WO2021106979A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2021106979A1
WO2021106979A1 PCT/JP2020/043939 JP2020043939W WO2021106979A1 WO 2021106979 A1 WO2021106979 A1 WO 2021106979A1 JP 2020043939 W JP2020043939 W JP 2020043939W WO 2021106979 A1 WO2021106979 A1 WO 2021106979A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
liquid crystal
crystal alignment
alignment agent
formula
Prior art date
Application number
PCT/JP2020/043939
Other languages
English (en)
French (fr)
Inventor
崇 仲井
新平 新津
功一朗 別府
石川 和典
柱永 李
幸司 巴
立前 趙
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020227016612A priority Critical patent/KR20220106750A/ko
Priority to JP2021561474A priority patent/JPWO2021106979A1/ja
Priority to CN202080081981.0A priority patent/CN114746804A/zh
Publication of WO2021106979A1 publication Critical patent/WO2021106979A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/12Acetic acid esters
    • C07C69/14Acetic acid esters of monohydroxylic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
  • liquid crystal alignment film As the liquid crystal alignment film, a so-called polyimide-based liquid crystal alignment film in which a polyimide precursor such as polyamic acid (also referred to as polyamic acid) or a liquid crystal alignment agent containing a solution of soluble polyimide as a main component is applied and fired is widely used. has been done.
  • a polyimide precursor such as polyamic acid (also referred to as polyamic acid) or a liquid crystal alignment agent containing a solution of soluble polyimide as a main component is applied and fired is widely used.
  • a liquid crystal alignment agent containing a polyamic acid or a solvent-soluble polyimide also called a resin
  • it is generally industrially performed by a flexographic printing method or an inkjet coating method. Is.
  • the coating film property of the liquid crystal alignment agent is poor, repelling and pinholes are generated, and when the liquid crystal display element is used, that portion becomes a display defect.
  • the solvent of the liquid crystal aligning agent includes N-methyl-2-pyrrolidone, ⁇ -butyrolactone, which are solvents having excellent resin solubility (also referred to as good solvent), and the coating property of the liquid crystal aligning agent.
  • Ethylene glycol monobutyl ether which is a solvent having low resin solubility (also referred to as a poor solvent), is mixed in order to increase the solubility (see, for example, Patent Document 1).
  • the sealant used to bond the substrates of the liquid crystal display elements is a liquid crystal. It exists at a position close to the edge of the alignment film.
  • the inkjet method is attracting attention as a method for forming a liquid crystal alignment film without using a flexographic printing plate.
  • the inkjet method is a method in which fine droplets are dropped on a substrate and a film is formed by the wetting and spreading of the liquid. Not only does it not use a printing plate, but the printing pattern can be set freely, which simplifies the manufacturing process of the liquid crystal display element. Further, there is an advantage that the coating liquid is not wasted because the film formation on the dummy substrate, which is required for flexographic printing, is not required.
  • the inkjet method is expected to reduce the cost of liquid crystal panels and improve production efficiency.
  • the inkjet method has merits such as cost reduction of the liquid crystal panel and improvement of production efficiency, but in general, the liquid crystal alignment film formed by the inkjet method has a uniform film thickness in the coated surface.
  • the properties and the film formation accuracy of the coating peripheral area There is a trade-off relationship between the properties and the film formation accuracy of the coating peripheral area. That is, usually, a material having high in-plane uniformity has a problem that the dimensional stability of the coating peripheral portion is low and the film protrudes from the set size.
  • Patent Document 3 describes that a liquid crystal alignment film containing a solvent-soluble polyimide containing a specific diamine can obtain very high reliability even in a negative type liquid crystal which is very weak against contamination.
  • a liquid crystal alignment film having a low pretilt angle of 1 degree or less, excellent voltage retention, and liquid crystal orientation is provided by using a liquid crystal alignment agent containing a solvent-soluble polyimide having a high imidization rate containing a specific diamine. It is disclosed that it can be obtained.
  • the present invention provides a liquid crystal alignment agent which has excellent liquid-liquid bonding properties and good coating film properties and can be used stably for a long period of time even in an inkjet method, and a liquid crystal alignment produced by the liquid crystal alignment agent. It is an object of the present invention to provide a film and a liquid crystal display element.
  • NMP N-methyl-2-pyrrolidone
  • GBL ⁇ -butyrolactone
  • BCS ethylene glycol monobutyl ether
  • BCS butyl cellosolve acetate
  • the present invention has been completed by finding that the coating property is good, the dimensional stability of the coating peripheral portion is good, and the ink can be stably used for a long period of time even in the inkjet method. Further, they have found that the characteristics of such a solvent are particularly effective when dissolving a predetermined polyimide, and have completed the present invention.
  • the liquid crystal alignment agent of the present invention that achieves the above object is It contains the following (A) and (B).
  • a 1 is a single bond, a methylene group, an ether bond, an ester bond, an amide bond, a cyclohexylene group, or an alkylene group having 2 to 20 carbon atoms.
  • any -CH 2 in the alkylene group - is an ether group, an ester group, an amide group, a cyclohexylene group, a phenylene group, a urea group, may be substituted by an amino group, or carbamate group, the amide group, The urea group and any hydrogen atom of the amino group may be replaced with a methyl group or a tert-butoxycarbonyl group.
  • a 2 is a fluorine atom or an alkyl group or an alkoxy group having 1 to 5 carbon atoms, and any hydrogen atom of the alkyl group or the alkoxy group may be substituted with a fluorine atom, and any carbon atom may be substituted with a fluorine atom. It may be substituted with an amino group protected by a tert-butoxycarbonyl group.
  • a plurality of a's are independently integers of 0 to 4, and when a plurality of A 2 's exist, A 2 may be the same or different.
  • b and c are independently integers of 0 to 2, and when b is 0, c is 1 or 2, and A 1 is an alkylene group.
  • B An organic solvent containing butyl cellosolve and butyl cellosolve acetate.
  • a liquid crystal alignment agent having good coating film properties, good dimensional stability in the coating peripheral portion, and can be stably used for a long period of time even in an inkjet method, and a liquid crystal alignment produced by the liquid crystal alignment agent.
  • a film and a liquid crystal display element can be provided.
  • the liquid crystal alignment agent of the present invention contains the following (A) and (B).
  • A) A polyimide obtained by imidizing a polyimide precursor which is a reaction product of a diamine component containing at least one diamine selected from the above formulas [1] and [2] and a tetracarboxylic acid component.
  • B) An organic solvent containing butyl cellosolve and butyl cellosolve acetate.
  • the diamine used in the present invention contains at least one selected from the above formula [1] or [2].
  • a 2 is preferably a methyl group. a is preferably an integer of 0 to 1.
  • a 1 is a single bond, a methylene group, an ether bond, an ester bond, or an alkylene group having 2 to 10 carbon atoms (provided that at least one-of the alkylene group is used, from the viewpoint of enhancing the liquid crystal orientation.
  • CH 2- is preferably substituted with an ether group or an ester group).
  • a 2 is preferably a methyl group. a is preferably an integer of 0 to 1.
  • b is preferably 1.
  • c is preferably an integer of 1 to 2.
  • the diamine represented by the above formula [1] and the diamine represented by the formula [2] the following formulas [d1-1] to [d1-2] or [d2-1] to [ Any of the structures of d2-28] can be mentioned.
  • R is a fluorine atom or an alkyl group or an alkoxy group having 1 to 5 carbon atoms, even if the alkyl group or any hydrogen atom of the alkoxy group is substituted with a fluorine atom.
  • Boc represents a tert-butoxycarbonyl group.
  • R and R' are independently fluorine atoms or alkyl or alkoxy groups having 1 to 5 carbon atoms, and any hydrogen atom of the alkyl group or the alkoxy group. May be replaced with a fluorine atom.
  • Boc represents a tert-butoxycarbonyl group.
  • the plurality of m may be the same or different.
  • the diamine represented by the above formula [1] and the diamine represented by the formula [2] have the following structures as more preferable specific structures.
  • the content of the diamine represented by the above formula [1] and the above formula [2] is preferably 50 mol% or more, more preferably 70 mol% or more, based on 1 mol of the total diamine component.
  • the diamine constituting the polyimide (A) in the present invention may contain the diamine described below in addition to the diamine selected from the above formulas [1] and [2].
  • Two or more kinds of diamines selected from the above formulas [1] and [2] may be used, or three or more kinds may be used. Above all, it is preferable to use two or more or three or more diamines selected from the above formula [2].
  • the diamine having a specific side chain structure exhibits vertical orientation and has at least one side chain structure selected from the group represented by the following formulas [S1] to [S3].
  • diamines having a specific side chain structure represented by the formulas [S1] to [S3], which are examples of the second diamine having such a specific side chain structure will be described in order.
  • X 1 and X 2 are independently single-bonded, ⁇ (CH 2 ) a ⁇ (a represents an integer of 1 to 15), ⁇ CONH ⁇ , ⁇ NHCO ⁇ , respectively.
  • a1 represents an integer of 1 to 15
  • a 1 represents an oxygen atom or -COO-
  • m1 represents an integer of 1 to 2. If m1 is 2, a plurality of a1 and A 1 each independently have the above definitions.
  • X 1 and X 2 are independently single bonds, and ⁇ (CH 2 ) a ⁇ (a is an integer of 1 to 15). ), -O-, -CH 2 O- or -COO-, single bond,-(CH 2 ) a- (a represents an integer of 1 to 10), -O- , -CH 2 O- Alternatively, -COO- is more preferable.
  • G 1 and G 2 are independently composed of a divalent aromatic group having 6 to 12 carbon atoms and a divalent alicyclic group having 3 to 8 carbon atoms.
  • Any hydrogen atom on the cyclic group may be an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a fluorine-containing alkyl group having 1 to 3 carbon atoms, or a fluorine-containing alkoxy group having 1 to 3 carbon atoms. Alternatively, it may be substituted with a fluorine atom.
  • m and n each independently represent an integer of 0 to 3, and the total of m and n is 1 to 6, preferably 1 to 4.
  • R 1 represents an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms. Any hydrogen atom forming R 1 may be substituted with a fluorine atom.
  • examples of the divalent aromatic group having 6 to 12 carbon atoms include a phenylene group, a biphenyl structure, a naphthylene group and the like.
  • Examples of the divalent alicyclic group having 3 to 8 carbon atoms include a cyclopropylene group and a cyclohexylene group.
  • R 1 is the same as in the above formula [S1].
  • X p is-(CH 2 ) a- (a represents an integer of 1 to 15), -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH. Represents 2 O-, -CH 2 OCO-, -COO- or -OCO-.
  • a 1 represents an oxygen atom or -COO- * (a bond with "*" binds to (CH 2 ) a2 ).
  • a 2 represents an oxygen atom or * -COO- (a bond with "*" binds to (CH 2 ) a2 ).
  • a 3 indicates an integer of 0 or 1 and a 2 independently indicate an integer of 2 to 10.
  • Cy represents a 1,4-cyclohexylene group or a 1,4-phenylene group.
  • X 3 is a single bond, -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 O-, -COO- or -OCO-. Represents. Among them, from the viewpoint of liquid crystal alignment of the liquid crystal aligning agent, X 3 is -CONH -, - NHCO -, - O -, - CH 2 O -, - COO- or -OCO- are preferred.
  • R 2 represents an alkyl group having 1 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms. Any hydrogen atom forming R 2 may be substituted with a fluorine atom. Among them, R 2 is preferably an alkyl group having 3 to 20 carbon atoms or an alkoxyalkyl group having 2 to 20 carbon atoms from the viewpoint of the liquid crystal orientation of the liquid crystal aligning agent. As a preferable specific example of the formula [S2], X 3 is any of -O-, -CH 2 O-, -COO- or -OCO-, and R 2 is an alkyl group having 3 to 20 carbon atoms or an alkyl group.
  • R 2 is an alkyl group having 3 to 20 carbon atoms, any hydrogen atoms that form the R 2 is substituted with a fluorine atom May be good.
  • X 4 represents -CONH-, -NHCO-, -O-, -CH 2 O-, -COO- or -OCO-.
  • R 3 represents a structure having a steroid skeleton.
  • the steroid skeleton here has a skeleton represented by the following formula (st) in which three 6-membered rings and one 5-membered ring are linked. The ring of the steroid skeleton may have a double bond.
  • X represents the above formula [X1], [X2] or [X3].
  • Col represents any one of the above formulas [Col1] to [Col3]
  • G represents any one of the above formulas [G1] to [G4]. * Represents a bond.
  • Examples of preferable combinations of X, Col and G in the above formula [S3-x] include the following combinations. That is, [X1] and [Col1] and [G1], [X1] and [Col1] and [G2], [X1] and [Col2] and [G1], [X1] and [Col2] and [G2], [X1] and [Col3] and [G2], [X1] and [Col3] and [G1], [X2] and [Col1] and [G2], [X2] and [Col2] and [G2], [X2] ] ] And [Col2] and [G1], [X2] and [Col3] and [G2], [X2] and [Col1] and [G1], [X3] and [Col2] and [G1], [X3] [Col2] and [G1], [X3] [Col2] and [G1], [X3] [Col2] and [G1], [X3] [Col2] and [G2],
  • a typical example of the steroid skeleton is cholesterol (combination of [Col1] and [G2] in the above formula [S3-x]), but a steroid skeleton containing no cholesterol can also be used.
  • examples of the diamine having a steroid skeleton include cholestanyl 3,5-diaminobenzoate, but it is also possible to use a diamine component containing no diamine having such a cholesterol skeleton.
  • a diamine that does not contain an amide bond at the connecting position between the diamine and the side chain can also be used.
  • a liquid crystal alignment agent capable of obtaining a liquid crystal alignment film or a liquid crystal display element capable of ensuring a high voltage retention rate for a long period of time even by using a diamine component having a cholesterol skeleton and not containing diamine. it can.
  • the diamines having side chain structures represented by the above formulas [S1] to [S3] are represented by the following formulas [1-S1] to [1-S3], respectively.
  • a diamine having a two-side chain type specific side chain structure exhibiting vertical orientation is represented by, for example, the following formula [N1].
  • X is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m- , Represents a divalent organic group consisting of -SO 2- or any combination thereof.
  • X is preferably single bond, —O—, —NH—, or —O— (CH 2 ) m ⁇ O ⁇ . Examples of "any combination thereof” are -O- (CH 2 ) m- O-, -OC (CH 3 ) 2- , -CO- (CH 2 ) m-, -NH- (CH).
  • m represents an integer from 1 to 8.
  • the two Ys independently represent monovalent groups selected from the side chain structures represented by the above formulas [S1] to [S3].
  • Y may be in the meta position or the ortho position from the position of X, but the ortho position is preferable. That is, the above formula [N1] is preferably the following formula [1'].
  • the positions of the two amino groups (-NH 2) may be any positions on the benzene ring, but the following formulas [1] -a1 to [1] -a3 can be used.
  • the position represented is preferable, and the following formula [1] -a1 is more preferable.
  • X is the same as in the above formula [N1].
  • the following formulas [1] -a1 to [1] -a3 explain the positions of the two amino groups, and the notation of Y represented in the above formula [N1] is omitted.
  • the above equation [N1] consists of the following equations [1] -a1-1 to [1] -a3-2. Any structure selected from the group is preferable, and the structure represented by the following formula [1] -a1-1 is more preferable. In the following formulas, X and Y are the same as in the formula [N1], respectively.
  • the diamine component of the present embodiment may contain a diamine having a photoreactive side chain as another diamine.
  • the photoreactive side chain can be introduced into a specific polymer or another polymer.
  • Specific examples of the diamine having a photoreactive side chain include, but are not limited to, those described in paragraphs [0124] to [0132] of Republished Patent Publication No. 2016/140328.
  • Diamines having these photoreactive side chains can be used alone or in admixture of two or more.
  • one type alone or two or more types are mixed. It may be used, or when two or more kinds are mixed and used, the ratio and the like may be appropriately adjusted.
  • the photoreactive side chain diamine is preferably 10 to 70 mol%, more preferably 10 to 60 mol% of the total diamine component.
  • Diamines other than the above> The other diamines that may be contained in the diamine component for obtaining the specific polymer are not limited to the diamines having the photoreactive side chain and the like.
  • a diamine other than the above-mentioned diamine can be used in combination as a diamine component.
  • those described in paragraph [0135] of Republished Patent Publication No. WO2016 / 140328 can be mentioned.
  • Diamines with photoorienting groups such as 4,4'-diaminoazobenzene or diaminotran; 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenylmethylamine, 2,4-diaminophenol, 3,5-diamino Phenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol; 4,4'-diamino-3,3'-dihydroxybiphenyl, 2,4-diaminobenzoic acid, 2, Diamines having carboxyl groups such as 5-diaminobenzoic acid, 3,5-diaminobenzoic acid and amines represented by the following formulas (3b-1) to (3b-4); 4- (2- (methylamino) Ethyl) aniline, 1- (4-aminophenyl) -1,3,3-trimethyl-1H-indan-5-amine, 1- (4-
  • a 1 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3) 2 -, -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -OCH 2- , -COO-, -OCO-, -CON ( CH 3 )-or -N (CH 3 ) CO-, m1 and m2 independently represent integers 0-4, and m1 + m2 represent integers 1-4. Equation (3b-2).
  • a 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms
  • m5 represents 1 to 5 in an integer of 1 to 5, respectively.
  • a 3 and a 4 are each independently a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2- , -C (CF 3 ) 2- , -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -OCH 2- , -COO -, - OCO -, - CON (CH 3) - or -N (CH 3) CO- indicates, m6 is an integer of 1 to 4).
  • the above other diamines may be used alone or in combination of two or more depending on the characteristics such as liquid crystal orientation, pretilt angle, voltage holding characteristic, and accumulated charge when the liquid crystal alignment film is formed.
  • the diamine constituting the polyimide (A) in the present invention should not be a diamine having a side chain group having 6 or more carbon atoms. Is preferable. Examples of the diamine having a side chain group having 6 or more carbon atoms include the diamine having the specific side chain structure and the diamine having the bilateral specific side chain structure exhibiting the vertical orientation.
  • the polyimide of the present invention is obtained by imidizing a polyimide precursor which is a reaction product of the above diamine and a tetracarboxylic acid component.
  • the tetracarboxylic dian component for obtaining the polyimide of the present invention includes a tetracarboxylic dianhydride represented by the following formula [3] or a derivative thereof (tetracarboxylic acid, tetracarboxylic dianlide, tetracarboxylic dianalkyl ester, etc.).
  • tetracarboxylic acid dialkyl ester dihalide (collectively referred to as specific tetracarboxylic acid) can be used.
  • X 1 is selected from any of the following formulas (B-1) to (B-20). In particular, X 1 is (B-1), (B-2), ( It is preferably any of B-3).
  • j and k are integers of 0 or 1
  • a 1 and A 2 are independent, single bond, -O-, -CO-, -COO-, phenylene, sulfonyl, or amide, respectively.
  • the two A 2s may be the same or different from each other.
  • Specific examples of the specific tetracarboxylic dians include the following, 2,3,3', 4-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, and the like.
  • 2,2', 3,3'-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride , 3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydride can be mentioned.
  • the specific tetracarboxylic acid is preferably 50 to 100 mol% out of 100 mol% of all tetracarboxylic acid components. Of these, 70 to 100 mol% is more preferable. More preferably, it is 80 to 100 mol%.
  • One type of specific tetracarboxylic acid is used depending on the solubility of the specific polymer in the solvent, the coatability of the liquid crystal alignment agent, the orientation of the liquid crystal when used as a liquid crystal alignment film, the voltage retention rate, the accumulated charge, and the like. Alternatively, two or more types can be mixed and used.
  • a tetracarboxylic acid other than the above-mentioned specific tetracarboxylic acid (hereinafter, also referred to as other tetracarboxylic acid) may be contained.
  • other tetracarboxylic acids include the following tetracarboxylic acid compounds, tetracarboxylic dianhydrides, tetracarboxylic dianhydride compounds, tetracarboxylic acid dialkyl ester compounds and tetracarboxylic acid dialkyl ester dihalide compounds.
  • 1,2,5,6-naphthalenetetracarboxylic dianhydride 1,4,5,8-naphthalenetetracarboxylic dianhydride
  • 1,2,5,6- Anthranetetracarboxylic dianhydride bis (3,4-dicarboxyphenyl) methane dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 1,1,1,3 3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl) propanedianhydride, bis (3,4-dicarboxyphenyl) dimethylsilanedianhydride, bis (3,4-dicarboxyphenyl) Phenyl) diphenylsilane dianhydride, 2,3,4,5-pyridinetetracarboxylic dianhydride, 2,6-bis (3,4-dicarboxyphenyl) pyridine dianhydride, 3,4,9,10 Examples thereof
  • tetracarboxylic dians are one type depending on the solubility of the specific polymer in the solvent, the coatability of the liquid crystal alignment agent, the liquid crystal orientation when the liquid crystal alignment film is used, the voltage retention rate, the accumulated charge, and the like. Alternatively, two or more types can be mixed and used.
  • the polyimide of the present invention can be obtained by a method of reacting the diamine component described above with a tetracarboxylic acid component.
  • a diamine component composed of one or more kinds of diamines and at least one tetracarboxylic acid component selected from the group consisting of a tetracarboxylic dianhydride and a derivative of the tetracarboxylic acid thereof are used.
  • examples thereof include a method of reacting to obtain a polyamic acid.
  • a method is used in which a primary or secondary diamine and a tetracarboxylic dianhydride are polycondensed to obtain a polyamic acid.
  • a method of polycondensing a tetracarboxylic acid obtained by dialkyl esterifying a carboxylic acid group with a primary or secondary diamine, or a tetracarboxylic acid dihalide obtained by halogenating a carboxylic acid group A method of polycondensing with a primary or secondary diamine, or a method of converting the carboxy group of a polyamic acid into an ester is used.
  • a method of ring-closing the above-mentioned polyamic acid or polyamic acid alkyl ester to form a polyimide is used.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out in a solvent.
  • the solvent used at that time is not particularly limited as long as it dissolves the produced polyimide precursor.
  • solvents here include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide and 1,3-.
  • Examples thereof include dimethyl-2-imidazolidinone.
  • the polyimide precursor When the polyimide precursor has high solvent solubility, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or the following formulas [D-1] to [D-3].
  • a solvent or the like can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms.
  • D 2 represents an alkyl group having 1 to 3 carbon atoms.
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • solvents can be used alone or in admixture of two or more. Even if the solvent does not dissolve the polyimide precursor, it may be mixed with the above solvent and used as long as the produced polyimide precursor does not precipitate. Further, since the water content in the solvent inhibits the polymerization reaction and further causes the produced polyimide precursor to be hydrolyzed, it is preferable to use a solvent that has been dehydrated and dried.
  • the solution in which the diamine component is dispersed or dissolved in the solvent is stirred, and the tetracarboxylic acid component is dispersed or dissolved as it is or in the solvent.
  • examples thereof include a method of adding, a method of adding a diamine component to a solution in which a tetracarboxylic acid component is dispersed or dissolved in a solvent, a method of alternately adding a diamine component and a tetracarboxylic acid component, and any of these. You may use the method of.
  • a plurality of diamine components or tetracarboxylic acid components When a plurality of diamine components or tetracarboxylic acid components are used for reaction, they may be reacted in a premixed state, may be reacted individually in sequence, or may be reacted individually, and are low molecular weight compounds. May be mixed and reacted to form a polymer.
  • the temperature at which the diamine component and the tetracarboxylic acid component are polycondensed can be selected from any temperature of ⁇ 20 to 150 ° C., but is preferably in the range of ⁇ 5 to 100 ° C.
  • the reaction can be carried out at an arbitrary concentration, but if the concentration is too low, it becomes difficult to obtain a polymer having a high molecular weight, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring becomes difficult. .. Therefore, it is preferably 1 to 50% by mass, and more preferably 5 to 30% by mass.
  • the initial reaction can be carried out at a high concentration and then the solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyimide precursor produced.
  • the polyimide is a polyimide obtained by ring-closing the above-mentioned polyimide precursor.
  • the ring closure rate (also referred to as imidization rate) of the amic acid group does not necessarily have to be 100%, and the polyimide does not necessarily have to be 100%. It can be adjusted arbitrarily according to it.
  • the imidization rate of the polyimide which is the specific polymer used in the present invention, is preferably 20 to 100%, more preferably 50 to 99%, still more preferably 70 to 95% from the viewpoint of reducing the occurrence rate of display defects. is there.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the solution of the polyimide precursor is heated as it is, or catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature at which the polyimide precursor is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and a method is preferable in which water generated by the imidization reaction is removed from the system.
