WO2022107640A1 - 重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子 - Google Patents

重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子 Download PDF

Info

Publication number
WO2022107640A1
WO2022107640A1 PCT/JP2021/041117 JP2021041117W WO2022107640A1 WO 2022107640 A1 WO2022107640 A1 WO 2022107640A1 JP 2021041117 W JP2021041117 W JP 2021041117W WO 2022107640 A1 WO2022107640 A1 WO 2022107640A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
ring
aromatic hydrocarbon
nitrogen atom
Prior art date
Application number
PCT/JP2021/041117
Other languages
English (en)
French (fr)
Inventor
歳幸 遠藤
佳和 原田
正暉 山根
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2022563699A priority Critical patent/JPWO2022107640A1/ja
Priority to CN202180076791.4A priority patent/CN116457338A/zh
Publication of WO2022107640A1 publication Critical patent/WO2022107640A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a polymer composition, a liquid crystal alignment agent, a resin film, a liquid crystal alignment film, a method for manufacturing a liquid crystal display element, and a liquid crystal display element.
  • Liquid crystal display elements are widely used as display units for personal computers, mobile phones, smartphones, televisions, and the like.
  • the liquid crystal display element includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode that apply an electric field to the liquid crystal layer, and an alignment film that controls the orientation of liquid crystal molecules in the liquid crystal layer. It is equipped with a thin film transistor (TFT) or the like for switching an electric signal supplied to a pixel electrode.
  • TFT thin film transistor
  • a vertical electric field method such as a TN (Twisted Nematic) method and a VA (Vertical Alignment) method
  • a horizontal electric field method such as an IPS (In-Plane Switching) method and an FFS (Fringe Field Switching) method
  • the horizontal electric field method in which electrodes are formed on only one side of the substrate and an electric field is applied in the direction parallel to the substrate is wider than the conventional vertical electric field method in which a voltage is applied to the electrodes formed on the upper and lower substrates to drive the liquid crystal display.
  • a polyimide-based resin film is widely used as a liquid crystal alignment film used for a liquid crystal display element or the like.
  • This polyimide-based liquid crystal alignment film is produced by applying a liquid crystal alignment agent containing a polymer such as polyamic acid (also referred to as polyamic acid), polyamic acid ester, or polyimide and a solvent as main components to a substrate.
  • the lateral electric field method which has excellent viewing angle characteristics, is widely used mainly in mobile phones and tablet terminals.
  • high display quality is emphasized, and specifications for display defects such as so-called “afterimage phenomenon” or simply “afterimage” are becoming more and more strict. ..
  • As one of the causes of afterimages charge accumulation in the liquid crystal cell due to application of positive / negative asymmetric voltage generated by driving is known, and some techniques for high-speed mitigation of this accumulation have been proposed (Patent Documents 1 to 3).
  • An object of the present invention is to provide a novel polymer composition suitable for a liquid crystal alignment agent capable of obtaining a liquid crystal display element having a high relaxation rate of accumulated charges and a small afterimage.
  • the present inventor has found that the above problems can be solved by forming a resin film using a polymer composition having a specific compounding composition, and has completed the present invention.
  • rice field Specifically, the following is the gist.
  • a polymer composition which is a polymer obtained by subjecting the mixture to a polymer.
  • R is a monovalent organic group having two aromatic hydrocarbon rings and a nitrogen atom (A).
  • each of the two aromatic hydrocarbon rings satisfies at least one of the following conditions (I) and (II).
  • Condition (I) One of the carbon atoms of the aromatic hydrocarbon ring and the nitrogen atom (A) are directly bonded.
  • Condition (II) When the nitrogen atom (A) is contained in the aromatic heterocycle, the aromatic hydrocarbon ring and the aromatic heterocycle form a fused ring.
  • One of the two aromatic hydrocarbon rings is conjugate with the nitrogen atom (B) to which * 1 is attached. * Represents a bond. )
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the polymer composition of the present invention contains the polymer (A).
  • the polymer (A) has a partial structure represented by any of the following formulas (i-1) to (i-3). Further, the polymer (A) has a structure in which R is removed from the partial structure in the main chain. Further, the polymer (A) contains a diamine component containing a diamine (c) having a partial structure represented by any of the following formulas (i-1) to (i-3) and a tetracarboxylic acid component. It is a polymer obtained by reacting.
  • R is a monovalent organic group having two aromatic hydrocarbon rings and a nitrogen atom (A).
  • each of the two aromatic hydrocarbon rings satisfies at least one of the following conditions (I) and (II).
  • Condition (I) One of the carbon atoms of the aromatic hydrocarbon ring and the nitrogen atom (A) are directly bonded.
  • Condition (II) When the nitrogen atom (A) is contained in the aromatic heterocycle, the aromatic hydrocarbon ring and the aromatic heterocycle form a fused ring.
  • One of the two aromatic hydrocarbon rings is conjugate with the nitrogen atom (B) to which * 1 is attached. * Represents a bond.
  • a structure composed of an aromatic hydrocarbon and a nitrogen atom (A) satisfying at least one of the conditions (I) and (II) may be referred to as a “specific aromatic amine structure”.
