WO2022085674A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2022085674A1
WO2022085674A1 PCT/JP2021/038571 JP2021038571W WO2022085674A1 WO 2022085674 A1 WO2022085674 A1 WO 2022085674A1 JP 2021038571 W JP2021038571 W JP 2021038571W WO 2022085674 A1 WO2022085674 A1 WO 2022085674A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal alignment
formula
repeating unit
Prior art date
Application number
PCT/JP2021/038571
Other languages
English (en)
French (fr)
Inventor
泰宏 宮本
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2022557554A priority Critical patent/JP7544138B2/ja
Publication of WO2022085674A1 publication Critical patent/WO2022085674A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment agent, a liquid crystal alignment film, and a liquid crystal display element.
  • liquid crystal displays have been widely used as display units for personal computers, smartphones, mobile phones, television receivers, and the like.
  • the liquid crystal display device includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode that apply an electric field to the liquid crystal layer, and an alignment film that controls the orientation of liquid crystal molecules in the liquid crystal layer. It is equipped with a thin film transistor (TFT) or the like for switching an electric signal supplied to a pixel electrode.
  • TFT thin film transistor
  • As the driving method of the liquid crystal molecule a vertical electric field method such as a TN method and a VA method, and a horizontal electric field method such as an IPS (In Plane Switching) method and an FFS (fringe field switching) method are known.
  • liquid crystal alignment film in the industry is a film made of polyamic acid and / or a polyimide imidized with a polyamic acid formed on an electrode substrate, and the surface of the film is made of a cloth such as cotton, nylon, or polyester. It is manufactured by performing a so-called rubbing process of rubbing in one direction.
  • the rubbing process is a simple and highly productive industrially useful method.
  • scratches on the surface of the alignment film generated by the rubbing process, dust generation, the effects of mechanical force and static electricity, and the in-plane alignment process Various problems such as non-uniformity have been clarified.
  • Non-Patent Document 1, Patent Document 1, and Patent Document 2). reference a photo-alignment method for imparting a liquid crystal alignment ability by irradiating with polarized radiation.
  • a photoalignment method a method using a photoisomerization reaction, a method using a photocrosslinking reaction, a method using a photodecomposition reaction, and the like have been proposed (for example, Non-Patent Document 1, Patent Document 1, and Patent Document 2). reference).
  • the irradiation amount of light is a factor that affects the energy cost and the production speed, so it is preferable that the orientation treatment can be performed with a small irradiation amount.
  • a liquid crystal alignment agent that can obtain good liquid crystal alignment under a large irradiation amount can be found in the liquid crystal alignment film surface when the light irradiation amount is reduced. Variations (non-uniformity) in the orientation of the liquid crystal tend to occur, and the twist angle of the liquid crystal in the surface of the liquid crystal display element also has a large variation. Then, when black display is performed by the liquid crystal display element, there is a concern that the brightness in the plane may vary and the display quality may be deteriorated.
  • liquid crystal alignment film used for the liquid crystal display element of the IPS drive system or the FFS drive system is also required to have an orientation regulating force for suppressing an afterimage (hereinafter, also referred to as AC afterimage) generated by long-term AC drive.
  • AC afterimage an afterimage generated by long-term AC drive.
  • an object of the present invention is a liquid crystal alignment film in which the variation (non-uniformity) of the liquid crystal orientation in the liquid crystal alignment film surface is suppressed even if the light irradiation amount in the alignment treatment by the photoalignment method is reduced. It is an object of the present invention to provide a liquid crystal alignment agent for obtaining the liquid crystal alignment film and a liquid crystal display element using the liquid crystal alignment film. Furthermore, it is an object of the present invention to provide a liquid crystal alignment film having an excellent liquid crystal alignment regulating force capable of suppressing AC afterimage, a liquid crystal alignment agent for obtaining the liquid crystal alignment film, and a liquid crystal display element using the liquid crystal alignment film. And.
  • the present inventor has found that the above problems can be solved by using a liquid crystal alignment agent containing a specific component, and has completed the present invention. Specifically, the following is the gist.
  • a liquid crystal alignment agent comprising at least one polymer (A) selected from the above.
  • R 1 to R 4 are independently hydrogen atom, halogen atom, alkyl group having 1 to 6 carbon atoms, alkenyl group having 2 to 6 carbon atoms, and alkynyl group having 2 to 6 carbon atoms.
  • R and Z represent groups other than the hydrogen atom in the above definition. Each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Y 1 represents a divalent organic group represented by the following formula (H).
  • R is independently substituted with a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, or at least a part of hydrogen atoms on an alkyl group having 1 to 3 carbon atoms with a halogen atom.
  • the halogenated alkyl group is represented, and at least one of R represents a halogen atom or the above-mentioned halogenated alkyl group. * Represents a bond.
  • Y 2 represents a divalent organic group represented by the following formula (O).
  • Ar independently represents a benzene ring, a biphenyl structure, or a naphthalene ring. Any hydrogen atom on the benzene ring or naphthalene ring possessed by Ar is a halogen atom or a monovalent organic. It may be replaced with a group.
  • the liquid crystal alignment film in which the variation (non-uniformity) of the liquid crystal orientation in the liquid crystal alignment film surface is suppressed even if the light irradiation amount in the alignment treatment by the photoalignment method is reduced, and the liquid crystal. It is possible to provide a liquid crystal alignment agent for obtaining an alignment film and a liquid crystal display element using the liquid crystal alignment film. Further, it is possible to provide a liquid crystal alignment film having an excellent liquid crystal alignment regulating force capable of suppressing AC afterimage, a liquid crystal alignment agent for obtaining the liquid crystal alignment film, and a liquid crystal display element using the liquid crystal alignment film. ..
  • the liquid crystal alignment agent of the present invention is a polyimide precursor having a repeating unit (a1) represented by the following formula (1) and a repeating unit (a2) represented by the following formula (2), and the polyimide precursor. It contains at least one polymer (A) selected from the group consisting of polyimide as an imidized product.
  • the polymer (A) suppresses the decrease in contrast due to the variation in the twist angle in the surface of the liquid crystal display element that occurs during manufacturing.
  • a liquid crystal display element having excellent contrast can be obtained. Due to the above synergistic effect, a liquid crystal display element having high liquid crystal orientation and excellent contrast can be obtained from the liquid crystal alignment agent of the present invention.
  • R 1 to R 4 are independently hydrogen atom, halogen atom, alkyl group having 1 to 6 carbon atoms, alkenyl group having 2 to 6 carbon atoms, and alkynyl group having 2 to 6 carbon atoms.
  • R and Z represent groups other than the hydrogen atom in the above definition. Each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Y 1 represents a divalent organic group represented by the following formula (H).)
  • the group is a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom. , And a phenyl group.
  • R is independently substituted with a hydrogen atom, a halogen atom, an alkyl group having 1 to 3 carbon atoms, or at least a part of hydrogen atoms on an alkyl group having 1 to 3 carbon atoms with a halogen atom.
  • the halogenated alkyl group is represented, and at least one of R represents a halogen atom or the above-mentioned halogenated alkyl group. * Represents a bond.
  • Y 2 represents a divalent organic group represented by the following formula (O).
  • Ar independently represents a benzene ring, a biphenyl structure, or a naphthalene ring. Any hydrogen atom on the benzene ring or naphthalene ring possessed by Ar is a halogen atom or a monovalent organic. It may be replaced with a group.
  • alkyl groups having 1 to 6 carbon atoms in R 1 to R 4 are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl group. , N-pentyl group and the like.
  • alkenyl group having 2 to 6 carbon atoms in R 1 to R 4 include a vinyl group, a propenyl group, a butynyl group and the like, and these may be linear or branched.
  • alkynyl group having 2 to 6 carbon atoms in R 1 to R 4 include an ethynyl group, a 1-propynyl group, a 2-propynyl group and the like.
  • halogen atom in R 1 to R 4 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom in R 1 to R 4 include a fluoromethyl group, a trifluoromethyl group, a pentafluoroethyl group, and a pentafluoropropyl group.
  • At least one of R 1 to R 4 represents a group other than the hydrogen atom in the above definition.
  • the photoreactivity of the polyimide film is increased, and the in-plane anisotropy of the obtained liquid crystal alignment film is increased. Therefore, the contrast due to the variation in the twist angle in the surface of the liquid crystal display element generated during manufacturing. The decrease is suppressed.
  • R 1 to R 4 it is preferable that R 1 to R 4 are hydrogen atoms or methyl groups, and at least one of R 1 to R 4 is a methyl group, and at least R 1 to R 4 are at least. More preferably, the two are methyl groups. More preferably, R 1 and R 4 are methyl groups and R 2 and R 3 are hydrogen atoms.
  • examples of the alkyl group having a halogen atom and 1 to 3 carbon atoms include the structures exemplified by the above R1 to R4 , and examples of the alkyl halide group include a fluoromethyl group and trifluoro. Examples thereof include a methyl group, a pentafluoroethyl group and a pentafluoropropyl group.
  • the halogen atom is preferably a fluorine atom or a chlorine atom
  • the alkyl halide group is preferably a fluoromethyl group or a trifluoromethyl group.
  • the divalent organic group represented by the above formula (H) is represented by any of the following formulas (h-1) to (h-9) from the viewpoint of efficiently obtaining the effect of the present invention.
  • a valent organic group is preferable, and a divalent organic group represented by any one of (h-1) to (h-2), (h-6) to (h-7), and (h-9) is preferable. More preferred.
  • Arbitrary hydrogen atom on the benzene ring or naphthalene ring of Ar in the above formula (O) is a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and an alkenyl group having 2 to 6 carbon atoms. It may be replaced with a monovalent organic group such as an alkynyl group or a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom. Specific examples of these monovalent organic groups include the structures exemplified in R 1 to R 4 above.
  • a divalent organic group represented by any of the following formulas (o-1) to (o-14) is used from the viewpoint of enhancing the liquid crystal orientation. preferable.
  • the polymer (A) is further represented by a repeating unit (a2') represented by the following formula (2') and a repeating unit represented by the following formula (3). It may be at least one polymer selected from the group consisting of a polyimide precursor having at least one selected from the group consisting of a3) and polyimide which is an imidized product of the polyimide precursor. That is, the polymer (A) is a repeating unit (a1) represented by the formula (1), a repeating unit (a2) represented by the formula (2), and a repeating unit represented by the formula (2').
  • a polyimide precursor having at least one selected from the group consisting of (a2') and the repeating unit (a3) represented by the formula (3), and a polyimide which is an imidized product of the polyimide precursor. It may be at least one polymer.
  • X 2'and X 3 represent a tetravalent organic group
  • Y 2' represents a divalent organic group represented by the following formula (O2).
  • Y 3 has a group "-N (D)-(D represents a carbamate-based protecting group)" in the molecule, and represents a divalent organic group having 6 to 30 carbon atoms excluding D.
  • X 2'and X 3 in addition to the tetravalent organic group represented by the following formula (g), the tetravalent represented by any of the following formulas (X-1) to (X-25). Examples thereof include an organic group and a tetravalent organic group derived from an aromatic tetracarboxylic acid dianhydride. From the viewpoint of efficiently obtaining the effects of the present invention, X 2'and X 3 are more preferably tetravalent organic groups represented by the following formula (g).
  • R 1 , R 2 , R 3 , and R 4 are synonymous with R 1 , R 2 , R 3 , and R 4 in the above formula (1). * Represents a bond.
  • the aromatic tetracarboxylic acid dianhydride is an acid dianhydride obtained by intramolecular dehydration of a carboxy group bonded to an aromatic ring such as a benzene ring or a naphthalene ring.
  • Specific examples of the tetravalent organic group derived from the aromatic tetracarboxylic acid dianhydride include the tetravalent organic group represented by any of the following formulas (Xa-1) to (Xa-2), the following.
  • a tetravalent organic group represented by any of the formulas (Xr-1) to (Xr-7) can be mentioned.
  • X and y are independently a single bond, an ether bond, a carbonyl group, an ester bond, an alkanediyl group having 1 to 10 carbon atoms, a 1,4-phenylene group, a sulfonyl group or an amide group, respectively.
  • the tetravalent organic group represented by the above formula (Xa-1) or (Xa-2) may have a structure represented by any of the following formulas (Xa-3) to (Xa-19).
  • the divalent organic group represented by the above formula (O2) is a divalent organic group represented by any of the following formulas (o2-1) to (o2-3) from the viewpoint of less generation of AC afterimage. Is preferable.
  • the D of Y3 represents a carbamate - based protecting group, and examples of the carbamate-based protecting group include a tert-butoxycarbonyl group and a 9-fluorenylmethoxycarbonyl group.
  • Specific examples of Y3 include a divalent organic group represented by the following formula (Dx).
  • Q 5 is a single bond,-(CH 2 ) n- (n is an integer of 1 to 20), or any -CH 2- of the-(CH 2 ) n -is -O-,-.
  • Q 9 and Q 10 each independently represent a hydrogen atom or a monovalent organic group;
  • Q6 and Q7 are independently groups having -H and -NHD (preferably -NHD ) or groups having -N (D) 2 (preferably -N (D) 2 ).
  • the monovalent organic groups of Q9 and Q10 include an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, and a carbon number 1 containing a fluorine atom. Examples thereof include monovalent organic groups of 1 to 6, and specific examples thereof include the structures exemplified by R 1 to R 4 above.
  • Y 3 is a divalent organic group represented by any of the following formulas (Y3-1) to (Y3-5) from the viewpoint of having less AC afterimage.
  • "Boc” represents a tert-butoxycarbonyl group. * Represents a bond.
  • the polymer (A) is a repeating unit (a4) represented by the following formula (4) in addition to the repeating unit (a1), the repeating unit (a2), the repeating unit (a2'), and the repeating unit (a3). It may be at least one polymer selected from the group consisting of a polyimide precursor having the above and a polyimide which is an imidized product of the polyimide precursor.
  • X 4 represents a tetravalent organic group and Y 4 represents a divalent organic group.
  • R and Z are synonymous with R and Z in the above formula (1), respectively.
  • Y 4 has a group "-N (D)-(D represents a carbamate-based protecting group)" in the molecule, and is a divalent organic group having 6 to 30 carbon atoms excluding D and the above formula.
  • X 4 represents a structure other than the divalent organic group represented by (O2) and X 4 is synonymous with the tetravalent organic group represented by the above formula (g)
  • Y 4 is the above formula (H). )
  • Specific examples of X 4 include the structures exemplified by X 2'and X 3 .
  • X 4 include the tetravalent organic group exemplified in X 2'above . From the viewpoint of efficiently obtaining the effects of the present invention, X4 is represented by the tetravalent organic group represented by the above formula (g) or any of the above formulas (X-1) to (X-25). The tetravalent organic group to be used is more preferable, and the tetravalent organic group represented by the above formula (g) is further preferable.
  • divalent organic group of Y4 examples include a divalent organic group represented by the above formula (H), a divalent organic group represented by the above formula (O), and the above formula (O2).
  • a divalent organic group obtained by removing two amino groups from the following diamines can be mentioned.
  • 4,4'-Diaminodiphenylmethane a diamine having a photoorienting group such as a diamine represented by the following formulas (g-1) to (g-5); the following formulas (u-1) to (u-3) A diamine having a urea bond such as a diamine represented; a diamine having an amide bond such as a diamine represented by the following formulas (u-4) to (u-6); a nitrogen atom-containing heterocycle, a secondary amino group and A diamine having at least one nitrogen atom-containing structure (hereinafter, also referred to as a nitrogen atom-containing structure) selected from the group consisting of tertiary amino groups; 2,4-diaminophenol, 3,5-diaminophenol, 3,5 -Diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,5-d
  • Benzophenone 1- (4-aminophenyl) -1,3,3-trimethyl-1H-indan-5-amine, 1- (4-aminophenyl) -2,3-dihydro-1,3,3-trimethyl- 1H-inden-6-amine; diamine having photopolymerizable groups such as 2- (2,4-diaminophenoxy) ethyl methacrylate and 2,4-diamino-N, N-diallylaniline at the ends; cholestanoloxy- 3,5-Diaminobenzene, cholestenyloxy-3,5-diaminobenzene, cholestanoloxy-2,4-diaminobenzene, 3,5-diaminobenzoate cholestanyl, 3,5-diaminobenzoate cholestenyl, 3,5 -Diamines having a steroid skeleton such as lanostanyl diaminobenzoate and 3,6-bis (4-amino
  • a 1 is a single bond, -CH 2- , -C 2 H 4- , -C (CH 3 ) 2- , -CF 2- , -C (CF 3 ) 2- , -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -O-CH 2- , -COO-, -OCO-,-
  • the formula indicates CO-N (CH 3 )-or -N (CH 3 ) -CO-, m1 and m2 independently represent an integer of 0 to 4, and m1 + m2 represent an integer of 1 to 4.
  • m3 and m4 independently represent integers of 1 to 5.
  • a 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms.
  • m5 represents an integer from 1 to 5.
  • A3 and A4 are independently single-bonded, -CH 2- , -C 2 H 4- , -C (CH 3 ).
  • X v1 to X v4 and X p1 to X p2 are independently each of-(CH 2 ) a- (a is an integer of 1 to 15). ), -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 -O-, -CH 2 -OCO-, -COO-, or -OCO- X v5 represents -O-, -CH 2 -O-, -CH 2 -OCO-, -COO-, or -OCO-.
  • X a represents a single bond, -O-, -NH-, -O- (CH 2 ) m -O- (m represents an integer of 1 to 6), -C (CH 3 ) 2- , -CO-,-(CH 2 ) m- , -SO 2- , -OC (CH 3 ) 2- , -CO- (CH 2 ) m- (m represents an integer of 1 to 6), -NH- (CH 2 ) m (m represents an integer of 1 to 6) Represents)-, -SO 2- (CH 2 ) m- (m represents an integer of 1 to 6), -CONH- (CH 2 ) m- (m represents an integer of 1 to 6), -CONH- (CH 2 ) m -NHCO- (m represents an integer of 1 to 6), -COO- (CH 2 ) m -OCO- (m represents an integer of 1 to 6), -CONH -, -NH- (CH 2 )
  • nitrogen atom-containing heterocycle examples include pyrrole, imidazole, pyrazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, indol, benzoimidazole, purine, quinoline, isoquinoline, naphthylidine, quinoxaline, phthalazine, triazine, carbazole, and acridin.
  • examples thereof include piperidine, piperazine, pyrridine, hexamethyleneimine and the like. Of these, pyridine, pyrimidine, pyrazine, piperidine, piperazine, quinoline, carbazole or acridine are preferable.