  • the catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at ⁇ 20 to 250 ° C., preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times, that of the amic acid group, and the amount of acid anhydride is 1 to 50 mol times, preferably 3 to 3 times that of the amic acid group. It is 30 mol times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. In particular, acetic anhydride is preferable because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, and the reaction time.
  • the reaction solution may be added to a solvent to precipitate.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like.
  • the polymer which has been put into a solvent and precipitated can be dried under normal pressure or reduced pressure, at normal temperature or by heating after being collected by filtration.
  • the solvent at this time include alcohols, ketones, hydrocarbons and the like. It is preferable to use three or more kinds of solvents selected from these because the purification efficiency is further increased.
  • a terminal-modified polymer may be synthesized by using an appropriate terminal modifier together with the tetracarboxylic acid derivative component and the diamine component as described above.
  • the terminal-modified polymer has the effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion characteristics between the sealant and the liquid crystal alignment film.
  • the polyimide precursor and the terminal of the polyimide in the present invention include an amino group, a carboxyl group, an acid anhydride group, an isocyanate group, a thioisocyanate group, or a derivative thereof.
  • the amino group, carboxyl group, acid anhydride group, isocyanate group and thioisocyanate can be obtained by a usual condensation reaction, and the above derivative can be obtained by modifying the terminal with, for example, the following terminal modifier.
  • terminal modifier examples include acetic anhydride, maleic anhydride, nagic anhydride, phthalic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride, 3-hydroxyphthalic anhydride, trimellitic anhydride, and the following formula (m).
  • Dicarbonate diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, Monoamine compounds such as n-octylamine; monoisocyanate compounds such as ethyl isocyanate, phenylisocyanate and naphthylisocyanate; thioisocyanate compounds such as ethylisothiocianate and allylisothio
  • the ratio of the terminal modifier used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, based on 100 mol parts of the total diamine component used.
  • the liquid crystal alignment agent of the present invention contains the above-mentioned polyimide (referred to as a specific polymer), but may contain two or more kinds of polymers having different structures. Further, in addition to the polymer, other polymers may be contained.
  • the types of polymers include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or its derivative, poly (styrene-phenylmaleimide) derivative, and poly (meth) acrylate. And so on.
  • the ratio of the specific polymer to the total polymer components is preferably 5% by mass or more, and examples thereof include 5 to 95% by mass.
  • the other polymers are preferably a polyamic acid that does not contain an imide ring structure or a polyamic acid ester that does not contain an imide ring structure (hereinafter, also referred to as a polyimide precursor (pa)) from the viewpoint of enhancing the liquid crystal orientation. ..
  • Examples of the tetracarboxylic acid derivative component for obtaining the polyimide precursor (pa) include an acyclic aliphatic tetracarboxylic dianhydride, an alicyclic tetracarboxylic dianhydride, an aromatic tetracarboxylic dianhydride, or these.
  • Specific examples of the acyclic aliphatic tetracarboxylic dianhydride, the alicyclic tetracarboxylic dianhydride, and the aromatic tetracarboxylic dianhydride include the tetracarboxylic dianhydride exemplified in the above-mentioned specific polymer. The derivative is mentioned.
  • the preferable tetracarboxylic acid derivative component the compound represented by the above formula [3] or a derivative thereof is preferable.
  • the tetracarboxylic acid derivative component one kind of tetracarboxylic dianhydride or a derivative thereof may be used alone, or two or more kinds may be used in combination.
  • X 1 in the formula [3] is represented by the above formulas (B-1) to (B-8) and (B-13) to (B-13).
  • Examples thereof include tetracarboxylic dianhydrides represented by the formula [3] selected from (B-20) or derivatives thereof.
  • the ratio of the tetracarboxylic dianhydride represented by the above formula [3] or a derivative thereof is 1 to 1 to 1 mol of the total tetracarboxylic acid derivative component used for the synthesis of the polyimide precursor (pa). 100 mol% is preferable, 5 to 100 mol% is more preferable, and 10 to 100 mol% is further preferable.
  • Examples of the diamine component for obtaining the polyimide precursor (pa) include the diamine component exemplified in the above-mentioned specific polymer.
  • a diamine having at least one group selected from the group consisting of a urea bond, an amide bond, a carboxy group and a hydroxy group in the molecule hereinafter, also referred to as a diamine (b1)
  • a secondary amino group hereinafter, also referred to as a second group.
  • the diamine component one kind of diamine may be used alone, or two or more kinds may be used in combination.
  • the total preferable amount of the diamines (b1) and (b2) used is 10 to 100 mol%, more preferably 10 based on the total amount of the diamine components for producing the polyimide precursor (pa). It is ⁇ 90 mol%, more preferably 20-80 mol%.
  • the polyimide precursor (pa) may be composed of one component or two or more components of the polyimide precursor.
  • a more preferable specific embodiment of the polyimide precursor (pa) is a polyimide precursor which is a reaction product of a diamine component containing the diamine (b1) and the diamine (b2) and a tetracarboxylic acid derivative component. Selected from the group consisting of at least one polymer selected from the group (hereinafter, also referred to as a copolymer), the diamine component containing the diamine (b1), and the polyimide precursor which is a reaction product of the tetracarboxylic acid derivative component.
  • a mixture with a polyimide precursor (pa-p2) (hereinafter, also referred to as a polymer blend) can be mentioned.
  • the above-mentioned copolymer or polymer blend may be used alone or in combination.
  • the preferable amount of diamine (b1) used is 30 to 100 mol%, more preferably 40 to 100 mol%, based on the total amount of the diamine component for producing the polyimide precursor (pa). %, More preferably 50-100 mol%.
  • the preferable amount of diamine (b2) used is 30 to 100 mol%, more preferably 40 to 100 mol%, based on the total amount of the diamine component for producing the polyimide precursor (pa). %, More preferably 50-100 mol%.
  • the preferable amounts of diamine (b1) and diamine (b2) used are the total amount of the diamine component for producing the polyimide precursor (pa-p1) and the polyimide precursor (pa-p2), respectively. On the other hand, it is 20 to 100 mol%. A more preferable amount of the diamine (b1) is 20 to 90 mol%, more preferably 20 to 80 mol%, based on the total amount of the diamine component for producing the polyimide precursor (pa-p1). .. A more preferable amount of the diamine (b2) is 20 to 80 mol%, more preferably 30 to 80 mol%, based on the total amount of the diamine component for producing the polyimide precursor (pa-p2). ..
  • diamine (b1) examples include diamines represented by the above formulas [d2-10] to [d2-16], 2,4-diaminophenol, 3,5-diaminophenol, and 3,5-diaminobenzyl.
  • diamine (b2) examples include diamines represented by the above formulas [d2-23] to [d2-28], 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenylmethylamine, and the above formula.
  • Diamines represented by the formulas (z-1) to (z-18) are preferable.
  • the mass ratio of the content of the polyimide precursor (pa-p1) to the content of the polyimide precursor (pa-p2) is preferably 5/95 to 95/5, more preferably 10/90 to It is 90/10.
  • the content ratio of the specific polymer polyimide and the polyimide precursor (pa) is 5 in terms of the mass ratio of [specific polymer polyimide] / [polyimide precursor (pa)]. It may be / 95 to 95/5, 20/80 to 90/10, or 20/80 to 80/20.
  • the liquid crystal alignment agent generally takes the form of a coating liquid from the viewpoint of forming a uniform thin film.
  • the liquid crystal alignment agent of the present invention is also preferably a coating liquid containing the above-mentioned polymer component and an organic solvent for dissolving the polymer component.
  • the concentration of the polymer in the liquid crystal alignment agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, 1% by mass or more is preferable, and from the viewpoint of storage stability of the solution, 10% by mass or less is preferable. A particularly preferable concentration of the polymer is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal alignment agent contains the butyl cellosolve and butyl cellosolve acetate of (B), but also contains another organic solvent in which the polymer component is uniformly dissolved.
  • the liquid crystal alignment agent of the present invention contains butyl cellosolve and butyl cellosolve acetate as a poor solvent, so that it has excellent liquid-liquid bonding properties and good coating film properties, and can be used stably for a long period of time even in an inkjet method. It becomes.
  • the content of butyl cellosolve is preferably 5 to 20% by mass with respect to the total organic solvent contained in the liquid crystal alignment agent, and the content of butyl cellosolve acetate is preferably relative to the total organic solvent contained in the liquid crystal alignment agent. It is 5 to 20% by mass.
  • the total amount of butyl cellosolve and butyl cellosolve acetate is preferably 10% by mass or more, more preferably 12% by mass or more, and more preferably 15% by mass or more, based on the total organic solvent contained in the liquid crystal alignment agent. Is more preferable.
  • the other organic solvent is not particularly limited as long as it dissolves the polymer component.
  • Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethyllactoamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide, ⁇ -.
  • the solvent (C1) is, among others, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropaneamide, 3-butoxy-N, N-. It is preferable to use dimethylpropanamide, N, N-dimethyllactoamide, and 1,3-dimethyl-2-imidazolidinone.
  • the content of the solvent (C1) is preferably 60 to 90% by mass, more preferably 60 to 88% by mass, and particularly preferably 60 to 85% of the total organic solvent contained in the liquid crystal alignment agent. It is mass%.
  • the solvent (C2) is, among others, diisobutylcarbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-. Pentanone or diisobutyl ketone is preferred.
  • the content of the solvent (C2) is preferably 1 to 20% by mass, preferably 5 to 20% by mass, based on the total organic solvent contained in the liquid crystal alignment agent. When the solvent (C1) and the solvent (C2) are contained, the total content of the solvent (C1) and the solvent (C2) is 60 to 90% by mass with respect to the total organic solvent contained in the liquid crystal aligning agent. It is preferable, 60 to 88% by mass is more preferable, and 60 to 85% by mass is particularly preferable.
  • organic solvent contained in the liquid crystal alignment agent of the present invention in addition to the above solvent, a solvent that improves the coatability when applying the liquid crystal alignment agent and the surface smoothness of the coating film can also be used.
  • organic solvent include those described in paragraph [0177] of Republished Patent Publication No. WO2016 / 140328A.
  • the liquid crystal alignment agent of the present invention may additionally contain components other than the polymer component and the organic solvent.
  • additional components include an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate, the adhesion between the liquid crystal alignment film and the sealing material, a cross-linking agent for increasing the strength of the liquid crystal alignment film, and a liquid crystal. Examples thereof include a dielectric and a conductive substance for adjusting the dielectric constant and electric resistance of the alignment film.
  • Specific examples of these additional components include antisolvents and crosslinkable compounds disclosed in paragraph 53 [0104] to paragraph 60 [0116] of International Publication No. 2015/060357.
  • the liquid crystal alignment agent of the present invention includes polymers other than the specific polymers described in the present invention, dielectrics for which the purpose of changing the electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film is changed, and liquid crystal alignment films.
  • An imidization accelerator or the like for the purpose of efficiently advancing imidization by heating may be contained.
  • Examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound.
  • Specific examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, and N- (2).
  • an oxylanyl group, an oxetanyl group, a protected isocyanate group, a protected isothiocyanate group, a group containing an oxazoline ring structure, a group containing a meldric acid structure, a cyclocarbonate group and a hydroxyalkylamide group A compound having two or more groups of at least one selected from the group consisting of (hereinafter, also referred to as a compound having two or more specific crosslinkable groups) or 2,2-bis (4-hydroxy-3,5).
  • crosslinkable compound such as a phenol compound such as dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol may be added.
  • crosslinkable compounds are preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass, based on 100 parts by mass of the total amount of the polymer contained in the liquid crystal alignment agent.
  • Examples of the compound having two or more of the specific crosslinkable groups include the following compounds.
  • the liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent.
  • the liquid crystal aligning agent of the present invention it is particularly suitable for the IPS method and the FFS method in which liquid crystal molecules oriented horizontally with respect to the substrate are responded by an electric field, the voltage retention rate is excellent, and the accumulated charge is quickly relaxed. It is possible to provide a liquid crystal alignment film and a liquid crystal display element having excellent afterimage characteristics.
  • the substrate to which the liquid crystal alignment agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with the glass substrate and the silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed from the viewpoint of simplifying the process. Further, in the reflective liquid crystal display element, if only one side of the substrate is used, an opaque object such as a silicon wafer can be used, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
  • the method of applying the liquid crystal alignment agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, inkjet method, etc. are common. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method, a spray method, and the like, and these may be used depending on the purpose.
  • the solvent is evaporated and fired by a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven. Any temperature and time can be selected for the drying and firing steps after applying the liquid crystal alignment agent.
  • the drying step is not always required, it is preferable to perform the drying step when the time from coating to firing is not constant for each substrate or when firing is not performed immediately after coating.
  • the drying is not particularly limited as long as the solvent is removed to the extent that the shape of the coating film is not deformed by the transportation of the substrate or the like, and the drying means thereof is not particularly limited.
  • a method of drying on a hot plate at a temperature of 40 to 150 ° C., preferably 60 to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • liquid crystal alignment agent of the present invention when used, especially when it is applied by the inkjet method, by containing butyl cellosolve and butyl cellosolve acetate as poor solvents, a liquid composed of a polyimide solution even if a standby shot is carried out for a long period of time. Is suppressed from adhering to the surface of the inkjet head, so that stable ejection is possible without depositing on the head.
  • the firing temperature of the coating film formed by applying the liquid crystal alignment agent is not limited, and is, for example, 100 to 350 ° C, preferably 120 to 300 ° C, and more preferably 150 to 250 ° C.
  • the firing time is 5 to 240 minutes, preferably 10 to 90 minutes, and more preferably 20 to 90 minutes.
  • the heating can be performed by a generally known method, for example, a hot plate, a hot air circulation furnace, an infrared furnace, or the like.
  • the liquid crystal alignment film of the present invention is particularly useful as a liquid crystal alignment film for IPS-type or FFS-type liquid crystal display elements.
  • the liquid crystal display element can produce a liquid crystal cell by a known method after forming a liquid crystal alignment film on a substrate by the above method.
  • the liquid crystal display element the above-mentioned two substrates arranged so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal aligning agent provided between the substrates and the liquid crystal layer.
  • It is a horizontal alignment type liquid crystal display element including a liquid crystal cell having a liquid crystal alignment film.
  • a liquid crystal alignment agent is applied onto two substrates and fired, and then the liquid crystal alignment film is subjected to a rubbing treatment, a photo-alignment treatment, or the like, and is not an alignment treatment for vertical alignment applications.
  • a rubbing treatment e.g., a photo-alignment treatment
  • a photo-alignment treatment e.g., a photo-alignment treatment
  • Two substrates are arranged so that these liquid crystal alignment films face each other, and a liquid crystal layer composed of liquid crystal is sandwiched between the two substrates, that is, the liquid crystal layer is provided in contact with the liquid crystal alignment film.
  • This is a horizontally oriented liquid crystal display element including a liquid crystal cell produced by the above.
  • the substrate of the liquid crystal display element is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving a liquid crystal is formed.
  • a transparent glass substrate is prepared, and a common electrode is provided on one substrate and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film of SiO 2- TiO 2 formed by the sol-gel method.
  • an element such as a transistor is used between an electrode for driving a liquid crystal and a substrate.
  • a transmissive liquid crystal display element it is common to use a substrate as described above, but in a reflective liquid crystal display element, an opaque substrate such as a silicon wafer may be used if only one side of the substrate is used. It is possible. At that time, a material such as aluminum that reflects light can be used for the electrodes formed on the substrate.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element is not particularly limited, and the liquid crystal material used in the conventional horizontal orientation method, for example, a positive liquid crystal such as MLC-3019 manufactured by Merck or MLC-made by the same company. A negative type liquid crystal such as 7026-100 can be used. Further, in the PSA mode, for example, a liquid crystal containing a polymerizable compound as represented by the following formula can be used.
  • a known method can be mentioned.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are sprayed on the liquid crystal alignment film of one substrate so that the surface on the side on which the liquid crystal alignment film is formed is on the inside.
  • Another method is to bond the other substrate and inject the liquid crystal under reduced pressure to seal it.
  • a pair of substrates on which the liquid crystal alignment film is formed is prepared, spacers such as beads are sprayed on the liquid crystal alignment film of one substrate, and then the liquid crystal is dropped, and then the surface on the side where the liquid crystal alignment film is formed.
  • a liquid crystal cell can also be produced by a method in which the other substrate is bonded and sealed so that the surface is on the inside.
  • the thickness of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • an electric field is applied to the liquid crystal alignment film and the liquid crystal layer by applying a voltage between electrodes installed on a substrate. Is applied, and an ultraviolet ray is irradiated while maintaining this electric field.
  • the voltage applied between the electrodes is, for example, 5 to 30 Vpp, preferably 5 to 20 Vpp.
  • the irradiation amount of ultraviolet rays is, for example, 1 to 60 J / cm 2 , preferably 40 J / cm 2 or less, and the smaller the irradiation amount of ultraviolet rays, the more the deterioration of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed. Moreover, it is preferable because the production efficiency can be improved by reducing the ultraviolet irradiation time.
  • the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is memorized by this polymer. , The response speed of the obtained liquid crystal display element can be increased. Further, when ultraviolet rays are applied to the liquid crystal alignment film and the liquid crystal layer while applying a voltage, a polyimide precursor having a side chain for vertically aligning the liquid crystal and a photoreactive side chain, and the polyimide precursor are imide.
  • the liquid crystal display element obtained can be obtained.
  • the response speed can be increased.
  • the liquid crystal alignment film and the liquid crystal display element of the present invention are not limited to the above configurations and manufacturing methods as long as the liquid crystal alignment agent of the present invention is used, and are manufactured by other known methods. There may be.
  • the steps from obtaining a liquid crystal display element from a liquid crystal alignment agent are disclosed, for example, in paragraphs [0074] to 19 of paragraphs [0074] to page 19 of Japanese Patent Application Laid-Open No. 2015-135393.
  • the polymerizable compound is polymerized, and the photoreactive side chains or the photoreactive side chain of the polymer are reacted with the polymerizable compound.
  • the orientation of the liquid crystal is efficiently fixed, and the liquid crystal display element has an excellent response speed.
  • s-1 3-glycidoxypropyltriethoxysilane (organic solvent)
  • NMP N-Methyl-2-pyrrolidone
  • GBL ⁇ -Butyrolactone
  • BCS Ethylene glycol monobutyl ether
  • BCA Ethylene glycol monobutyl ether acetate
  • DME Dipropylene glycol dimethyl ether
  • PB Propylene glycol monobutyl ether
  • PA-I polyamic acid solution
  • PA-I polyamic acid solution
  • the obtained reaction solution was added to methanol in an amount 3.5 times the mass of the reaction solution with stirring, and the precipitated precipitate was filtered, followed by washing with methanol three times.
  • the obtained resin powder was vacuum dried at 80 ° C. for 12 hours to obtain a polyimide (SPI1-1) powder.
  • the imidization ratio of this polyimide resin powder was 75%.
  • NMP was added to the obtained polyimide (SPI1-1) so that the solid content concentration was 15% by mass, and the mixture was stirred at 70 ° C. for 15 hours to prepare a solution of the polyimide (SPI1-1) having a solid content concentration of 15% by mass. Obtained.
  • ⁇ Synthesis example 2 > 4.18 g (10.5 mmol) of DA-2, 2.92 g (5.2 mmol) of DA-3, and 5.63 g (5.63 g) of DA-5 in a four-necked flask with a stirrer and a nitrogen inlet tube. 19.3 mmol) Weighed, NMP was added to a solid content concentration of 19% by mass, and the mixture was stirred and dissolved while feeding nitrogen. While stirring this diamine solution, 4.51 g (22.7 mmol) of CA-5 was added, and NMP was further added so that the solid content concentration became 20% by mass. After stirring at 50 ° C.
  • PA-II polyamic acid solution
  • PA-II polyamic acid solution
  • the obtained resin powder was vacuum dried at 80 ° C. for 12 hours to obtain a polyimide (SPI1-2) powder.
  • the imidization rate of this polyimide resin powder was 95%.
  • NMP was added to the obtained polyimide (SPI1-2) so that the solid content concentration was 15% by mass, and the mixture was stirred at 70 ° C. for 15 hours to prepare a solution of the polyimide (SPI1-2) having a solid content concentration of 15% by mass. Obtained.
  • PAA2-1 polyamic acid solution
  • ⁇ Synthesis example 6> 7.45 g (26.0 mmol) of DA-8 is weighed in a four-necked flask equipped with a stirrer and a nitrogen introduction tube, 60.2 g of NMP is added so that the solid content concentration becomes 11% by mass, and nitrogen is added. Was stirred and dissolved while feeding. While stirring this diamine solution under water cooling, 5.16 g (23.6 mmol) of CA-3 and NMP were added so that the solid content concentration was 12%, and this polymerization solution was stirred at 50 ° C. for 15 hours to obtain a polyamide. An acid solution (PAA2-4) was obtained.
  • PAA2-5 polyamic acid
  • liquid crystal alignment agents (1) to (15) obtained above were filtered through a filter having a pore size of 1.0 ⁇ m, and then filled in an inkjet printing machine (manufactured by Ishii Notation, IP-1212NC1180L) to perform various evaluations.
  • the obtained substrate with a film was visually observed and observed with an optical microscope (manufactured by Nikon, ECLIPSE L300ND). If a uniform film was formed, it was defined as “good”, and if unevenness or streaks were observed, it was defined as “poor” and evaluated.
  • Standby shot is a process of periodically injecting liquid to prevent nozzle clogging.
  • Table 2 below shows the evaluation results of the liquid crystal alignment agents of Examples 1 to 8 and Comparative Examples 1 to 7 as described above.
  • the liquid crystal alignment agents of Comparative Examples 2 and 5 were “poor” due to scaly unevenness due to insufficient binding between the liquids. Further, in the evaluation of the discharge stability of the liquid crystal aligning agents of Comparative Examples 1, 3, 4, and 6, liquid leakage and precipitates were observed on the head after a long standby shot, and streaks along the scanning direction were observed. It was "bad”. Leakage was observed in the liquid crystal aligning agent of Comparative Example 7, but no precipitate was observed and no streaks or unevenness were confirmed. On the other hand, in the liquid crystal alignment agent of the example, no streaks or unevenness were observed in either the initial stage or after the long-term standby shot, and no liquid leakage or precipitate was observed on the head surface.
  • Example 3 With respect to the liquid crystal alignment agents of Example 3 and Comparative Examples 4, 5 and 6, the lengths of the polyimide films on the substrate obtained in the above evaluation of the initial coatability were measured in the vertical and horizontal directions. Further, 65 mm in the vertical direction of the scan and 75 mm in the horizontal direction were subtracted from the length measurement values, and the average value was calculated as the wet spread of the liquid from the coating area. That is, the smaller this value is, the better the dimensional stability is. The evaluation results are shown in Table 3 below.
  • Example 3 had a small spread and good dimensional stability as in Comparative Examples 4 to 6.
  • the liquid crystal aligning agents of Examples 1 to 8 were able to produce a liquid crystal display element having no alignment defect by a known method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

