WO2019189637A1 - 新規な液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

新規な液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2019189637A1
WO2019189637A1 PCT/JP2019/013742 JP2019013742W WO2019189637A1 WO 2019189637 A1 WO2019189637 A1 WO 2019189637A1 JP 2019013742 W JP2019013742 W JP 2019013742W WO 2019189637 A1 WO2019189637 A1 WO 2019189637A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
carbon atoms
crystal aligning
aligning agent
Prior art date
Application number
PCT/JP2019/013742
Other languages
English (en)
French (fr)
Inventor
美希 豊田
佳和 原田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201980023947.5A priority Critical patent/CN111936923B/zh
Priority to KR1020207029840A priority patent/KR20200136429A/ko
Priority to JP2020511021A priority patent/JP7347410B2/ja
Publication of WO2019189637A1 publication Critical patent/WO2019189637A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • a liquid crystal alignment agent containing a polyamic acid obtained from a dianhydride and a specific diamine compound or an imidized polymer thereof for example, see Patent Document 4
  • a method of suppressing an afterimage caused by alternating current driving in a liquid crystal display element of a lateral electric field driving method a method of using a specific liquid crystal alignment film that has good liquid crystal alignment and large interaction with liquid crystal molecules (patent) Document 5) has been proposed.
  • Japanese Unexamined Patent Publication No. 9-316200 Japanese Unexamined Patent Publication No. 10-104633 Japanese Unexamined Patent Publication No. 8-76128 Japanese Unexamined Patent Publication No. 9-138414 Japanese Unexamined Patent Publication No. 11-38415
  • liquid crystal aligning agent which can obtain the liquid crystal display element which has the characteristic which can hold
  • production lines for liquid crystal display elements in recent years have become very large, and firing temperature unevenness, coating unevenness, etc. are likely to occur in the liquid crystal alignment film manufacturing process. For this reason, a vertical alignment type liquid crystal display element is required to have a high vertical alignment capability that can withstand a severe manufacturing process.
  • S represents a single bond or a hydrocarbon group having 1 to 4 carbon atoms
  • P 1 represents a hydroxyl group protected by a heat-eliminable group
  • n is an integer of 1 to 5
  • m is 1 Is an integer of 2 and when m is 1, R 1 is a hydrocarbon group having 1 to 4 carbon atoms, and when m is 2, R 1 represents a hydrogen atom, * is a bond bonded to the hydrocarbon group Is shown.
  • the polyimide precursor is obtained by using a diamine having a partial structure represented by the formula (I-1) or (I-2) and an amino group protected with a heat-eliminable group.
  • the liquid crystal aligning agent according to (4), wherein the diamine is at least one selected from diamines represented by the following formulas (II-1) to (II-3).
  • L and M are divalent organic groups, Q is a trivalent organic group, and n represents an integer of 0 to 2.
  • P represents the formula (I-1) or (I-2).
  • P 2 represents an amino group protected with a thermally desorbable group.
  • L and M each represent an alkylene group having 1 to 11 carbon atoms, a divalent aliphatic ring structure or a divalent aromatic ring structure. . Any —CH 2 — of the alkylene group may be substituted with —O—, —COO— or —Si—O—Si— in a combination that is not adjacent to each other. The ring structure shown below may be substituted.
  • (X 1 and X 2 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —COO—, —OCO— or — ((CH 2 ) a1 —A 1 ) m1 —, wherein a1 is independently an integer of 1 to 15
  • a plurality of A 1 each independently represents an oxygen atom or —COO—, and m 1 is 1 to 2.
  • G 1 and G 2 are each independently a divalent aromatic having 6 to 12 carbon atoms.
  • R 3 represents a single bond, -CONH -, - NHCO -, - CON (CH 3) -, - NH -, - O -, - CH 2 O -, - COO- or -OCO- .
  • R 2 representing a is Represents an alkyl having 1 to 20 carbon atoms or an alkoxyalkyl having 2 to 20 carbon atoms, and any hydrogen forming R 2 may be substituted with fluorine.
  • (X 4 represents —CONH—, —NHCO—, —O—, —COO— or —OCO—.
  • R 3 represents a structure having a steroid skeleton.
  • a liquid crystal display device comprising the liquid crystal alignment film according to (10).
  • a liquid crystal alignment film having good adhesion to a substrate over a long period of time even under high temperature and high humidity can be obtained, and voltage retention characteristics over a long period of time by using the liquid crystal aligning agent of the present invention.
  • a liquid crystal display element excellent in high temperature and high humidity resistance can be obtained.
  • even when an excessive baking process is applied it is possible to provide a liquid crystal display element that exhibits good vertical alignment.
  • the liquid crystal aligning agent of the present invention contains a polymer having a partial structure represented by the following formula (I-1) or formula (I-2) (also referred to as polymer (P) in the present invention).
  • formula (I-1) or formula (I-2) also referred to as polymer (P) in the present invention.
  • the definitions of A, S, R 1 , P 1 , n, m, * are as described above.
  • P 1 is preferably a t-butoxycarbonyl group (Boc group), a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, or an allyloxycarbonyl group in terms of high heat detachability. More preferred is a t-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group.
  • P 1 is preferably a t-butoxycarbonyl group (Boc group), a benzyloxycarbonyl group, a 9-fluorenylmethyloxycarbonyl group, or an allyloxycarbonyl group in terms of high heat detachability. More preferred is a t-butoxycarbonyl group or a 9-fluorenylmethyloxycarbonyl group.
  • the main skeleton of the polymer (P) is not particularly limited.
  • (meth) acrylate means containing an acrylate and a methacrylate.
  • the polyimide precursor include polyamic acid and polyamic acid ester.
  • the polymer (P) may be a single type or a combination of two or more types.
  • the polyimide precursor and / or the polyimide, which is the polymer (P), is protected with the partial structure represented by the above formula (I-1) or (I-2), and preferably with a thermally desorbable group. It is obtained using a diamine having an amino group (also referred to as a specific diamine in the present invention).
  • a diamine having an amino group also referred to as a specific diamine in the present invention.
  • a specific diamine by using a specific diamine, a liquid crystal alignment film having a high vertical alignment ability expressing a stable pretilt angle can be obtained even in a severe device manufacturing process, but the mechanism is not clear.
  • the specific diamine is deprotected by heating to produce a hydroxy group.
  • the cross-linking reaction of the polyimide polymer proceeds from the deprotection reaction by heating, and the polymer and the side chain structure having the vertical alignment ability are stabilized. It is thought that the orientation is unlikely to decrease.
  • the specific diamine is preferably at least one selected from the group consisting of the following formulas (II-1) to (II-3).
  • L and M are divalent organic groups
  • Q is a trivalent organic group
  • n represents an integer of 0 to 2.
  • P represents a structure represented by the formula (I-1) or (I-2), and P 2 represents an amino group protected with a heat-eliminable group.
  • L and M are each independently an alkylene group having 1 to 11 carbon atoms, a divalent aliphatic ring structure or a divalent aromatic ring structure.
  • Arbitrary —CH 2 — in the above-mentioned alkylene group may be substituted with —O—, —COO— or —Si—O—Si— in a combination that is not adjacent to each other.
  • the ring structure shown below may be substituted.
  • R 2 represents a hydrocarbon group having 1 to 5 carbon atoms.
  • diamine for producing the polymer (P) include the following formulas [M-1] to [M-34].
  • a diamine can be used individually by 1 type or in combination of 2 or more types.
  • the polyamic acid which is a polyimide precursor as the polymer (P) can be obtained by subjecting the specific diamine and a tetracarboxylic acid component to a polycondensation reaction.
  • the tetracarboxylic acid component include tetracarboxylic acid, tetracarboxylic dianhydride, tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, and tetracarboxylic acid dialkyl ester dihalide.
  • tetracarboxylic dianhydride examples include aliphatic tetracarboxylic dianhydrides, alicyclic tetracarboxylic dianhydrides, aromatic tetracarboxylic dianhydrides, and the like. Specific examples thereof include the following groups [1] to [5].
  • Examples of the aliphatic tetracarboxylic dianhydride include 1,2,3,4-butanetetracarboxylic dianhydride.
  • Examples of alicyclic tetracarboxylic dianhydrides include acid dianhydrides such as the following formulas (X1-1) to (X1-13).
  • R 3 to R 23 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, It represents an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group.
  • R M represents a hydrogen atom or a methyl group.
  • Xa represents a tetravalent organic group represented by the following formulas (Xa-1) to (Xa-7).
  • aromatic tetracarboxylic dianhydrides for example, pyromellitic anhydride, 4,4 ′-(hexafluoroisopropylidene) diphthalic anhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic Acid dianhydrides, acid dianhydrides represented by the following formulas (Xb-1) to (Xb-10), and the following (Xb-1) to (Xb-10).
  • the above tetracarboxylic acid components can be used singly or in combination of two or more. Depending on the characteristics required for the liquid crystal alignment film and the liquid crystal display element, one kind can be used alone, or two or more kinds can be used in combination.
  • a diamine having a function of generating a polymerization or radical upon irradiation with light a diamine according to paragraph 0169 of International Publication WO2015 / 046374, a diamine having a carboxyl group or a hydroxyl group according to paragraphs 0171 to 0172, paragraph Diamines having a nitrogen-containing heterocycle described in 0173 to 0188, diamines having a nitrogen-containing structure described in paragraph 0050 of Japanese Patent Application Laid-Open No.
  • organosiloxane-containing diamines such as methyl disiloxane.
  • a polymer using a diamine having a specific side chain structure as at least a part of the raw material is suitable from the viewpoint of improving the heat resistance of the liquid crystal alignment film.
  • the polymer using the carboxyl group-containing diamine as at least a part of the raw material is preferable in that the effect of improving the applicability (printability) of the liquid crystal aligning agent can be enhanced.
  • X 1 and X 2 are each independently a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON ( CH 3 ) —, —NH—, —O—, —COO—, —OCO— or — ((CH 2 ) a1 —A 1 ) m1 — is represented.
  • the plurality of a1 are each independently an integer of 1 to 15
  • the plurality of A 1 are each independently an oxygen atom or —COO—
  • m 1 is 1 to 2.
  • G 1 and G 2 each independently represent a divalent cyclic group selected from a divalent aromatic group having 6 to 12 carbon atoms or a divalent alicyclic group having 3 to 8 carbon atoms.
