的には、アリル基、(メタ)アクリレート基が挙げられる。中でも、(メタ)アクリレート基が好ましい。また、前記(ポリ)アルキレングリコール構造と有する重合性不飽和基を二つ以上有する内部架橋剤として具体的には、ポリエチレングリコールジ(メタ)アクリレートが挙げられる。なお、アルキレングリコール単位の数(以下、「n」と表記する場合がある。)としては、好ましくは1以上、より好ましくは2以上、更に好ましくは4以上、特に好ましくは6以上であって、好ましくは100以下、より好ましくは50以下、更に好ましくは20以下、特に好ましくは10以下である。
 前記内部架橋剤の使用量は、内部架橋剤を除く単量体に対して、好ましくは0.0001モル%以上、より好ましくは0.001モル%以上、更に好ましくは0.01モル%以上であって、好ましくは10モル%以下、より好ましくは5モル%以下、更に好ましくは1モル%以下である。当該範囲内の使用量とすることで、所望する吸水性能を有する吸水性樹脂が得られる。一方、当該範囲外の使用量では、ゲル強度の低下に伴う水可溶分の増加や吸収倍率の低下することがある。
 本発明において、前記内部架橋剤を添加するタイミングは、重合体を均一に架橋できればよく、重合前の単量体水溶液や重合中又は重合後の含水ゲル状架橋重合体に内部架橋剤を添加する方法が挙げられる。中でも、所定量の内部架橋剤を予め単量体水溶液に添加する方法が好ましい。
 (単量体水溶液に添加される物質)
 本発明では、前記単量体水溶液の作製時、前記重合反応及び架橋反応の期間中、又は前記重合反応及び架橋反応の後の何れか1箇所以上で、吸水性樹脂の物性向上の観点から、下記物質を単量体水溶液に添加することができる。
 当該物質としては、具体的には、澱粉、澱粉誘導体、セルロース、セルロース誘導体、ポリビニルアルコール(PVA)、ポリアクリル酸(塩)、ポリアクリル酸(塩)の架橋体等の親水性高分子;炭酸塩、アゾ化合物、各種気泡を生じる発泡剤、界面活性剤、キレート剤、連鎖移動剤等の化合物;が挙げられる。
 前記親水性高分子の添加量は、前記単量体水溶液に対して、好ましくは50質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下、特に好ましくは5質量%以下であって、好ましくは0質量%以上、より好ましくは0質量%超である。また、前記化合物の添加量は、前記単量体水溶液に対して、好ましくは5質量%以下、より好ましくは1質量%以下、更に好ましくは0.5質量%以下であって、好ましくは0質量%以上、より好ましくは0質量%超である。
 前記親水性高分子として水溶性樹脂又は吸水性樹脂を用いると、グラフト重合体又は吸水性樹脂組成物、例えば、澱粉-アクリル酸(塩)共重合体、PVA-アクリル酸(塩)共重合体等が得られる。これらグラフト重合体又は吸水性樹脂組成物も、本発明に係るポリアクリル酸(塩)系吸水性樹脂の範疇に含まれる。
 (単量体成分の濃度)
 上述した各物質及び各成分(以下、「単量体成分」と表記することがある)を目的に応じて種々選択し、前記範囲を満たすようにそれぞれの量を規定して互いに混合することによって、単量体水溶液が作製される。なお、本発明では、単量体を水溶液とすること以外に、水と親水性溶媒との混合溶液とすることもできる。
 また、単量体成分の合計の濃度は、吸水性樹脂の物性の観点から、好ましくは10質量%以上、より好ましくは20質量%以上、更に好ましくは30質量%以上であって、好ましくは80質量%以下、より好ましくは75質量%以下、更に好ましくは70質量%以下である。当該単量体成分の濃度は、下記式(1)から算出される。
 単量体成分の濃度(質量%)=〔(単量体成分の質量)/(単量体水溶液の質量)〕×100 … 式(1)
 なお、前記式(1)中、「単量体水溶液の質量」には、グラフト成分や吸水性樹脂、逆相懸濁重合における疎水性有機溶媒の質量は含まれない。
 [2-2]重合工程
 本工程は、i)単量体水溶液を重合させて含水ゲル状架橋重合体を得る工程である。好ましくは前記単量体水溶液の調製工程で得られた、アクリル酸(塩)を主成分として含む単量体及び少なくとも1種類の重合性内部架橋剤を含む単量体水溶液を重合させて、含水ゲル状架橋重合体(以下、「含水ゲル」と表記することがある)を得る工程である。
 (重合開始剤)
 本発明で用いられる重合開始剤は、重合させるモノマーの種類や重合条件等に合わせて、通常の吸水性樹脂の製造において利用されているものの中から1種又は2種以上選択して使用できる。重合開始剤としては例えば、熱分解型開始剤や光分解型開始剤が挙げられる。
 熱分解型開始剤として、過硫酸塩:過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム;過酸化物:過酸化水素、t-ブチルパーオキシド、メチルエチルケトンパーオキシド;アゾ化合物:アゾニトリル化合物、アゾアミジン化合物、環状アゾアミジン化合物、アゾアミド化合物、アルキルアゾ化合物、2,2’-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド等が例示される。
 光分解型開始剤として、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体、アゾ化合物等が例示される。
 これらの中でもコスト、残存モノマー低減能を考慮すると過硫酸塩が好ましい。また、前記過硫酸塩又は過酸化物等の酸化性重合開始剤の分解を促進する還元剤を併用し、両者を組み合わせることによりレドックス系開始剤とすることもできる。前記の還元剤としては、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム等の(重)亜硫酸(塩)、L-アスコルビン酸(塩)、第一鉄塩等の還元性金属(塩)、アミン類等が挙げられる。
 前記重合開始剤の使用量は、内部架橋剤を除く単量体に対して、好ましくは0.001モル%以上、より好ましくは0.01モル%以上であって、好ましくは1モル%以下、より好ましくは0.5モル%以下、更に好ましくは0.1モル%以下である。また、前記還元剤の使用量は、内部架橋剤を除く単量体に対して、好ましくは0.0001モル%以上、より好ましくは0.0005モル%以上であって、好ましくは0.02モル%以下、より好ましくは0.015モル%以下である。当該範囲内の使用量とすることで、所望する吸水性能を有する吸水性樹脂が得られる。
 また、本発明においては、前記重合反応を、放射線、電子線、紫外線等の活性エネルギー線の照射によって開始させてもよい。また、活性エネルギー線の照射と前記重合開始剤とを併用してもよい。
 (重合形態)
 本発明に適用される重合形態としては、水溶液重合、逆相懸濁重合、噴霧重合、液滴重合、バルク重合、沈澱重合等が挙げられる。中でも、重合の制御の容易性や吸水性樹脂の吸水性能の観点から、好ましくは水溶液重合又は逆相懸濁重合、より好ましくは水溶液重合、更に好ましくは連続水溶液重合が選択される。逆相懸濁重合は国際公開第2007/004529号、国際公開第2012/023433号等に記載されている。また連続水溶液重合は、吸水剤又は吸水性樹脂を高い生産性で製造することができ、米国特許第4893999号、米国特許第6906159号、米国特許第7091253号、米国特許第7741400号、米国特許第8519212号、特開2005-36100号公報等に記載された連続ベルト重合や、米国特許第6987151号等に記載された連続ニーダー重合が挙げられる。
 前記連続水溶液重合の好ましい形態としては、高温開始重合、高濃度重合、発泡重合等がある。当該「高温開始重合」とは、重合開始時の単量体水溶液の温度を、好ましくは35℃以上、より好ましくは40℃以上、更に好ましくは45℃以上、特に好ましくは50℃以上であって、好ましくは単量体水溶液の沸点以下とする重合形態を意味する。また「高濃度重合」とは、重合開始時の単量体濃度を、好ましくは30質量%以上、より好ましくは35質量%以上、更に好ましくは40質量%以上、特に好ましくは45質量%以上であって、好ましくは単量体水溶液の飽和濃度以下とする重合形態を意味する。「発泡重合」とは、発泡剤又は気泡を含む前記単量体水溶液を重合する重合形態を意味する。なお、これら重合形態は、それぞれ単独で実施してもよいし、二つ以上を併用して実施してもよい。
 前記発泡重合における気泡の分散方法としては、単量体水溶液に溶存している気体を溶解度の低下によって気泡として分散させる方法、外部から気体を導入して気泡として分散させる方法、単量体水溶液に発泡剤を添加して発泡させる方法等が挙げられる。また、目的とする吸水性樹脂の物性に応じて、前記分散方法を適宜併用して実施してもよい。
 前記外部から気体を導入する場合、当該気体として、酸素、空気、窒素、炭酸ガス、オゾン等や、これら気体の混合気体が挙げられる。重合性やコストの観点から、好ましくは窒素や炭酸ガス等の不活性ガスが使用され、より好ましくは窒素が使用される。
 使用できる発泡剤として、アゾ化合物や有機又は無機のカーボネート溶液、分散液、粒径が0.1μm以上1000μm以下の粉末が挙げられる。中でも無機のカーボネートが好ましく、具体的には炭酸ナトリウム、炭酸アンモニウム、炭酸マグネシウム等の炭酸塩、炭酸水素塩が使用できる。
 発泡重合で得られた発泡形状の含水ゲルをゲル粉砕することで乾燥が容易となる。また、発泡形状の吸水性樹脂とすることで、吸水性樹脂の吸水速度が向上でき、また吸収性物品での固定化も容易になる。発泡形状であることは電子顕微鏡での粒子表面の孔、例えば直径が1μm以上100μm以下の孔等で確認できる。孔は、吸水性樹脂ひとつあたり好ましくは1個以上、より好ましくは10個以上であって、好ましくは10000個以下、より好ましくは1000個以下であり、前記発泡重合で制御できる。
 [2-3]ゲル粉砕工程
 本工程は、ii)前記重合工程i)の途中に、及び/又は、後に実施される含水ゲル状架橋重合体(以下、「重合ゲル」と表記することがある)を粉砕する工程である。詳細には前記重合工程において含水ゲルを粉砕してもよく、前記重合工程後に含水ゲルを粉砕してもよい。すなわち、本工程は含水ゲルをゲル粉砕して粒子状の含水ゲル(以下、「粒子状含水ゲル」または「粒子状重合ゲル」と表記することがある)を得る工程である。なお、後述する粉砕工程での「粉砕」と区別するために、本工程は「ゲル粉砕」と表記する。またゲル粉砕の対象は前記重合工程で得られた含水ゲル(重合ゲル)だけではなく、特に言及しない限り、乾燥後に得られた吸水性樹脂微粉が後記リサイクルされた「造粒ゲル(微粉造粒ゲル)」が含まれている場合がある。他の工程も特に言及しない限り同様の趣旨である。
 前記ゲル粉砕とは、ニーダー、ミートチョッパー等のスクリュー押出し機、カッターミル等のゲル粉砕機を用いて、含水ゲルを所定の大きさに調整することを指す。
 含水ゲルをゲル粉砕する場合、好ましくは温水をゲル粉砕機に添加することが好ましい。温水を添加することによって、粘着性が低く、通気性の良い粒子状含水ゲルが得られるため、乾燥しやすくなり好ましいからである。温水の温度は好ましくは40℃以上、より好ましくは50℃以上、更に好ましくは60℃以上であって、好ましくは100℃以下である。
 ゲル粉砕の実施形態や稼働条件等に関しては、国際公開第2011/126079号パンフレットに記載された内容が本発明に好ましく適用される。なお、重合形態がニーダー重合である場合には、重合工程とゲル粉砕工程とが同時に実施されていることになる。また、本発明でゲル粉砕工程を経ることで、不定形破砕状の吸水性樹脂を得ることができる。
 また本発明の製法は、微粉リサイクル工程において、取り除かれた微粉と水性液を混合して造粒ゲルを得る造粒工程、ゲル粉砕工程終了後から乾燥工程で乾燥完了するまでの少なくとも1つの工程及び/又は工程間で、含水ゲル状架橋重合体に、前記造粒ゲルを添加する造粒ゲル添加工程、を含み、本発明のゲル粉砕工程、特に本発明の第二の形態におけるゲル粉砕ではゲル粉砕エネルギーを適切に制御することがより好ましい。下記所定のゲル粉砕エネルギーでゲル粉砕して得られた粒子状含水ゲルは、該粒子状含水ゲル(重合ゲル)と造粒ゲル(微粉造粒ゲル)との混合物を通気バンド式乾燥機で乾燥させる際に積層させても該混合物が密に積層されにくく、通常の条件でゲル粉砕して得られた粒状含水ゲルを用いた場合と比べて極めて短時間で乾燥できる。更に該粒状含水ゲルは後記する造粒ゲルとなじみやすく、均一に乾燥されやすい。また得られる吸水性樹脂の物性面でも、吸水速度、例えば国際公開第2009/016055号に開示されているFSRやJIS K 7224(1996年度)「高吸水性樹脂の吸水速度試験方法」に記載のVortexで評価が向上する。
 ここで、本発明における「ゲル粉砕エネルギー」とは、含水ゲルをゲル粉砕する際、ゲル粉砕装置が必要とする単位質量、すなわち、含水ゲルの単位質量あたりの機械的エネルギーをいい、ジャケットを加熱冷却するエネルギーや投入する水・スチームのエネルギーは含まれない。なお、「ゲル粉砕エネルギー」は、英語表記の「Gel Grinding Energy」から「GGE」と略称する。GGEは、ゲル粉砕装置が三相交流電力で駆動する場合、以下の式(1)によって算出される。
Figure JPOXMLDOC01-appb-M000001
 前記、「力率」及び「モーター効率」は、ゲル粉砕装置の稼動条件等によって変化する装置固有の値であり、0以上1以下までの値をとる。これらの値は、装置メーカー等への問い合わせ等で知ることができる。又、ゲル粉砕装置が単相交流電力で駆動する場合、GGEは、前記式中の「√3」を「1」に変更して算出することができる。なお、電圧の単位は[V]、電流の単位は[A]、含水ゲル状架橋重合体の重量(質量)の単位は[g/s]である。
 前記GGEにおける「力率」及び「モーター効率」は、ゲル粉砕時での値を採用する。なお、空運転時の力率及びモーター効率の値は、空運転時の電流値が小さいこともあり、近似的に前記式のように定義する。前記式(1)における「1秒間にゲル粉砕機に投入される含水ゲル状架橋重合体の質量」[g/s]とは、例えば、含水ゲル状架橋重合体が連続的に定量フィーダーで供給される場合、その供給量が[t/hr]であれば、[g/s]に換算した値をいう。ただし、前記含水ゲル状架橋重合体には後記リサイクルされた造粒ゲルが含まれている場合がある。
 本発明においてゲル粉砕するためのゲル粉砕エネルギー(GGE)は、好ましくは100J/g以下、より好ましくは80J/g以下、更に好ましくは60J/g以下であって、好ましくは20J/g以上、より好ましくは25J/g以上、更に好ましくは30J/g以上である。ゲル粉砕エネルギー(1)を前記範囲内に制御することで、適切なせん断・圧縮力を含水ゲルに与えながらゲル粉砕できる。
 なお、ニーダー重合後でのスクリュー押出機の使用や、複数のスクリュー押出機の使用等、ゲル粉砕が複数の装置で行われる場合には、それぞれの装置で消費されたエネルギーの合計をゲル粉砕エネルギー(GGE)とする。
 またゲル粉砕エネルギーを前記のように制御する場合には、前記範囲の温水の添加と組み合わせて行うことでより優れた効果が得られる。更に通常のゲル粉砕後に、前記ゲル粉砕エネルギーに基づくゲル粉砕を行ってもよい。
 ゲル粉砕工程によって細粒化された粒子状含水ゲルの粒子径は、乾燥のしやすさや、得られる吸水性樹脂の物性の観点から0.1mm以上、10mm以下の範囲が好ましい。また粒子状含水ゲルの質量平均粒子径(D50)は好ましくは0.1mm以上であって、好ましくは5mm以下、より好ましくは2mm以下である。更に前記本発明の第二の形態のとき、すなわち前記ゲル粉砕エネルギーを適用する場合、粒子状含水ゲルの質量平均粒子径(D50)は好ましくは0.1mm以上、1.0mm以下である。粒子状含水ゲルの質量平均粒子径(D50)が前記範囲を外れると、乾燥が十分に行われないことがある。本発明では乾燥工程iii)に供される含水ゲルの質量平均粒子径は好ましくは前記範囲内であり、より好ましくは前記粒子径、及び前記質量平均粒子径の両方を満足することである。
 前記粒子状含水ゲルの粒度として、その粒度分布の狭さを示す対数標準偏差(σζ)は、好ましくは0.2以上であって、好ましくは1.5以下、より好ましくは1.3以下、更に好ましくは1.2以下である。粒度分布の対数標準偏差(σζ)は、その値が小さいほど均一な粒径となり、均等に乾燥させることができるという利点がある。しかしながら、当該粒度分布の対数標準偏差(σζ)を0.2未満とするには、ゲル粉砕前の重合時における粒度制御や、ゲル粉砕後における粒子状含水ゲルの分級等の特殊な操作を必要とするため、生産性やコストの観点から、実質的には実施することが難しい。
 なお、後述する吸水性樹脂や吸水剤の比表面積を高めるためには、国際公開第2011/126079号パンフレットに記載されたゲル粉砕方法を用いることが好ましい。また、該ゲル粉砕技術を前述の発泡重合と組み合わせても良い。
 前記粒子状含水ゲルの質量平均粒子径(D50)や粒度分布の対数標準偏差(σζ)の測定法は、国際公開第2011/126079号パンフレットに記載された方法で行われる。
 また均一で効率的な乾燥のために、粒子状含水ゲルの含水率は好ましくは30質量%以上、より好ましくは45質量%以上であって、好ましくは70質量%以下、より好ましくは55質量%以下である。
 [2-4]乾燥工程
 本工程は、iii)粉砕された含水ゲル状架橋重合体を乾燥する工程であり、詳細には前記粒子状含水ゲル、又は粒子状含水ゲルにさらに造粒ゲル(微粉造粒ゲル)を添加した場合には造粒ゲルと粒子状含水ゲルの両方を所望する固形分まで乾燥させて乾燥重合体を得る工程である。該固形分、すなわち、該ゲル100質量%から含水率を引いた値は、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、特に好ましくは92質量%以上であって、好ましくは99質量%以下、更に好ましくは98質量%以下、特に好ましくは97質量%以下である。乾燥重合体の固形分を前記範囲内とすることで、粉砕や分級、表面架橋を効率的に実施することができる。ところで、本乾燥工程で特に通気バンド式乾燥機などの静置乾燥を用いる場合、乾燥重合体が乾燥時の凝集によってブロック状乾燥物になりやすく、更にブロック状乾燥物の上下、中央/端で含水率が異なっている場合があるが、適宜様々な位置から乾燥重合体を取得し、必要により砕いてから含水率を測定して平均すればよい。なお、本発明では前記造粒ゲルを添加する時期として、「前記乾燥工程iii)で乾燥完了するまで」と規定しているが、ここでいう「乾燥完了」とは、乾燥重合体として見なせる程度に乾燥した状態、具体的には固形分が80質量%に到達した状態を言い、乾燥工程の終了とは無関係である。言い換えると、乾燥完了時点、即ち固形分80質量%に到達後さらに前記好ましい固形分の範囲まで乾燥工程を継続することができる。
 本発明では前記所定の固形分を下回る乾燥重合体は未乾燥物ということがある。なお、乾燥工程における「被乾燥物」又は「粒子状含水ゲル」には粒子状含水ゲルと造粒ゲルの両方を含む場合がある。また本発明の乾燥工程は特に粒子状含水ゲル(重合ゲル)と造粒ゲル(微粉造粒ゲル)の両方を含む場合により効果的な条件である。なお、他の工程においても同様に含水ゲル、及びその処理物に造粒ゲル、及びその処理物が含まれる場合がある。上記したように、造粒ゲル(微粉造粒)と粒子状含水ゲル(重合ゲル)とではその性状や乾燥効率が異なるため、一緒に乾燥が困難であったが、本発明ではかかる課題も解決できる。
 乾燥工程における乾燥方法は、例えば、加熱乾燥、熱風乾燥、減圧乾燥、流動層乾燥、赤外線乾燥、マイクロ波乾燥、疎水性有機溶媒との共沸脱水による乾燥、高温の水蒸気を利用した高湿乾燥、被乾燥物を移動させながら乾燥させる攪拌乾燥等が挙げられる。中でも乾燥効率の観点から、攪拌乾燥、及び熱風乾燥が好ましい。攪拌乾燥としてはパドルドライヤー又は回転ドラム式乾燥機等の攪拌乾燥機で行うことが好ましい。また熱風乾燥は通気ベルト上で熱風乾燥を行う通気バンド式乾燥機で行うことが好ましい。通気バンド式乾燥機を用いることで、乾燥重合体や乾燥途中の粒子状含水ゲル等の被乾燥物の物理的破損や摩擦による微粉末の発生等を防止しつつ、効率的な乾燥が行える。
 撹拌乾燥は、被乾燥物への機械的ダメージ低減の観点から、回転ドラム式乾燥機が好ましい。熱的及び機械的ダメージ低減の観点から、より好ましくは、直接伝熱では通気加熱式、間接伝熱では外壁加熱式及び管状加熱式から選択される1又は2以上の加熱手段を有する回転ドラム式乾燥機である。また通気加熱式のみで加熱する場合、例えば、通気による乾燥物の飛散、大量の廃ガスの発生等といった問題が生じる場合がある。よって、間接伝熱では外壁加熱式及び管状加熱式から選択される1又は2以上の加熱手段が好ましい。
 さらに管状加熱式は、複数の加熱管を用いることで乾燥機内部の伝熱面積を大きくできるため、効率的な乾燥が可能になるためより好ましい。このような回転ドラム式乾燥機として加熱管付き回転ドラム式乾燥機が挙げられる。
 本発明の目的が阻害されない限り、前記回転ドラム式乾燥機が、内容物を流動させる他の流動手段を備えてもよい。この他の流動手段の例として、回転容器内面に設置された掻揚げ板、攪拌翼等が挙げられる。
 本発明における乾燥温度、すなわち、熱風の温度は、乾燥効率を考慮すると好ましくは120℃以上、より好ましくは130℃以上、更に好ましくは150℃以上であって、好ましくは250℃以下、より好ましくは230℃以下、更に好ましくは200℃以下である。また乾燥時間は、好ましくは10分間以上、より好ましくは20分間以上、更に好ましくは30分間以上であって、好ましくは2時間以下、より好ましくは1.5時間以下、更に好ましくは1時間以下である。当該範囲内の乾燥温度及び乾燥時間とすることで、得られる吸水性樹脂の物性を所望する範囲とすることができる。なお、他の乾燥条件については、乾燥に供する粒子状含水ゲルや造粒ゲルの含水率や総質量及び目的とする固形分に応じて、適宜設定すればよく、バンド乾燥を行う際には、国際公開第2006/100300号パンフレット、同第2011/025012号パンフレット、同第2011/025013号パンフレット、同第2011/111657号パンフレット等に記載される諸条件が適宜適用される。
 (通気バンド式乾燥機)
 通気バンド式乾燥機によって被乾燥物を乾燥する場合、被乾燥物がバンド乾燥機のバンド上で層状(以下、「ゲル層」ということがある)となるように連続的に供給し、熱風乾燥される。この乾燥機のバンドの幅は好ましくは0.5m以上、より好ましくは1m以上であって、好ましくは10m以下、より好ましくは5m以下である。バンドの長さは好ましくは20m以上、より好ましくは40m以上であって、好ましくは100m以下、より好ましくは50m以下である。