  • the secondary amino group and the tertiary amino group that the diamine having a nitrogen atom-containing structure may have are represented by, for example, the following formula (n).
  • R represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • “*" Represents a bond that binds to a hydrocarbon group.
  • Examples of the monovalent hydrocarbon group of R in the above formula (n) include an alkyl group such as a methyl group, an ethyl group and a propyl group; a cycloalkyl group such as a cyclohexyl group; and an aryl such as a phenyl group and a methylphenyl group. The group etc. can be mentioned.
  • R is preferably a hydrogen atom or a methyl group.
  • diamine having a nitrogen atom-containing structure examples include, for example, 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, and N-methyl-3,6.
  • the polymer (A) may contain the sum of the repeating unit (a1) and the imidized structure of the repeating unit (a1) in an amount of 5 to 95 mol% of all the repeating units. It is preferably contained in an amount of 5 to 90 mol%, more preferably 5 to 80 mol%, and even more preferably 5 to 80 mol%.
  • the total here includes the case where either the repeating unit (a1) or the imidized structure of the repeating unit (a1) is 0 mol%. Also in the following, the term total includes the case where 1 or 2 or more of the components are 0 mol%.
  • the polymer (A) preferably contains 5 to 95 mol% of all repeating units (a1), and more preferably 5 to 90 mol%. It is preferably contained in an amount of 5 to 80 mol%, more preferably.
  • the polymer (A) may contain the sum of the repeating unit (a2) and the imidized structure of the repeating unit (a2) in an amount of 5 to 95 mol% of all the repeating units. It is preferably contained in an amount of 10 to 95 mol%, more preferably 20 to 95 mol%, and even more preferably 20 to 95 mol%. Further, from the viewpoint of efficiently obtaining the effect of the present invention, the polymer (A) preferably contains 5 to 95 mol% of the repeating unit (a2), and more preferably 10 to 95 mol%. It is preferably contained in an amount of 20 to 95 mol%, more preferably.
  • the polymer (A) contains the repeating unit (a1) and the repeating unit (a2) and the total of their imidized structures in an amount of 10 mol% or more of the total repeating unit. , 20 mol% or more is more preferable, 50 mol% or more is further preferable, 80 mol% or more is particularly preferable, and 90 mol% or more is most preferable.
  • the polymer (A) contains a repeating unit (a1) and a repeating unit (a2) and a repeating unit other than their imidized structure
  • the polymer (A) is a repeating unit (a1) and a repeating unit (a2).
  • the polymer (A) preferably contains the total of the repeating unit (a1) and the repeating unit (a2) in an amount of 10 mol% or more of all the repeating units, preferably 20 mol. % Or more is more preferable, 50 mol% or more is further preferable, 80 mol% or more is particularly preferable, and 90 mol% or more is most preferable.
  • the polymer (A) contains a repeating unit other than the repeating unit (a1) and the repeating unit (a2)
  • the polymer (A) is the total of the repeating unit (a1) and the repeating unit (a2). It preferably contains 95 mol% or less of the repeating unit, and more preferably 90 mol% or less.
  • the polymer (A) contains at least one of a repeating unit (a2') and an imidized structure of the repeating unit (a2'), the polymer (A) is used from the viewpoint of efficiently obtaining the effect of the present invention.
  • the total of the repeating unit (a2') and the imidized structure of the repeating unit (a2') is preferably contained in an amount of 1 to 50 mol% of all the repeating units, more preferably 1 to 40 mol%, and 1 to 30. It is more preferable to contain mol%.
  • the polymer (A) contains a repeating unit (a2')
  • the polymer (A) uses the repeating unit (a2') as 1 to 1 to 1 of all the repeating units from the viewpoint of efficiently obtaining the effect of the present invention. It is preferably contained in an amount of 50 mol%, more preferably 1 to 40 mol%, still more preferably 1 to 30 mol%.
  • the polymer (A) contains at least one of a repeating unit (a3) and an imidized structure of the repeating unit (a3)
  • the polymer (A) is a repeating unit from the viewpoint of efficiently obtaining the effect of the present invention.
  • the total of (a3) and the imidized structure of the repeating unit (a3) is preferably contained in an amount of 1 to 40 mol%, more preferably 1 to 30 mol%, and 1 to 25 mol% of all the repeating units. Is even more preferable.
  • the polymer (A) contains a repeating unit (a3)
  • the polymer (A) uses 1 to 40 mol of the repeating unit (a3) as the repeating unit (a3) from the viewpoint of efficiently obtaining the effect of the present invention.
  • the liquid crystal aligning agent of the present invention may contain a polymer (B) that does not have both the repeating unit (a1) and the repeating unit (a2) in the same molecule. good.
  • the polymer (B) is a group consisting of a polyimide precursor having a repeating unit represented by the following formula (5) and a polyimide which is an imidized product of the polyimide precursor. At least one polymer selected from the above is mentioned. (In the formula, X 5 is a tetravalent organic group and Y 5 is a divalent organic group.
  • Z has 1 to 1 carbon atoms which may independently have a hydrogen atom and a substituent.
  • R independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the tetravalent organic group in the above formula X5 includes a tetravalent organic group derived from an aliphatic tetcarboxylic acid dianhydride, a tetravalent organic group derived from an alicyclic tetracarboxylic acid dianhydride, or an aromatic tetra. Examples thereof include a tetravalent organic group derived from a carboxylic acid dianhydride, and specific examples thereof include the above-mentioned X 2'and the tetravalent organic group exemplified in X 3 .
  • X5 is represented by any of the above formulas (X-1) to (X - 25), which is a tetravalent organic group represented by the above formula (g).
  • Organic groups (collectively referred to as specific tetravalent organic groups) are preferable.
  • the repeating unit in which X5 is the above-mentioned specific tetravalent organic group is contained in the polymer (B) in an amount of 5 mol% of all the repeating units. It is preferably contained in an amount of 10 mol% or more, and more preferably contained in an amount of 10 mol% or more.
  • Examples of the divalent organic group in Y 5 include the divalent organic group exemplified in Y 4 .
  • the polymer ( B) has Y5 as a diamine having a urea bond, a diamine having an amide bond, a diamine having a nitrogen atom-containing structure, and 2,4-diaminophenol.
  • the polymer (B) contains 1 mol% or more of the repeating units in which Y5 is the specific divalent organic group described in the polymer (B) from the viewpoint of less afterimage derived from the residual DC. However, it may contain 5 mol% or more.
  • the content ratio of the polymer (A) and the polymer (B) is 10/90 to 90 in terms of the mass ratio of [polymer (A)] / [polymer (B)]. It may be / 10, 20/80 to 90/10, or 20/80 to 80/20.
  • the polyamic acid ester which is a polyimide precursor used in the present invention, the polyamic acid, and the polyimide which is an imidized product thereof can be synthesized by a known method as described in, for example, WO2013 / 157586.
  • a diamine component and a tetracarboxylic acid derivative component in a solvent (condensation).
  • a part of the polymer (A) or (B) contains an amic acid structure, for example, a polymer having an amic acid structure (polyamic acid) by reacting a tetracarboxylic acid dianhydride component with a diamine component.
  • the solvent is not particularly limited as long as it dissolves the produced polymer.
  • the above solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and 1,3-dimethyl.
  • -2-imidazolidinone If the polymer has high solvent solubility, use methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3].
  • the indicated solvent can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • the reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. It is also possible to carry out the reaction at a high concentration at the beginning of the reaction, and then add a solvent.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid derivative component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weights of the polymer (A) and the polymer (B) produced.
  • the polyamic acid ester is, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, and [III] a tetracarboxylic acid. It can be obtained by a known method such as a method of reacting a diester dihalide with a diamine.
  • Examples of the method for obtaining polyimide include thermal imidization in which the polymer solution obtained by the above reaction is heated as it is, or catalytic imidization in which a catalyst is added to the polymer solution.
  • the temperature for thermal imidization in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove the water generated by the imidization reaction from the system.
  • the catalyst imidization is carried out by adding a basic catalyst and an acid anhydride to the solution of the polymer obtained by the reaction and stirring at preferably ⁇ 20 to 250 ° C., more preferably 0 to 180 ° C. be able to.
  • the amount of the basic catalyst is preferably 0.5 to 30 mol times, more preferably 2 to 20 mol times, and the amount of acid anhydride is preferably 1 to 50 mol times, more than the amic acid group. It is preferably 3 to 30 mol times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
  • the acid anhydride examples include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like, and among them, acetic anhydride is preferable because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization ratio of ring-closed repeating units to all repeating units of the polyimide precursor, also referred to as ring closure rate
  • ring closure rate ratio of ring-closed repeating units to all repeating units of the polyimide precursor
  • the reaction solution may be added to a solvent and precipitated.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like.
  • the polymer put into a solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure.
  • the repeating unit of the polyimide precursor is partially or completely ring-closed.
  • the imidization ratio is preferably 20 to 95%, more preferably 30 to 95%, still more preferably 50 to 95%.
  • the polyamic acid, polyamic acid ester and polyimide used in the present invention preferably have a solution viscosity of, for example, 10 to 1000 mPa ⁇ s when the solution is made into a solution having a concentration of 10 to 15% by mass, from the viewpoint of workability. , Not particularly limited.
  • the solution viscosity (mPa ⁇ s) of the polymer is a polymer having a concentration of 10 to 15% by mass prepared by using a good solvent of the polymer (for example, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.). The values of the solution were measured at 25 ° C.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyamic acid, polyamic acid ester and polyimide is preferably 1,000 to 500,000, more preferably 2,000. ⁇ 300,000.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. Within such a molecular weight range, good orientation and stability of the liquid crystal display element can be ensured.
  • an end-sealed polymer is prepared by using an appropriate end-sealing agent together with the tetracarboxylic acid derivative component and the diamine component as described above. It may be synthesized.
  • the end-sealed polymer has the effects of improving the film hardness of the liquid crystal alignment film obtained by the coating film and improving the adhesion characteristics between the sealant and the liquid crystal alignment film.
  • Examples of the terminal of the polymer (A) and the polymer (B) in the present invention include an amino group, a carboxyl group, an acid anhydride group or a derivative thereof.
  • Amino groups, carboxyl groups, acid anhydride groups or terminal groups from which these groups are derived can be obtained by a usual condensation reaction or by sealing the ends with the following terminal encapsulants.
  • the derivative can be similarly obtained using, for example, the following terminal encapsulants.
  • terminal encapsulant examples include acetic anhydride, maleic anhydride, nagic anhydride, phthalic anhydride, itaconic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, 3-hydroxyphthalic anhydride, and trimellitic anhydride.
  • the ratio of the terminal encapsulant to be used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, based on 100 mol parts of the total diamine component used.
  • the liquid crystal alignment agent of the present invention contains a polymer (A) and, if necessary, a polymer (B).
  • the liquid crystal alignment agent of the present invention may contain other polymers in addition to the polymer (A) and the polymer (B).
  • examples of other types of polymers include polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivatives, polyacetal, polystyrene or its derivatives, poly (styrene-phenylmaleimide) derivatives, poly (meth) acrylates and the like.
  • the liquid crystal alignment agent is used for producing a liquid crystal alignment film, and takes the form of a coating liquid from the viewpoint of forming a uniform thin film.
  • the liquid crystal alignment agent of the present invention is also preferably a coating liquid containing the above-mentioned polymer component and an organic solvent.
  • the concentration of the polymer in the liquid crystal alignment agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, 1% by mass or more is preferable, and from the viewpoint of storage stability of the solution, 10% by mass or less is preferable. A particularly preferable concentration of the polymer is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal alignment agent is not particularly limited as long as the polymer component is uniformly dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethyllactamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethylsulfoxide, and ⁇ -butyrolactone.
  • ⁇ -Valerolactone 1,3-dimethyl-2-imidazolidinone, methylethylketone, cyclohexanone, cyclopentanone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, N- (n-propyl) -2-pyrrolidone, N-isopropyl-2-pyrrolidone, N- (n-butyl) -2-pyrrolidone, N- (tert-butyl) -2-pyrrolidone, N- (n-pentyl) ) -2-Pyrrolidone, N-methoxypropyl-2-pyrrolidone, N-ethoxyethyl-2-pyrrolidone, N-methoxybutyl-2-pyrrolidone, N-cyclohexyl-2-pyrrolidone (collectively, "good solvent”) Also known as).
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide or ⁇ -butyrolactone are preferable.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass of the total amount of the solvent contained in the liquid crystal alignment agent. ..
  • the organic solvent contained in the liquid crystal alignment agent is a mixture in which a solvent (also referred to as a poor solvent) for improving the coatability when applying the liquid crystal alignment agent and the surface smoothness of the coating film is used in combination with the above solvent.
  • a solvent also referred to as a poor solvent
  • the use of solvent is preferred.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, based on the total amount of the solvent contained in the liquid crystal alignment agent.
  • the type and content of the poor solvent are appropriately selected according to the liquid crystal alignment agent coating device, coating conditions, coating environment, and the like. Specific examples of the poor solvent used in combination are described below, but the present invention is not limited thereto.
  • diisopropyl ether diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol)
  • ethylene glycol dimethyl ether ethylene glycol diethyl ether
  • ethylene glycol dibutyl ether 1,2-butoxyetan
  • diethylene glycol dimethyl ether diethylene glycol diethyl ether.
  • diisobutylcarbinol diisobutylcarbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene.
  • Glycol monobutyl ether acetate or diisobutyl ketone is preferred.
  • Preferred solvent combinations of good and poor solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ⁇ -butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-.
  • Examples thereof include diisobutylketone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone and diisobutylketone, N-ethyl-2-pyrrolidone and N, N-dimethyllactamide and diisobutylketone.
  • the liquid crystal alignment agent of the present invention may additionally contain a component other than the polymer component and the organic solvent (hereinafter, also referred to as an additive component).
  • additive components include an adhesion aid for enhancing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealant, and a compound for increasing the strength of the liquid crystal alignment film (hereinafter,).
  • Also referred to as a crosslinkable compound a dielectric for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film, a conductive material, and the like can be mentioned.
  • an oxylanyl group, an oxetanyl group, a protected isocyanate group, a protected isothiocyanate group, a group containing an oxazoline ring structure, and a meldrum from the viewpoint of exhibiting good resistance to AC afterimage and improving film strength. It consists of a compound having at least one group selected from the group consisting of a group containing an acid structure, a cyclocarbonate group, and a group represented by the following formula (d), and a compound represented by the following formula (e). It may be at least one compound selected from the group.
  • R 2 and R 3 are independently hydrogen atoms, alkyl groups having 1 to 3 carbon atoms, or "* -CH 2 -OH". * Indicates that they are bonds.
  • A represents a (m + n) valent organic group having an aromatic ring
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • m represents an integer of 1 to 6,
  • n represents an integer of 0 to 4.
  • Any hydrogen atom on the aromatic ring is a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and the like. It may be replaced with a fluoroalkyl group having 1 to 10 carbon atoms, a fluoroalkenyl group having 2 to 10 carbon atoms, or a fluoroalkoxy group having 1 to 10 carbon atoms.
  • the compound having an oxylanyl group include two compounds such as the compound described in paragraph [0037] of JP-A-10-338880 and the compound having a triazine ring as a skeleton described in WO2017 / 170483. Examples thereof include compounds having the above oxylanyl groups.
  • the compound having an oxetanyl group include the compounds having two or more oxetanyl groups described in paragraphs [0170] to [0175] of WO2011 / 132751.
  • the compound having a protected isocyanate group As a specific example of the compound having a protected isocyanate group, the compound having two or more protected isocyanate groups described in paragraphs [0046] to [0047] of Japanese Patent Application Laid-Open No. 2014-224978, paragraph of WO2015 / 141598. Examples thereof include the compounds having three or more protected isocyanate groups described in [0119] to [0120], and the compounds represented by the following formulas (bi-1) to (bi-3) may be used.
  • Specific examples of the compound having a protected isothiocyanate group include the compounds having two or more protected isothiocyanate groups described in Japanese Patent Application Laid-Open No. 2016-2000798.
  • Specific examples of the compound having a group containing an oxazoline ring structure include compounds containing two or more oxazoline ring structures described in paragraph [0115] of Japanese Patent Application Laid-Open No. 2007-286597.
  • Specific examples of the compound having a group containing a Meldrum's acid structure include the compounds having two or more Meldrum's acid structures described in WO2012 / 091088.
  • Specific examples of the compound having a cyclocarbonate group include the compounds described in WO2011 / 155577.
  • Examples of the alkyl group having 1 to 3 carbon atoms of the groups R2 and R3 represented by the above formula (d) include a methyl group, an ethyl group, a propyl group and an isopropyl group.
  • Examples of the (m + n) -valent organic group having an aromatic ring in A of the above formula (e) include an (m + n) -valent aromatic hydrocarbon group having 6 to 30 carbon atoms and an aromatic hydrocarbon group having 6 to 30 carbon atoms. Examples thereof include a (m + n) valent organic group bonded directly or via a linking group, and a (m + n) valent group having an aromatic heterocycle. Examples of the aromatic hydrocarbon group include benzene and naphthalene.