  • the optional hydrogen atom on the cyclic group is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 3 carbon atoms. Alternatively, it may be substituted with at least one selected from the group consisting of fluorine atoms.
  • m and n are each independently an integer of 0 to 3, and the sum of m and n is 1 to 4.
  • R 1 represents alkyl having 1 to 20 carbons, alkoxy having 1 to 20 carbons, or alkoxyalkyl having 2 to 20 carbons, and any hydrogen forming R 1 may be substituted with fluorine.
  • X 3 represents a single bond, —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —COO— or —OCO—.
  • R 2 represents alkyl having 1 to 20 carbons or alkoxyalkyl having 2 to 20 carbons, and any hydrogen forming R 2 may be substituted with fluorine.
  • X 4 represents —CONH—, —NHCO—, —O—, —COO— or —OCO—.
  • R 3 represents a structure having a steroid skeleton.
  • diamine having a specific side chain structure examples include diamines represented by the following formula [1] or formula [2]. These can be used alone or in combination of two or more.
  • X represents a single bond, —O—, —C (CH 3 ) 2 —, —NH—, —CO—, — (CH 2 ) m —, —SO 2 —, —O—.
  • m is an integer of 1 to 8.
  • Y represents a side chain structure represented by the above formulas [S1] to [S3].
  • Preferred specific examples of the formula [S1] include the structures of the following formulas [S1-x1] to [S1-x7].
  • R 1 is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms.
  • X p is — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON (CH 3 ) —, —NH—, —O—, —CH 2 O—, —CH 2 OCO—, —COO—, or —OCO—.
  • a 1 is an oxygen atom or —COO— * (where a bond with “*” is bonded to (CH 2 ) a2 ), and A 2 is an oxygen atom * —COO— (where “*” is a given binding hands (CH 2) binds to a2)
  • a 1, a 3 are each independently an integer of 01
  • a 2 is an integer of 1 ⁇ 10, Cy 1, 4-cyclohexylene group and 1,4-phenylene group.
  • diamine of the above formula [1] include the following formulas [S-1] to [S-18]. (N represents an integer of 1 to 20)
  • Examples of the diamine represented by the above formula [2] include structures selected from the group consisting of the following formulas [W-1] to [W-6].
  • X p1 to X p8 are each independently — (CH 2 ) a — (a is an integer of 1 to 15), —CONH—, —NHCO—, —CON (CH 3 ) — , —NH—, —O—, —CH 2 O—, —CH 2 OCO—, —COO—, or —OCO—, wherein X s1 to X s4 each independently represent —O—, —COO— Or —OCO—, X a to X f represent —O—, —NH—, —O— (CH 2 ) m —O—, and R 1a to R 1h each independently represents 1 carbon atom.
  • m represents an integer of 1 to 8. 1 mol% or more is preferable with respect to specific diamine, and 2 mol% or more of the diamine which has a specific side chain structure is more preferable. Moreover, Preferably it is 90 mol% or less, More preferably, it is 85 mol% or less.
  • Examples of the diamine having a function of being polymerized by light irradiation include diamines in which structures represented by the following formulas [p1] to [p7] are bonded to an aromatic ring such as a benzene ring via a direct linking group. be able to.
  • diamines represented by the following formula [P a ] or [P b ].
  • the bonding positions of the two amino groups (—NH 2 ) in the formula [P a ] and the formula [P b ] are the 2,4 position, the 2,5 position, or the 3,5 position.
  • the position of the position is preferred. Considering the ease in synthesizing the diamine, the position of the 2,4 position or the position of the 3,5 position is more preferable.
  • R 8 represents a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ).
  • -, -CON (CH 3 )-, or -N (CH 3 ) CO- which is a single bond, -O-, -COO-, -NHCO-, or -CONH- in terms of ease of production Is preferred.
  • R 9 is a single bond, a divalent group selected from a C 1-20 alkylene group optionally substituted with a fluorine atom, a C 6-12 aromatic ring such as a benzene ring or a naphthalene ring, cyclohexane 5 or more membered rings such as divalent alicyclic groups having 3 to 8 carbon atoms such as rings, pyrrole, imidazole, pyridine, pyrimidine, pyrazine, pyridazine, triazine, indole, quinoline, carbazole, thiazole, purine, tetrahydrofuran, thiophene, etc.
  • —CH 2 — in the alkylene group may be optionally substituted with —CF 2 — or —CH ⁇ CH—.
  • k represents an integer of 0 to 4.
  • R 10 represents a structure selected from the above formulas [p1] to [p7]. From the viewpoint of photoreactivity, [p1], [p2], and [p4] are preferable.
  • Y 1 and Y 3 each independently represent —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, or — Represents CO-.
  • Y 2 and Y 5 are each independently synonymous with R 9 in the above [Pa].
  • Y 4 represents a cinnamoyl group.
  • Y 6 represents a structure selected from the above formulas [p1] to [p7]. From the viewpoint of photoreactivity, [p1], [p2], and [p4] are preferable.
  • m represents 0 or 1;
  • Diamines that have the function of polymerizing when irradiated with light depend on the liquid crystal alignment properties, pretilt angle, voltage holding characteristics, accumulated charge characteristics, etc., and the response speed of liquid crystals when used as liquid crystal display elements.
  • One type or a mixture of two or more types can be used.
  • the diamine having a function of polymerizing by light irradiation is preferably 1 mol% or more, more preferably 2 mol% or more based on the total amount of diamine used for the synthesis of the polymer (P).
  • the upper limit of the said usage rate can be arbitrarily set in the range of 100 mol% or less. Preferably it is 90 mol% or less, More preferably, it is 85 mol% or less.
  • Examples of the diamine having a function of generating radicals upon irradiation with light include a diamine having a site having a radical generating structure that decomposes upon irradiation with ultraviolet rays to generate radicals in the side chain.
  • the diamine represented by the following formula [R] is Can be mentioned.
  • Ar, R 1 , R 2 , T 1 , T 2 , S and Q in the above formula [R] have the following definitions. That is, Ar represents an aromatic hydrocarbon group selected from phenylene, naphthylene, and biphenylene, in which an organic group may be substituted, and a hydrogen atom may be substituted with a halogen atom.
  • R 1 and R 2 are each independently an alkyl group or alkoxy group having 1 to 10 carbon atoms.
  • T 1 and T 2 are each independently a single bond or —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ). It is a bonding group of —, —CON (CH 3 ) —, and —N (CH 3 ) CO—.
  • S in the formula [R] has the same meaning as R 9 in the above [P a ].
  • Q is a structure selected from the following formulas [q-1] to [q-4] (R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, R 3 represents —CH 2 —, —NR—, — Represents O- or -S-).
  • Ar to which carbonyl is bonded preferably has a long conjugated length structure such as naphthylene or biphenylene from the viewpoint of efficient absorption of ultraviolet rays.
  • Ar may be substituted with a substituent, and the substituent is preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group. If the ultraviolet wavelength is in the range of 250 nm to 380 nm, a phenyl group is most preferable because sufficient characteristics can be obtained even with a phenyl group.
  • R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group, a benzyl group, or a phenethyl group. In the case of an alkyl group or an alkoxy group, R 1 and R 2 are May be formed. Q is more preferably a hydroxyl group or an alkoxyl group.
  • the diaminobenzene in the formula (R) may have any structure of o-phenylenediamine, m-phenylenediamine, or p-phenylenediamine.
  • m-phenylenediamine, m-phenylenediamine, Or p-phenylenediamine is preferred.
  • the structures represented by the following formulas [R-1] to [R-4] are most preferable from the viewpoints of easiness of synthesis, high versatility, characteristics and the like.
  • n is an integer of 2 to 8.
  • the diamine having a function of generating radicals by light irradiation is preferably 1 mol% or more, more preferably 2 mol% or more, based on the total amount of diamine used for the synthesis of the polymer (P). More preferably, it is 5 mol% or more.
  • the upper limit of the said usage rate can be arbitrarily set in the range of 100 mol% or less. Preferably it is 70 mol% or less, More preferably, it is 60 mol% or less, More preferably, it is 50 mol% or less.
  • diamine having the above-mentioned specific side chain structure or other diamine other than the diamine having the function of generating a polymerization or radical upon irradiation with light include m-phenylenediamine, p-phenylenediamine, and 4,4′-diaminobiphenyl.
  • the production of the polyamic acid is usually carried out by using a diamine and a tetracarboxylic acid compound in a solvent.
  • the solvent is not particularly limited as long as the produced polymer is soluble.
  • the solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide 1,3-dimethyl-2 -Imidazolidinone.
  • the solvent solubility of the polymer is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3]
  • the indicated solvents can be used.
  • D 1 represents an alkylene group having 1 to 3 carbon atoms.
  • D 2 represents an alkylene group having 1 to 3 carbon atoms.
  • D 3 represents an alkylene group having 1 to 4 carbon atoms.
  • solvents may be used alone or in combination. Furthermore, even a solvent that does not dissolve the polymer may be used by mixing with the above solvent as long as the produced polymer does not precipitate. Moreover, since water in the solvent inhibits the polymerization reaction and further causes hydrolysis of the produced polymer, it is preferable to use a dehydrated and dried solvent.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it will be difficult to obtain a high molecular weight polymer, and the concentration will be too high. And the viscosity of the reaction solution becomes too high, and uniform stirring becomes difficult. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration, and then a solvent can be added.
  • the ratio of the total number of moles of diamine to the total number of moles of the tetracarboxylic acid compound is preferably 0.8 to 1.2. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the specific polymer produced.
  • the polyamic acid ester which is a polyimide precursor is, for example, [I] a method of reacting the polyamic acid obtained by the above synthesis reaction with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester and diamine, [ III] It can be obtained by a known method such as a method of reacting a tetracarboxylic acid diester dihalide with a diamine.
  • Polyimide is a polyimide obtained by ring closure of the polyimide precursor, and in this polyimide, the ring closure rate of the amic acid group (also referred to as imidization rate) is not necessarily 100%, depending on the application and purpose. It can be adjusted arbitrarily.
  • the method for imidizing the polyimide precursor include catalytic imidization in which a catalyst is added to a solution of a thermal imidized polyimide precursor in which the polyimide precursor solution is heated as it is.
  • the temperature when the polyimide precursor is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalytic imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C. it can.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, pyromellitic anhydride trimellitic anhydride, etc. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the reaction solution may be poured into a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, and water.
  • the polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating.