下記(A)、(B)を含有する液晶配向剤。 (A):下記式[1]及び式[2]から選ばれる少なくとも1種のジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体をイミド化して得られるポリイミド。式中、Aは単結合、メチレン基、エーテル結合、エステル結合、アミド結合、シクロヘキシレン基、又は炭素数2~20のアルキレン基である。但し、該アルキレン基の任意の-CH-はエーテル基、エステル基、アミド基、シクロヘキシレン基、フェニレン基、ウレア基、アミノ基、又はカルバメート基で置換されていてもよく、該アミド基、該ウレア基、該アミノ基の任意の水素原子はメチル基、又はtert-ブトキシカルボニル基に置き換えられてもよい。Aは、フッ素原子、又は炭素数1~5のアルキル基若しくはアルコキシ基であり、該アルキル基若しくは該アルコキシ基の任意の水素原子はフッ素原子で置換されていてもよく、任意の炭素原子はtert-ブトキシカルボニル基で保護されたアミノ基で置換されていてもよい。複数のaはそれぞれ独立して0~4の整数であり、Aが複数存在する場合、Aは同一でも異なってもよい。b及びcはそれぞれ独立して0~2の整数であり、bが0の場合cは1又は2でありAはアルキレン基である。 (B):ブチルセロソルブ及びブチルセロソルブアセテートを含有する有機溶媒。