  • aromatic heterocycle examples include a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a quinoline ring, an isoquinoline ring, a carbazole ring, a pyridazine ring, a pyrazine ring, a benzoimidazole ring, an indole ring, a quinoxaline ring, and an acridin ring. And so on.
  • Examples of the linking group include an alkylene group having 1 to 10 carbon atoms, a group obtained by removing one hydrogen atom from the alkylene group, a divalent or trivalent cyclohexane ring, and the like. Any hydrogen atom of the alkylene group may be substituted with an organic group such as an alkyl group having 1 to 6 carbon atoms, a fluorine atom or a trifluoromethyl group.
  • Examples of the alkyl group having 1 to 5 carbon atoms in R of the above formula (e) include specific examples of the alkyl group exemplified by R 1 to R 4 in the above formula (1). Specific examples of the above formula (e) include the compounds described in WO2010 / 074269A and the compounds represented by the following formulas (e-1) to (e-10).
  • the above compound is an example of a crosslinkable compound, and is not limited thereto.
  • components other than the above disclosed in WO2015 / 060357A, pages 53 [0105] to 55 [0116] can be mentioned.
  • two or more kinds of crosslinkable compounds may be combined.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, and the crosslinking reaction proceeds.
  • it is more preferably 1 to 15 parts by mass.
  • adhesion aid examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, and N.
  • silane coupling agent When a silane coupling agent is used, it should be 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent from the viewpoint of exhibiting good resistance to AC afterimage. It is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 20 parts by mass.
  • the liquid crystal alignment film of the present invention is obtained from the above liquid crystal alignment agent.
  • the liquid crystal alignment film of the present invention can be used for a horizontally oriented type or a vertically oriented type (VA type) liquid crystal alignment film, and among them, a liquid crystal alignment suitable for a horizontally oriented type liquid crystal display element such as an IPS method or an FFS method. It is a membrane. Further, it is preferably used as a liquid crystal alignment film for a photo-alignment treatment method.
  • the liquid crystal display element of the present invention includes the liquid crystal alignment film.
  • the liquid crystal display element of the present invention can be manufactured, for example, by a method including the following steps (1) to (3) and (5) or steps (1) to (2) and (5). More preferably, it is produced by a method including steps (1) to (5).
  • the liquid crystal alignment agent of the present invention is applied to one surface of a substrate provided with a patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coating method, a printing method, or an inkjet method.
  • the substrate is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with the glass substrate and the silicon nitride substrate.
  • a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with the glass substrate and the silicon nitride substrate.
  • an opaque object such as a silicon wafer can be used, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
  • a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb tooth shape, and a facing substrate not provided with an electrode Is used.
  • Examples of the method of applying the liquid crystal alignment agent to the substrate to form a film include screen printing, offset printing, flexographic printing, inkjet method, spray method and the like. Among them, the coating and film forming methods by the inkjet method can be preferably used.
  • Step (2) is a step of firing the liquid crystal alignment agent applied on the substrate to form a film.
  • the solvent is evaporated or the polyamic acid or polyamic acid ester is thermally imidized by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven. Can be done.
  • the drying and firing steps after applying the liquid crystal alignment agent of the present invention can be performed at any temperature and time, and may be performed a plurality of times.
  • the temperature at which the liquid crystal alignment agent is fired can be, for example, 40 to 180 ° C.
  • the firing time is not particularly limited, and examples thereof include 1 to 10 minutes or 1 to 5 minutes.
  • a step of firing in a temperature range of, for example, 150 to 300 ° C. or 150 to 250 ° C. can be performed after the above firing step.
  • the firing time is not particularly limited, and examples thereof include a firing time of 5 to 40 minutes or 5 to 30 minutes. If the film-like material after firing is too thin, the reliability of the liquid crystal display element may decrease, so 5 to 300 nm is preferable, and 10 to 200 nm is more preferable.
  • the step (3) is, in some cases, a step of orienting the film obtained in the step (2). That is, in a horizontally oriented liquid crystal display element such as an IPS system or an FFS system, an alignment ability imparting process is performed on the coating film. On the other hand, in a vertically oriented liquid crystal display element such as a VA method or a PSA mode, the formed coating film can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment. Examples of the method for aligning the liquid crystal alignment film include a rubbing treatment method and a photo-alignment treatment method, and the photo-alignment treatment method is more preferable.
  • the surface of the film-like material is irradiated with radiation deflected in a certain direction, and in some cases, heat treatment is performed at a temperature of 150 to 250 ° C. to achieve liquid crystal orientation (liquid crystal alignment).
  • heat treatment is performed at a temperature of 150 to 250 ° C. to achieve liquid crystal orientation (liquid crystal alignment).
  • the radiation ultraviolet rays having a wavelength of 100 to 800 nm or visible light can be used. Among them, ultraviolet rays having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm.
  • the irradiation amount of the above radiation is preferably 1 to 10,000 mJ / cm 2 , more preferably 100 to 5,000 mJ / cm 2 , still more preferably 100 to 1,500 mJ / cm 2 , and even more preferably 100 to 1,000 mJ / cm 2 . Is particularly preferable, and 100 to 400 mJ / cm 2 is even more preferable.
  • the light irradiation amount in the alignment treatment is 100 to 5,000 mJ / cm 2 , but in the liquid crystal alignment agent of the present invention, the light irradiation amount in the alignment treatment is reduced.
  • the substrate having the film-like substance may be irradiated while being heated at 50 to 250 ° C.
  • the liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a certain direction.
  • the liquid crystal alignment film irradiated with polarized radiation can be contact-treated with water or a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves the decomposition product generated from the film-like substance by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3-.
  • Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate are preferable from the viewpoint of versatility and solvent safety. More preferred are water, 1-methoxy-2-propanol or ethyl lactate.
  • the solvent may be used alone or in combination of two or more.
  • Step (4) A step of heat-treating the film oriented in step (3) at 50 to 300 ° C.>
  • the coating film irradiated with the above radiation may be heat-treated.
  • the temperature of the heat treatment for the coating film irradiated with the above radiation is preferably 50 to 300 ° C, more preferably 120 to 250 ° C.
  • the heat treatment time is preferably 1 to 30 minutes, respectively.
  • Step (5) Step of manufacturing a liquid crystal cell> Two substrates on which the liquid crystal alignment film is formed as described above are prepared, and the liquid crystal is arranged between the two substrates arranged opposite to each other. Specifically, the following two methods can be mentioned.
  • the first method first, two substrates are arranged facing each other through a gap (cell gap) so that the liquid crystal alignment films face each other.
  • the peripheral portions of the two substrates are bonded together using a sealant, and the liquid crystal composition is injected and filled into the surface of the substrate and the cell gap partitioned by the sealant to contact the film surface, and then the injection holes are sealed. Stop.
  • the second method is a method called an ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • an ultraviolet light-curable sealant is applied to a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed, and the liquid crystal composition is further applied to a predetermined number of places on the liquid crystal alignment film surface. Is dropped. Then, the other substrate is bonded so that the liquid crystal alignment film faces each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • the two substrates are arranged so as to face each other so that the rubbing directions of the coating films are opposite to each other at a predetermined angle, for example, orthogonal or antiparallel.
  • the sealing agent for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used.
  • the liquid crystal include a nematic liquid crystal and a smectic liquid crystal, and among them, the nematic liquid crystal is preferable.
  • a liquid crystal display element can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell.
  • a polarizing plate attached to the outer surface of the liquid crystal cell a polarizing plate called an "H film" in which polyvinyl alcohol is stretched and oriented to absorb iodine is sandwiched between a cellulose acetate protective film or the H film itself.
  • a polarizing plate made of the above can be mentioned.
  • the IPS substrate which is a comb tooth electrode substrate used in the IPS (In-Plane Switching) mode, is formed on a base material, a plurality of linear electrodes formed on the base material, and arranged in a comb tooth shape, and on the base material. It has a liquid crystal alignment film formed so as to cover the linear electrodes.
  • the FFS substrate which is a comb-tooth electrode substrate used in the FFS (Friend Field Switching) mode, is insulated from the base material, the surface electrode formed on the base material, and the insulating film formed on the surface electrode. It has a plurality of linear electrodes formed on the film and arranged in a comb-like shape, and a liquid crystal alignment film formed on the insulating film so as to cover the linear electrodes.
  • FIG. 1 is a schematic cross-sectional view showing an example of a transverse electric field liquid crystal display element of the present invention, and is an example of an IPS mode liquid crystal display element.
  • the liquid crystal 3 is sandwiched between the comb tooth electrode substrate 2 provided with the liquid crystal alignment film 2c and the opposed substrate 4 provided with the liquid crystal alignment film 4a.
  • the comb tooth electrode substrate 2 is formed on the base material 2a and the base material 2a so as to cover the plurality of linear electrodes 2b arranged in a comb tooth shape and the linear electrodes 2b on the base material 2a. It also has a liquid crystal alignment film 2c.
  • the facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2c is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4c is also the liquid crystal alignment film of the present invention.
  • the lateral electric field liquid crystal display element 1 when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by the electric lines of force L.
  • FIG. 2 is a schematic cross-sectional view showing another example of the transverse electric field liquid crystal display element of the present invention, and is an example of an FFS mode liquid crystal display element.
  • the liquid crystal 3 is sandwiched between the comb tooth electrode substrate 2 provided with the liquid crystal alignment film 2h and the opposed substrate 4 provided with the liquid crystal alignment film 4a.
  • the comb tooth electrode substrate 2 is formed on the base material 2d, the surface electrode 2e formed on the base material 2d, the insulating film 2f formed on the surface electrode 2e, and the insulating film 2f, and has a comb tooth shape.
  • the facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2h is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
  • the lateral electric field liquid crystal display element 1 when a voltage is applied to the surface electrode 2e and the linear electrode 2g, an electric field is generated between the surface electrode 2e and the linear electrode 2g as shown by the electric lines of force L.
  • the viscosity of the solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) at a sample volume of 1.1 mL, a cone rotor TE-1 (1 ° 34', R24), and a temperature of 25 ° C.
  • ⁇ Synthesis example 2> Weigh 0.61 g (2.5 mmol) of DA-2 and 0.53 g (2.5 mmol) of DA-5 into a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and add 16.2 g of NMP. Then, nitrogen was sent and stirred to dissolve. While stirring this diamine solution, 1.06 g (4.7 mmol) of TA-1 was added, and the mixture was stirred at 50 ° C. for 16 hours to obtain a polyamic acid solution (PAA-2). The viscosity of this polyamic acid solution was 245 mPa ⁇ s.
  • ⁇ Synthesis example 3> Weigh 0.49 g (2.0 mmol) of DA-2 and 0.64 g (2.0 mmol) of DA-6 into a 50 mL four-necked flask equipped with a stirrer and a nitrogen inlet tube, and add 14.5 g of NMP. Then, nitrogen was sent and stirred to dissolve. While stirring this diamine solution, 0.88 g (3.9 mmol) of TA-1 was added, and the mixture was stirred at 50 ° C. for 16 hours to obtain a polyamic acid solution (PAA-3). The viscosity of this polyamic acid solution was 95 mPa ⁇ s.
  • Example 2 > 1.25 g of the 12% by mass polyamic acid solution (PAA-3) obtained in Synthesis Example 3 and 2.33 g of the 15% by mass polyamic acid solution (PAA-4) obtained in Synthesis Example 4 were placed in a 20 mL Erlenmeyer flask. Then, 4.42 g of NMP and 2.00 g of BCS were added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A2). No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • PAA-3 12% by mass polyamic acid solution
  • PAA-4 15% by mass polyamic acid solution obtained in Synthesis Example 4 were placed in a 20 mL Erlenmeyer flask. Then, 4.42 g of NMP and 2.00 g of BCS were added and mixed at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent (A2). No abnormality such as turbidity or precipitation
  • ⁇ Comparative Example 2> 4.16 g of the 12 mass% polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was placed in a 20 mL Erlenmeyer flask, 3.83 g of NMP and 2.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 2 hours. Then, a liquid crystal alignment agent (B2) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • PAA-2 12 mass% polyamic acid solution obtained in Synthesis Example 2 was placed in a 20 mL Erlenmeyer flask, 3.83 g of NMP and 2.00 g of BCS were added, and the mixture was mixed at 25 ° C. for 2 hours. Then, a liquid crystal alignment agent (B2) was obtained. No abnormality such as turbidity or precipitation was observed in this liquid crystal alignment agent, and it was confirmed that the solution was uniform.
  • an FFS-driven liquid crystal cell was produced by the procedure shown below, and its characteristics were evaluated.
  • a liquid crystal cell having a configuration of a Fringe Field Switching (FFS) mode liquid crystal display element was produced.
  • a substrate with electrodes was prepared.
  • the substrate was a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • a SiN (silicon nitride) film formed by a CVD method was formed as a second layer on the counter electrode of the first layer.
  • the film thickness of the SiN film of the second layer was 500 nm, which was a film thickness that functioned as an interlayer insulating film.
  • a comb-shaped pixel electrode formed by patterning an ITO film as a third layer is arranged on the SiN film of the second layer to form two pixels, a first pixel and a second pixel.
  • the size of each pixel was 6 mm in length and about 5 mm in width.
  • the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer had a comb-like shape composed of a plurality of "dogleg” -shaped electrode elements whose central portion was bent at an internal angle of 160 °.
  • the width of each electrode element in the lateral direction was 3 ⁇ m, and the distance between the electrode elements was 6 ⁇ m. Since the pixel electrodes forming each pixel are configured by arranging a plurality of bent "dogleg” shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but is centered like the electrode elements. It had a shape similar to a bold "dogleg” that bends at the part. Then, each pixel was divided into upper and lower parts with a bent portion in the center as a boundary, and had a first region on the upper side and a second region on the lower side of the bent portion.
  • the prepared substrate with electrodes (first glass substrate) and a columnar spacer having a height of 4 ⁇ m on which an ITO film is formed on the back surface are formed.
  • the glass substrate (second glass substrate) to be provided was coated with a spin coat. After drying on a hot plate at 80 ° C. for 2 minutes, the film was baked in a hot air circulation oven at 230 ° C. for 30 minutes to form a coating film having a film thickness of 100 nm.
  • the coating film surface was irradiated with ultraviolet rays having a wavelength of 254 nm, which were linearly polarized with an extinction ratio of 10: 1 or more, via a polarizing plate at 150 to 300 mJ / cm 2 .
  • the liquid crystal alignment film formed on the first glass substrate is oriented so that the direction in which the inner angle of the pixel bending portion is equally divided and the orientation direction of the liquid crystal are orthogonal to each other, and the liquid crystal alignment film is formed on the second glass substrate.
  • the film is oriented so that the orientation direction of the liquid crystal on the first glass substrate and the orientation direction of the liquid crystal on the second glass substrate coincide with each other when the liquid crystal cell is produced.
  • This substrate was fired in a hot air circulation oven at 230 ° C.
  • a substrate with a liquid crystal alignment film The above two substrates are made into a set, a sealant is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the orientation direction is 0 °, and then the sealant is cured.
  • a liquid crystal MLC-3019 manufactured by Merck & Co., Inc.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became the darkest to the angle at which the first region of the first pixel became the darkest was calculated as the angle ⁇ .
  • the second region and the first region were compared and the same angle ⁇ was calculated.
  • the average value of the angle ⁇ was calculated using the angle ⁇ calculated from the first pixel and the angle ⁇ calculated from the second pixel.
  • Example 1 From the comparison between Example 1 and Comparative Examples 1 and 2, the diamine component containing 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl and 1,2-bis (4-aminophenoxy) ethane
  • the liquid crystal alignment agent A1 containing the polyamic acid (PAA-3) synthesized from the above is more long-term AC driven than the liquid crystal alignment agents B1 and B2 containing the polyamic acid synthesized from both of the above diamine-free diamine components. It can be seen that the afterimage is slight and the in-plane uniformity of the liquid crystal orientation is high.
  • a liquid crystal alignment agent having excellent afterimages due to long-term AC driving and excellent in-plane uniformity of liquid crystal orientation can be obtained. It turned out to be obtained. Further, from the comparison between Example 2 and Comparative Example B3, a diamine component containing 4,4'-diamino-2,2'-bis (trifluoromethyl) biphenyl and 1,2-bis (4-aminophenoxy) ethane. It was found that a liquid crystal alignment agent obtained by mixing a polyamic acid synthesized from the above and another polyamic acid can also have an effect of improving the afterimage by long-term AC driving.
  • liquid crystal alignment agent of the present invention it is possible to obtain a liquid crystal alignment film having high in-plane uniformity of contrast while suppressing afterimages generated by long-term AC driving in an IPS or FFS-driven liquid crystal display element. Therefore, it can be expected to be used in liquid crystal display elements that require high display quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

