WO2021193078A1 - 光配向法用液晶配向剤、液晶配向膜、及び液晶表示素子 - Google Patents

光配向法用液晶配向剤、液晶配向膜、及び液晶表示素子 Download PDF

Info

Publication number
WO2021193078A1
WO2021193078A1 PCT/JP2021/009665 JP2021009665W WO2021193078A1 WO 2021193078 A1 WO2021193078 A1 WO 2021193078A1 JP 2021009665 W JP2021009665 W JP 2021009665W WO 2021193078 A1 WO2021193078 A1 WO 2021193078A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
crystal alignment
repeating unit
represented
Prior art date
Application number
PCT/JP2021/009665
Other languages
English (en)
French (fr)
Inventor
石川 和典
達哉 名木
崇明 杉山
玲久 小西
一平 福田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202180024468.2A priority Critical patent/CN115380243A/zh
Priority to KR1020227033296A priority patent/KR20220157403A/ko
Priority to JP2022509897A priority patent/JPWO2021193078A1/ja
Publication of WO2021193078A1 publication Critical patent/WO2021193078A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a liquid crystal alignment agent for a photoalignment method, a liquid crystal alignment film, and a liquid crystal display element.
  • liquid crystal displays have been widely used as display units for personal computers, smartphones, mobile phones, television receivers, and the like.
  • the liquid crystal display device includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode that apply an electric field to the liquid crystal layer, and an alignment film that controls the orientation of liquid crystal molecules in the liquid crystal layer. It includes a thin film transistor (TFT) that switches the electrical signal supplied to the pixel electrodes.
  • TFT thin film transistor
  • the vertical electric field method such as TN (Twisted Nematic) method and VA (Vertical Alginment) method
  • the horizontal electric field method such as IPS (In Plane Switching) method and FFS (Fringe Field Switching) method
  • liquid crystal alignment film in the industry is a film formed on an electrode substrate and made of polyamic acid and / or polyimide imidized thereof, with a cloth such as cotton, nylon, or polyester. It is manufactured by performing a so-called rubbing process of rubbing in one direction.
  • the rubbing process is a simple and highly productive industrially useful method.
  • the surface of the alignment film generated by the rubbing process is scratched, dusted, affected by mechanical force or static electricity, and in-plane of the alignment process.
  • problems such as non-uniformity of the above have been clarified.
  • Non-Patent Document 1 and Patent Document 1 As an orientation treatment method that replaces the rubbing treatment, a photo-alignment method that imparts liquid crystal alignment ability by irradiating polarized radiation is known.
  • the photoalignment method a method using a photoisomerization reaction, a method using a photocrosslinking reaction, a method using a photodecomposition reaction, and the like have been proposed (see Non-Patent Document 1 and Patent Document 1).
  • the liquid crystal alignment film which is a constituent member of the liquid crystal display element, is a film for uniformly arranging liquid crystals, and the liquid crystal alignment is one of the important characteristics.
  • the liquid crystal alignment film obtained by the photoalignment method tends to have a lower liquid crystal alignment than the liquid crystal alignment film obtained by the conventional rubbing treatment, and the applicable range of the liquid crystal display device provided with the liquid crystal alignment film is wide. It was limited.
  • the twist angle of the liquid crystal slightly varies within the surface of the liquid crystal display element due to variations in manufacturing. Then, due to such in-plane variation, the brightness of the liquid crystal display element at the time of black display varies in the in-plane.
  • the present invention has been made in view of the above circumstances, and photo-aligns a liquid crystal display element having high liquid crystal orientation, suppressing in-plane brightness variation during black display, and having improved contrast.
  • One object of the present invention is to provide a liquid crystal alignment agent for a photo-alignment method that can be obtained by the method.
  • the present inventor has found that the above problems can be solved by using a liquid crystal aligning agent containing a specific component, and has completed the present invention. Specifically, the following is the gist.
  • a photoorientation comprising at least one polymer (A) selected from the group consisting of a polyimide precursor and an imidized polymer thereof, which contains the unit (a1) in an amount of 1 to 20 mol% of all repeating units.
  • Legal liquid crystal alignment agent comprising at least one polymer (A) selected from the group consisting of a polyimide precursor and an imidized polymer thereof, which contains the unit (a1) in an amount of 1 to 20 mol% of all repeating units.
  • X 1 represents a tetravalent organic group represented by the following formula (B)
  • X 2 represents a tetravalent organic group represented by the following formula (C)
  • R and Z represent respectively. Independently, it represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. A plurality of R and Z may be the same or different, respectively.
  • Y 1 and Y 2 are independently represented by the following formulas ( Represents a divalent organic group represented by O).)
  • R b1 to R b4 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms.
  • L 1 is a single bond, -CH 2 -,-(CH 2 ).
  • n - (n is an integer of 2 to 18.)
  • R c1 to R c4 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, and the like. It represents an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group, and at least one of R c1 to R c4 is other than a hydrogen atom in the above definition. Represents a group.
  • Ar is a benzene ring, a biphenyl structure, or represents a naphthalene ring
  • the two Ar may be the same or different, any hydrogen atom of the cyclic may be replaced by a monovalent organic group .
  • P is an integer of 0 or 1. Where p is 0, Ar represents a biphenyl structure. When p is 1, at least one of the two Ars represents a naphthalene ring. * Represents a bond.
  • Boc represents the tert-butoxycarbonyl group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • the carbamate-based protecting group include a tert-butoxycarbonyl group and a 9-fluorenylmethoxycarbonyl group.
  • the liquid crystal aligning agent for the photoalignment method of the present invention has the repeating unit (a1) and the repeating unit (a2), and contains the repeating unit (a1) in an amount of 1 to 20 mol% of all the repeating units.
  • the repeating unit (a1) in an amount of 1 to 20 mol% of all the repeating units.
  • liquid crystal alignment agent for the photoalignment method of the present invention (hereinafter, also simply referred to as a liquid crystal alignment agent) will be described.
  • the liquid crystal aligning agent of the present invention has at least one repeating unit (a1) selected from the group consisting of a repeating unit represented by the following formula (1-a) and a repeating unit represented by the following formula (1-i). And at least one kind of repeating unit (a2) selected from the group consisting of the repeating unit represented by the following formula (2-a) and the repeating unit represented by the following formula (2-i). It contains at least one polymer (A) selected from the group consisting of a polyimide precursor and an imidized polymer thereof, which contains 1 to 20 mol% of the repeating unit (a1) in all the repeating units.
  • the polymer (A) may be composed of one type or two or more types.
  • the repeating unit (a1) of the present invention is at least one repeating unit selected from the group consisting of the repeating unit represented by the following formula (1-a) and the repeating unit represented by the following formula (1-i). be.
  • X 1 represents a tetravalent organic group represented by the following formula (B).
  • R and Z each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R and Z may be the same or different, respectively.
  • Y 1 represents a divalent organic group represented by the following formula (O).
  • R b1 to R b4 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 6 carbon atoms.
  • L 1 is a single bond, -CH 2 -,-(CH 2 ).
  • Ar is a benzene ring, a biphenyl structure, or represents a naphthalene ring
  • the two Ar may be the same or different, any hydrogen atom of the cyclic may be replaced by a monovalent organic group .
  • P is an integer of 0 or 1. Where p is 0, Ar represents a biphenyl structure. When p is 1, at least one of the two Ars represents a naphthalene ring.)
  • L 1 is a single bond, ⁇ CH 2- or ⁇ (CH 2 ) n ⁇ (n is an integer of 2 to 18) from the viewpoint of efficiently obtaining the effect of the present invention.
  • R b1 to R b4 is a hydrogen atom from the viewpoint of efficiently obtaining the effect of the present invention.
  • the tetravalent organic group represented by the formula (B) is preferably a tetravalent organic group represented by the following formulas (b-1) to (b-2) from the viewpoint of enhancing the liquid crystal orientation.
  • a preferable example of the divalent organic group represented by the formula (O) is the divalent represented by the following formulas (o-1) to (o-7) from the viewpoint of efficiently obtaining the effect of the present invention. It is an organic group of.
  • the repeating unit (a2) of the present invention is at least one repeating unit selected from the group consisting of the repeating unit represented by the following formula (2-a) and the repeating unit represented by the following formula (2-i). be.
  • X 2 represents a tetravalent organic group represented by the following formula (C).
  • R and Z each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. R and Z of the above may be the same or different from each other.
  • Y 2 is synonymous with the above Y 1 including a preferable specific example.
  • R c1 to R c4 are independently hydrogen atom, halogen atom, alkyl group having 1 to 6 carbon atoms, alkenyl group having 2 to 6 carbon atoms, alkynyl group having 2 to 6 carbon atoms, and fluorine atom. Represents a monovalent organic group having 1 to 6 carbon atoms or a phenyl group containing the above, and at least one of R c1 to R c4 represents a group other than the hydrogen atom in the above definition.
  • Examples of the tetravalent organic group represented by the formula (C) include tetravalent organic groups represented by the following formulas (Xc-1) to (Xc-6). Among these, (Xc-1) is preferable from the viewpoint of enhancing the liquid crystal orientation.
  • the polymer (A) is a group consisting of repeating units (a1) and (a2), repeating units represented by the following formula (3-a), and repeating units represented by the following formula (3-i). It may be at least one selected from the group consisting of a polyimide precursor having at least one repeating unit (a3) selected from the above and an imidized polymer thereof.
  • X 3 represents a tetravalent organic group
  • Y 3 represents a divalent organic group represented by the following formula (3d)
  • R and Z are synonymous with the above formula (1-a). be.
  • Ar 3 represents a benzene ring or a biphenyl structure, the two Ar 3 may be the same or different, may .
  • Examples of the divalent organic group represented by the formula (3d) include, but are limited to, divalent organic groups represented by the following formulas (3d-1) to (3d-8). It is not something that is done.
  • the polymer (A) is a group consisting of repeating units (a1) and (a2), repeating units represented by the following formula (4-a), and repeating units represented by the following formula (4-i). It may be at least one selected from the group consisting of a polyimide precursor having at least one repeating unit (a4) selected from the above and an imidized polymer thereof.
  • X 4 represents a tetravalent organic group
  • Y 4 is a group "-N (D)-(D is a carbamate protecting group). Represents a divalent organic group having 6 to 30 carbon atoms in the molecule.
  • divalent organic group having 6 to 30 carbon atoms having in the molecule is represented by the following formula (4 Examples thereof include a divalent organic group having a partial structure represented by 1) or a divalent organic group represented by the following formula (4-2).