 バンド上での被乾燥物の移動速度は、ベルト幅、ベルト長、生産量、乾燥時間等により適宜設定すればよいが、ベルト駆動装置の負荷、耐久性等の観点から、好ましくは0.3m/min以上、より好ましくは0.5m/min以上、更に好ましくは0.7m/min以上であって、好ましくは5m/min以下、より好ましくは2.5m/min以下、更に好ましくは2m/min以下、特に好ましくは1.5m/min以下である。
 通気バンド式乾燥機上に散布された被乾燥物のゲル層の平均厚みは好ましくは3cm以上、より好ましくは5cm以上、更に好ましくは8cm以上であって、好ましくは30cm以下、より好ましくは20cm以下、更に好ましくは15cm以下である。前記条件において効率的に前記固形分を達成するためにはゲル層の厚みを前記範囲となるようにすることが望ましい。一方、ゲル層が厚くなりすぎると未乾燥物の残存や不均一な乾燥になりやすいため、前記所定の乾燥工程を行っても前記好ましい固形分を満足しない乾燥重合体の割合が多くなることがある。
 また本発明では通気バンド式乾燥機の下記式から求められる厚み変化率は、好ましくは1.05以上、より好ましくは1.1以上であって、好ましくは3以下、より好ましくは2.5以下、更に好ましくは2以下である。バンド上のゲル層の厚みを幅方向で均一にするよりも幅方向で厚みに変化をもたせて通気ベルト上で乾燥させると、より一層均一な乾燥を達成できるため好ましい。ゲル層の厚み変化率はバンド進行方向に対して鉛直方向の断面での厚みであり、通気ベルトの進行方向の一定区間で測定した幅方向の重合ゲルの厚みである。即ち、本発明のゲル層の厚みは、通気ベルト上で乾燥が開始する前の厚み、言い換えれば、被乾燥物の固形分濃度が上昇するまでの被乾燥物の厚みである。なお、「固形分濃度が上昇するまで」とは、乾燥前の被乾燥物の固形分濃度に対して、固形分濃度が好ましくは1質量%上昇するまで、より好ましくは0.5質量%上昇するまで、更に好ましくは0質量%を超えて上昇するまでのことをいう。
  厚み変化率=(被乾燥物の幅方向の最大厚み/平均厚み)
 なお、本発明では前記ゲル層の厚みと前記厚み変化率の一方のみを満足することも好ましい実施形態であるが、両方を満足することがより好ましい実施形態である。
 本発明では通気バンド式乾燥機上に散布された被乾燥物に対して、更に厚み制御操作を行うことが好ましい。厚み制御操作を行って、好ましくは前記ゲル層の厚み、より好ましくは前記厚み変化率、更に好ましくはゲル層の厚みと厚み変化率を満足することで、粗大な凝集物等に起因する乾燥不良をより一層抑制できる。厚み制御操作は、バンド上の被乾燥物の厚みを調整できれば特に限定されないが、レーキ(手把)やロータリー式ならし機等が例示される。
 [2-5]粉砕工程、分級工程
 粉砕工程は、iv)乾燥後の重合体を粉砕する工程であり、分級工程は、v)粉砕された重合体から微粉を取り除く分級工程である。詳細には前記乾燥工程を経て得られる乾燥重合体を、粉砕工程で粉砕し、所望する範囲の粒度に分級工程で調整して、吸水性樹脂を得る工程である。乾燥後の粉砕工程を経ることで、不定形破砕状の吸水性樹脂を得ることができる。
 前記粉砕工程で使用される粉砕機としては、ロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機や、振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が挙げられる。中でも、粉砕効率の観点から、好ましくはロールミルが選択される。また、これら粉砕機を複数併用することもできる。
 前記分級工程での粒度の調整方法としては、JIS標準篩(JIS Z8801-1(2000))を用いた篩分級や気流分級等が挙げられる。中でも、分級効率の観点から、好ましくは篩分級が選択される。なお、粉砕のしやすさやの観点から、付加的に粉砕工程の前に分級工程を行っても良い。
 吸水性樹脂の粒度分布は質量平均粒子径(D50)が好ましくは300μm以上、600μm以下であって、150μm未満の粒子の割合が5質量%以下である。質量平均粒子径(D50)の上限はより好ましくは500μm以下、更に好ましくは450μm以下、特に好ましくは400μm以下である。また150μm未満の粒子の割合は、より好ましくは4質量%以下、更に好ましくは3質量%以下、特に好ましくは2質量%以下である。また粒度分布の狭さを示す対数標準偏差(σζ)は、好ましくは0.20以下、より好ましくは0.25以下、更に好ましくは0.27以上であって、好ましくは0.50以下、より好ましくは0.40以下、更に好ましくは0.35以下である。粒度分布の対数標準偏差(σζ)は、その値が小さいほど均一な粒径となり、粒子の偏析が少なくなるという利点がある。好ましくは質量平均粒子径(D50)と150μm未満の粒子の割合を満足することであり、より好ましくは質量平均粒子径(D50)、150μm未満の粒子の割合、及び対数標準偏差を満足することであり、前記各範囲内で適宜組み合わせることができる。
 上述した粒度は、粉砕工程及び分級工程後の吸水性樹脂のみならず、最終製品としての吸水剤についても適用される。そのため、表面架橋を行う場合は表面架橋前の吸水性樹脂で調整された前記範囲の粒度を維持するように、表面架橋工程で表面架橋処理されるが、好ましく、表面架橋工程以降に整粒工程を設けて粒度調整されることがより好ましい。
 [2-6]表面架橋工程
 本工程は、必要に応じて上述した各工程を経て得られる表面架橋前の吸水性樹脂の表面層に、更に架橋密度の高い部分を設ける工程であり、混合工程、熱処理工程、冷却工程等を含む構成となっている。当該表面架橋工程において、表面架橋前の吸水性樹脂の表面でラジカル架橋や表面重合、表面架橋剤との架橋反応等が起こり、表面架橋された吸水性樹脂が得られる。
 [2-6-1]混合工程
 本工程は、表面架橋剤を含む溶液(以下、「表面架橋剤溶液」と表記する)を混合装置内で表面架橋前の吸水性樹脂と混合することで、加湿混合物を得る工程である。
 (表面架橋剤)
 本発明においては、表面架橋時に表面架橋剤が使用される。当該表面架橋剤としては、具体的には米国特許第7183456号に記載された表面架橋剤が挙げられる。これら表面架橋剤の中から、反応性等を考慮して少なくとも1種類の表面架橋剤が選択される。また、表面架橋剤の取り扱い性や吸水性樹脂の吸水性能等の観点から、好ましくはカルボキシル基と反応する官能基を二つ以上有する表面架橋剤であって、共有結合が形成される有機化合物が選択される。
 前記表面架橋剤として、より具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,4-ペンタンジオール、1,3-ペンタンジオール、1,2-ペンタンジオール、2,3-ペンタンジオール、2,4-ペンタンジオール、ジプロピレングリコール、ポリプロピレングリコール、グリセリン、ポリグリセリン、1,6-ヘキサンジオール、1,5-ヘキサンジオール、1,4-ヘキサンジオール、1,3-ヘキサンジオール、1,2-ヘキサンジオール、2,3-ヘキサンジオール、2,4-ヘキサンジオール、ジエタノールアミン、トリエタノールアミン等の多価アルコール化合物、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ポリアリルアミン、ポリエチレンイミン等の多価アミン化合物、ハロエポキシ化合物、多価アミン化合物とハロエポキシ化合物との縮合物、1,2-エチレンビスオキサゾリン等のオキサゾリン化合物、オキサゾリジノン化合物、1,3-ジオキソラン-2-オン(エチレンカーボネート)、4-メチル-1,3-ジオキソラン-2-オン、4,5-ジメチル-1,3-ジオキソラン-2-オン、4,4-ジメチル-1,3-ジオキソラン-2-オン、4-エチル-1,3-ジオキソラン-2-オン、4-ヒドロキシメチル-1,3-ジオキソラン-2-オン、1,3-ジオキサン-2-オン、4-メチル-1,3-ジオキサン-2-オン、4,6-ジメチル-1,3-ジオキサン-2-オン、1,3-ジオキソパン-2-オン等のアルキレンカーボネート化合物、エチレングリコールジグリシジルエーテル、ポリエチレンジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、グリシド-ル等の多価グリシジル化合物、オキセタン化合物、ビニルエーテル化合物、環状尿素化合物等が挙げられる。
 前記表面架橋剤の使用量、なお、複数種類を使用する場合はその合計量は、表面架橋前の吸水性樹脂100質量部に対して、好ましくは0.01質量部以上であって、好ましくは10質量部以下、より好ましくは5質量部以下、更に好ましくは2質量部以下である。表面架橋剤の使用量を当該範囲内とすることで、表面架橋前の吸水性樹脂の表面層に最適な架橋構造を形成することができ、高物性の吸水性樹脂が得られる。
 前記表面架橋剤は、水溶液として表面架橋前の吸水性樹脂に添加することが好ましい。この場合、水の使用量は、表面架橋前の吸水性樹脂100質量部に対して、好ましくは0.1質量部以上、より好ましくは0.3質量部以上、更に好ましくは0.5質量部以上であって、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下である。水の使用量を当該範囲内とすることで、表面架橋剤溶液の取り扱い性が向上し、表面架橋前の吸水性樹脂に対して表面架橋剤を均等に混合することができる。
 また、親水性有機溶媒を必要に応じて前記水と併用して、前記表面架橋剤溶液とすることもできる。この場合、親水性有機溶媒の使用量は、表面架橋前の吸水性樹脂100質量部に対して、好ましくは5質量部以下、より好ましくは3質量部以下、更に好ましくは1質量部以下である。当該親水性有機溶媒としては、具体的には、メチルアルコール等の低級アルコール類;アセトン等のケトン類;ジオキサン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類;エチレングリコール等の多価アルコール類;等が挙げられる。しかしながら、これら親水性有機溶媒の使用は、本発明の課題である膨潤ゲルの不快臭の原因となる恐れがあるため、使用する場合でもできるだけ少ない使用量に制限されることが好ましい。
 また、下記「[2-7]添加剤とその添加工程」で添加される各種の添加剤を、5質量部以下の範囲内で、前記表面架橋剤溶液に添加したり、混合工程で別途添加したりすることもできる。
 (混合方法、混合条件)
 前記表面架橋前の吸水性樹脂と前記表面架橋剤溶液との混合は、表面架橋剤溶液を予め作製しておき、当該溶液を表面架橋前の吸水性樹脂に対して、好ましくは噴霧又は滴下して、より好ましくは噴霧して混合する方法が選択される。
 前記混合を行う混合装置は、表面架橋前の吸水性樹脂と表面架橋剤とを均一かつ確実に混合するのに必要なトルクを有していることが好ましい。当該混合装置は、高速攪拌型混合機が好ましく、高速攪拌型連続混合機がより好ましい。なお、当該高速攪拌型混合機の回転数は、好ましくは100rpm以上、より好ましくは300rpm以上であって、好ましくは10000rpm以下、より好ましくは2000rpm以下である。
 本工程に供給される表面架橋前の吸水性樹脂の温度は、表面架橋剤溶液との混合性や加湿混合物の凝集性の観点から、好ましくは35℃以上であって、好ましくは80℃以下、より好ましくは70℃以下、更に好ましくは60℃以下である。また、混合時間は、好ましくは1秒間以上、より好ましくは5秒間以上であって、好ましくは1時間以下、より好ましくは10分間以下である。
 [2-6-2]熱処理工程
 本工程は、前記混合工程で得られた加湿混合物に熱を加えて、表面架橋前の吸水性樹脂の表面上で架橋反応させる工程である。
 前記加湿混合物の熱処理は、当該加湿混合物を静置状態で加熱してもよく、攪拌等の動力を用いて流動状態で加熱してもよいが、加湿混合物全体を均等に加熱できる点において、攪拌下で加熱することが好ましい。前記熱処理を行う熱処理装置は、前記観点から、パドルドライヤー、マルチフィンプロセッサー、タワードドライヤー等が挙げられる。
 本工程における加熱温度は、表面架橋剤の種類及び量、並びに吸水性樹脂の吸水性能等の観点から、好ましくは150℃以上、より好ましくは170℃以上、更に好ましくは180℃以上であって、好ましくは250℃以下、より好ましくは230℃以下である。また、加熱時間は好ましくは少なくとも5分間、より好ましくは少なくとも7分間である。加熱温度と加熱時間とを前記範囲内に制御することにより、得られる吸水性樹脂の吸水性能が向上するため好ましい。
 [2-6-3]冷却工程
 本工程は、前記熱処理工程の後に必要に応じて設けられる任意の工程である。本工程は、前記熱処理工程を終えた高温の吸水性樹脂を所定の温度まで強制冷却し、表面架橋反応を速やかに終了させる工程である。
 前記吸水性樹脂の冷却は、静置状態で冷却してもよく、攪拌等の動力を用いて流動状態で冷却してもよいが、吸水性樹脂全体を均等に冷却できる点において、攪拌下で冷却することが好ましい。前記冷却を行う冷却装置は、前記観点から、パドルドライヤー、マルチフィンプロセッサー、タワードドライヤー等が挙げられる。なお、これら冷却装置は、熱処理工程で使用される熱処理装置と同じ仕様とすることもできる。熱処理装置の熱媒を冷媒に変更することで、冷却装置として使用できるからである。
 本工程における冷却温度は、熱処理工程での加熱温度、吸水性樹脂の吸水性能等に応じて適宜設定すればよいが、好ましくは40℃以上、より好ましくは50℃以上であって、好ましくは100℃以下、より好ましくは90℃以下、更に好ましくは70℃以下である。
 [2-7]添加剤とその添加工程
 [2-7-1]表面改質剤
 表面改質剤は、吸水性樹脂の粒子表面を改質する目的で添加される添加剤で、具体的には、通液性向上剤、吸湿下のAnti-Caking剤、粉体の流れ制御剤、吸水性樹脂のバインダー等が挙げられる。特に通液性向上の観点から多価金属塩、カチオン性ポリマー、無機微粒子よりなる群から選ばれる少なくとも1種類の化合物を使用でき、必要に応じて2種類以上を併用できる。前記表面改質剤の添加量は、選択される化合物に応じて、適宜設定される。表面改質剤の添加工程は、吸水性樹脂の粒子表面を改質する目的から、好ましくは重合工程以降、より好ましくは乾燥工程以降、更に好ましくは表面架橋工程以降に行われる。また表面改質剤の添加は任意の1以上の工程で行うことができる。
 (多価金属塩)
 多価金属塩を使用する場合、多価金属塩の多価金属カチオンは、好ましくは2価以上、より好ましくは2価以上、4価以下、更に好ましくは3価又は4価である。また、使用できる多価金属としては、アルミニウム、ジルコニウム等が挙げられる。従って、本工程で使用することができる多価金属塩としては、乳酸アルミニウム、乳酸ジルコニウム、硫酸アルミニウム、硫酸ジルコニウム等が挙げられる。中でも、SFCの向上効果の観点から、乳酸アルミニウム又は硫酸アルミニウムがより好ましく、硫酸アルミニウムが更に好ましい。
 前記多価金属塩の添加量としては、吸水性樹脂1gに対して、好ましくは0モル以上であって、好ましくは3.6×10-5モル未満、より好ましくは1.4×10-5モル未満、更に好ましくは1.0×10-5モル未満である。
 更に前記多価金属を含む溶液には、多価金属の吸水性樹脂内への浸透性を調整する剤として更に水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、酢酸ナトリウム、乳酸ナトリウム等、1価の金属化合物を含んでいても良い。
 (カチオン性ポリマー)
 カチオン性ポリマーを使用する場合、カチオン性ポリマーとしては、米国特許第7098284号に記載されている物質が挙げられる。中でも、通液性向上の観点から、ビニルアミンポリマーがより好ましい。また、カチオン性ポリマーの質量平均分子量は、5000以上1000000以下が好ましい。
 前記カチオン性ポリマーは、吸水性樹脂100質量部に対して、好ましくは0質量部以上、より好ましくは0質量部超であって、好ましくは2.5質量部未満、より好ましくは2.0質量部未満、更に好ましくは1.0質量部未満となるように添加すればよい。
 (無機微粒子)
 無機微粒子を使用する場合、無機微粒子としては、米国特許第7638570号に記載されている物質が挙げられる。中でも、通液性向上の観点から、二酸化ケイ素が好ましい。
 前記無機微粒子は、一次粒子径が20nm未満である場合、吸水性樹脂100質量部に対して、好ましくは0質量部以上、より好ましくは0質量部超であって、好ましくは1.2質量部未満、より好ましくは1.0質量部未満、更に好ましくは0.5質量部未満となるように添加すればよい。また、一次粒子径が20nm以上である場合、吸水性樹脂100質量部に対して、好ましくは0質量部以上、より好ましくは0質量部超であって、好ましくは2.0質量部未満、より好ましくは1.5質量部未満、更に好ましくは1.0質量部未満となるように添加すればよい。
 [2-7-2]その他の添加剤
 その他の添加剤としては、キレート剤、還元剤、ヒドロキシカルボン酸化合物、界面活性剤、リン原子を有する化合物、酸化剤、金属石鹸等の有機粉末、消臭剤、抗菌剤、パルプや熱可塑性繊維、テルペン系芳香性化合物、フェノール系芳香性化合物等の芳香性物質等が挙げられ、これらは1つ又は2つ以上を使用できる。その他の添加剤としては、好ましくはキレート剤、より好ましくはアミノ多価カルボン酸又はアミノ多価燐酸が好ましく、代表的には特開平11-060975号公報、国際公開第2007/004529号パンフレット、国際公開第2011/126079号パンフレット、国際公開第2012/023433号パンフレット、特表2009-509722号公報、特開2005-097519号公報、特開2011-074401号公報、特開2013-076073号公報、特開2013-213083号公報、特開昭59-105448号公報、特開昭60-158861号公報、特開平11-241030号公報、特開平2-41155号公報等に記載のキレート剤が挙げられる。
 その他の添加剤、好ましくはキレート剤は、モノマー又は吸水性樹脂に対して、好ましくは0.001質量%以上、1質量%以下の範囲で添加又は含有される。
 前記添加剤は、上述した各工程、すなわち、単量体水溶液の調製工程、重合工程、ゲル粉砕工程、乾燥工程、粉砕工程、分級工程、表面架橋工程から選ばれる少なくとも1つの工程の前後又はその工程の途中で添加することができる。好ましくは、重合工程以降のいずれかの工程の前後又はその工程の途中で添加される。
 [2-7-3]添加剤の添加工程
 添加剤を吸水性樹脂に添加する場合、該添加剤が液体又は水等の水性媒体の溶液の時には、該液体又は溶液を吸水性樹脂に対して噴霧し、十分なトルクをかけて吸水性樹脂と添加剤とを均一かつ確実に混合することが好ましい。一方、前記添加剤が粉状等の固体である場合には、吸水性樹脂とドライブレンドしてもよく、水等の水性液体をバインダーとして使用してもよい。
 前記混合に使用する装置として具体的には、攪拌型混合機、円筒型混合機、二重壁円錐型混合機、V字型混合機、リボン型混合機、スクリュー型混合機、流動型ロータリーデスク型混合機、気流型混合機、双腕型ニーダー、内部混合機、粉砕型ニーダー、回転式混合機、スクリュー型押出機等が挙げられる。なお、攪拌型混合機を用いる場合には、その回転数は、好ましくは5rpm以上、より好ましくは10rpm以上であって、好ましくは10000rpm以下、より好ましくは2000rpm以下である。
 [2-8]整粒工程
 本発明においては、上述した工程以外に、必要に応じて整粒工程を実施することができる。整粒工程とは前記表面架橋工程を経て得られる表面架橋後の吸水性樹脂を所望の範囲の粒度に調整して最終製品として出荷可能な状態にある吸水性樹脂、すなわち、吸水剤を得る工程である。但し、表面架橋工程前に粉砕工程及び分級工程がない場合は、表面架橋工程後の後述の操作を粉砕工程、分級工程とする。整粒工程での粒度調製方法は前記分級工程と同様の調製方法を採用できる。更に、前記表面架橋工程や表面改質剤の添加工程で吸水性樹脂が凝集した場合に、解砕、例えば軽い粉砕を行っても良い。また粒度調整後の粒度分布も用途に応じて適宜調整することができ、好ましくは前記分級工程と同定度である。したがって所望の質量平均粒子径(D50)、該質量平均粒子径(D50)の割合、及び対数標準偏差等を満足するように篩等による分級等を行えばよい。
 [2-9]微粉リサイクル工程
 微粉リサイクル工程vi)は、重合工程および乾燥工程を経て、さらに前記分級工程v)で取り除かれた微粉(吸水性樹脂の微粉)を前記乾燥工程iii)の乾燥完了以前にリサイクルする工程である。ここで、乾燥完了とは固形分80質量%までの乾燥のことである。リサイクルされる微粉は好ましくは前記分級工程、より好ましくは前記分級工程、及び前記整粒工程等で取り除かれた微粉である。なお、微粉が得られた吸水性樹脂の製造工程と厳密に同一の吸水性樹脂の製造工程へリサイクルする必要はなく、本発明の趣旨を損なわない程度に異なる他の吸水性樹脂の製造工程へリサイクルしてもよい。例えば、ある製造ラインで発生した微粉を隣の製造ラインへリサイクルしても良いし、同一の製造ラインで微粉を取り除いてからリサイクルするまでに重合条件等を変更してもよい。
 本発明の第一の形態では前記微粉リサイクル工程において、
 vi-1)前記取り除かれた微粉と水性液を混合して造粒ゲルを得る造粒工程、
 vi-2)前記乾燥工程iii)で乾燥完了するまでの前記工程i)~iii)の少なくとも1つの工程及び/又は工程間で、含水ゲル状架橋重合体に、前記造粒ゲルを添加する造粒ゲル添加工程、
 vi-3)前記造粒ゲル添加工程から乾燥工程iii)で乾燥完了するまでの少なくとも1つの工程及び/又は工程間で、含水ゲル状架橋重合体と前記添加した造粒ゲルを機械的混合するゲル混合工程、を含み、後記する造粒ゲル添加工程において造粒ゲルの固形分が所定量であり、造粒ゲル、及び含水ゲルの温度が所定の範囲内であることが望ましい。
 [2-9-1]造粒工程
 造粒工程は、vi-1)前記取り除かれた微粉と水性液を混合して造粒ゲルを得る工程である。造粒ゲルとは光学顕微鏡によって観察したとき個々の粒子が複数集まって凝集又は融着して大きな粒子状となっているゲルであり、好ましくは分級操作や搬送操作によって損壊しない程度の強度を有するものである。
 (微粉)
