WO2019202760A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2019202760A1
WO2019202760A1 PCT/JP2018/040887 JP2018040887W WO2019202760A1 WO 2019202760 A1 WO2019202760 A1 WO 2019202760A1 JP 2018040887 W JP2018040887 W JP 2018040887W WO 2019202760 A1 WO2019202760 A1 WO 2019202760A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
conductive plate
wiring
drain
source
Prior art date
Application number
PCT/JP2018/040887
Other languages
English (en)
French (fr)
Inventor
晃久 生田
浩司 桜井
悟 金井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019525022A priority Critical patent/JP7129408B2/ja
Priority to CN201880011097.2A priority patent/CN110612598B/zh
Priority to US16/529,564 priority patent/US10847610B2/en
Publication of WO2019202760A1 publication Critical patent/WO2019202760A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L29/78624Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile the source and the drain regions being asymmetrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • This disclosure relates to a semiconductor device with a high breakdown voltage.
  • Patent Document 1 discloses a technique for alleviating electric field concentration in a semiconductor caused by a conductive film laid on a semiconductor surface.
  • Patent Document 2 the semiconductor region under the conductive layer is affected by the electric field from the conductive layer extending across the end of the semiconductor region above the semiconductor region formed by separating the pn junction on the semiconductor substrate.
  • An electric field concentration preventing structure for preventing electric field concentration from occurring at the end is disclosed.
  • the high voltage wiring means a higher voltage among the wiring connected to the source and the wiring connected to the drain in a semiconductor device, for example, a high voltage MOS transistor.
  • an object of the present disclosure is to provide a high-voltage semiconductor device that can reduce a withstand voltage drop that may occur when the width of the high-voltage wiring is expanded.
  • a first semiconductor device includes a semiconductor layer formed on an upper portion of one main surface side of a support substrate, a body region of a first conductivity type formed on the semiconductor layer, A drain region of a second conductivity type formed on the semiconductor layer and spaced from the body region, a source region of a second conductivity type formed on the surface of the body region, and the semiconductor layer in the semiconductor layer A drift region of a second conductivity type formed between a drain region and the body region, and formed to overlap the drift region between the body region and the drain region on the surface of the semiconductor layer A first insulator region; a gate insulating film formed from a part on the body region on the surface of the semiconductor layer to an end portion of the first insulator region; the gate insulating film; Insulation A gate electrode formed over the region, and at least one first conductive plate formed between the gate electrode and the drain region on the first insulator region and in an electrically floating state A second insulator region formed on the first insulator region, the gate electrode, and
  • At least one second conductive plate in an electrically floating state formed above where the first conductive plate is not formed, on the second insulator region, on the gate electrode, and on the gate electrode A third insulator region formed on the second conductive plate; a source wiring formed on the third insulator region and electrically connected to the source region; and the third insulation.
  • Body A drain wiring formed on the drain region and electrically connected to the drain region; and in plan view, the source region and the drain region extend along a longitudinal direction in which the opposing length is the longest direction.
  • the first conductive plate and the second conductive plate are arranged along the longitudinal direction in a plan view, and arranged in a short direction which is a direction orthogonal to the longitudinal direction.
  • a linear region extending oppositely and a curved region connecting the end of the linear region in the longitudinal direction in a polygonal line or an arc shape, and when viewed from above, the high voltage of either the source wiring or the drain wiring
  • the wiring extends in a short direction so as to intersect the straight regions of the first conductive plate and the second conductive plate, and the source wiring and the drain
  • the other low voltage wiring of the wiring extends in the short direction so as to intersect with at least one linear region of the first conductive plate and the second conductive plate.
  • a buried insulating film may be formed between the support substrate and the semiconductor layer.
  • one of the source region and the drain region is completely surrounded by the other low voltage side region of the source region and the drain region.
  • the high voltage side region may be completely surrounded by the first conductive plate and the second conductive plate.
  • the low-voltage wiring may intersect all of the straight regions of the first conductive plate and all of the straight regions of the second conductive plate in plan view. Good.
  • the width in the longitudinal direction in which the linear region of the first conductive plate and the second conductive plate overlaps the low voltage wiring is the drain region.
  • the source region may be reduced or enlarged toward one of the high voltage side regions.
  • the source wiring and the drain wiring intersecting with the straight region of the first conductive plate and the straight region of the second conductive plate in the longitudinal direction in a plan view.
  • the distance between the source wiring and the drain wiring in the longitudinal direction may be narrower than the longitudinal width of the source wiring and the drain wiring.
  • a plurality of source wirings and drain wirings each intersecting with the linear region of the first conductive plate and the linear region of the second conductive plate in a plan view. May be alternately arranged in the longitudinal direction.
  • the total length in the longitudinal direction of the linear region of the first conductive plate and the second conductive plate and the portion where the high voltage wiring overlaps, and the low may be in the range of 1/3 or more and 3 or less.
  • the second semiconductor device includes a semiconductor layer formed on an upper portion of one main surface side of the support substrate, a first conductivity type body region formed on the semiconductor layer, and an upper portion of the semiconductor layer.
  • a second conductivity type drain region formed away from the body region; a second conductivity type source region formed on a surface of the body region; and the drain region and the body region in the semiconductor layer.
  • a first insulator region formed so as to overlap the drift region between the body region and the drain region on the surface of the semiconductor layer.
  • a second insulator region formed on the gate electrode and the conductive plate; a source wiring formed on the second insulator region and electrically connected to the source region; And a drain wiring electrically connected to the drain region, and in plan view, the source region and the drain region are long in the direction in which the opposing length is the longest.
  • the conductive plate Extending along the direction and arranged side by side in the short direction, which is a direction orthogonal to the longitudinal direction, and in a plan view, the conductive plate is opposed along the longitudinal direction.
  • the straight line region that extends and the end portion of the straight line region in the longitudinal direction have a curved line in the form of a broken line or an arc, and in a plan view, one of the high-voltage wirings of the source wiring and the drain wiring is It extends in the short direction so as to intersect with the linear region of the conductive plate, and the other low voltage wiring of the source wiring and the drain wiring intersects with at least one linear region of the conductive plate. It extends in the short direction, and the gap in the short direction between the conductive plate and the adjacent gate electrode or another adjacent conductive plate is narrower than the film thickness of the second insulator region. .
  • a buried insulating film may be formed between the support substrate and the semiconductor layer.
  • one of the source region and the drain region is completely surrounded by the other low voltage side region of the source region and the drain region.
  • the high voltage side region may be completely surrounded by the conductive plate.
  • the semiconductor device of the present disclosure it is possible to reduce the withstand voltage drop that may occur when the width of the high-voltage wiring is expanded.
  • FIG. 1 is a plan view schematically showing the semiconductor device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line III-III ′ of FIG. 1 in the semiconductor device according to the first embodiment.
  • FIG. 3 is a current-voltage characteristic diagram comparing the withstand voltage characteristics of the semiconductor device according to the first embodiment and the second comparative example.
  • FIG. 4 is a plan view schematically showing a modification of the semiconductor device according to the first embodiment.
  • FIG. 5 is a schematic cross-sectional view taken along line IV-IV ′ of FIG. 4 in a modification of the semiconductor device according to the first embodiment.
  • FIG. 6 is a plan view schematically showing the semiconductor device according to the second embodiment.
  • FIG. 7 is a plan view schematically showing a semiconductor device according to the third embodiment.
  • FIG. 8 is a plan view schematically showing the semiconductor device according to the fourth embodiment.
  • FIG. 9 is a plan view schematically showing a semiconductor device according to the fifth embodiment.
  • FIG. 10 is a diagram showing the relationship between the wiring width ratio between the longitudinal width of the drain wiring and the longitudinal width of the source wiring and the breakdown voltage in the semiconductor device according to the fifth embodiment.
  • FIG. 11 is a plan view schematically showing a semiconductor device according to the sixth embodiment.
  • FIG. 12 is a schematic sectional view taken along line VV ′ of FIG. 11 in the semiconductor device according to the sixth embodiment.
  • FIG. 13 is a plan view schematically showing a semiconductor device according to the first comparative example.
  • FIG. 14 is a schematic cross-sectional view taken along the line II ′ of FIG.
  • FIG. 15 is a schematic cross-sectional view taken along the line II-II ′ of FIG. 16 in the semiconductor device according to the second comparative example.
  • FIG. 16 is a plan view schematically showing a semiconductor device according to a second comparative example.
  • FIG. 17 is a current-voltage characteristic diagram comparing the withstand voltage characteristics of the first comparative example and the second comparative example.
  • FIG. 18 is a diagram showing capacitive coupling of the floating field plate in the semiconductor device according to the second comparative example.
  • FIG. 19 is a current-voltage characteristic diagram in which the longitudinal width of the source region is compared in the breakdown voltage characteristics of the semiconductor device according to the second comparative example.
  • the high breakdown voltage semiconductor device described in the “Background Art” column is mainly used for a high voltage IC having a high voltage wiring of 600 V or higher.
  • multiple floating field plates Multiple Floating Field Plate, abbreviated as MFFP
  • Element isolation uses junction isolation.
  • the present inventor has determined that the breakdown voltage is affected by the wiring voltage depending on the device structure and temperature conditions even if the voltage of the high voltage wiring is considerably lower than 600V. In some cases, the withstand voltage may be reduced, and at that time, it was found that the withstand voltage can be improved by using a floating field plate (FFP).
  • FFP floating field plate
  • a structure having no floating field plate will be described as a first comparative example, and a structure having a floating field plate will be described as a second comparative example.
  • FIG. 13 is a plan view schematically showing a semiconductor device according to the first comparative example.
  • FIG. 14 is a schematic cross-sectional view taken along the line II ′ of FIG. 13 in the semiconductor device according to the first comparative example.
  • FIG. 14 shows a cross-sectional view of a lateral P-channel MOS transistor as a semiconductor device.
  • a lateral P-channel MOS transistor is taken as an example, but the same holds true for a lateral N-channel MOS transistor if the conductivity type of each component is changed.
  • the lateral P-channel MOS transistor uses an SOI substrate in which a buried insulating film 2 and a low-concentration n ⁇ type semiconductor layer 3 are bonded to each other on a support substrate 1.
  • An n-type body region 4, a p-type drift region 5, an n-type buried region 6, and a p-type drain region 7 are formed in the low concentration n ⁇ type semiconductor layer 3 of the SOI substrate.
  • a high concentration p + type drain region 8 is formed on the surface of the p type drain region 7. Further, a high concentration p + type source region 9 and a high concentration n + type body contact region 10 are formed on the n type body region 4.
  • a thick insulating film which is a first insulator region, is formed between the n-type body region 4 which is a part of the surface of the low-concentration n ⁇ type semiconductor layer 3 and the high-concentration p + type drain region 8.
  • An STI (Shallow Trench Isolation) region 11 made of a film is formed.