  • Q 5 is a single bond,-(CH 2 ) n- (n is an integer of 1 to 20), or-(CH 2 ) n- any -CH 2- is -O-, -COO. -, - OCO -, - NQ 9 -, - NQ 9 -CO -, - CO-NQ 9 -, - NQ 9 -CO-NQ 10 -, - NQ 9 -COO- or replaced by -O-COO- Q 9 and Q 10 each independently represent a hydrogen atom or a monovalent organic group; Q 6 and Q 7 each independently have an -H, -NHD, or -N (D). ) Represents a group having 2.
  • Q 8 represents a group having group, or -N a (D) 2 having -NHD.
  • D represents a carbamate-based protecting group.
  • Q 5, Q 6 and Q 7 have the carbamate protecting group in the radical.
  • Y 4 can include, for example, structures represented by the following formulas (Y4-1) to (Y4-4), but is not limited thereto.
  • the polymer (A) is a group consisting of repeating units (a1) and (a2), repeating units represented by the following formula (5-a), and repeating units represented by the following formula (5-i). It may be at least one selected from the group consisting of a polyimide precursor having at least one repeating unit (a5) selected from the above and an imidized polymer thereof.
  • R and Z are synonymous with the above formula (1-a).
  • X 5 represents a tetravalent organic group and Y 5 represents a divalent organic group.
  • Y 5 has a divalent organic group represented by the above formula (3d) or a group "-N (D)-(D represents a carbamate-based protecting group)" having 6 to 6 carbon atoms in the molecule.
  • X 5 is synonymous with the tetravalent organic group represented by the formula (B) or the tetravalent organic group represented by the formula (C).
  • Y 5 represents a structure other than a divalent organic group represented by the formula (O).
  • Y 5 is, p- phenylenediamine, 2,3,5,6-tetramethyl--p- phenylenediamine, 2,5-dimethyl - p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 4,4'-diaminobiphenyl, 3,3'-dimethyl- 4,4'-Diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 3,3'-bis (trifluoromethyl)- 4,4'-Diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-d
  • the structure of the tetravalent organic groups of X 3 , X 4 and X 5 is not particularly limited, and any structure can be independently selected. Preferred specific examples include the following formulas (X1-1) to (X1-44).
  • R 3 to R 23 independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, and an alkenyl group having 2 to 6 carbon atoms. It is an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms containing a fluorine atom, or a phenyl group. From the viewpoint of liquid crystal orientation, R 3 to R 23 are preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • formula (X1-1) include the following formulas (X1-1-1) to (X1-1-6). From the viewpoint of liquid crystal orientation and sensitivity of photoreaction, (X1-1-1) to (X1-1-2) are more preferable, and (X1-1-2) is particularly preferable.
  • the polymer (A) preferably contains the repeating unit (a1) in an amount of 1 to 20 mol% of all the repeating units, and more preferably 1 to 15 mol%.
  • the total of the repeating unit (a1) and the repeating unit (a2) in the polymer (A) is preferably 5 mol% or more of all the repeating units, and 10 mol% or more. Is more preferable.
  • the polymer (A) preferably contains 1 to 95 mol% of the repeating unit (a3), more preferably 1 to 90 mol% of the repeating unit (a3). It is more preferably contained in an amount of about 90 mol%.
  • the total of the repeating unit (a1) and the repeating unit (a2) is preferably 99 mol% or less, more preferably 95 mol% or less.
  • the polymer (A) preferably contains the repeating unit (a4) in an amount of 1 to 40 mol% of all the repeating units, more preferably 1 to 30 mol%. It is more preferably contained in an amount of up to 25 mol%.
  • the liquid crystal alignment agent of the present invention may contain a polymer (B) having a repeating unit represented by the following formula (6) from the viewpoint of reducing the afterimage derived from the residual DC.
  • the polymer (B) does not have the repeating unit (a1) and the repeating unit (a2) in the same molecule.
  • the polymer (B) may be composed of one type or two or more types, and the repeating unit constituting the polymer (B) may be composed of one type or two or more types.
  • tetravalent organic group in X 6 acyclic tetravalent organic group derived from an aliphatic Tetokarubon dianhydride, tetravalent organic group derived from an alicyclic tetracarboxylic dianhydride, Examples thereof include a tetravalent organic group derived from aromatic tetracarboxylic dianhydride.
  • Specific examples of the tetravalent organic group derived from the acyclic aliphatic tetracarboxylic acid dianhydride and the tetravalent organic group derived from the alicyclic tetracarboxylic acid dianhydride include the following formula (x-1). )-(X-13).
  • R 1 to R 4 are independently hydrogen atom, halogen atom, alkyl group having 1 to 6 carbon atoms, and alkenyl having 2 to 6 carbon atoms. Represents a group, an alkynyl group having 2 to 6 carbon atoms, a monovalent organic group having 1 to 6 carbon atoms or a phenyl group having a fluorine atom.
  • R 5 and R 6 each independently have a hydrogen atom or a methyl group. show.
  • the above formula (x-1) is preferably selected from the group consisting of the following formulas (x1-1) to (x1-6).
  • * 1 represents a bond that binds to one acid anhydride group
  • * 2 represents a bond that binds to the other acid anhydride group.
  • Aromatic tetracarboxylic acid dianhydride is an acid dianhydride obtained by intramolecular dehydration of a carboxy group bonded to an aromatic ring such as a benzene ring or a naphthalene ring. Specific examples include tetravalent organic groups represented by the formulas (X1-28) to (X1-40).
  • Examples of the divalent organic group in the formula Y 6, a nitrogen atom-containing heterocyclic ring, at least one nitrogen atom-containing structure selected from the secondary amino group and a group consisting of a tertiary amino group (hereinafter, the nitrogen atom-containing structures Diamine having (also referred to as), 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 2,4-diamino Diamine having a carboxy group such as benzoic acid, 2,5-diaminobenzoic acid, 3,5-diaminobenzoic acid, and diamine compounds represented by the following formulas (3b-1) to (3b-4), 4- (2).
  • Diamine having a skeleton diamine represented by the following formulas (V-1) to (V-8), diamine having a siloxane bond such as 1,3-bis (3-aminopropyl) -tetramethyldisiloxane, the following formula A divalent organic group obtained by removing two amino groups from a diamine having an oxazoline structure such as (Ox-1) to (Ox-2), according to the formula (Y-1) of International Publication No. 2018/1172339. )-(Y-167).
  • a 1 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3) 2 -, -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -OCH 2- , -COO-, -OCO-, -CON ( CH 3 )-or N (CH 3 ) CO-, m1 and m2 independently represent integers 0-4, and m1 + m2 represent integers 1-4 in equation (3b-2).
  • M3 and m4 independently represent integers of 1 to 5.
  • a 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms
  • m5 is 1 to 5.
  • a 3 and a 4 are each independently a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, -C (CF 3 ) 2- , -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -OCH 2- , -COO -, - OCO -, - CON (CH 3) - or -N (CH 3) CO- indicates, m6 is an integer of 1 to 4).
  • X v1 to X v4 and X p1 to X p2 are independently- (CH 2 ) a- (a is an integer of 1 to 15), -CONH-, -NHCO-, and -CON (CH). 3) -, - NH -, - O -, - CH 2 O -, - CH 2 OCO -, - COO-, or -OCO- represent, X v5 is -O -, - CH 2 O - , - CH 2 Represents OCO-, -COO-, or -OCO-.
  • X a is a single bond, -O-, -NH-, -O- (CH 2 ) m- O- (m is an integer of 1 to 6).
  • R v1 to R v4 and R 1a to R 1b independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms.
  • X V7 to X V8 independently represent -O-, -CH 2 O-, -COO- or -OCO-).
  • nitrogen atom-containing heterocycle examples include pyrrole, imidazole, pyrazole, triazole, pyridine, pyrimidine, pyridazine, pyrazine, indol, benzimidazole, purine, quinoline, isoquinoline, naphthylene, quinoxaline, phthalazine, triazine, carbazole, and acrydin.
  • examples thereof include piperidine, piperazine, pyrrolidine, benzimidazole imine and the like. Of these, pyridine, pyrimidine, pyrazine, piperidine, piperazine, quinoline, carbazole or acridine are preferable.
  • the secondary amino group and the tertiary amino group that the diamine having a nitrogen atom-containing structure may have are represented by, for example, the following formula (n).
  • R represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • “* 1" represents a bond that binds to a hydrocarbon group.
  • Examples of the monovalent hydrocarbon group of the above formula R include an alkyl group such as a methyl group, an ethyl group and a propyl group; a cycloalkyl group such as a cyclohexyl group; and an aryl group such as a phenyl group and a methylphenyl group. .. R is preferably a hydrogen atom or a methyl group.
  • amine having a nitrogen atom-containing structure examples include 2,6-diaminopyridine, 3,4-diaminopyridine, 2,4-diaminopyrimidine, 3,6-diaminocarbazole, and N-methyl-3,6.
  • the polymer (B) contains a diamine in which Y 6 has a nitrogen atom-containing structure, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, and 2, , 4-Diaminobenzyl alcohol, 4,6-diaminoresorcinol, a divalent organic group selected from the group consisting of a diamine having a carboxy group or a divalent organic group obtained by removing two amino groups from a diamine having a urea bond. It is preferably a polymer containing a repeating unit which is an organic group (collectively referred to as a specific divalent organic group).
  • the polymer (B) contains 1 mol% or more of the repeating units in which Y 6 is the specific divalent organic group contained in the polymer (B) from the viewpoint of less afterimage derived from the residual DC. However, it may contain 5 mol% or more.
  • the content ratio of the polymer (A) and the polymer (B) is 10/90 to 90 in terms of the mass ratio of [polymer (A)] / [polymer (B)]. It may be / 10, 20/80 to 90/10, or 20/80 to 80/20.
  • the polyimide precursors polyamic acid ester, polyamic acid and polyimide used in the present invention can be synthesized, for example, by a known method as described in International Publication No. 2013/157586. Specifically, it is synthesized by reacting a diamine component and a tetracarboxylic acid derivative component in a solvent (polycondensation).
  • tetracarboxylic acid derivative component examples include tetracarboxylic acid dianhydride or a derivative thereof (tetracarboxylic acid dihalide, tetracarboxylic acid diester, or tetracarboxylic acid diester dihalide).
  • a part of the polymer (A) or (B) contains an amic acid structure, for example, a polymer having an amic acid structure (polyamic acid) by reacting a tetracarboxylic dianhydride component with a diamine component. Is obtained.
  • the solvent is not particularly limited as long as the produced polymer dissolves.
  • the diamine component and the tetracarboxylic acid derivative component for obtaining the polyimide precursor of the polymer (A) are the above-mentioned formulas (1-a), formula (2-a), and necessary of the polymer (A), respectively.
  • the structure of the repeating unit is selected so as to be obtained. used.
  • the diamine component has a structure (Y) of -N (Z) -Y 1-N (Z)-. 1.
  • Z a tetracarboxylic acid derivative having the structure of the following formula is used as the tetracarboxylic acid derivative component.
  • the polyamic acid ester is, for example, [I] a method of reacting the polyamic acid obtained by the above method with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, and [III] a method of reacting a tetracarboxylic acid. It can be obtained by a known method such as a method of reacting a diester dihalide with a diamine.
  • Examples of the method for obtaining polyimide include thermal imidization in which a solution containing a polyimide precursor such as a polyamic acid or a polyamic acid ester obtained in the above reaction is heated as it is, or catalytic imidization in which a catalyst is added to the solution.