  • Examples of the main skeleton of the polymer (A) include a polyimide precursor such as polyamic acid and polyamic acid ester, and a skeleton composed of polyimide, polyamide and polyurea which are imide compounds of the polyimide precursor.
  • a polyimide precursor such as polyamic acid and polyamic acid ester
  • a skeleton composed of polyimide, polyamide and polyurea which are imide compounds of the polyimide precursor.
  • the polymer (A) one or more of the polymers selected from these can be appropriately selected and used according to the intended use of the polymer composition and the like.
  • the main skeleton of the polymer (A) is preferably at least one selected from the group consisting of polyamic acid, polyamic acid ester and polyimide.
  • the "main chain” of the polymer in the present invention means the part of the “stem” consisting of the longest chain of atoms in the polymer. Therefore, “having a structure in which R is removed from the partial structure represented by any of the formulas (i-1) to (i-3) in the main chain” means that the structure in which R is removed from the partial structure is a polymer. It means to form a part of the main chain of.
  • R corresponds to a side chain. Therefore, hereinafter, R may be referred to as a side chain R.
  • a single ring eg, benzene ring
  • a fused ring eg, naphthalene
  • Ring refers to the aromatic hydrocarbon ring.
  • R may have a biphenyl structure, but when R has a biphenyl structure, the biphenyl structure is considered to consist of two aromatic hydrocarbon rings in the aromatic hydrocarbon ring used to define R. ..
  • R is a monovalent organic group represented by the following formula (r2) and the nitrogen atom to which * 3 is attached is the nitrogen atom (A), * 4 is attached.
  • the benzene ring and the benzene ring with * 5 together form a biphenyl structure, but in the present invention, the benzene ring with * 4 and the benzene ring with * 5 are attached.
  • Each of the benzene rings corresponds to one aromatic hydrocarbon ring that defines R. Therefore, in the monovalent organic group represented by the following formula (r2), even if R 2 is not an aromatic hydrocarbon ring, the monovalent organic group represented by the following formula (r2) has two aromatics. It is a monovalent organic group having a group hydrocarbon ring and a nitrogen atom (A), and each of the two aromatic hydrocarbon rings satisfies the above condition (I).
  • the structure obtained by removing R 2 from the monovalent organic group represented by the following formula (r2) corresponds to a specific aromatic amine structure.
  • R 2 is a hydrogen atom or a monovalent organic group. * Represents a bond with a nitrogen atom (B).
  • the hydrogen atom on the two aromatic hydrocarbon rings of R may be independently substituted with a hydroxy group, a halogen atom, or a monovalent organic group.
  • the two aromatic hydrocarbon rings are preferably independently a benzene ring or a naphthalene ring.
  • the monovalent organic group include -O-, -COO-, -CO-, -NHCO-, and -S- between carbon-carbon bonds in the monovalent hydrocarbon group and the monovalent hydrocarbon group. Examples thereof include a monovalent group having a functional group introduced therein.
  • the number of nitrogen atoms contained in R in the above formulas (i-1) to (i-3) is 1 or 2 or more, preferably 1 or 2 to 4 from the viewpoint of easy synthesis, and further.
  • the number is preferably one or two.
  • the carbon number of R is not particularly limited, but the preferable carbon number of R is 12 to 40, and the more preferable carbon number is 12 to 30.
  • R may have three or more aromatic hydrocarbon rings. In that case, at least two of the three or more aromatic hydrocarbon rings may satisfy at least one of the above conditions (I) and (II).
  • Such R also corresponds to R of the above formulas (i-1) to (i-3) in the present invention.
  • the number of aromatic hydrocarbon rings contained in R is not particularly limited. Further, in R, not only one of the two aromatic hydrocarbon rings is conjugated with the nitrogen atom (B), but both of the two aromatic hydrocarbon rings are bonded to the nitrogen atom (B). It may be conjugated.
  • the two aromatic hydrocarbon rings in R satisfy at least one of the above conditions (I) and (II). And because one of the two aromatic hydrocarbon rings is conjugated with the nitrogen atom (B) to which * 1 is attached, a specific fragrance from the main chain to the side chain R of the polymer (A).
  • the HOMO Highest Occupied Molecular Orbital
  • the two aromatic hydrocarbon rings in R satisfy at least one of the above conditions (I) and (II) in the partial structure represented by any of the above formulas (i-1) to (i-3).
  • the present inventor has found that the absolute value of the Mulliken charge of the nitrogen atom (A) is 0.550 or more.
  • the absolute value of the Mulliken charge is 0.550 or more, and one of the two aromatic hydrocarbon rings in the partial structure represented by any of the above formulas (i-1) to (i-3). It is considered that the charge is efficiently transferred from the main chain to the side chain R by conjugating with the nitrogen atom (B) to which * 1 is attached.
  • the Mulliken charge is a charge obtained from the electron density distribution calculated by the molecular orbital calculation, and the larger the absolute value of the charge, the easier it is to transfer the charge to the atom for which the charge is calculated.
  • the Mulliken charge can be obtained, for example, by calculating the most stable structure of the molecule to be calculated in the ground state under vacuum using B3LYP as a functional and 6-31G * as a basis function.