 本発明は吸水性樹脂の製造において得られる全ての微粉を対象とするものであるが、好ましくは前記分級工程、より好ましくは前記分級工程、及び前記整粒工程で取り除かれた微粉に水性液を添加して造粒する。分級工程から取り除かれた微粉と整粒工程から取り除かれた微粉の混合比率(質量比)は、好ましくは99:1~50:50、より好ましくは98:2~60:40、更に好ましくは95:5~70:30である。整粒工程で取り除かれた微粉は表面架橋工程、場合によっては表面架橋工程に加えて[2-7-1]表面改質剤に記載した表面改質剤の添加工程を経ているので、造粒工程に所定比率含まれていると造粒ゲルの凝集性が低減して有利である。更に本発明では例えば、各製造工程中のバックフィルター等で取り除かれた微粉を造粒に用いてもよく、また、別々の工程で取り除かれて得られた微粉や別の製造過程(別の製造装置)で取り除かれて得られた微粉を混合して用いることもできる。また、微粉は、共に乾燥する含水ゲルと同じ組成であってもよいし、異なる組成であってもよいが、好ましくは、共に乾燥する含水ゲルに由来する同一組成の微粉を用いるのがよい。
 造粒に使用する微粉のサイズとしては、吸水性樹脂の最終製品サイズ未満であることが好ましい。例えば、微粉はJIS標準篩分級により規定される質量平均粒子径(D50)が好ましくは150μm以下、より好ましくは106μm以下である。微粉の下限は、好ましくは38μm以上、より好ましくは45μm以上である。本工程では微粉を対象とするが、最終製品サイズを超える凝集物であっても適宜粉砕し、微粉として造粒に使用できる。好ましくはJIS標準篩分級により規定される150μm未満の粒子径を有する粒子を、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%以上であって、好ましくは100質量%以下含んでいることが望ましい。また、微粉の形状としては、造粒強度の面から、逆相懸濁重合で得られた球形よりも、水溶液重合で得られた不定形のものが好ましい。また、前述するように、前記微粉は、吸水性樹脂の製造において一般的に行われている表面架橋工程後に取り除いたものであってもよいし、表面架橋工程前に取り除いたものであってもよいし、それらの混合物であってもよい。
 前記微粉、好ましくは前記微粉(表面架橋前の微粉および表面架橋後の微粉)を所定比率で混合した微粉混合物に水性液を添加して造粒ゲル(微粉造粒ゲル)を得る。造粒ゲルは前記単独の工程、或いは複数の工程から得られる様々な粒径を有する微粉を使用している。造粒ゲルの数平均粒子径は好ましくは0.15mm以上、より好ましくは0.2mm以上、更に好ましくは0.3mm以上であって、好ましくは20mm以下、より好ましくは5mm以下、更に好ましくは2mm以下である。なお、造粒ゲルの数平均粒子径はランダムに10個以上100個以下で選んだ造粒ゲルの粒子径を測定したものである。造粒ゲルが凝集している場合は粒子ごとに分解してから測定する。造粒工程で前記微粉と前記水性液との混合によって前記範囲を超える巨大なゲル状物が得られた場合には、該巨大なゲル状物は粉砕又は篩等の分級手段によって除去することが好ましい。また除去された該巨大なゲル状物は必要に応じて乾燥、粉砕して再利用できる。
 水性液と混合する際の微粉の温度は好ましくは40℃以上、好ましくは50℃以上、より好ましくは60℃以上であって、好ましくは120℃以下、より好ましくは100℃以下、更に好ましくは90℃以下である。微粉の温度を高めることで微粉、及び水性液の混合性が向上して所望の造粒ゲルが得られやすくなる。一方、微粉の温度を高くしすぎると加熱コストが高くなる。微粉の温度は必要に応じて熱風等による外部からの加熱、乾燥工程での加熱後の保温、或いは室温の空気の吹きつけ等による冷却によって適宜調節することができる。好ましくは、微粉を蒸気トレス等の加熱手段を持つ容器中で加熱又は保温する。
 (水性液)
 微粉との混合に用いる水性液として具体的には、水、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、t-ブチルアルコール等の低級アルコール類;アセトン等のケトン類;ジオキサン、テトラヒドロフラン等のエーテル類;N,N-ジメチルホルムアミド等のアミド類;ジメチルスルホキシド等のスルホキシド類等を含んだ水溶液等が挙げられる。物性や造粒強度の面から、好ましくは90質量%以上、より好ましくは99質量%以上であって、好ましくは100質量%以下の範囲内が水であることが好ましく、水のみからなることが特に好ましい。また、前記水性液には、本発明の効果を損なわない範囲で、架橋剤、キレート剤、界面活性剤、重合開始剤、酸化剤、還元剤等の他の添加剤を少量含有させることもできる。添加剤は1種、或いは2種以上添加してもよく、2種以上添加する場合の異同は問わない。例えば、重合工程に記載された重合開始剤や還元剤を添加した水性液を使用することで、造粒ゲルと含水ゲルの残存モノマーを低減できる。好ましい重合開始剤は過硫酸塩、好ましい還元剤は(重)亜硫酸(塩)である。例えば、酸化剤を添加した水性液を使用することで、造粒ゲルを乾燥したときの、吸水倍率等の物性の低下を抑えることができる場合がある。好ましい酸化剤は亜塩素酸塩、次亜塩素酸塩、過酸化物から選ばれる少なくとも1つの酸化剤であり、より好ましくは、過酸化水素である。例えば、界面活性剤を添加した水性液を使用することで、造粒ゲルに界面活性剤や高分子分散剤を含有させることができ、該造粒ゲル同士の凝集を効果的に抑制できる。
 界面活性剤としては、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤などの界面活性剤、さらには非高分子界面活性剤が例示される。
 前記アニオン性界面活性剤として具体的には、混合脂肪酸ナトリウム石けん、半硬化牛脂脂肪酸ナトリウム石けん、ステアリン酸ナトリウム石けん、オレイン酸カリウム石けん、ヒマシ油カリウム石けん等の脂肪酸塩;ラウリル硫酸ナトリウム、高級アルコール硫酸ナトリウム、ラウリル硫酸トリエタノールアミン等のアルキル硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩;アルキルナフタレンスルホン酸ナトリウム等のアルキルナフタレンスルホン酸塩;ジアルキルスルホコハク酸ナトリウム等のアルキルスルホコハク酸塩;アルキルジフェニルエーテルジスルホン酸ナトリウム等のアルキルジフェニルエーテルジスルホン酸塩;アルキルリン酸カリウム等のアルキルリン酸塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸トリエタノールアミン、ポリオキシエチレンアルキルフェニルエーテル硫酸ナトリウム等のポリオキシエチレンアルキル(又はアルキルアリル)硫酸エステル塩;特殊反応型アニオン界面活性剤;特殊カルボン酸型界面活性剤;β-ナフタレンスルホン酸ホルマリン縮合物のナトリウム塩、特殊芳香族スルホン酸ホルマリン縮合物のナトリウム塩等のナフタレンスルホン酸ホルマリン縮合物;特殊ポリカルボン酸型高分子界面活性剤;ポリオキシエチレンアルキルリン酸エステル;等が挙げられる。
 前記ノニオン性界面活性剤として具体的には、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール-ポリプロピレングリコールブロック共重合体等のポリオレフィンオキサイド;ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレン高級アルコールエーテル等のポリオキシエチレンアルキルエーテル;ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル;ポリオキシエチレン誘導体;ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリステアレート、ソルビタンモノオレエート、ソルビタントリオレエート、ソルビタンセスキオレエート、ソルビタンジステアレート、等のソルビタン脂肪酸エステル;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリステアレート、ポリオキシエチレンソルビタンモノオレエート、ポリオキシエチレンソルビタントリオレエート等のポリオキシエチレンソルビタン脂肪酸エステル;テトラオレイン酸ポリオキシエチレンソルビット等のポリオキシエチレンソルビトール脂肪酸エステル;グリセロールモノステアレート、グリセロールモノオレエート、自己乳化型グリセロールモノステアレート等のグリセリン脂肪酸エステル;ポリエチレングリコールモノラウレート、ポリエチレングリコールモノステアレート、ポリエチレングリコールジステアレート、ポリエチレングリコールモノオレエート等のポリオキシエチレン脂肪酸エステル;ポリオキシエチレンアルキルアミン;ポリオキシエチレン硬化ヒマシ油;アルキルアルカノールアミド;等が挙げられる。
 前記カチオン性界面活性剤及び前記両性界面活性剤として具体的には、ココナットアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩;ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、セチルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド、アルキルベンジルジメチルアンモニウムクロライド等の第四級アンモニウム塩;ラウリルベタイン、ステアリルベタイン、ラウリルカルボキシメチルヒドロキシエチルイミダゾリニウムベタイン等のアルキルベタイン;ラウリルジメチルアミンオキサイド等のアミンオキサイド;等が挙げられる。
 前記界面活性剤に加えて、更に、フッ素系界面活性剤やシロキサン系界面活性剤を用いることも可能である。
 また高分子分散剤も使用できる。ここで、高分子滑剤の具体例としては、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性エチレン・プロピレン共重合体、無水マレイン酸変性エチレン・プロピレン・ジエン三元共重合体(EPDM)、無水マレイン酸変性ポリブタジエン、無水マレイン酸・エチレン共重合体、無水マレイン酸プロピレン共重合体、無水マレイン酸・エチレン・プロピレン共重合体、無水マレイン酸・ブタジエン共重合体、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、酸化型ポリエチレン、酸化型ポリプロピレン、酸化型エチレン・プロピレン共重合体、エチレン・アクリル酸共重合体、エチルセルロース、エチルヒドロキシエチルセルロース、ポリエチレングリコールのようなポリアルキレンオキサイド等が挙げられる。これらの重量平均分子量は、好ましくは200~200万、より好ましくは400~100万の範囲で適宜選択される。
 前記水性液中の界面活性剤等の添加剤の合計含有量は、微粉に対して好ましくは0.0001質量%以上、0.5質量%以下であることが好ましい。0.0001質量%未満であると、造粒ゲルの凝集抑制等、添加剤による所望の効果が得られないことがあり、一方、過剰に添加すると最終的な吸水性樹脂の物性に悪影響を及ぼすことがある。
 なお、微粉に上述の架橋剤、キレート剤、界面活性剤、重合開始剤、酸化剤、還元剤等の添加剤を含有している場合は、水性液にあえて添加剤を加えなくてもよいか、又は、不足分のみ添加剤を加えればよい。特に、微粉に添加剤の添加工程の項で記載したキレート剤、界面活性剤、酸化剤、還元剤等が含まれていることが好ましい。
 界面活性剤等の添加剤を使用した場合、造粒ゲルの表面張力が低下することがあるが、表面張力が低くなりすぎると製品として使用する際に吸水性樹脂に吸収された液体の戻り量が増加する等、物性に悪影響を及ぼすことがある。そのため造粒ゲルを再利用しても物性の変動が生じないように造粒ゲルの表面張力を制御することが好ましい。界面活性剤を含有する、微粉又は水性液とを混合して得られた造粒ゲルから0.9質量%塩化ナトリウム水溶液で抽出した抽出液(以下、「抽出液」という)の表面張力は好ましくは65mN/m以上、より好ましくは68mN/m以上、更に好ましくは70mN/m以上である。造粒ゲルの表面張力は、界面活性剤の種類や添加量を微粉の量や造粒ゲルの物性や製造条件に応じて適切に制御することができる。例えば界面活性剤の有無や含有量の異なる水性液を複数用いることで造粒ゲルの表面張力を調整してもよい。好ましくは前記重合工程、前記ゲル粉砕工程、前記乾燥工程、前記粉砕工程、前記分級工程から選ばれる1の工程より前、途中又は後に、界面活性剤を添加し、及び/又は、前記造粒工程において、水性液に界面活性剤を含有させ、前記微粉と前記水性液とを混合して得られた造粒ゲルからの抽出液が前記表面張力を有することである。
 また水性液を複数回添加する場合は、1回目の水性液添加で造粒強度の強い造粒ゲルを得るために、1回目に添加された水性液と微粉とを混合して得られた造粒ゲルから抽出した抽出液の表面張力が好ましくは70mN/m以上となるように、界面活性剤を含有しない、又は、少量の界面活性剤を含有する、水性液を添加し、また2回目以降の水性液添加は、1回目の水性液添加で得られた造粒ゲルが大きな凝集物にならないように、2回目以降に添加される水性液のうち、少なくとも1回は界面活性剤を含有していると共に、該界面活性剤を含有する水性液を添加して得られた造粒ゲルから抽出した抽出液の表面張力が60mN/m以上となるようにすることが好ましい。前記1回目の混合で得られた造粒ゲルの抽出液の表面張力、及び前記1回目の混合で得られた造粒ゲルの抽出液の表面張力の好適な範囲は、より好ましくは71mN/m以上である。得られた造粒ゲルから抽出した抽出液の表面張力が好ましくは前記範囲になるよう、界面活性剤を適宜添加することが好ましい。水性液は前記造粒工程で複数回添加されることが好ましい。
 なお、造粒ゲルの表面張力は、微粉と界面活性材を含有する水性液とを混合して得られた造粒ゲルから0.9質量%塩化ナトリウム水溶液で抽出した抽出液を測定した値である。具体的には十分に洗浄された容量100mlのビーカーに、23℃以上、25℃以下に調温された0.9質量%の塩化ナトリウム水溶液、例えば生理食塩水50mlを投入し、該生理食塩水の表面張力を表面張力計(クルス社製、自動表面張力計K11)を用いて測定し、表面張力の測定値が71mN/m以上、75mN/m以下の範囲内である生理食塩水を用いる。続いて、該生理食塩水に、十分に洗浄された25mm長のフッ素樹脂製の回転子と造粒ゲル0.5gとを投入し、500rpmで4分間攪拌する。その後、攪拌を停止して造粒ゲルを沈降させ、上澄み液について前記と同様にして測定した表面張力の値である。
 微粉と水性液とを混合して造粒する場合、予め加熱した水性液を使用することが好ましい。加熱した水性液を使用することで微粉を短時間で均一に造粒でき、生産性が向上する。水性液の温度は、通常、融点~沸点、さらには10℃以上、20℃以上、30℃以上の順で好ましく、より好ましくは40℃以上、更に好ましくは50℃以上、より更に好ましくは60℃以上、特に好ましくは70℃以上であって、好ましくは水性液の沸点以下、より好ましくは100℃以下である。なお、沸点は塩類や溶媒の添加、減圧や加圧等の圧力等によって調整できる。また、別の方法として、水蒸気と常温の水性液を同時に添加して、実質的に前記温度にしてもよい。
 水性液の添加量は、微粉100質量部(有姿)に対して好ましくは100質量部未満、より好ましくは80質量部以下、更に好ましくは50質量部以下であって、好ましくは10質量部以上、より好ましくは15質量部以上、更に好ましくは20質量部以上である。ここで、有姿とは単に微粉の質量のことであり、吸水性樹脂の微粉中にその他微量成分(例えば、水や吸水性樹脂の原料としての無機微粒子)が含まれていても、微粉重量からその微量成分量を補正せずに、そのまま全体を微粉の質量とする。水性液の添加量が100質量部以上の場合、乾燥負荷が大きくなる。一方、水性液の添加量が10質量部よりも少ない場合、造粒強度が不充分になることがあると共に、微粉の混合が不均一になって造粒物が損壊しやすくなることがある。
 (混合装置)
 本発明では前記いずれの実施形態の水性液と微粉との混合に用いる混合装置は特に限定されない。例えば容器固定型混合機であれば、機械攪拌型混合機が好ましい。具体的にはタービューライザー(ホソカワミクロン社製)、レーディゲミキサー(レーディゲ社製)、及びモルタルミキサー(西日本試験機社製)等が例示される。また混合にはバッチ式混合機及び連続式混合機のいずれでもよい。
 本発明では好ましくは加熱した水性液と加熱した微粉とを前記混合装置で混合するが、より好ましくは水性液と微粉の加熱に加えて混合装置内、具体的には混合装置の壁面及び/又は攪拌羽根等の攪拌手段が加熱されていることである。このように混合装置内、水性液、微粉のいずれもが所定の温度に加熱された状態で混合するとより効率的に前記巨大なゲル状物の生成を抑制しつつ、所望の粒径を有する造粒ゲルを容易に得ることができる。本発明においてこのような効果は微粉、水性液、混合装置のいずれも加熱されていなくても得られるが、好ましくは少なくとも1つ、より好ましくは2つ、更に好ましくは全てが所定の温度に加熱されていることで、より優れた効果が得られる。
 前記混合時の混合装置内、好ましくは混合装置の内壁面、及び/又は攪拌手段の加熱温度は好ましくは50℃以上、より好ましくは55℃以上、更に好ましくは60℃以上、特に好ましくは65℃以上、最も好ましくは70℃以上であって、好ましくは120℃以下、より好ましくは100℃以下、更に好ましくは90℃以下である。混合機装置、好ましくは内壁面、攪拌手段の何れか、より好ましくは両方を加熱することで微粉を短時間で均一に造粒でき、生産性が向上する。混合装置内の温度は、例えば加熱した気体を供給したり、伝導電熱等によって適宜調整できる。
 本発明では微粉と水性液を混合する際、高速混合により造粒することが好ましい。高速混合することで前記巨大なゲル状物の生成を抑制できるため、前記巨大なゲル状物が生成した場合に必要になる巨大な混合力が不要となり、またゲル状の塊が混練状態となって主鎖の切断や絡まり等が発生し、その結果、吸水性樹脂が劣化するという問題を回避できる。
 前記高速混合とは、混合装置内で原料である微粉、及び水性液の接触時点から造粒ゲルの生成までの時間が短いことを意味する。すなわち、混合装置内に原料を投入してから造粒ゲルが取り出されるまでの時間が短いことをいう。混合時間は好ましくは3分以下、より好ましくは1分以下であって好ましくは1秒以上、より好ましくは5秒以上である。混合時間が長いと水性液と微粉との均一な混合が困難となり一体化した巨大なゲル状物となりやすい。また、混合時間が長いと得られる吸水性樹脂の水可溶分の増加や加圧下吸水倍率の低下等、吸水性樹脂の性能低下を招く場合もある。
 したがって高速混合を達成するための手段としては、原料を短時間で混合装置に投入することが望ましい。水性液を噴霧する等の方法で徐々に添加する等、何れか一方、或いは両方の原料の投入時間が長いと混合時間も長くなるため、微粉が大きな凝集塊となったり、長時間の混練によって吸水性樹脂が劣化することがある。混合装置には微粉と水性液を同時、或いは異なるタイミングで一方の投入後に他方を投入してもよい。したがって投入が同時の場合は両方の原料、又は異なるタイミングの場合は後に投入する原料の投入開始から投入終了までの時間は、好ましくは60秒以下、より好ましくは30秒以下、更に好ましくは10秒以下である。
 更に高速混合を達成するために、高速撹拌パドル混合機を用いることが好ましい。このときパドル回転数は好ましくは100rpm以上、より好ましくは200rpm以上、更に好ましくは300rpm以上であって、好ましくは5000rpm以下、より好ましくは4000rpm以下、更に好ましくは3000rpm以下である。パドル回転軸の方向は限定されないが、造粒ゲルの排出のしやすさから鉛直方向が好ましい。また、パドル回転軸の数は限定されないが、メンテナンスのしやすさから1軸又は2軸が好ましく、1軸がより好ましい。
 本発明では付着防止のため、混合機の内壁に水との接触角が90度以上の材料を用いることが好ましい。好ましい材料はテフロン(登録商標)等のフッ素樹脂である。但し全ての内壁に前記材料を用いる必要はなく、強力な撹拌力を得るため、パドル付近の内壁はあえて水との接触角が90度未満の材料を用いてもよい。耐久性の観点から好ましい材料はステンレスである。
 (輸送工程)
 吸水性樹脂の各製造工程は連結されていることが好ましく、各工程の連結のすべてに輸送工程が必要とは限らないが、例えば前記造粒工程で得られた造粒ゲルをリサイクルする際に所定の添加位置まで輸送する工程を含むことができる。
 造粒ゲルの輸送は連続式又はバッチ式で行われるが、好ましくは連続式である。輸送工程で用いられる輸送機としては、例えば、バケットコンベヤー、ベルトコンベヤー、スクリューコンベヤー、チェーンコンベヤー、振動コンベヤー及びニューマチックコンベヤー等であり、好ましくはバケットコンベヤーである。また輸送する造粒ゲルを輸送機の外側から加熱された状態及び/又は保温された状態にして、輸送途中でも造粒ゲルの温度を前記高温に維持することが好ましい。このような加熱及び/又は保温は輸送機の内壁面を外側から加熱する手段及び/又は保温する手段を備えることで達成できる。輸送中の造粒ゲル(微粉造粒ゲル)の温度が低下すると、造粒ゲル含水ゲル(重合ゲル)とが混合するまでに造粒ゲル同士がくっついて粗大な凝集物になったり、また造粒ゲルの温度が下がって硬くなってしまう等すると、これらが乾燥工程における不均一な乾燥原因となり、未乾燥物が生じやすい。乾燥工程での未乾燥物の発生は、生産性の低下、不均一乾燥による吸水性樹脂の物性の低下、乾燥工程以降の未乾燥物に混入よる生産トラブルや停止などの問題を引き起こしやすいが、本発明ではかかる問題を解決できる。したがって造粒ゲルを輸送する場合、製造された造粒ゲルの温度を好ましくは維持、より好ましくは混合する含水ゲルの温度と同程度に加熱及び/又は保温することである。
 なお、輸送工程がない場合、前記微粉と水性液の混合装置から含水ゲルとの混合位置まで造粒ゲルを重力により落下させるのが好ましい。この場合混合装置から含水ゲルとの混合位置までの距離は好ましくは10m以内、より好ましくは5m以内、更に好ましくは3m以内である。更に、造粒ゲルが通過する配管は前記輸送機と同様の理由で、加熱及び/又は保温されていることが好ましい。
 前記加熱及び/又は保温された装置や配管に造粒ゲルが長時間留まると、造粒ゲルの表面が乾き、硬くなる恐れがある。そのため造粒工程で得られた造粒ゲルはできるだけ速やかに所定の温度に加熱された状態で含水ゲルと混合することが好ましい。具体的には前記造粒工程において微粉と水性液を混合開始から得られた造粒ゲルを再添加工程vi-2)において含水ゲルに添加するまでの時間が好ましくは5分以内、より好ましくは3分以内、更に好ましくは1分以内である。なお、前記時間内に含水ゲルとの混合ができない場合でも、温度が低下した造粒ゲルを再加熱して所定の温度に加熱された状態にすれば凝集性が低下し、更に造粒ゲルを軟化させることができる。したがって温度が低下した造粒ゲルを再加熱した後に含水ゲルと混合しても前記所定の時間内に混合する場合と同様、良好な混合状態が得られる。