  • the ring closure rate (also referred to as imidization rate) of the amic acid group does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • the imidization rate of the polyimide may be 20 to 100%, 50 to 99%, or 70 to 99% from the viewpoint of increasing the solubility of the polyimide varnish.
  • the polyamic acid, polyamic acid ester, and polyimide used in the present invention preferably have a solution viscosity of, for example, 10 to 1000 mPa ⁇ s when the solution is prepared at a concentration of 10 to 15% by mass, from the viewpoint of workability. , Not particularly limited.
  • the solution viscosity (mPa ⁇ s) of the polymer is a polymer having a concentration of 10 to 15% by mass prepared by using a good solvent of the polymer (for example, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.). It is a value measured at 25 ° C. with an E-type rotational viscometer for the solution.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the polyamic acid, polyamic acid ester and polyimide is preferably 1,000 to 500,000, more preferably 2,000. ⁇ 300,000.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of Mw to the polystyrene-equivalent number average molecular weight (Mn) measured by GPC is preferably 15 or less, more preferably 10 or less. Within such a molecular weight range, good orientation and stability of the liquid crystal display element can be ensured.
  • the liquid crystal alignment agent of the present invention contains a polymer (A) and, if necessary, a polymer (B).
  • the liquid crystal alignment agent of the present invention may contain other polymers in addition to the polymer (A) and the polymer (B).
  • examples of other types of polymers include polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or a derivative thereof, poly (styrene-phenylmaleimide) derivative, poly (meth) acrylate and the like.
  • the liquid crystal alignment agent is used for producing a liquid crystal alignment film, and takes the form of a coating liquid from the viewpoint of forming a uniform thin film.
  • the liquid crystal alignment agent of the present invention is also preferably a coating liquid containing the above-mentioned polymer component and an organic solvent.
  • the concentration of the polymer in the liquid crystal alignment agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, 1% by mass or more is preferable, and from the viewpoint of storage stability of the solution, 10% by mass or less is preferable. A particularly preferable concentration of the polymer is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal alignment agent is not particularly limited as long as the polymer component is uniformly dissolved. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethyllactoamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and N- (n-butyl).
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide or ⁇ -butyrolactone are preferable.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass, based on the total amount of the solvent contained in the liquid crystal alignment agent.
  • the organic solvent contained in the liquid crystal alignment agent is a mixture of the above solvent and a solvent (also referred to as a poor solvent) that improves the coatability when the liquid crystal alignment agent is applied and the surface smoothness of the coating film.
  • a solvent also referred to as a poor solvent
  • the use of a solvent is preferred. Specific examples of the organic solvent used in combination are described below, but the present invention is not limited thereto.
  • diisopropyl ether diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol)
  • ethylene glycol dimethyl ether ethylene glycol diethyl ether
  • ethylene glycol dibutyl ether 1,2-butoxyethane
  • diethylene glycol dimethyl ether diethylene glycol diethyl ether.
  • diisobutylcarbinol diisobutylcarbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene.
  • Glycol monobutyl ether acetate or diisobutyl ketone is preferred.
  • Preferred solvent combinations of good solvent and poor solvent include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, based on the total amount of the solvent contained in the liquid crystal alignment agent.
  • the type and content of the poor solvent are appropriately selected according to the coating apparatus for the liquid crystal alignment agent, coating conditions, coating environment, and the like.
  • the liquid crystal alignment agent of the present invention may additionally contain a component other than the polymer component and the organic solvent (hereinafter, also referred to as an additive component).
  • additive components include an adhesion aid for increasing the adhesion between the liquid crystal alignment film and the substrate and the adhesion between the liquid crystal alignment film and the sealant, and a compound for increasing the strength of the liquid crystal alignment film (hereinafter, (Also referred to as a crosslinkable compound), a compound for promoting imidization, a dielectric for adjusting the dielectric constant and electrical resistance of the liquid crystal alignment film, a conductive substance, and the like.
  • an oxylanyl group an oxetanyl group, a protected isocyanate group, a protected isothiocyanate group, a group containing an oxazoline ring structure, and a meldrum.
  • R 2 and R 3 are each independently a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or "* -CH 2- OH".
  • A represents a (m + n) -valent organic group having an aromatic ring.
  • m represents an integer of 1 to 6
  • n represents an integer of 0 to 4.
  • R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the hydrogen atom on the aromatic ring of A is a halogen atom.
  • the compound having an oxylanyl group examples include the compound described in paragraph [0037] of JP-A-10-338880 and the compound having a triazine ring as a skeleton described in International Publication No. 2017/170483.
  • Examples include compounds having more than one oxylanyl group.
  • the compound having an oxetanyl group include the compounds having two or more oxetanyl groups described in paragraphs [0170] to [0175] of International Publication No. 2011/132751.
  • the compound having a protected isocyanate group include the compounds having two or more protected isocyanate groups described in paragraphs [0046] to [0047] of JP-A-2014-224978, International Publication No. 2015/141598. Examples thereof include compounds having three or more protected isocyanate groups described in paragraphs [0119] to [0120], and compounds represented by the following formulas (bi-1) to (bi-3) may be used.
  • Specific examples of the compound having a protected isothiocyanate group include the compounds having two or more protected isothiocyanate groups described in JP-A-2016-209488.
  • Specific examples of the compound having a group containing an oxazoline ring structure include compounds containing two or more oxazoline ring structures described in paragraph [0115] of JP-A-2007-286597.
  • Specific examples of the compound having a group containing a Meldrum's acid structure include the compound having two or more Meldrum's acid structures described in International Publication No. 2012/091088.
  • Examples of the alkyl group having 1 to 3 carbon atoms of the groups R 2 and R 3 represented by the formula (d) include a methyl group, an ethyl group and a propyl group.
  • the compound having a group represented by the formula (d) include the formula (d) described in International Publication No. 2015/072554 and paragraph [0058] of JP-A-2016-118753.
  • Examples thereof include compounds having two or more groups represented, compounds described in Japanese Patent Application Laid-Open No. 2016-209488, and compounds represented by the following formulas (hd-1) to (hd-8). ..
  • Examples of the (m + n) -valent organic group having an aromatic ring in A of the formula (e) include an (m + n) -valent aromatic hydrocarbon group having 6 to 30 carbon atoms and an aromatic hydrocarbon group having 6 to 30 carbon atoms. Examples thereof include (m + n) -valent organic groups bonded directly or via a linking group, and (m + n) -valent groups having an aromatic heterocycle. Examples of the aromatic hydrocarbon include benzene and naphthalene.
  • aromatic heterocycle examples include a pyrrole ring, an imidazole ring, a pyrazole ring, a pyridine ring, a pyrimidine ring, a quinoline ring, an isoquinoline ring, a carbazole ring, a pyridazine ring, a pyrazine ring, a benzimidazole ring, an indole ring, a quinoxaline ring, and an acridin ring. And so on.
  • Examples of the linking group include an alkylene group having 1 to 10 carbon atoms, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms), and a group obtained by removing one hydrogen atom from the alkylene group. Examples thereof include a divalent or trivalent cyclohexane ring. Any hydrogen atom of the alkylene group may be substituted with an organic group such as a fluorine atom or a trifluoromethyl group.
  • Specific examples of the compound represented by the formula (e) include the compound described in International Publication No. 2010/074269 and the compounds represented by the following formulas (e-1) to (e-10). Be done.
  • the above compound is an example of a crosslinkable compound, and is not limited thereto.
  • components other than the above disclosed in International Publication No. 2015/060357 on pages 53 [0105] to 55 [0116] can be mentioned.
  • the content of the crosslinkable compound in the liquid crystal aligning agent of the present invention is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, and the crosslinking reaction proceeds. From the viewpoint of exhibiting good resistance to AC afterimages, the amount is more preferably 1 to 15 parts by mass.
  • adhesion aid examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, and N.
  • -Styryltrimethoxysilane 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxy Silane cups such as silane, tris- (trimethoxysilylpropyl) isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyandiapropyltriethoxysilane Ring agent can be mentioned.
  • silane coupling agent when used, it should be 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent from the viewpoint of exhibiting good resistance to AC afterimages. It is preferably 0.1 to 20 parts by mass.
  • Examples of the compound for promoting imidization include basic sites (eg, primary amino group, aliphatic heterocycle (eg, pyrrolidine skeleton), aromatic heterocycle (eg, imidazole ring, indole ring), etc.
  • a compound having a guanidino group or the like (however, the crosslinkable compound and the adhesion aid are excluded), or a compound in which the basic moiety is generated during firing is preferable. More preferably, it is a compound in which the above-mentioned basic moiety is generated at the time of firing, and a preferable specific example is an amino acid in which a part or all of the basic moiety of the amino acid is protected.
  • amino acids include glycine, alanine, cysteine, methionine, asparagine, glutamine, valine, leucine, phenylalanine, tyrosine, tryptophan, proline, hydroxyproline, arginine, histidine, lysine and ornithine.
  • More preferred specific examples of the compound for promoting imidization include N- ⁇ - (9-fluorenylmethoxycarbonyl) -N- ⁇ - (tert-butoxycarbonyl) -L-histidine.
  • the method for producing a liquid crystal alignment film using the liquid crystal alignment agent of the present invention includes a step of applying the above liquid crystal alignment agent (step (1)), a step of firing the applied liquid crystal alignment agent (step (2)), and a step.
  • the substrate to which the liquid crystal alignment agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can also be used. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is formed, from the viewpoint of simplifying the process. Further, in the reflective liquid crystal display element, an opaque object such as a silicon wafer can be used if only one side of the substrate is used, and a material that reflects light such as aluminum can also be used for the electrode in this case.
  • the method of applying the liquid crystal aligning agent is not particularly limited, but industrially, a method of performing screen printing, offset printing, flexographic printing, inkjet method, or the like is common.
  • Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method, a spray method, and the like, and these may be used depending on the intended purpose.
  • the step (2) is a step of firing the liquid crystal alignment agent applied on the substrate to form a film.
  • the solvent is evaporated by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven, or the heat of the amic acid or the amic acid ester in the polymer is generated. Imidization can be performed.
  • the drying and firing steps after applying the liquid crystal alignment agent of the present invention can be performed at any temperature and time, and may be performed a plurality of times.
  • the firing temperature can be, for example, 40 to 150 ° C. From the viewpoint of shortening the process, it may be carried out at 40 to 120 ° C.
  • the firing time is not particularly limited, and examples thereof include 1 to 10 minutes or 1 to 5 minutes.
  • a step of firing in a temperature range of, for example, 190 to 250 ° C. or 200 to 240 ° C. can be performed after the above firing step.
  • the firing time is not particularly limited, and examples thereof include a firing time of 5 to 40 minutes or 5 to 30 minutes.
  • the step (3) is a step of irradiating the film obtained in the step (2) with polarized ultraviolet rays.
  • the wavelength of ultraviolet rays is preferably 200 to 400 nm, and more preferably ultraviolet rays having a wavelength of 200 to 300 nm.
  • the substrate coated with the liquid crystal alignment film may be irradiated with ultraviolet rays while being heated at 50 to 250 ° C.
  • the irradiation amount of the ultraviolet rays is preferably 1 ⁇ 10,000mJ / cm 2, more preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film thus produced can stably orient the liquid crystal molecules in a certain direction.
  • the extinction ratio of linearly polarized ultraviolet rays is preferably 10: 1 or more, more preferably 20: 1 or more.
  • the step (4) is a step of firing the film obtained in the step (3) at 100 ° C. or higher and at a temperature higher than that of the step (2).
  • the firing temperature is not particularly limited as long as it is 100 ° C. or higher and higher than the firing temperature in step (2), but is preferably 150 to 300 ° C., more preferably 150 to 250 ° C., and further preferably 200 to 250 ° C. preferable.
  • the firing time is preferably 5 to 120 minutes, more preferably 5 to 60 minutes, and even more preferably 5 to 30 minutes.
  • the thickness of the liquid crystal alignment film after firing is too thin, the reliability of the liquid crystal display element may decrease, so 5 to 300 nm is preferable, and 10 to 200 nm is more preferable.
  • the obtained liquid crystal alignment film can be contact-treated with water or a solvent.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves the decomposition product generated from the liquid crystal alignment film by irradiation with ultraviolet rays.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3-.
  • Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate and cyclohexyl acetate.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate are preferable from the viewpoint of versatility and solvent safety. More preferred are water, 1-methoxy-2-propanol or ethyl lactate.
  • the solvent may be used alone or in combination of two or more.
  • Examples of the above-mentioned contact treatment that is, treatment of the liquid crystal alignment film irradiated with polarized ultraviolet rays with water or a solvent, include immersion treatment and spray treatment (also referred to as spray treatment).
  • the treatment time in these treatments is preferably 10 seconds to 1 hour from the viewpoint of efficiently dissolving the decomposition products generated from the liquid crystal alignment film by ultraviolet rays. Above all, it is preferable to carry out the immersion treatment for 1 to 30 minutes.
  • the solvent at the time of the contact treatment may be heated at room temperature, but is preferably 10 to 80 ° C, more preferably 20 to 50 ° C.
  • ultrasonic treatment or the like may be performed as necessary.
  • rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone or methyl ethyl ketone or to bake the liquid crystal alignment film.
  • a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone or methyl ethyl ketone
  • the firing temperature is preferably 150 to 300 ° C. Of these, 180 to 250 ° C. is preferable. More preferably, it is 200 to 230 ° C.
  • the firing time is preferably 10 seconds to 30 minutes. Of these, 1 to 10 minutes is preferable.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film for a transverse electric field type liquid crystal display element such as an IPS system or an FFS system, and is particularly useful as a liquid crystal alignment film for an FFS type liquid crystal display element.
  • the liquid crystal display element can be obtained by obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention, then producing a liquid crystal cell by a known method, and using the liquid crystal cell.
  • a liquid crystal display element having a passive matrix structure As an example of a method for manufacturing a liquid crystal cell, a liquid crystal display element having a passive matrix structure will be described as an example.
  • a liquid crystal display element having an active matrix structure in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • TFT Thin Film Transistor
  • a transparent glass substrate is prepared, and a common electrode is provided on one substrate and a segment electrode is provided on the other substrate.
  • These electrodes can be, for example, ITO electrodes and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film of SiO 2- TiO 2 formed by the sol-gel method.
  • a liquid crystal alignment film is formed on each substrate, the other substrate is superposed on one substrate so that the liquid crystal alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealant in order to control the substrate gap, and that the spacer for controlling the substrate gap is also sprayed on the in-plane portion where the sealant is not provided.
  • a part of the sealing agent is provided with an opening in which the liquid crystal can be filled from the outside.
  • the liquid crystal material is injected into the space surrounded by the two substrates and the sealant through the opening provided in the sealant, and then the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing a capillary phenomenon in the atmosphere may be used.
  • the liquid crystal material either a positive type liquid crystal material or a negative type liquid crystal material may be used.
  • the polarizing plate is installed. Specifically, a pair of polarizing plates are attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the liquid crystal alignment film can be obtained in a smaller number of steps than before by performing the step (3) after firing in the temperature range of 40 to 150 ° C.
  • the liquid crystal alignment agent of the present invention can be particularly preferably used in a method for producing a liquid crystal alignment film, which comprises a step of firing in a temperature range of 40 to 150 ° C. in the step (2) and then carrying out the step (3).
  • DA-1 to DA-9 Compounds represented by the following formulas (DA-1) to (DA-9) (tetracarboxylic dianhydride), respectively.
  • CA-1 to CA-5 Compounds (additives) represented by the following formulas (CA-1) to (CA-5), respectively.
  • C-1 2,2'-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane (compound represented by the following formula (C-1))
  • S-1 Compound represented by the following formula (S-1)
  • F-1 Compound represented by the following formula (F-1)
  • the obtained reaction solution is poured into 150 mL of methanol with stirring, the precipitated precipitate is collected by filtration, the resin powder is washed by performing the same operation twice, and then dried at 60 ° C. for 12 hours.
  • the imidization rate of this polyimide resin powder was 75%.
  • 3.60 g of the obtained polyimide resin powder was placed in a 100 mL Erlenmeyer flask, NMP was added so that the solid content concentration became 12%, and the mixture was stirred and dissolved at 70 ° C. for 24 hours to obtain a polyimide solution (PI-1). ..
  • the blending ratio (parts by mass) of each organic solvent with respect to 100 parts by mass of the total amount of the organic solvents used for preparing the polyimide solution is shown.
  • Liquid crystal alignment agents (R2) to (R5) and (1) to (12) were obtained in the same manner as in Comparative Example 1 except that the polymer components used were changed as shown in Table 2 below.
  • Table 2 the values in parentheses indicate the mixing ratio (parts by mass) of each polymer component or additive to 100 parts by mass in total of the polymer components used in the preparation of the liquid crystal alignment agent for the polymer and the additive, respectively. show.
  • the organic solvent the blending ratio (parts by mass) of each organic solvent with respect to 100 parts by mass of the total amount of the organic solvents in the liquid crystal alignment agent is represented.
  • an FFS-driven liquid crystal cell was prepared by the procedure shown below, and its characteristics were evaluated.
  • the liquid crystal cell for the Fringe Field Switching (FFS) mode has a FOP (Finger on Plate) electrode layer formed on the surface thereof, which is composed of a surface-shaped common electrode, an insulating layer, and a comb-shaped pixel electrode.
  • FOP Fringe Field Switching
  • the glass substrate of No. 1 and the second glass substrate having a columnar spacer having a height of 3.5 ⁇ m on the front surface and an ITO film for preventing antistatic formation on the back surface were made into a set.
  • the above pixel electrode has a comb tooth shape in which a plurality of electrode elements having a width of 3 ⁇ m bent at an internal angle of 160 ° are arranged in parallel with an interval of 6 ⁇ m, and one pixel has a comb tooth shape. It has a first region and a second region with a line connecting the bent portions of the plurality of electrode elements as a boundary.
  • the liquid crystal alignment film formed on the first glass substrate is oriented so that the direction in which the inner angle of the pixel bending portion is equally divided and the orientation direction of the liquid crystal are orthogonal to each other, and the liquid crystal alignment film formed on the second glass substrate is formed. The film is oriented so that the orientation direction of the liquid crystal on the first substrate and the orientation direction of the liquid crystal on the second substrate coincide with each other when the liquid crystal cell is produced.
  • a liquid crystal alignment agent filtered through a filter having a pore size of 1.0 ⁇ m was applied to the surface of each of the above sets of glass substrates by spin coating, and dried on a hot plate at 80 ° C. for 2 minutes. Then, the coating film surface is irradiated with ultraviolet rays having a wavelength of 254 nm, which is linearly polarized with an extinction ratio of 26: 1 via a polarizing plate, at 150 to 350 mJ / cm 2 , and then fired in a hot air circulation oven at 230 ° C. for 30 minutes to form a film. Two substrates with a liquid crystal alignment film having a thickness of 100 nm were obtained.
  • a sealant is printed on one of the above sets of substrates with a liquid crystal alignment film, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other, and the sealant (XN-1500T manufactured by Mitsui Chemicals, Inc.) is cured.
  • a liquid crystal display (MLC-3019 manufactured by Merck & Co., Inc.) was vacuum-injected into this empty cell by a vacuum injection method at room temperature, and the injection port was sealed to obtain an FFS-driven liquid crystal cell. Then, the obtained liquid crystal cell was heated at 120 ° C. for 1 hour (hereinafter, this treatment is also referred to as ISO treatment), left overnight, and then used for each evaluation.
  • Table 3 shows the evaluation results of the liquid crystal display elements obtained by using the liquid crystal alignment agents (1) to (12) and (R1) to (R5) obtained in Examples 1 to 12 and Comparative Examples 1 to 5. Shown in.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