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、液晶配向剤、液晶配向膜及び液晶表示素子に関する。
 液晶配向膜としては、ポリアミック酸(ポリアミド酸とも言われる。)などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向剤を塗布し焼成した、いわゆるポリイミド系の液晶配向膜が広く使用されている。
 近年、液晶表示素子の大画面化、高精細化に伴い、使用される基板や、基板段差の凹凸 が大きくなっている。そのような状況において、大型基板に対しても、大きな凹凸段差があったとしても、均一な液晶配向膜が求められている。
 液晶配向膜の作製工程において、ポリアミド酸や溶媒可溶性ポリイミド(樹脂ともいう)を含有する液晶配向剤を基板に塗布する場合、工業的にはフレキソ印刷法やインクジェット塗布法などで行うことが一般的である。
 その際、液晶配向剤の塗膜性が悪いと、はじきやピンホールが発生し、液晶表示素子にした際にその部分が表示欠陥となる。これに対し、液晶配向剤の溶媒には、樹脂の溶解性に優れる溶媒(良溶媒ともいう)であるN-メチル-2-ピロリドンやγ-ブチロラクトンなどに加えて、液晶配向剤の塗膜性を高めるために、樹脂の溶解性が低い溶媒(貧溶媒ともいう)であるエチレングリコールモノブチルエーテルなどが混合されている(例えば、特許文献1参照)。
 しかしながら、貧溶媒は、ポリアミド酸や溶媒可溶性ポリイミドを溶解させる能力に劣るため、大量に混合すると樹脂の析出が起こる問題がある。加えて、近年用いられている、スマートフォンや携帯電話等、モバイル用途の液晶表示素子では、できるだけ多くの表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤が、液晶配向膜の端部に近接した位置に存在する。そのため、液晶配向膜の端部の塗膜性が低下する場合、すなわち、液晶配向膜の端部が直線ではない場合、あるいはその端部が盛り上がっている状態である場合、液晶配向膜とシール剤との接着効果が低くなり、液晶表示素子の表示特性や信頼性を低下させてしまうという問題点がある。
 一方、フレキソ印刷版を用いない液晶配向膜の成膜法として、インクジェット法が注目されている。インクジェット法は、基板に微細な液滴を滴下し、液の濡れ広がりにより成膜する方法である。印刷版を用いないだけでなく、自由に印刷のパターンを設定できるため、液晶表示素子の製造工程が簡素化できる。また、フレキソ印刷で必要であったダミー基板への成膜が不要となることで塗布液の無駄が少ないという利点がある。インクジェット法により、液晶パネルのコストダウン、生産効率の向上が期待される。
 しかしながら、インクジェット法は、液晶パネルのコストダウン、生産効率の向上が期待されるなどのメリットがあるが、一般的にインクジェット法により成膜した液晶配向膜は、塗布面内での膜厚の均一性と、塗布周辺部の成膜精度がトレードオフの関係にある。すなわち、通常、面内均一性の高い材料は、塗布周辺部の寸法安定性が低く、設定した寸法から、膜がはみ出してしまうという問題点があった。
 そこで、ポリイミド膜を形成するために、塗膜性に優れた組成物として、ジプロピレングリコールジメチルエーテルなどを含む特定の貧溶媒を含有する組成物が提案されている(特許文献2参照)。
 また、特許文献3には特定ジアミンを含む溶媒可溶性ポリイミドを含有する液晶配向膜は、コンタミに非常に弱いネガ型液晶などにおいても非常に高い信頼性を得ることができることが記載されており、特許文献4には特定ジアミンを含む高イミド化率の溶媒可溶性ポリイミドを含有する液晶配向剤を用いることにより、1度以下の低いプレチルト角や優れた電圧保持率、液晶配向性を有する液晶配向膜を得ることが出来る旨開示されている。
特開平2-37324号公報 特開2018-83943号公報 WO2015/199149 WO2019/082975
 特許文献1に開示されたN-メチル-2-ピロリドン、γ-ブチロラクトンに加えて、液晶配向剤の塗膜性を高めるために、貧溶媒であるエチレングリコールモノブチルエーテルを添加した組成物をインクジェット法に用いると、ノズル詰まりを抑制するために定期的に液を噴射するスタンバイショットを長期に亘って実施する際、ポリイミド溶液からなる液がインクジェットヘッドの表面に付着し、特に、高イミド化率のポリイミドを含有する場合、問題が生じ易いという問題がある。
 本発明は、このような事情に鑑み、液同士の結合性に優れ塗膜性が良好で、インクジェット法においても長期に亘って安定して使用できる液晶配向剤、並びにそれにより製造された液晶配向膜及び液晶表示素子を提供することを目的とする。
 本発明者らは、鋭意研究を行った結果、例えば、N-メチル-2-ピロリドン(NMP)、γ-ブチロラクトン(GBL)及びエチレングリコールモノブチルエーテル(ブチルセロソルブ;BCS)に、さらに貧溶媒としてブチルセロソルブアセテートを導入することにより、塗膜性が良好で、塗布周辺部の寸法安定性が良好であり、インクジェット法においても長期に亘って安定して使用できることを見出し、本発明を完成された。また、かかる溶媒の特性は、特に、所定のポリイミドを溶解する場合に有効であることを見出し、本発明を完成するに至った。
 上記目的を達成する本発明の液晶配向剤は、
 下記(A)、(B)を含有する。
 (A):下記式[1]及び式[2]から選ばれる少なくとも1種のジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体をイミド化して得られるポリイミド。
Figure JPOXMLDOC01-appb-C000009
 式中、Aは単結合、メチレン基、エーテル結合、エステル結合、アミド結合、シクロヘキシレン基、又は炭素数2~20のアルキレン基である。但し、該アルキレン基の任意の-CH-はエーテル基、エステル基、アミド基、シクロヘキシレン基、フェニレン基、ウレア基、アミノ基、又はカルバメート基で置換されていてもよく、該アミド基、該ウレア基、該アミノ基の任意の水素原子はメチル基、又はtert-ブトキシカルボニル基に置き換えられてもよい。Aは、フッ素原子、又は炭素数1~5のアルキル基若しくはアルコキシ基であり、該アルキル基若しくは該アルコキシ基の任意の水素原子はフッ素原子で置換されていてもよく、任意の炭素原子はtert-ブトキシカルボニル基で保護されたアミノ基で置換されていてもよい。複数のaはそれぞれ独立して0~4の整数であり、Aが複数存在する場合、Aは同一でも異なってもよい。b及びcは、それぞれ独立して0~2の整数であり、bが0の場合、cは1又は2であり、Aはアルキレン基である。
 (B):ブチルセロソルブ及びブチルセロソルブアセテートを含有する有機溶媒。
 本発明によれば、塗膜性が良好で、塗布周辺部の寸法安定性が良好であり、インクジェット法においても長期に亘って安定して使用できる液晶配向剤、並びにそれにより製造された液晶配向膜及び液晶表示素子を提供することができる。
 以下、本発明をより詳細に説明する。
 本発明の液晶配向剤は、下記(A)、(B)を含有する。
 (A):上記式[1]及び式[2]から選ばれる少なくとも1種のジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体をイミド化して得られるポリイミド。
 (B):ブチルセロソルブ及びブチルセロソルブアセテートを含有する有機溶媒。
 本発明で用いられるジアミンは、上記式[1]又は[2]から選択される少なくとも1種を含む。
 上記式[1]において、Aは、メチル基が好ましい。aは0~1の整数であることが好ましい。
 上記式[2]において、Aは、液晶配向性を高める観点から、単結合、メチレン基、エーテル結合、エステル結合、炭素数2~10のアルキレン基(但し、該アルキレン基の少なくとも1つの-CH-は、エーテル基又はエステル基で置換されている。)、が好ましい。
 上記式[2]において、Aは、メチル基が好ましい。aは0~1の整数であることが好ましい。bは1であることが好ましい。cは1~2の整数であることが好ましい。
 上記式[1]で表されるジアミン及び式[2]で表されるジアミンのより好ましい具体的な構造として、下記式[d1-1]~[d1-2]又は[d2-1]~[d2-28]のいずれかの構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
(式[d1-1]中、Rはフッ素原子、又は炭素数1~5のアルキル基若しくはアルコキシ基であり、該アルキル基若しくは該アルコキシ基の任意の水素原子はフッ素原子で置換されていてもよい。式[d1-2]中、Bocはtert-ブトキシカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000011
(式[d2-8]中、R、R’は、それぞれ独立して、フッ素原子、又は炭素数1~5のアルキル基若しくはアルコキシ基であり、該アルキル基若しくは該アルコキシ基の任意の水素原子はフッ素原子で置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(式中、Bocはtert-ブトキシカルボニル基を表す。式[d2-17]において、mが複数存在する場合、複数のmは同一でも異なっても良い。)
Figure JPOXMLDOC01-appb-C000014
 上記式[1]で表されるジアミン及び式[2]で表されるジアミンは、更に好ましい具体的な構造としては以下の構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 上記式[1]及び上記式[2]で表されるジアミンの含有量は、全ジアミン成分1モルに対して、50モル%以上が好ましく、70モル%以上であることがより好ましい。
 本発明で(A)のポリイミドを構成するジアミンは、上記式[1]及び[2]から選択されるジアミン以外に、下記で説明するジアミンを含んでもよい。
 上記式[1]及び[2]から選択されるジアミンは、2種以上用いてもよく、3種以上用いてもよい。
 中でも、上記式[2]から選択されるジアミンを2種以上、又は3種以上用いることが好ましい。
<特定側鎖構造を有するジアミン>
 特定側鎖構造を有するジアミンは、垂直配向性を発現するものであり、下記式[S1]~[S3]で表される群から選ばれる少なくとも1種の側鎖構造を有する。以下、かかる特定側鎖構造を有する第2ジアミンの例である、式[S1]~[S3]で表される特定側鎖構造を有するジアミンについて順に説明する。
 [a]:下記式[S1]で表される特定側鎖構造を有するジアミン
Figure JPOXMLDOC01-appb-C000016
 上記式[S1]中、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数を示す。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-COO-、-OCO-又は-((CHa1-Am1-を表す。このうち、a1は1~15の整数を示し、Aは酸素原子又は-COO-を示し、m1は1~2の整数を示す。m1が2の場合、複数のa1及びAはそれぞれ独立して上記定義を有する。
 なかでも、原料の入手性や合成の容易さの点からは、X及びXは、それぞれ独立して、単結合、-(CH-(aは1~15の整数を示す。)、-O-、-CHO-又は-COO-が好ましく、単結合、-(CH-(aは1~10の整数を示す。)、-O-、-CHO-又は-COO-がより好ましい。
 また、上記式[S1]中、G及びGは、それぞれ独立して、炭素数6~12の2価の芳香族基、及び炭素数3~8の2価の脂環式基からなる群から選ばれる2価の環状基を表す。該環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシ基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシ基又はフッ素原子で置換されていてもよい。m及びnは、それぞれ独立して、0~3の整数を示し、m及びnの合計は1~6であり、好ましくは1~4である。
 また、上記式[S1]中、Rは、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数2~20のアルコキシアルキル基を表す。Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。このうち、炭素数6~12の2価の芳香族基の例としては、フェニレン基、ビフェニル構造、ナフチレン基等が挙げられる。また、炭素数3~8の2価の脂環式基の例としては、シクロプロピレン基、シクロヘキシレン基等が挙げられる。
 従って、上記式[S1]の好ましい具体例として、下記式[S1-x1]~[S1-x7]があげられる。
Figure JPOXMLDOC01-appb-C000017
 上記式[S1-x1]~[S1-x7]中、Rは、上記式[S1]の場合と同様である。Xは、-(CH-(aは1~15の整数を示す。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CHOCO-、-COO-又は-OCO-を表す。Aは、酸素原子又は-COO-*(「*」を付した結合手が(CHa2と結合する)を表す。Aは、酸素原子又は*-COO-(「*」を付した結合手が(CHa2と結合する)を表す。aは0又は1の整数を示し、a及びaはそれぞれ独立して2~10の整数を示す。Cyは1,4-シクロへキシレン基又は1,4-フェニレン基を表す。
 [b]:下記式[S2]で表される特定側鎖構造を有するジアミン
Figure JPOXMLDOC01-appb-C000018
 上記式[S2]中、Xは単結合、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-COO-又は-OCO-を表す。なかでも、液晶配向剤の液晶配向性の点から、Xは-CONH-、-NHCO-、-O-、-CHO-、-COO-又は-OCO-が好ましい。
 また、上記式[S2]中、Rは、炭素数1~20のアルキル基又は炭素数2~20のアルコキシアルキル基を表す。Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。なかでも、液晶配向剤の液晶配向性の点から、Rは炭素数3~20のアルキル基又は炭素数2~20のアルコキシアルキル基が好ましい。
 式[S2]の好ましい具体例としては、Xが、-O-、-CHO-、-COO-又は-OCO-のいずれかであり、Rが炭素数3~20のアルキル基又は炭素数2~20のアルコキシアルキル基である場合が好ましく、Rが炭素数3~20のアルキル基である場合が更に好ましく、Rを形成する任意の水素原子はフッ素原子で置換されていてもよい。
 [c]:下記式[S3]で表される特定側鎖構造を有するジアミン
Figure JPOXMLDOC01-appb-C000019
 上記式[S3]中、Xは-CONH-、-NHCO-、-O-、-CHO-、-COO-又は-OCO-を表す。Rはステロイド骨格を有する構造を表す。ここでのステロイド骨格は、3つの六員環及び1つの五員環が結合した下記式(st)で表される骨格を有する。尚、該ステロイド骨格が有する環は二重結合を有してもよい。
Figure JPOXMLDOC01-appb-C000020
 上記式[S3]の例として下記式[S3-x]が挙げられる。Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000021
 上記式[S3-x]中、Xは、上記式[X1]、[X2]又は[X3]を表す。また、Colは、上記式[Col1]~[Col3]のいずれかを表し、Gは、上記式[G1]~[G4]のいずれかを表す。*は結合手を表す。
 上記式[S3-x]における、X、Col及びGの好ましい組合せの例としては、例えば、下記の組合せが挙げられる。すなわち、[X1]と[Col1]と[G1]、[X1]と[Col1]と[G2]、[X1]と[Col2]と[G1]、[X1]と[Col2]と[G2]、[X1]と[Col3]と[G2]、[X1]と[Col3]と[G1]、[X2]と[Col1]と[G2]、[X2]と[Col2]と[G2]、[X2]と[Col2]と[G1]、[X2]と[Col3]と[G2]、[X2]と[Col1]と[G1]、[X3]と[Col2]と[G1]、[X3]と[Col2]と[G2]、[X3]と[Col2]と[G3]である。
 また、上記式[S3]の具体的としては、特開平4-281427号公報の段落[0024]に記載のステロイド化合物から水酸基(ヒドロキシ基)を除いた構造、同公報の段落[0030]に記載のステロイド化合物から酸クロライド基を除いた構造、同公報の段落[0038]に記載のステロイド化合物からアミノ基を除いた構造、同公報の段落[0042]にステロイド化合物からハロゲン原子を除いた構造、及び特開平8-146421の段落[0018]~[0022]に記載の構造等が挙げられる。
 なお、ステロイド骨格の代表例としては、コレステロール(上記式[S3-x]における[Col1]及び[G2]の組み合わせ)が挙げられるが、該コレステロールを含まないステロイド骨格を利用することもできる。すなわち、ステロイド骨格を有するジアミンとして、例えば3,5-ジアミノ安息香酸コレスタニル等が挙げられるが、かかるコレステロール骨格を有するジアミンを含まないジアミン成分とすることも可能である。また、特定側鎖構造を有するジアミンとして、ジアミンと側鎖との連結位置にアミド結合を含まないものを利用することもできる。本実施形態においては、コレステロール骨格を有するジアミンを含まないジアミン成分を利用しても、長期に渡って高い電圧保持率を確保できる液晶配向膜や液晶表示素子を得ることができる液晶配向剤を提供できる。
 なお、上記式[S1]~[S3]で表される側鎖構造を有するジアミンは、それぞれ、下記式[1-S1]~[1-S3]の構造で表される。
Figure JPOXMLDOC01-appb-C000022
 上記式[1-S1]中、X、X、G、G、R、m及びnは、上記式[S1]における場合と同様である。上記式[1-S2]中、X及びRは、上記式[S2]における場合と同様である。上記式[1-S3]中、X及びRは、上記式[S3]における場合と同様である。
(垂直配向性を発現する二側鎖型の特定側鎖構造を有するジアミン)
 垂直配向性を発現する二側鎖型の特定側鎖構造を有するジアミンは、例えば下記式[N1]で表される。
Figure JPOXMLDOC01-appb-C000023
 上記式[N1]中、Xは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-又はそれらの任意の組み合わせからなる2価の有機基を表す。なかでも、Xは、単結合、-O-、-NH-、又は-O-(CH-O-が好ましい。「それらの任意の組み合わせ」の例としては、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、-COO-(CH-OCO-、-NH-(CH-NH-、-SO-(CH-SO-等が挙げられる。mは1~8の整数を示す。
 また、上記式[N1]中、2つのYは、それぞれ独立して、上記式[S1]~[S3]で表される側鎖構造から選ばれる1価の基を表す。
 また、上記式[N1]中、Yは、Xの位置からメタ位であってもオルト位であってもよいが、好ましくはオルト位がよい。すなわち、上記式[N1]は、下記式[1’]であるのが好ましい。
Figure JPOXMLDOC01-appb-C000024
 また、上記式[N1]中、2つのアミノ基(-NH)の位置は、ベンゼン環上のいずれの位置であってもよいが、下記式[1]-a1~[1]-a3で表される位置が好ましく、下記式[1]-a1であるのがより好ましい。下記式中、Xは、上記式[N1]における場合と同様である。なお、下記式[1]-a1~[1]-a3は、2つのアミノ基の位置を説明するものであり、上記式[N1]中で表されていたYの表記が省略されている。
Figure JPOXMLDOC01-appb-C000025
 従って、上記式[1’]及び[1]-a1~[1]-a3に基づけば、上記式[N1]は、下記式[1]-a1-1~[1]-a3-2からなる群から選ばれるいずれかの構造であるのが好ましく、下記式[1]-a1-1で表される構造がより好ましい。下記式中、X及びYは、それぞれ式[N1]における場合と同様である。
Figure JPOXMLDOC01-appb-C000026
 また、上記式[S1]~[S3]の例として、下記式[S]-1~[S]-20が挙げられる。このうち、上記式[S1]の例としては、下記式[S]-1~[S]-4、[S]-8又は[S]-10が好ましい。なお、下記式中、*は、上記式[1]、[1’]及び[1]-a1~[1]-a3におけるフェニル基との結合位置を表す。また、[S]-1~[S]-20において、nは1~20の整数であり、mは1~6の整数である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
<その他のジアミン:光反応性側鎖を有するジアミン>
 本実施形態のジアミン成分は、その他のジアミンとして、光反応性側鎖を有するジアミンを含有してもよい。ジアミン成分が、光反応性側鎖を有するジアミンを含有することで、特定重合体やそれ以外の重合体に、光反応性側鎖を導入できるようになる。
 光反応性側鎖を有するジアミンの具体例は、例えば、再公表特許公報2016/140328号公報の段落[0124]~[0132]に記載のものを挙げることができるがこれに限定されない。
 これらの光反応性側鎖を有するジアミンは、1種単独又は2種以上混合して用いることができる。液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷等の特性、液晶表示素子とした際の液晶の応答速度等に応じて、1種単独か2種以上混合して用いるか、また、2種以上混合して用いる場合にはその割合等、適宜調整すればよい。
 本実施形態において、ジアミン成分に光反応性側鎖ジアミンが含まれる場合、該光反応性側鎖ジアミンは、全ジアミン成分の10~70モル%が好ましく、10~60モル%がより好ましい。
<その他のジアミン:上記以外のジアミン>
 特定重合体を得るためのジアミン成分に含まれていてもよいその他のジアミンは、上記光反応性側鎖を有するジアミン等に限定されない。
 ポリイミド前駆体及び/又は、ポリイミドを製造する場合、上記したジアミン以外のその他のジアミンをジアミン成分として併用することができる。具体的には、下記ジアミンの他、再公表特許公報WO2016/140328号公報の段落[0135]に記載のものを挙げることができる。
 4,4’-ジアミノアゾベンゼン又はジアミノトランなどの光配向性基を有するジアミン;4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニルメチルアミン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール;4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸及び下記式(3b-1)~式(3b-4)で表されるジアミンなどのカルボキシル基を有するジアミン;4-(2-(メチルアミノ)エチル)アニリン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル、2,4-ジアミノ-N,N-ジアリルアニリン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン、下記式(Ds-1)で表されるジアミン等のシロキサン結合を有するジアミン;下記式(Ox-1)~(Ox-2)で表されるジアミン、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、下記式(z-1)~式(z-18)で表されるジアミン等の複素環構造を有するジアミン;メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)等。
Figure JPOXMLDOC01-appb-C000029
(上記(3b-1)中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、m1及びm2はそれぞれ独立して、0~4の整数を示し、かつm1+m2は1~4の整数を示す。式(3b-2)中、m3及びm4はそれぞれ独立して、1~5の整数を示す。式(3b-3)中、Aは炭素数1~5の直鎖又は分岐アルキル基を示し、m5は1~5の整数を示す。式(3b-4)中、A及びAはそれぞれ独立して、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、m6は1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 上記その他のジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 本発明の液晶配向膜をIPS方式やFFS方式の液晶表示素子に用いる場合は、本発明における(A)のポリイミドを構成するジアミンは、炭素数6以上の側鎖基を有するジアミンを用いないことが好ましい。炭素数6以上の側鎖基を有するジアミンとしては、上記特定側鎖構造を有するジアミン、上記垂直配向性を発現する二側鎖型の特定側鎖構造を有するジアミンが挙げられる。
<ポリイミド>
 本発明のポリイミドは、上記ジアミンと、テトラカルボン酸成分との反応物であるポリイミド前駆体をイミド化して得られるものである。
<テトラカルボン酸成分>
 本発明のポリイミドを得るためのテトラカルボン酸成分としては、下記式[3]で表されるテトラカルボン酸二無水物、又はその誘導体(テトラカルボン酸、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライド)(これらを総称して、特定テトラカルボン酸という。)を用いることができる。
Figure JPOXMLDOC01-appb-C000033
(式[3]中、Xは、下記式(B-1)~(B-20)のいずれかから選択される。特に、Xが(B-1)、(B-2)、(B-3)のいずれかであることが好ましい。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
(式中、j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン、スルホニル、又はアミド基を表す。上記式(B-20)において、2個のAは、互いに同一であっても異なっていてもよい。式中、*は結合手を表す。)
 特定テトラカルボン酸の具体例としては、以下のものの他、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物を挙げることができる。