 前記の造粒ゲル表面が乾くという問題を解決するため、前記造粒工程vi-1)から再添加工程vi-2)の間において、すなわち、造粒後の造粒ゲルを含水ゲルに添加するまでの輸送工程において、該造粒ゲルの雰囲気の露点を好ましくは50℃以上、より好ましくは55℃以上、更に好ましくは60℃以上であって、好ましくは99℃以下、より好ましくは95℃以下、更に好ましくは90℃以下とする。また本発明では前記輸送工程に加えて造粒工程、及び/又は再添加工程の雰囲気の露点を前記範囲に制御することも好ましい実施態様であり、具体的には造粒工程における微粉と水性液を混合する際の装置内の雰囲気、造粒ゲルを含水ゲルに添加する際の装置内の雰囲気を前記範囲に制御することである。「雰囲気露点」とは、雰囲気中に存在する空気の露点をいう。雰囲気露点は、例えば、水蒸気を吹き込んだり、熱風の循環率を制御したりして前記範囲にできる。
 [2-9-2]造粒ゲル添加工程
 vi-2)前記乾燥工程iii)で乾燥完了するまでの前記重合工程i)~乾燥工程iii)の少なくとも一つの工程、及び/又は工程間で含水ゲル状架橋重合体に、造粒ゲルを添加する工程である。具体的には前記重合工程中、前記重合工程後かつ前記ゲル粉砕工程前、前記ゲル粉砕工程中、前記ゲル粉砕工程後かつ前記乾燥工程前、及び、前記乾燥工程中よりなる群から選ばれる少なくとも1以上に造粒ゲルを添加することが好ましい。なお、前記重合工程中でも含水ゲルが得られるため、該重合工程中に造粒ゲルを添加してもよい。また、乾燥工程のうち重合体の固形分が80質量%未満の重合体は通常含水ゲルとみなせる。すなわち、乾燥工程の途中までは含水ゲルが存在するため、該乾燥工程中に造粒ゲルを添加してもよい。好ましくは前記ゲル粉砕工程後かつ前記乾燥工程前、又は、前記乾燥工程中であり、より好ましくはゲル粉砕工程ii)後、乾燥工程iii)前の含水ゲルに造粒ゲルを添加することである。このように粉砕後の含水ゲルに造粒ゲルを添加すると、両者の粒度差が小さいため混合しやすく、乾燥が不均一になり難い。特に前記ゲル粉砕エネルギーを制御した粉砕を行うと含水ゲルが造粒形状となるため、より一層不均一な乾燥を抑制できる。一方、ゲル粉砕工程前、又は工程中に造粒ゲルを添加すると、ゲル粉砕機の負荷を上げたり、ゲル粉砕が不安定になって、ゲル粒子径が制御できなくなる場合がある。なお、「工程前」、「工程後」とは当該工程前、或いは当該工程後の全ての工程を含み、また工程間の輸送工程や貯蔵工程等、任意の工程において造粒ゲルを添加することを意味する。例えばゲル粉砕工程後とは、ゲル粉砕工程から次工程に輸送される間、及び次工程を含む。
 造粒ゲル添加工程において、造粒ゲルの固形分は50質量%以上、90質量%以下であるが造粒ゲルの固形分の詳細は後述する。本発明の第一の形態では造粒ゲル添加工程において、造粒ゲルの固形分と共に造粒ゲルの温度を制御する。また本発明の第二の形態では造粒ゲル添加工程において、造粒ゲルの固形分を制御し、ゲル粉砕工程において所定のゲル粉砕エネルギーに制御する。いずれの形態においても好ましくは更に含水ゲルの粒子径を制御してもよい。
 (温度)
 本発明では造粒ゲルを含水ゲルに添加するが、その際の該造粒ゲルの温度、及び該含水ゲルの温度は、いずれも50℃以上100℃以下の範囲内であり、好ましくは55℃以上、より好ましくは60℃以上であって、好ましくは95℃以下、より好ましくは90℃以下である。このような温度範囲内であれば両者の良好な混合状態が得られる。造粒ゲルや含水ゲルの温度が50℃を下回ると前記したように造粒ゲルが硬くなったり、含水ゲルと造粒ゲルを混合すると凝集物を形成することがある。すなわち、混合時に凝集物が形成されると更に含水ゲルや造粒ゲルがくっついてより巨大な凝集物を形成されて混合状態が不良となる。また混合できたとしても、乾燥する際に凝集物が存在すると乾燥不良、すなわち未乾燥物を生じやすい。また該凝集物を所望の含水率になるまで加熱を継続して乾燥させると、既に乾燥されている他の造粒ゲルや含水ゲルは過乾燥状態となり、熱劣化して可溶分が増加する等、吸水性樹脂の品質が劣化する。このような問題は一方の温度が50℃以上、他方の温度が50℃未満の場合でも生じる。一方、造粒ゲルや含水ゲルの温度が100℃を超えるとゲル表面が乾燥してしまい、かえってゲルが硬くなることがある。
 また本発明では不均一な乾燥を低減する観点から、前記温度範囲内において造粒ゲルの温度と含水ゲルの温度差は小さい程好ましく、両者の温度差は好ましくは40℃以内、より好ましくは30℃以内、更に好ましくは20℃以内である。造粒ゲルの温度と含水ゲルの温度の調整は製造過程における加熱、及び保温、或いは外部から熱風等による加熱、或いは放冷、低温空気等による冷却によって適宜調整できる。
 本発明の第二の形態では、粒子状含水ゲルと造粒ゲルと類似した形状とするために、造粒ゲルの一次粒子の質量平均粒子径に対する、粒子状含水ゲルの質量平均粒子径は、好ましくは1倍以上であって、好ましくは10倍以下、より好ましくは5倍以下である。好ましくは造粒ゲル添加工程におけるゲル粉砕工程後の含水ゲル状架橋重合体の質量平均粒子径の値である。
 [2-9-3]ゲル混合工程
 (機械的混合)
 本発明では造粒ゲルと含水ゲルを前記温度範囲に制御することにより、含水ゲルに造粒ゲルを添加する際のわずかな衝撃や自重等により含水ゲルと造粒ゲルがほぐれてわずかに混ざり合うが、本発明では更に、前記造粒ゲル添加工程から乾燥工程で乾燥完了するまでの少なくとも1つの工程、及び/又は工程間で、含水ゲルと前記添加した造粒ゲルを機械的混合することも好ましい実施態様である。本発明では前記したように造粒ゲルは乾燥工程が完了する以前の含水ゲルに添加するが、いずれの箇所で添加した場合でも造粒ゲルと含水ゲルは混合状態で乾燥される。なお、造粒ゲルと含水ゲルが均一に存在する状態であれば未乾燥物の発生をより一層抑制できる。また均一に存在するとは、造粒ゲルと含水ゲルが攪拌された混合状態、あるいは単位面積当たりの割合が略同一になるように均等に散布された状態であればよい。なお、本発明の効果を発揮するために、造粒ゲルを含水ゲルに添加してから機械的混合を始めるまでの時間は、好ましくは5分以内、より好ましくは2分以内、更に好ましくは1分以内である。また、造粒工程から機械的混合を始めるまでの時間は好ましくは10分以内、より好ましくは5分以内、更に好ましくは2分以内である。機械的混合開始時点でも造粒ゲルの添加された含水ゲルの温度が50℃以上、100℃以下の範囲内であり、好ましくは55℃以上、より好ましくは60℃以上であって、好ましくは95℃以下、より好ましくは90℃以下である。
 本発明では造粒ゲルと含水ゲルはできるだけ均一化された状態とするために造粒ゲル及び/又は含水ゲルを機械的混合する。機械的混合は、前記いずれかの共存状態を達成できる装置を用いればよく例えば攪拌翼や容器自体の回転等による回転攪拌、振り子状に動くフィーダー等による攪拌が挙げられ、それぞれ回転攪拌装置、首ふりベルト式フィーダー、振り子式コンベアが例示される。
 機械的混合が重合工程中に行われる場合、前記回転撹拌装置はニーダー重合機が好ましい。機械的混合がゲル粉砕工程中に行われる場合、前記回転撹拌装置は例えばニーダー又はミートチョッパーが好ましい。
 好ましくは機械的混合が前記ゲル粉砕工程ii)後かつ前記乾燥工程iii)前、又は、前記乾燥工程iii)中、或いは乾燥工程iii)で乾燥完了までにおいて行われる首ふりベルト式フィーダー又は回転攪拌であり、造粒ゲル及び含水ゲル状架橋重合体を、首ふりベルト式フィーダー又は回転攪拌に供給するものであることが望ましい。具体的には前記ゲル粉砕工程ii)後、乾燥工程iii)までの間に首振りベルト式フィーダー又は回転撹拌装置を、或いは乾燥工程iii)において回転撹拌装置を用いて前記機械的混合をすることによって、より一層均質な状態で乾燥させることができるため、不均一な乾燥や未乾燥物の生成を抑制できる。
 首振りベルト式フィーダーを使用する場合、a)搬送ベルト上で輸送されている含水ゲルに対して造粒ゲルを首振りフィーダーによって添加すると、造粒ゲルの均一分散ができる。またb)搬送ベルト上で輸送されている造粒ゲルに対して含水ゲルを首振りフィーダーによって添加してもよいし、c)造粒ゲルと含水ゲルを首振りフィーダーに供給し、両者を首振りフィーダーによって搬送ベルト上に供給してもよい。首振りベルト式フィーダーはベルト末端が搬送ベルト上を往復運動するため、首振りベルト式フィーダー上で造粒ゲルと含水ゲルの分布に偏りがあっても、搬送ベルト上ではほぼ均一に分布するようになる。
 首振りフィーダーの首振り角度θやベルト速度等は、搬送ベルトの速度や供給量等を考慮して任意に選択できるが、1往復する間の搬送ベルトの進行は1m以内が好ましく、0.5m以内がより好ましい。1往復する間の搬送ベルトの進行距離が大きすぎると造粒ゲルの分布の偏りが顕著になる。なお、好ましくは前記搬送ベルトが通気バンド乾燥機である。
 また回転攪拌装置としては回転軸が水平で且つ容機自体も回転するタイプ、回転軸が水平で容器自体の固定のタイプ、回転軸が鉛直方向で容器自体固定のタイプ等が例示される。これらは連続式又はバッチ式のいずれであってもよい。また前記乾燥工程で用いられるロータリー式ならし機を用いて、乾燥機に積層される含水ゲルをならしつつ、混合してもよい。更に前記乾燥工程で用いられる撹拌乾燥機で、乾燥しながら混合するのも好ましい。前記装置の攪拌回転数等は特に限定されないが、好ましくは50rpm以上、より好ましくは100rpm以上であって、好ましくは500rpm以下、より好ましくは300rpm以下である。更に、前記混合装置での混合(滞留)時間は、好ましくは180秒以内、より好ましくは60秒以内、更に好ましくは30秒以内であって、好ましくは0.1秒以上、より好ましくは1秒以上である。
 (固形分)
 再添加工程における前記条件において本発明では更に造粒ゲルの固形分と含水ゲルの固形分が適切に制御されていることが好ましい。すなわち、造粒ゲルや含水ゲルの固形分が少なくなりすぎると、部分的に乾燥が不完全となったり、凝集物が生成しやすくなる。また固形分が多くなりすぎると残存モノマー量が多くなる傾向がある。本発明では好ましくは造粒ゲルの固形分及び/又は含水ゲルの固形分は適切な範囲内であることが望ましく、含水ゲルの固形分は好ましくは30質量%以上、より好ましくは45質量%以上であって、好ましくは70質量%以下、より好ましくは55質量%以下、更に好ましくは50質量%以下である。また造粒ゲルの固形分は好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは60質量%以上であって、好ましくは90質量%以下、より好ましくは85質量%以下、更に好ましくは80質量%以下である。好ましくは再添加工程における造粒ゲルの固形分が前記範囲であり、より好ましくは造粒ゲルの固形分が前記範囲内であり、造粒ゲルと含水ゲルの温度が前記範囲内である。また再添加工程における造粒ゲルの造粒ゲル固形分が前記範囲内であり、ゲル粉砕工程におけるGGEが前記範囲内であることも好ましい。
 また本発明ではより均一な乾燥を達成することを考慮すると、好ましくは前記いずれかの固形分を満足する場合、より好ましくは前記両方の固形分を満足する場合に、更に造粒ゲルの固形分が含水ゲルの固形分より高いことが好ましい。造粒ゲルの固形分が高いのは乾燥負荷を下げるため、及び、通常造粒ゲルの残存モノマーが含水ゲルの固形分より少ないためである。具体的には、造粒ゲルの固形分A(%)と、含水ゲルの固形分B(%)との差(A-B)が、好ましくは6以上、より好ましくは11以上、更に好ましくは16以上であって、好ましくは60以下、より好ましくは50以下、更に好ましくは40以下である。両者の固形分の差を前記範囲とすることで乾燥負荷が小さく、乾燥の不均一がより一層、抑制されて製造上のトラブルや、品質上の問題を回避できる。なお、従来は固形分の差が大きいと乾燥が不均一になっていたが、本発明の条件では問題が起こらずに乾燥負荷を低減できる。
 本発明において、造粒ゲルと含水ゲルとの比率は、分離された微粉の量と造粒ゲルの固形分設定により適宜決定すればよい。吸水剤の物性の観点から含水ゲル100質量部(有姿)に対し造粒ゲルが通常10質量部以上、好ましくは15質量部以上、より好ましくは20質量部以上であって、好ましくは50質量部以下、より好ましくは40質量部以下、更に好ましくは30質量部以下となるように添加することが好ましい。本発明の微粉リサイクル方法によれば造粒ゲルの10質量部以上であっても不均一な乾燥を抑制できる。なお、造粒ゲルの割合が多くなりすぎると、最終製品である吸水性樹脂の最終的な品質や物性がリサイクルされた微粉、すなわち造粒ゲルによって大きく影響されることになる。
 造粒ゲルが添加された含水ゲル状架橋重合体は前記乾燥工程で処理される。混合ゲルの乾燥条件等は前記乾燥工程iii)と同じであるため説明を省略する。また乾燥工程以降に行われる粉砕工程iv)、分級工程v)も前記した通りであり、必要により前記表面架橋工程や整粒工程等が施されて製品となる吸水性樹脂が得られる。また分級工程v)等で得られる微粉も前記リサイクル工程vi)で処理されてもよい。
 [2-10]その他の工程
 本発明においては、上述した工程以外に、必要に応じて輸送工程、貯蔵工程、梱包工程、保管工程等から選択される少なくとも1種類の工程を更に含んでいてもよい。
 本願は、2018年5月16日に出願された日本国特許出願第2018-094788号、及び2018年11月8日に出願された日本国特許出願第2018-210731号に基づく優先権の利益を主張するものである。2018年5月16日に出願された日本国特許出願第2018-094788号、及び2018年11月8日に出願された日本国特許出願第2018-210731号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例に従って本発明を説明する。本発明は実施例に限定され解釈されるものではない。また、本発明の特許請求の範囲や実施例に記載した諸物性は、特に記載のない限り、室温(20℃以上、25℃以下)、湿度50RH%の条件下で、EDANA法及び以下の測定法に従って求めたものである。以下の実施例で使用される電気機器は、200V又は100V、60Hzの電源を使用した。なお、便宜上「リットル」を「L」、「質量%」又は「重量%」を「wt%」と略記することがある。
 (a)ゲル粉砕エネルギー
 本実施例では下記式(1)に基づいてゲル粉砕エネルギーを算出した。なお、各入力値は各実施例において記載する。
 ゲル粉砕エネルギー(J/g)={√3×電圧×電流×力率×モーター効率}/{1秒間にゲル粉砕機に投入される含水ゲルの質量} ・・・ 式(1)
 前記式(1)において、「力率」及び「モーター効率」は、ゲル粉砕装置の稼働条件等によって変化する装置固有の値であり、0以上、1以下までの値を示す。また、電圧の単位は「V」、電流の単位は「A」、含水ゲル状架橋重合体の質量の単位は「g/s」である。なお、前記ゲル粉砕装置が単相交流電力で駆動する場合、前記式(1)中の「√3」を「1」に変更することでゲル粉砕エネルギーが算出される。
 (b)含水率
 本実施例では「含水率」は、ERT430.2-02に記載された方法に準拠して測定した。
 なお、粉末状の吸水性樹脂の含水率については試料量を1g、乾燥温度を180℃に、造粒ゲル及び粒子状含水ゲルの含水率については試料量を2g、乾燥温度を180℃に、それぞれ変更して測定した。ブロック状の乾燥重合体は、様々な位置から5点サンプルを取得し、粒子径が5mm以下になるよう砕いてから、前記粉末状の吸水性樹脂と同様にして含水率を測定し、平均値を採用した。
 (c)含水ゲルの質量平均粒子径(D50)
 本実施例において含水ゲルの「質量平均粒子径(D50)」は以下の方法で測定した。
 先ず、固形分がα質量%である温度20℃以上、25℃以下の含水ゲル20gを、界面活性剤水溶液500gに添加し、分散液とした。なお、界面活性剤水溶液は、20質量%の塩化ナトリウム水溶液に界面活性剤(花王株式会社製:エマール20C)が0.08質量%となるように添加して作製した溶液である。また、容量約1.14Lのポリプロピレン製容器を使用した。
 続いて、前記分散液にスターラーチップ(長さ50mm×直径7mm)を入れ、300rpmで60分間攪拌した。
 攪拌終了後、回転盤の上に設置したJIS標準篩(直径21cm、篩の目開き:8mm/4mm/2mm/1mm/0.6mm/0.3mm/0.15mm/0.075mm)の中央部に、前記分散液を投入した。また、前記ポリプロピレン製容器内に残留した含水ゲルは、界面活性剤水溶液100gを用いて、全量を篩上に洗い出した。その後、界面活性剤水溶液6000gを、篩を手で回転(20rpm)させながら、篩の上部30cmの高さからシャワー(孔数:72個、液量:6.0L/min)を用いて注水範囲(50cm)が篩面全体となるように注いで、含水ゲルの分級を行った。
 続いて、各篩上に残留した含水ゲルについて2分間水切りした後に秤量した。この操作で得られた篩上に残留した含水ゲルの質量について、下記式(2)にしたがって、質量%割合を求めた。また、当該操作で用いたJIS標準篩の目開きを、下記式(3)にしたがって、固形分α質量%の含水ゲルを分級した時の目開きに換算した。式(2)及び式(3)から得られる含水ゲルの粒度分布を対数確率紙にプロットし、積算篩上%Rが50質量%に相当する粒子径を含水ゲルの質量平均粒子径(D50)とした。
 X(%)=(w/W)×100 ・・・ 式(2)
 R(α)(mm)=(20/W)1/3×r ・・・ 式(3)
 ここで、
 X:各篩上に残留した含水ゲルの水切り後の質量%(%)
 w:各篩上に残留した含水ゲルの水切り後の質量(g)
 W:各篩上に残留した含水ゲルの水切り後の質量の総和(g)
 R(α):固形分α質量%の含水ゲルを分級した時に換算した篩の目開き(mm)
 r:界面活性剤溶液で膨潤させた含水ゲルの分級に使用した篩の目開き(mm)
である。
 (d)造粒ゲルの一次粒子の質量平均粒子径(D50)
 本発明において含水ゲルの「質量平均粒子径(D50)」は、前記(c)含水ゲルの質量平均粒子径(D50)の測定方法において、含水ゲルの代わりに造粒ゲルを用いることにより行った。なお、本測定中に造粒ゲルの造粒が崩れてばらばらになるため、「一次粒子の」質量平均粒子径と称する。
 (e)造粒ゲルの流動性評価
 各実施例において微粉に水性液を添加して造粒して得られた造粒ゲル(100g)を造粒後直ちに円筒型プラスチック容器(内壁:フッ素樹脂コーティング、高さ:12cm、底面直径:8cm)に投入した。所定時間経過後、該容器投入口をバットで塞いで該容器を上下逆さまにして静置した後、円筒型プラスチック容器を上方向に引き上げて3分間放置した。その後、自重によりバット上に広がった造粒ゲルの最も長い幅を測定して凝集崩壊度(単位:cm)とし、該凝集崩壊度に基づいて造粒ゲルの流動性を評価した。
 (評価基準)
 凝集崩壊度:不良:10cm以下:ほぐしにくい
 凝集崩壊度:良 :11cm以上、15cm以下:ほぐしやすい
 凝集崩壊度:優良:16cm以上:かなりほぐしやすい
 [製造例1]
 (重合工程)
 アクリル酸、48.5質量%の水酸化ナトリウム水溶液、ポリエチレングリコールジアクリレート(PEGDA、平均分子量:523)及び脱イオン水を混合し、得られた混合液の温度を90℃に保った。続いて、当該混合液を攪拌しながら、3質量%の過硫酸ナトリウム(NaPS)水溶液を添加することで、単量体水溶液とした。当該単量体水溶液は、単量体濃度が43質量%、中和率が71モル%、PEGDA濃度が0.07モル%(対単量体)、NaPS濃度が0.05モル%(対単量体)であった。
 前記過硫酸ナトリウム水溶液の添加後直ぐに重合反応が開始し、3分後にはシート状の含水ゲル状架橋重合体(以下、「含水ゲル」という)が得られた。
 (ゲル粉砕工程)
 前記重合工程で得られたシート状の含水ゲルは、ミートチョッパーを用いてゲル粉砕された。なお、シート状の含水ゲルをミートチョッパーに投入する際、温度が80℃の温水を添加した。また、ミートチョッパーの排出口の先端には孔径が7.5mmの多孔板を設置した。製造例1におけるゲル粉砕でのゲル粉砕エネルギーは5J/gであり、ゲル粉砕後の含水ゲル(以下、「粒子状含水ゲル」という)(1)は、質量平均粒子径(D50)が1.7mmであり、含水率は53質量%であった。
 (乾燥工程)
 前記ゲル粉砕工程で得られた粒子状含水ゲル(1)は、目開き20メッシュの金網上に平均の厚みが5cmとなるように積層し、通気乾燥機(サタケ化学機械工業(株)製:品番 71-S6)を用いて乾燥した。乾燥条件は190℃の熱風を20分間通気させることで乾燥し、乾燥重合体とした。当該乾燥は問題なく終了し、乾燥重合体中に未乾燥物は見られなかった。乾燥重合体の含水率は5質量%であった。なお、本実施例で用いた通気乾燥機は、通気バンド乾燥機とはバッチ式と連続式の違い以外の乾燥挙動はほぼ同じであるため、本結果は通気バンド乾燥機にも適用できる。
 (粉砕工程、分級工程)
 前記乾燥工程で得られた乾燥重合体は、ロールミルで粉砕した後、目開きが850μm及び150μmの2種類の篩を用いて分級した。目開き850μmの篩上に残留した乾燥重合体は、その全量が目開き850μmの篩を通過するまで、粉砕及び分級を繰り返した。この操作によって、目開き150μmの篩上に残留した粉末上の表面架橋前の吸水性樹脂と、目開き150μmの篩を通過した微粉(A)を得た。
 (表面架橋工程、表面改質剤の添加工程)
 エチレンカーボネート0.3質量部、プロピレングリコール0.5質量部及び脱イオン水2.7質量部からなる表面架橋剤水溶液を作成した。前記表面架橋前の吸水性樹脂100質量部を攪拌しながら、当該表面架橋剤水溶液3.5質量部を噴霧して混合した。その後、得られた混合物を200℃で40分間、熱処理することで表面架橋をした。
 続いて、攪拌冷却しながら、27質量%の硫酸アルミニウム水溶液1質量部、60質量%の乳酸ナトリウム水溶液0.2質量部からなる添加剤水溶液を添加して、表面架橋後の吸水性樹脂(1)とした。
 (整粒工程)
 前記操作で得られた表面架橋後の吸水性樹脂(1)は、目開きが850μm及び150μmの2種類の篩を用いて分級した。目開き850μmの篩上に残留した凝集体状の吸水性樹脂は、その全量が目開き850μmの篩を通過するまで、凝集を解し、分級を繰り返した。この操作によって、目開き150μmの篩上に残留した吸水性樹脂(1)と、目開き150μmの篩を通過した微粉(B)を得た。