下記式(1-a)で表される繰り返し単位及び下記式(1-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位(a1)と、 下記式(2-a)で表される繰り返し単位及び下記式(2-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位(a2)と、を有し、前記繰り返し単位(a1)を全繰り返し単位の1~20モル%含む、ポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種の重合体(A)を含有する光配向法用液晶配向剤。

Description

光配向法用液晶配向剤、液晶配向膜、及び液晶表示素子
 本発明は、光配向法用液晶配向剤、液晶配向膜、及び液晶表示素子に関する。
 従来から液晶表示装置は、パーソナルコンピュータ、スマートフォン、携帯電話、テレビジョン受像機等の表示部として幅広く用いられている。液晶表示装置は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式等の縦電界方式や、IPS(In Plane Switching)方式、FFS(Fringe Field Switching)方式等の横電界方式が知られている。
 現在、工業的に最も普及している液晶配向膜は、電極基板上に形成された、ポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。ラビング処理は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化に伴い、ラビング処理で発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理面内の不均一性等の種々の問題が明らかとなっている。ラビング処理に代わる配向処理方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したもの等が提案されている(非特許文献1、特許文献1参照)。
 液晶表示素子の構成部材である液晶配向膜は、液晶を均一に配列させるための膜であり、液晶配向性は重要な特性の一つである。しかし、前記光配向法で得られる液晶配向膜は、従来のラビング処理で得られる液晶配向膜に比べて液晶配向性が低くなる傾向にあり、該液晶配向膜を備える液晶表示装置の適用範囲が限られていた。
特開平9-297313号公報
「機能材料」、1997年11月号、Vol.17、No.11、13~22ページ
 また、実際の液晶表示素子では、製造上のバラツキなどによって液晶表示素子面内で液晶のツイスト角度がわずかにばらついてしまう。すると、このような面内バラツキに起因して、液晶表示素子では黒表示時の明るさが面内でばらついてしまう。
 本発明は、上記事情に鑑みてなされたものであり、高い液晶配向性を有し、黒表示の際の面内での明るさのバラツキを抑制した、コントラストが向上した液晶表示素子を光配向法により得ることができる光配向法用液晶配向剤を提供することを一つの目的とする。
 本発明者は、鋭意研究を進めたところ、特定の成分を含有する液晶配向剤を使用することにより、上記課題を解決可能であることを見出し、本発明を完成するに至った。具体的には下記を要旨とするものである。
 下記式(1-a)で表される繰り返し単位及び下記式(1-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位(a1)と、
 下記式(2-a)で表される繰り返し単位及び下記式(2-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位(a2)と、を有し、前記繰り返し単位(a1)を全繰り返し単位の1~20モル%含む、ポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種の重合体(A)を含有することを特徴とする光配向法用液晶配向剤。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式中、Xは下記式(B)で表される4価の有機基を表し、Xは下記式(C)で表される4価の有機基を表す。R、Zは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。複数個のR及びZは、それぞれ同一でも異なっていても良い。Y、Yは、それぞれ独立して、下記式(O)で表される2価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000013
(式中、Rb1~Rb4はそれぞれ独立して、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表す。Lは、単結合、-CH-、-(CH-(nは2~18の整数である。)、又は前記-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。Rc1~Rc4はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、Rc1~Rc4の少なくとも一つは上記定義中の水素原子以外の基を表す。)
Figure JPOXMLDOC01-appb-C000014
(Arは、ベンゼン環、ビフェニル構造、又はナフタレン環を表し、2つのArは同一でも異なってもよく、環状の任意の水素原子は1価の有機基で置き換えられてもよい。Qは-CH-、-(CH-(nは2~18の整数である。)、又は前記-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。pは0又は1の整数である。但し、pが0である場合、Arはビフェニル構造を表し、pが1である場合、2つのArの少なくとも一つはナフタレン環を表す。*は結合手を表す。)
 なお、本明細書において、*は、いずれの場合も、結合手を表す。Bocは、tert-ブトキシカルボニル基を表す。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。カルバメート系保護基としては、tert-ブトキシカルボニル基、9-フルオレニルメトキシカルボニル基が挙げられる。
 本発明の光配向法用液晶配向剤は、上記繰り返し単位(a1)と、上記繰り返し単位(a2)と、を有し、前記繰り返し単位(a1)を全繰り返し単位の1~20モル%含む、ポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種の重合体(A)を含有することにより、黒表示の際の面内での明るさのバラツキが抑制され、コントラストが向上した液晶表示素子を光配向法により得ることができるという効果を奏する。
 本発明の光配向法用液晶配向剤(以下、単に液晶配向剤ともいう)について説明する。
 <重合体(A)>
 本発明の液晶配向剤は、下記式(1-a)で表される繰り返し単位及び下記式(1-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位(a1)と、下記式(2-a)で表される繰り返し単位及び下記式(2-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位(a2)と、を有し、前記繰り返し単位(a1)を全繰り返し単位の1~20モル%含む、ポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種の重合体(A)を含有する。尚、重合体(A)は1種類又は2種類以上で構成されてもよい。
 <繰り返し単位(a1)>
 本発明の繰り返し単位(a1)は、下記式(1-a)で表される繰り返し単位及び下記式(1-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位である。
Figure JPOXMLDOC01-appb-C000015
(式中、Xは下記式(B)で表される4価の有機基を表す。R、Zは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。2個のR及びZは、それぞれ同一でも異なっていても良い。Yは下記式(O)で表される2価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000016
(式中、Rb1~Rb4はそれぞれ独立して、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表す。Lは、単結合、-CH-、-(CH-(nは2~18の整数である。)、又は前記-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。)
Figure JPOXMLDOC01-appb-C000017
(Arは、ベンゼン環、ビフェニル構造、又はナフタレン環を表し、2つのArは同一でも異なってもよく、環状の任意の水素原子は1価の有機基で置き換えられてもよい。Qは-CH-、-(CH-(nは2~18の整数である。)、又は前記-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。pは0又は1の整数である。但し、pが0である場合、Arはビフェニル構造を表し、pが1である場合、2つのArの少なくとも一つはナフタレン環を表す。)
 前記Lの好ましい例は、本発明の効果を効率的に得る観点から、単結合、-CH-又は-(CH-(nは2~18の整数である。)である。
 前記Rb1~Rb4の好ましい例は、本発明の効果を効率的に得る観点から、水素原子である。
 前記式(B)で表される4価の有機基は、液晶配向性を高める観点から、下記式(b-1)~(b-2)で表される4価の有機基が好ましい。
Figure JPOXMLDOC01-appb-C000018
 前記式(O)で表される2価の有機基の好ましい例は、本発明の効果を効率的に得る観点から、下記式(o-1)~(o-7)で表される2価の有機基である。
Figure JPOXMLDOC01-appb-C000019
 <繰り返し単位(a2)>
 本発明の繰り返し単位(a2)は、下記式(2-a)で表される繰り返し単位及び下記式(2-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位である。
Figure JPOXMLDOC01-appb-C000020
(式中、Xは下記式(C)で表される4価の有機基を表す。R、Zは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。2個のR及びZは、それぞれ同一でも異なっていても良い。Yは好ましい具体例を含め上記Yと同義である。)
Figure JPOXMLDOC01-appb-C000021
(式中、Rc1~Rc4はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、Rc1~Rc4の少なくとも一つは上記定義中の水素原子以外の基を表す。)
 前記式(C)で表される4価の有機基は、例えば、下記式(Xc-1)~(Xc-6)で表される4価の有機基が挙げられる。これらの中でも、液晶配向性を高める観点から、(Xc-1)が好ましい。
Figure JPOXMLDOC01-appb-C000022
 <繰り返し単位(a3)>
 前記重合体(A)は、繰り返し単位(a1)、(a2)の他、下記式(3-a)で表される繰り返し単位及び下記式(3-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位(a3)を有するポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種であってもよい。
Figure JPOXMLDOC01-appb-C000023
(式中、Xは4価の有機基を表し、Yは下記式(3d)で表される2価の有機基を表す。R、Zは、前記式(1-a)と同義である。)
Figure JPOXMLDOC01-appb-C000024
(Arは、ベンゼン環、又はビフェニル構造を表し、2つのArは同一でも異なってもよく、上記環上の任意の水素原子は1価の有機基で置き換えられてもよい。Qは-(CH-(nは2~18の整数である。)、又は前記-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。)
 前記式(3d)で表される2価の有機基は、例えば、下記式(3d-1)~(3d-8)で表される2価の有機基を挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000025
 前記重合体(A)は、繰り返し単位(a1)、(a2)の他、下記式(4-a)で表される繰り返し単位及び下記式(4-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種類の繰り返し単位(a4)を有するポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種であってもよい。
Figure JPOXMLDOC01-appb-C000026
(式中、R、Zは、前記式(1-a)と同義である。Xは4価の有機基を表し、Yは基「-N(D)-(Dはカルバメート系保護基を表す。)」を分子内に有する炭素数6~30の2価の有機基を表す。)
 Yにおける基「-N(D)-(Dはカルバメート系保護基を表す。)」を分子内に有する炭素数6~30の2価の有機基の具体例としては、下記式(4-1)で表される部分構造を有する2価の有機基、又は下記式(4-2)で表される2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 式中、Qは単結合、-(CH-(nは1~20の整数である)、又は-(CH-の任意の-CH-が-O-、-COO-、-OCO-、-NQ-、-NQ-CO-、-CO-NQ-、-NQ-CO-NQ10-、-NQ-COO-又は-O-COO-で置き換えられた基であり、Q及びQ10はそれぞれ独立して水素原子又は1価の有機基を表し;Q、Qはそれぞれ独立して-H、-NHDを有する基、又は-N(D)を有する基を表す。Qは-NHDを有する基、又は-N(D)を有する基を表す。Dはカルバメート系保護基を表す。但し、Q、Q及びQの少なくとも一つは基中にカルバメート系保護基を有する。Q及びQ10における1価の有機基の具体例としては、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6のアルキル基、前記カルバメート系保護基、炭素数1~6のアルコキシアルキル基が挙げられる。
 ここで、Yは、例えば、下記式(Y4-1)~(Y4-4)で表される構造を挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000028
 前記重合体(A)は、繰り返し単位(a1)及び(a2)の他、下記式(5-a)で表される繰り返し単位及び下記式(5-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種類の繰り返し単位(a5)を有するポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種であってもよい。
Figure JPOXMLDOC01-appb-C000029
 式(5-a)及び式(5-i)中、R、Zは、前記式(1-a)と同義である。Xは4価の有機基を表し、Yは2価の有機基を表す。但し、Yは前記式(3d)で表される2価の有機基、又は基「-N(D)-(Dはカルバメート系保護基を表す。)」を分子内に有する炭素数6~30の2価の有機基以外の構造を表し、Xが前記式(B)で表される4価の有機基又は前記式(C)で表される4価の有機基と同義である場合は、Yは前記式(O)で表される2価の有機基以外の構造を表す。
 式(5-a)及び式(5-i)において、Yの具体例としては、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノベンズアニリド、4,4’-ジアミノアゾベンゼン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、等の芳香族ジアミンから2つのアミノ基を除いた2価の有機基の他、後述するYで例示する2価の有機基が挙げられる。
 前記X、X及びXの4価の有機基の構造は特に限定されず、それぞれ独立して任意の構造を選択できる。好ましい具体例としては、下記式(X1-1)~(X1-44)が挙げられる。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 式(X1-1)~(X1-4)において、R~R23は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基である。液晶配向性の点から、R~R23は、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。
 式(X1-1)の具体例としては、下記式(X1-1-1)~(X1-1-6)が挙げられる。液晶配向性及び光反応の感度の点から、(X1-1-1)~(X1-1-2)がより好ましく、(X1-1-2)が特に好ましい。
Figure JPOXMLDOC01-appb-C000036
 本発明の効果を良好に得る観点から、重合体(A)は、繰り返し単位(a1)を全繰り返し単位の1~20モル%含むことが好ましく、1~15モル%含むことがより好ましい。
 本発明の効果を良好に得る観点から、重合体(A)は、繰り返し単位(a1)及び繰り返し単位(a2)の合計が全繰り返し単位の5モル%以上であることが好ましく、10モル%以上であることがより好ましい。
 本発明の効果を良好に得る観点から、重合体(A)は、繰り返し単位(a3)を全繰り返し単位の1~95モル%含むことが好ましく、1~90モル%含むことがより好ましく、5~90モル%含むことがさらに好ましい。この場合において、繰り返し単位(a1)及び繰り返し単位(a2)の合計は、99モル%以下であることが好ましく、より好ましくは95モル%以下である。
 本発明の効果を良好に得る観点から、重合体(A)は繰り返し単位(a4)を、全繰り返し単位の1~40モル%含むことが好ましく、1~30モル%含むことがより好ましく、1~25モル%含むことがさらに好ましい。
 <重合体(B)>