Figure JPOXMLDOC01-appb-C000036
 特定テトラカルボン酸は、すべてのテトラカルボン酸成分100モル%中、50~100モル%であることが好ましい。なかでも、70~100モル%がより好ましい。更に好ましいのは、80~100モル%である。
 特定テトラカルボン酸は、特定重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
 本発明のポリイミドを得るためのテトラカルボン酸成分としては、上記特定テトラカルボン酸以外のテトラカルボン酸(以下、その他のテトラカルボン酸とも言う)を含有しても良い。
 その他のテトラカルボン酸としては、以下に示すテトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。
 すなわち、その他のテトラカルボン酸としては、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、1,2,5,6-アントラセンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)ジメチルシラン二無水物、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン二無水物、2,3,4,5-ピリジンテトラカルボン酸二無水物、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物又は1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸二無水物などが挙げられる。
 その他のテトラカルボン酸は、特定重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
<ポリイミドの製造方法>
 本発明のポリイミドは、上記説明したジアミン成分と、テトラカルボン酸成分と、を反応させる方法により得られる。該方法としては、例えば、1種又は複数種のジアミンからなるジアミン成分と、テトラカルボン酸二無水物及びそのテトラカルボン酸の誘導体からなる群から選ばれる少なくとも1種のテトラカルボン酸成分と、を反応させ、ポリアミド酸を得る方法が挙げられる。具体的には、第一級又は第二級のジアミンと、テトラカルボン酸二無水物と、を重縮合させてポリアミック酸を得る方法が用いられる。
 ポリアミド酸アルキルエステルを得るためには、カルボン酸基をジアルキルエステル化したテトラカルボン酸と第一級又は第二級のジアミンとを重縮合させる方法、カルボン酸基をハロゲン化したテトラカルボン酸ジハライドと第一級又は第二級のジアミンとを重縮合させる方法、又はポリアミド酸のカルボキシ基をエステルに変換する方法が用いられる。ポリイミドを得るには、上記のポリアミド酸又はポリアミド酸アルキルエステルを閉環させてポリイミドとする方法が用いられる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。ここでの溶媒の例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド及び1,3-ジメチル-2-イミダゾリジノン等が挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記式[D-1]~[D-3]で表される溶媒等を用いることができる。
Figure JPOXMLDOC01-appb-C000037
 式[D-1]中、Dは炭素数1~3のアルキル基を表す。式[D-2]中、Dは炭素数1~3のアルキル基を表す。式[D-3]中、Dは炭素数1~4のアルキル基を表す。
 これらの溶媒は、1種単独又は2種以上混合して用いることができる。ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲であれば、上記溶媒に混合して使用してもよい。また、溶媒中の水分は、重合反応を阻害し、更には、生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
 ジアミン成分とテトラカルボン酸成分とを溶媒中で反応させる際には、ジアミン成分を溶媒に分散、或いは溶解させた溶液を撹拌させ、テトラカルボン酸成分をそのまま、又は溶媒に分散、或いは溶解させて添加する方法、逆にテトラカルボン酸成分を溶媒に分散、或いは溶解させた溶液にジアミン成分を添加する方法、ジアミン成分とテトラカルボン酸成分とを交互に添加する方法等が挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、更に個別に反応させた低分子量体を混合反応させ重合体としてもよい。
 ジアミン成分とテトラカルボン酸成分とを重縮合せしめる温度は、-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分との合計モル数の比は、0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど、生成するポリイミド前駆体の分子量は大きくなる。
 ポリイミドは、上記ポリイミド前駆体を閉環させて得られるポリイミドであり、このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。本発明で用いられる特定重合体であるポリイミドのイミド化率は、表示不良の発生率を低くする観点から20~100%が好ましく、50~99%がより好ましく、更に好ましくは70~95%である。ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。
 塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等が挙げられる。なかでも、ピリジンは、反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等が挙げられる。特に、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 ポリイミドの反応溶液から、生成したポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水等が挙げられる。溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧或いは減圧下で、又は常温或いは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられる。これらの中から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。
<末端修飾剤>
 本発明におけるポリイミド前駆体やポリイミドを合成するに際して、上記の如きテトラカルボン酸誘導体成分、及びジアミン成分とともに、適当な末端修飾剤を用いて末端修飾型の重合体を合成することとしてもよい。末端修飾型の重合体は、塗膜によって得られる液晶配向膜の膜硬度の向上や、シール剤と液晶配向膜の密着特性の向上という効果を有する。
 本発明におけるポリイミド前駆体やポリイミドの末端の例としては、アミノ基、カルボキシル基、酸無水物基、イソシアネート基、チオイソシアネート基又はこれらの誘導体が挙げられる。アミノ基、カルボキシル基、酸無水物基、イソシアネート基、チオイソシアネートは通常の縮合反応により得られ、上記誘導体は、例えば、以下の末端修飾剤を用いて、末端を修飾するにより得ることができる。
 末端修飾剤としては、例えば無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、下記式(m-1)~(m-6)で表される化合物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸一無水物;
Figure JPOXMLDOC01-appb-C000038
 二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物;エチルイソチオシアネート、アリルイソチオシアネートなどのチオイソシアネート化合物などを挙げることができる。
 末端修飾剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。
<液晶配向剤>
 本発明の液晶配向剤は、上記のポリイミド(特定重合体という)を含有するが、異なる構造の重合体を2種以上含有していてもよい。また、重合体に加えて、その他の重合体を含有していてもよい。重合体の形式としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレート等が挙げられる。本発明の液晶配向剤がその他の重合体を含有する場合、全重合体成分に対する特定重合体の割合は5質量%以上が好ましく、例えば5~95質量%が挙げられる。
 上記その他の重合体は、中でも液晶配向性を高める観点から、イミド環構造を含有しないポリアミック酸、又はイミド環構造を含有しないポリアミック酸エステル(以下、ポリイミド前駆体(pa)ともいう。)が好ましい。
 ポリイミド前駆体(pa)を得るためのテトラカルボン酸誘導体成分としては、非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物又はこれらの誘導体が挙げられる。非環式脂肪族テトラカルボン酸二無水物、脂環式テトラカルボン酸二無水物、芳香族テトラカルボン酸二無水物の具体例としては、上記特定重合体で例示したテトラカルボン酸二無水物又はその誘導体が挙げられる。中でも好ましいテトラカルボン酸誘導体成分としては、上記式[3]で表される化合物又はこれらの誘導体が好ましい。テトラカルボン酸誘導体成分は、一種のテトラカルボン酸二無水物又はその誘導体を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 ポリイミド前駆体(pa)を得るためのテトラカルボン酸誘導体成分としては、好ましくは、式[3]におけるXが、上記式(B-1)~(B-8)、(B-13)~(B-20)から選ばれる式[3]で表されるテトラカルボン酸二無水物又はこれらの誘導体が挙げられる。
 上記式[3]で表されるテトラカルボン酸二無水物又はこれらの誘導体の使用割合は、ポリイミド前駆体(pa)の合成に使用される全テトラカルボン酸誘導体成分1モルに対して、1~100モル%が好ましく、5~100モル%がより好ましく、10~100モル%がさらに好ましい。
 ポリイミド前駆体(pa)を得るためのジアミン成分としては、上記特定重合体で例示したジアミン成分が挙げられる。中でも、分子内にウレア結合、アミド結合、カルボキシ基及びヒドロキシ基からなる群から選ばれる少なくとも1種の基を有するジアミン(以下、ジアミン(b1)ともいう。)並びに、第二級アミノ基、第三級アミノ基及び複素環からなる群から選ばれる窒素含有構造(但し、ウレア結合、アミド結合、イミド結合は除く。)を有するジアミン(以下、ジアミン(b2)ともいう。)からなる群から選ばれる少なくとも1種のジアミンを含むことが好ましい。前記ジアミン成分は、一種のジアミンを単独で用いてもよく、二種以上を組み合わせて用いてもよい。上記において、ジアミン(b1)及び(b2)の合計の好ましい使用量は、ポリイミド前駆体(pa)を製造するためのジアミン成分の全量に対して、10~100モル%であり、より好ましくは10~90モル%であり、さらに好ましくは20~80モル%である。
 ポリイミド前駆体(pa)は1成分又は2成分以上のポリイミド前駆体で構成されてもよい。ポリイミド前駆体(pa)のより好ましい具体的な態様としては、上記ジアミン(b1)と上記ジアミン(b2)とを含むジアミン成分と、テトラカルボン酸誘導体成分との反応物であるポリイミド前駆体からなる群から選ばれる少なくとも1種の重合体(以下、共重合体ともいう)、上記ジアミン(b1)を含むジアミン成分と、テトラカルボン酸誘導体成分との反応物であるポリイミド前駆体からなる群から選ばれる少なくとも1種のポリイミド前駆体(pa-p1)と、上記ジアミン(b2)を含むジアミン成分と、テトラカルボン酸誘導体成分との反応物であるポリイミド前駆体からなる群から選ばれる少なくとも1種のポリイミド前駆体(pa-p2)との混合物(以下、重合体ブレンドともいう。)を挙げることができる。上記共重合体又は重合体ブレンドは単独で使用してもよく、組み合わせて使用してもよい。
 上記共重合体において、ジアミン(b1)の好ましい使用量は、ポリイミド前駆体(pa)を製造するためのジアミン成分の全量に対して、30~100モル%であり、より好ましくは40~100モル%、さらに好ましくは50~100モル%である。
 上記共重合体において、ジアミン(b2)の好ましい使用量は、ポリイミド前駆体(pa)を製造するためのジアミン成分の全量に対して、30~100モル%であり、より好ましくは40~100モル%、さらに好ましくは50~100モル%である。
 上記重合体ブレンドにおいて、ジアミン(b1)及びジアミン(b2)の好ましい使用量は、それぞれ、ポリイミド前駆体(pa-p1)及びポリイミド前駆体(pa-p2)を製造するためのジアミン成分の全量に対して、20~100モル%である。ジアミン(b1)のより好ましい使用量は、ポリイミド前駆体(pa-p1)を製造するためのジアミン成分の全量に対して、20~90モル%であり、さらに好ましくは20~80モル%である。ジアミン(b2)のより好ましい使用量は、ポリイミド前駆体(pa-p2)を製造するためのジアミン成分の全量に対して、20~80モル%であり、さらに好ましくは30~80モル%である。
 上記ジアミン(b1)の具体例としては、上記式[d2-10]~[d2-16]で表されるジアミン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、又は3,5-ジアミノ安息香酸又は上記式(3b-1)~式(3b-4)で示されるジアミンが挙げられる。
 上記ジアミン(b2)の具体例としては、上記式[d2-23]~[d2-28]で表されるジアミン、4,4’-ジアミノジフェニルアミン、4,4’-ジアミノジフェニルメチルアミン、上記式(z-1)~式(z-18)で表されるジアミンが好ましい。
 上記ポリイミド前駆体(pa-p1)の含有量と上記ポリイミド前駆体(pa-p2)の含有量の質量比率は、5/95~95/5であることが好ましく、より好ましくは10/90~90/10である。
 残留DC由来の残像が少ない観点において、特定重合体であるポリイミドとポリイミド前駆体(pa)の含有割合が、[特定重合体であるポリイミド]/[ポリイミド前駆体(pa)]の質量比で5/95~95/5であってもよく、20/80~90/10であってもよく、20/80~80/20であってもよい。
 液晶配向剤は、均一な薄膜を形成させるという点から、一般的には塗布液の形態をとる。本発明の液晶配向剤も、上記重合体成分と、この重合体成分を溶解させる有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更できる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 液晶配向剤に含有される有機溶媒は、(B)のブチルセロソルブ及びブチルセロソルブアセテートを含有するが、その他、重合体成分が均一に溶解する他の有機溶媒を含有する。
 本発明の液晶配向剤は、貧溶媒として、ブチルセロソルブ及びブチルセロソルブアセテートを含有することにより、液同士の結合性に優れ塗膜性が良好で、インクジェット法においても長期に亘って安定して使用できるものとなる。
 ブチルセロソルブの含有量は好ましくは、液晶配向剤に含まれる全有機溶剤に対して、5~20質量%であり、ブチルセロソルブアセテートの含有量は好ましくは、液晶配向剤に含まれる全有機溶剤に対して、5~20質量%である。ブチルセロソルブとブチルセロソルブアセテートの合計量は、液晶配向剤に含まれる全有機溶剤に対して、10質量%以上である事が好ましく、12質量%以上であることがより好ましく、15質量%以上であることが更に好ましい。
 他の有機溶媒は、重合体成分を溶解するものであれば特に限定されない。具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、メチルエチルケトン、シクロヘキサノン、シクロペンタノン(これらを総称して、「溶媒(C1)」ともいう。);ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)(これらを総称して、「溶媒(C2)」ともいう。)等である。溶媒(C1)は、なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジメチルラクトアミド、1,3-ジメチル-2-イミダゾリジノンを用いることが好ましい。溶媒(C1)の含有量は、液晶配向剤に含まれる全有機溶剤に対して、60~90質量%であることが好ましく、60~88質量%がより好ましく、特に好ましいのは、60~85質量%である。
 また、溶媒(C2)は、なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン又はジイソブチルケトンが好ましい。溶媒(C2)の含有量は、液晶配向剤に含まれる全有機溶剤に対して、1~20質量%であることが好ましく、5~20質量%であることが好ましい。
 溶媒(C1)と溶媒(C2)を含む場合、溶媒(C1)と溶媒(C2)との含有量の合計は、液晶配向剤に含まれる全有機溶剤に対して、60~90質量%であることが好ましく、60~88質量%がより好ましく、特に好ましいのは、60~85質量%である。
 また、本発明の液晶配向剤に含有される有機溶媒は、上記溶媒に加えて、液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を用いることもできる。かかる有機溶媒の具体例は、例えば、再公表特許公報WO2016/140328号公報の段落[0177]に記載のものを挙げることができる。
 本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分を追加的に含有してもよい。このような追加成分としては、液晶配向膜と基板との密着性や、液晶配向膜とシール材との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための架橋剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質等が挙げられる。これら追加成分の具体例としては、国際公開第2015/060357号の53頁段落[0104]~60頁段落[0116]に開示される貧溶媒や架橋性化合物が挙げられる。
 本発明の液晶配向剤には、上記の他、本発明に記載の特定重合体以外の重合体、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的の誘電体、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、更には塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤等を含有せしめてもよい。
 液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物が挙げられる。具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、又は再公表特許公報WO2016/140328号公報の段落[0180]に記載のものを挙げることができる。その含有量は、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
 また液晶配向膜の膜強度をさらに上げるために、オキシラニル基、オキセタニル基、保護イソシアネート基、保護イソチオシアネート基、オキサゾリン環構造を含む基、メルドラム酸構造を含む基、シクロカーボネート基及びヒドロキシアルキルアミド基よりなる群から選ばれる少なくとも1種の基を2つ以上有する化合物(以下、特定の架橋性基を2つ以上有する化合物ともいう。)、又は2,2-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物などの架橋性化合物を添加してもよい。これらの架橋性化合物は、液晶配向剤に含有される重合体の総量100質量部に対して0.1~30質量部が好ましく、1~20質量部がより好ましい。上記特定の架橋性基を2つ以上有する化合物としては、下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000039
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤から得られる。本発明の液晶配向剤の使用により、基板に対して水平に配向している液晶分子を電界によって応答させるIPS方式やFFS方式に特に好適であり、電圧保持率に優れ、蓄積電荷の緩和が早く、残像特性に優れる液晶配向膜や液晶表示素子を提供できる。液晶配向膜を得る方法の一例を挙げるなら、本発明の液晶配向剤を、基板に塗布した後、必要に応じて乾燥し、焼成を行うことで得られる硬化膜を、そのまま液晶配向膜として用いることもできる。また、この硬化膜をラビングしたり、偏光又は特定の波長の光等を照射したり、イオンビーム等の処理をしたり、PSA用配向膜として液晶充填後の液晶表示素子に電圧を印加した状態でUVを照射することも可能である。
 液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法等が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法等があり、目的に応じてこれらを用いてもよい。液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択できる。乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を行うことが好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40~150℃、好ましくは60~100℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。
 本発明の液晶配向剤を用いた場合、特にインクジェット法において塗布する場合、貧溶媒として、ブチルセロソルブ及びブチルセロソルブアセテートを含有することにより、スタンバイショットを長期に亘って実施しても、ポリイミド溶液からなる液がインクジェットヘッドの表面に付着することが抑制されるため、ヘッド上で析出することなく安定した吐出が可能になる。
 液晶配向剤を塗布することにより形成された塗膜の焼成温度は限定されず、例えば100~350℃、好ましくは120~300℃であり、さらに好ましくは150~250℃である。焼成時間は5~240分、好ましくは10~90分であり、より好ましくは20~90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環炉、赤外線炉などで行うことができる。
 焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。本発明の液晶配向膜はとりわけIPS方式やFFS方式の液晶表示素子の液晶配向膜として有用である。
<液晶表示素子及びその製造方法>
 液晶表示素子は、上記の方法により、基板に液晶配向膜を形成した後、公知の方法で液晶セルを作製できる。液晶表示素子の具体例としては、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する水平配向方式の液晶表示素子である。具体的には、液晶配向剤を2枚の基板上に塗布して焼成した後、ラビング処理や、光配向処理などで配向処理し、また、垂直配向用途などでは配向処理無しで、液晶配向膜として使用できる。これらの液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持し、すなわち、液晶配向膜に接触させて液晶層を設けることで作製される液晶セルを具備する水平配向方式の液晶表示素子である。
 液晶表示素子の基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 透過型の液晶表示素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
 液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の水平配向方式で使用される液晶材料、例えば、メルク社製のMLC-3019などのポジ型の液晶や同社製のMLC-7026-100などのネガ型の液晶を用いることができる。また、PSAモードでは、例えば下記式で表されるような重合性化合物含有の液晶を使用することができる。
Figure JPOXMLDOC01-appb-C000040
 液晶層を2枚の基板の間に挟持させる方法としては、公知の方法を挙げることができる。例えば、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法が挙げられる。また、液晶配向膜が形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布した後に液晶を滴下し、その後液晶配向膜が形成された側の面が内側になるようにしてもう一方の基板を貼り合わせて封止を行う方法でも液晶セルを作製できる。上記スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。
 液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することにより液晶セルを作製する工程は、例えば基板上に設置されている電極間に電圧をかけることで液晶配向膜及び液晶層に電界を印加し、この電界を保持したまま紫外線を照射する方法が挙げられる。ここで、電極間にかける電圧としては、例えば5~30Vp-p、好ましくは5~20Vp-pである。紫外線の照射量は、例えば、1~60J/cm、好ましくは40J/cm以下であり、紫外線照射量が少ないほうが、液晶表示素子を構成する部材の破壊により生じる信頼性低下を抑制でき、かつ紫外線照射時間を減らせることで製造効率が上がるので好適である。
 上記のように、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、重合性化合物が反応して重合体を形成し、この重合体により液晶分子が傾く方向が記憶されることで、得られる液晶表示素子の応答速度を速くすることができる。また、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射すると、液晶を垂直に配向させる側鎖と、光反応性の側鎖とを有するポリイミド前駆体、及び、このポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一種の重合体が有する光反応性の側鎖同士や、重合体が有する光反応性の側鎖と重合性化合物が反応するため、得られる液晶表示素子の応答速度を速くすることができる。
 次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。
 なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り上記の構成や製造方法に限定されるものではなく、その他の公知の手法で作製されたものであってもよい。液晶配向剤から液晶表示素子を得るまでの工程は、例えば、特開2015-135393号公報の17頁の段落[0074]~19頁の段落[0082]等に開示されている。
 重合体光反応性の側鎖を有する場合には、重合性化合物を重合させると共に、光反応性側鎖同士や、重合体が有する光反応性側鎖と重合性化合物を反応させることにより、より効率的に液晶の配向が固定化され、応答速度に優れた液晶表示素子となる。
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
(ジアミン)
Figure JPOXMLDOC01-appb-C000041
(テトラカルボン酸二無水物)
Figure JPOXMLDOC01-appb-C000042
 