 吸水性樹脂(1)は無加圧下吸水倍率(CRC)が27g/g、0.7psiでの加圧下吸水倍率(AAP)が24g/g、生理食塩水流れ誘導性(SFC)が120×10-7×cm×s×g-1であった。
 [実施例1]
 (造粒工程)
 前記製造例1で得られた微粉(A)と微粉(B)とを17:3の割合で混合し、微粉(1)とした。微粉(1)の質量平均粒子径は91μmであった。
 前記微粉(1)60gを77℃に加熱した後、オーブンで80℃に加熱しておいたフードカッターで微粉(1)を攪拌しながら水性液として78℃の脱イオン水40gを5秒間で添加し、その後更に5秒間攪拌することで、造粒した。当該操作で得られた造粒物を造粒ゲル(1)とした。造粒ゲル(1)の含水率は40質量%であった。また造粒ゲル(1)の数平均粒子径は2.5mm、一次粒子の質量平均粒子径は138μmであった。
 (造粒ゲル添加工程)
 続いて、前記造粒ゲル(1)80gを、配管又はバケットコンベアを想定した前記(e)造粒ゲルの流動性評価に用いる円筒型プラスチック容器(直径:8cm)に入れて輸送し、前記微粉(1)と脱イオン水を混合し始めた時点、すなわち、造粒開始から2.5分経過後に(表中、「造粒開始からの経過時間」)、製造例1で得られた粒子状含水ゲル360gに加えた。その後すぐに、容器を80℃に加熱しておいたモルタルミキサー(西日本試験機社製)で10秒間混合した。得られた混合物(1)を混合ゲル(1)とした。
 なお、前記モルタルミキサーで混合する直前の造粒ゲル(1)及び粒子状含水ゲル(1)の温度は、それぞれ64℃、55℃であった。また、モルタルミキサーでの造粒ゲル(1)及び粒子状含水ゲル(1)の混合性は良好であった。
 (乾燥工程)
 その後、混合ゲル(1)を目開き20メッシュの金網上に積層し、製造例1と同じ通気乾燥機を用いて乾燥した。乾燥条件は熱風温度が190℃であり、乾燥時間は20分間であった。また、金網上の平均厚みは5cmであった。当該乾燥は問題なく終了し、乾燥重合体(1)中に未乾燥物はなかった。乾燥重合体(1)の含水率は5質量%であった。なお、この乾燥工程は製造例1の乾燥工程を模擬したものであり、製造例1と同一条件とした。
 前記乾燥工程で得られた乾燥重合体(1)について、製造例1の粉砕工程以降と同様の操作を行って吸水性樹脂を製造した。
 造粒ゲル(1)の流動性を評価した結果、凝集崩壊度は、12cmであった。なお、放置時間を3分から1分、及び、4分に変化させた場合の流動性を評価した結果、凝集崩壊度は、1分の場合15cm、4分の場合11cmであった。
 [比較例1]
 表1に記載した条件に変更した以外は実施例1と同様の造粒工程、造粒ゲル添加工程、乾燥工程を行ってそれぞれ造粒ゲル(1a)、混合ゲル(1a)、乾燥重合体(1a)を製造した。この例では特に造粒ゲル(1a)の造粒開始から粒子状含水ゲル(1)と混合するまでの経過時間が長かったため、放冷されて造粒ゲル(1a)の温度が低下していた。造粒ゲル(1a)と粒子状含水ゲル(1)をモルタルミキサーで混合したが、一部は造粒ゲル(1a)と粒子状含水ゲル(1)がくっついて凝集物を形成した。なお、該凝集物を調べたところ、造粒ゲル(1a)は硬い塊状であり、その周りに粒子状含水ゲル(1)がくっついて凝集していた。また乾燥工程において金網に混合ゲル(1a)を積層したとき、金網上のゲル層の平均厚みは4cmであったが、凝集物がある場所のゲル厚みは6cmであり、この状態でほぐすことはできなかった。この状態で乾燥させたが、得られた乾燥重合体(1a)には乾燥物と未乾燥物が混在していた。造粒ゲル(1a)の流動性を評価した結果、凝集崩壊度は、10cmであった。乾燥重合体(1a)の含水率は概ね5質量%であったが、含水率が20質量%以上の未乾燥物が複数存在していた。
 [実施例2]
 表1に記載した条件に変更して実施例1と同様の操作を行って造粒ゲル(2)を製造した。この例では特に造粒ゲル(2)の造粒開始から粒子状含水ゲル(1)と混合するまでの経過時間が長かったため、放冷されて造粒ゲル(2)の温度が低下していたが、粒子状含水ゲル(1)との混合前に造粒ゲル(2)から水分が蒸発しないようにして再加熱した。モルタルミキサーでの混合では造粒ゲル(2)は粒子状含水ゲル(1)と良好な混合性を示した。また乾燥工程において金網上のゲル層の平均厚みは5cmであった。乾燥は問題なく終了し、乾燥重合体(2)中に未乾燥物はなかった。乾燥重合体の含水率は概ね5質量%であった。造粒ゲル(2)の流動性を評価した結果、凝集崩壊度は、12cmであった。
 [比較例2]
 表1に記載した条件に変更した以外は実施例1と同様の操作を行って造粒ゲル(2a)を製造した。この例では特に混合時の粒子状含水ゲル(1)の温度を低くした。モルタルミキサーで造粒ゲル(2a)と粒子状含水ゲルを混合したが、混合途中で凝集して巨大なゲルの塊が形成され、モルタルミキサーが過負荷で停止したため混合を中止した。凝集したゲルの塊を手で直径約5cm程度に引きちぎって金網にゲル層の平均厚みが5cmとなるように載せて乾燥させたが、乾燥重合体(2a)には含水率が20質量%以上の未乾燥物が多数存在していた。
 [実施例3]
 水性液として界面活性剤水溶液を使用し、表1に記載の条件に変更して実施例1と同様に実施した。具体的には実施例1と同様にして得られた微粉(1)に、まず3秒で82℃の脱イオン水を28g添加し、続いて2秒で25℃の0.1質量%ポリオキシエチレンソルビタンモノステアラート(TWEEN60)水溶液12g、すなわち、微粉(1)に対し200ppmを添加した以外は実施例1と同様にして造粒ゲル(3)を製造した。得られた造粒ゲル(3)の粒子径及びその一次粒子径は、造粒ゲル(1)と同様の粒子径であり、また造粒ゲル(3)の含水率は40質量%であった。続いて、表1に記載の条件で実施例1と同様にして造粒ゲル添加工程を行って混合ゲル(3)を得た。この際、造粒ゲル(3)は造粒ゲル(1)よりも流動性が良好であり、またモルタルミキサーで混合した際、造粒ゲル(3)と粒子状含水ゲル(1)との混合性も良好であった。その後、混合ゲル(3)を実施例1と同様にして乾燥工程を行った。金網上のゲル層の平均厚みは5cmであった。乾燥は問題なく終了し、乾燥重合体(3)中に未乾燥物はなかった。乾燥重合体(3)の含水率は概ね5質量%であった。造粒ゲル(3)の流動性を評価した結果、凝集崩壊度は、16cmであった。
 [実施例4]
 水性液として界面活性剤水溶液を使用し、表1に記載の条件に変更して実施例1と同様に実施した。具体的には実施例1と同様にして得られた微粉(1)に、まず4秒で79℃の脱イオン水を28g添加し、続いて2秒で25℃の1質量%ラウリルジメチルアミノ酢酸ベタイン水溶液6g、すなわち、微粉(1)に対し1000ppmを添加した以外は実施例1と同様にして造粒ゲル(4)を製造した。得られた造粒ゲル(4)は、数平均粒子径が1mmで、造粒ゲル(1)と同様の一次粒子径であり、また造粒ゲル(4)の含水率は40質量%であった。続いて、表1に記載の条件で実施例1と同様にして造粒ゲル添加工程を行って混合ゲル(4)を得た。この際、造粒ゲル(4)は造粒ゲル(1)よりも流動性が良く、またモルタルミキサーで混合した際、造粒ゲル(4)と粒子状含水ゲル(1)との混合性も良好であった。また乾燥工程において金網上の平均ゲル厚みは5cmであった。乾燥は問題なく終了し、乾燥重合体(4)中に未乾燥物はなかった。乾燥重合体(4)の含水率は概ね5質量%であった。造粒ゲル(4)の流動性を評価した結果、凝集崩壊度は、19cmであった。
 [実施例5-1]
 実施例1において、粒子状含水ゲル(1)を更に細かくゲル粉砕した粒子状含水ゲル(2)に変更すると共に、表1に記載の条件に変更して実施例1と同様に実施した。粒子状含水ゲル(2)は製造例1の粒子状含水ゲルに温水を添加することなくダイス径7.5mmのミートチョッパーで再度ゲル粉砕して得られたものである。この際のゲル粉砕エネルギー(GGE 2回のゲル粉砕の合計)は35J/gである。粒子状含水ゲル(2)の質量平均粒子径(D50)は0.4mmであり、含水率は53質量%であった。表1に記載の条件で実施例1と同様にして造粒工程、及び造粒ゲル添加工程を行って混合ゲル(5)を得た。造粒ゲル(5)の一次粒子の質量平均粒子径は138μmであり、造粒ゲル(5)は造粒ゲル(1)よりも流動性が良好であった。また造粒ゲル添加工程においてモルタルミキサーで混合した際、造粒ゲル(5)と粒子状含水ゲル(2)との混合性も良好であった。その後、混合ゲル(5)を実施例1と同様にして乾燥工程を行った。金網上の平均ゲル厚みは6cmであった。乾燥は問題なく終了し、乾燥重合体(5-1)中に未乾燥物はなかった。乾燥重合体(5-1)の含水率は概ね4質量%であった。造粒ゲル(5)の流動性を評価した結果、凝集崩壊度は12cmであった。
 [実施例5-2]
 乾燥時間を15分間に短縮した以外は実施例5-1と同様にして乾燥重合体(5-2)を得た。乾燥重合体(5-2)中に未乾燥物はなかった。乾燥重合体(5-2)の含水率は概ね5質量%であった。
 [実施例6]
 表1に記載の条件に変更して実施例5-1と同様にして乾燥重合体(6)を製造した。その後、混合ゲル(6)を実施例5-1と同様にして乾燥工程を行った。金網上の平均ゲル厚みは6cmであった。乾燥は問題なく終了し、乾燥重合体(6)中に未乾燥物はなかった。乾燥重合体(6)の含水率は概ね4質量%であった。造粒ゲル(6)の流動性を評価した結果、凝集崩壊度は10cmであった。
 [製造例2]
 (重合工程、ゲル粉砕工程)
 シグマ型ブレードを2本有する内容積10リットルのジャケット付きステンレス製双腕型ニーダーに、単量体濃度38質量%、中和率75%のアクリル酸ナトリウム水溶液に5500gとポリエチレングリコールジアクリレート(平均分子量523)12.4gを投入し、内容物を30℃に調節しながら窒素を吹き込み十分脱気した。続いてブレードを回転させながら10質量%過硫酸ナトリウム水溶液28g、続いて0.1質量%L-アスコルビン酸24gを添加し、重合を開始させた。ジャケットの温度を調節したところ、重合開始から11分後に重合ピーク温度は90℃を示した。重合ピーク温度を示してから更に30分間ブレードを回転させてゲル粉砕し、質量平均粒子径(D50)が2.1mm、含水率が61質量%の粒子状含水ゲル(P2)を得た。
 (乾燥工程)
 前記ゲル粉砕工程で得られた粒子状含水ゲル(P2)は、目開き20メッシュの金網上に平均の厚みが4cmとなるように積層し、通気乾燥機(サタケ化学機械工業(株)製:品番 71-S6)を用いて乾燥した。乾燥条件は190℃の熱風を20分間通気させることで乾燥し、乾燥重合体(P2)とした。当該乾燥は問題なく終了し、乾燥重合体(P2)中に未乾燥物は見られなかった。乾燥重合体(P2)の含水率は5質量%であった。
 前記乾燥重合体(P2)を製造例1と同様にして粉砕工程、分級工程、表面架橋工程、表面改質剤の添加工程、整粒工程を行った。その結果、製造例1と同様のCRC、AAP、SFCを有する吸水性樹脂(P2)が得られた。また、分級工程では目開き150μmの篩を通過した微粉(A2)を、整粒工程では目開き150μmの篩を通過した微粉(B2)をそれぞれ得た。
 [実施例7]
 (造粒工程)
 前記製造例2で得られた微粉(A2)と微粉(B2)とを16:4の割合で混合し、微粉(7)とした。微粉(7)の質量平均粒子径は87μmであった。
 前記微粉(7)180gを79℃に加熱した後、オーブンで80℃に加熱しておいたフードカッターで微粉(7)を攪拌しながら水性液として81℃の脱イオン水120gを10秒間で添加し、その後更に5秒間攪拌することで、造粒した。当該操作で得られた造粒物を造粒ゲル(7)とした。造粒ゲル(7)の含水率は40質量%であった。また造粒ゲル(7)の数平均粒子径は1.8mm、一次粒子の質量平均粒子径は130μmであった。
 (造粒ゲル添加工程)
 続いて、前記造粒ゲル(7)280gを、配管又はバケットコンベアを想定した円筒型容器(直径:12cm)に入れて輸送し、前記微粉(7)と脱イオン水を混合し始めた時点、すなわち、造粒開始から2.5分経過後に(表中、「造粒開始からの経過時間」)、製造例2で得られた粒子状含水ゲル(P2)に加えた。その後すぐに前記ニーダーで5分間混合した。得られた混合物(7)を混合ゲル(7)とした。
 なお、前記ニーダーで混合する直前の造粒ゲル(7)及び粒子状含水ゲル(P2)の温度は、それぞれ62℃、63℃であった。また、造粒ゲル(7)及び粒子状含水ゲル(2A)の混合性は良好であった。造粒ゲル(7)の流動性を評価した結果、凝集崩壊度は12cmであった。
 (乾燥工程)
 その後、混合ゲル(7)を目開き20メッシュの金網上に積層し、製造例1と同じ通気乾燥機を用いて乾燥した。乾燥条件は熱風温度が190℃であり、乾燥時間は20分間であった。また、金網上の平均厚みは5cmであった。当該乾燥は問題なく終了し、乾燥重合体(7)中に未乾燥物はなかった。乾燥重合体(7)の含水率は5質量%であった。
 前記乾燥工程で得られた乾燥重合体(P2)について、製造例2の粉砕工程以降と同様の操作を行って吸水性樹脂(7)を製造した。
 [比較例3]
 表1に記載した条件に変更した以外は実施例7と同様の造粒工程、造粒ゲル添加工程、乾燥工程を行ってそれぞれ造粒ゲル(7A)、混合ゲル(7A)、乾燥重合体(7A)を製造した。この例では特に造粒ゲル(7A)の造粒開始からの粒子状含水ゲル(P2)と混合するまでの経過時間が長かったため、放冷されて、造粒ゲル(7A)の温度が低下していた。造粒ゲル(7A)と粒子状含水ゲル(P2)をモルタルミキサーで混合したが、一部は造粒ゲル(7A)と粒子状含水ゲル(P2)がくっついて凝集物を形成した。なお、該凝集物を調べたところ、造粒ゲル(7A)は硬い塊状であり、その周りに粒子状含水ゲル(P2)がくっついて凝集していた。また乾燥工程において金網に混合ゲル(7A)を積層したとき、金網上のゲル層の平均厚みは4cmであったが、凝集物がある場所のゲル厚みは7cmであり、この状態でほぐすことはできなかった。この状態で乾燥させたが、得られた乾燥重合体(7A)中に乾燥物と未乾燥物が混在していた。造粒ゲル(7A)の流動性を評価した結果、凝集崩壊度は、10cmであった。乾燥重合体(7A)の含水率は概ね5質量%であったが、含水率が20質量%以上の未乾燥物が複数存在していた。
Figure JPOXMLDOC01-appb-T000002
 [製造例3]
(重合工程)
 アクリル酸300質量部、48質量%水酸化ナトリウム水溶液100質量部、ポリエチレングリコールジアクリレート(平均n数9)0.61質量部、0.1質量%ジエチレントリアミン5酢酸3ナトリウム水溶液16.4質量部、脱イオン水273.2質量部からなる単量体水溶液を作成し、更に48質量%水酸化ナトリウム水溶液150.6質量部を連続的にラインミキシングした。尚、この時、中和熱によって単量体水溶液の液温は87℃まで上昇した。
 更に、4質量%過硫酸ナトリウム水溶液14.6質量部を連続的にラインミキシングした後、連続ベルト重合機に供給した。その後、重合(重合時間3分間)が連続的に行われ、帯状の含水ゲル(P3)を得た。得られた帯状の含水ゲル(P3)を重合ベルトの進行方向に対して幅方向に、切断長が300mmとなるように等間隔に連続して切断することで、短冊状の含水ゲル(P3)を得た。
 (ゲル粉砕工程)
 ミートチョッパーに、前記重合工程で得られた短冊状の含水ゲル(P3)と、3.1質量%ラウリルジメチルアミノ酢酸ベタイン水溶液とを、同時に供給しながらゲル粉砕した。ラウリルジメチルアミノ酢酸ベタイン水溶液の供給量は、含水ゲル(P3)の固形分に対して0.15質量%であった。得られた含水ゲルをもう1度前記ミートチョッパーでゲル粉砕した。2回の粉砕に要したゲル粉砕エネルギーは51J/gであった。得られた粒子状含水ゲル(P3)は、固形分率が44質量%(含水率が56質量%)、質量平均粒子径(D50)が170μmであった。
 (乾燥工程)
 前記粒子状含水ゲル(P3)を、撹拌乾燥機を用いて乾燥した。なお、この乾燥機は加熱管付き回転ドラム式乾燥機で、含水ゲルの投入口と乾燥重合体の排出口を有する円筒状の容器が回転し、容器の内部にある加熱管により粒子状含水ゲルを加熱乾燥することができる。まず、各加熱管に2.7MPa(温度228.1℃)の水蒸気を導入して、回転容器内部(接触温度計で規定)を予め200℃超に加熱した後、さらに回転容器の外壁も蒸気トレスで十分に加熱した。次いで、乾燥機に前記粒子状含水ゲル(P3)を供給し、フルード数Fr0.07となるように回転容器を回転させて、平均滞留時間50分で連続乾燥を行った。乾燥重合体(P3)は、固形分率98.5質量%であり、目開き2800μmの篩上に残留する粒子の割合が固形分換算で7.4質量%であった。
 乾燥機の排出口から排出された乾燥重合体(P3)を、冷風により、強制的に80℃以下に冷却した後、ロールミルで粉砕し、乾燥重合体粉砕物(P3)を得た。これを目開きが850μm及び180μmの2種類の篩を用いて分級した。この操作によって、目開きが850μmの篩を通過し目開き180μmの篩上に残留した粉末状の表面架橋前の吸水性樹脂と、目開き180μmの篩を通過した微粉(A3)を得た。微粉(A3)は、固形分率95.2質量%、質量平均粒子径(D50)102μmであった。
 [実施例8]
 攪拌羽根、解砕羽根、排出羽根及びノズルを備えた、内容積7L(攪拌部有効容積5L)の縦型回転円盤型混合機を用いて微粉造粒を行った。製造例3で得た微粉(A3)を、定量供給機(アキュレートInc製)を用いて、200kg/hrで縦型回転円盤型混合機に供給した。続いて、前記混合機の撹拌羽根を1060rpmで回転させて微粉(A3)を撹拌しながら、50℃の0.253質量%ラウリルジメチルアミノ酢酸ベタイン水溶液166kg/hr及び水蒸気(ゲージ圧0.6MPa、混合機内圧解放)15kg/hrを注入して、連続的に混合することにより造粒した。当該操作で得られた造粒ゲル(8)を(e)造粒ゲルの流動性評価に用いる円筒型プラスチック容器(直径:8cm)に入れて蓋をして保温保管し、採取後して60分経過してから次の実験に用いた。造粒ゲル(8)は、含水率50質量%であった。また造粒ゲル(8)の数平均粒子径は1.7mm、採取後60℃での凝集崩壊度は20cmであった。
 前記粒子状含水ゲル(P3)と造粒ゲル(8)を質量比85/15とし、スクリューフィーダーで混合しながら乾燥機に投入し、乾燥機内で混合した以外は製造例3と同様に乾燥した。粒子状含水ゲル(P3)と造粒ゲル(8)の温度はフィーダーに入れる直前でそれぞれ95℃及び60℃であった。得られた乾燥重合体(8)のうち目開き2800μmの篩上に残留する粒子の割合が固形分換算で12.1質量%であった。ロールミル粉砕に支障なかった。
 [製造例4]
 製造例3の撹拌乾燥機において、乾燥途中の粒子状含水ゲル(P3)に対して、エチレングリコールジグリシジルエーテル0.16質量%及び水2質量%を含む表面架橋剤溶液2.16質量%(粒子状含水ゲル(P3)の固形分基準)を噴霧添加した以外は、製造例3と同様に乾燥、冷却、粉砕して、表面架橋された乾燥重合体(P4)および乾燥重合体粉砕物(P4)を得た。さらにハイドロタルサイト(協和化学工業株式会社製の製品名「DHT-6」、MgAl(OH)16CO・4HO、体積平均粒子径0.5μm)を、100質量部の乾燥重合体粉砕物(P4)に対して0.3質量部添加し、製造例3と同様の分級を行うことで、粉末状の表面架橋された吸水性樹脂(P4)、及び、微粉(B4)を得た。表面架橋剤溶液添加時の粒子状含水ゲル(P3)は、含水率30質量%、温度110℃であった。表面架橋された乾燥重合体(P4)は、固形分率98.5質量%、目開き2800μmの篩上に残留する粒子の割合が固形分換算で7.5質量%であった。微粉(B4)は、固形分率95.4質量%、質量平均粒子径(D50)114μmであった。
 [実施例9]
 実施例8において、微粉(A3)を微粉(B4)に変更した以外は実施例8と同様に操作した。造粒ゲル(9)は、含水率50質量%、数平均粒子径は1.3mm、採取後60分での凝集崩壊度は22cmであった。造粒ゲルを採取後60分経過してから次の実験に用いた。粒子状含水ゲル(P3)と造粒ゲル(9)の温度はフィーダーに入れる直前でそれぞれ95℃及び60℃であった。得られた乾燥重合体(9)のうち目開き2800μmの篩上に残留する粒子の割合が固形分換算で4.8質量%であった。ロールミル粉砕に支障なかった。
 [実施例10]
 実施例9において、0.253質量%ラウリルジメチルアミノ酢酸ベタイン水溶液166kg/hrに替えて、1.38質量%ラウリルジメチルアミノ酢酸ベタイン水溶液69kg/hrを用いた以外は同様に操作した。得られた造粒ゲル(10)は、含水率30質量%、数平均粒子径は1.6mm、採取後60分での凝集崩壊度は20cmであった。造粒ゲルを採取後60分経過してから次の実験に用いた。粒子状含水ゲル(P3)と造粒ゲル(9)の温度は乾燥機に入る直前でそれぞれ95℃及び60℃であった。得られた乾燥重合体(10)のうち目開き2800μmの篩上に残留する粒子の割合が固形分換算で6.3質量%であった。ロールミル粉砕に支障なかった。
Figure JPOXMLDOC01-appb-T000003
 (まとめ)
 実施例1、2、7、比較例1~3から、混合直前の造粒ゲルと含水ゲルの温度を本発明の範囲に制御することにより、両者を良好に混合でき、その後乾燥して得られた乾燥重合体には未乾燥物が含まれていないことが分かる。
 実施例3、4から、凝集崩壊度の結果が示す様に微粉に加熱した水性液(温水)を添加し、更に界面活性剤水溶液を添加して造粒すると造粒ゲルの粒子径は実施例1の造粒ゲル(1)と同等でありながら、造粒ゲル(1)よりも高い流動性を有する造粒ゲルが得られる。
 実施例5-1、5-2、6から、含水ゲルを所定のゲル粉砕エネルギーで粉砕すると、含水ゲルが細かく粉砕されて粒状含水ゲルの表面積が増加するため、該粒状含水ゲルと造粒ゲルとの混合物を積層させて乾燥させた場合でも、混合物が密に積層されにくくなるので、通常の条件でゲル粉砕して得られた粒状含水ゲルと比べて極めて短時間で乾燥できる。更に、造粒ゲルと粒状含水ゲルの形状が似ているので、均一に乾燥されやすい。
 実施例8、9から、本発明は撹拌乾燥機での乾燥に適用できる。また、表面架橋工程後の微粉(B)を用いると表面架橋工程前の微粉(A)を用いるよりも、未乾物の原因となりやすい粒子径が2800μm以上の大きな粒子が減少することが分かる。
 実施例10から、本発明は造粒ゲルの含水率が30質量%という低い含水率(高い固形分)であっても適用できる。