  • the molecular orbital calculation software used for the molecular orbital calculation for example, Gaussian09 (Revision C.01, MJ Frisch, etal, Gaussian, Inc., 2010.) manufactured by Gaussian Co., Ltd. in the United States can be used. be.
  • the means for calculating the molecular orbital is not limited to this.
  • the above R satisfies the relationship in which one of the two aromatic hydrocarbon rings in a specific aromatic amine structure is conjugated with the nitrogen atom (B).
  • the following (i), (ii) and the like can be mentioned.
  • One of the two aromatic hydrocarbon rings is coupled to the nitrogen atom (B) by directly bonding to the nitrogen atom (B).
  • One of the two aromatic hydrocarbon rings is conjugated with the nitrogen atom (B) via one aromatic hydrocarbon ring, so that one of the two aromatic hydrocarbon rings is a nitrogen atom. It is conjugated with (B).
  • the one aromatic hydrocarbon ring intervening in (ii) is not particularly limited as long as it is a divalent aromatic hydrocarbon ring, and examples thereof include a phenylene group.
  • the hydrogen atom of the phenylene group may be independently substituted with a hydroxy group, a halogen atom, or a monovalent organic group.
  • Examples of the monovalent organic group include -O-, -COO-, -CO-, -NHCO-, and -S- between carbon-carbon bonds in the monovalent hydrocarbon group and the monovalent hydrocarbon group.
  • examples thereof include a monovalent group having a functional group introduced therein. From the viewpoint of obtaining the effect of the present invention, one of the two aromatic hydrocarbon rings is directly bonded to the nitrogen atom (B), so that one of the two aromatic hydrocarbon rings is bonded to the nitrogen atom (B). It is preferably conjugated.
  • a monovalent organic group represented by any of the following formulas (r1) to (r3) is preferable. More preferred is a monovalent organic group represented by (r2).
  • R 1 and R 2 are hydrogen atoms or monovalent organic groups.
  • R 3 is a monovalent organic group. N represents an integer of 1 to 3. However, when n is 1, R 3 is an organic group having an aromatic hydrocarbon group directly bonded to the pyridine ring of the quinoline ring with * 2, and when n is 2 or 3, at least one of R 3 is attached with * 2. It is an organic group having an aromatic hydrocarbon group directly bonded to the pyridine ring of the quinoline ring.
  • the hydrogen atom in the above may be substituted with a hydroxy group, a halogen atom, or a monovalent organic group.
  • Examples of the monovalent organic group in R 1 , R 2 and R 3 include -O-, -COO- and -CO between the carbon-carbon bonds in the monovalent hydrocarbon group and the monovalent hydrocarbon group. Examples thereof include a monovalent group to which a functional group such as ⁇ , ⁇ NHCO ⁇ , —S—, —NH— is introduced, a monovalent aromatic heterocyclic group, and a protective group of an amino group.
  • the hydrogen atom bonded to the carbon atom of the hydrocarbon group and the aromatic heterocyclic group may be substituted with a halogen atom, a hydroxy group, or the like.
  • Examples of the monovalent aromatic heterocyclic group include a monovalent nitrogen-containing aromatic heterocyclic group such as a pyridyl group.
  • Examples of the organic group having an aromatic hydrocarbon group directly bonded to the pyridine ring of the quinoline ring with * 2 in R3 include aryl groups such as a phenyl group and a naphthyl group.
  • the aryl group may have a substituent. Examples of the substituent include -O-, -COO-, -CO-, -NHCO-, -S-, and -NH between carbon-carbon bonds in a monovalent hydrocarbon group and a monovalent hydrocarbon group.
  • Examples thereof include a monovalent group into which a functional group such as ⁇ is introduced, a monovalent aromatic heterocyclic group, and a protective group for an amino group.
  • Examples of the monovalent aromatic heterocyclic group include a monovalent nitrogen-containing aromatic heterocyclic group such as a pyridyl group.
  • Specific examples of the protective group for the amino group include, for example, a tert-butoxycarbonyl group, a benzyloxycarbonyl group, a 1,1-dimethyl-2-haloethyloxycarbonyl group, and a 1,1-dimethyl-2-cyanoethyloxycarbonyl group.
  • the monovalent organic group in which the hydrogen atom on the benzene ring may be replaced includes, for example, -O- and -COO- between carbon-carbon bonds in the monovalent hydrocarbon group and the monovalent hydrocarbon group.
  • -CO-, -NHCO-, -S- and other monovalent groups into which functional groups have been introduced can be mentioned.
  • Examples of the hydrocarbon group in the present specification include a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group.
  • Examples of the chain hydrocarbon group include an alkyl group having 1 to 30 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group and a hexyl group; and an ethenyl group, a propenyl group, a butenyl group and the like having 2 to 30 carbon atoms.
  • 30 alkenyl groups; alkynyl groups having 2 to 30 carbon atoms such as ethynyl groups and propynyl groups can be mentioned, and these may be linear or branched.
  • Examples of the alicyclic hydrocarbon group include a cyclopentyl group and a cyclohexyl group; and examples of the aromatic hydrocarbon group include a phenyl group, a trill group, a benzyl group, a phenethyl group and the like.