  • the polymer collected by precipitation is redissolved in a solvent and then re-precipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
  • the solvent at this time include alcohols and ketone hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of the polyimide precursor and polyimide is preferably 1,000 to 500,000, more preferably 2,000 to 300,000. It is.
  • the molecular weight distribution (Mw / Mn) represented by the ratio between Mw and the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less.
  • the liquid crystal aligning agent of the present invention contains a polymer (P), for example, for the purpose of improving electric characteristics and solution characteristics, the polymer (P) and other polymers (hereinafter referred to as other heavy polymers). May also be incorporated).
  • the ratio of the other polymer used is preferably 80 parts by mass or less, and preferably 0.1 to 80 parts by mass with respect to 100 parts by mass in total of the polymers contained in the liquid crystal aligning agent. Is more preferably 0.3 to 70 parts by mass.
  • the main skeleton of the other polymer is not particularly limited.
  • the main skeleton is mentioned.
  • the liquid crystal aligning agent of the present invention may contain components other than the above as necessary.
  • the component include a compound having at least one epoxy group in the molecule, a compound having at least one oxetanyl group in the molecule, a functional silane compound, a metal chelate compound, a curing accelerator, a surfactant, and an antioxidant. , Sensitizers, preservatives and the like.
  • the liquid crystal aligning agent of the present invention is prepared as a liquid composition in which the polymer (P) and other components used as necessary are preferably dispersed or dissolved in an appropriate solvent.
  • organic solvent to be used examples include N-methyl-2-pyrrolidone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, ⁇ -butyrolactone, ⁇ -butyrolactam, N, N-dimethylformamide, N, N-dimethylacetamide, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monomethyl ether, butyl lactate, butyl acetate, methyl methoxypropionone , Ethyl ethoxypropionate, ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol-n-propyl ether, ethylene glycol-i-propyl ether, ethylene glycol monobutyl ether (butyl cellosolve), Tylene glycol dimethyl ether, ethylene glycol monobutyl ether acetate, propylene glycol dimethyl
  • the solid content concentration in the liquid crystal aligning agent (the ratio of the total mass of components other than the solvent of the liquid crystal aligning agent to the total mass of the liquid crystal aligning agent) is appropriately selected in consideration of viscosity, volatility, etc. It is in the range of 1 to 10% by mass. From the viewpoint of forming a uniform and defect-free coating film, it is preferably 1% by mass or more, and from the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
  • the liquid crystal aligning agent of this invention can be used as a liquid crystal aligning film by apply
  • it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used at this time is not particularly limited as long as it is a highly transparent substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • Examples of the method for applying the liquid crystal aligning agent include screen printing, offset printing, flexographic ink jet method, dipping method, roll coater method, slit coater method, spinner method, spray method, etc. From the viewpoint of enhancing, a method of applying by flexographic printing or an ink jet method is preferable.
  • the liquid crystal aligning agent After the liquid crystal aligning agent is applied on the substrate, it is preferably dried at 40 to 150 ° C. by a heating means such as a hot plate or a thermal circulation oven IR (infrared) oven, depending on the solvent used for the liquid crystal aligning agent. Then, a liquid crystal alignment film can be obtained by baking at a temperature of preferably 150 to 300 ° C., more preferably 180 to 250 ° C. In such calcination, the thermally detachable group is eliminated from the hydroxyl group protected by the thermally detachable group of the polymer (P) and the amino group protected by the thermally detachable group, respectively. An unprotected hydroxyl group or amino group is formed.
  • a heating means such as a hot plate or a thermal circulation oven IR (infrared) oven
  • the coating film formed as described above can be used as it is as the liquid crystal alignment film, but it can be rubbed or PSA described later if necessary. Processing may be performed.
  • the display mode of the liquid crystal display element to be manufactured is a vertical electric field method other than the VA type or a horizontal electric field method
  • the formed coating film surface is rubbed or irradiated with polarized ultraviolet rays. The alignment process is performed.
  • the content of the polymerizable compound is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the liquid crystal component.
  • the polymerizable compound is less than 0.01 part by mass, the polymerizable compound is not polymerized and the alignment of the liquid crystal cannot be controlled. The seizure characteristics of the steel deteriorate. After the liquid crystal cell is produced, the polymerizable compound is polymerized by irradiating heat or ultraviolet rays while applying an AC / DC voltage to the liquid crystal cell. Thereby, the alignment of the liquid crystal molecules can be controlled.
  • a method of adding a compound containing this polymerizable group to a liquid crystal aligning agent or a polymer containing a polymerizable group examples include methods using components.
  • the polymer containing a polymerizable group a polymer obtained by using a diamine having a function of polymerizing by light irradiation can be given.
  • Boc 2 O di-tert-butyl dicarbonate
  • DMAP dimethylaminopyridine
  • NMP N-methyl-2-pyrrolidone
  • BCS butyl cellosolve
  • DA-1 Compound represented by the following formula “DA-1”
  • DA-2 Compound represented by the following formula “DA-2”
  • the eluent was N, N′-dimethylformamide (lithium bromide) using a normal temperature gel permeation chromatography apparatus (GPC, manufactured by Senshu Scientific Co., Ltd., SSC-7200) and a column manufactured by Shodex (KD-803, KD-805).
  • ⁇ Imidization rate> Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard ⁇ 5 by Kusano Kagaku Co., Ltd.), add 1.0 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture), and apply ultrasonic waves. To dissolve completely. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum. The imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm.