  • a thin gate insulating film 12 extends from the n-type body region 4 which is another part of the surface of the low-concentration n ⁇ type semiconductor layer 3 to a part of the p-type drift region 5. Is formed.
  • a gate electrode 13 is formed so as to extend from the gate insulating film 12 to a part on the STI region 11. Sidewall spacers 15 are formed on the side walls of the gate electrode 13.
  • a second insulating film 16 that is a second insulator region is formed so as to cover the gate electrode 13.
  • a source electrode 17 is formed on the high-concentration p + type source region 9 and the high-concentration n + type body contact region 10 through a contact 25 penetrating the second insulating film 16. Has been.
  • a drain electrode 18 that is electrically connected via a contact 25 penetrating the second insulating film 16 is formed on the high concentration p + type drain region 8.
  • a third insulating film 20 which is a third insulator region is formed on the source electrode 17 and the drain electrode 18. Further, a source wiring 21 that is electrically connected to the source electrode 17 through a via 26 penetrating the third insulating film 20 is formed.
  • a high voltage is applied to one of a drain region and a source region, and a low voltage is applied to the other.
  • the high-voltage region of either the drain region or the source region is often surrounded by the other low-voltage region, so that the wiring drawn from the high-voltage region has a certain width, and the low-voltage region It will be pulled out of the element across the region.
  • the layout of the drain region and the source region is often opposite to that of the P channel type.
  • the p-type drift region 5, the n-type buried region 6, and the p-type drain region 7 are not shown for easy understanding of the drawing.
  • the n-type body region 4 has a rectangular shape elongated in the longitudinal direction, and the corners of the four corners are chamfered.
  • a high concentration p + type source region 9 and a high concentration n + type body contact region 10 are disposed adjacent to each other.
  • An STI region 11 is arranged in a ring shape so as to surround the n-type body region 4 and spaced from the n-type body region 4. Further, on the outside of the STI region 11, a high concentration p + type drain region 8 is arranged in a ring shape.
  • a gate insulating film 12 is formed inside the ring-shaped planar shape of the STI region 11, and the gate electrode 13 surrounds the high concentration p + type source region 9 and the high concentration n + type body contact region 10. Are arranged to be.
  • the gate electrode 13 is electrically connected to the first gate wiring 23 via the contact 25 and further electrically connected to the second gate wiring 24 via the via 26.
  • the second gate wiring 24 is drawn over the drain electrode 18.
  • the p + -type source region 9 and the p + -type drain region 8 are extended along the longitudinal direction, which is the longest direction, and are arranged in the short direction, which is a direction orthogonal to the longitudinal direction. Is arranged in. In FIG. 13, the length of the p + type source region 9 and the p + type drain region 8 facing each other corresponds to the longitudinal width L1 of the p + type source region 9.
  • the width L1 in the longitudinal direction of the p + type source region 9 is enlarged.
  • the high-voltage wiring of the source wiring 21 extends in the lateral direction across the p + type drain region 8.
  • FIG. 15 shows a cross-sectional view of a typical lateral P-channel MOS transistor formed on an SOI substrate having a floating field plate
  • FIG. 16 shows a plan view of the lateral P-channel MOS transistor. 15 is a cross-sectional view taken along the line II-II ′ in FIG.
  • At least one first plate which is an electrically floating conductive plate formed between the gate electrode 13 and the p + drain region 8 on the STI region 11 as compared with FIG. 13 described above.
  • On the floating field plate 14 and the second insulating film 16 at least one electrically conductive plate in an electrically floating state formed above the gate electrode 13 and the first floating field plate 14 is not formed.
  • a second floating field plate 19 is formed.
  • each field plate of the first floating field plate 14 and the second floating field plate 19 has an obtuse angle at the end of the linear region facing the longitudinal direction and the linear portion in the longitudinal direction. It has a curved region connected in a bent line (or arc) shape that bends at a corner, and the high voltage wiring of the source wiring 21 is short so as to intersect with the straight regions of the first floating field plate 14 and the second floating field plate 19. Stretched in the direction.
  • FIG. 17 shows a comparison of the breakdown voltage characteristics of the first comparative example and the second comparative example. As is clear from FIG. 17, the breakdown voltage is increased by arranging multiple floating field plates under the high voltage wiring.
  • each floating field plate is capacitively coupled to a nearby conductor or electric charge through an insulating film, the potential of the floating field plate varies depending on the ratio of the capacitance ratio with the object to be capacitively coupled and affects the breakdown voltage. It is.
  • FIG. 18 shows capacitive coupling of each floating field plate shown in FIG.
  • the object is a high-voltage wiring or a semiconductor layer surface and an adjacent floating field plate as a conductor, and the charge is a charge in the Si / SiO 2 interface and the insulating film.
  • Mobile ions in the upper sealing material also need to be considered.
  • the potential of the floating field plate is attracted to the target potential where the capacitive coupling increases.
  • the capacitance depends on the area facing the object as a design layout element. Therefore, as the area where the high voltage wiring and the floating field plate face each other increases, the potential of the floating field plate rises and becomes saturated.
  • the facing area depends on the width from which the high voltage wiring is drawn when the high voltage wiring and the floating field plate are orthogonal to each other.
  • the width in the longitudinal direction of the source region is increased. In this case, however, the width in the longitudinal direction of the lead wiring is usually increased.
  • the width in the longitudinal direction of the high-voltage wiring is expanded, the potential of the floating field plate rises for the above reasons, and the voltage between the drain and source electrodes on the low potential side, etc. In some cases, the interval between the potential lines is narrowed, the electric field increases, and the breakdown voltage decreases.
  • FIG. 19 shows current-voltage characteristics in which the breakdown voltage between the drain and the source is reduced by the layout in which the longitudinal width of the source region is expanded in the high breakdown voltage P-channel MOS transistor shown in FIG.
  • the present disclosure provides a high-voltage semiconductor device that can reduce a withstand voltage drop that may occur when expanding the width of a high-voltage wiring.
  • FIG. 1 is a plan view of a lateral P-channel MOS transistor
  • FIG. 2 is a cross-sectional view taken along line III-III ′ in FIG. Note that the cross-sectional view taken along the line II-II ′ in FIG. 1 is the same as FIG. 15 of the second comparative example.
  • FIG. 16 is a plan view of a second comparative example.
  • the source region 9 and the p + -type drain region 8 extend along the longitudinal direction, which is the direction in which the opposing length is the longest, and are arranged side by side in the short direction, which is a direction orthogonal to the longitudinal direction.
  • the two-layer field plate of the first floating field plate 14 and the second floating field plate 19 includes a linear region opposed in the longitudinal direction and a bent line (bending at an obtuse apex angle at the end of the longitudinal linear portion ( Alternatively, the high-voltage wiring of the source wiring 21 is directed in the short direction so as to intersect the straight areas of the first floating field plate 14 and the second floating field plate 19. Stretched.
  • the p + type source region 9 is applied with a higher voltage than the p + type drain region 8.
  • the source wiring 21 drawn from the p + type source region 9 is drawn outside the element across the upper portion of the p + type drain region 8 in the low voltage region.
  • the longitudinal width L1 of the p + type source region 9 is increased.
  • the width L2 in the longitudinal direction of the source wiring 21 is also enlarged.
  • the ratio of the capacitance between each floating field plate and the source wiring 21 that is a high-voltage wiring to the total capacitance of each floating field plate increases and becomes saturated as the longitudinal width L2 of the source wiring 21 increases. This is because the ratio of the area covered by the source wiring 21 on each floating field plate and the total area of each floating field plate increases and becomes saturated as the width L2 in the longitudinal direction of the source wiring 21 increases. It is thought that.
  • the drain wiring 22 which is a low-voltage wiring is extended in the lateral direction toward the gate electrode 13 with the same width L3 in the longitudinal direction as the source wiring 21.
  • FIG. 2 which is a cross-sectional view taken along the line III-III ′ of FIG. 1
  • the drain wiring 22 is a linear region in the entire longitudinal direction of the first floating field plate 14 and the second floating field plate 19. They are covered so that they intersect.
  • the first floating field plate 14 and the second floating field plate 19 are capacitively coupled to the drain wiring 22 which is a low voltage wiring.
  • the capacitive coupling with the source wiring 21 of the high voltage wiring is performed, but in this embodiment, the capacitive coupling with the low voltage wiring can be combined. Therefore, it becomes easy to control the potential of the floating field plate.
  • the magnitude of capacitive coupling is proportional to the opposing area, it can be adjusted by the width in the longitudinal direction if it is a linear region.
  • the potential of the floating field plate is adjusted to be low.
  • the capacitive coupling with the low voltage wiring is increased to suppress the spread of the depletion layer.
  • the potential of the floating field plate is adjusted to be high to reduce the capacitive coupling with the low-voltage wiring and expand the depletion layer. Promote.
  • FIG. 3 is a current-voltage characteristic diagram comparing the withstand voltage characteristics of the present embodiment and the second comparative example when the longitudinal width of the p + -type source region 9 is enlarged using a high withstand voltage P-channel MOS transistor. is there. According to the configuration of the present embodiment, the breakdown voltage is improved as compared with the second comparative example.
  • FIG. 4 is a plan view showing a modification of the present embodiment
  • FIG. 5 is a cross-sectional view taken along line IV-IV ′ of FIG. 4 and 5, in the structure in which there are a plurality of first floating field plates 14 and a plurality of second floating field plates 19, the drain wiring 22 is disposed only above one of them on the low voltage side. In this case, the breakdown voltage can be expected to improve.
  • the drain wiring 22 extends to the upper side of the linear region in the longitudinal direction of at least one floating field plate, so that an effect of improving the breakdown voltage is obtained.
  • the feature of this embodiment is that the linear region in the longitudinal direction of the floating field plate intersects with both the low voltage wiring and the high voltage wiring.
  • the width in the longitudinal direction of the source region is increased, the width in the longitudinal direction of the low voltage wiring and the high voltage wiring drawn from the drain region or the source region is also increased at the same time. Since the ratio of capacitive coupling between the floating field plate and the low-voltage wiring or the high-voltage wiring determines the potential of the floating field plate, it is desirable that this ratio be orthogonal in a linear region in order to design a device with high accuracy.
  • the semiconductor device includes the semiconductor layer 3 formed on the upper side of the main surface of the support substrate 1 and the first conductivity type formed on the upper portion of the semiconductor layer 3.
  • the drift region 5 of the second conductivity type formed between the drain region 8 and the body region 4 in the semiconductor layer 3 and the drift between the body region 4 and the drain regions 7 and 8 on the surface of the semiconductor layer 3.
  • the first insulator region (that is, the STI region 11) formed so as to overlap with the region 5 and a part on the body region 4 on the surface of the semiconductor layer 3 to the end of the first insulator region are formed.
  • Gate insulating film 12 and gate insulation 12 is formed between the gate electrode 13 and the drain region 8 on the first insulator region and is in an electrically floating state.
  • One first conductive plate that is, first FFP 14
  • a second insulator region that is, the first FFP 14 formed on the first insulator region, the gate electrode 13, and the first conductive plate (that is, the first FFP 14).
  • Conductive plate that is, second FFP 19
  • third insulator region that is, third insulating film formed on the second insulator region, the gate electrode 13, and the second conductive plate.
  • the source region 9 and the drain region 8 extend along the longitudinal direction, which is the longest facing direction, and are arranged side by side in the short direction, which is a direction orthogonal to the longitudinal direction. .