  • the monovalent hydrocarbon group means a group obtained by removing one hydrogen atom from the above hydrocarbon group.
  • monovalent organic group represented by the above (r2) include monovalent organic groups represented by the following formulas (r2-1) to (r2-2).
  • the diamine (c) has a structure in which a partial structure represented by any of the above formulas (i-1) to (i-3) can be introduced into the main chain of the polymer (A).
  • a partial structure represented by any of the above formulas (i-1) to (i-3) can be introduced into the main chain of the polymer (A).
  • it has at least one or two or more of the partial structures represented by any of the above formulas (i-1) to (i-3). More specifically, it is preferably a compound represented by any of the following formulas (d1-1) to (d1-3).
  • n when n is 1, R is synonymous with R in the above formula (i-1), and when n is 2 or 3, n Rs are independent of each other.
  • the preferred embodiment of R is the same as R in the above formula (i-1).
  • R is the same as R in the above formulas (i-2) to (i-3).
  • R in (d1-2) to (d1-3) is the same as R in the above formulas (i-2) to (i-3).
  • L 2 and L 3 represent a single bond, -NR'-, -O-, -NR'-CO-, -CO-NR'-, -O-CO-, or -CO-O-, and
  • Specific examples of the monovalent organic group of R'in include the structures exemplified by R1 and R2 in the above formulas (r1) to (r2).
  • Ar 2 and Ar 3 represent an aromatic ring group.
  • aromatic ring group examples include a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a triazine ring, a pyrrole ring, an imidazole ring, a pyrazole ring, a quinoline ring, an isoquinoline ring, and a carbazole ring.
  • Examples thereof include a group obtained by removing two hydrogen atoms from the ring portion of an aromatic ring such as a ring, a benzoimidazole ring, an indole ring, a quinoxaline ring, and an aclysine ring.
  • the hydrogen atom on the aromatic ring may be replaced with a hydroxy group, a halogen atom, an alkyl group having 1 to 5 carbon atoms, or an alkoxy group having 1 to 5 carbon atoms.
  • a benzene ring, a naphthalene ring, an anthracene ring, a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, and a carbazole ring are more preferable.
  • the n m2s may be the same or different.
  • the two or more Ar 2s when there are two or more Ar 2s , the two or more Ar 2s may be the same or different.
  • the two or more L 2s when there are two or more L 2s , the two or more L 2s may be the same or different.
  • two or more Ar 3s may be the same or different.
  • two or more L3s may be the same or different.
  • the diamine (c) is a monovalent organic group in which R in the formula (d1-1) is represented by the above formula (r2) when n is 1 in the above formula (d1-1).
  • R in the formula (d1-1) is represented by the above formula (r2) when n is 1 in the above formula (d1-1).
  • n is 2 or 3
  • the n Rs in the above formula (d1-1) are independently represented by a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or the above formula (r2). It represents a monovalent organic group represented, and it is preferable that at least one of n R represents a monovalent organic group represented by the above formula (r2), and the above formulas (d1-2) to (d1) are preferable.
  • R in the above formulas (d1-2) to (d1-3) is a monovalent organic group represented by the above formula (r2). More preferably, the diamine (c) has an orbital coefficient of the nitrogen atom (A) of the above formula (r2) in the highest occupied molecular orbital described later, which is less than 0.01.
  • the liquid crystal alignment film may be required to have higher transparency than ever before.
  • a method for making the liquid crystal alignment film highly transparent making arylamine a tertiary structure (International Publication No. 2020/166623) and introducing a linear metaarylene structure (International Publication No. 2019/093037). Gazette) has been proposed.
  • the method for changing the structure in the main chain direction as described in International Publication No. 2019/093037 is compared with the techniques described in Patent Documents 1 to 3. There is a demerit that the relaxation characteristic of the accumulated charge is deteriorated. Further, although the method described in International Publication No.
  • the orbital coefficient of the nitrogen atom (A) in the highest occupied molecular orbital is less than 0.01. It is preferable to have. Further, this orbital coefficient is more preferably less than 0.005, and even more preferably less than 0.0025. With such a configuration, the absorption intensity derived from the nitrogen atom (A) on the conjugated side chain R is suppressed, so that the effect of increasing the transmittance of the resin film obtained from the polymer composition is obtained.
  • the orbital coefficient can be obtained from the electron density distribution of the target molecule when the structure is optimized obtained by the molecular orbital calculation for the target molecule (for example, diamine (c)).
  • the orbital coefficient is derived using B3LYP as a functional and 6-31G * as a basis function in the molecular orbital calculation for structural optimization and electron density analysis.
  • the software for calculating the molecular orbital for example, Gaussian09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian Co., Ltd. in the United States can be used.
  • the means for calculating the molecular orbital is not limited to this.
  • the orbital coefficient of the nitrogen atom is the sum of the squares of the expansion coefficients of the corresponding nitrogen atom among the orbital coefficients of HOMO of the target molecule.
  • the method for calculating the orbital coefficient of the atom to be calculated in the highest occupied molecular orbital is shown below.
  • the i-th molecular orbital ⁇ i is developed as follows.