(末端修飾剤)
 BocO:二炭酸ジ-tert-ブチル
(添加剤)
Figure JPOXMLDOC01-appb-C000043
 s-1:3-グリシドキシプロピルトリエトキシシラン
(有機溶媒)
 NMP:N-メチル-2-ピロリドン
 GBL:γ-ブチロラクトン
 BCS:エチレングリコールモノブチルエーテル
 BCA:エチレングリコールモノブチルエーテルアセテート
 DME:ジプロピレングリコールジメチルエーテル
 PB:プロピレングリコールモノブチルエーテル
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
[重合体の合成]
<合成例1>
 撹拌装置付き及び窒素導入管付きの四つ口フラスコに、DA-1を10.3g(42.5mmol)、DA-3を7.8g(14.0mmol)、及びDA-4を4.78g(14.0mmol)秤取し、NMPを固形分濃度が15質量%になるように加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を10.2g(45.5mmol)添加し、更に固形分濃度が18質量%になるようにNMPを加えた。40℃で1時間撹拌した後、室温にてCA-2を3.57g(18.2mmol)添加し、更に固形分濃度が18質量%になるようにNMPを加えた。この重合溶液を3時間撹拌してポリアミド酸溶液(PA-I)を得た。
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに得られた上記ポリアミド酸溶液(PA-I)を100.0g取り、末端修飾剤であるBocOを4.06g(18.6mmol)添加し、40℃で15時間撹拌した後に、末端修飾されたポリアミド酸溶液(PAboc-I)を得た。
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに得られた上記末端修飾されたポリアミド酸溶液(PAboc-I)を100.0g取り、NMPを固形分濃度が12質量%となるように加え、30分撹拌した。得られたポリアミド酸溶液に、無水酢酸を10.54g、及びピリジンを2.72g加えて、室温で30分撹拌した後、55℃で2時間15分加熱撹拌し、化学イミド化を行った。得られた反応液を反応液質量の3.5倍量のメタノールに撹拌しながら投入し、析出した沈殿物をろ過し、続いて、メタノールで3回洗浄した。得られた樹脂粉末を80℃で12時間真空乾燥することで、ポリイミド(SPI1-1)の粉末を得た。このポリイミド樹脂粉末のイミド化率は75%であった。得られたポリイミド(SPI1-1)にNMPを固形分濃度が15質量%となるように加え、70℃で15時間撹拌し、固形分濃度が15質量%のポリイミド(SPI1-1)の溶液を得た。
<合成例2>
 撹拌装置付き及び窒素導入管付きの四つ口フラスコに、DA-2を4.18g(10.5mmol)、DA-3を2.92g(5.2mmol)、及びDA-5を5.63g(19.3mmol)秤取し、NMPを固形分濃度が19質量%になるように加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-5を4.51g(22.7mmol)添加し、更に固形分濃度が20質量%になるようにNMPを加えた。50℃で1時間撹拌した後、室温にてCA-2を2.31g(11.8mmol)添加し、更に固形分濃度が20質量%になるようにNMPを加えた。この重合溶液を3時間撹拌してポリアミド酸溶液(PA-II)を得た。
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに得られた上記ポリアミド酸溶液(PA-II)を50.0g取り、末端修飾剤であるBocOを0.30g(1.37mmol)添加し、40℃で15時間撹拌した後に、末端修飾されたポリアミド酸溶液(PAboc-II)を得た。
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに得られた上記末端修飾されたポリアミド酸溶液(PAboc-II)を50.0g取り、NMPを固形分濃度が12質量%となるように加え、30分撹拌した。得られたポリアミド酸溶液に、無水酢酸を6.40g、及びピリジンを2.12g加えて、室温で30分撹拌した後、60℃で4時間加熱撹拌し、化学イミド化を行った。得られた反応液を反応液質量の3.5倍量のメタノールに撹拌しながら投入し、析出した沈殿物をろ過し、続いて、メタノールで3回洗浄した。得られた樹脂粉末を80℃で12時間真空乾燥することで、ポリイミド(SPI1-2)の粉末を得た。このポリイミド樹脂粉末のイミド化率は95%であった。得られたポリイミド(SPI1-2)にNMPを固形分濃度が15質量%となるように加え、70℃で15時間撹拌し、固形分濃度が15質量%のポリイミド(SPI1-2)の溶液を得た。
<合成例3>
 撹拌装置付き及び窒素導入管付きの四つ口フラスコに、DA-9を20.2g(47.9mmol)及びDA-7を6.35g(32.0mmol)秤取し、NMPを固形分濃度が9質量%になるように加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-2を15.3g(78.0mmol)添加し、更に固形分濃度が12質量%になるようにNMPを加えた。この重合溶液を5時間撹拌してポリアミド酸溶液(PAA2-1)を得た。
<合成例4>
 撹拌装置付き及び窒素導入管付きの四つ口フラスコに、DA-10を14.3g(47.9mmol)及びDA-11を4.81g(32.0mmol)秤取し、NMPを固形分濃度が15質量%になるように加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-2を6.67g(34.0mmol)添加し、更に固形分濃度が15質量%になるようにNMPを加えた。室温で2時間撹拌した後、CA-4を10.0g(40.0mmol)添加し、更に固形分濃度が15質量%になるようにNMPを加えた。この重合溶液を50℃で12時間撹拌しポリアミド酸溶液(PAA2-2)を得た。
<合成例5>
 撹拌装置及び窒素導入管付きの四つ口フラスコに、DA-7を29.3g(148mmol)、DA-9を46.8g(111mmol)、及びDA-12を12.0g(111mmol)秤取し、NMPを451g、GBLを194g加え窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を55.1g(281mmol)とGBLを固形分濃度が14.5質量%となるように加え、窒素雰囲気下水冷下で2時間撹拌した。さらに、CA-3を16.1g(74.0mmol)添加し、さらにGBLを固形分濃度が15%となるように加え、窒素雰囲気下50℃で15時間撹拌し、固形分濃度15%でNMP/GBL=50/50(質量比)となるポリアミド酸溶液(PAA2-3)を得た。
<合成例6>
 撹拌装置及び窒素導入管付きの四つ口フラスコに、DA-8を7.45g(26.0mmol)秤取し、固形分濃度が11質量%となるように、NMPを60.2g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を5.16g(23.6mmol)とNMPを固形分濃度が12%となるように加え、この重合溶液を50℃で15時間撹拌しポリアミド酸溶液(PAA2-4)を得た。
<合成例7>
 撹拌装置及び窒素導入管付きの四つ口フラスコに、DA-6を7.97g(40.0mmol)秤取し、NMPを55.6g、及びGBLを59.1g加え窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-2を6.37g(32.5mmol)添加し、さらにNMPを31.3g加えて、窒素を送りながら水冷下で3時間撹拌した。次に、DA-7を1.98g(10.0mmol)、及びGBLを13.9g加えて撹拌し溶解させた後、CA-6を3.00g(10.0mmol)、及びGBLを13.9g加えて、窒素を送りながら水冷下で3時間撹拌し、固形分濃度10%でNMP/GBL=50/50(質量比)となるポリアミド酸溶液(PAA2-5)を得た。
<合成例8>
 撹拌装置及び窒素導入管付きの四つ口フラスコに、DA-7を16.4g(82.5mmol)、DA-6を16.4g(82.5mmol)秤取し、NMPを240.5g加え窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-4を20.6g(82.5mmol)とNMPを固形分濃度が15.0質量%となるように加え、窒素雰囲気下50℃で5時間撹拌した。さらに、CA-7を22.4g(76.2mmol)添加し、さらにNMPを固形分濃度が15%となるように加え、窒素雰囲気下50℃で15時間撹拌し、固形分15%となるポリアミド酸溶液(PAA2-6)の溶液を得た。
[液晶配向剤の調製]
<実施例1>
 合成例1で得られたポリイミド(SPI1-1)の溶液、合成例3で得られたポリアミド酸溶液(PAA2-1)、及び合成例4で得られたポリアミド酸溶液(PAA2-2)を用いて、NMP、GBL、BCS及びBCAにより希釈し、化合物c-1を全ての重合体100質量部に対して3質量部となるように添加し、更に化合物s-1を全ての重合体100質量部に対して1質量部となるように添加し室温で撹拌した。次いで、この得られた溶液を孔径0.5μmのフィルターでろ過することにより、重合体の成分比率が(SPI1-1):(PAA2-1):(PAA2-2)=30:40:30(固形分換算質量比)、溶媒組成比がNMP:GBL:BCS:BCA=30:45.9:5:15(質量比)、重合体固形分濃度が4.1質量%となる液晶配向剤(1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<実施例2~8、比較例1~7>
 下記表1に示す重合体及び溶媒の比率に従い、合成例1~8で得られた溶液を用いて実施例1と同様に液晶配向剤(2)~(15)を得た。
Figure JPOXMLDOC01-appb-T000044
[印刷性の評価]
 上記で得られた液晶配向剤(1)~(15)を孔径1.0μmのフィルターで濾過した後、インクジェット印刷機(石井表記製、IP-1212NC1180L)に充填し各種評価を実施した。
1.初期塗布性の評価
 クロムが蒸着されたガラス基板にスキャンスピード:500mm/秒、メニスカス値:-4500Pa、塗布エリア:65mm(スキャン垂直方向)×75mm(スキャン平行方向)にて塗布を行い、23℃で35秒間放置した。その後90℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い膜厚600Åのポリイミド膜付き基板を得た。なお、塗布の際スキャンピッチは同一膜厚になるように夫々の液晶配向剤に固有の値を用いた。
 続いて得られた膜付き基板を目視および光学顕微鏡(Nikon製、ECLIPSE L300ND)にて観察を行った。均一な膜が形成されていれば「良好」、ムラやスジが見られた場合は「不良」と定義し評価した。
2.吐出安定性の評価
 長期でスタンバイショットを実施し、ヘッド表面の液漏れ、析出および塗布性を評価した。スタンバイショットはノズルの詰まりを抑制するために定期的に液を噴射する工程である。
(1)ヘッド表面の液漏れ
 間隔:1分、吐出時間:3秒にて15時間スタンバイショットを行い、その後ヘッド表面の目視観察を実施し、ヘッドのノズルから液が漏れていない場合を「良好」、ヘッド表面に液が付着している場合を「不良」と定義し評価した。
(2)塗布性
 その後上記初期塗布性の評価と同様にして膜厚600Åのポリイミド膜付き基板を得、目視および光学顕微鏡にて観察を行った。均一な膜が形成されていれば「良好」、スジが見られた場合は「不良」と定義し評価した。
(3)ヘッド表面の析出物
 さらにヘッド表面を布(アズワン製、アズピュアワイパーAS-909)で拭き取った後、布表面の目視観察および光学顕微鏡観察を実施し、析出物が見られない場合を「良好」、析出物が見られた場合を「不良」と定義し評価した。
 上記実施例1~8及び比較例1~7の各液晶配向剤について、上記の通り実施した評価結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000045
 比較例2、5の液晶配向剤は初期塗布性の評価において、液同士の結合性不足に起因する鱗状のムラが発生し「不良」であった。また、比較例1、3、4、6の液晶配向剤は吐出安定性の評価において、長時間のスタンバイショット後ヘッド上に液漏れおよび析出物が見られ、スキャン方向に沿ったスジが観察され「不良」であった。なお、比較例7の液晶配向剤は液漏れが観察されたが、析出物は観察されずスジやムラも確認されなかった。
 一方、実施例の液晶配向剤は初期、長期スタンバイショット後いずれもスジやムラは見られず、ヘッド表面に液漏れや析出物が観察されなかった。
 実施例3および比較例4、5、6の液晶配向剤に関して、上記初期塗布性の評価において得られた基板上のポリイミド膜のスキャン垂直方向および水平方向の測長を行った。さらに、測長値からスキャン垂直方向は65mm、水平方向は75mmそれぞれ差し引き、それらを平均した値を塗布エリアからの液の濡れ広がりとして算出した。すなわち本値が小さいほど寸法安定性が良好であることを意味する。評価結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000046
 実施例3は比較例4~6同様拡がりが小さく寸法安定性が良好だった。
 なお、実施例1~8の液晶配向剤は公知の方法により、配向欠陥がない液晶表示素子を作成することが可能であった。