  • the first conductive plate and the second conductive plate are a curved line connecting a linear region extending opposite to each other in the longitudinal direction and a terminal portion of the linear region in the longitudinal direction into a polygonal line or an arc shape. Has a region.
  • one of the high-voltage wirings of the source wiring 21 and the drain wiring 22 extends in the short direction so as to intersect the linear regions of the first conductive plate and the second conductive plate.
  • the other low-voltage wiring of the source wiring 21 and the drain wiring 22 extends in the short direction so as to intersect with at least one linear region of the first conductive plate and the second conductive plate.
  • the first conductivity type means one of P type and N type
  • the second conductivity type means the other of P type and N type.
  • the first conductive plate and the second conductive plate are capacitively coupled to the low voltage wiring 22 extended so as to intersect the linear region. Capacitive coupling with high voltage wiring and capacitive coupling with low voltage wiring can be combined. Therefore, it becomes easy to control the potentials of the first and second conductive plates. That is, the magnitude of capacitive coupling is proportional to the opposing area, so that it can be adjusted with the width in the longitudinal direction if it is a linear region.
  • each conductive plate can be adjusted by the capacity determined by the high-voltage wiring and the low-voltage wiring, and the respective widths in the longitudinal direction intersecting the first conductive plate and the second conductive plate. Become. Thereby, it is possible to reduce the breakdown voltage.
  • a buried insulating film 2 may be formed between the support substrate 1 and the semiconductor layer 3.
  • one of the high-voltage side regions of the source region 9 and the drain region 8 is completely surrounded by the other low-voltage side region of the source region 9 and the drain region 8.
  • the region may be completely surrounded by the first conductive plate and the second conductive plate.
  • the low-voltage wiring may intersect with all of the straight regions of the first conductive plate and all of the straight regions of the second conductive plate.
  • FIG. 1 A plan view of a lateral P-channel MOS transistor is shown in FIG. 1
  • the width in the longitudinal direction of the drain wiring 22 is directed toward the source region 9 in the short direction. It is getting narrower.
  • the capacitive coupling of the drain wiring 22, the first floating field plate 14, and the second floating field plate 19 is weakened toward the source region 9 on the high voltage side, so that the floating field plate on the high voltage side is reduced. It has the effect of increasing the potential. In particular, when the depletion layer reaches the drain region 8 on the low voltage side and the electric field is concentrated, an effect for improving the breakdown voltage can be expected.
  • the capacitive coupling of the drain wiring 22, the first floating field plate 14, and the second floating field plate 19 is strengthened toward the source region 9 on the high voltage side, so that the floating field plate on the high voltage side is It has the effect of lowering the potential.
  • the electric field is concentrated near the source region 9 on the high voltage side, an effect can be expected to improve the breakdown voltage.
  • the semiconductor device according to the second embodiment includes the first conductive plate (that is, the first floating field plate 14) in plan view in addition to the configuration of the semiconductor device of the first embodiment.
  • the width in the longitudinal direction where the linear region of the second conductive plate (that is, the second floating field plate 19) and the low voltage wiring overlap is the high voltage side region of either the drain region 8 or the source region 9 Reduce or enlarge toward.
  • the conductivity on the high voltage side is increased by strengthening (or weakening) the capacitive coupling between the low voltage wiring and the first conductive plate and the second conductive plate toward the high voltage region. It is considered that there is an effect of lowering (or raising) the potential of the plate, and electric field concentration can be alleviated by adjusting the spread of the depletion layer.
  • FIG. 7 shows a plan view of a lateral P-channel MOS transistor as an example of the semiconductor device according to the third embodiment.
  • the drain wiring 22 and the source wiring 21 both have a p + type source region 9. It exists symmetrically in the lateral direction as the center.
  • the first floating field plate 14 for example, polycrystalline polysilicon doped with impurities at a high concentration has a higher resistivity than a normal metal wiring, and a conductor of such a material is used. If this happens, a voltage drop due to a transient current may occur in a very short period until the voltage converges. In that case, the potential may fluctuate temporarily and become unstable. Is done. In order to reduce the time required for this fluctuation, it is considered better to bring the drain wiring 22 and the source wiring 21 as close as possible.
  • the distance L4 in the longitudinal direction of the drain wiring 22 and the source wiring 21 is the width L5 in the longitudinal direction of the drain wiring 22.
  • the source wiring 21 is configured to be narrower than the width L6 in the longitudinal direction.
  • the semiconductor device according to the third embodiment has a linear region of the first conductive plate (that is, the first FFP 14) and The source wiring 21 and the drain wiring 22 intersecting with the straight region of the second conductive plate (that is, the second FFP 19) extend side by side in the longitudinal direction, and the longitudinal direction of the source wiring 21 and the drain wiring 22 The interval at is narrower than the width of the source wiring 21 and the drain wiring 22 in the longitudinal direction.
  • FIG. 8 shows a plan view of a lateral P-channel MOS transistor as an example of the semiconductor device according to the fourth embodiment.
  • the wirings 21 are alternately arranged in the longitudinal direction.
  • This configuration is expected to stabilize the potential of the first floating field plate 14 and the second floating field plate 19 even when the lateral P-channel MOS transistor operates at high speed.
  • the semiconductor device according to the fourth embodiment has a linear region of the first conductive plate (that is, the first FFP 14) and A plurality of source wirings 21 and drain wirings 22 intersecting with the straight region of the second conductive plate (that is, the second FFP 19) are alternately arranged in the longitudinal direction.
  • the potentials of the first conductive plate and the second conductive plate are considered to be stable against fluctuations in the drain voltage and the source voltage.
  • FIG. 9 shows a plan view of a lateral P-channel MOS transistor as an example of the semiconductor device according to the fifth embodiment.
  • the width ratio (L3 / L2) 1 (fixed) between the longitudinal width L3 of the drain wiring 22 and the longitudinal width L2 of the source wiring 21 of the first embodiment shown in FIG.
  • the width ratio (L3 / L2) of the width L3 in the longitudinal direction of the drain wiring 22 and the width L2 in the longitudinal direction of the source wiring 21 1/3 or more and 3 or less. It is fluctuating with.
  • FIG. 10 shows the breakdown voltage when the wiring width ratio (L3 / L2) of the longitudinal width L3 of the drain wiring 22 and the longitudinal width L2 of the source wiring 21 is varied in the range of 0 to 5.
  • the wiring width ratio (L3 / L2) is set to a range of 1/2 or more and 1.5 or less as the wiring width ratio, the breakdown voltage can be stably obtained in the vicinity of the maximum value.
  • the semiconductor device according to the fifth embodiment has the first conductive plate (that is, the first conductive plate) in plan view in addition to the configuration of the semiconductor device according to the first to fourth embodiments.
  • the ratio to the total size is in the range of 1/3 to 3.
  • the breakdown voltage of the semiconductor device can be stabilized near the maximum value.
  • Each of the semiconductor devices according to the first to fifth embodiments described above has a two-layer floating field plate structure including the first floating field plate 14 and the second floating field plate 19. It is not always necessary to have a two-layer floating field plate structure.
  • the capacitive coupling between the floating field plates of the two-layer floating field plate is mainly related to the thickness of the second insulating film 16 and the lateral dimension overlapping each other.
  • the capacitive coupling between the floating field plates in the single-layer floating field plate structure is mainly related to the thickness of the floating field plate and the lateral dimension between the floating field plates.
  • the distance between the floating field plates in the single-layer floating field plate structure is set to be less than or equal to the thickness of the second insulating film 16 in the two-layer floating field plate.
  • This embodiment has a single-layer floating field plate structure composed of the first floating field plate 14 as shown in FIGS.
  • the source electrode 17 and the drain electrode 18 also serve as the source wiring 21 and the drain wiring 22 in the first embodiment, respectively. Accordingly, hereinafter, the source electrode 17 includes a function as a source wiring, and the drain electrode 18 includes a function as a drain wiring.
  • the interval (L7) between the adjacent first floating field plates 14 is smaller than the interval between the first floating field plates 14 of the first embodiment. ing.
  • this interval is made narrower than the film thickness (L8) of the second insulating film 16 shown in the sectional view of FIG.
  • the formed p-type drift region 5 is opposed to the region where the electric field due to the potential of the wiring is directly applied.
  • the semiconductor device includes the semiconductor layer 3 formed on the upper side of the one main surface side of the support substrate 1 and the first conductivity type body formed on the upper side of the semiconductor layer 3.
  • a drain region 8 of a second conductivity type formed on the region 4 and above the semiconductor layer 3 so as to be separated from the body region 4; a source region 9 of a second conductivity type formed on the surface of the body region 4;
  • a drift region 5 of the second conductivity type formed between the drain region 8 and the body region 4 in the semiconductor layer 3, and a drift region between the body region 4 and the drain regions 7, 8 on the surface of the semiconductor layer 3.
  • the first insulator region (that is, the STI region 11) formed so as to overlap with 5, and a part on the body region 4 on the surface of the semiconductor layer 3 to the end of the first insulator region.
  • Gate insulating film 12 and gate insulating film 2 and the gate electrode 13 formed over the first insulator region and at least an electrically floating state formed between the gate electrode 13 and the drain region 8 on the first insulator region.
  • One conductive plate that is, the first FFP 14
  • a second insulator region that is, the second insulating film 16
  • the source region 9 and the drain region 8 extend along the longitudinal direction, which is the longest facing direction, and are arranged side by side in the short direction, which is a direction orthogonal to the longitudinal direction.
  • the conductive plate has a linear region that extends oppositely in the longitudinal direction and a curved region that connects the end portions of the linear region in the longitudinal direction in a polygonal line or arc shape.
  • one of the high-voltage wirings of the source electrode 17 and the drain electrode 18 extends in the short direction so as to intersect the linear region of the conductive plate.
  • the other low voltage wiring of the source electrode 17 and the drain electrode 18 extends in the short direction so as to intersect with at least one linear region of the conductive plate.
  • the gap in the short direction between the conductive plate and the adjacent gate electrode 13 or another adjacent conductive plate is narrower than the film thickness of the second insulator region.
  • At least one conductive plate is sufficient. For example, even if the number of conductive plates is one, it is close to the configuration having two conductive plates in the first to fifth embodiments. An effect can be obtained.
  • a buried insulating film 2 may be formed between the support substrate 1 and the semiconductor layer 3.
  • one of the high voltage side regions of the source region 9 and the drain region 8 is completely surrounded by the other low voltage side region of the source region and the drain region, and the high voltage side region is It may be completely surrounded by a conductive plate.
  • the insulating film 20 is not limited to a single insulating film, and a plurality of insulating films may be laminated.
  • the source wiring 21 and the drain wiring 22 are formed immediately above the same insulating film, and in the sixth embodiment, the source electrode 17 and the drain electrode 18 are the same insulation. Although it is formed immediately above the film, it is not limited to this, and it may be formed on a different insulating film.
  • the present disclosure can realize improvement and stabilization of the breakdown voltage of a high breakdown voltage MOS transistor, and is particularly useful for a high breakdown voltage MOS transistor mounted on a device having a target breakdown voltage of 100 V or more such as an in-vehicle device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