Claims (13)

  1.  i)単量体水溶液を重合させて含水ゲル状架橋重合体を得る重合工程、
     ii)前記重合工程i)の途中に及び/又は後に、実施される含水ゲル状架橋重合体を粉砕するゲル粉砕工程、
     iii)前記ゲル粉砕工程ii)の後に含水ゲル状架橋重合体を乾燥する乾燥工程、
     iv)前記乾燥工程iii)の後に乾燥重合体を粉砕する粉砕工程、
     v)前記乾燥工程iii)の後に乾燥重合体から微粉を取り除く分級工程、
     vi)前記分級工程v)で取り除かれた微粉を前記乾燥工程iii)以前にリサイクルする微粉リサイクル工程、を含む吸水性樹脂の製造方法であって、
     前記微粉リサイクル工程vi)において、
     vi-1)前記取り除かれた微粉と水性液を混合して造粒ゲルを得る造粒工程、
     vi-2)前記乾燥工程iii)で乾燥完了するまでの前記工程i)~iii)の少なくとも1つの工程及び/又は工程間で、含水ゲル状架橋重合体に、前記造粒ゲルを添加する造粒ゲル添加工程、
     vi-3)前記造粒ゲル添加工程vi-2)から乾燥工程iii)で乾燥完了するまでの少なくとも1つの工程及び/又は工程間で、含水ゲル状架橋重合体と前記添加した造粒ゲルを機械的混合するゲル混合工程、
    を含み、
     前記造粒ゲル添加工程vi-2)において、
     前記造粒ゲルの固形分が50質量%以上、90質量%以下であり、
     前記造粒ゲルの温度、及び前記含水ゲル状架橋重合体の温度が50℃以上、100℃以下である、吸水性樹脂の製造方法。
  2.  i)単量体水溶液を重合させて含水ゲル状架橋重合体を得る重合工程、
     ii)前記重合工程i)の途中に及び/又は後に、実施される含水ゲル状架橋重合体を粉砕するゲル粉砕工程、
     iii)前記ゲル粉砕工程ii)後に含水ゲル状架橋重合体を乾燥する乾燥工程、
     iv)前記乾燥工程iii)後に乾燥重合体を粉砕する粉砕工程、
     v)前記乾燥工程iii)後に乾燥重合体から微粉を取り除く分級工程、
     vi)前記分級工程v)で取り除かれた微粉を前記乾燥工程iii)以前にリサイクルする微粉リサイクル工程、を含む吸水性樹脂の製造方法であって、
     前記微粉リサイクル工程vi)において、
     vi-1)前記取り除かれた微粉と水性液を混合して造粒ゲルを得る造粒工程、
     vi-2)前記ゲル粉砕工程ii)終了後から乾燥工程iii)で乾燥完了するまでの少なくとも1つの工程及び/又は工程間で、含水ゲル状架橋重合体に、前記造粒ゲルを添加する造粒ゲル添加工程、
    を含み、
     前記造粒ゲル添加工程vi-2)において、
     前記造粒ゲルの固形分が50質量%以上、90質量%以下であり、
     前記ゲル粉砕工程ii)において、ゲル粉砕エネルギー(GGE)が20J/g以上、100J/g以下である、
    吸水性樹脂の製造方法。
  3.  前記ゲル粉砕工程ii)後の含水ゲル状架橋重合体の質量平均粒子径が0.1mm以上、1.0mm以下である、請求項2に記載の製造方法。
  4.  前記造粒ゲル添加工程vi-2)において、前記造粒ゲルの固形分が55質量%以上、85質量%以下である、請求項1~3の何れか1項に記載の製造方法。
  5.  前記分級工程v)で微粉が取り除かれた吸水性樹脂を表面架橋する表面架橋工程vii)と、該表面架橋工程vii)後に吸水性樹脂から微粉を取り除く整粒工程viii)とを更に含み、
     前記分級工程v)から取り除かれた前記微粉と前記整粒工程viii)から取り除かれた前記微粉とを、混合比率(質量比)99:1~50:50で混合した混合物を前記微粉リサイクル工程vi)で前記水性液と混合する前記微粉として使用する、請求項1~4の何れか1項に記載の製造方法。
  6.  前記機械的混合が、前記乾燥工程iii)前又は前記乾燥工程iii)で乾燥完了までにおいて行われる首ふりベルト式フィーダー又は回転攪拌による混合である、請求項1、4、5の何れか1項に記載の製造方法。
  7.  前記乾燥工程iii)が攪拌乾燥機で行われる、請求項1~6の何れか1項に記載の製造方法。
  8.  前記乾燥工程iii)が通気バンド式乾燥機で行われ、
     通気バンド上の平均ゲル厚みが3cm以上でゲル厚み変化率が1.05以上、3以下である、請求項1~6の何れか1項に記載の製造方法。
  9.  前記造粒工程vi-1)と造粒ゲル添加工程vi-2)の間において、前記造粒ゲルの雰囲気の露点が50℃以上である、請求項1~8の何れか1項に記載の製造方法。
  10.  前記造粒工程vi-1)において、微粉と水性液の混合開始から前記造粒ゲル添加工程vi-2)において前記含水ゲル状架橋重合体に造粒ゲルを添加するまでの時間が5分以内である、請求項1~9の何れか1項に記載の製造方法。
  11.  前記重合工程i)、前記ゲル粉砕工程ii)、前記乾燥工程iii)、前記粉砕工程iv)、前記分級工程v)から選ばれる1の工程より前、途中又は後に、界面活性剤を添加し、及び/又は、前記造粒工程vi-1)において、水性液に界面活性剤を含有させ、前記微粉と前記水性液とを混合して得られた造粒ゲルから0.9質量%塩化ナトリウム水溶液で抽出した抽出液の表面張力が65mN/m以上である、請求項1~10の何れか1項に記載の製造方法。
  12.  前記造粒工程vi-1)において、水性液が複数回添加されると共に、1回目に添加された水性液と前記微粉とを混合して得られた造粒ゲルから0.9質量%塩化ナトリウム水溶液で抽出した抽出液の表面張力が70mN/m以上であり、2回目以降に添加される水性液のうち、少なくとも1回は界面活性剤を含有していると共に、該界面活性剤を含有する水性液を添加して得られた造粒ゲルから0.9質量%塩化ナトリウム水溶液で抽出した抽出液の表面張力が60mN/m以上である、請求項1~11の何れか1項に記載の製造方法。
  13.  前記造粒ゲル添加工程vi-2)において、前記造粒ゲルの一次粒子の質量平均粒子径に対する、前記ゲル粉砕工程ii)後の含水ゲル状架橋重合体の質量平均粒子径は、1倍以上、10倍以下である、請求項2又は3に記載の製造方法。
PCT/JP2019/019517 2018-05-16 2019-05-16 吸水性樹脂の製造方法 WO2019221235A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207035703A KR102589018B1 (ko) 2018-05-16 2019-05-16 흡수성 수지의 제조 방법
JP2020519919A JP6931744B2 (ja) 2018-05-16 2019-05-16 吸水性樹脂の製造方法
EP19802522.3A EP3795613A4 (en) 2018-05-16 2019-05-16 METHOD FOR PRODUCING A WATER-ABSORBENT RESIN
US17/055,174 US11970585B2 (en) 2018-05-16 2019-05-16 Method for producing water-absorbent resin
CN201980032510.8A CN112119112B (zh) 2018-05-16 2019-05-16 吸水性树脂的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-094788 2018-05-16
JP2018094788 2018-05-16
JP2018210731 2018-11-08
JP2018-210731 2018-11-08