が式(H)の有機基を表す、式(1)の繰り返し単位(a1)と、Yが式(O)の有機基を表す、式(2)の繰り返し単位(a2)とを有するポリイミド前駆体及びそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体(A)を含有する液晶配向剤。 式(H)中、Rの少なくとも一つはハロゲン原子又はハロゲン化アルキル基を表す。 式(O)中、Arはそれぞれ独立して、任意の水素原子がハロゲン原子又は1価の有機基で置換されていてもよい、ベンゼン環、ビフェニル構造、又はナフタレン環を表す。Qは、一部が-O-、-C(=O)-又は-O-C(=O)-のいずれかで置換されていてもよい、-(CH-(nは2~18の整数)を表す。

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、液晶配向剤、液晶配向膜及び液晶表示素子に関する。
 従来から液晶表示装置は、パーソナルコンピュータ、スマートフォン、携帯電話、テレビジョン受像機等の表示部として幅広く用いられている。液晶表示装置は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN方式、VA方式等の縦電界方式や、IPS(In Plane Switching)方式、FFS(フリンジフィールドスイッチング)方式等の横電界方式が知られている。
 現在、工業的に最も普及している液晶配向膜は、電極基板上に形成された、ポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。ラビング処理は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化に伴い、ラビング処理で発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理面内の不均一性等の種々の問題が明らかとなっている。ラビング処理に代わる配向処理方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したもの等が提案されている(例えば、非特許文献1、特許文献1、特許文献2参照)。
特開平9-297313号公報 WO2016/152928号公報
「液晶光配向膜」木戸脇、市村 機能材料 1997年11月号  Vol.17、 No.11 13~22ページ
 光配向法により配向処理を行う場合、光の照射量はエネルギーコストや生産スピードに影響を与える因子となるので、少ない照射量で配向処理できることが好ましい。しかし、本発明者の検討によると、照射量が多い条件において良好な液晶配向性が得られる液晶配向剤であっても、光照射量を低減させた場合には、液晶配向膜面内での液晶配向性にバラツキ(不均一性)が生じやすくなり、液晶表示素子面内における液晶のツイスト角度のバラツキも大きくなっていた。すると、液晶表示素子で黒表示を行った際、面内の明るさにバラツキが生じ、表示品位を低下させることが懸念される。
 また、IPS駆動方式やFFS駆動方式の液晶表示素子に用いられる液晶配向膜には、長期交流駆動によって発生する残像(以下、AC残像ともいう)を抑制するための配向規制力も必要とされる。
 そこで、本発明の目的は、光配向法による配向処理における光照射量を低減させても、液晶配向膜面内での液晶配向性のバラツキ(不均一性)が抑制された液晶配向膜、並びに該液晶配向膜を得るための液晶配向剤、及び該液晶配向膜を用いた液晶表示素子を提供することを目的とする。更には、AC残像を抑制できる優れた液晶配向規制力を有する液晶配向膜、並びに該液晶配向膜を得るための液晶配向剤、及び該液晶配向膜を用いた液晶表示素子を提供することを目的とする。
 本発明者は、鋭意研究を進めたところ、特定の成分を含有する液晶配向剤を使用することにより、上記課題を解決可能であることを見出し、本発明を完成するに至った。具体的には下記を要旨とするものである。
 下記式(1)で表される繰り返し単位(a1)と、下記式(2)で表される繰り返し単位(a2)とを有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(A)を含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000011
(式(1)中、RからRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、RからRの少なくとも一つは上記定義中の水素原子以外の基を表す。R及びZはそれぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。Yは下記式(H)で表される2価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000012
(式(H)中、Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基又は炭素数1~3のアルキル基上の水素原子の少なくとも一部がハロゲン原子で置換されたハロゲン化アルキル基を表し、Rの少なくとも一つはハロゲン原子又は上記ハロゲン化アルキル基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000013
(式(2)中、RからR、R、及びZは、上記式(1)と同義である。Yは下記式(O)で表される2価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000014
(式(O)中、Arは、それぞれ独立して、ベンゼン環、ビフェニル構造、又はナフタレン環を表す。Arが有するベンゼン環又はナフタレン環上の任意の水素原子は、ハロゲン原子又は1価の有機基で置き換えられてもよい。Qは-(CH-(nは2~18の整数である。)、又は上記-(CH-の一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。*は結合手を表す。)
 本発明によれば、光配向法による配向処理における光照射量を低減させても、液晶配向膜面内での液晶配向性のバラツキ(不均一性)が抑制された液晶配向膜、並びに該液晶配向膜を得るための液晶配向剤、及び該液晶配向膜を用いた液晶表示素子を提供することができる。更には、AC残像を抑制できる優れた液晶配向規制力を有する液晶配向膜、並びに該液晶配向膜を得るための液晶配向剤、及び該液晶配向膜を用いた液晶表示素子を提供することができる。
本発明の横電界液晶表示素子の一例を示す概略断面図である。 本発明の横電界液晶表示素子の他の例を示す概略断面図である。
<重合体(A)>
 本発明の液晶配向剤は、下記式(1)で表される繰り返し単位(a1)と、下記式(2)で表される繰り返し単位(a2)とを有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(A)を含有する。重合体(A)は、上記繰り返し単位(a1)及びそのイミド化構造の少なくともいずれかを含有することで、製造時に発生する液晶表示素子面内でのツイスト角のバラツキによるコントラストの低下が抑制される。また、上記繰り返し単位(a2)及びそのイミド化構造の少なくともいずれかをさらに含有することで、コントラストに優れた液晶表示素子を得ることができる。以上の相乗効果により、本発明の液晶配向剤から、高い液晶配向性と、コントラストに優れた液晶表示素子を得ることができる。
Figure JPOXMLDOC01-appb-C000015
(式(1)中、RからRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、RからRの少なくとも一つは上記定義中の水素原子以外の基を表す。R及びZはそれぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。Yは下記式(H)で表される2価の有機基を表す。)なお、上記定義中の水素原子以外の基とは、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、及びフェニル基を指す。
Figure JPOXMLDOC01-appb-C000016
(式(H)中、Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基又は炭素数1~3のアルキル基上の水素原子の少なくとも一部がハロゲン原子で置換されたハロゲン化アルキル基を表し、Rの少なくとも一つはハロゲン原子又は上記ハロゲン化アルキル基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000017
(式(2)中、RからR、R、及びZは、上記式(1)と同義である。Yは下記式(O)で表される2価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000018
(式(O)中、Arは、それぞれ独立して、ベンゼン環、ビフェニル構造、又はナフタレン環を表す。Arが有するベンゼン環又はナフタレン環上の任意の水素原子は、ハロゲン原子又は1価の有機基で置き換えられてもよい。Qは-(CH-(nは2~18の整数である。)、又は上記-(CH-の一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。*は結合手を表す。)
 上記R~Rにおける炭素数1~6のアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基などが挙げられる。上記R~Rにおける炭素数2~6のアルケニル基の具体例としては、ビニル基、プロペニル基、ブチニル基等が挙げられ、これらは直鎖状でも分岐状でもよい。上記R~Rにおける炭素数2~6のアルキニル基の具体例としては、例えばエチニル基、1-プロピニル基、2-プロピニル基等が挙げられる。上記R~Rにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。上記R~Rにおける、フッ素原子を含有する炭素数1~6の1価の有機基としては、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロプロピル基等が挙げられる。
 なお、本発明の効果を効率的に得る観点から、RからRの少なくとも一つは上記定義中の水素原子以外の基を表す。上記構成とすることで、ポリイミド膜の光反応性が高くなり、得られる液晶配向膜の面内異方性が高くなるので、製造時に発生する液晶表示素子面内でのツイスト角のバラツキによるコントラストの低下が抑制される。より好ましいR~Rの組合せは、R~Rが、水素原子又はメチル基であり、RからRの少なくとも1つがメチル基であることが好ましく、RからRの少なくとも2つがメチル基であることがより好ましい。更に好ましいのは、R及びRがメチル基であり、R及びRが水素原子である場合である。
 上記式(H)のRにおいて、ハロゲン原子、炭素数1~3のアルキル基としては、上記R~Rで例示した構造が挙げられ、ハロゲン化アルキル基としては、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロプロピル基等が挙げられる。これらの中でも、本発明の効果を効率的に得る観点から、ハロゲン原子はフッ素原子、塩素原子が好ましく、ハロゲン化アルキル基は、フルオロメチル基、トリフルオロメチル基が好ましい。
 上記式(H)で表される2価の有機基としては、本発明の効果を効率的に得る観点から、下記式(h-1)~(h-9)のいずれかで表される2価の有機基が好ましく、(h-1)~(h-2)、(h-6)~(h-7)、及び(h-9)のいずれかで表される2価の有機基がより好ましい。
Figure JPOXMLDOC01-appb-C000019
(式(h-1)~(h-9)中、*は結合手を表す。)
 上記式(O)におけるArが有するベンゼン環又はナフタレン環上の任意の水素原子は、ハロゲン原子、又は炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基などの1価の有機基で置き換えられてもよい。これらの1価の有機基の具体例として、上記R~Rで例示した構造が挙げられる。
 上記式(O)で表される2価の有機基としては、液晶配向性を高める観点から下記式(o-1)~(o-14)のいずれかで表される2価の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(式(o-1)~(o-14)中、*は結合手を表す。式(o-14)中、2つのmは、それぞれ独立している。)
 上記重合体(A)は、本発明の効果を効率的に得る観点から、さらに下記式(2’)で表される繰り返し単位(a2’)及び下記式(3)で表される繰り返し単位(a3)よりなる群から選ばれる少なくとも一つを有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体であってもよい。即ち、重合体(A)は、式(1)で表される繰り返し単位(a1)と、式(2)で表される繰り返し単位(a2)と、式(2’)で表される繰り返し単位(a2’)及び式(3)で表される繰り返し単位(a3)よりなる群から選ばれる少なくとも一つと、を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体であってもよい。
Figure JPOXMLDOC01-appb-C000022
(式(2’)、及び式(3)中、X2’、及びXは4価の有機基を表し、Y2’は下記式(O2)で表される2価の有機基を表し、Yは基「-N(D)-(Dはカルバメート系保護基を表す。)」を分子内に有し、Dを除く炭素数が6~30の2価の有機基を表す。R、及びZは、上記式(1)と同義である。)
Figure JPOXMLDOC01-appb-C000023
(式(O2)中、Ar2’はそれぞれ独立して、ベンゼン環を表し、該ベンゼン環上の任意の水素原子は、炭素数1~6のアルキル基で置き換えられてもよい。Q2’は単結合、又は-O-を表す。mは0~2の整数を表す。*は結合手を表す。)
 X2’、及びXとしては、下記式(g)で表される4価の有機基の他、下記式(X-1)~(X-25)のいずれかで表される4価の有機基、芳香族テトラカルボン酸二無水物に由来する4価の有機基等が挙げられる。本発明の効果を効率的に得る観点から、X2’及びXは、下記式(g)で表される4価の有機基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000024
(R、R、R、及びRは、上記式(1)のR、R、R、及びRと同義である。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(式(X-1)~(X-25)中、*は結合手を表す。)
 ここで、芳香族テトラカルボン酸二無水物とは、ベンゼン環、ナフタレン環などの芳香環に結合するカルボキシ基が分子内脱水することにより得られる酸二無水物のことである。芳香族テトラカルボン酸二無水物に由来する4価の有機基の具体例を挙げると、下記式(Xa-1)~(Xa-2)のいずれかで表される4価の有機基、下記式(Xr-1)~(Xr-7)のいずれかで表される4価の有機基を挙げることができる。
Figure JPOXMLDOC01-appb-C000027
(x及びyは、それぞれ独立に、単結合、エーテル結合、カルボニル基、エステル結合、炭素数1~10のアルカンジイル基、1,4-フェニレン基、スルホニル基又はアミド基である。j及びkは、0又は1の整数である。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000028
(式(Xr-1)~(Xr-7)中、*は結合手を表す。)
 上記式(Xa-1)若しくは(Xa-2)で表される4価の有機基は、下記式(Xa-3)~(Xa-19)のいずれかで表される構造でもよい。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
(式(Xa-3)~(Xa-19)中、*は結合手を表す。)
 上記式(O2)で表される2価の有機基としては、AC残像の発生が少ない観点から下記式(o2-1)~(o2-3)のいずれかで表される2価の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000031
(式(o2-1)~(o2-3)中、*は結合手を表す。)
 上記YのDはカルバメート系保護基を表し、カルバメート系保護基としては、例えば、tert-ブトキシカルボニル基又は9-フルオレニルメトキシカルボニル基が挙げられる。
 上記Yの具体例としては、下記式(Dx)で表される2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000032
(式(Dx)中、*は結合手を表す。)
 式中、Qは単結合、-(CH-(nは1~20の整数である)、又は該-(CH-の任意の-CH-が-O-、-COO-、-OCO-、-NQ-、-NQCO-、-CONQ-、-NQ-CO-NQ10-、-NQ-COO-又は-OCOO-で置き換えられた基であり、Q及びQ10はそれぞれ独立して水素原子又は1価の有機基を表し;
及びQはそれぞれ独立して-H、-NHDを有する基(好ましくは、-NHDである。)、又は-N(D)を有する基(好ましくは、-N(D)である。)を表す。但し、m=0の場合、Qはカルバメート系保護基を有し、m=1の場合、Q、Q及びQの少なくとも一つは基中にカルバメート系保護基を有する。また、Q、及びQにおいて、水素原子以外の基を表す場合、好ましい炭素数は1~8である。
 上記Q及びQ10の1価の有機基としては、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基が挙げられ、具体例として上記R~Rで例示した構造が挙げられる。
 Yの好ましい具体例としては、AC残像が少ない観点から、下記式(Y3-1)~(Y3-5)のいずれかで表される2価の有機基が挙げられる。「Boc」は、tert-ブトキシカルボニル基を表す。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000033
 上記重合体(A)は、上記繰り返し単位(a1)、繰り返し単位(a2)、繰り返し単位(a2’)、繰り返し単位(a3)以外に、下記式(4)で表される繰り返し単位(a4)を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体であってもよい。
Figure JPOXMLDOC01-appb-C000034
 式中、Xは4価の有機基を表し、Yは2価の有機基を表す。R、及びZはそれぞれ上記式(1)のR、及びZと同義である。但し、Yは基「-N(D)-(Dはカルバメート系保護基を表す。)」を分子内に有し、Dを除く炭素数が6~30の2価の有機基及び上記式(O2)で表される2価の有機基以外の構造を表し、更にXが上記式(g)で表される4価の有機基と同義である場合は、Yは上記式(H)で表される2価の有機基、及び上記式(O)で表される2価の有機基以外の構造を表す。Xの具体例としては、X2’、及びXで例示した構造が挙げられる。
 Xの具体例としては、上記X2’で例示した4価の有機基が挙げられる。本発明の効果を効率的に得る観点から、Xは、上記式(g)で表される4価の有機基、又は上記式(X-1)~(X-25)のいずれかで表される4価の有機基がより好ましく、上記式(g)で表される4価の有機基であることがさらに好ましい。
 Yの2価の有機基の具体例としては、上記式(H)で表される2価の有機基、上記式(O)で表される2価の有機基、上記式(O2)で表される2価の有機基、基「-N(D)-(Dはカルバメート系保護基を表す。)」を分子内に有し、Dを除く炭素数が6~30の2価の有機基の他、以下のジアミンから2つのアミノ基を除いた2価の有機基が挙げられる。
 4,4’-ジアミノジフェニルメタン;下記式(g-1)~(g-5)で表されるジアミンなどの光配向性基を有するジアミン;下記式(u-1)~(u-3)で表されるジアミンなどのウレア結合を有するジアミン;下記式(u-4)~(u-6)で表されるジアミンなどのアミド結合を有するジアミン;窒素原子含有複素環、第二級アミノ基及び第三級アミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(以下、窒素原子含有構造ともいう。)を有するジアミン;2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸及び下記式(3b-1)~式(3b-4)で示されるジアミン化合物などのカルボキシ基を有するジアミン;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、4,4’-ジアミノベンゾフェノン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル及び2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミン;下記式(V-1)~(V-6)で表されるジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のシロキサン結合を有するジアミン;下記式(Ox-1)~(Ox-2)等のオキサゾリン環構造を有するジアミン;1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル 3,5-ジアミノベンゾエート、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン等のラジカル重合開始剤機能を有するジアミン等のジアミンから2つのアミノ基を除いた2価の有機基、WO2018/117239号公報に記載の式(Y-1)~(Y-167)のいずれかで表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 
Figure JPOXMLDOC01-appb-C000037