 本発明の液晶配向剤は、残留DC由来の残像を少なくする観点から、下記式(6)で表される繰り返し単位を有する重合体(B)を含有してもよい。尚、重合体(B)は、上記繰り返し単位(a1)と繰り返し単位(a2)とを同一の分子内に有しない。また、重合体(B)は1種類又は2種類以上で構成されてもよく、重合体(B)を構成する繰り返し単位は1種類又は2種類以上で構成されてもよい。
Figure JPOXMLDOC01-appb-C000037
(Xは4価の有機基であり、Yは、2価の有機基である。RZは、式(1-a)と同義である。)
 前記式Xにおける4価の有機基としては、非環式脂肪族テトカルボン酸二無水物に由来する4価の有機基、脂環式テトラカルボン酸二無水物に由来する4価の有機基、芳香族テトラカルボン酸二無水物に由来する4価の有機基等が挙げられる。非環式脂肪族テトラカルボン酸二無水物に由来する4価の有機基、及び脂環式テトラカルボン酸二無水物に由来する4価の有機基の具体例としては、下記式(x-1)~(x-13)から選ばれる構造が挙げられる。
Figure JPOXMLDOC01-appb-C000038
(上記式(x-1)~(x-13)中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を有する炭素数1~6の1価の有機基又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。)
 上記式(x-1)は、なかでも、下記式(x1-1)~(x1-6)からなる群から選ばれるものが好ましい。
Figure JPOXMLDOC01-appb-C000039
 上記式(x1-1)~(x1-6)において、*1は一方の酸無水物基に結合する結合手を表し、また、*2は他方の酸無水物基に結合する結合手を表す。
 芳香族テトラカルボン酸二無水物とは、ベンゼン環、ナフタレン環などの芳香環に結合するカルボキシ基が分子内脱水することにより得られる酸二無水物のことである。具体例を挙げると、前記式(X1-28)~(X1-40)で表される4価の有機基を挙げることができる。
 前記式Yにおける2価の有機基としては、窒素原子含有複素環、第二級アミノ基及び第三級アミノ基よりなる群から選ばれる少なくとも一種の窒素原子含有構造(以下、窒素原子含有構造ともいう。)を有するジアミン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸、下記式(3b-1)~式(3b-4)で示されるジアミン化合物などのカルボキシ基を有するジアミン、4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンズアニリド、4,4’-ジアミノアゾベンゼン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン、1,3-ビス(4-アミノフェネチル)ウレア等のウレア結合を有するジアミン、メタクリル酸2-(2,4-ジアミノフェノキシ)エチル、2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン、コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル、3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミン、下記式(V-1)~(V-8)で表されるジアミン、1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のシロキサン結合を有するジアミン、下記式(Ox-1)~(Ox-2)等のオキサゾリン構造を有するジアミン等のジアミンから2つのアミノ基を除いた2価の有機基、国際公開第2018/117239号に記載の式(Y-1)~(Y-167)のいずれかで表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000040
(式(3b-1)中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又はN(CH)CO-を示し、m1及びm2はそれぞれ独立して、0~4の整数を示し、かつm1+m2は1~4の整数を示す。式(3b-2)中、m3及びm4はそれぞれ独立して、1~5の整数を示す。式(3b-3)中、Aは炭素数1~5の直鎖又は分岐アルキル基を示し、m5は1~5の整数を示す。式(3b-4)中、A及びAはそれぞれ独立して、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、m6は1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000041
(Xv1~Xv4、Xp1~Xp2は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を表し、Xv5は-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を表す。Xは、単結合、-O-、-NH-、-O-(CH-O-(mは1~6の整数を表す。)を表し、Rv1~Rv4、R1a~R1bは、それぞれ独立に、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数2~20のアルコキシアルキル基を表す。XV7~XV8は、それぞれ独立に、-O-、-CHO-、-COO-又は-OCO-を表す。)
Figure JPOXMLDOC01-appb-C000042
 上記窒素原子含有複素環としては、例えば、ピロール、イミダゾール、ピラゾール、トリアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、インドール、ベンゾイミダゾール、プリン、キノリン、イソキノリン、ナフチリジン、キノキサリン、フタラジン、トリアジン、カルバゾール、アクリジン、ピペリジン、ピペラジン、ピロリジン、ヘキサメチレンイミン等が挙げられる。なかでも、ピリジン、ピリミジン、ピラジン、ピペリジン、ピペラジン、キノリン、カルバゾール又はアクリジンが好ましい。
 窒素原子含有構造を有するジアミンが有していてもよい第二級アミノ基及び第三級アミノ基は、例えば、下記式(n)で表される。
Figure JPOXMLDOC01-appb-C000043
 上記式(n)において、Rは,水素原子又は炭素数1~10の1価の炭化水素基を表す。「*1」は、炭化水素基に結合する結合手を表す。
 上記式Rの1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基等のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、メチルフェニル基等のアリール基等が挙げられる。Rは、好ましくは水素原子又はメチル基である。
 窒素原子含有構造を有するジアミンの具体例としては、例えば、2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)ピペラジン、3,6-ジアミノアクリジン、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、N,N’-ビス(4-アミノフェニル)ベンジジン、N,N’-ビス(4-アミノフェニル)-N,N’-ジメチルベンジジン、4,4’-ジアミノジフェニルアミン、N,N-ビス(4-アミノフェニル)-メチルアミン、下記式(z-1)~式(z-23)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 残留DC由来の残像が少ない観点において、重合体(B)はYが窒素原子含有構造を有するジアミン、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、上記カルボキシ基を有するジアミン又は前記ウレア結合を有するジアミンから2つのアミノ基を除いた2価の有機基、からなる群から選ばれる2価の有機基(これらを総称して特定の2価の有機基ともいう。)である繰り返し単位を含む重合体であることが好ましい。
 重合体(B)は、残留DC由来の残像が少ない観点において、Yが前記特定の2価の有機基である繰り返し単位を重合体(B)に含まれる全繰り返し単位の1モル%以上含んでもよく、5モル%以上含んでもよい。
 残留DC由来の残像が少ない観点において、重合体(A)と重合体(B)の含有割合が、[重合体(A)]/[重合体(B)]の質量比で10/90~90/10であってもよく、20/80~90/10であってもよく、20/80~80/20であってもよい。
 <ポリアミック酸、ポリアミック酸エステル及びポリイミドの製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステル、ポリアミック酸及びポリイミドは、例えば、国際公開第2013/157586号に記載されるような公知の方法で合成出来る。
 具体的には、ジアミン成分と、テトラカルボン酸誘導体成分と、を溶媒中で(縮重合)反応させることにより合成される。上記テトラカルボン酸誘導体成分としては、テトラカルボン酸二無水物若しくはその誘導体(テトラカルボン酸ジハロゲン化物、テトラカルボン酸ジエステル、又はテトラカルボン酸ジエステルジハロゲン化物)が挙げられる。重合体(A)又は(B)の一部にアミック酸構造を含む場合、例えば、テトラカルボン酸二無水物成分とジアミン成分とを反応させることにより、アミック酸構造を有する重合体(ポリアミック酸)が得られる。溶媒としては、生成した重合体が溶解するものであれば特に限定されない。
 重合体(A)のポリイミド前駆体を得るためのジアミン成分及びテトラカルボン酸誘導体成分は、それぞれ、重合体(A)が有する上記した式(1-a)、式(2-a)、および必要に応じて含有される、式(3-a)、式(4-a)、式(5-a)で表される繰り返し単位に応じて、かかる繰り返し単位の構造が得られるように選択して使用される。
 例えば、重合体(A)が有する式(1-a)で表される繰り返し単位を有する場合には、ジアミン成分としては、-N(Z)-Y-N(Z)-の構造(Y、Zの定義は上記と同じである。)を有するジアミンが使用され、また、テトラカルボン酸誘導体成分としては、下記式の構造を有するテトラカルボン酸誘導体が使用される。
Figure JPOXMLDOC01-appb-C000047
(Xの定義は上記と同じである。)
 ポリアミック酸エステルは、例えば、[I]上記の方法で得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、等の既知の方法によって得ることができる。
 ポリイミドを得る方法としては、上記反応で得られるポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体を含有する溶液をそのまま加熱する熱イミド化、又は上記溶液に触媒を添加する触媒イミド化が挙げられる。
 本発明に用いられるポリイミドにおいては、アミック酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
 例えば、ポリイミドのイミド化率は、ポリイミドワニスの溶解性を高める観点から、20~100%、50~99%、又は70~99%としてもよい。
 <重合体の溶液粘度・分子量>
 本発明に用いられるポリアミック酸、ポリアミック酸エステル及びポリイミドは、これを濃度10~15質量%の溶液としたときに、例えば10~1000mPa・sの溶液粘度を持つものが作業性の観点から好ましいが、特に限定されない。なお、上記重合体の溶液粘度(mPa・s)は、当該重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10~15質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
 上記ポリアミック酸、ポリアミック酸エステル及びポリイミドのゲルパーミエーションクロマトグラフィー(GPC)により測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは1,000~500,000であり、より好ましくは2,000~300,000である。また、Mwと、GPCにより測定したポリスチレン換算の数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、好ましくは15以下であり、より好ましくは10以下である。このような分子量範囲にあることで、液晶表示素子の良好な配向性及び安定性を確保することができる。
 <液晶配向剤>
 本発明の液晶配向剤は、重合体(A)及び必要に応じて重合体(B)を含有する。本発明の液晶配向剤は、重合体(A)、重合体(B)に加えて、その他の重合体を含有していてもよい。その他の重合体の種類としては、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン又はその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。
 液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、塗布液の形態をとる。本発明の液晶配向剤においても前記した重合体成分と、有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点から、1質量%以上が好ましく、溶液の保存安定性の点からは、10質量%以下が好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド(これらを総称して「良溶媒」ともいう)などを挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、液晶配向剤に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。
 また、液晶配向剤に含有される有機溶媒は、上記溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。併用する有機溶媒の具体例を下記するが、これらに限定されない。
 例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)などを挙げることができる。
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテルなどを挙げることができる。貧溶媒の含有量は、液晶配向剤に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
 本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分(以下、添加剤成分ともいう。)を追加的に含有してもよい。このような添加剤成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール剤との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための化合物(以下、架橋性化合物ともいう。)、イミド化を促進するための化合物、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。
 前記架橋性化合物として、AC残像に対して良好な耐性を発現し、膜強度の改善が高い観点から、オキシラニル基、オキセタニル基、保護イソシアネート基、保護イソチオシアネート基、オキサゾリン環構造を含む基、メルドラム酸構造を含む基、シクロカーボネート基、及び式(d)で表される基よりなる群から選ばれる少なくとも1種の基を有する化合物、又は下記式(e)で表される化合物から選ばれる化合物(以下、これらを総称して化合物(C)ともいう。)であってもよい。
Figure JPOXMLDOC01-appb-C000048
(R及びRは、それぞれ独立に水素原子、炭素数1~3のアルキル基又は「*-CH-OH」である。Aは芳香環を有する(m+n)価の有機基を表す。mは1~6の整数を表し、nは0~4の整数を表す。Rは、水素原子又は炭素数1~5のアルキル基を表す。上記Aの芳香環上の水素原子は、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基などの1価の有機基で置き換えられてもよい。)
 オキシラニル基を有する化合物の具体例としては、特開平10-338880号公報の段落[0037]に記載の化合物や、国際公開第2017/170483号に記載のトリアジン環を骨格にもつ化合物などの、2個以上のオキシラニル基を有する化合物が挙げられる。これらのうち、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、N,N,N’,N’-テトラグリシジル-p-フェニレンジアミン、下記式(r-1)~(r-3)で表される化合物などの窒素原子を含有する化合物であってもよい。
Figure JPOXMLDOC01-appb-C000049
 オキセタニル基を有する化合物の具体例としては、国際公開第2011/132751号の段落[0170]~[0175]に記載の2個以上のオキセタニル基を有する化合物等が挙げられる。
 保護イソシアネート基を有する化合物の具体例としては、特開2014-224978号公報の段落[0046]~[0047]に記載の2個以上の保護イソシアネート基を有する化合物、国際公開第2015/141598号の段落[0119]~[0120]に記載の3個以上の保護イソシアネート基を有する化合物等が挙げられ、下記式(bi-1)~(bi-3)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000050
 保護イソチオシアネート基を有する化合物の具体例としては、特開2016-200798号公報に記載の、2個以上の保護イソチオシアネート基を有する化合物が挙げられる。
 オキサゾリン環構造を含む基を有する化合物の具体例としては、特開2007-286597号公報の段落[0115]に記載の、2個以上のオキサゾリン環構造を含む化合物が挙げられる。
 メルドラム酸構造を含む基を有する化合物の具体例としては、国際公開第2012/091088号に記載の、メルドラム酸構造を2個以上有する化合物が挙げられる。
 シクロカーボネート基を有する化合物の具体例としては、国際公開第2011/155577号に記載の化合物が挙げられる。
 前記式(d)で表される基のR、Rの炭素数1~3のアルキル基としては、メチル基、エチル基、プロピル基等が挙げられる。