積層形成された第1および第2の導電性プレート(FFP14および19)を備えた半導体装置において、第1の導電性プレートと第2の導電性プレートは並進するソース領域(9)とドレイン領域(8)の対向する長さが最も長い長手方向に沿って対向して延伸する直線領域を備えるとともに、長手方向と直交する短手方向に延伸している。ここで、ソース配線(21)およびドレイン配線(22)のどちらか一方の高電圧配線は、第1の導電性プレートおよび第2の導電性プレートの直線領域と交差するように短手方向に延伸しており、ソース配線(21)およびドレイン配線(22)の他方の低電圧配線は、第1の導電性プレートまたは第2の導電性プレートの少なくとも1つの直線領域と交差するように短手方向に延伸している。

Description

半導体装置
 本開示は、高耐圧の半導体装置に関する。
 特許文献1は、半導体表面上に敷設された導電膜によって生じる半導体中の電界の集中を緩和する技術を開示している。
 特許文献2は、半導体基板上にpn接合分離して形成された半導体領域の上方に該半導体領域の端部を横切って延設された導電層からの電界の影響により導電層下の半導体領域の端部において電界集中が生じるのを防止するための電界集中防止構造を開示している。
特開平5-190693号公報 特公平7-083048号公報
 しかしながら、従来技術によれば、高電圧配線の幅を拡大すると耐圧が低下する場合があるという問題がある。ここで、高電圧配線というのは、半導体装置、例えば高耐圧MOSトランジスタにおいて、ソースに接続された配線およびドレインに接続された配線のうち電圧の高い方をいう。
 そこで、本開示は上記課題に鑑みてなされたものであり、高電圧配線の幅を拡大する際に起こりえる耐圧低下を低減できる高耐圧の半導体装置を提供することを目的とする。
 上記課題を解決するために、第1の半導体装置は、支持基板の一主面側の上部に形成された半導体層と、前記半導体層の上部に形成された第1導電型のボディ領域と、前記半導体層の上部に、前記ボディ領域から離間して形成された第2導電型のドレイン領域と、前記ボディ領域の表面に形成された第2導電型のソース領域と、前記半導体層内における前記ドレイン領域と前記ボディ領域との間に形成された第2導電型のドリフト領域と、前記半導体層の表面における前記ボディ領域と前記ドレイン領域との間に前記ドリフト領域上と重なるように形成された第1の絶縁体領域と、前記半導体層の表面における前記ボディ領域上の一部から前記第1の絶縁体領域の端部まで形成されたゲート絶縁膜と、前記ゲート絶縁膜上と前記第1の絶縁体領域上に跨って形成されたゲート電極と、前記第1の絶縁体領域上で前記ゲート電極と前記ドレイン領域の間に形成されて電気的にフローティング状態である少なくとも1つの第1の導電性プレートと、前記第1の絶縁体領域上と前記ゲート電極上と前記第1の導電性プレート上に形成された第2の絶縁体領域と、前記第2の絶縁体領域上で、少なくとも前記ゲート電極および第1の導電性プレートの形成されていない上方に形成された電気的にフローティング状態である少なくとも1つの第2の導電性プレートと、前記第2の絶縁体領域上と前記ゲート電極上と前記第2の導電性プレート上に形成された第3の絶縁体領域と、前記第3の絶縁体領域上に形成され、前記ソース領域と電気的に接続されたソース配線と、前記第3の絶縁体領域上に形成され、前記ドレイン領域と電気的に接続されたドレイン配線とを備え、平面視において、前記ソース領域と前記ドレイン領域は、対向する長さが最も長い方向である長手方向に沿って延伸するとともに、前記長手方向と直交する方向である短手方向に並んで配置されており、平面視において、前記第1の導電性プレートと前記第2の導電性プレートは、前記長手方向に沿って対向して延伸する直線領域と、前記長手方向での直線領域の終端部を折れ線もしくは円弧状に結ぶ曲線領域を有し、平面視において、前記ソース配線および前記ドレイン配線のどちらか一方の高電圧配線は、前記第1の導電性プレートおよび前記第2の導電性プレートの直線領域と交差するように短手方向に延伸しており、前記ソース配線および前記ドレイン配線の他方の低電圧配線は、前記第1の導電性プレートおよび前記第2の導電性プレートの少なくとも1つの直線領域と交差するように短手方向に延伸している。
 また、第1の半導体装置において、前記支持基板と前記半導体層との間に埋め込み絶縁膜が形成されていてもよい。
 また、第1の半導体装置において、平面視において、前記ソース領域および前記ドレイン領域のどちらか一方の高電圧側領域は、前記ソース領域および前記ドレイン領域の他方の低電圧側領域によって完全に包囲されており、前記高電圧側領域は、前記第1の導電性プレートおよび前記第2の導電性プレートによって完全に包囲されていてもよい。
 また、第1の半導体装置において、平面視において、前記低電圧配線は、前記第1の導電性プレートの直線領域の全ておよび前記第2の導電性プレートの直線領域の全てと交差していてもよい。
 また、第1の半導体装置において、平面視において、前記第1の導電性プレートおよび前記第2の導電性プレートの前記直線領域と、前記低電圧配線とが重なる長手方向の幅は、前記ドレイン領域または前記ソース領域どちらか一方の高電圧側領域に向かって縮小または拡大してもよい。
 また、第1の半導体装置において、平面視において、前記第1の導電性プレートの直線領域および前記第2の導電性プレートの直線領域と交差している前記ソース配線および前記ドレイン配線は前記長手方向において並んで延伸しており、前記ソース配線と前記ドレイン配線との前記長手方向での間隔は、前記ソース配線および前記ドレイン配線の前記長手方向の幅よりも狭くしてもよい。
 また、第1の半導体装置において、平面視において、前記第1の導電性プレートの直線領域および前記第2の導電性プレートの直線領域と交差している前記ソース配線と前記ドレイン配線は、それぞれ複数が前記長手方向に交互に配置されていてもよい。
 また、第1の半導体装置において、平面視において、前記第1の導電性プレートおよび前記第2の導電性プレートの直線領域と、前記高電圧配線の重なる部分の長手方向の総寸法と、前記低電圧配線の重なる部分の長手方向の総寸法との比は1/3以上3以下の範囲であってもよい。
 また、第2の半導体装置は、支持基板の一主面側の上部に形成された半導体層と、前記半導体層の上部に形成された第1導電型のボディ領域と、前記半導体層の上部に、前記ボディ領域から離間して形成された第2導電型のドレイン領域と、前記ボディ領域の表面に形成された第2導電型のソース領域と、前記半導体層内における前記ドレイン領域と前記ボディ領域との間に形成された第2導電型のドリフト領域と、前記半導体層の表面における前記ボディ領域と前記ドレイン領域との間に前記ドリフト領域上と重なるように形成された第1の絶縁体領域と、前記半導体層の表面における前記ボディ領域上の一部から前記第1の絶縁体領域の端部まで形成されたゲート絶縁膜と、前記ゲート絶縁膜上と前記第1の絶縁体領域上に跨って形成されたゲート電極と、前記第1の絶縁体領域上で前記ゲート電極と前記ドレイン領域の間に形成されて電気的にフローティング状態である少なくとも1つの導電性プレートと、前記第1の絶縁体領域上と前記ゲート電極上と前記導電性プレート上に形成された第2の絶縁体領域と、第2の絶縁体領域上に形成され、前記ソース領域と電気的に接続されたソース配線と、第2の絶縁体領域上に形成され、前記ドレイン領域と電気的に接続されたドレイン配線とを備え、平面視において、前記ソース領域と前記ドレイン領域は、対向する長さが最も長い方向である長手方向に沿って延伸するとともに、前記長手方向と直交する方向である短手方向に並んで配置されており、平面視において、前記導電性プレートは、前記長手方向に沿って対向して延伸する直線領域と、前記長手方向での直線領域の終端部を折れ線もしくは円弧状に曲線領域を有し、平面視において、前記ソース配線および前記ドレイン配線のどちらか一方の高電圧配線は、前記導電性プレートの直線領域と交差するように短手方向に延伸しており、前記ソース配線および前記ドレイン配線の他方の低電圧配線は、前記導電性プレートの少なくとも1つの直線領域と交差するように短手方向に延伸しており、前記導電性プレートと、隣接する前記ゲート電極または隣接する他の導電性プレートとの短手方向の間隔は、前記第2の絶縁体領域の膜厚よりも狭い。
 また、第2の半導体装置において、前記支持基板と前記半導体層との間に埋め込み絶縁膜が形成されていてもよい。
 また、第2の半導体装置において、平面視において、前記ソース領域および前記ドレイン領域のどちらか一方の高電圧側領域は、前記ソース領域および前記ドレイン領域の他方の低電圧側領域によって完全に包囲されており、前記高電圧側領域は、前記導電性プレートによって完全に包囲されていてもよい。
 本開示の半導体装置によれば、高電圧配線の幅を拡大する際に起こりえる耐圧低下を低減することができる。
図1は、第1実施形態に係る半導体装置を概略的に示す平面図である。 図2は、第1実施形態に係る半導体装置における図1のIII-III´線に沿う概略断面図である。 図3は、第1実施形態に係る半導体装置と第2の比較例での耐圧特性を比較した電流―電圧特性図である。 図4は、第1実施形態に係る半導体装置の変形例を概略的に示す平面図である。 図5は、第1実施形態に係る半導体装置の変形例における図4のIV-IV´線に沿う概略断面図である。 図6は、第2実施形態に係る半導体装置を概略的に示す平面図である。 図7は、第3実施形態に係る半導体装置を概略的に示す平面図である。 図8は、第4実施形態に係る半導体装置を概略的に示す平面図である。 図9は、第5実施形態に係る半導体装置を概略的に示す平面図である。 図10は、第5実施形態に係る半導体装置におけるドレイン配線の長手方向の幅とソース配線の長手方向の幅との配線幅比と耐圧の関係を示す図である。 図11は、第6実施形態に係る半導体装置を概略的に示す平面図である。 図12は、第6実施形態に係る半導体装置における図11のV-V´線に沿う概略断面図である。 図13は、第1の比較例に係る半導体装置を概略的に示す平面図である。 図14は、第1の比較例に係る半導体装置における図13のI-I´線に沿う概略断面図である。 図15は、第2の比較例に係る半導体装置における図16のII-II´線に沿う概略断面図である。 図16は、第2の比較例に係る半導体装置を概略的に示す平面図である。 図17は、第1の比較例と第2の比較例の耐圧特性を比較した電流―電圧特性図である。 図18は、第2の比較例に係る半導体装置におけるフローティングフィールドプレートの容量結合を示す図である。 図19は、第2の比較例に係る半導体装置の耐圧特性において、ソース領域の長手方向幅の大小で比較した電流―電圧特性図である。
 (本発明の基礎となった知見)
 「背景技術」の欄において記載した高耐圧の半導体装置は、主に600V以上の高電圧配線を有する高電圧IC用途であって、高電圧配線による電界を緩和する手法として、例えば特許文献1および特許文献2に開示されているように、高電圧配線下に多重のフローティングフィールドプレート(Multiple Floating Field Plate 略称はMFFP)を配置することが行われている。素子分離は接合分離を用いている。
 本発明者は、SOI基板とトレンチ分離を用いた素子分離にした場合において、高電圧配線の電圧が600Vよりも相当に低くても、デバイス構造や温度条件によっては耐圧が配線電圧の影響を受けやすくなって耐圧が低下することがあり、その際に、フローティングフィールドプレート(FFP)を用いることで耐圧を向上できることをつかんだ。
 本明細書では、フローティングフィールドプレートを有さない構造を第1の比較例とし、フローティングフィールドプレートを有する構造を第2の比較例として説明する。
 まず、第1の比較例について、以下に説明していく。
 図13は、第1の比較例に係る半導体装置を概略的に示す平面図である。また、図14は、第1の比較例に係る半導体装置における図13のI-I´線に沿う概略断面図である。
 図14は半導体装置として横型PチャネルMOSトランジスタの断面図を示している。
 尚、本明細書では横型PチャネルMOSトランジスタを一例として挙げるが、各構成の導電型を変更すれば横型NチャネルMOSトランジスタの場合でも同様に成立する。
 図14に示すように、横型PチャネルMOSトランジスタでは支持基板1上に埋め込み絶縁膜2と低濃度n-型の半導体層3とが貼り合わせ形成されたSOI基板を用いる。SOI基板の低濃度n-型の半導体層3にはn型のボディ領域4、p型のドリフト領域5、n型の埋め込み領域6、およびp型のドレイン領域7が形成されている。p型のドレイン領域7の表面には高濃度p+型のドレイン領域8が形成されている。さらに、n型のボディ領域4の上部には、高濃度p+型のソース領域9と高濃度n+型のボディ・コンタクト領域10が形成されている。
 また、低濃度n-型の半導体層3の表面の一部であるn型のボディ領域4と高濃度p+型のドレイン領域8との間には第1の絶縁体領域である厚膜の絶縁膜からなるSTI(Shallow Trench Isolation)領域11が形成されている。さらに、低濃度n-型の半導体層3の表面の他の一部であるn型のボディ領域4からp型のドリフト領域5の一部にまで跨がるように薄膜のゲート絶縁膜12が形成されている。
 ゲート絶縁膜12上からSTI領域11上の一部まで延伸するようにゲート電極13が形成されている。ゲート電極13の側壁にはサイドウォールスペーサ15が形成されている。
 ゲート電極13上を覆うように第2の絶縁体領域である第2の絶縁膜16が形成されている。高濃度p+型のソース領域9上および高濃度n+型のボディ・コンタクト領域10上には、第2の絶縁膜16を貫通するコンタクト25を介してこれらと電気的に接続するソース電極17が形成されている。
 また、高濃度p+型のドレイン領域8上には、第2の絶縁膜16を貫通するコンタクト25を介して電気的に接続するドレイン電極18が形成されている。ソース電極17とドレイン電極18上には第3の絶縁体領域である第3の絶縁膜20が形成されている。さらに、第3の絶縁膜20を貫通するビア26を介してソース電極17と電気的に接続するソース配線21が形成されている。
 高耐圧横型PチャネルMOSトランジスタの平面レイアウトについて以下説明していく。
 一般的に、高耐圧MOSトランジスタにおいては、ドレイン領域とソース領域のどちらか一方に高電圧が印加され、他方に低電圧が印加される。平面レイアウトとしては、ドレイン領域またはソース領域どちらか一方の高電圧領域を、他方の低電圧領域で包囲することが多いため、高電圧領域から引き出される配線は一定の幅を有して、低電圧領域上方を跨いで素子の外側へ引き出されることになる。
 Pチャネル型では通常ではソース領域にドレイン領域よりも高電圧が印加されることになるので、ソース領域およびボディ領域はドレイン領域で包囲されて、ソース領域からの配線が高電圧配線として引き出される場合があり、その場合について以下に説明していく。
 尚、Nチャネル型では通常、ドレイン領域にソース領域よりも高電圧が印加されるのでドレイン領域とソース領域のレイアウトは、上記のPチャネル型とは逆になることが多い。
 図13では図面をわかりやすくするために、p型のドリフト領域5、n型の埋め込み領域6、およびp型のドレイン領域7は表示していない。