(上記(3b-1)中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-O-CH-、-COO-、-OCO-、-CO-N(CH)-又は-N(CH)-CO-を示し、m1及びm2はそれぞれ独立して、0~4の整数を示し、かつm1+m2は1~4の整数を示す。式(3b-2)中、m3及びm4はそれぞれ独立して、1~5の整数を示す。式(3b-3)中、Aは炭素数1~5の直鎖又は分岐アルキル基を示し、m5は1~5の整数を示す。式(3b-4)中、A及びAはそれぞれ独立して、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CO-N(CH)-又は-N(CH)-CO-を示し、m6は1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000038
(上記式(V-1)~(V-6)中、Xv1~Xv4、及びXp1~Xp2は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表し、Xv5は-O-、-CH-O-、-CH-OCO-、-COO-、又は-OCO-を表す。Xは、単結合、-O-、-NH-、-O-(CH-O-(mは1~6の整数を表す。)、-C(CH-、-CO-、-(CH-、-SO-、-O-C(CH-、-CO-(CH-(mは1~6の整数を表す。)、-NH-(CH(mは1~6の整数を表す。)-、-SO-(CH-(mは1~6の整数を表す。)、-CONH-(CH-(mは1~6の整数を表す。)、-CONH-(CH-NHCO-(mは1~6の整数を表す。)、-COO-(CH-OCO-(mは1~6の整数を表す。)、-CONH-、-NH-(CH-NH-(mは1~6の整数を表す。)、又は-SO-(CH-SO-(mは1~6の整数を表す。)を示し、Rv1~Rv4、及びR1a~R1bは、それぞれ独立に、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数2~20のアルコキシアルキル基を示す。式(V-6)において、2つのkは同一であっても異なっていてもよい。)
Figure JPOXMLDOC01-appb-C000039
 上記窒素原子含有複素環としては、例えば、ピロール、イミダゾール、ピラゾール、トリアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、インドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、ナフチリジン、キノキサリン、フタラジン、トリアジン、カルバゾール、アクリジン、ピペリジン、ピペラジン、ピロリジン、ヘキサメチレンイミン等が挙げられる。なかでも、ピリジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、キノリン、カルバゾール又はアクリジンが好ましい。
 窒素原子含有構造を有するジアミンが有していてもよい第二級アミノ基及び第三級アミノ基は、例えば、下記式(n)で表される。
Figure JPOXMLDOC01-appb-C000040
 上記式(n)において、Rは、水素原子又は炭素数1~10の1価の炭化水素基を表す。「*」は、炭化水素基に結合する結合手を表す。
 上記式(n)中のRの1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、メチルフェニル基等のアリール基等が挙げられる。Rは、好ましくは水素原子又はメチル基である。
 窒素原子含有構造を有するジアミンの具体例としては、例えば、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、下記式(Dp-1)~(Dp-8)で表される化合物、又は下記式(z-1)~式(z-28)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
(式中、Pyはピリジン環又はピリミジン環を表す。)
 本発明の効果を効率的に得る観点から、重合体(A)は、繰り返し単位(a1)と繰り返し単位(a1)のイミド化構造との合計を全繰り返し単位の5~95モル%含むことが好ましく、5~90モル%含むことがより好ましく、5~80モル%含むことがさらに好ましい。なお、ここでの合計においては、繰り返し単位(a1)と繰り返し単位(a1)のイミド化構造とのいずれかが0モル%である場合も含まれる。以下においても合計という場合、構成要素の1又は2以上が0モル%である場合も含まれる。
 また、本発明の効果を効率的に得る観点から、重合体(A)は、繰り返し単位(a1)を全繰り返し単位の5~95モル%含むことが好ましく、5~90モル%含むことがより好ましく、5~80モル%含むことがさらに好ましい。
 本発明の効果を効率的に得る観点から、重合体(A)は、繰り返し単位(a2)と繰り返し単位(a2)のイミド化構造との合計を全繰り返し単位の5~95モル%含むことが好ましく、10~95モル%含むことがより好ましく、20~95モル%含むことがさらに好ましい。
 また、本発明の効果を効率的に得る観点から、重合体(A)は、繰り返し単位(a2)を全繰り返し単位の5~95モル%含むことが好ましく、10~95モル%含むことがより好ましく、20~95モル%含むことがさらに好ましい。
 本発明の効果を効率的に得る観点から、重合体(A)は、繰り返し単位(a1)及び繰り返し単位(a2)並びにそれらのイミド化構造の合計を、全繰り返し単位の10モル%以上含むことが好ましく、20モル%以上含むことがより好ましく、50モル%以上含むことがさらに好ましく、80モル%以上含むことが特に好ましく、90モル%以上含むことが最も好ましい。重合体(A)が、繰り返し単位(a1)及び繰り返し単位(a2)並びにそれらのイミド化構造以外の繰り返し単位を含む場合は、重合体(A)は、繰り返し単位(a1)及び繰り返し単位(a2)並びにそれらのイミド化構造の合計を、全繰り返し単位の95モル%以下含むことが好ましく、90モル%以下含むことが更に好ましい。
 また、本発明の効果を効率的に得る観点から、重合体(A)は、繰り返し単位(a1)及び繰り返し単位(a2)の合計を全繰り返し単位の10モル%以上含むことが好ましく、20モル%以上含むことがより好ましく、50モル%以上含むことがさらに好ましく、80モル%以上含むことが特に好ましく、90モル%以上含むことが最も好ましい。重合体(A)が、繰り返し単位(a1)及び繰り返し単位(a2)以外の繰り返し単位を含む場合は、重合体(A)は、繰り返し単位(a1)及び繰り返し単位(a2)の合計を、全繰り返し単位の95モル%以下含むことが好ましく、90モル%以下含むことが更に好ましい。
 重合体(A)が繰り返し単位(a2’)と繰り返し単位(a2’)のイミド化構造との少なくともいずれかを含む場合、本発明の効果を効率的に得る観点から、重合体(A)は繰り返し単位(a2’)と繰り返し単位(a2’)のイミド化構造との合計を、全繰り返し単位の1~50モル%含むことが好ましく、1~40モル%含むことがより好ましく、1~30モル%含むことがさらに好ましい。
 また、重合体(A)が繰り返し単位(a2’)を含む場合、本発明の効果を効率的に得る観点から、重合体(A)は繰り返し単位(a2’)を、全繰り返し単位の1~50モル%含むことが好ましく、1~40モル%含むことがより好ましく、1~30モル%含むことがさらに好ましい。
 重合体(A)が繰り返し単位(a3)と繰り返し単位(a3)のイミド化構造との少なくともいずれかを含む場合、本発明の効果を効率的に得る観点から、重合体(A)は繰り返し単位(a3)と繰り返し単位(a3)のイミド化構造との合計を、全繰り返し単位の1~40モル%含むことが好ましく、1~30モル%含むことがより好ましく、1~25モル%含むことがさらに好ましい。
 また、重合体(A)が繰り返し単位(a3)を含む場合、本発明の効果を効率的に得る観点から、重合体(A)は繰り返し単位(a3)を、全繰り返し単位の1~40モル%含むことが好ましく、1~30モル%含むことがより好ましく、1~25モル%含むことがさらに好ましい。
<重合体(B)>
 本発明の液晶配向剤は、上記重合体(A)以外に、上記繰り返し単位(a1)及び上記繰り返し単位(a2)の両方を同一の分子内に有しない重合体(B)を含有してもよい。本発明の効果を効率的に得る観点から、重合体(B)としては、下記式(5)で表される繰り返し単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000045
(式中、Xは4価の有機基であり、Yは、2価の有機基である。Zは、それぞれ独立して、水素原子、置換基を有してもよい炭素数1~10のアルキル基、置換基を有してもよい炭素数2~10のアルケニル基、置換基を有してもよい炭素数2~10のアルキニル基、tert-ブトキシカルボニル基、又は9-フルオレニルメトキシカルボニル基を表す。Rは、それぞれ独立して、水素原子、又は炭素数1~4のアルキル基を表す。)
 上記式Xにおける4価の有機基としては、脂肪族テトカルボン酸二無水物に由来する4価の有機基、脂環式テトラカルボン酸二無水物に由来する4価の有機基又は芳香族テトラカルボン酸二無水物に由来する4価の有機基が挙げられ、具体例としては上記X2’、及びXで例示した4価の有機基が挙げられる。本発明の効果を効率的に得る観点から、Xは、上記式(g)で表される4価の有機基、上記式(X-1)~(X-25)のいずれかで表される4価の有機基、上記式(Xa-1)~(Xa-2)で表される4価の有機基又は上記式(Xr-1)~(Xr-7)で表される4価の有機基(これらを総称して特定の4価の有機基ともいう。)が好ましい。
 重合体(B)は、本発明の効果を効率的に得る観点において、Xが上記特定の4価の有機基である繰り返し単位を重合体(B)に含まれる全繰り返し単位の5モル%以上含むことが好ましく、10モル%以上含むことがより好ましい。
 上記Yにおける2価の有機基としては、上記Yで例示した2価の有機基が挙げられる。残留DC由来の残像が少ない観点において、重合体(B)はYが、上記ウレア結合を有するジアミン、上記アミド結合を有するジアミン、上記窒素原子含有構造を有するジアミン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、上記カルボキシ基を有するジアミンから2つのアミノ基を除いた2価の有機基(これらを総称して特定の2価の有機基ともいう。)である繰り返し単位を含む重合体であることが好ましい。
 重合体(B)は、残留DC由来の残像が少ない観点において、Yが上記特定の2価の有機基である繰り返し単位を重合体(B)に含まれる全繰り返し単位の1モル%以上含んでもよく、5モル%以上含んでもよい。
 残留DC由来の残像が少ない観点において、重合体(A)と重合体(B)の含有割合が、[重合体(A)]/[重合体(B)]の質量比で10/90~90/10であってもよく、20/80~90/10であってもよく、20/80~80/20であってもよい。
<ポリアミック酸、ポリアミック酸エステル及びポリイミドの製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステル、及びポリアミック酸並びにこれらのイミド化物であるポリイミドは、例えば、WO2013/157586号公報に記載されるような公知の方法で合成出来る。
 より具体的には、ジアミン成分と、テトラカルボン酸誘導体成分と、を溶媒中で(縮重合)反応させることにより行われる。重合体(A)又は(B)の一部にアミック酸構造を含む場合、例えば、テトラカルボン酸二無水物成分とジアミン成分とを反応させることにより、アミック酸構造を有する重合体(ポリアミック酸)が得られる。溶媒としては、生成した重合体が溶解するものであれば特に限定されない。
 上記溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000046
(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を表す。)
 これら溶媒は単独で使用しても、混合して使用してもよい。さらに、重合体を溶解させない溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。
 ジアミン成分とテトラカルボン酸誘導体成分とを溶媒中で反応させる際には、反応は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することもできる。
 反応においては、ジアミン成分の合計モル数とテトラカルボン酸誘導体成分の合計モル数の比は0.8~1.2であることが好ましい。通常の縮重合反応同様、このモル比が1.0に近いほど生成する重合体(A)、重合体(B)の分子量は大きくなる。
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。
 ポリイミドを得る方法としては、上記反応で得られた重合体の溶液をそのまま加熱する熱イミド化、又は重合体の溶液に触媒を添加する触媒イミド化が挙げられる。溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 上記触媒イミド化は、反応で得られた重合体の溶液に、塩基性触媒と酸無水物とを添加し、好ましくは-20~250℃、より好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミック酸基の好ましくは0.5~30モル倍、より好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の好ましくは1~50モル倍、より好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、なかでも、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率(ポリイミド前駆体の有する全繰り返し単位に対する閉環される繰り返し単位の割合、閉環率ともいう。)は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 上記イミド化の反応溶液から、生成したイミド化物を回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。
 本発明の重合体(A)におけるポリイミドは、上記ポリイミド前駆体の有する繰り返し単位が一部又は全て閉環されている。上記ポリイミドにおいて、イミド化率は好ましくは、20~95%であり、より好ましくは30~95%であり、さらに好ましくは50~95%である。
<重合体の溶液粘度・分子量>
 本発明に用いられるポリアミック酸、ポリアミック酸エステル及びポリイミドは、これを濃度10~15質量%の溶液としたときに、例えば10~1000mPa・sの溶液粘度を持つものが作業性の観点から好ましいが、特に限定されない。なお、上記重合体の溶液粘度(mPa・s)は、当該重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10~15質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
 上記ポリアミック酸、ポリアミック酸エステル及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶表示素子の良好な配向性及び安定性を確保することができる。
<末端封止剤>
 本発明における重合体(A)、重合体(B)を合成するに際して、上記の如きテトラカルボン酸誘導体成分、及びジアミン成分とともに、適当な末端封止剤を用いて末端封止型の重合体を合成することとしてもよい。末端封止型の重合体は、塗膜によって得られる液晶配向膜の膜硬度の向上や、シール剤と液晶配向膜の密着特性の向上という効果を有する。
 本発明における重合体(A)、重合体(B)の末端の例としては、アミノ基、カルボキシル基、酸無水物基又はこれらの誘導体が挙げられる。アミノ基、カルボキシル基、酸無水物基又はこれらの基が誘導される末端基は通常の縮合反応により得るか、又は以下の末端封止剤を用いて末端を封止することにより得ることができ、前記誘導体は、例えば、以下の末端封止剤を用いて、同様に得ることができる。
 末端封止剤としては、例えば無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、1,2-シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸無水物;二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物などを挙げることができる。
 末端封止剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。
<液晶配向剤>
 本発明の液晶配向剤は、重合体(A)及び必要に応じて重合体(B)を含有する。本発明の液晶配向剤は、重合体(A)、重合体(B)に加えて、その他の重合体を含有していてもよい。その他の重合体の種類としては、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。
 液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、塗布液の形態をとる。本発明の液晶配向剤においても上記した重合体成分と、有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点から、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して「良溶媒」ともいう)などを挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%であることがより好ましく、30~80質量%であることが特に好ましい。
 また、液晶配向剤に含有される有機溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。併用する貧溶媒の具体例を下記するが、これらに限定されない。
 例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などを挙げることができる。
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンとプロピレングリコールジアセテート、N,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタート、N-エチル-2-ピロリドンとジプロピレングリコールジメチルエーテル、N,N-ジメチルラクトアミドとエチレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテル、N,N-ジメチルラクトアミドとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-エチル-2-ピロリドンとγ-ブチロラクトンとジイソブチルケトン、N-エチル-2-ピロリドンとN,N-ジメチルラクトアミドとジイソブチルケトンなどを挙げることができる。
 本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分(以下、添加剤成分ともいう。)を追加的に含有してもよい。このような添加剤成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール剤との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための化合物(以下、架橋性化合物ともいう。)、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。
 上記架橋性化合物として、AC残像に対して良好な耐性を発現し、膜強度の改善が高い観点から、オキシラニル基、オキセタニル基、保護イソシアネート基、保護イソチオシアネート基、オキサゾリン環構造を含む基、メルドラム酸構造を含む基、シクロカーボネート基、及び下記式(d)で表される基よりなる群から選ばれる少なくとも1種の基を有する化合物、並びに下記式(e)で表される化合物、よりなる群から選ばれる少なくとも1種の化合物であってもよい。
Figure JPOXMLDOC01-appb-C000047
(式(d)中、R及びRは、それぞれ独立に水素原子、炭素数1~3のアルキル基又は「*-CH-OH」である。*は結合手であることを示す。式(e)中、Aは芳香環を有する(m+n)価の有機基を表し、Rは、水素原子又は炭素数1~5のアルキル基を表し、mは1~6の整数を表し、nは0~4の整数を表す。上記芳香環上の任意の水素原子は、ハロゲン原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のフルオロアルキル基、炭素数2~10のフルオロアルケニル基又は炭素数1~10のフルオロアルコキシ基で置き換えられてもよい。)
 オキシラニル基を有する化合物の具体例としては、日本特開平10-338880号公報の段落[0037]に記載の化合物や、WO2017/170483号公報に記載のトリアジン環を骨格にもつ化合物などの、2個以上のオキシラニル基を有する化合物が挙げられる。これらのうち、N,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン、N,N,N’,N’-テトラグリシジル-p-フェニレンジアミン、下記式(r-1)~(r-3)で表される化合物などの窒素原子を含有する化合物であってもよい。
Figure JPOXMLDOC01-appb-C000048
 オキセタニル基を有する化合物の具体例としては、WO2011/132751号公報の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等が挙げられる。
 保護イソシアネート基を有する化合物の具体例としては、日本特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、WO2015/141598号公報の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等が挙げられ、下記式(bi-1)~(bi-3)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000049
 保護イソチオシアネート基を有する化合物の具体例としては、日本特開2016-200798号公報に記載の、2個以上の保護イソチオシアネート基を有する化合物が挙げられる。
 オキサゾリン環構造を含む基を有する化合物の具体例としては、日本特開2007-286597号公報の段落[0115]に記載の、2個以上のオキサゾリン構造を含む化合物が挙げられる。