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100 (Wherein x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, ⁇ is the proton of the NH group of the amic acid in the case of polyamic acid (imidation rate 0%)) This is the ratio of the number of reference protons to one.
  • This reaction solution was poured into methanol (560 ml), and the resulting precipitate was separated by filtration. This deposit was wash
  • the imidation ratio of this polyimide was 72%, Mn was 17,000, and Mw was 132,000.
  • a polyimide powder (B) was obtained in the same manner as in Synthesis Example 1 except that DA-2 was used instead of the diamine DA-1 used.
  • the imidation ratio of this polyimide was 74%, Mn was 14,000, and Mw was 56,000.
  • the numerical values in Table 1 indicate the usage ratio (mol%) with respect to the total amount of tetracarboxylic dianhydride used for the reaction for tetracarboxylic dianhydride, and for the diamine with respect to the diamine component used for the reaction. The use ratio (mol%) is shown.
  • the liquid crystal display element using the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention is useful for a wide range such as a liquid crystal display for display purposes, a light control window for controlling transmission and blocking of light, and an optical shutter. It is. Note that the entire content of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-068720 filed on March 30, 2018 is cited herein as the disclosure of the specification of the present invention. Incorporate.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

電圧保持特性及び高温高湿耐性に優れた液晶表示素子が得られる液晶配向剤、液晶配向膜及び液晶表示素子を提供する。 下記式(I-1)又は式(I-2)で表される部分構造を有する重合体(P)を含有することを特徴とする液晶配向剤。 (Aは炭素数1~18の(n+1)価の炭化水素基、又は炭化水素基の炭素―炭素結合間に-O-、-COO-、-CO-若しくは-NHCO-を有する基を表す。Sは、単結合又は炭素数1~4の炭化水素基を表す。Pは熱脱離性基で保護された水酸基を表す。nは1~5の整数であり、mは1~2の整数であり、mが1の場合、Rは炭素数1~4の炭化水素基、mが2の場合、Rは水素原子を表す。*は炭化水素基に結合する結合手を示す。)

Description

新規な液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、電圧保持特性及び高温高湿耐性に優れた液晶表示素子を得ることができる液晶配向剤、それを使用する液晶配向膜及び液晶表示素子に関する。
 液晶表示素子は、パソコン、携帯電話、スマートフォン、テレビなどの表示部として幅広く用いられている。液晶表示素子は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する液晶配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)などを備えている。
 従来、液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下の抑制や残像現象の低減といった要求から、液晶配向膜においては、優れた液晶配向性や安定したプレチルト角の発現に加えて、高い電圧保持率、交流駆動により発生する残像の抑制、直流電圧を印加した際の少ない残留電荷、及び/又は直流電圧による蓄積した残留電荷の早い緩和といった特性が次第に重要となっている。
 従来、液晶配向膜としては、ポリアミック酸(ポリアミド酸)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤をガラス基板などに塗布し焼成したポリイミド系の液晶配向膜が主として用いられている。
 上記のような要求にこたえるために、ポリイミド系の液晶配向膜では、種々の提案がなされてきている。例えば、直流電圧によって発生する残像が消えるまでの時間が短い液晶配向膜として、ポリアミド酸やイミド基含有ポリアミド酸に加えて特定構造の3級アミンを含有する液晶配向剤を使用したもの(例えば、特許文献1参照)や、ピリジン骨格などを有する特定ジアミン化合物を原料に使用した可溶性ポリイミドを含有する液晶配向剤を使用したもの(例えば、特許文献2参照)などが提案されている。また、電圧保持率が高く、かつ直流電圧によって発生した残像が消えるまでの時間が短い液晶配向膜として、ポリアミド酸やそのイミド化重合体などに加えて分子内に1個のカルボン酸基を含有する化合物、分子内に1個のカルボン酸無水物基を含有する化合物及び分子内に1個の3級アミノ基を含有する化合物からなる群から選ばれる化合物を極少量含有する液晶配向剤を使用したもの(例えば、特許文献3参照)が提案されている。
 また、液晶配向性に優れ、電圧保持率が高く、残像が少なく、信頼性に優れ、且つ高いプレチルト角を示す液晶配向膜として、特定構造のテトラカルボン酸二無水物とシクロブタンを有するテトラカルボン酸二無水物と特定のジアミン化合物から得られるポリアミド酸やそのイミド化重合体を含有する液晶配向剤を使用したもの(例えば、特許文献4参照)が知られている。また、横電界駆動方式の液晶表示素子において発生する交流駆動による残像を抑制する方法として、液晶配向性が良好で、且つ液晶分子との相互作用が大きい特定の液晶配向膜を使用する方法(特許文献5参照)が提案されている。
日本特開平9-316200号公報 日本特開平10-104633号公報 日本特開平8-76128号公報 日本特開平9-138414号公報 日本特開平11-38415号公報
 しかしながら、近年、スマートフォンなどの液晶表示素子の高性能化に伴い、液晶配向膜に期待される特性も更に厳しくなっており、特に、高いレベルにおいて、高温、高湿下であっても長期にわたって基板との密着性を保持するとともに、高い電圧を保持できる特性を有する液晶表示素子を得ることができる液晶配向剤が要求されている。さらに、近年の液晶表示素子の製造ラインは非常に大型化してきており、液晶配向膜の製造プロセスにおいて、焼成温度ムラ、塗布ムラなどが発生しやすくなっている。このため、垂直配向方式の液晶表示素子には、過酷な製造プロセスにも耐えうる高い垂直配向能が求められている。
 本発明は、上記に鑑みてなされたものであり、一段と高いレベルにおける、基板との密着性、電圧保持特性及び高温高湿耐性を有する液晶表示素子を得ることができる液晶配向剤、それを使用する液晶配向膜及び液晶表示素子を提供することを目的とする。また、過酷な製造プロセス下でも、安定したプレチルト角を発現する高い垂直配向能を持った液晶配向膜を提供することを目的とする。
 本発明者は、上記課題を達成するために鋭意研究を行った結果、特定の部分構造を有する重合体を含有する液晶配向剤が、上記の目的を達成するために極めて有効であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の要旨を有する。
(1)下記式(I-1)又は式(I-2)で表される部分構造を有する重合体(P)を含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000007
 (Aは炭素数1~18の(n+1)価の炭化水素基、又は炭化水素基の炭素―炭素結合間に-O-、-COO-、-CO-、又は-NHCO-を有する基を表す。Sは、単結合又は炭素数1~4の炭化水素基を表す。Pは熱脱離性基で保護された水酸基を表す。nは1~5の整数であり、mは1~2の整数であり、mが1の場合、Rは炭素数1~4の炭化水素基、mが2の場合、Rは水素原子を表す。*は炭化水素基に結合する結合手を示す。)
(2)前記重合体(P)が、更に、熱脱離性基で保護されたアミノ基を有する上記(1)に記載の液晶配向剤。
(3)前記重合体(P)が、ポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群より選ばれる少なくとも一種の重合体である上記(1)又は(2)に記載の液晶配向剤。
(4)前記ポリイミド前駆体が、前記式(I-1)又は(I-2)で表される部分構造、及び熱脱離性基で保護されたアミノ基を有するジアミンを用いて得られる重合体である上記(1)~(3)のいずれかに記載の液晶配向剤。
(5)前記ジアミンが、下記式(II-1)~(II-3)で表されるジアミンから選ばれる少なくとも1種である上記(4)に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000008
(L、Mは、2価の有機基であり、Qは3価の有機基であり、nは0~2の整数を表す。Pは、前記式(I-1)又は式(I-2)で表される構造を表し、Pは熱脱離性基で保護されたアミノ基を表す。)
(6)前記式(II-1)~(II-3)中、L、Mが、炭素数1~11を有するアルキレン基、2価の脂肪族環構造又は2価の芳香族環構造を表す。アルキレン基の任意の-CH-はそれぞれが隣り合わない組み合わせで-O-、-COO-又は-Si-O-Si-で置換されていてもよい。下記に示す環構造に置換されていてもよい。Rは炭素原1~5の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000009
(7)前記ポリイミド前駆体が、さらに、下記式[S1]~[S3]からなる群から選ばれる側鎖構造を有するジアミンを用いて得られる重合体である上記(4)~(6)のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000010
(X及びXはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のAはそれぞれ独立して酸素原子又は-COO-を表し、mは1~2である。G及びGはそれぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子からなる群から選ばれる少なくとも1種で置換されていてもよい。m及びnはそれぞれ独立して0~3の整数であって、m及びnの合計は1~4である。Rは炭素数1~20のアルキル、炭素数1~20のアルコキシ、又は炭素数2~20のアルコキシアルキルを表し、Rを形成する任意の水素はフッ素で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000011
(Xは単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Rは炭素数1~20のアルキル又は炭素数2~20のアルコキシアルキルを表し、Rを形成する任意の水素はフッ素で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000012
(Xは-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。
(8)前記熱脱離性基が、150~300℃で水素原子に置き換わる基である上記(1)~(7)のいずれかに記載の液晶配向剤。
(9)前記熱脱離性基が、t-ブトキシカルボニル基である上記(1)~(8)のいずれかに記載の液晶配向剤。
(10)上記(1)~(9)のいずれかに記載の液晶配向剤から形成された液晶配向膜。
(11)上記(10)に記載の液晶配向膜を具備する液晶表示素子。
 本発明によれば、高温、高湿下であっても長期にわたって基板に対する密着性が良好な液晶配向膜が得られ、また、本発明の液晶配向剤を用いることにより、長期間にわたる電圧保持特性及び高温高湿耐性に優れた液晶表示素子を得ることができる。また、過剰な焼成プロセスが加わった場合でも、良好な垂直配向性を示す液晶表示素子を提供することができる。
[重合体(P)]
 本発明の液晶配向剤は、下記式(I-1)又は式(I-2)で表される部分構造を有する重合体(本発明では、重合体(P)ともいう。)を含有する。
Figure JPOXMLDOC01-appb-C000013
 上記式(1-1)、式(1-2)における、A、S、R、P、n、m、*の定義は上記したとおりである。
 また、Pは、なかでも、好ましくは150~300℃、特に好ましくは180~250℃で脱離して水素に置き換わる熱脱離性基が好ましい。好ましい具体例としては、t-ブトキシカルボニル基、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、又は下記式(t-1)~式(t-8)で表される基が挙げられる。なお、下式中、*は酸素原子との結合手を示す。
Figure JPOXMLDOC01-appb-C000014
 なかでも、Pは、熱による脱離性が高い点で、t-ブトキシカルボニル基(Boc基)、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、又はアリルオキシカルボニル基が好ましく、より好ましくはt-ブトキシカルボニル基、又は9-フルオレニルメチルオキシカルボニル基である。
 上記重合体(P)は、更に、熱脱離性基で保護されたアミノ基を有することが好ましい。かかる熱脱離性基で保護されたアミノ基を有する場合、得られる液晶配向膜の高温、高湿耐性をさらに高めることができる。
 かかるアミノ基を保護する熱脱離性基は、熱により脱離して水素に置き換わる熱脱離性基であり、なかでも、好ましくは150~300℃、特に好ましくは180~250℃で水素に置き換わる熱脱離性基が好ましい。その好ましい具体例は、上記した水酸基を保護する熱脱離性基と同じものが挙げられる。
 なかでも、熱による脱離性が高い点で、Pは、t-ブトキシカルボニル基(Boc基)、ベンジルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、又はアリルオキシカルボニル基が好ましく、より好ましくはt-ブトキシカルボニル基、又は9-フルオレニルメチルオキシカルボニル基である。