 図13において、n型のボディ領域4は長手方向に長く延伸した方形状を示し、四隅の角は面取りされている。その内側には高濃度p+型のソース領域9と高濃度n+型のボディ・コンタクト領域10が隣接して配置されている。n型のボディ領域4の周囲を取り囲むように、n型のボディ領域4と間隔をおいてSTI領域11がリング状に配置されている。更に、STI領域11の外側には、高濃度p+型のドレイン領域8がリング状に配置されている。
 STI領域11のリング状の平面形状の内側にはゲート絶縁膜12が形成されており、ゲート電極13は、高濃度p+型のソース領域9上と高濃度n+型のボディ・コンタクト領域10を包囲するように配置されている。ゲート電極13はコンタクト25を介して第1のゲート配線23と電気的に接続し、更に、ビア26を介して第2のゲート配線24と電気的に接続している。第2のゲート配線24はドレイン電極18の上方を跨いで引き出されている。
 p+型のソース領域9とp+型のドレイン領域8は対向して配置される長さが最も長い方向である長手方向に沿って延伸し、長手方向と直交する方向である短手方向には並んで配置されている。図13において、p+型のソース領域9とp+型のドレイン領域8が対向している長さは、p+型のソース領域9の長手方向の幅L1に相当する。
 トランジスタ動作した場合には主にこの範囲内で短手方向に電流が流れる。そのため、トランジスタの電流能力をUPしたい場合には、このp+型のソース領域9の長手方向の幅L1を拡大することになる。ソース配線21の高電圧配線はp+型のドレイン領域8上方を跨いで短手方向に向かって延伸している。
 次に、第2の比較例について以下に、説明していく。
 図15はフローティングフィールドプレートを備えたSOI基板上に形成された代表的な横型PチャネルMOSトランジスタの断面図を示しており、図16はその横型PチャネルMOSトランジスタの平面図を示している。図15は図16におけるII-II´線における断面図である。
 図15では、先に説明した図13と比べてSTI領域11上において、ゲート電極13とp+ドレイン領域8の間に形成され、電気的にフローティング状態の導電性プレートである少なくとも1つの第1のフローティングフィールドプレート14と、第2の絶縁膜16上において、ゲート電極13および第1のフローティングフィールドプレート14が形成されてない上方に形成された電気的にフローティング状態の導電性プレートである少なくとも1つの第2のフローティングフィールドプレート19が形成されている。
 図16の平面視において、第1のフローティングフィールドプレート14と第2のフローティングフィールドプレート19の各フィールドプレートは、長手方向に沿って対向する直線領域と、長手方向の直線部の終端において鈍角の頂角で曲がる折れ線(もしくは円弧)状に結ぶ曲線領域を有し、ソース配線21の高電圧配線は第1のフローティングフィールドプレート14と第2のフローティングフィールドプレート19の直線領域と交差するように短手方向に向かって延伸している。
 第1の比較例と第2の比較例間の耐圧特性の差について説明する。
 図17は、第1の比較例と第2の比較例の耐圧特性の比較を示している。図17から明らかなように、高電圧配線下に多重のフローティングフィールドプレートを配置することで降伏電圧は上昇している。
 しかしながら、フローティングフィールドプレートを用いた場合には、以下に説明するような課題が起こりえる。
 各フローティングフィールドプレートは絶縁膜を介して近傍に存在する導電体や電荷と容量結合するため、その電位が容量結合する対象物との容量比の大きさの割合によって変動して耐圧に影響することである。
 図18は、図15に示す各フローティングフィールドプレートの容量結合を示している。図18において、対象物として、導電体としては高電圧配線や半導体層表面および隣接するフローティングフィールドプレート、電荷としてはSi/SiO2界面および絶縁膜内の電荷であり、パッケージに組立された場合には上方にある封脂材料中の可動イオンも考慮する必要がある。
 フローティングフィールドプレートの電位は、容量結合が大きくなる対象の電位に引き寄せられる。容量は、断面構造(主に、絶縁膜の膜厚、誘電率)が決まっている場合には、設計レイアウト的な要素として、対象物との対向する面積に依存する。従って、高電圧配線とフローティングフィールドプレートとの対向する面積が大きくなるとフローティングフィールドプレートの電位は上昇して飽和していく。対向面積は、高電圧配線とフローティングフィールドプレートが直交する場合には高電圧配線が引き出される幅に依存する。
 トランジスタの電流能力を向上させる際にはソース領域の長手方向の幅を拡大するが、その場合には、通常、引き出し配線の長手方向の幅も拡大していくことになる。
 しかし、デバイス構造や温度条件によっては高電圧配線の長手方向の幅を拡大すると、上記理由からフローティングフィールドプレートの電位が上昇して、ドレインおよびソースどちらかの低電位側の電極との間の等電位線の間隔が狭くなり電界が増加して耐圧低下する場合がある。
 図19は、図16に示す高耐圧PチャネルMOSトランジスタにおいて、ソース領域の長手方向の幅が拡大したレイアウトによって、ドレインーソース間の耐圧が低下した電流―電圧特性を示すものである。この現象の一因として、フローティングフィールドプレートと高電圧配線間の結合容量の増加によるフローティングフィールドプレート電位の上昇を考えた。
 以上のような課題に鑑み本開示は、高電圧配線の幅を拡大する際に起こりえる耐圧低下を低減できる高耐圧の半導体装置を提供する。
 以下、実施形態について図面を参照しながら説明する。但し、説明が不必要に冗長になるのを避け当業者の理解を容易にするため、例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明等については詳細な説明は省略する場合がある。
 なお、添付図面および以下の説明は当業者が本開示を十分に理解するための一例を提示するものであって、これらによって請求の範囲に記載の主題を限定するものではない。
 (第1実施形態)
 第1実施形態に係る半導体装置について、一例として横型PチャネルMOSトランジスタの平面図を図1に示し、図1におけるIII-III´線に沿う断面図を図2に示す。なお、図1においてII-II´線に沿う断面図は第2の比較例の図15と同一である。
 図1については、第2の比較例の平面図である図16と同じく、p+型のソース領域9およびn型のボディ領域4がp+型のドレイン領域8で包囲されるレイアウトであり、p+型のソース領域9とp+型のドレイン領域8は対向する長さが最も長い方向である長手方向に沿って延伸し、長手方向と直交する方向である短手方向に並んで配置されている。
 第1のフローティングフィールドプレート14と第2のフローティングフィールドプレート19の2層のフィールドプレートは、長手方向に沿って対向する直線領域と、長手方向の直線部の終端において鈍角の頂角で曲がる折れ線(もしくは円弧)状に結ぶ曲線領域を有し、ソース配線21の高電圧配線は、第1のフローティングフィールドプレート14と第2のフローティングフィールドプレート19の直線領域と交差するように短手方向に向かって延伸している。
 p+型のソース領域9はp+型のドレイン領域8よりも高電圧に印加される。p+型のソース領域9からの引き出されるソース配線21は、低電圧領域のp+型のドレイン領域8上方を跨いで素子の外側へ引き出される。
 トランジスタの電流能力を向上する場合には、p+型のソース領域9の長手方向の幅L1を拡大させる。これと同時に、ソース配線21の長手方向の幅L2も拡大する。各フローティングフィールドプレートと高電圧配線であるソース配線21間の容量の各フローティングフィールドプレートが有する総容量に占める割合は、ソース配線21の長手方向の幅L2が拡大するにつれて増加して飽和する。これは、各フローティングフィールドプレート上をソース配線21が覆う面積と各フローティングフィールドプレートの総面積との比が、ソース配線21の長手方向の幅L2が拡大するにつれて増加して飽和していくこと同じことと考えられる。
 従って、容量結合が増加する対象の電位に引き寄せられる各フローティングフィールドプレートの電位は、高電圧配線であるソース配線21の長手方向の幅L2の拡大に伴い上昇すると考えられる。
 以下、本実施形態と第2の比較例との相違点について詳述する。
 本実施形態では、低電圧配線であるドレイン配線22が短手方向にゲート電極13に向って、ほぼソース配線21と同じ長手方向の幅L3で延伸されている。このドレイン配線22は、図1のIII―III´線の断面図である図2からもわかるように、第1のフローティングフィールドプレート14および第2のフローティングフィールドプレート19の全ての長手方向の直線領域と交差するようにそれらの上方を被覆している。その結果、第1のフローティングフィールドプレート14および第2のフローティングフィールドプレート19は、低電圧配線であるドレイン配線22と容量結合される。
 第2の比較例では、高電圧配線のソース配線21との容量結合のみであったが、本実施形態では低電圧配線との容量結合も組み合わせることができる。したがって、フローティングフィールドプレートの電位の制御が容易になる。
 上述したように、容量結合の大きさは対向する面積に比例するので、直線領域であれば長手方向の幅で調整できる。この高電圧配線であるソース配線21と低電圧配線であるドレイン配線22と、それぞれが第1のフローティングフィールドプレート14および第2のフローティングフィールドプレート19と交差する長手方向の幅によってきまる容量により、各フローティングフィールドプレートの電位を調整することが可能になる。
 Pチャネル型高耐圧MOSトランジスタにおいて、低電圧側領域へ空乏層が到達することで低電圧側領域寄りにおいて電界集中して降伏している場合には、フローティングフィールドプレートの電位を低くなるように調整して、低電圧配線との容量結合を増加して空乏層の広がりを抑制する。逆に、高電圧側領域で電界集中して降伏している場合には、フローティングフィールドプレートの電位を高くなるように調整して、低電圧配線との容量結合を低減して空乏層の拡がりを促進させる。
 本実施形態では、このようにフローティングフィールドプレートの直線領域の上方にある高電圧配線と低電圧配線の長手方向の幅を調整することで空乏層の拡がりを調整して耐圧を安定化させることを特徴とする。
 図3は、高耐圧PチャネルMOSトランジスタでp+型のソース領域9の長手方向の幅を拡大した場合において、本実施形態と第2の比較例での耐圧特性を比較した電流―電圧特性図である。本実施形態の構成によれば、その耐圧は第2の比較例と比較して改善されている。
 また、図4は本実施形態の変形例を示す平面図であり、図5は図4のIV―IV´線の断面図である。図4、図5では、第1のフローティングフィールドプレート14と第2のフローティングフィールドプレート19がそれぞれ複数個ある構造において、ドレイン配線22がそれらのうちの低電圧側の各1個の上方のみに配置されている場合であり、この場合でも耐圧は改善が期待できる。
 このように、本実施形態では、ドレイン配線22は少なくとも一つのフローティングフィールドプレートの長手方向の直線領域上方にまで延伸することで耐圧改善の効果を奏する。
 以上に説明したように、本実施形態の特徴は、フローティングフィールドプレートの長手方向の直線領域と低電圧配線および高電圧配線の両方とが交差することにある。ソース領域の長手方向の幅を拡大した場合に、ドレイン領域またはソース領域から引き出される低電圧配線および高電圧配線の長手方向の幅も同時に拡大する。フローティングフィールドプレートと低電圧配線または高電圧配線との容量結合の比がフローティングフィールドプレートの電位を決定するため、この比を精度良くデバイス設計するためには、直線領域で直交することが望ましい。
 以上説明してきたように、第1実施形態に係る半導体装置は、支持基板1の一主面側の上部に形成された半導体層3と、半導体層3の上部に形成された第1導電型のボディ領域4と、半導体層3の上部に、ボディ領域4から離間して形成された第2導電型のドレイン領域8と、ボディ領域4の表面に形成された第2導電型のソース領域9と、半導体層3内におけるドレイン領域8とボディ領域4との間に形成された第2導電型のドリフト領域5と、半導体層3の表面におけるボディ領域4とドレイン領域7、8との間にドリフト領域5上と重なるように形成された第1の絶縁体領域(つまりSTI領域11)と、半導体層3の表面におけるボディ領域4上の一部から第1の絶縁体領域の端部まで形成されたゲート絶縁膜12と、ゲート絶縁膜12上と第1の絶縁体領域上に跨って形成されたゲート電極13と、第1の絶縁体領域上でゲート電極13とドレイン領域8の間に形成されて電気的にフローティング状態である少なくとも1つの第1の導電性プレート(つまり第1のFFP14)と、第1の絶縁体領域上とゲート電極13上と第1の導電性プレート上に形成された第2の絶縁体領域(つまり第2の絶縁膜16)と、第2の絶縁体領域上で、少なくともゲート電極13および第1の導電性プレートの形成されていない上方に形成された電気的にフローティング状態である少なくとも1つの第2の導電性プレート(つまり第2のFFP19)と、第2の絶縁体領域上とゲート電極13上と第2の導電性プレート上に形成された第3の絶縁体領域(つまり第3の絶縁膜20)と、第3の絶縁体領域上に形成され、ソース領域9と電気的に接続されたソース配線21と、第3の絶縁体領域上に形成され、ドレイン領域8と電気的に接続されたドレイン配線22とを備える。平面視において、ソース領域9とドレイン領域8は、対向する長さが最も長い方向である長手方向に沿って延伸するとともに、長手方向と直交する方向である短手方向に並んで配置されている。平面視において、第1の導電性プレートと第2の導電性プレートは、長手方向に沿って対向して延伸する直線領域と、長手方向での直線領域の終端部を折れ線もしくは円弧状に結ぶ曲線領域を有する。平面視において、ソース配線21およびドレイン配線22のどちらか一方の高電圧配線は、第1の導電性プレートおよび第2の導電性プレートの直線領域と交差するように短手方向に延伸している。ソース配線21およびドレイン配線22の他方の低電圧配線は、第1の導電性プレートおよび第2の導電性プレートの少なくとも1つの直線領域と交差するように短手方向に延伸している。なお、第1導電型はP型およびN型の一方を意味し、第2導電型はP型およびN型の他方を意味する。
 これによれば、高電圧配線の幅を拡大する際に起こりえる耐圧低下を低減することができる。より詳しく説明すると、第1の導電性プレートおよび第2の導電性プレートは、直線領域と交差するように延伸された低電圧配線22と容量結合される。高電圧配線との容量結合と、低電圧配線との容量結合とを組み合わせることができる。したがって、第1および第2の導電性プレートの電位の制御が容易になる。つまり、容量結合の大きさは対向する面積に比例するので、直線領域であれば長手方向の幅で調整できる。この高電圧配線と低電圧配線と、それぞれが第1の導電性プレートおよび第2の導電性プレートと交差する長手方向の幅によってきまる容量により、各導電性プレートの電位を調整することが可能になる。これにより、耐圧低下を低減することを可能にできる。