 メルドラム酸構造を含む基を有する化合物の具体例としては、WO2012/091088号公報に記載の、メルドラム酸構造を2個以上有する化合物が挙げられる。
 シクロカーボネート基を有する化合物の具体例としては、WO2011/155577号公報に記載の化合物が挙げられる。
 上記式(d)で表される基のR、Rの炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基が挙げられる。
 上記式(d)で表される基を有する化合物の具体例としては、WO2015/072554号公報や、日本特開2016-118753号公報の段落[0058]に記載の、上記式(d)で表される基を2個以上有する化合物、日本特開2016-200798号公報に記載の化合物等が挙げられ、下記式(hd-1)~(hd-8)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000050
 上記式(e)のAにおける芳香環を有する(m+n)価の有機基としては、炭素数6~30の(m+n)価の芳香族炭化水素基、炭素数6~30の芳香族炭化水素基が直接又は連結基を介して結合した(m+n)価の有機基、芳香族複素環を有する(m+n)価の基が挙げられる。上記芳香族炭化水素基としては、例えばベンゼン、ナフタレンなどが挙げられる。芳香族複素環としては、例えばピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、イソキノリン環、カルバゾール環、ピリダジン環、ピラジン環、ベンゾイミダゾール環、インドール環、キノキサリン環、アクリジン環などが挙げられる。上記連結基としては、炭素数1~10のアルキレン基、又は上記アルキレン基から水素原子を一つ除いた基、2価又は3価のシクロヘキサン環等が挙げられる。尚、上記アルキレン基の任意の水素原子は、炭素数1~6のアルキル基、フッ素原子又はトリフルオロメチル基などの有機基で置換されてもよい。上記式(e)のRにおける炭素数1~5のアルキル基としては、上記式(1)におけるR~Rで例示したアルキル基の具体例が挙げられる。
 上記式(e)の具体例を挙げるならば、WO2010/074269号公報に記載の化合物、下記式(e-1)~(e-10)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000051
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。例えば、WO2015/060357号公報の53頁[0105]~55頁[0116]に開示されている上記以外の成分などが挙げられる。また、架橋性化合物は、2種類以上組み合わせてもよい。
 本発明の液晶配向剤における、架橋性化合物の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部であることが好ましく、架橋反応が進行し、かつAC残像に対して良好な耐性を発現する観点から、より好ましくは1~15質量部である。
 上記密着助剤としては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-(3-トリエトキシシリルプロピル)トリエチレンテトラミン、N-(3-トリメトキシシリルプロピル)トリエチレンテトラミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤が挙げられる。シランカップリング剤を使用する場合は、AC残像に対して良好な耐性を発現する観点から、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、0.1~20質量部であることがより好ましい。
<液晶配向膜・液晶表示素子>
 本発明の液晶配向膜は、上記液晶配向剤から得られる。本発明の液晶配向膜は、水平配向型若しくは垂直配向型(VA型)の液晶配向膜に用いることができるが、中でもIPS方式又はFFS方式等の水平配向型の液晶表示素子に好適な液晶配向膜である。また、光配向処理法用の液晶配向膜により好ましく用いられる。本発明の液晶表示素子は、上記液晶配向膜を具備するものである。本発明の液晶表示素子は、例えば以下の工程(1)~(3)及び(5)或いは、工程(1)~(2)及び(5)を含む方法により製造することができる。より好ましくは、工程(1)~(5)を含む方法により製造される。
<工程(1):液晶配向剤を基板上に塗布する工程>
 パターニングされた透明導電膜が設けられている基板の一面に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。また、IPS型又はFFS型の液晶素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。
 液晶配向剤を基板に塗布し、成膜する方法としては、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、又はスプレー法等が挙げられる。なかでも、インクジェット法による塗布、成膜法が好適に使用できる。
<工程(2):塗布した液晶配向剤を焼成する工程>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、ポリアミック酸又はポリアミック酸エステルの熱イミド化を行ったりすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤を焼成する温度としては、例えば40~180℃で行うことができる。プロセスを短縮する観点で、40~150℃で行ってもよい。焼成時間としては特に限定されないが、1~10分又は、1~5分が挙げられる。ポリアミック酸又はポリアミック酸エステルの熱イミド化を行う場合には、上記焼成工程の後、例えば150~300℃、又は150~250℃の温度範囲で焼成する工程ができる。焼成時間としては特に限定されないが、5~40分、又は、5~30分の焼成時間が挙げられる。
 焼成後の膜状物は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
<工程(3):工程(2)で得られた膜に配向処理する工程>
 工程(3)は、場合により、工程(2)で得られた膜に配向処理する工程である。即ち、IPS方式又はFFS方式等の水平配向型の液晶表示素子では該塗膜に対し配向能付与処理を行う。一方、VA方式又はPSAモード等の垂直配向型の液晶表示素子では、形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。液晶配向膜の配向処理方法としては、ラビング処理法、光配向処理法が挙げられ、光配向処理法がより好適である。光配向処理法としては、上記膜状物の表面に、一定方向に偏向された放射線を照射し、場合により、好ましくは、150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
 上記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmがより好ましく、100~1,500mJ/cmがさらに好ましく、100~1,000mJ/cmが特に好ましく、100~400mJ/cmがより一層好ましい。通常の液晶配向剤を使用した場合には、配向処理における光照射量は、100~5,000mJ/cmであるが、本発明の液晶配向剤においては、配向処理における光照射量を低減させても、液晶配向膜面内での液晶配向性のバラツキ(不均一性)が抑制された液晶配向膜を得ることができる。
 また、放射線を照射する場合、液晶配向性を改善するために、上記膜状物を有する基板を、50~250℃で加熱しながら照射してもよい。このようにして作製した上記液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 更に、上記の方法で、偏光された放射線を照射した液晶配向膜に、水や溶媒を用いて、接触処理するか、放射線を照射した液晶配向膜を加熱処理することもできる。
 上記接触処理に使用する溶媒としては、放射線の照射によって膜状物から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパンール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。溶媒は、1種類でも、2種類以上組み合わせてもよい。
<工程(4):工程(3)で配向処理された膜に対して50~300℃の加熱処理を行う工程>
 上記の放射線を照射した塗膜に対して加熱処理を行ってもよい。
 上記の放射線を照射した塗膜に対する加熱処理の温度は、50~300℃が好ましく、120~250℃がより好ましい。加熱処理の時間としては、それぞれ1~30分とすることが好ましい。
<工程(5):液晶セルを作製する工程>
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板の周辺部をシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。
 そして、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。
 IPS(In-Plane Switching)モードにおいて使用される櫛歯電極基板であるIPS基板は、基材と、基材上に形成され、櫛歯状に配置された複数の線状電極と、基材上に線状電極を覆うように形成された液晶配向膜とを有する。
 なお、FFS(Frindge Field Switching)モードにおいて使用される櫛歯電極基板であるFFS基板は、基材と、基材上に形成された面電極と、面電極上に形成された絶縁膜と、絶縁膜上に形成され、櫛歯状に配置された複数の線状電極と、絶縁膜上に線状電極を覆うように形成された液晶配向膜とを有する。
 図1は、本発明の横電界液晶表示素子の一例を示す概略断面図であり、IPSモード液晶表示素子の例である。
 図1に例示する横電界液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2cは、例えば、本発明の液晶配向膜である。液晶配向膜4cも同様に本発明の液晶配向膜である。
 この横電界液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
 図2は、本発明の横電界液晶表示素子の他の例を示す概略断面図であり、FFSモード液晶表示素子の例である。
 図2に例示する横電界液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2hは、例えば、本発明の液晶配向膜である。液晶配向膜4aも同様に本発明の液晶配向膜である。
 この横電界液晶表示素子1においては、面電極2eおよび線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2eおよび線状電極2g間で電界が発生する。
 以下に実施例を挙げ、本発明を更に具体的に説明するが、本発明はこれらに限定されるものではない。以下における化合物の略号及び各特性の測定方法は、次のとおりである。
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
(ジアミン)
 DA-1:p-フェニレンジアミン
 DA-2:1,2-ビス(4-アミノフェノキシ)エタン
 DA-3:下記式(DA-3)参照
 DA-4:下記式(DA-4)参照
 DA-5:4,4’-ジアミノ-2,2’-ジメチルビフェニル
 DA-6:4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル
 DA-7:1,3-ビス(4-アミノフェネチル)ウレア
 DA-8:4-(2-メチルアミノエチル)アニリン
(酸二無水物)
 TA-1:1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物
 TA-2:1,2,3,4-シクロブタンテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000052
 「Boc」はtert-ブトキシカルボニル基を表す。「Me」はメチル基を表す。
[粘度]
 溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[重合体の合成例]
<合成例1>
 撹拌装置及び窒素導入管付きの200mL四つ口フラスコに、DA-1を0.87g(8.0mmol)、DA-2を2.93g(12.0mmol)、DA-3を3.84g(12.0mmol)及びDA-4を3.19g(8.0mmol)量り取り、NMPを128.3g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、TA-1を8.61g(38.4mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌して、ポリアミック酸溶液(PAA-1)を得た。このポリアミック酸溶液の粘度は394mPa・sであった。
<合成例2>
 撹拌装置及び窒素導入管付きの50mL四つ口フラスコに、DA-2を0.61g(2.5mmol)、及びDA-5を0.53g(2.5mmol)量り取り、NMPを16.2g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、TA-1を1.06g(4.7mmol)添加し、50℃で16時間撹拌して、ポリアミック酸溶液(PAA-2)を得た。このポリアミック酸溶液の粘度は245mPa・sであった。
<合成例3>
 撹拌装置及び窒素導入管付きの50mL四つ口フラスコに、DA-2を0.49g(2.0mmol)、及びDA-6を0.64g(2.0mmol)量り取り、NMPを14.5g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、TA-1を0.88g(3.9mmol)添加し、50℃で16時間撹拌して、ポリアミック酸溶液(PAA-3)を得た。このポリアミック酸溶液の粘度は95mPa・sであった。
<合成例4>
 撹拌装置付き及び窒素導入管付きの500mL四つ口フラスコに、DA-8を9.01g(60.0mmol)、及びDA-7を26.8g(89.8mmol)取り、NMPを290g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらTA-2を27.9g(142mmol)添加し、NMPを71.4g加えて23℃で2時間撹拌してポリアミック酸の溶液(PAA-4)を得た。
 このポリアミック酸の溶液の粘度は750mPa・sであった。
[液晶配向剤の調製]
<実施例1>
 合成例3で得られた12質量%のポリアミック酸溶液(PAA-3)6.25gを20mL三角フラスコに取り、NMPを5.75g、及びBCSを3.00g加え、25℃にて2時間混合して、液晶配向剤(A1)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<実施例2>
 合成例3で得られた12質量%のポリアミック酸溶液(PAA-3)1.25gと合成例4で得られた15質量%のポリアミック酸溶液(PAA-4)2.33gを20mL三角フラスコに取り、NMPを4.42g、及びBCSを2.00g加え、25℃にて2時間混合して、液晶配向剤(A2)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<比較例1>
 合成例1で得られた12質量%のポリアミック酸溶液(PAA-1)7.50gを20mL三角フラスコに取り、NMPを5.10g、及びBCSを5.40g加え、25℃にて2時間混合して、液晶配向剤(B1)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<比較例2>
 合成例2で得られた12質量%のポリアミック酸溶液(PAA-2)4.16gを20mL三角フラスコに取り、NMPを3.83g、及びBCSを2.00g加え、25℃にて2時間混合して、液晶配向剤(B2)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<比較例3>
 合成例2で得られた12質量%のポリアミック酸溶液(PAA-2)1.25gと合成例4で得られた15質量%のポリアミック酸溶液(PAA-4)2.33gを20mL三角フラスコに取り、NMPを4.42g、及びBCSを2.00g加え、25℃にて2時間混合して、液晶配向剤(B3)を得た。この液晶配向剤に濁りや析出などの異常は見られず、均一な溶液であることが確認された。
Figure JPOXMLDOC01-appb-T000053
 以上のようにして得られた液晶配向剤を用いて以下に示す手順でFFS駆動液晶セルを作製し、特性評価を行った。
[液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製した。
 始めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板であった。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されていた。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されていた。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する膜厚であった。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成していた。各画素のサイズは、縦6mmで横約5mmであった。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されていた。
 第3層目の画素電極は、中央部分が内角160°で屈曲した「くの字」形状の電極要素を複数配列して構成された櫛歯状の形状を有していた。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmであった。各画素を形成する画素電極が、中央部分の屈曲した「くの字」形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「くの字」に似た形状を備えていた。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有していた。
 次に、液晶配向剤を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板(第1のガラス基板)と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板(第2のガラス基板)に、スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して消光比10:1以上の直線偏光した波長254nmの紫外線を150~300mJ/cm照射した。なお、第1のガラス基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1のガラス基板上の液晶の配向方向と第2のガラス基板上の液晶の配向方向とが一致するように配向処理する。この基板を、230℃の熱風循環式オーブンでさらに30分間焼成し、液晶配向膜付き基板を得た。上記2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。
[長期交流駆動による残像評価]
 上記した液晶セルを用い、60℃の恒温環境下、周波数60Hzで±5Vの交流電圧を120時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温で一日放置した。
 一日放置した後、偏光軸が直交するように配置された2枚の偏光板の間に液晶セルを設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1画素の第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し同様の角度Δを算出した。第1画素から算出した角度Δと、第2画素から算出した角度Δを用いて、角度Δの平均値を算出した。
[液晶配向の面内均一性評価]
 シンテック社製OPTIPRO-microを用いて液晶表示素子のツイスト角の評価を行った。作製した液晶セルを測定ステージに設置し、電圧無印加の状態で、第1画素面内を20点測定して標準偏差を算出した。評価は、ツイスト角の標準偏差が0.35以上の場合に「不良」とし、0.35未満の場合に「良好」と定義して評価を行った。
<評価結果>
 上記実施例1~2及び比較例1~3で得られた液晶配向剤(A1)~(A2)、(B1)~(B3)を使用して得られた液晶表示素子に関しての評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000054
 実施例1と、比較例1、2の比較から、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル及び1,2-ビス(4-アミノフェノキシ)エタンを含むジアミン成分から合成したポリアミック酸(PAA-3)を含む液晶配向剤A1の方が、上記両方のジアミンを含まないジアミン成分から合成したポリアミック酸を含む液晶配向剤B1、B2に比べて、長期交流駆動による残像が軽微で、かつ液晶配向の面内均一性が高いことがわかる。このように、ハロゲン化アルキル基で水素原子が置換されたビフェニル基をポリマー主鎖に導入することで、長期交流駆動による残像に優れ、かつ液晶配向の面内均一性に優れた液晶配向剤が得られることがわかった。さらに、実施例2と、比較例B3の比較から、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル及び1,2-ビス(4-アミノフェノキシ)エタンを含むジアミン成分から合成したポリアミック酸と、それとは別のポリアミック酸を混合した液晶配向剤でも、長期交流駆動による残像の改善効果が得られることがわかった。
 本発明の液晶配向剤を用いることにより、IPS、FFS駆動方式の液晶表示素子において、長期交流駆動により生じる残像が抑制され、かつコントラストの面内均一性が高い液晶配向膜を得ることができる。そのため、高い表示品位が求められる液晶表示素子における利用が期待できる。