Publications (1)

Publication Number Publication Date
WO2019221235A1 true WO2019221235A1 (ja) 2019-11-21

Family

ID=68539686

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/019517 WO2019221235A1 (ja) 2018-05-16 2019-05-16 吸水性樹脂の製造方法
PCT/JP2019/019518 WO2019221236A1 (ja) 2018-05-16 2019-05-16 吸水性樹脂粉末、及びその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019518 WO2019221236A1 (ja) 2018-05-16 2019-05-16 吸水性樹脂粉末、及びその製造方法

Country Status (6)

Country Link
US (2) US11970585B2 (ja)
EP (2) EP3795613A4 (ja)
JP (2) JP7083020B2 (ja)
KR (2) KR102590297B1 (ja)
CN (2) CN112119114A (ja)
WO (2) WO2019221235A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246243A1 (ja) * 2020-06-04 2021-12-09 住友精化株式会社 架橋重合体粒子の製造方法、及び、吸水性樹脂粒子の製造方法
WO2021246244A1 (ja) * 2020-06-01 2021-12-09 住友精化株式会社 吸水性樹脂粒子を製造する方法
WO2022024787A1 (ja) * 2020-07-28 2022-02-03 住友精化株式会社 吸水性樹脂粒子の製造方法
WO2022071503A1 (ja) * 2020-10-02 2022-04-07 住友精化株式会社 架橋重合体粒子を製造する方法
WO2022075289A1 (ja) * 2020-10-06 2022-04-14 住友精化株式会社 吸水性樹脂粒子の製造方法
WO2022075256A1 (ja) * 2020-10-06 2022-04-14 住友精化株式会社 吸水性樹脂粒子の製造方法
JP7058787B1 (ja) 2021-05-12 2022-04-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
WO2022128619A1 (de) 2020-12-16 2022-06-23 Basf Se Verfahren zur herstellung von superabsorberpartikeln
KR20220123443A (ko) 2020-01-06 2022-09-06 가부시키가이샤 닛폰 쇼쿠바이 흡수체, 흡수성 수지 및 흡수성 물품
EP4105242A4 (en) * 2020-02-14 2024-07-10 Nippon Shokubai Co., Ltd. WATER ABSORBING RESIN AND METHOD FOR ITS PRODUCTION
JP7652514B2 (ja) 2021-12-24 2025-03-27 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112021017241A2 (pt) * 2019-12-20 2022-06-21 Lg Chemical Ltd Composição de polímero superabsorvente
WO2021125871A1 (ko) 2019-12-20 2021-06-24 주식회사 엘지화학 고흡수성 수지 조성물의 제조 방법
EP3943539B1 (en) 2019-12-20 2024-03-13 Lg Chem, Ltd. Preparation method of super absorbent polymer composition
WO2021150095A1 (ko) 2020-01-20 2021-07-29 주식회사 엘지화학 고흡수성 수지의 제조 방법
WO2021158910A1 (en) * 2020-02-07 2021-08-12 Healthall Laboratory, Inc. Superabsorbent material and methods of making the same
JP7551218B2 (ja) 2021-06-18 2024-09-17 エルジー・ケム・リミテッド 高吸水性樹脂の含水ゲル微粒化装置
WO2024009541A1 (ja) * 2022-07-07 2024-01-11 Sdpグローバル株式会社 吸水性樹脂組成物の製造方法
WO2024126174A1 (de) * 2022-12-14 2024-06-20 Basf Se Verfahren zur herstellung von superabsorbern