Claims (18)

  1.  下記(A)、(B)を含有する液晶配向剤。
     (A):下記式[1]及び式[2]から選ばれる少なくとも1種のジアミンを含有するジアミン成分と、テトラカルボン酸成分との反応物であるポリイミド前駆体をイミド化して得られるポリイミド。
    Figure JPOXMLDOC01-appb-C000001
     式中、Aは単結合、メチレン基、エーテル結合、エステル結合、アミド結合、シクロヘキシレン基、又は炭素数2~20のアルキレン基である。但し、該アルキレン基の任意の-CH-はエーテル基、エステル基、アミド基、シクロヘキシレン基、フェニレン基、ウレア基、アミノ基、又はカルバメート基で置換されていてもよく、該アミド基、該ウレア基、該アミノ基の任意の水素原子はメチル基、又はtert-ブトキシカルボニル基に置き換えられてもよい。Aは、フッ素原子、又は炭素数1~5のアルキル基若しくはアルコキシ基であり、該アルキル基若しくは該アルコキシ基の任意の水素原子はフッ素原子で置換されていてもよく、任意の炭素原子はtert-ブトキシカルボニル基で保護されたアミノ基で置換されていてもよい。複数のaはそれぞれ独立して0~4の整数であり、Aが複数存在する場合、Aは同一でも異なってもよい。b及びcはそれぞれ独立して0~2の整数であり、bが0の場合cは1又は2でありAはアルキレン基である。
     (B):ブチルセロソルブ及びブチルセロソルブアセテートを含有する有機溶媒。
  2.  前記式[1]及び[2]中、Aは単結合、メチレン基、エーテル結合、エステル結合、炭素数2~10のアルキレン基(但し、該アルキレン基の少なくとも1つの-CH-は、エーテル基又はエステル基で置換されている。)であり、AはCHであり、aは0~1の整数であり、bは1であり、cは1~2の整数である、請求項1に記載の液晶配向剤。
  3.  上記式[1]で表されるジアミン及び式[2]で表されるジアミンが、下記式[d1-1]~[d1-2]又は[d2-1]~[d2-28]のいずれかの構造である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式[d1-1]中、Rはフッ素原子、又は炭素数1~5のアルキル基若しくはアルコキシ基であり、該アルキル基若しくは該アルコキシ基の任意の水素原子はフッ素原子で置換されていてもよい。式[d1-2]中、Bocはtert-ブトキシカルボニル基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式[d2-8]中、R、R’は、それぞれ独立して、フッ素原子、又は炭素数1~5のアルキル基若しくはアルコキシ基であり、該アルキル基若しくは該アルコキシ基の任意の水素原子はフッ素原子で置換されていてもよい。)