 上記重合体(P)の主骨格は特に限定されず、例えば、ポリイミド前駆体、ポリイミド、ポリシロキサン、ポリエステル、ポリアミド、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどの主骨格が挙げられる。なお、(メタ)アクリレートは、アクリレート及びメタクリレートを含むことを意味する。ポリイミド前駆体は、ポリアミック、ポリアミック酸エステルが挙げられる。重合体(P)は、1種を単独でも、2種以上を組み合わせであってもよい。
 上記重合体(P)は、なかでも、ポリイミド前駆体、ポリイミド、ポリアミド、ポリオルガノシロキサン、ポリ(メタ)アクリレート及びポリエステルよりなる群から選ばれる少なくとも一種であることが好ましく、ポリイミド前駆体及びポリイミドよりなる群から選ばれる少なくとも一種の重合体であることがより好ましい。
[特定ジアミン]
 上記重合体(P)である、ポリイミド前駆体及び/又はポリイミドは、上記式(I-1)又は(I-2)で表される部分構造、及び好ましくは熱脱離性基で保護されたアミノ基を有するジアミン(本発明では、特定ジアミンともいう。)を用いて得られる。
 本発明において、特定ジアミンを用いることにより、過酷な素子の製造過程でも安定したプレチルト角を発現する高い垂直配向能を持った液晶配向膜がえられるが、そのメカニズムは明確ではない。しかし、特定ジアミンは加熱により脱保護し、ヒドロキシ基が生成することが想定される。一般的にヒドロキシ基はポリイミド中に存在するカルボン酸と架橋反応を起こすことが知られており、この反応は実際の架橋剤等にも広く用いられている。本発明の特定ジアミンを用いることで、加熱による脱保護反応からポリイミド系重合体の架橋反応が進行し、ポリマーや垂直配向能を有する側鎖構造が安定化するため、過酷な焼成条件においても垂直配向性が低下しにくくなるのではないかと考えられる。
 かかる特定ジアミンは、下記式(II-1)~(II-3)からなる群から選ばれる少なくとも1種であるであるのが好ましい。
Figure JPOXMLDOC01-appb-C000015
 上記式(II-1)~(II-3)中、L、Mは、2価の有機基であり、Qは3価の有機基であり、nは0~2の整数を表す。Pは、前記式(I-1)又は式(I-2)で表される構造を表し、Pは熱脱離性基で保護されたアミノ基を表す。
 上記L、Mは、なかでも、それぞれ独立して、炭素数1~11を有するアルキレン基、2価の脂肪族環構造又は2価の芳香族環構造を表す。上記アルキレン基の任意の-CH-は、それぞれが隣り合わない組み合わせで-O-、-COO-又は-Si-O-Si-で置換されていてもよい。す、下記に示す環構造に置換されていてもよい。Rは炭素原1~5の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000016
 上記重合体(P)を製造するためのジアミンの具体例としては、下記式[M-1]~式[M-34]が挙げられる。なお、ジアミンは、1種を単独で又は2種以上を組み合わせて使用できる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
[テトラカルボン酸成分]
 重合体(P)としてのポリイミド前駆体であるポリアミック酸は、上記特定ジアミンと、テトラカルボン酸成分とを重縮合反応させることにより得ることができる。
 上記テトラカルボン酸成分の例としては、テトラカルボン酸、テトラカルボン酸二無水物、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル又はテトラカルボン酸ジアルキルエステルジハライドが挙げられる。
 上記テトラカルボン酸二無水物の例としては、脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物などが挙げられる。これらの具体例としては、以下の[1]~[5]の群のそれぞれが挙げられる。
[1]脂肪族テトラカルボン酸二無水物として、例えば1,2,3,4-ブタンテトラカルボン酸二無水物など。
[2]脂環式テトラカルボン酸二無水物として、例えば、下記式(X1-1)~(X1-13)などの酸二無水物。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 上記式(X1-1)~(X1-4)中、R~R23はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基又はフェニル基を表す。Rは水素原子又はメチル基を表す。また、上記式(X1-13)中、Xaは、下記式(Xa-1)~(Xa-7)で表される4価の有機基を表す。
Figure JPOXMLDOC01-appb-C000023
[3]3-オキサビシクロ[3.2.1]オクタン-2,4-ジオン-6-スピロ-3’-(テトラヒドロフラン-2’,5’-ジオン)、3,5,6-トリカルボキシ-2-カルボキシメチルノルボルナン-2:3,5:6-二無水物、4,9-ジオキサトリシクロ[5.3.1.02,6]ウンデカン-3,5,8,10-テトラオンなど。
[4]芳香族テトラカルボン酸二無水物として、例えばピロメリット酸無水物、4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、下記式(Xb-1)~(Xb-10)で表される酸二無水物、及び下記の(Xb-1)~(Xb-10)など。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
[5]下記式(X1-44)~(X1-52)で表される酸二無水物、日本特開2010-97188号公報に記載のテトラカルボン酸二無水物など。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 上記テトラカルボン酸成分は、1種単独又は2種以上混合して用いることができる。液晶配向膜や液晶表示素子に要求される特性に応じて、1種単独か2種以上混合して用いるか、また、2種以上混合して用いる場合にはその割合など、適宜調整できる。
(その他のジアミン)
 上記重合体(P)の製造に使用するジアミンとしては、上記特定ジアミンのほか、下記式[S1]~[S3]で表される群から選ばれる側鎖構造(以下、特定側鎖構造ともいう。)を有するジアミン;光照射により重合若しくはラジカルを発生する機能を有するジアミン;国際公開公報WO2015/046374の段落0169に記載のジアミン、段落0171~0172に記載のカルボキシル基や水酸基を有するジアミン、段落0173~0188に記載の窒素含有複素環を有するジアミンや日本特開2016-218149号公報の段落0050に記載の窒素含有構造を有するジアミン、1,3-ビス(3-アミノプロピル)-1,1,3,3-テトラメチルジシロキサン、1,3-ビス(4-アミノブチル)-1,1,3,3-テトラメチルジシロキサンなどのオルガノシロキサン含有ジアミンを挙げることができる。特定側鎖構造を有するジアミンを原料の少なくとも一部に用いた重合体によれば、液晶配向膜の耐熱性を高める観点で好適である。また、カルボキシル基含有ジアミンを原料の少なくとも一部に用いた重合体によれば、液晶配向剤の塗布性(印刷性)の改善効果を高くできる点で好適である。
Figure JPOXMLDOC01-appb-C000028
 式[S1]中、X及びXはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のAはそれぞれ独立して酸素原子又は-COO-を表し、mは1~2である。G及びGはそれぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子からなる群から選ばれる少なくとも1種で置換されていてもよい。m及びnはそれぞれ独立して0~3の整数であって、m及びnの合計は1~4である。Rは炭素数1~20のアルキル、炭素数1~20のアルコキシ、又は炭素数2~20のアルコキシアルキルを表し、Rを形成する任意の水素はフッ素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000029
 式[S2]中、Xは単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Rは炭素数1~20のアルキル又は炭素数2~20のアルコキシアルキルを表し、Rを形成する任意の水素はフッ素で置換されていてもよい。
Figure JPOXMLDOC01-appb-C000030
(式[S3]中、Xは-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。
 特定側鎖構造を有するジアミンとして、例えば、下記式[1]又は式[2]で表されるジアミンが挙げられる。なお、これらは、1種を単独で又は2種以上を組み合わせても使用できる。
Figure JPOXMLDOC01-appb-C000031
 上記式[2]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、又は-COO-(CH-OCO-の2価の有機基を表す。mは1~8の整数である。Yは、上記式[S1]~[S3]で表される側鎖構造を表す。
 式[S1]の好ましい具体例として、下記式[S1-x1]~[S1-x7]の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000032
 上記式中、Rは炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、又は炭素数2~20のアルコキシアルキル基である。Xは、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-である。Aは、酸素原子又は-COO-*(ただし、「*」を付した結合手が(CHa2と結合する)、Aは、酸素原子*-COO-(ただし、「*」を付した結合手が(CHa2と結合する)であり、a、aは、それぞれ独立して、01の整数であり、aは1~10の整数であり、Cyは1,4-シクロへキシレン基1,4-フェニレン基である。
 上記式[S3]の好ましい具体例として、下記式[S3-x]が挙げられる。
Figure JPOXMLDOC01-appb-C000033
 上記式[1]のジアミンの具体例としては、下記式[S-1]~[S-18]が挙げられる。
Figure JPOXMLDOC01-appb-C000034
(nは1~20の整数を示す。)
Figure JPOXMLDOC01-appb-C000035
 上記式[2]で表されるジアミンとしては、下記式[W-1]~[W-6]からなる群から選ばれる構造を挙げることが出来る。
Figure JPOXMLDOC01-appb-C000036
 上記式中、Xp1~Xp8は、それぞれ独立して、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を示し、Xs1~Xs4はそれぞれ独立して、-O-、-COO-又は-OCO-を示し、X~Xは、-O-、-NH-、-O-(CH-O-を示し、R1a~R1hはそれぞれ独立して、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基炭素数2~20のアルコキシアルキル基を示す。mは1~8の整数を表す。
 特定側鎖構造を有するジアミンは、特定ジアミンに対して1モル%以上が好ましく、2モル%以上がより好ましい。また、好ましくは90モル%以下であり、より好ましくは85モル%以下である。
 光照射により重合する機能を有するジアミンとしては、例えば、下記式[p1]~[p7]で表される構造が直接連結基を介してベンゼン環などの芳香族環に結合しているジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000037
 具体例として、下記式[P]又は[P]で示されるジアミンを挙げることができる。
Figure JPOXMLDOC01-appb-C000038
 式[P]、式[P]における2つのアミノ基(-NH)の結合位置は、反応性の観点から、2,4位の位置、2,5位の位置、又は3,5位の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4位の位置、又は3,5位の位置がより好ましい。
 式[P]中、Rは、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、製造の容易性から、単結合、-O-、-COO-、-NHCO-、又は-CONH-である方が好ましい。
 Rは、単結合、フッ素原子で置換されていてもよい炭素数1~20のアルキレン基、ベンゼン環、ナフタレン環などの炭素数6~12の芳香族環から選ばれる2価の基、シクロヘキサン環などの炭素数3~8の2価の脂環式基、ピロール、イミダゾール、ピリジン、ピリミジン、ピラジン、ピリダジン、トリアジン、インドール、キノリン、カルバゾール、チアゾール、プリン、テトラヒドロフラン、チオフェンなどの5員環以上の複素環から選ばれる2価の環状基を表す。ここで、アルキレン基の-CH-は、-CF-又は-CH=CH-で任意に置換されていてもよい。合成の容易性から、単結合又は炭素数1~12のアルキレン基が好ましい。kは0~4の整数を表す。
 R10は、上記式[p1]~[p7]から選ばれる構造を表す。光反応性の観点から、[p1]、[p2]、[p4]が好ましい。
 式[P]中、Y、Yは、それぞれ独立して、-CH-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、又は-CO-を表す。Y、Yは、それぞれ独立して、上記[P-a]中のRと同義である。Yはシンナモイル基を表す。Yは、上記式[p1]~[p7]から選ばれる構造を表す。光反応性の観点から、[p1]、[p2]、[p4]が好ましい。mは0又は1を表す。
 光照射により重合する機能を有するジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類又は2種類以上を混合して使用できる。
 光照射により重合する機能を有するジアミンは、上記重合体(P)の合成に用いるジアミン全体量に対して1モル%以上とすることが好ましく、2モル%以上とすることがより好ましい。また、当該使用割合の上限は、100モル%以下の範囲で任意に設定することができる。好ましくは90モル%以下であり、より好ましくは85モル%以下である。
 光照射によりラジカルを発生する機能を有するジアミンとしては、例えば紫外線照射により分解しラジカルを発生するラジカル発生構造を有する部位を側鎖に有するジアミンが挙げられ、例えば下記式[R]で示すジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000039
 上記式[R]におけるAr、R、R、T、T、S及びQは、以下の定義を有する。
 即ち、Arはフェニレン、ナフチレン、及びビフェニレンから選ばれる芳香族炭化水素基を示し、それらには有機基が置換していても良く、水素原子はハロゲン原子に置換していても良い。R、Rはそれぞれ独立して炭素原子数1~10のアルキル基もしくはアルコキシ基である。
 T、Tはそれぞれ独立して、単結合又は-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、-N(CH)CO-の結合基である。