  • ⁇ i represents the i-th molecular orbital
  • C ⁇ i represents the expansion coefficient
  • ⁇ ⁇ represents the basis function
  • K represents the total number of basis functions.
  • 6-31G * basis functions 2 basis functions are used for the 1st period element and 15 basis functions are used for the 2nd period element.
  • the orbital coefficient of the nitrogen atom of HOMO is C HOMO
  • N C HOMO
  • N can be calculated by the following equation.
  • C HOMO and N on the left side are orbital coefficients
  • C ⁇ , HOMO and N on the right side are referred to as expansion coefficients for convenience.
  • 15 expansion coefficients of the basis function of the nitrogen atom of interest are squared and added up to obtain the orbital coefficients C HOMO, N of the nitrogen atom. Be done.
  • the diamine (c) is preferably a compound represented by any of the following formulas (d-1) to (d-8) from the viewpoint of obtaining the effect of the present invention.
  • the orbital coefficients of each compound are d-1 (0.0023), d-3 (0.0018), d-4 (0.0016), d-5 (0.0009), and d-6 (0). .0013), d-7 (0.0018), d-8 (0.0007).
  • the polymer (A) is a polyimide precursor (hereinafter, also referred to as a polyimide precursor (A))
  • the polymer (A) is a diamine component containing the diamine (c) and a tetracarboxylic acid derivative. It can be obtained by a polymerization reaction with a component.
  • the polymer (A) is a monovalent organic group in which R in the formula (d1-1) is represented by the above formula (r2) when n is 1 in the above formula (d1-1).
  • the compound represented and n are 2 or 3
  • the n Rs in the above formula (d1-1) are independently a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, or the above formula (r2).
  • n R is a compound representing a monovalent organic group represented by the above formula (r2), and the above formulas (d1-2) to (.
  • d1-3 at least one compound selected from the group consisting of compounds in which R in the formulas (d1-2) to (d1-3) is a monovalent organic group represented by the above formula (r2).
  • a polyimide precursor that can be obtained by a polymerization reaction of a diamine compound containing a above and a tetracarboxylic acid derivative component is preferable.
  • the orbital coefficient of the nitrogen atom of the carbazole skeleton of the above formula (r2) in the highest occupied molecular orbital is less than 0.01. More preferably, a polymerization reaction between a diamine component containing at least one compound selected from the group consisting of compounds represented by any of the above formulas (d-1) to (d-8) and a tetracarboxylic acid derivative component.
  • the polyimide precursor that can be obtained from the above is preferable.
  • the amount of the diamine (c) used is preferably 1 to 100 mol%, more preferably 1 to 99 mol%, and 5 to 95 mol% with respect to the diamine component to be reacted with the tetracarboxylic acid derivative component. % Is more preferable.
  • the diamine component used in the production of the polyimide precursor (A) may contain a diamine other than the diamine (c) (hereinafter, also referred to as other diamines). Examples of other diamines are given below, but the present invention is not limited thereto.
  • Carbazole N-methyl-3,6-diaminocarbazole, N-ethyl-3,6-diaminocarbazole, N-phenyl-3,6-diaminocarbazole, 1,4-bis- (4-aminophenyl) -piperazine, 3,6-Diaminoacridin, diamine represented by the following formulas (Dp-1) to (Dp-8), diamine represented by the following formulas (z-1) to (z-28); 2,4- Diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol; 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3 , 5-Diaminobenzoic acid and diamines having a carboxy group such as diamine compounds represented by the following formulas (3b-1) to (3b-4); 4- (2- (methylamino) eth
  • Diamine having a polymerizable group at the end Diamine having a polymerizable group at the end; the following formula (Ra-1) Diamine having a radical initiation function such as (Ra-5), diamine having a photosensitizing function showing a sensitizing effect by irradiation with light such as 9,9-bis (4-aminophenyl) fluorene; cholestanyloxy-3.
  • Ra-1 Diamine having a radical initiation function such as (Ra-5), diamine having a photosensitizing function showing a sensitizing effect by irradiation with light such as 9,9-bis (4-aminophenyl) fluorene; cholestanyloxy-3.
  • Diamines having a siloxane bond such as (3-aminopropyl) -tetramethyldisiloxane; diamines having an oxazoline ring structure such as the following formulas (Ox-1) to (Ox-2), the following formulas (5-1) to (The radical "-N (D)-" represented by 5-10) (D represents a protective radical that is desorbed by heating and replaced with a hydrogen atom, and is preferably a tert-butoxycarbonyl group. ), A diamine represented by the following formula (2) or formula (2i), or a group represented by any of the formulas (Y-1) to (Y-167) described in WO2018 / 117239. Examples include diamines in which two amino groups are bonded.
  • a 1 is a single bond, -CH 2- , -C 2 H 4- , -C (CH 3 ) 2- , -CF 2- , -C (CF 3 ) 2- , -O-, -CO-, -NH-, -N (CH 3 )-, -CONH-, -NHCO-, -CH 2 O-, -OCH 2- , -COO-, -OCO-, -CON ( CH 3 )-or -N (CH 3 ) CO- is indicated, m1 and m2 independently indicate an integer of 0 to 4, and m1 + m2 indicates an integer of 1 to 4.