 ここで、支持基板1と半導体層3との間に埋め込み絶縁膜2が形成されていてもよい。
 ここで、平面視において、ソース領域9およびドレイン領域8のどちらか一方の高電圧側領域は、ソース領域9およびドレイン領域8の他方の低電圧側領域によって完全に包囲されており、高電圧側領域は、第1の導電性プレートおよび第2の導電性プレートによって完全に包囲されていてもよい。
 ここで、平面視において、低電圧配線は、第1の導電性プレートの直線領域の全ておよび第2の導電性プレートの直線領域の全てと交差していてもよい。
 (第2実施形態)
 第2実施形態に係る半導体装置について、一例として横型PチャネルMOSトランジスタの平面図を図6に示す。
 図1に示す第1実施形態のドレイン配線22の形状とは異なり、本実施形態においては、図6に示すように、ドレイン配線22の長手方向の幅が短手方向においてソース領域9側に向うにつれ狭くなっている。
 この構成では、ドレイン配線22と第1のフローティングフィールドプレート14と第2のフローティングフィールドプレート19の容量結合を、高電圧側のソース領域9に向かって弱くすることで高電圧側のフローティングフィールドプレートの電位を上昇させる効果がある。特に、低電圧側のドレイン領域8に空乏層が到達して電界集中した場合には耐圧改善に効果が期待できる。
 逆に、図示はしていないが、ドレイン配線22の長手方向の幅が短手方向においてソース領域9側に向うにつれ拡大していく場合も有り得る。
 この構成では、ドレイン配線22と第1のフローティングフィールドプレート14と第2のフローティングフィールドプレート19の容量結合を、高電圧側のソース領域9に向かって強くすることで高電圧側のフローティングフィールドプレートの電位を降下させる効果がある。高電圧側のソース領域9寄りで電界集中した場合に耐圧改善に効果が期待できる。
 現実には、高電圧側のソース領域9または低電圧側のドレイン領域8のどちら寄りで電界集中するかはドリフト領域5の不純物濃度やソース領域9とドレイン領域8間の間隔にも依存するため、その都度、短手方向に向う配線の長手方向の幅を変化させて容量結合を調整して耐圧を改善させることも可能であると考えている。
 以上説明してきたように第2実施形態に係る半導体装置は、第1の実施形態の半導体装置の構成に加えて、平面視で、第1の導電性プレート(つまり第1のフローティングフィールドプレート14)および第2の導電性プレート(つまり第2のフローティングフィールドプレート19)の直線領域と、低電圧配線とが重なる長手方向の幅は、ドレイン領域8およびソース領域9のどちらか一方の高電圧側領域に向かって縮小または拡大してゆく。
 これによれば、低電圧配線と、第1の導電性プレートおよび第2の導電性プレートとの容量結合を、高電圧領域に向かって強く(又は、弱く)することで高電圧側の導電性プレートの電位を降下(又は、上昇)させる効果があり空乏層の拡がりを調整して少しでも電界集中を緩和できると考える。
 (第3実施形態)
 第3実施形態に係る半導体装置について、一例として横型PチャネルMOSトランジスタの平面図を図7に示す。
 図1に示す第1実施形態のドレイン配線22とソース配線21の配置と異なり、本実施形態においては、図7に示すように、ドレイン配線22とソース配線21はともにp+型のソース領域9を中心として短手方向において対称的に存在している。
 以下、その効果について説明する。第1のフローティングフィールドプレート14と第2のフローティングフィールドプレート19の電位は、ドレイン配線22とソース配線21の電位が変化した時に、最終的には印加電圧を容量結合で分割された電位に収束すると考える。
 しかし、第1のフローティングフィールドプレート14として、例えば、高濃度に不純物を添加された多結晶ポリシリコンであっても通常の金属配線に比べれば抵抗率は高く、そのような材料の導電体を用いられると、電圧が収束するまでのごく僅かな期間に過渡的に流れる電流による電圧降下が生じることが考えられ、その場合には電位が一時的に変動して不安定な状態になることが心配される。この変動に要する時間を少なくするには、ドレイン配線22とソース配線21を極力接近させる方が良いと考えている。
 そこで、短手方向においてドレイン配線22とソース配線21が並列して延伸する本実施形態では、ドレイン配線22とソース配線21の長手方向での間隔L4が、ドレイン配線22の長手方向での幅L5およびソース配線21の長手方向での幅L6よりも狭くした構成としている。
 以上説明してきたように第3実施形態に係る半導体装置は、第1実施形態の半導体装置の構成に加えて、平面視で、第1の導電性プレート(つまり第1のFFP14)の直線領域および第2の導電性プレート(つまり第2のFFP19)の直線領域と交差しているソース配線21およびドレイン配線22は長手方向において並んで延伸しており、ソース配線21とドレイン配線22との長手方向での間隔は、ソース配線21およびドレイン配線22の長手方向の幅よりも狭い。
 これによれば、ソース配線21またはドレイン配線22の電位が変化した時に、第1の導電性プレートと第2の導電性プレートの電位が変動する時間を短くして耐圧を安定することにつながると考える。
 (第4実施形態)
 第4実施形態に係る半導体装置について、一例として横型PチャネルMOSトランジスタの平面図を図8に示す。
 図7に示す第3実施形態のドレイン配線22とソース配線21の配置と異なり、本実施形態においては、図8に示すように、短手方向に隣接して並列に延伸するドレイン配線22とソース配線21が長手方向において交互に配置されている。
 この構成とすることで、横型PチャネルMOSトランジスタが高速動作した場合でも、第1のフローティングフィールドプレート14と第2のフローティングフィールドプレート19の電位を安定にする効果を期待する。
 以上説明してきたように第4実施形態に係る半導体装置は、第3実施形態の半導体装置の構成に加えて、平面視で、第1の導電性プレート(つまり第1のFFP14)の直線領域および第2の導電性プレート(つまり第2のFFP19)の直線領域と交差しているソース配線21とドレイン配線22は、それぞれ複数が長手方向に交互に配置される。
 これによれば、半導体装置が高速動作した場合でも、第1の導電性プレートと第2の導電性プレートの電位は、ドレイン電圧およびソース電圧の変動に対して安定すると考える。
 (第5実施形態)
 第5実施形態に係る半導体装置について、一例として横型PチャネルMOSトランジスタの平面図を図9に示す。
 図1に示す第1実施形態のドレイン配線22の長手方向の幅L3とソース配線21の長手方向の幅L2との配線幅比(L3/L2)=1(固定)と異なり、本実施形態においては、図9にその一例を示すように、ドレイン配線22の長手方向の幅L3とソース配線21の長手方向の幅L2との配線幅比(L3/L2)=1/3以上3以下の範囲で変動させている。
 図10に、ドレイン配線22の長手方向の幅L3とソース配線21の長手方向の幅L2との配線幅比(L3/L2)=0以上5以下の範囲で変動させた場合の耐圧を示す。
 図16から明らかなように、配線幅比(L3/L2)=1において耐圧は最大値を示し、配線幅比(L3/L2)=1/3以上3以下の範囲を外れると耐圧が急激に低下している。そこで、現実的な配線幅比として配線幅比(L3/L2)=1/3以上3以下の範囲に設定することが好ましい。
 なお、配線幅比として配線幅比(L3/L2)=1/2以上1.5以下の範囲に設定すれば、耐圧はほぼ最大値近傍で安定して得ることができる。
 以上説明してきたように第5実施形態に係る半導体装置は、第1実施形態から第4実施形態に係る半導体装置の構成に加えて、平面視で、第1の導電性プレート(つまり第1のフローティングフィールドプレート14)および第2の導電性プレート(つまり第2のフローティングフィールドプレート19)の直線領域と、高電圧配線の重なる部分の長手方向の総寸法と、低電圧配線の重なる部分の長手方向の総寸法との比は1/3から3の範囲である。
 これによれば、半導体装置の耐圧を最大値近傍で安定させることができる。
 (第6実施形態)
 第6実施形態に係る半導体装置について、一例として横型PチャネルMOSトランジスタの平面図と断面図をそれぞれ図11と図12に示す。
 上述した第1実施形態から第5実施形態に係る半導体装置は、いずれも第1のフローティングフィールドプレート14と第2のフローティングフィールドプレート19の2層のフローティングフィールドプレート構造であるが、本開示の効果を得るためには必ずしも2層のフローティングフィールドプレート構造が必要なわけではない。
 1層のフローティングフィールドプレート構造であっても、隣接するフローティングフィールドプレート間の間隔を狭くすることで、2層のフローティングフィールドプレート構造の場合に近い効果を得ることができる。
 2層のフローティングフィールドプレートの各フローティングフィールドプレート間の容量結合は、主に、第2の絶縁膜16の膜厚と互いにオーバラップしている横方向寸法に関係する。一方、1層のフローティングフィールドプレート構造の各フローティングフィールドプレート間の容量結合は、主に、フローティングフィールドプレートの膜厚とフローティングフィールドプレート間の横方向の寸法に関係する。
 2層のフローティングフィールドプレートの容量結合と1層のフローティングフィールドプレートの容量結合を同程度にすれば同じ効果を期待できる。したがって、1層のフローティングフィールドプレート構造でのフローティングフィールドプレート間の間隔寸法を2層のフローティングフィールドプレートでの第2の絶縁膜16の膜厚以下にすることを目安にしている。
 本実施形態は、図11、図12に示すように、第1のフローティングフィールドプレート14からなる1層のフローティングフィールドプレート構造である。
 本実施形態では、ソース電極17、ドレイン電極18がそれぞれ第1実施形態におけるソース配線21、ドレイン配線22を兼ねている。したがって、以下では、ソース電極17はソース配線としての機能を含み、ドレイン電極18はドレイン配線としての機能を含むものとする。
 図11、図12から明らかなように、本実施形態では、隣接する第1のフローティングフィールドプレート14の間隔(L7)は第1実施形態の第1のフローティングフィールドプレート14の間隔に比べて狭くなっている。ここで、この間隔は図12の断面図で示される第2の絶縁膜16の膜厚(L8)よりも狭くする。隣接する第1のフローティングフィールドプレート14の間隔が位置する箇所(L7)は、高電圧配線であるソース電極17および低電圧配線であるドレイン電極18と、低濃度n-型の半導体層3上部に形成されたp型のドリフト領域5が対峙しており、配線の電位による電界が直接的に及んでしまう領域である。この間隔(L7)を狭くしてくと、電界は、配線の電位による直接的な影響よりも第1のフローティングフィールドプレート14を挟んでの間接的な影響になるため、電界が緩和される。
 以上説明してきたように第6実施形態に係る半導体装置は、支持基板1の一主面側の上部に形成された半導体層3と、半導体層3の上部に形成された第1導電型のボディ領域4と、半導体層3の上部に、ボディ領域4から離間して形成された第2導電型のドレイン領域8と、ボディ領域4の表面に形成された第2導電型のソース領域9と、半導体層3内におけるドレイン領域8とボディ領域4との間に形成された第2導電型のドリフト領域5と、半導体層3の表面におけるボディ領域4とドレイン領域7、8との間にドリフト領域5上と重なるように形成された第1の絶縁体領域(つまりSTI領域11)と、半導体層3の表面におけるボディ領域4上の一部から第1の絶縁体領域の端部まで形成されたゲート絶縁膜12と、ゲート絶縁膜12上と第1の絶縁体領域上に跨って形成されたゲート電極13と、第1の絶縁体領域上でゲート電極13とドレイン領域8の間に形成されて電気的にフローティング状態である少なくとも1つの導電性プレート(つまり第1のFFP14)と、第1の絶縁体領域上とゲート電極13上と導電性プレート上に形成された第2の絶縁体領域(つまり第2の絶縁膜16)と、第2の絶縁体領域上に形成され、ソース領域9と電気的に接続されたソース電極17と、第2の絶縁体領域上に形成され、ドレイン領域8と電気的に接続されたドレイン電極18とを備える。平面視において、ソース領域9とドレイン領域8は、対向する長さが最も長い方向である長手方向に沿って延伸するとともに、長手方向と直交する方向である短手方向に並んで配置されている。平面視において、導電性プレートは、長手方向に沿って対向して延伸する直線領域と、長手方向での直線領域の終端部を折れ線もしくは円弧状に結ぶ曲線領域を有する。平面視において、ソース電極17およびドレイン電極18のどちらか一方の高電圧配線は、導電性プレートの直線領域と交差するように短手方向に延伸している。ソース電極17およびドレイン電極18の他方の低電圧配線は、導電性プレートの少なくとも1つの直線領域と交差するように短手方向に延伸している。導電性プレートと、隣接するゲート電極13または隣接する他の導電性プレートとの短手方向の間隔は、第2の絶縁体領域の膜厚よりも狭い。
 これによれば、導電性プレートは少なくとも1層あればよく、例えば導電性プレートの数が1層であっても、第1から第5の実施形態における2層の導電性プレートをもつ構成と近い効果を得ることができる。
 ここで、支持基板1と半導体層3との間に埋め込み絶縁膜2が形成されていてもよい。
 ここで、平面視において、ソース領域9およびドレイン領域8のどちらか一方の高電圧側領域は、ソース領域およびドレイン領域の他方の低電圧側領域によって完全に包囲されており、高電圧側領域は、導電性プレートによって完全に包囲されていてもよい。
 なお、第1実施形態から第6実施形態において、第1の絶縁体領域であるSTI領域11、第2の絶縁体領域である第2の絶縁膜16および第3の絶縁体領域である第3の絶縁膜20は、いずれも単一の絶縁膜に限定されるわけではなく、複数の絶縁膜が積層されていても良い。
 また、第1実施形態から第5実施形態において、ソース配線21とドレイン配線22は同じ絶縁膜の直上に形成されており、また、第6実施形態において、ソース電極17とドレイン電極18は同じ絶縁膜の直上に形成されているが、これに限定されるわけではなく異なる絶縁膜上に形成されていても良い。
 本開示は、高耐圧MOSトランジスタの耐圧向上と安定化を実現できるものであり、特に車載デバイスのような目標耐圧100V以上のデバイスに搭載する高耐圧MOSトランジスタにおいて有用である。
1 支持基板
2 埋め込み絶縁膜
3 半導体層
4 ボディ領域
5 ドリフト領域
6 埋め込み領域
7 ドレイン領域
8 ドレイン領域
9 ソース領域
10 ボディ・コンタクト領域
11 STI領域
12 ゲート絶縁膜
13 ゲート電極
14 第1のフローティングフィールドプレート
15 サイドウォールスペーサ
16 第2の絶縁膜
17 ソース電極
18 ドレイン電極
19 第2のフローティングフィールドプレート
20 第3の絶縁膜
21 ソース配線
22 ドレイン配線
23 第1のゲート配線
24 第2のゲート配線
25 コンタクト
26 ビア