 前記式(d)で表される基を有する化合物の具体例としては、国際公開第2015/072554号や、特開2016-118753号公報の段落[0058]に記載の、前記式(d)で表される基を2個以上有する化合物、特開2016-200798号公報に記載の化合物等が挙げられ、下記式(hd-1)~(hd-8)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000051
 前記式(e)のAにおける芳香環を有する(m+n)価の有機基としては、炭素数6~30の(m+n)価の芳香族炭化水素基、炭素数6~30の芳香族炭化水素基が直接又は連結基を介して結合した(m+n)価の有機基、芳香族複素環を有する(m+n)価の基が挙げられる。前記芳香族炭化水素としては、例えばベンゼン、ナフタレンなどが挙げられる。芳香族複素環としては、例えばピロール環、イミダゾール環、ピラゾール環、ピリジン環、ピリミジン環、キノリン環、イソキノリン環、カルバゾール環、ピリダジン環、ピラジン環、ベンゾイミダゾール環、インドール環、キノキサリン環、アクリジン環などが挙げられる。前記連結基としては、炭素数1~10のアルキレン基、-NR-(Rは水素原子又は炭素数1~5のアルキル基を表す。)、前記アルキレン基から水素原子を一つ除いた基、2価又は3価のシクロヘキサン環等が挙げられる。尚、前記アルキレン基の任意の水素原子は、フッ素原子又はトリフルオロメチル基などの有機基で置換されてもよい。前記式(e)で表される化合物の具体例を挙げるならば、国際公開第2010/074269号に記載の化合物、下記式(e-1)~(e-10)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000052
 上記化合物は架橋性化合物の一例であり、これらに限定されるものではない。例えば、国際公開第2015/060357号の53頁[0105]~55頁[0116]に開示されている上記以外の成分などが挙げられる。また、架橋性化合物は、2種類以上組み合わせてもよい。
 本発明の液晶配向剤における、架橋性化合物の含有量は、液晶配向剤に含まれる重合体成分100質量部に対して、0.5~20質量部であることが好ましく、架橋反応が進行し、かつAC残像に対して良好な耐性を発現する観点から、より好ましくは1~15質量部である。
 前記密着助剤としては、例えば3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等のシランカップリング剤が挙げられる。シランカップリング剤を使用する場合は、AC残像に対して良好な耐性を発現する観点から、液晶配向剤に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
 上記イミド化を促進するための化合物としては、塩基性の部位(例:第一級アミノ基、脂肪族ヘテロ環(例:ピロリジン骨格)、芳香族ヘテロ環(例:イミダゾール環、インドール環)、又はグアニジノ基等)を有する化合物(但し、上記架橋性化合物及び密着助剤は除く。)、又は、焼成時に上記塩基性の部位が発生する化合物が好ましい。より好ましくは、焼成時に上記塩基性の部位が発生する化合物であり、好ましい具体例を挙げると、アミノ酸が有する塩基性の部位の一部又は全てが保護されたアミノ酸が挙げられる。上記アミノ酸の具体例としては、グリシン、アラニン、システイン、メチオニン、アスパラギン、グルタミン、バリン、ロイシン、フェニルアラニン、チロシン、トリプトファン、プロリン、ヒドロキシプロリン、アルギニン、ヒスチジン、リシン、オルニチンが挙げられる。イミド化を促進するための化合物のより好ましい具体例を挙げると、N-α-(9-フルオレニルメトキシカルボニル)-N-τ-(tert-ブトキシカルボニル)-L-ヒスチジンが挙げられる。
 <液晶配向膜の製造方法>
 本発明の液晶配向剤を用いた液晶配向膜の製造方法は、上記の液晶配向剤を塗布する工程(工程(1))、塗布した液晶配向剤を焼成する工程(工程(2))、工程(2)で得られた膜に偏光された紫外線を照射する工程(工程(3))、工程(3)で得られた膜を、100℃以上、且つ、工程(2)よりも高い温度で焼成する工程(工程(4))を順次行うことを特徴とする。
 <工程(1)>
 本発明に用いられる液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、目的に応じてこれらを用いてもよい。
 <工程(2)>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、重合体中のアミック酸又はアミック酸エステルの熱イミド化を行ったりすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。焼成温度としては、例えば40~150℃で行うことができる。プロセスを短縮する観点で、40~120℃で行ってもよい。焼成時間としては特に限定されないが、1~10分又は、1~5分が挙げられる。重合体中のアミック酸又はアミック酸エステルの熱イミド化を行う場合には、上記焼成工程の後、例えば190~250℃、又は200~240℃の温度範囲で焼成する工程ができる。焼成時間としては特に限定されないが、5~40分、又は、5~30分の焼成時間が挙げられる。
 <工程(3)>
 工程(3)は、工程(2)で得られた膜に偏光された紫外線を照射する工程である。紫外線の波長としては、200~400nmが好ましく、なかでも、200~300nmの波長を有する紫外線がより好ましい。液晶配向性を改善するために、液晶配向膜が塗膜された基板を50~250℃で加熱しながら、紫外線を照射してもよい。また、前記紫外線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmがより好ましい。このようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
 <工程(4)>
 工程(4)は、工程(3)で得られた膜を、100℃以上で、且つ、工程(2)よりも高い温度で焼成する工程である。焼成温度は、100℃以上で、且つ、工程(2)での焼成温度よりも高ければ、特に限定されないが、150~300℃が好ましく、150~250℃がより好ましく、200~250℃が更に好ましい。焼成時間は、5~120分が好ましく、より好ましくは5~60分、更に好ましくは、5~30分である。
 焼成後の液晶配向膜の厚みは、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
 更に、前記工程(3)又は(4)のいずれかの工程を行った後、得られた液晶配向膜を、水や溶媒を用いて、接触処理をすることもできる。
 上記接触処理に使用する溶媒としては、紫外線の照射によって液晶配向膜から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル又は酢酸シクロヘキシルなどが挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましい。より好ましいのは、水、1-メトキシ-2-プロパノール又は乳酸エチルである。溶媒は、1種類でも、2種類以上組み合わせてもよい。
 上記の接触処理、すなわち、偏光された紫外線を照射した液晶配向膜への水や溶媒による処理としては、浸漬処理や噴霧処理(スプレー処理ともいう)が挙げられる。これらの処理における処理時間は、紫外線によって液晶配向膜から生成した分解物を効率的に溶解させる点から、10秒~1時間が好ましい。なかでも、1~30分間浸漬処理をすることが好ましい。また、前記接触処理時の溶媒は、常温でも加温しても良いが、好ましくは、10~80℃であり、20~50℃がより好ましい。加えて、分解物の溶解性の点から、必要に応じて、超音波処理などを行っても良い。
 前記接触処理の後に、水、メタノール、エタノール、2-プロパノール、アセトン又はメチルエチルケトンなどの低沸点溶媒によるすすぎ(リンスともいう)や液晶配向膜の焼成を行うことが好ましい。その際、リンスと焼成のどちらか一方を行っても、又は、両方を行っても良い。焼成の温度は、150~300℃であることが好ましい。なかでも、180~250℃が好ましい。より好ましいのは、200~230℃である。また、焼成の時間は、10秒~30分が好ましい。なかでも、1~10分が好ましい。
 本発明の液晶配向膜は、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して得られる。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOの膜とすることができる。
 次に、各基板の上に液晶配向膜を形成し、一方の基板に他方の基板を互いの液晶配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておき、また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。次いで、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入し、その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料は、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。
 本発明の製造方法を用いることで、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する長期交流駆動による残像が抑制出来る。また、工程(2)において、40~150℃の温度範囲で焼成した後、工程(3)を実施することで、従来よりも少ない工程数で液晶配向膜を得ることができる。本発明の液晶配向剤は、工程(2)において、40~150℃の温度範囲で焼成した後、工程(3)を実施する工程を含む液晶配向膜の製造方法において特に好ましく用いることができる。
(溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
(ジアミン)
DA-1~DA-9:それぞれ、下記式(DA-1)~式(DA-9)で表される化合物
(テトラカルボン酸二無水物)
CA-1~CA-5:それぞれ、下記式(CA-1)~式(CA-5)で表される化合物
(添加剤)
C-1:2,2’-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン(下記式(C-1)で表される化合物)
S-1:下記式(S-1)で表される化合物
F-1:下記式(F-1)で表される化合物
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
(Fmocは、9-フルオレニルメチルオキシカルボニル基を表す。)
 <粘度の測定>
 E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
 <イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(0.53mL)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン1個に対する基準プロトンの個数割合である。
 [重合体の合成例]
 <合成例1>
 撹拌装置付き及び窒素導入管付きの200mL四つ口フラスコに、DA-1を4.95g(20.3mmol)、DA-2を5.30g(18.0mmol)、及びDA-3を1.60g(6.75mmol)を量り取り、NMPを濃度が12質量%となるように加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-1を9.28g(41.4mmol)を添加し、NMPを濃度が12質量%となるように加えて、40℃で24時間撹拌してポリアミック酸溶液を得た。
 撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに得られたポリアミック酸溶液を35g(8.9mmol)取り、NMPを11.7g加え、30分撹拌した。得られたポリアミック酸溶液に、無水酢酸を2.74g(ポリアミック酸モル対比3等量)、ピリジンを0.71g(ポリアミック酸モル対比等量)加えて、50℃で3時間加熱し、化学イミド化を行った。得られた反応液を150mLのメタノールに撹拌しながら投入し、析出した沈殿物をろ取し、同様の操作を2回実施することで樹脂粉末を洗浄した後、60℃で12時間乾燥することで、ポリイミド樹脂粉末を得た。このポリイミド樹脂粉末のイミド化率は75%であった。得られたポリイミド樹脂粉末3.60gを100mL三角フラスコに取り、固形分濃度が12%になるようにNMPを加え、70℃で24時間撹拌し溶解させてポリイミド溶液(PI-1)を得た。
 <合成例2~10>
 使用するモノマーの種類及び量を下記の表1に記載の通り変更した点以外は合成例1と同様の手法でポリイミド溶液(PI-2)~(PI-10)を得た。尚、表1で括弧内の数値は、テトラカルボン酸成分については、合成に使用したテトラカルボン酸誘導体の合計量100モル部に対する各化合物の配合割合(モル部)を表し、ジアミン成分については、合成に使用したジアミンの合計量100モル部に対する各化合物の配合割合(モル部)を表す。有機溶媒については、ポリイミド溶液の調製に使用した有機溶媒の合計量100質量部に対する各有機溶媒の配合割合(質量部)を表す。
 <合成例11>
 撹拌装置付き及び窒素導入管付きの200mL四つ口フラスコに、DA-7を3.37g(8.0mmol)、DA-8を2.39g(8.0mmol)、及びDA-9を4.78g(24.0mmol)量り取り、NMPを濃度が12質量%となるように加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらCA-5を11.3g(38.5mmol)を添加し、NMPを濃度が12質量%となるように加えて、70℃で24時間撹拌してポリアミック酸溶液(PAA-1)を得た。
Figure JPOXMLDOC01-appb-T000056
 [液晶配向剤の調製]
 <比較例1>
 撹拌子を入れたサンプル管に、合成例1で得られたポリイミド溶液(PI-1)の溶液と、NMP、及びBCSを加え、S-1、C-1及びF-1を重合体固形分100質量部に対してそれぞれ、1質量部、10質量部、15質量部となるように加えて30分間撹拌した。撹拌後、ポリイミド溶液(PI-1)の固形分濃度が6質量%、溶媒組成が質量比でNMP:BCS=80:20である液晶配向剤(R1)を得た。
 <比較例2~5、実施例1~12>
 使用する重合体成分を下記の表2に記載の通り変更した点以外は比較例1と同様の手法で、液晶配向剤(R2)~(R5)、(1)~(12)を得た。表2中、括弧内の数値は、重合体及び添加剤についてはそれぞれ液晶配向剤の調製に使用した重合体成分の合計100質量部に対する各重合体成分又は添加剤の配合割合(質量部)を表す。有機溶媒については、液晶配向剤中の有機溶媒の合計量100質量部に対する各有機溶媒の配合割合(質量部)を表す。
Figure JPOXMLDOC01-appb-T000057
 以上のようにして得られた液晶配向剤を用いて以下に示す手順でFFS駆動液晶セルを作製し、特性評価を行った。
 [FFS駆動液晶セルの構成]
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード用の液晶セルは、面形状の共通電極-絶縁層-櫛歯形状の画素電極からなるFOP(Finger on Plate)電極層が表面に形成されている第1のガラス基板と、表面に高さ3.5μmの柱状スペーサーを有し裏面に帯電防止の為のITO膜が形成されている第2のガラス基板とを、一組とした。上記の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境に第1領域と第2領域を有している。
 なお、第1のガラス基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1の基板上の液晶の配向方向と第2の基板上の液晶の配向方向とが一致するように配向処理する。
 [液晶セルの作製]
 上記一組のガラス基板それぞれの表面に、孔径1.0μmのフィルターで濾過した液晶配向剤をスピンコート塗布にて塗布し80℃のホットプレート上で2分間乾燥させた。その後、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を150~350mJ/cm照射し、次いで230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜付き基板を2枚得た。
 次に、上記一組の液晶配向膜付き基板の一方にシール剤を印刷し、もう一方の基板を液晶配向膜面が向き合うように貼り合わせ、シール剤(三井化学社製 XN-1500T)を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶(メルク社製 MLC-3019)を常温で真空注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し(以下、本処理をISO処理ともいう。)、一晩放置してから各評価に使用した。
 <液晶配向性評価>
 ISO処理前の液晶セルを用い初期流動配向のあるものを「不良」、及び無いものを「良好」と定義して評価を行った。
 <コントラストの面内均一性評価>
 シンテック社製OPTIPRO-microを用いて液晶表示素子のツイスト角の評価を行った。作製した液晶セルを測定ステージに設置し、電圧無印加の状態で、第1画素面内を20点測定して標準偏差を算出した。評価は、ツイスト角標準偏差が0.5以上の場合に「不良」とし、0.5未満の場合に「良好」と定義して評価を行った。
 <電圧保持率評価>
 上記で作製した液晶セルを東陽テクニカ社製装置を用いて、60℃において1Vの電圧を60マイクロ秒の印加後、1,000ミリ秒後の電圧保持率を測定した。その際、電圧保持率が90%以上を維持した場合に「良好」と定義し、90%未満の場合に「不良」と定義して評価した。
 <評価結果>
 上記実施例1~12及び比較例1~5で得られた液晶配向剤(1)~(12)、(R1)~(R5)を使用して得られた液晶表示素子に関して評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000058