  • Equation (3b-2) In the formula (3b-3), A 2 represents a linear or branched alkyl group having 1 to 5 carbon atoms, and m5 represents 1 to 5 in the formula (3b-3).
  • equation (3b- 4 ) A3 and A4 are independently single-bonded, -CH 2- , -C 2 H 4- , -C (CH 3 ) 2- , -CF.
  • X v1 to X v4 and X p1 to X p2 are independently each of-(CH 2 ) a- (a is an integer of 1 to 15). ), -CONH-, -NHCO-, -CON (CH 3 )-, -NH-, -O-, -CH 2 O-, -CH 2 OCO-, -COO-, or -OCO- , X v5 represents -O-, -CH 2 O-, -CH 2 OCO-, -COO-, or -OCO-.
  • X a represents a single bond, -O-, -NH-, -O- ( CH 2 ) m -O- (m represents an integer of 1 to 6), -C (CH 3 ) 2- , -CO-,-(CH 2 ) m- , -SO 2- , -OC (CH 3 ) 2- , -CO- (CH 2 ) m- (m represents an integer of 1 to 6), -NH- (CH 2 ) m- (m represents an integer of 1 to 6) , -SO 2- (CH 2 ) m- (m represents an integer of 1 to 6), -CONH- (CH 2 ) m- (m represents an integer of 1 to 6), -CONH- (m represents an integer of 1 to 6) CH 2 ) m -NHCO- (m represents an integer of 1 to 6), -COO- (CH 2 ) m -OCO- (m represents an integer of 1 to 6), -CONH-, -NH -
  • R v1 to R v4 , and R 1a to R 1b independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkoxyalkyl group having 2 to 20 carbon atoms, respectively.
  • Y 2 represents a divalent organic group represented by the following formula (O).
  • R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Y 2i is represented by the following formula (O').
  • Ar represents a divalent benzene ring, a biphenyl structure, or a naphthalene ring.
  • Two Ars may be the same or different, and any hydrogen atom on the benzene ring or naphthalene ring of Ar is a monovalent substituent. May be replaced with p is an integer of 0 or 1.
  • Q 2 is-(CH 2 ) n- (n is an integer of 2-18) or-(CH 2 ) n- .
  • Examples of the substituent of the benzene ring or the naphthalene ring in the above formulas (O) and (O') include a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and 1 carbon number.
  • An alkoxy group having 10 to 10 a fluoroalkyl group having 1 to 10 carbon atoms, a fluoroalkenyl group having 2 to 10 carbon atoms, a fluoroalkoxy group having 1 to 10 carbon atoms, a carboxy group, a hydroxy group, and an alkyloxy group having 1 to 10 carbon atoms.
  • Examples thereof include a carbonyl group, a cyano group and a nitro group.
  • the diamine represented by the above formula (2) or the formula (2i) is p-phenylenediamine or m-phenylenediamine from the viewpoint of enhancing the liquid crystal orientation of the liquid crystal alignment film when the polymer composition is used as the liquid crystal aligning agent.
  • '-Diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, diamine having a carboxy group, diamine having a urea bond, diamine having an amide bond, diamine represented by the above formulas (Dp-1) to (Dp-8), Diamines represented by the above formulas (z-1) to (z-28) are preferable.
  • the amount of the other diamines used is preferably 1 to 99 mol%, more preferably 5 to 95, based on the total diamine components used. It is mol%.
  • the tetracarboxylic acid derivative component to be reacted with the diamine component is not only tetracarboxylic acid dianhydride, but also tetracarboxylic acid dihalide, tetracarboxylic acid dialkyl ester, or tetracarboxylic acid dialkyl.
  • tetracarboxylic acid dianhydride such as ester dihalide can also be used.
  • the tetracarboxylic acid dianhydride or its derivatives include aromatic, aliphatic or alicyclic tetracarboxylic acid dianhydrides, or derivatives thereof.
  • the aromatic tetracarboxylic acid dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the aromatic ring.
  • Aliphatic tetracarboxylic acid dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups attached to a chain hydrocarbon structure. However, it does not have to be composed only of a chain hydrocarbon structure, and may have an alicyclic structure or an aromatic ring structure as a part thereof.
  • the alicyclic tetracarboxylic acid dianhydride is an acid dianhydride obtained by intramolecular dehydration of four carboxy groups including at least one carboxy group bonded to the alicyclic structure. However, none of these four carboxy groups are bonded to the aromatic ring. Further, it does not have to be composed only of an alicyclic structure, and may have a chain hydrocarbon structure or an aromatic ring structure as a part thereof.
  • the tetracarboxylic acid derivative component is an aliphatic or alicyclic tetracarboxylic acid dianhydride, or these, from the viewpoint that high permeability can be obtained and the relaxation property of accumulated charge is accelerated. It is preferable to use a derivative of. Above all, it is more preferable to contain a tetracarboxylic acid dianhydride having at least one partial structure selected from the group consisting of a cyclobutane ring structure, a cyclopentane ring structure and a cyclohexane ring structure, or a derivative thereof.
  • the amount used is preferably 1 mol% or more, more preferably 5 mol% or more, still more preferably 10 mol% or more, based on 1 mol of the total tetracarboxylic acid derivative component used.