 

Claims (15)

  1.  下記式(1)で表される繰り返し単位(a1)と、下記式(2)で表される繰り返し単位(a2)とを有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体(A)を含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、RからRはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、RからRの少なくとも一つは上記定義中の水素原子以外の基を表す。R及びZはそれぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。Yは下記式(H)で表される2価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(H)中、Rはそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基又は炭素数1~3のアルキル基上の水素原子の少なくとも一部がハロゲン原子で置換されたハロゲン化アルキル基を表し、Rの少なくとも一つはハロゲン原子又は前記ハロゲン化アルキル基を表す。*は結合手を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式(2)中、RからR、R、及びZは、前記式(1)と同義である。Yは下記式(O)で表される2価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(O)中、Arは、それぞれ独立して、ベンゼン環、ビフェニル構造、又はナフタレン環を表す。Arが有するベンゼン環又はナフタレン環上の任意の水素原子は、ハロゲン原子又は1価の有機基で置き換えられてもよい。Qは-(CH-(nは2~18の整数である。)、又は前記-(CH-の一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。*は結合手を表す。)
  2.  前記式(H)で表される2価の有機基が、下記式(h-1)~(h-9)のいずれかで表される2価の有機基である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (式(h-1)~(h-9)中、*は結合手を表す。)
  3.  前記式(O)で表される2価の有機基が、下記式(o-1)~(o-14)のいずれかで表される2価の有機基である、請求項1又は2に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    (式(o-1)~(o-14)中、*は結合手を表す。式(o-14)中、2つのmは、それぞれ独立している。)
  4.  前記重合体(A)が、さらに、下記式(2’)で表される繰り返し単位(a2’)及び下記式(3)で表される繰り返し単位(a3)よりなる群から選ばれる少なくとも一つを有するポリイミド前駆体及び該ポリイミド前駆体のイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体である、請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000008
    (式(2’)、及び式(3)中、X2’、及びXは4価の有機基を表し、Y2’は下記式(O2)で表される2価の有機基を表し、Yは基「-N(D)-(Dはカルバメート系保護基を表す。)」を分子内に有し、Dを除く炭素数が6~30の2価の有機基を表す。R、及びZは、上記式(1)と同義である。)
    Figure JPOXMLDOC01-appb-C000009
    (式(O2)中、Ar2’はそれぞれ独立して、ベンゼン環を表し、前記ベンゼン環上の任意の水素原子は、炭素数1~6のアルキル基で置き換えられてもよい。Q2’は単結合、又は-O-を表す。mは0~2の整数を表す。*は結合手を表す。)
  5.  前記式(O2)で表される2価の有機基が、下記式(o2-1)~(o2-3)のいずれかで表される2価の有機基である、請求項4に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000010
    (式(o2-1)~(o2-3)中、*は結合手を表す。)
  6.  前記重合体(A)が、前記繰り返し単位(a1)と前記繰り返し単位(a1)のイミド化構造との合計を全繰り返し単位の5~95モル%含み、前記繰り返し単位(a2)と前記繰り返し単位(a2)のイミド化構造との合計を全繰り返し単位の5~95モル%で含む、請求項1~3のいずれか一項に記載の液晶配向剤。
  7.  前記重合体(A)が、前記繰り返し単位(a1)及び前記繰り返し単位(a2)並びにそれらのイミド化構造の合計を90モル%以上含む、請求項1~3のいずれか一項に記載の液晶配向剤。
  8.  光配向処理法用の液晶配向膜の形成に用いられる、請求項1~7のいずれか一項に記載の液晶配向剤。
  9.  請求項1~8のいずれか一項に記載の液晶配向剤から得られる液晶配向膜。
  10.  請求項9に記載の液晶配向膜を具備する液晶表示素子。
  11.  下記の工程(1)~(3)を含む、液晶配向膜の製造方法。
     工程(1):請求項1~8のいずれか一項に記載の液晶配向剤を基板上に塗布する工程
     工程(2):塗布した液晶配向剤を焼成する工程
     工程(3):工程(2)で得られた膜に配向処理する工程
  12.  前記配向処理が、光配向処理である、請求項11に記載の液晶配向膜の製造方法。
  13.  前記光配向処理における放射線の照射量が、100~1500mJ/cmである、請求項12に記載の液晶配向膜の製造方法。
  14.  下記の工程(4)を更に含む、請求項11~13のいずれか一項に記載の液晶配向膜の製造方法。
     工程(4):工程(3)で配向処理された膜に対して50~300℃の加熱処理を行う工程
  15.  請求項11~14のいずれか一項に記載の液晶配向膜の製造方法により得られる液晶配向膜を具備する液晶表示素子。