 上記式[R]におけるSは、上記[P]中のRと同義である。
 Qは下記式[q-1]~[q-4]から選ばれる構造(Rは水素原子又は炭素原子数1~4のアルキル基を表し、Rは-CH-、-NR-、-O-、又は-S-を表す。)を表す。
Figure JPOXMLDOC01-appb-C000040
(式中、*は結合位置を示す。)
 上記式[R]において、カルボニルが結合しているArは紫外線の吸収を効率的にする観点から、ナフチレンやビフェニレンのような共役長の長い構造が好ましい。また、Arには置換基が置換していても良く、かかる置換基は、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基などのような電子供与性の有機基が好ましい。紫外線の波長が250nm~380nmの範囲であればフェニル基でも十分な特性が得られるため、フェニル基が最も好ましい。
 また、R、Rは、それぞれ独立して炭素原子数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R、Rで環を形成していてもよい。
 Qはより好ましくはヒドロキシル基又はアルコキシル基である。
 式(R)におけるジアミノベンゼンは、o-フェニレンジアミン、m-フェニレンジアミン、又はp-フェニレンジアミンのいずれの構造でもよいが、テトラカルボン酸成分との反応性が高い点で、m-フェニレンジアミン、又はp-フェニレンジアミンが好ましい。
 具体的には、合成の容易さ、汎用性の高さ、特性などの点から、下記式[R-1]~[R-4]で表される構造が最も好ましい。なお、式中、nは2~8の整数である。
Figure JPOXMLDOC01-appb-C000041
 光照射によりラジカルを発生する機能を有するジアミンは、上記重合体(P)の合成に用いるジアミン全体量に対して1モル%以上とすることが好ましく、2モル%以上とすることがより好ましく、5モル%以上とすることがさらに好ましい。また、当該使用割合の上限は、100モル%以下の範囲で任意に設定することができる。好ましくは70モル%以下であり、より好ましくは60モル%以下であり、さらに好ましくは50モル%以下である。
 上記特定側鎖構造を有するジアミン、又は光照射により重合若しくはラジカルを発生する機能を有するジアミン以外のその他ジアミンの好ましい具体例は、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,6-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス(4-アミノフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、ビス(4-アミノシクロヘキシル)メタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、4,4’-ジアミノビフェニル-3-カルボン酸、4,4’-ジアミノジフェニルメタン-3-カルボン酸、4,4’-ジアミノジフェニルエタン-3-カルボン酸、4,4’-ジアミノビフェニル-3,3’-ジカルボン酸、4,4’-ジアミノビフェニル-2,2’-ジカルボン酸、3,3’-ジアミノビフェニル-4,4’-ジカルボン酸、3,3’-ジアミノビフェニル-2,4’-ジカルボン酸、4,4’-ジアミノジフェニルメタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエタン-3,3’-ジカルボン酸、4,4’-ジアミノジフェニルエーテル-3,3’-ジカルボン酸、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N,N’-ビス(4-アミノフェニル)-ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、下記式(D-2-1)~式(D-2-8)のそれぞれで表される化合物などが挙げられる。
Figure JPOXMLDOC01-appb-C000042
(ポリアミック酸の製造)
 ポリアミック酸の製造は、通常、ジアミンとテトラカルボン酸化合物とを溶媒中で行う。上記溶媒としては、生成した重合体が溶解するものであれば特に限定されない。
 上記溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000043
(式[D-1]中、Dは炭素数1~3のアルキレン基を示し、式[D-2]中、Dは炭素数1~3のアルキレン基を示し、式[D-3]中、Dは炭素数1~4のアルキレン基を示す)。
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、重合体を溶解させない溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成した重合体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 ジアミンとテトラカルボン酸化合物とを溶媒中で反応させる際には、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することができる。
 重合体(P)の重合反応においては、ジアミンの合計モル数とテトラカルボン酸化合物の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成する特定重合体の分子量は大きくなる。
[ポリアミック酸エステル]
 ポリイミド前駆体であるポリアミック酸エステルは、例えば、[I]上記合成反応により得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの公知の方法によって得ることができる。
[ポリイミド]
 ポリイミドは上記ポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミック酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化ポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20℃~250℃、好ましくは0℃~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミントリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 ポリイミド前駆体ポリイミドの反応溶液から、生成したポリイミド前駆体ポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。
 ポリイミド前駆体及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶表示素子の良好な配向性を確保することができる。
 本発明の液晶配向剤が重合体(P)を含有する場合、例えば電気特性や溶液特性を改善することなどを目的として、重合体(P)とともに、それ以外の重合体(以下、その他の重合体ともいう。)を含有させてもよい。この場合のその他の重合体の使用割合は、液晶配向剤中に含まれる重合体の合計100質量部に対して、80質量部以下とすることが好ましく、0.1~80質量部とすることがより好ましく、0.3~70質量部とすることが更に好ましい。
 その他の重合体の主骨格は特に限定されず、例えばポリイミド前駆体、ポリイミド、ポリシロキサン、ポリエステル、ポリアミド、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどの主骨格が挙げられる。なかでも、ポリイミド前駆体、ポリイミド、ポリアミド、ポリオルガノシロキサン、ポリ(メタ)アクリレート及びポリエステルよりなる群から選ばれる少なくとも一種であることが好ましく、ポリイミド前駆体、ポリイミド及びポリシロキサンよりなる群から選ばれる少なくとも一種であることがより好ましい。なお、その他の重合体は、1種又は2種以上を組み合わせて使用してもよい。
 本発明の液晶配向剤は、その他、必要に応じて上記以外の成分を含有していてもよい。当該成分としては、例えば分子内に少なくとも一つのエポキシ基を有する化合物、分子内に少なくとも一つのオキセタニル基を有する化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤などを挙げることができる。
<溶剤>
 本発明の液晶配向剤は、重合体(P)及び必要に応じて使用されるその他の成分が、好ましくは適当な溶媒中に分散又は溶解してなる液状の組成物として調製される。
 使用する有機溶媒としては、例えばN-メチル-2-ピロリドン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、γ-ブチロラクトン、γ-ブチロラクタム、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノメチルエーテル、乳酸ブチル、酢酸ブチル、メチルメトキシプロピオネ-ト、エチルエトキシプロピオネ-ト、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコール-i-プロピルエーテル、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、ジイソブチルケトン、イソアミルプロピオネート、イソアミルイソブチレート、ジイソペンチルエーテル、エチレンカーボネート、プロピレンカーボネートなどを挙げることができる。これらは、単独で又は2種以上を混合して使用することができる。
 液晶配向剤における固形分濃度(液晶配向剤の溶媒以外の成分の合計質量が液晶配向剤の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。
<液晶配向膜・液晶表示素子>
 本発明の液晶配向剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板などのプラスチック基板なども用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミなどの光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、スクリーン印刷、オフセット印刷、フレキソ印刷インクジェット法、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などを挙げることができるが、液晶配向膜の製造効率を高める観点でフレキソ印刷又はインクジェット法で塗布する方法が好ましい。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブンIR(赤外線)型オーブンなどの加熱手段により、液晶配向剤に用いる溶媒に応じて、好ましくは40~150℃で乾燥し、次いで、好ましくは150~300℃、より好ましくは180~250℃の温度で焼成することにより液晶配向膜とすることができる。そして、かかる焼成では、重合体(P)の有する熱脱離性基で保護された水酸基や、熱脱離性基で保護されたアミノ基から熱脱離性基が脱離し、ぞれぞれ、保護されていない水酸基やアミノ基が生成する。生成した水酸基やアミノ基は、ポリイミド前駆体やポリイミドなどが有するカルボキシル基やアミド基などと反応し、架橋構造を形成すると考えられる。これにより、得られる液晶配向膜は、優れた高温高湿耐性や高い電圧保持率をもたらすものと考えられる。
 焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。
 製造される液晶表示素子の表示モードがVA型である場合には、上記のようにして形成された塗膜はそのまま液晶配向膜として用いることができるが、必要に応じてラビング処理又は後述のPSA処理を行ってもよい。一方、製造される液晶表示素子の表示モードがVA型以外の垂直電界方式である場合および横電界方式である場合には、形成された塗膜面に対して、ラビング処理又は偏光紫外線照射などで処理して配向処理を行う。
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子にも好ましく用いられる。ここで、印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、活性エネルギー線としては、紫外線が好適である。紫外線としては、波長が300~400nmの波長の光を含む紫外線、好ましくは310~360nmの波長の光を含む紫外線である。光の照射量としては、好ましくは0.1~20J/cmであり、より好ましくは1~20J/cmである。
 上記の液晶表示素子は、PSA(Polymer Sustained Alignment)方式により、液晶分子のプレチルトを制御するものである。PSA方式では、液晶材料中に少量の光重合性化合物、例えば光重合性モノマーを混入しておき、液晶セルを組み立てた後、液晶層に所定の電圧を印加した状態で光重合性化合物に紫外線などを照射し、生成した重合体によって液晶分子のプレチルトを制御する。重合体が生成するときの液晶分子の配向状態が電圧を取り去った後においても記憶されるので、液晶層に形成される電界などを制御することにより、液晶分子のプレチルトを調整することができる。また、PSA方式では、ラビング処理を必要としないので、ラビング処理によってプレチルトを制御することが難しい垂直配向型の液晶層の形成に適している。
 本発明の液晶表示素子は、上記した手法により、本発明の液晶配向剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製して液晶表示素子としたものである。
 液晶セルの作製方法としては、液晶配向膜の形成された一対の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、スペーサを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。
 液晶には、前述のとおり紫外線照射又は熱により重合する重合性化合物を混合してもよい。重合性化合物としては、アクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する化合物、例えば下記式(M-1)~(M-3)で表されるような重合性化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000044
 その際、重合性化合物の含有量は、液晶成分の100質量部に対して0.01~10質量部であることが好ましく、より好ましくは0.1~5質量部である。重合性化合物が0.01質量部未満であると、重合性化合物が重合せずに液晶の配向制御できなくなり、10質量部よりも多くなると、未反応の重合性化合物が多くなって液晶表示素子の焼き付き特性が低下する。液晶セルを作製した後は、液晶セルに交流直流の電圧を印加しながら、熱や紫外線を照射して重合性化合物を重合する。これにより、液晶分子の配向を制御することができる。
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、上記一対の基板の間に活性エネルギー線および熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子、すなわち、SC-PVAモードにも用いてもよい。ここで、活性エネルギー線としては、紫外線が好適である。紫外線としては、上記PSA方式で用いる紫外線を好ましい態様も含めて適用することができる。加熱による重合の場合、加熱温度は40~120℃、好ましくは60~80℃である。また、紫外線と加熱を同時に行ってもよい。