  • the tetracarboxylic acid derivative contains an aliphatic or alicyclic tetracarboxylic acid dianhydride and a tetracarboxylic acid dianhydride other than these derivatives, or a derivative thereof
  • the upper limit thereof is 95 mol%.
  • the following is preferable, and 90 mol% or less is more preferable.
  • the tetracarboxylic acid dianhydride or a derivative thereof is preferably represented by the following formula (T).
  • X represents a structure selected from the group consisting of the following (x-1) to (x-13).
  • R 1 to R 4 are independently hydrogen atom, halogen atom, alkyl group having 1 to 6 carbon atoms, and alkenyl group having 2 to 6 carbon atoms, respectively.
  • R 5 and R 6 each independently represent a hydrogen atom or a methyl group.
  • j and k are integers of 0 or 1 and A 2 are independent, single bond, ether (-O-), carbonyl (-CO-), ester (-COO-), and phenylene, respectively.
  • * 1 is a bond that binds to one acid anhydride group
  • * 2 is a bond that binds to the other acid anhydride group.
  • the two A2s may be the same as or different from each other.
  • the tetracarboxylic acid dianhydride represented by the above formula (T) or a derivative thereof can obtain a high transmittance, and X is (x-1) from the viewpoint of accelerating the relaxation property of the accumulated charge. ) To (x-11) are preferable, and those selected from (x-1) to (x-7) are more preferable. Further, from the viewpoint of speeding up the relaxation characteristics of the accumulated charge, those selected from (x-11) to (x-13) are preferable.
  • the ratio of the tetracarboxylic acid dianhydride or its derivative represented by the above formula (T) is preferably 1 mol% or more, preferably 5 mol% or more, based on 1 mol of the total tetracarboxylic acid derivative component used. More preferably, 10 mol% or more is further preferable.
  • the tetracarboxylic acid dianhydride and its derivative used for producing the polyimide precursor (A) may contain a tetracarboxylic acid dianhydride other than the above formula (T) or a derivative thereof.
  • the polyamic acid which is a polyimide precursor, is produced, for example, by reacting the diamine component with a tetracarboxylic acid dianhydride in a solvent (condensation polypolymerization).
  • the solvent is not particularly limited as long as it dissolves the produced polymer. Specific examples of the above solvent include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, and 1,3-dimethyl. -2-imidazolidinone.
  • the polymer has high solvent solubility, use methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3].
  • the indicated solvent can be used.
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms
  • the reaction can be carried out at any concentration, preferably 1 to 50% by mass, more preferably 5 to 30% by mass. ..
  • the initial reaction can be carried out at a high concentration and then the solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid dianhydride is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the produced polymer.
  • the polyamic acid ester which is a polyimide precursor is, for example, [I] a method of reacting a polyamic acid obtained by the above synthetic reaction with an esterifying agent, [II] a method of reacting a tetracarboxylic acid diester with a diamine, [II]. III] It can be obtained by a known method such as a method of reacting a tetracarboxylic acid diester dihalide with a diamine.
  • the polyimide used in the polymer composition of the present invention is a polyimide obtained by ring-closing the polyimide precursor (A).
  • the ring closure rate of the amic acid group ratio of ring-closed repeating units to all repeating units of the polyimide precursor, also called imidization rate
  • the ring closure rate of the amic acid group does not necessarily have to be 100%, depending on the application and purpose. It can be adjusted arbitrarily.
  • Examples of the method of imidizing the polyimide precursor to obtain polyimide include thermal imidization in which the solution of the polyimide precursor is heated as it is, or catalytic imidization in which a catalyst is added to the solution of the polyimide precursor.
  • the temperature at which the polyimide precursor is thermally imidized in a solution is usually 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to remove the water generated by the imidization reaction from the system.
  • the catalytic imidization of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyimide precursor and stirring at -20 ° C to 250 ° C, preferably 0 to 180 ° C. can.
  • the amount of the basic catalyst is usually 0.5 to 30 mol times, preferably 2 to 20 mol times
  • the amount of the acid anhydride is usually 1 to 50 mol times, preferably 3 to 3 times the amid acid group. It is 30 mol times.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like, and among them, acetic anhydride is preferable because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, and the reaction time.
  • the reaction solution may be added to a solvent for precipitation.
  • the solvent used for precipitation include methanol, ethanol, isopropyl alcohol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, toluene, benzene, water and the like.
  • the polymer put into a solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure.
  • impurities in the polymer can be reduced.
  • the solvent at this time include alcohols, ketones and hydrocarbons. It is preferable to use three or more kinds of solvents selected from these because the efficiency of purification is further improved.
  • the polyimide precursor (A) obtained as described above and the polyimide as an imide compound thereof preferably have a solution viscosity of 10 to 800 mPa ⁇ s when prepared as a solution having a concentration of 10% by mass. It is more preferable that the solution has a viscosity of 15 to 500 mPa ⁇ s.
  • the solution viscosity (mPa ⁇ s) of the polyimide precursor (A) and its imide compound, polyimide was prepared by using a good solvent (for example, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, etc.) of these polymers. It is a value measured at 25 ° C. using an E-type rotational viscosity meter with respect to the polymer solution having a concentration of 10% by mass.