Claims (11)

  1.  支持基板の一主面側の上部に形成された半導体層と、
     前記半導体層の上部に形成された第1導電型のボディ領域と、
     前記半導体層の上部に、前記ボディ領域から離間して形成された第2導電型のドレイン領域と、
     前記ボディ領域の表面に形成された第2導電型のソース領域と、
     前記半導体層内における前記ドレイン領域と前記ボディ領域との間に形成された第2導電型のドリフト領域と、
     前記半導体層の表面における前記ボディ領域と前記ドレイン領域との間に前記ドリフト領域上と重なるように形成された第1の絶縁体領域と、
     前記半導体層の表面における前記ボディ領域上の一部から前記第1の絶縁体領域の端部まで形成されたゲート絶縁膜と、
     前記ゲート絶縁膜上と前記第1の絶縁体領域上に跨って形成されたゲート電極と、
     前記第1の絶縁体領域上で前記ゲート電極と前記ドレイン領域の間に形成されて電気的にフローティング状態である少なくとも1つの第1の導電性プレートと、
     前記第1の絶縁体領域上と前記ゲート電極上と前記第1の導電性プレート上に形成された第2の絶縁体領域と、
     前記第2の絶縁体領域上で、少なくとも前記ゲート電極および第1の導電性プレートの形成されていない上方に形成された電気的にフローティング状態である少なくとも1つの第2の導電性プレートと、
     前記第2の絶縁体領域上と前記ゲート電極上と前記第2の導電性プレート上に形成された第3の絶縁体領域と、
     前記第3の絶縁体領域上に形成され、前記ソース領域と電気的に接続されたソース配線と、
     前記第3の絶縁体領域上に形成され、前記ドレイン領域と電気的に接続されたドレイン配線とを備え、
     平面視において、前記ソース領域と前記ドレイン領域は、対向する長さが最も長い方向である長手方向に沿って延伸するとともに、前記長手方向と直交する方向である短手方向に並んで配置されており、
     平面視において、前記第1の導電性プレートと前記第2の導電性プレートは、前記長手方向に沿って対向して延伸する直線領域と、前記長手方向での直線領域の終端部を折れ線もしくは円弧状に結ぶ曲線領域を有し、
     平面視において、前記ソース配線および前記ドレイン配線のどちらか一方の高電圧配線は、前記第1の導電性プレートおよび前記第2の導電性プレートの直線領域と交差するように短手方向に延伸しており、
     前記ソース配線および前記ドレイン配線の他方の低電圧配線は、前記第1の導電性プレートおよび前記第2の導電性プレートの少なくとも1つの直線領域と交差するように短手方向に延伸している
    半導体装置。
  2.  請求項1に記載の半導体装置において、
     前記支持基板と前記半導体層との間に埋め込み絶縁膜が形成されている
    半導体装置。
  3.  請求項1または2に記載の半導体装置において、
     平面視において、前記ソース領域および前記ドレイン領域のどちらか一方の高電圧側領域は、前記ソース領域および前記ドレイン領域の他方の低電圧側領域によって完全に包囲されており、
     前記高電圧側領域は、前記第1の導電性プレートおよび前記第2の導電性プレートによって完全に包囲されている
    半導体装置。
  4.  請求項1~3のいずれか1項に記載の半導体装置において、
     平面視において、前記低電圧配線は、前記第1の導電性プレートの直線領域の全ておよび前記第2の導電性プレートの直線領域の全てと交差している
    半導体装置。
  5.  請求項1~4のいずれか1項に記載の半導体装置において、
     平面視において、前記第1の導電性プレートおよび前記第2の導電性プレートの前記直線領域と、前記低電圧配線とが重なる長手方向の幅は、前記ドレイン領域および前記ソース領域のどちらか一方の高電圧側領域に向かって縮小または拡大してゆく
    半導体装置。
  6.  請求項1~4のいずれか1項に記載の半導体装置において、
     平面視において、前記第1の導電性プレートの直線領域および前記第2の導電性プレートの直線領域と交差している前記ソース配線および前記ドレイン配線は前記長手方向において並んで延伸しており、前記ソース配線と前記ドレイン配線との前記長手方向での間隔は、前記ソース配線および前記ドレイン配線の前記長手方向の幅よりも狭い
    半導体装置。
  7.  請求項6に記載の半導体装置において、
     平面視において、前記第1の導電性プレートの直線領域および前記第2の導電性プレートの直線領域と交差している前記ソース配線と前記ドレイン配線は、それぞれ複数が前記長手方向に交互に配置されている
    半導体装置。
  8.  請求項1~7のいずれか1項に記載の半導体装置において、
     平面視において、前記第1の導電性プレートおよび前記第2の導電性プレートの直線領域と、前記高電圧配線の重なる部分の長手方向の総寸法と、前記低電圧配線の重なる部分の長手方向の総寸法との比は1/3以上3以下の範囲である
    半導体装置。
  9.  支持基板の一主面側の上部に形成された半導体層と、
     前記半導体層の上部に形成された第1導電型のボディ領域と、
     前記半導体層の上部に、前記ボディ領域から離間して形成された第2導電型のドレイン領域と、
     前記ボディ領域の表面に形成された第2導電型のソース領域と、
     前記半導体層内における前記ドレイン領域と前記ボディ領域との間に形成された第2導電型のドリフト領域と、
     前記半導体層の表面における前記ボディ領域と前記ドレイン領域との間に前記ドリフト領域上と重なるように形成された第1の絶縁体領域と、
     前記半導体層の表面における前記ボディ領域上の一部から前記第1の絶縁体領域の端部まで形成されたゲート絶縁膜と、
     前記ゲート絶縁膜上と前記第1の絶縁体領域上に跨って形成されたゲート電極と、
     前記第1の絶縁体領域上で前記ゲート電極と前記ドレイン領域の間に形成されて電気的にフローティング状態である少なくとも1つの導電性プレートと、
     前記第1の絶縁体領域上と前記ゲート電極上と前記導電性プレート上に形成された第2の絶縁体領域と、
     前記第2の絶縁体領域上に形成され、前記ソース領域と電気的に接続されたソース配線と、
     前記第2の絶縁体領域上に形成され、前記ドレイン領域と電気的に接続されたドレイン配線とを備え、
     平面視において、前記ソース領域と前記ドレイン領域は、対向する長さが最も長い方向である長手方向に沿って延伸するとともに、前記長手方向と直交する方向である短手方向に並んで配置されており、
     平面視において、前記導電性プレートは、前記長手方向に沿って対向して延伸する直線領域と、前記長手方向での直線領域の終端部を折れ線もしくは円弧状に結ぶ曲線領域を有し、
     平面視において、前記ソース配線および前記ドレイン配線のどちらか一方の高電圧配線は、前記導電性プレートの直線領域と交差するように短手方向に延伸しており、
     前記ソース配線および前記ドレイン配線の他方の低電圧配線は、前記導電性プレートの少なくとも1つの直線領域と交差するように短手方向に延伸しており、
     前記導電性プレートと、隣接する前記ゲート電極または隣接する他の導電性プレートとの短手方向の間隔は、前記第2の絶縁体領域の膜厚よりも狭い
    半導体装置。
  10.  請求項9に記載の半導体装置において、
     前記支持基板と前記半導体層との間に埋め込み絶縁膜が形成されている
    半導体装置。
  11.  請求項9または10に記載の半導体装置において、
     平面視において、前記ソース領域および前記ドレイン領域のどちらか一方の高電圧側領域は、前記ソース領域および前記ドレイン領域の他方の低電圧側領域によって完全に包囲されており、
     前記高電圧側領域は、前記導電性プレートによって完全に包囲されている
    半導体装置。
PCT/JP2018/040887 2018-04-16 2018-11-02 半導体装置 WO2019202760A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019525022A JP7129408B2 (ja) 2018-04-16 2018-11-02 半導体装置
CN201880011097.2A CN110612598B (zh) 2018-04-16 2018-11-02 半导体装置
US16/529,564 US10847610B2 (en) 2018-04-16 2019-08-01 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018078235 2018-04-16
JP2018-078235 2018-04-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/529,564 Continuation US10847610B2 (en) 2018-04-16 2019-08-01 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2019202760A1 true WO2019202760A1 (ja) 2019-10-24