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105448A (ja) 1982-12-08 1984-06-18 アンネ株式会社 吸収性物品
JPS60158861A (ja) 1984-01-31 1985-08-20 株式会社日本触媒 吸水剤
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
JPH0241155A (ja) 1988-07-29 1990-02-09 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収性物品
JPH03152104A (ja) 1989-09-15 1991-06-28 Dow Chem Co:The 水性流体吸収性微粒子の再循環方法および装置
JPH0441532A (ja) 1990-05-31 1992-02-12 Nalco Chem Co 超吸収性ポリマー微粉の再生法
JPH04227934A (ja) 1990-05-31 1992-08-18 Hoechst Celanese Corp 微粒状超吸収剤粒子の大粒子化方法
JPH1160975A (ja) 1997-04-14 1999-03-05 Nippon Shokubai Co Ltd 耐圧性吸水性樹脂とそれを用いた紙おむつ並びに吸水性樹脂とその製法
JPH11106514A (ja) 1997-06-18 1999-04-20 Nippon Shokubai Co Ltd 吸水性樹脂造粒物の製造方法
JPH11140194A (ja) 1997-06-23 1999-05-25 Nippon Shokubai Co Ltd 吸水性樹脂組成物およびその製造方法
JPH11241030A (ja) 1998-02-24 1999-09-07 Nippon Shokubai Co Ltd 吸水剤組成物及びそれを用いた吸収性物品
JPH11240959A (ja) 1998-02-24 1999-09-07 Nippon Shokubai Co Ltd 吸水性ポリマー組成物およびその製法
JPH11254429A (ja) 1998-01-09 1999-09-21 Nippon Shokubai Co Ltd 粉体の連続造粒方法
US6228930B1 (en) * 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
JP2005036100A (ja) 2003-07-14 2005-02-10 Nippon Shokubai Co Ltd 吸水性樹脂を製造する方法
JP2005054151A (ja) 2003-08-07 2005-03-03 Nippon Shokubai Co Ltd 粒子状吸水性樹脂の製法
JP2005097519A (ja) 2003-03-10 2005-04-14 Nippon Shokubai Co Ltd 吸水性樹脂組成物およびその製造方法
US6906159B2 (en) 2000-08-03 2005-06-14 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
WO2006098271A1 (ja) 2005-03-14 2006-09-21 Nippon Shokubai Co., Ltd. 吸水剤およびその製造方法
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
JP2006299234A (ja) 2005-02-15 2006-11-02 Nippon Shokubai Co Ltd 吸水性樹脂及びその製造方法
WO2007004529A1 (ja) 2005-07-04 2007-01-11 Sumitomo Seika Chemicals Co., Ltd. 吸水性樹脂の製造方法
US7183456B2 (en) 2000-09-20 2007-02-27 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
WO2009016055A2 (en) 2007-07-27 2009-02-05 Basf Se Water-absorbing polymeric particles and method for the production thereof
JP2009509722A (ja) 2005-09-30 2009-03-12 株式会社日本触媒 吸水性樹脂を主成分として含む吸水剤およびその製造方法
WO2009113679A1 (ja) * 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
JP2010538095A (ja) 2007-09-07 2010-12-09 株式会社日本触媒 吸水性樹脂の結着方法
WO2011025013A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
JP2011074401A (ja) 2003-09-19 2011-04-14 Nippon Shokubai Co Ltd 表面処理された吸水性樹脂およびその製造方法
WO2011111657A1 (ja) 2010-03-08 2011-09-15 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
WO2011136301A1 (ja) * 2010-04-27 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2012023433A1 (ja) 2010-08-19 2012-02-23 住友精化株式会社 吸水性樹脂
JP2013076073A (ja) 2011-09-14 2013-04-25 Nippon Shokubai Co Ltd ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP2013523924A (ja) * 2010-03-30 2013-06-17 エボニック デグサ ゲーエムベーハー 超吸収性ポリマーの製造方法
JP2013213083A (ja) 2012-03-30 2013-10-17 Kao Corp 改質吸水性樹脂粒子
EP2787025A1 (en) 2012-11-15 2014-10-08 LG Chem, Ltd. Method for preparing super absorbent resin, and super absorbent resin prepared by same
EP2957576A1 (en) 2013-09-17 2015-12-23 LG Chem, Ltd. Superabsorbent resin preparation method
JP2016033224A (ja) * 2005-02-15 2016-03-10 株式会社日本触媒 吸水剤、吸収性物品及び吸水剤の製造方法
JP2017101242A (ja) * 2013-08-28 2017-06-08 株式会社日本触媒 吸水性樹脂粉末
US20170166707A1 (en) 2015-06-09 2017-06-15 Lg Chem, Ltd. Method for preparing superabsorbent resin comprising fine powder re-assembled body of superabsorbent resin, and superabsorbent resin prepared thereby
JP2018094788A (ja) 2016-12-13 2018-06-21 セイコーエプソン株式会社 印刷装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01130045A (ja) 1987-11-13 1989-05-23 Nippon Carbureter Co Ltd 気化器の補助燃料供給装置
US5342599A (en) 1990-09-14 1994-08-30 Cummins Power Generation, Inc. Surface stabilized sources of isocyanic acid
JP3970818B2 (ja) * 1994-10-26 2007-09-05 株式会社日本触媒 吸水性樹脂の造粒粒子およびこれを含む吸収性物品ならびに吸水性樹脂の造粒粒子の製造方法
TW473485B (en) * 1997-12-10 2002-01-21 Nippon Catalytic Chem Ind The production process of a water-absorbent resin
JP4380873B2 (ja) 1999-02-15 2009-12-09 株式会社日本触媒 吸水性樹脂粉末およびその用途
US6562879B1 (en) 1999-02-15 2003-05-13 Nippon Shokubai Co., Ltd. Water-absorbent resin powder and its production process and use
DE60112630T3 (de) 2000-02-29 2016-03-03 Nippon Shokubai Co., Ltd. Verfaren zur Herstellung eines wasserabsorbierenden Harzpulvers
JP4087682B2 (ja) 2002-11-07 2008-05-21 株式会社日本触媒 吸水性樹脂の製造方法および製造装置
CN101981090B (zh) * 2008-03-28 2013-03-13 株式会社日本触媒 吸水性树脂的制造方法
US8436090B2 (en) 2008-09-16 2013-05-07 Nippon Shokubai Co., Ltd. Production method and method for enhancing liquid permeability of water-absorbing resin
US9624322B2 (en) * 2010-03-17 2017-04-18 Nippon Shukubai Co., Ltd. Method of producing water absorbent resin
US8791230B2 (en) 2010-06-08 2014-07-29 Nippon Shokubai Co., Ltd. Method for producing particulate water absorbent resin
US9873104B2 (en) * 2014-03-03 2018-01-23 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water-absorbing resin
KR102388047B1 (ko) 2014-04-25 2022-04-19 가부시키가이샤 닛폰 쇼쿠바이 폴리아크릴산(염)계 흡수성 수지의 제조 방법
KR20160041825A (ko) * 2014-10-08 2016-04-18 주식회사 엘지화학 고흡수성 수지 조립체의 제조 방법
US9975979B2 (en) * 2014-10-08 2018-05-22 Lg Chem, Ltd. Method of preparing superabsorbent polymer
CN118005961A (zh) * 2015-06-19 2024-05-10 株式会社日本触媒 聚(甲基)丙烯酸(盐)系颗粒状吸水剂及制造方法
KR101949994B1 (ko) * 2015-10-14 2019-02-19 주식회사 엘지화학 고흡수성 수지 조립체 및 이의 제조 방법
KR102069830B1 (ko) 2016-02-03 2020-01-23 주식회사 엘지화학 초흡수성 응집체를 제조하는 방법
EP3473664B1 (en) * 2016-06-20 2023-02-22 Nippon Shokubai Co., Ltd. Method for producing water absorbent agent
EP3543280A4 (en) * 2016-11-16 2020-09-02 Nippon Shokubai Co., Ltd. MANUFACTURING METHOD FOR WATER-ABSORBING RESIN POWDER AND APPARATUS FOR MANUFACTURING THEREOF
KR102787025B1 (ko) 2022-08-30 2025-03-25 삼성에스디아이 주식회사 감광성 수지 조성물, 이를 이용하여 제조된 감광성 수지막 및 컬러필터

Patent Citations (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105448A (ja) 1982-12-08 1984-06-18 アンネ株式会社 吸収性物品
JPS60158861A (ja) 1984-01-31 1985-08-20 株式会社日本触媒 吸水剤
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
JPH0241155A (ja) 1988-07-29 1990-02-09 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収性物品
JPH03152104A (ja) 1989-09-15 1991-06-28 Dow Chem Co:The 水性流体吸収性微粒子の再循環方法および装置
JPH0441532A (ja) 1990-05-31 1992-02-12 Nalco Chem Co 超吸収性ポリマー微粉の再生法
JPH04227934A (ja) 1990-05-31 1992-08-18 Hoechst Celanese Corp 微粒状超吸収剤粒子の大粒子化方法
JPH1160975A (ja) 1997-04-14 1999-03-05 Nippon Shokubai Co Ltd 耐圧性吸水性樹脂とそれを用いた紙おむつ並びに吸水性樹脂とその製法
JPH11106514A (ja) 1997-06-18 1999-04-20 Nippon Shokubai Co Ltd 吸水性樹脂造粒物の製造方法
US6228930B1 (en) * 1997-06-18 2001-05-08 Nippon Shokubai Co., Ltd. Water-absorbent resin granule-containing composition and production process for water-absorbent resin granule
JPH11140194A (ja) 1997-06-23 1999-05-25 Nippon Shokubai Co Ltd 吸水性樹脂組成物およびその製造方法
JPH11254429A (ja) 1998-01-09 1999-09-21 Nippon Shokubai Co Ltd 粉体の連続造粒方法
JPH11241030A (ja) 1998-02-24 1999-09-07 Nippon Shokubai Co Ltd 吸水剤組成物及びそれを用いた吸収性物品
JPH11240959A (ja) 1998-02-24 1999-09-07 Nippon Shokubai Co Ltd 吸水性ポリマー組成物およびその製法
US7741400B2 (en) 2000-08-03 2010-06-22 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US6906159B2 (en) 2000-08-03 2005-06-14 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US7091253B2 (en) 2000-08-03 2006-08-15 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US8519212B2 (en) 2000-08-03 2013-08-27 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US7183456B2 (en) 2000-09-20 2007-02-27 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US7098284B2 (en) 2001-01-26 2006-08-29 Nippon Shokubal Co., Ltd Water-absorbing agent and production process therefor, and water-absorbent structure
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
JP2005097519A (ja) 2003-03-10 2005-04-14 Nippon Shokubai Co Ltd 吸水性樹脂組成物およびその製造方法
JP2005036100A (ja) 2003-07-14 2005-02-10 Nippon Shokubai Co Ltd 吸水性樹脂を製造する方法
JP2005054151A (ja) 2003-08-07 2005-03-03 Nippon Shokubai Co Ltd 粒子状吸水性樹脂の製法
JP2011074401A (ja) 2003-09-19 2011-04-14 Nippon Shokubai Co Ltd 表面処理された吸水性樹脂およびその製造方法
JP2006299234A (ja) 2005-02-15 2006-11-02 Nippon Shokubai Co Ltd 吸水性樹脂及びその製造方法
JP2016033224A (ja) * 2005-02-15 2016-03-10 株式会社日本触媒 吸水剤、吸収性物品及び吸水剤の製造方法
WO2006098271A1 (ja) 2005-03-14 2006-09-21 Nippon Shokubai Co., Ltd. 吸水剤およびその製造方法
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
WO2007004529A1 (ja) 2005-07-04 2007-01-11 Sumitomo Seika Chemicals Co., Ltd. 吸水性樹脂の製造方法
JP2009509722A (ja) 2005-09-30 2009-03-12 株式会社日本触媒 吸水性樹脂を主成分として含む吸水剤およびその製造方法
WO2009016055A2 (en) 2007-07-27 2009-02-05 Basf Se Water-absorbing polymeric particles and method for the production thereof
JP2010538095A (ja) 2007-09-07 2010-12-09 株式会社日本触媒 吸水性樹脂の結着方法
WO2009113679A1 (ja) * 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2011025013A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011025012A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011111657A1 (ja) 2010-03-08 2011-09-15 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
JP2013523924A (ja) * 2010-03-30 2013-06-17 エボニック デグサ ゲーエムベーハー 超吸収性ポリマーの製造方法
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
WO2011136301A1 (ja) * 2010-04-27 2011-11-03 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2012023433A1 (ja) 2010-08-19 2012-02-23 住友精化株式会社 吸水性樹脂
JP2013076073A (ja) 2011-09-14 2013-04-25 Nippon Shokubai Co Ltd ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP2013213083A (ja) 2012-03-30 2013-10-17 Kao Corp 改質吸水性樹脂粒子
EP2787025A1 (en) 2012-11-15 2014-10-08 LG Chem, Ltd. Method for preparing super absorbent resin, and super absorbent resin prepared by same
JP2017101242A (ja) * 2013-08-28 2017-06-08 株式会社日本触媒 吸水性樹脂粉末
EP2957576A1 (en) 2013-09-17 2015-12-23 LG Chem, Ltd. Superabsorbent resin preparation method
US20170166707A1 (en) 2015-06-09 2017-06-15 Lg Chem, Ltd. Method for preparing superabsorbent resin comprising fine powder re-assembled body of superabsorbent resin, and superabsorbent resin prepared thereby
JP2018094788A (ja) 2016-12-13 2018-06-21 セイコーエプソン株式会社 印刷装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Testing method for water absorption rate of water-absorbent resins", JIS K, vol. 7224, 1996

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220123443A (ko) 2020-01-06 2022-09-06 가부시키가이샤 닛폰 쇼쿠바이 흡수체, 흡수성 수지 및 흡수성 물품
EP4105242A4 (en) * 2020-02-14 2024-07-10 Nippon Shokubai Co., Ltd. WATER ABSORBING RESIN AND METHOD FOR ITS PRODUCTION
US12337295B2 (en) 2020-02-14 2025-06-24 Nippon Shokubai Co., Ltd. Water-absorbing resin and manufacturing method for same
WO2021246244A1 (ja) * 2020-06-01 2021-12-09 住友精化株式会社 吸水性樹脂粒子を製造する方法
WO2021246243A1 (ja) * 2020-06-04 2021-12-09 住友精化株式会社 架橋重合体粒子の製造方法、及び、吸水性樹脂粒子の製造方法
WO2022024787A1 (ja) * 2020-07-28 2022-02-03 住友精化株式会社 吸水性樹脂粒子の製造方法
WO2022071503A1 (ja) * 2020-10-02 2022-04-07 住友精化株式会社 架橋重合体粒子を製造する方法
WO2022075289A1 (ja) * 2020-10-06 2022-04-14 住友精化株式会社 吸水性樹脂粒子の製造方法
WO2022075256A1 (ja) * 2020-10-06 2022-04-14 住友精化株式会社 吸水性樹脂粒子の製造方法
WO2022128619A1 (de) 2020-12-16 2022-06-23 Basf Se Verfahren zur herstellung von superabsorberpartikeln
JP7058787B1 (ja) 2021-05-12 2022-04-22 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
JP2022175091A (ja) * 2021-05-12 2022-11-25 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
JP7652514B2 (ja) 2021-12-24 2025-03-27 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法

Also Published As

Publication number Publication date
US12187860B2 (en) 2025-01-07
US20210115198A1 (en) 2021-04-22
CN112119112B (zh) 2024-02-27
EP3795614A1 (en) 2021-03-24
JP7083020B2 (ja) 2022-06-09
KR102590297B1 (ko) 2023-10-18
CN112119112A (zh) 2020-12-22
KR20210010504A (ko) 2021-01-27
WO2019221236A1 (ja) 2019-11-21
KR20210010503A (ko) 2021-01-27
JPWO2019221235A1 (ja) 2021-03-18
KR102589018B1 (ko) 2023-10-16
JPWO2019221236A1 (ja) 2021-04-08
EP3795613A4 (en) 2022-03-23
EP3795614A4 (en) 2022-03-02
JP6931744B2 (ja) 2021-09-08
US20210147637A1 (en) 2021-05-20
EP3795613A1 (en) 2021-03-24
US11970585B2 (en) 2024-04-30
CN112119114A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
JP6931744B2 (ja) 吸水性樹脂の製造方法
JP6913107B2 (ja) 吸水性樹脂粉末の製造方法及びその製造装置
US11535689B2 (en) Poly (meth) acrylic acid (salt)-based particulate water-absorbing agent and production method therefor
JP5631866B2 (ja) 粒子状吸水性樹脂の製造方法
JP4141526B2 (ja) 吸水性樹脂の製造方法
JP5635397B2 (ja) 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
JP5718817B2 (ja) 吸水性樹脂粉末の製造方法
WO2019221154A1 (ja) 吸水性樹脂粒子の製造方法
JP4640923B2 (ja) 粒子状吸水性樹脂組成物の製造方法
US10307506B2 (en) Process for producing water-absorbing resin
JP5605855B2 (ja) 吸水性樹脂粉末の製造方法
JPH11349687A (ja) 粒子状含水ゲル状重合体および吸水性樹脂の製造方法
KR101967807B1 (ko) 파쇄 저항성 고흡수성 수지 및 그 제조 방법
JP2005081204A (ja) 吸水性樹脂組成物の製造方法
KR20210041070A (ko) 흡수성 수지 분말의 제조 방법 및 흡수성 수지 분말
JP7337823B2 (ja) 超吸収体粒子を製造する方法
WO2025058084A1 (ja) 吸水性樹脂および吸水性樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19802522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035703

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019802522

Country of ref document: EP

Effective date: 20201216