     
PCT/JP2021/038571 2020-10-23 2021-10-19 液晶配向剤、液晶配向膜及び液晶表示素子 WO2022085674A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022557554A JP7544138B2 (ja) 2020-10-23 2021-10-19 液晶配向剤、液晶配向膜及び液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020178170 2020-10-23
JP2020-178170 2020-10-23

Publications (1)

Publication Number Publication Date
WO2022085674A1 true WO2022085674A1 (ja) 2022-04-28

Family

ID=81290588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038571 WO2022085674A1 (ja) 2020-10-23 2021-10-19 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (3)

Country Link
JP (1) JP7544138B2 (ja)
TW (1) TW202227601A (ja)
WO (1) WO2022085674A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237755A (ja) * 2009-09-18 2011-11-24 Jnc Corp 液晶配向剤、液晶配向膜、液晶配向膜の製造方法および液晶表示素子
JP2015135464A (ja) * 2013-10-07 2015-07-27 Jsr株式会社 液晶配向膜の製造方法、光配向剤及び液晶表示素子
WO2016152928A1 (ja) * 2015-03-24 2016-09-29 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2019193855A1 (ja) * 2018-04-05 2019-10-10 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237755A (ja) * 2009-09-18 2011-11-24 Jnc Corp 液晶配向剤、液晶配向膜、液晶配向膜の製造方法および液晶表示素子
JP2015135464A (ja) * 2013-10-07 2015-07-27 Jsr株式会社 液晶配向膜の製造方法、光配向剤及び液晶表示素子
WO2016152928A1 (ja) * 2015-03-24 2016-09-29 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2019193855A1 (ja) * 2018-04-05 2019-10-10 Jsr株式会社 液晶配向剤、液晶配向膜、液晶素子及び液晶素子の製造方法

Also Published As

Publication number Publication date
TW202227601A (zh) 2022-07-16
JPWO2022085674A1 (ja) 2022-04-28
JP7544138B2 (ja) 2024-09-03

Similar Documents

Publication Publication Date Title
WO2022107545A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022176680A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2021177080A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7559816B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7428145B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2022085674A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2021210252A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021193078A1 (ja) 光配向法用液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021106979A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP2022044847A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022181311A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2024029576A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7302744B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2022107640A1 (ja) 重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子
JP7409375B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7428138B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7311047B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2022190896A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP2024022213A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
CN115398325A (zh) 新型二胺、聚合物、液晶取向剂、液晶取向膜以及使用其的液晶显示元件
WO2023008203A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、化合物、及び重合体
WO2021246431A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2022557554

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21882815

Country of ref document: EP

Kind code of ref document: A1