Family

ID=68239424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040887 WO2019202760A1 (ja) 2018-04-16 2018-11-02 半導体装置

Country Status (4)

Country Link
US (1) US10847610B2 (ja)
JP (1) JP7129408B2 (ja)
CN (1) CN110612598B (ja)
WO (1) WO2019202760A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248078A (ja) * 1989-03-22 1990-10-03 Fuji Electric Co Ltd 高耐圧素子を含む半導体装置
JP2008218458A (ja) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp 半導体装置
JP2010258355A (ja) * 2009-04-28 2010-11-11 Sharp Corp 半導体装置及びその製造方法
JP2012186359A (ja) * 2011-03-07 2012-09-27 Hitachi Ltd 半導体装置
JP2014096470A (ja) * 2012-11-09 2014-05-22 Sharp Corp 半導体装置、及びその製造方法
JP2015135950A (ja) * 2013-12-20 2015-07-27 株式会社デンソー 半導体装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0783048B2 (ja) 1989-11-22 1995-09-06 三菱電機株式会社 半導体装置における電界集中防止構造およびその形成方法
US5204545A (en) 1989-11-22 1993-04-20 Mitsubishi Denki Kabushiki Kaisha Structure for preventing field concentration in semiconductor device and method of forming the same
JP2556175B2 (ja) 1990-06-12 1996-11-20 三菱電機株式会社 半導体装置における電界集中防止構造
JP2739004B2 (ja) 1992-01-16 1998-04-08 三菱電機株式会社 半導体装置
JPH08330579A (ja) * 1995-05-31 1996-12-13 Matsushita Electric Works Ltd 横型半導体装置
JP3495498B2 (ja) * 1996-03-15 2004-02-09 松下電工株式会社 半導体装置
JP3796998B2 (ja) 1999-02-19 2006-07-12 松下電器産業株式会社 高耐圧半導体装置
JP4797225B2 (ja) * 1999-05-27 2011-10-19 富士電機株式会社 半導体装置
JP3425131B2 (ja) 1999-12-17 2003-07-07 松下電器産業株式会社 高耐圧半導体装置
US6750506B2 (en) 1999-12-17 2004-06-15 Matsushita Electric Industrial Co., Ltd. High-voltage semiconductor device
JP4023062B2 (ja) 2000-03-03 2007-12-19 松下電器産業株式会社 半導体装置
KR100535062B1 (ko) 2001-06-04 2005-12-07 마츠시타 덴끼 산교 가부시키가이샤 고내압 반도체장치
JP3654872B2 (ja) 2001-06-04 2005-06-02 松下電器産業株式会社 高耐圧半導体装置
JP3659195B2 (ja) * 2001-06-18 2005-06-15 サンケン電気株式会社 半導体装置及びその製造方法
US7125777B2 (en) * 2004-07-15 2006-10-24 Fairchild Semiconductor Corporation Asymmetric hetero-doped high-voltage MOSFET (AH2MOS)
JP2006237474A (ja) * 2005-02-28 2006-09-07 Matsushita Electric Ind Co Ltd 半導体デバイス
JP5487852B2 (ja) * 2008-09-30 2014-05-14 サンケン電気株式会社 半導体装置
JP2011049424A (ja) * 2009-08-28 2011-03-10 Sony Corp 半導体デバイス
DE102011076610A1 (de) * 2010-06-04 2011-12-08 Denso Corporation Stromsensor, inverterschaltung und diese aufweisende halbleitervorrichtung
US8304830B2 (en) * 2010-06-10 2012-11-06 Macronix International Co., Ltd. LDPMOS structure for enhancing breakdown voltage and specific on resistance in biCMOS-DMOS process
US20130277741A1 (en) * 2012-04-23 2013-10-24 Globalfoundries Singapore Pte Ltd Ldmos device with field effect structure to control breakdown voltage, and methods of making such a device
JP5936513B2 (ja) * 2012-10-12 2016-06-22 三菱電機株式会社 横型高耐圧トランジスタの製造方法
JP6244177B2 (ja) * 2013-11-12 2017-12-06 日立オートモティブシステムズ株式会社 半導体装置
US9460926B2 (en) * 2014-06-30 2016-10-04 Alpha And Omega Semiconductor Incorporated Forming JFET and LDMOS transistor in monolithic power integrated circuit using deep diffusion regions
JP6388509B2 (ja) * 2014-08-19 2018-09-12 ラピスセミコンダクタ株式会社 半導体装置および半導体装置の製造方法
US9761668B2 (en) * 2015-05-08 2017-09-12 Rohm Co., Ltd. Semiconductor device
JP6718733B2 (ja) * 2015-05-08 2020-07-08 ローム株式会社 半導体装置
US9461046B1 (en) * 2015-12-18 2016-10-04 Texas Instruments Incorporated LDMOS device with graded body doping

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02248078A (ja) * 1989-03-22 1990-10-03 Fuji Electric Co Ltd 高耐圧素子を含む半導体装置
JP2008218458A (ja) * 2007-02-28 2008-09-18 Mitsubishi Electric Corp 半導体装置
JP2010258355A (ja) * 2009-04-28 2010-11-11 Sharp Corp 半導体装置及びその製造方法
JP2012186359A (ja) * 2011-03-07 2012-09-27 Hitachi Ltd 半導体装置
JP2014096470A (ja) * 2012-11-09 2014-05-22 Sharp Corp 半導体装置、及びその製造方法
JP2015135950A (ja) * 2013-12-20 2015-07-27 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
JP7129408B2 (ja) 2022-09-01
US10847610B2 (en) 2020-11-24
JPWO2019202760A1 (ja) 2021-03-11
US20190355809A1 (en) 2019-11-21
CN110612598A (zh) 2019-12-24
CN110612598B (zh) 2023-02-14

Similar Documents

Publication Publication Date Title
KR930001899B1 (ko) 반도체 장치
US8759912B2 (en) High-voltage transistor device
US6750506B2 (en) High-voltage semiconductor device
KR101864889B1 (ko) 수평형 디모스 트랜지스터 및 그 제조방법
CN103681864A (zh) 半导体器件和用于制作半导体器件的方法
KR20190008463A (ko) 반도체 소자 및 그 제조 방법
US7973359B2 (en) Semiconductor device with a charge carrier compensation structure and process
KR20110035938A (ko) 게이트 커패시턴스가 감소된 고전압 트랜지스터 구조
US10600908B2 (en) High voltage device and manufacturing method thereof
US11631763B2 (en) Termination for trench field plate power MOSFET
CN110718585A (zh) Ldmos器件及其制造方法
JP7474214B2 (ja) 半導体装置
US20140339620A1 (en) Integrated Circuitry and Methods of Forming Transistors
US9553188B1 (en) High-voltage semiconductor device with finger-shaped insulation structure
CN102222685A (zh) 侧部浮动耦合电容器器件终端结构
JP6471811B2 (ja) 半導体装置
WO2019202760A1 (ja) 半導体装置
TWI632622B (zh) 高壓金屬氧化物半導體元件及其製造方法
US9035386B2 (en) Semiconductor structure and method for manufacturing the same
US9711636B2 (en) Super-junction semiconductor device
US10978565B2 (en) Power transistor device
JP5312889B2 (ja) 半導体装置
US11855200B2 (en) High-voltage semiconductor devices
US20230145562A1 (en) Semiconductor device
US20230119393A1 (en) Semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019525022

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915297

Country of ref document: EP

Kind code of ref document: A1