 活性エネルギー線および熱の少なくとも一方より重合する重合性基を含む液晶配向膜を得るためには、この重合性基を含む化合物を液晶配向剤中に添加する方法や、重合性基を含む重合体成分を用いる方法が挙げられる。重合性基を含む重合体の具体例としては、上記光照射により重合する機能を有するジアミンを用いて得られる重合体を挙げることができる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。なお、化合物の略号、及び特性評価の方法は、以下のとおりである。
BocO:二炭酸ジ-tert-ブチル、 DMAP:ジメチルアミノピリジン
NMP:N-メチル-2-ピロリドン、   BCS:ブチルセロソルブ
(テトラカルボン酸二無水物)
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物(下記式「BODA」で示される化合物)
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物(下記式「CBDA」で示される化合物)
TCA:2,3,5-トリカルボキシシクロペンチル酢酸二無水物(下記式「TCA」で示される化合物)
PMDA:ピロメリット酸無水物(下記式「PMDA」で示される化合物)
Figure JPOXMLDOC01-appb-C000045
(特定ジアミン)
 DA-1:下記式「DA-1」で示される化合物
 DA-2:下記式「DA-2」で示される化合物
Figure JPOXMLDOC01-appb-C000046
(特定側鎖構造を有するジアミン)
DA-3:1,3-ジアミノ-4-[4-(トランス-4-n-ヘプチルシクロヘキシル)フェノキシ]ベンゼン
DA-4:下記式で表される特定側鎖構造を有するジアミン
DA-5:下記式で表される特定側鎖構造を有するジアミン
DA-6:下記式で表される特定側鎖構造を有するジアミン
Figure JPOXMLDOC01-appb-C000047
(その他のジアミン)
 下記構造で表されるDA-7~DA-10のジアミン
Figure JPOXMLDOC01-appb-C000048
(添加剤)
3AMP:3-ピコリルアミン
<重合体の数平均分子量(Mn)、重量平均分子量(Mw)>
 常温ゲル浸透クロマトグラフィー装置(GPC、センシュー科学社製、SSC-7200)とShodex社製カラム(KD-803、KD-805)を用いて、溶離液をN,N’-ジメチルホルムアミド(臭化リチウム-水和物(LiBr・HO)を30mmol/L、リン酸・無水結晶(o-リン酸)を30mmol/L、テトラヒドロフランを10ml/Lの濃度で含む)、流速を1.0ml/分、カラム温度を50℃、東ソー社製TSK標準ポリエチレンオキシド(分子量約9000,000、150,000、100,000、30,000)及びポリマーラボラトリー社製ポリエチレングリコール(分子量 約12,000、4,000、1,000)を標準溶液として測定した。
<イミド化率>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)1.0mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
   イミド化率(%)=(1-α・x/y)×100
(式中、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合である。
[合成例1]:化合物1の合成
Figure JPOXMLDOC01-appb-C000049
 窒素雰囲気下、4口フラスコにジメチルホルムアミド(1100g)、2-(2-アミノエチルアミノ)-エタノール(45.3g)、4-フルオロニトロベンゼン(126g)、炭酸カリウム(145g)を加え、室温で168時間撹拌した。その後、ろ過により炭酸カリウムを除去して得られたろ液を、濃塩酸50mlを2000mlの水で希釈した希塩酸水溶液へ投入し、析出した化合物1をろ過して粗物を得た。この粗物を750mlのエタノールに懸濁させ、還流条件で2時間撹拌した後に室温に冷却させてからろ過し、ケーキ分をエタノール100mlで2回洗浄した。得られた結晶をテトラヒドロフラン1250mlに懸濁させ、60℃で24時間撹拌した後、室温に冷却させてからろ過を行った。得られたケーキ分をテトラヒドロフラン100mlで2回洗浄した後に、乾燥させて化合物1を62.3g(収率41.4%)で得た。
[合成例2]:化合物2の合成
Figure JPOXMLDOC01-appb-C000050
 窒素雰囲気下、4口フラスコに化合物1(20.4g)、DMAP(0.362g)、NMP(170g)を入れ、BocO(30.1g)をNMP30mlで希釈した混合溶液を室温下滴下した。室温で17時間撹拌した後、水を250ml加え析出した化合物2をろ過し、得られたケーキ分を水100mlで4回洗浄し、乾燥させて化合物2を30.1g(収率93.6%)で得た。
[合成例3]化合物(DA-1)の合成
Figure JPOXMLDOC01-appb-C000051
 窒素雰囲気下、4口フラスコに化合物2(30.1g)、5%パラジウムカーボン粉末50%含水品(3.01g)、テトラヒドロフラン(240g)を入れ、水素雰囲気に置換してから120時間室温常圧下撹拌した。反応終了後、0.45μmPTFEメンブレンフィルターでパラジウムカーボンをろ過し、得られたろ液を濃縮、乾燥させてDA-1を26.5g(収率99.0%)で得た。
 化合物(DA-1)の構造は、1H-NMR測定により以下のスペクトルデータを得て確認した。尚、NMR測定は、日本電子データム社製JNW-ECA500を用いた。H-NMR(DMSO-d):δ=6.78-6.76(br,2H),6.46(t,4H),6.41(t,2H),5.01(s,2H),4.37(s,2H),3.94(t,2H),3.45(t,2H),3.30-3.19(br,4H),1.40-1.35(br,18H).
[合成実施例1]
 BODA(3.38g、13.5mmol)、DA-1(6.13g、12.6mmol)、DA-3(2.06g、5.4mmol)をNMP(46.2g)中で溶解し、80℃で5時間反応させたのち、CBDA(0.830g、4.23mmol)とNMP(3.11g)を加え、40℃で11時間反応させポリアミック酸溶液を得た。
 このポリアミック酸溶液(40g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(5.9g)、およびピリジン(1.8g)を加え、100℃で3時間反応させた。この反応溶液をメタノール(560ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A)を得た。このポリイミドのイミド化率は72%であり、Mnは17,000、Mwは132,000であった。
[合成比較例1]
 使用したジアミンDA-1の変わりにDA-2を用いた以外は合成実施例1と同様に実施することにより、ポリイミド粉末(B)を得た。このポリイミドのイミド化率は74%であり、Mnは14,000、Mwは56,000であった。
[合成実施例2]~[合成比較例5]
 合成実施例1と同様に実施することにより、各種テトラカルボン酸成分とジアミン成分を用いてポリアミック酸溶液およびポリイミド粉末を得た。表1に合成したポリマーの組成を示す。
Figure JPOXMLDOC01-appb-T000052
 表1中の数値は、テトラカルボン酸二無水物については、反応に使用したテトラカルボン酸二無水物の全体量に対する使用割合(モル%)を示し、ジアミンについては、反応に使用したジアミン成分に対する使用割合(モル%)を示す。
<液晶配向剤の調製及び評価>
[実施例1]
 上記得られたポリイミド粉末(A)(6.0g)にNMP(44.0g)を加え、80℃にて17時間攪拌して溶解させた。この溶液に、3AMPの6質量%NMP希釈溶液(1.0g)、NMP(9.0g)、BCS(40.0g)を加え、室温で5時間攪拌することにより液晶配向剤(A1)を得た。
(PSA型液晶表示素子の作製)
 上記で得られた液晶配向剤(A1)を用いて下記に示す手順で液晶表示素子の作製を行った。液晶配向剤(A1)を、画素サイズが100μm×300μmでライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートし、80℃のホットプレートで90秒間乾燥した後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
 また液晶配向膜の垂直配向性評価の過酷条件として、230℃の赤外線加熱炉で60分間焼成を行い膜厚100nmの液晶配向膜を形成した。
 上記の基板を2枚用いて,一方の基板の液晶配向膜上に孔径4μmのビーズスペーサーを散布した後、その上からシール剤(溶剤型熱硬化タイプのエポキシ樹脂)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルにPSA用の重合性化合物を含有するネガ型液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作製した。
 次に、この液晶セルに15VのDC電圧を印加した状態で、この液晶セルの外側から325nmのハイパスフィルターを通したUVを10J/cm照射(1次PSA処理とも称する)した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射(2次PSA処理と称する)して液晶表示素子を得た。
(1)電圧保持率の評価
 上記で得られた液晶表示素子を用い、60℃の熱風循環オーブン中で1Vの電圧を60マイクロ秒の印加時間で印加した後、印加解除から1667ミリ秒後の電圧保持率を測定した。この値を電圧保持率(VHRBF)とした。尚、測定装置としては、東陽テクニカ社製、VHR-1を使用した。VHRBFが高いほど良好とした。
(2)高温高湿耐性の評価
 上記の液晶表示素子を温度85℃、湿度85%の状態にした恒温恒湿器(エスペック社製PR-2KP)内に8日間静置した後、電圧保持率の測定を行った。この値を電圧保持率(VHRAF)とした。電圧保持率の減少量ΔVHR(%)を下記数式から求め、高温高湿耐性として評価した。ΔVHRが少ないほど良好とした。結果を表1に示す。
     ΔVHR=VHRBF-VHRAF
(3)密着性の評価
 密着性評価のサンプルは、以下に示す手順により作製した。30mm×40mmのITO基板に、スピンコート塗布にて液晶配向剤を塗布した。80℃のホットプレート上で90秒間乾燥させた後、230℃の赤外線加熱炉で20分間焼成を行い、膜厚100nmの塗膜を形成させた。このようにして得られた2枚の基板を用意し、一方の基板の液晶配向膜面上に孔径4μmビーズスペーサーを塗布した後、シール剤(UV硬化型タイプ)を滴下した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。その際、貼り合わせ後のシール剤の直径が3mmとなるようにシール剤滴下量を調整した。貼り合わせた2枚の基板をクリップにて固定した後、120℃1時間熱硬化させて、密着性評価用のサンプルを作製した。
 その後、サンプル基板を島津製作所社製の卓上形精密万能試験機AGS-X 500Nにて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の圧力(N)を測定した。基板に残った剥離痕の直径をノギスで測定し、剥離した際の圧力(N)を剥離痕の直径で割った値(単位長さ辺りの剥離強度)を密着性として評価した。得られた結果を表2に示す。
(4)垂直配向性の評価
 LCDアナライザー(名菱テクニカ社製LCA-LUV42A)を使用して、上記で作製した液晶表示素子のプレチルト角を測定した。通常の焼成条件(20min)と過酷条件(60min)でのプレチルト角の差(通常条件-過酷条件=Δプレチルト)を算出した。Δプレチルトが小さいほど液晶配向膜の垂直配向性が良好とした。結果を表2に示す。
[比較例1]
 上記得られたポリイミド粉末(B)についても、実施例1と同様に実施することにより液晶配向剤(B1)を得た。
 また、得られた液晶配向剤(B1)を用いて、実施例1と同様の操作で(1)~(4)の評価を実施した。
[実施例2]~[比較例4]
 実施例1と同様に実施することにより、液晶配向剤(C1)~(I1)を得た。
 また液晶配向剤(E1)(3.0g)と液晶配向剤(I1)(7.0g)を混合し、3時間攪拌することで液晶配向剤(E2)を調製した。
Figure JPOXMLDOC01-appb-T000053
 上記評価の結果、本発明のジアミン化合物を含有するサンプルでは、いずれもシール密着性良好、かつ、高温高湿耐性、プレチルト角の安定性に優れていることが確認された。
 一方で、DA-2を適用した液晶配向剤では高温高湿耐性に優れるもののプレチルト角の安定性に課題が有ることがわかる(比較例1)。
 また、一般的にチルト角の安定性を高める目的で、より大きな環構造を有する側鎖構造の導入がなされるが、疎水性の高い側鎖構造はシール剤やガラス基板との密着性を弱くする傾向がある(比較例2)。
 さらに、シール密着性においてはポリアミック酸の材料設計とすることで改善が見込まれるが、従来のポリアミック酸は湿度や熱などの刺激に対し不安定であるため、高温高湿耐性に劣ることがわかる(比較例4)。
 本発明の液晶配向剤から得られる液晶配向膜を用いた液晶表示素子は、表示を目的とする液晶ディスプレイ、更には、光の透過と遮断を制御する調光窓や光シャッターなど広い範囲に有用である。
 なお、2018年3月30日に出願された日本特許出願2018-068720号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  下記式(I-1)又は式(I-2)で表される部分構造を有する重合体(P)を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (Aは炭素数1~18の(n+1)価の炭化水素基、又は炭化水素基の炭素―炭素結合間に-O-、-COO-、-CO-、又は-NHCO-を有する基を表す。Sは、単結合又は炭素数1~4の炭化水素基を表す。Pは熱脱離性基で保護された水酸基を表す。nは1~5の整数であり、mは1~2の整数であり、mが1の場合、Rは炭素数1~4の炭化水素基、mが2の場合、Rは水素原子を表す。*は炭化水素基に結合する結合手を示す。)
  2.  前記重合体(P)が、更に、熱脱離性基で保護されたアミノ基を有する請求項1に記載の液晶配向剤。
  3.  前記重合体(P)が、ポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群より選ばれる少なくとも一種の重合体である請求項1又は2に記載の液晶配向剤。
  4.  前記ポリイミド前駆体が、前記式(I-1)又は(I-2)で表される部分構造、及び熱脱離性基で保護されたアミノ基を有するジアミンを用いて得られる重合体である請求項1~3のいずれか1項に記載の液晶配向剤。
  5.  前記ジアミンが、下記式(II-1)~(II-3)からなる群から選ばれる少なくとも1種である、請求項4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式中、L、Mは、2価の有機基であり、Qは3価の有機基であり、nは0~2の整数を表す。Pは、前記式(I-1)又は式(I-2)で表される構造を表し、Pは熱脱離性基で保護されたアミノ基を表す。)