    Figure JPOXMLDOC01-appb-C000004
    (式中、Bocはtert-ブトキシカルボニル基を表す。式[d2-17]において、mが複数存在する場合、複数のmは同一でも異なっても良い。)
    Figure JPOXMLDOC01-appb-C000005
  4.  前記式[1]及び前記式[2]で表されるジアミンの含有量が、全ジアミン成分1モルに対して、50モル%以上である、請求項1~3のいずれか一項に記載の液晶配向剤。
  5.  前記ポリイミドに用いられるジアミン成分として、炭素数6以上の側鎖基を有するジアミンを用いない、請求項1~4のいずれか一項に記載の液晶配向剤。
  6.  前記ポリイミドに用いられるジアミン成分として、前記式[2]で表されるジアミンを2種以上用いる、請求項1~5のいずれか一項に記載の液晶配向剤。
  7.  (A)のテトラカルボン酸成分が、下記式[3]で表される、請求項1~6のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
     式中、Xは、下記式(B-1)~(B-20)のいずれかである。
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (式中、j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、-O-、-CO-、-COO-、フェニレン、スルホニル、又はアミド基を表す。上記式(B-20)において、2個のAは、互いに同一であっても異なっていてもよい。*は結合手を表す。)
  8.  上記式[3]のXが上記式(B-1)、(B-2)、(B-3)のいずれかである請求項7に記載の液晶配向剤。
  9.  前記ポリイミドのイミド化率が、70~95%である、請求項1~8のいずれか一項に記載の液晶配向剤。
  10.  前記ポリイミドが、末端修飾されたポリイミドである、請求項1~9のいずれか一項に記載の液晶配向剤。
  11.  前記液晶配向剤が、更にイミド環構造を含有しないポリアミック酸、又はイミド環構造を含有しないポリアミック酸エステルを含む、請求項1~10のいずれか一項に記載の液晶配向剤。
  12.  ブチルセロソルブの含有量が、液晶配向剤に含まれる全有機溶剤に対して、5~20質量%であり、ブチルセロソルブアセテートの含有量が、液晶配向剤に含まれる全有機溶剤に対して、5~20質量%である請求項1~請求項11のいずれか一項に記載の液晶配向剤。
  13.  前記有機溶媒が、更にN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N-ジメチルラクトアミド、1,3-ジメチル-2-イミダゾリジノンから選ばれるいずれかの溶媒(C1)を含む、請求項1~12のいずれか一項に記載の液晶配向剤。
  14.  請求項13に記載の溶媒(C1)を、液晶配向剤に含まれる全有機溶剤に対して、60~90質量%含む、請求項13に記載の液晶配向剤。
  15.  前記有機溶媒が、更にジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン又はジイソブチルケトンから選ばれるいずれかの溶媒(C2)を含む、請求項1~14のいずれか一項に記載の液晶配向剤。
  16.  前記液晶配向剤が、架橋性化合物及び/又は官能性シラン含有化合物をさらに含有する、請求項1~15のいずれか一項に記載の液晶配向剤。
  17.  請求項1~請求項16のいずれか一項に記載の液晶配向剤から得られる液晶配向膜。
  18.  請求項17に記載の液晶配向膜を有する液晶表示素子。 
PCT/JP2020/043939 2019-11-26 2020-11-26 液晶配向剤、液晶配向膜及び液晶表示素子 WO2021106979A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227016612A KR20220106750A (ko) 2019-11-26 2020-11-26 액정 배향제, 액정 배향막 및 액정 표시 소자
JP2021561474A JPWO2021106979A1 (ja) 2019-11-26 2020-11-26
CN202080081981.0A CN114746804A (zh) 2019-11-26 2020-11-26 液晶取向剂、液晶取向膜以及液晶显示元件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-213642 2019-11-26
JP2019213642 2019-11-26
JP2019-221299 2019-12-06
JP2019221299 2019-12-06

Publications (1)

Publication Number Publication Date
WO2021106979A1 true WO2021106979A1 (ja) 2021-06-03

Family

ID=76129413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043939 WO2021106979A1 (ja) 2019-11-26 2020-11-26 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JPWO2021106979A1 (ja)
KR (1) KR20220106750A (ja)
CN (1) CN114746804A (ja)
TW (1) TW202130794A (ja)
WO (1) WO2021106979A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058384A (zh) * 2021-11-26 2022-02-18 深圳市道尔顿电子材料有限公司 一种聚酰亚胺光取向剂溶液及其制备方法和光取向膜、液晶盒

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003708A1 (en) * 2005-06-30 2007-01-04 Lg Philips Lcd Co., Ltd. Coating solution composition of photo-alignment material
WO2016129506A1 (ja) * 2015-02-12 2016-08-18 日産化学工業株式会社 液晶配向剤
WO2018038160A1 (ja) * 2016-08-24 2018-03-01 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018070507A1 (ja) * 2016-10-14 2018-04-19 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
US20190127643A1 (en) * 2017-10-31 2019-05-02 Jnc Corporation Liquid crystal aligning agent for photoalignment, liquid crystal alignment film and liquid crystal display device using it, and diamine and polymer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237324A (ja) 1988-07-27 1990-02-07 Sanyo Electric Co Ltd ポリイミド配向膜の製造方法
WO2013125595A1 (ja) 2012-02-22 2013-08-29 日産化学工業株式会社 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子
CN106575061B (zh) 2014-06-25 2020-10-16 日产化学工业株式会社 液晶取向剂、液晶取向膜和液晶表示元件
WO2018030489A1 (ja) * 2016-08-10 2018-02-15 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR102586312B1 (ko) 2017-10-26 2023-10-06 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
CN111386493B (zh) * 2017-11-21 2023-05-23 日产化学株式会社 液晶取向剂、液晶取向膜、液晶取向膜的制造方法和液晶表示元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070003708A1 (en) * 2005-06-30 2007-01-04 Lg Philips Lcd Co., Ltd. Coating solution composition of photo-alignment material
WO2016129506A1 (ja) * 2015-02-12 2016-08-18 日産化学工業株式会社 液晶配向剤
WO2018038160A1 (ja) * 2016-08-24 2018-03-01 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018070507A1 (ja) * 2016-10-14 2018-04-19 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
US20190127643A1 (en) * 2017-10-31 2019-05-02 Jnc Corporation Liquid crystal aligning agent for photoalignment, liquid crystal alignment film and liquid crystal display device using it, and diamine and polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058384A (zh) * 2021-11-26 2022-02-18 深圳市道尔顿电子材料有限公司 一种聚酰亚胺光取向剂溶液及其制备方法和光取向膜、液晶盒

Also Published As

Publication number Publication date
JPWO2021106979A1 (ja) 2021-06-03
TW202130794A (zh) 2021-08-16
KR20220106750A (ko) 2022-07-29
CN114746804A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
JP5003682B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
JPWO2020158818A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
TWI758513B (zh) 液晶配向劑、液晶配向膜及使用其之液晶顯示元件
JP7414006B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021177080A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021106979A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7343059B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022176680A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022234820A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7428145B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2021177113A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2021193078A1 (ja) 光配向法用液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021210252A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2022085674A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7409375B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
CN110651221A (zh) 液晶取向剂、液晶取向膜及液晶表示元件
WO2024029576A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7311047B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7472799B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7302744B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7428138B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022181311A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022190896A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2021215280A1 (ja) 新規ジアミン、重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP2024022213A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893376

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561474

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893376

Country of ref document: EP

Kind code of ref document: A1