Claims (12)

  1.  下記式(1-a)で表される繰り返し単位及び下記式(1-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位(a1)と、
     下記式(2-a)で表される繰り返し単位及び下記式(2-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位(a2)と、を有し、前記繰り返し単位(a1)を全繰り返し単位の1~20モル%含む、ポリイミド前駆体及びそのイミド化重合体からなる群から選ばれる少なくとも1種の重合体(A)を含有することを特徴とする光配向法用液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式中、Xは下記式(B)で表される4価の有機基を表し、Xは下記式(C)で表される4価の有機基を表す。R、Zは、それぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。複数個のR及びZは、それぞれ同一でも異なっていても良い。Y、Yは、それぞれ独立して、下記式(O)で表される2価の有機基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rb1~Rb4はそれぞれ独立して、水素原子、ハロゲン原子、又は炭素数1~6のアルキル基を表す。Lは、単結合、-CH-、-(CH-(nは2~18の整数である。)、又は前記-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。Rc1~Rc4はそれぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表し、Rc1~Rc4の少なくとも一つは上記定義中の水素原子以外の基を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (Arは、ベンゼン環、ビフェニル構造、又はナフタレン環を表し、2つのArは同一でも異なってもよく、環状の任意の水素原子は1価の有機基で置き換えられてもよい。Qは-CH-、-(CH-(nは2~18の整数である。)、又は前記-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。pは0又は1の整数である。但し、pが0である場合、Arはビフェニル構造を表し、pが1である場合、2つのArの少なくとも一つはナフタレン環を表す。*は結合手を表す。)
  2.  前記式(B)で表される4価の有機基が、下記式(b-1)~(b-2)で表される4価の有機基である、請求項1に記載の光配向法用液晶配向剤。
    Figure JPOXMLDOC01-appb-C000005
    (*は結合手を表す。)
  3.  前記式(O)で表される2価の有機基が、下記式(o-1)~(o-7)で表される2価の有機基である、請求項1又は2に記載の光配向法用液晶配向剤。
    Figure JPOXMLDOC01-appb-C000006
  4.  前記重合体(A)が、下記式(3-a)で表される繰り返し単位及び下記式(3-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種の繰り返し単位(a3)を有する、請求項1~3のいずれか1項に記載の光配向法用液晶配向剤。
    Figure JPOXMLDOC01-appb-C000007
    (式中、Xは4価の有機基を表し、Yは下記式(3d)で表される2価の有機基を表す。R、Zは、前記式(1-a)と同義である。)
    Figure JPOXMLDOC01-appb-C000008
    (Arは、ベンゼン環、又はビフェニル構造を表し、2つのArは同一でも異なってもよく、環上の任意の水素原子は1価の有機基で置き換えられてもよい。Qは-(CH-(nは2~18の整数である。)、又は前記-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。*は結合手を表す。)
  5.  前記重合体(A)が、下記式(4-a)で表される繰り返し単位及び下記式(4-i)で表される繰り返し単位からなる群から選ばれる少なくとも1種類の繰り返し単位(a4)を有する、請求項1~4のいずれか1項に記載の光配向法用液晶配向剤。
    Figure JPOXMLDOC01-appb-C000009
    (式中、R、Zは、前記式(1-a)と同義である。Xは4価の有機基を表し、Yは基「-N(D)-(Dはカルバメート系保護基を表す。)」を分子内に有する炭素数6~30の2価の有機基を表す。)
  6.  前記Yが、下記式(Y4-1)~(Y4-4)で表される構造である、請求項5に記載の光配向法用液晶配向剤。
    Figure JPOXMLDOC01-appb-C000010
    (Bocは、tert-ブトキシカルボニル基を表す。)
  7.  請求項1~6のいずれか1項に記載の光配向法用液晶配向剤から得られる液晶配向膜。
  8.  請求項7に記載の液晶配向膜を具備する液晶表示素子。
  9.  下記の工程(1)~(3)を含む、液晶配向膜の製造方法。
     工程(1):請求項1~6のいずれか1項に記載の光配向法用液晶配向剤を基板上に塗布する工程。
     工程(2):塗布した光配向法用液晶配向剤を加熱して膜を得る工程。
     工程(3):工程(2)で得られた膜に偏光された紫外線を照射する工程。
  10.  下記の工程(4)をさらに含む、請求項9に記載の液晶配向膜の製造方法。
     工程(4):工程(3)で得られた膜を、100℃以上、且つ、工程(2)よりも高い温度で焼成する工程。
  11.  前記工程(2)は、40~180℃の温度範囲で加熱して膜を得る工程である、請求項9または10に記載の液晶配向膜の製造方法。
  12.  請求項9~11のいずれか1項に記載の液晶配向膜の製造方法により得られる液晶配向膜を具備する液晶表示素子。
PCT/JP2021/009665 2020-03-24 2021-03-10 光配向法用液晶配向剤、液晶配向膜、及び液晶表示素子 WO2021193078A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180024468.2A CN115380243A (zh) 2020-03-24 2021-03-10 光取向法用液晶取向剂、液晶取向膜以及液晶显示元件
KR1020227033296A KR20220157403A (ko) 2020-03-24 2021-03-10 광 배향법용 액정 배향제, 액정 배향막, 및 액정 표시 소자
JP2022509897A JPWO2021193078A1 (ja) 2020-03-24 2021-03-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020052727 2020-03-24
JP2020-052727 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021193078A1 true WO2021193078A1 (ja) 2021-09-30

Family

ID=77891728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009665 WO2021193078A1 (ja) 2020-03-24 2021-03-10 光配向法用液晶配向剤、液晶配向膜、及び液晶表示素子

Country Status (5)

Country Link
JP (1) JPWO2021193078A1 (ja)
KR (1) KR20220157403A (ja)
CN (1) CN115380243A (ja)
TW (1) TW202146528A (ja)
WO (1) WO2021193078A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240076516A (ko) 2022-11-22 2024-05-30 엘지디스플레이 주식회사 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157346A (ja) * 2003-11-05 2005-06-16 Chisso Corp 液晶配向剤およびそれを用いた液晶表示素子
JP2012098715A (ja) * 2010-10-06 2012-05-24 Hitachi Displays Ltd 配向膜、配向膜形成用組成物、および液晶表示装置
JP2017200991A (ja) * 2016-04-28 2017-11-09 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体並びに化合物
WO2020040089A1 (ja) * 2018-08-20 2020-02-27 日産化学株式会社 液晶配向剤、その製造方法、液晶配向膜、及び液晶表示素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157346A (ja) * 2003-11-05 2005-06-16 Chisso Corp 液晶配向剤およびそれを用いた液晶表示素子
JP2012098715A (ja) * 2010-10-06 2012-05-24 Hitachi Displays Ltd 配向膜、配向膜形成用組成物、および液晶表示装置
JP2017200991A (ja) * 2016-04-28 2017-11-09 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、液晶素子、重合体並びに化合物
WO2020040089A1 (ja) * 2018-08-20 2020-02-27 日産化学株式会社 液晶配向剤、その製造方法、液晶配向膜、及び液晶表示素子

Also Published As

Publication number Publication date
TW202146528A (zh) 2021-12-16
JPWO2021193078A1 (ja) 2021-09-30
KR20220157403A (ko) 2022-11-29
CN115380243A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
JPWO2020158818A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2020105561A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021177080A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7447889B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2021193078A1 (ja) 光配向法用液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021177113A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022176680A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022107545A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
CN113423763B (zh) 液晶取向剂、液晶取向膜以及使用了该液晶取向膜的液晶显示元件
WO2021210252A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021106979A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2020158819A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7469736B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7428138B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022085674A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7409375B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7302744B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2022181311A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022190896A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022270287A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2023157876A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021215280A1 (ja) 新規ジアミン、重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP2024070838A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
TW202328291A (zh) 液晶配向劑、液晶配向膜、液晶顯示元件、及化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509897

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775756

Country of ref document: EP

Kind code of ref document: A1