  6.  前記式(II-1)~(II-3)中、L、Mが、炭素数1~11を有するアルキレン基、2価の脂肪族環構造又は2価の芳香族環構造を表す。アルキレン基の任意の-CH-はそれぞれが隣り合わない組み合わせで-O-、-COO-又は-Si-O-Si-で置換されていてもよい。下記に示す環構造に置換されていてもよい。Rは炭素原1~5の炭化水素基を表す。
    Figure JPOXMLDOC01-appb-C000003
  7.  前記ポリイミド前駆体が、さらに、下記式[S1]~[S3]で表される群から選ばれる側鎖構造を有するジアミンを用いて得られる重合体である請求項4~6のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
    (X及びXはそれぞれ独立して、単結合、-(CH-(aは1~15の整数である)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-を表す。このうち、複数のa1はそれぞれ独立して1~15の整数であり、複数のAはそれぞれ独立して酸素原子又は-COO-を表し、mは1~2である。G及びGはそれぞれ独立して、炭素数6~12の2価の芳香族基又は炭素数3~8の2価の脂環式基から選ばれる2価の環状基を表す。前記環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子からなる群から選ばれる少なくとも1種で置換されていてもよい。m及びnはそれぞれ独立して0~3の整数であって、m及びnの合計は1~4である。Rは炭素数1~20のアルキル、炭素数1~20のルコキシ、又は炭素数2~20のアルコキシアルキルを表し、Rを形成する任意の水素はフッ素で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000005
    (Xは単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。Rは炭素数1~20のアルキル又は炭素数2~20のアルコキシアルキルを表し、Rを形成する任意の水素はフッ素で置換されていてもよい。)
    Figure JPOXMLDOC01-appb-C000006
    (Xは-CONH-、-NHCO-、-O-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。
  8.  前記熱脱離性基が、150~300℃の温度で水素原子に置き換わる基である請求項1~7のいずれか1項に記載の液晶配向剤。
  9.  前記熱脱離性基が、t-ブトキシカルボニル基である請求項1~8のいずれか1項に記載の液晶配向剤。
  10.  請求項1~9のいずれか一項に記載の液晶配向剤から形成された液晶配向膜。
  11.  請求項10に記載の液晶配向膜を具備する液晶表示素子。
PCT/JP2019/013742 2018-03-30 2019-03-28 新規な液晶配向剤、液晶配向膜及び液晶表示素子 WO2019189637A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980023947.5A CN111936923B (zh) 2018-03-30 2019-03-28 液晶取向剂、液晶取向膜和液晶表示元件
KR1020207029840A KR20200136429A (ko) 2018-03-30 2019-03-28 신규한 액정 배향제, 액정 배향막 및 액정 표시 소자
JP2020511021A JP7347410B2 (ja) 2018-03-30 2019-03-28 新規な液晶配向剤、液晶配向膜及び液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068720 2018-03-30
JP2018068720 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189637A1 true WO2019189637A1 (ja) 2019-10-03

Family

ID=68060201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013742 WO2019189637A1 (ja) 2018-03-30 2019-03-28 新規な液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP7347410B2 (ja)
KR (1) KR20200136429A (ja)
CN (1) CN111936923B (ja)
TW (1) TWI797297B (ja)
WO (1) WO2019189637A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479880A (zh) * 2020-10-28 2022-05-13 Jsr株式会社 液晶取向剂、液晶取向膜、液晶取向膜的制造方法、液晶元件及液晶元件的制造方法
JP7517208B2 (ja) 2020-10-28 2024-07-17 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218149A (ja) * 2015-05-15 2016-12-22 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物
JP2017032608A (ja) * 2015-07-28 2017-02-09 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物
JP2017102350A (ja) * 2015-12-03 2017-06-08 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子、重合体及び化合物
US20190127643A1 (en) * 2017-10-31 2019-05-02 Jnc Corporation Liquid crystal aligning agent for photoalignment, liquid crystal alignment film and liquid crystal display device using it, and diamine and polymer

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201172B2 (ja) 1994-09-08 2001-08-20 ジェイエスアール株式会社 液晶配向剤
JP3550671B2 (ja) 1995-09-14 2004-08-04 Jsr株式会社 液晶配向剤
JP3613421B2 (ja) 1996-05-31 2005-01-26 Jsr株式会社 液晶配向剤
JP3650982B2 (ja) 1996-10-02 2005-05-25 Jsr株式会社 液晶配向剤および液晶表示素子
JPH1138415A (ja) 1997-07-22 1999-02-12 Hitachi Ltd 液晶表示素子
WO2011115118A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 ポリアミック酸エステル含有液晶配向剤、及び液晶配向膜
JP5839200B2 (ja) * 2010-08-31 2016-01-06 日産化学工業株式会社 ジアミン
JP5929298B2 (ja) * 2011-03-02 2016-06-01 Jnc株式会社 ジアミン、これを用いた液晶配向剤、液晶表示素子および液晶配向膜の形成方法
WO2014104015A1 (ja) * 2012-12-25 2014-07-03 日産化学工業株式会社 新規ジアミン、重合体、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
CN105683827B (zh) * 2013-10-23 2019-11-05 日产化学工业株式会社 液晶取向剂、液晶取向膜和液晶取向元件
CN105683155A (zh) * 2013-10-23 2016-06-15 日产化学工业株式会社 新的二胺、聚酰胺酸和聚酰亚胺
KR102275484B1 (ko) * 2013-10-23 2021-07-08 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자
TWI673301B (zh) * 2014-05-30 2019-10-01 日商日產化學工業股份有限公司 液晶配向劑、液晶配向膜、及液晶顯示元件
JP6631077B2 (ja) * 2014-11-05 2020-01-15 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR102469386B1 (ko) * 2016-08-30 2022-11-21 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016218149A (ja) * 2015-05-15 2016-12-22 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物
JP2017032608A (ja) * 2015-07-28 2017-02-09 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物
JP2017102350A (ja) * 2015-12-03 2017-06-08 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子、重合体及び化合物
US20190127643A1 (en) * 2017-10-31 2019-05-02 Jnc Corporation Liquid crystal aligning agent for photoalignment, liquid crystal alignment film and liquid crystal display device using it, and diamine and polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479880A (zh) * 2020-10-28 2022-05-13 Jsr株式会社 液晶取向剂、液晶取向膜、液晶取向膜的制造方法、液晶元件及液晶元件的制造方法
JP7517208B2 (ja) 2020-10-28 2024-07-17 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法

Also Published As

Publication number Publication date
CN111936923A (zh) 2020-11-13
JPWO2019189637A1 (ja) 2021-04-15
JP7347410B2 (ja) 2023-09-20
KR20200136429A (ko) 2020-12-07
TWI797297B (zh) 2023-04-01
TW201945526A (zh) 2019-12-01
CN111936923B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
JP5874590B2 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、重合体及び化合物
JP6776687B2 (ja) 液晶配向剤、液晶配向膜及び液晶素子、並びにこれらの製造方法
JP6701635B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018159733A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP2019117399A (ja) 液晶配向剤、液晶配向膜、液晶配向膜の製造方法及び液晶表示素子
JPWO2016125870A1 (ja) 液晶配向剤、液晶表示素子及び液晶表示素子の製造方法
TWI758513B (zh) 液晶配向劑、液晶配向膜及使用其之液晶顯示元件
JP2015176110A (ja) 液晶配向剤および液晶表示素子
JP2017138575A (ja) 液晶配向剤、液晶配向膜、液晶素子、重合体及びジアミン
JPWO2019054443A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP2023026318A (ja) 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体並びに化合物
CN110192148B (zh) 液晶表示元件的制造方法以及液晶表示元件用基板和液晶表示元件组装体
WO2021171939A1 (ja) ポリイミドワニス
WO2021200291A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7347410B2 (ja) 新規な液晶配向剤、液晶配向膜及び液晶表示素子
JP2021515909A (ja) 液晶配向剤組成物、これを用いた液晶配向膜の製造方法、これを用いた液晶配向膜および液晶表示素子
WO2022176680A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
TW202227532A (zh) 液晶配向劑、液晶配向膜以及液晶顯示元件
WO2021112092A1 (ja) 重合体組成物、液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法
WO2021106979A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
KR20220157403A (ko) 광 배향법용 액정 배향제, 액정 배향막, 및 액정 표시 소자
KR20220065753A (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
WO2019244939A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶表示素子の製造方法、ジアミン化合物
WO2018216664A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7161147B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子並びに該液晶配向膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511021

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207029840

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19778197

Country of ref document: EP

Kind code of ref document: A1