  • the polymer (A) in the present invention may be a terminal-sealed polymer by using an appropriate end-sealing agent together with the tetracarboxylic acid derivative component and the diamine component in the production thereof.
  • the end-sealed polymer has the effects of improving the film hardness of the obtained resin film and improving the adhesion characteristics between the sealant and the resin film.
  • Examples of the terminal of the polymer (A) in the present invention include an amino group, a carboxy group, an acid anhydride group or a derivative thereof.
  • An amino group, a carboxy group, an acid anhydride group or a derivative thereof can be obtained by a usual condensation reaction or the following terminal encapsulant, and the derivative can be obtained, for example, by using the following terminal encapsulant. be able to.
  • terminal encapsulant examples include acetic anhydride, maleic anhydride, nagic anhydride, phthalic anhydride, itaconic anhydride, 1,2-cyclohexanedicarboxylic acid anhydride, 3-hydroxyphthalic anhydride, and trimellitic acid anhydride.
  • Dicarbonate diester compounds such as di-tert-butyl dicarbonate and diallyl dicarbonate; chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chloride and nicotinic acid chloride; aniline, 2-aminophenol, 3-aminophenol, 4-aminosalicylic acid, 5-Aminosalicylic acid, 6-aminosalicylic acid, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, cyclohexylamine, n-butylamine, n-pentylamine, n-hexylamine, n-heptylamine, Monoamine compounds such as n-octylamine; monoisocyanate compounds such as ethyl isocyanate, phenylisocyanate and naphthylisocyanate can be mentioned.
  • chlorocarbonyl compounds such as acryloyl chloride, methacryloyl chlor
  • the ratio of the terminal encapsulant to be used is preferably 0.01 to 20 mol parts, more preferably 0.01 to 10 mol parts, based on 100 mol parts of the total diamine component used.
  • the polymer composition of the present invention may contain other polymers other than the polymer (A).
  • other polymers include a polyimide precursor obtained by using a tetracarboxylic acid derivative component and the diamine component that does not contain the diamine (c), a polyimide that is an imidized product of the polyimide precursor, and poly.
  • Examples thereof include polymers selected from the group consisting of poly (styrene-phenylmaleimide) derivatives and poly (meth) acrylates.
  • Specific examples of the polyimide precursor include polyamic acid and polyamic acid ester.
  • other polymers one kind may be used alone, or two or more kinds may be used in combination.
  • the content ratio of the other polymers is preferably 90 parts by mass or less, more preferably 10 to 90 parts by mass, and 20 to 80 parts by mass with respect to 100 parts by mass of the total amount of the polymers contained in the polymer composition. More preferred.
  • the polymer composition according to the present invention is preferably a liquid composition in which the polymer (A) is dissolved or dispersed in an organic solvent.
  • the organic solvent contained in the polymer composition is not particularly limited as long as the polymer component is uniformly dissolved, but is N, N-dimethylformamide, N, N-dimethylacetamide, N.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide or ⁇ -butyrolactone are preferable.
  • the content of the good solvent is preferably 20 to 99% by mass, more preferably 20 to 90% by mass, and particularly preferably 30 to 80% by mass based on the total amount of the solvent contained in the polymer composition.
  • a solvent for improving the coatability when the polymer composition is applied and the surface smoothness of the coating film is used in combination. It is preferable to use the mixed solvent. Specific examples of the poor solvent used in combination are described below, but the present invention is not limited thereto.
  • the content of the poor solvent is preferably 1 to 80% by mass, more preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass, based on the total amount of the solvent contained in the polymer composition.
  • the type and content of the poor solvent are appropriately selected according to the liquid crystal alignment agent coating device, coating conditions, coating environment, and the like.
  • diisopropyl ether diisobutyl ether, diisobutylcarbinol (2,6-dimethyl-4-heptanol)
  • ethylene glycol dimethyl ether ethylene glycol diethyl ether
  • ethylene glycol dibutyl ether 1,2-dibutoxyetan
  • diethylene glycol dimethyl ether diethylene glycol diethyl.
  • Ether 4-hydroxy-4-methyl-2-pentanone, diethylene glycol methyl ethyl ether, diethylene glycol dibutyl ether, 3-ethoxybutyl acetate, 1-methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, Ethylene glycol monoacetate, ethylene glycol diacetate, propylene carbonate, ethylene carbonate, ethylene glycol monobutyl ether, ethylene glycol monoisoamyl ether, ethylene glycol monohexyl ether, propylene glycol monobutyl ether, 1- (2-butoxyethoxy) -2 -Propanol, 2- (2-butoxyethoxy) -1-propanol, propylene glycol monomethyl ether acetate, propylene glycol diacetate, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol dimethyl ether
  • diisobutylcarbinol diisobutylcarbinol, propylene glycol monobutyl ether, propylene glycol diacetate, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol dimethyl ether, 4-hydroxy-4-methyl-2-pentanone, ethylene glycol monobutyl ether, ethylene.
  • Glycol monobutyl ether acetate or diisobutyl ketone is preferred.
  • Preferred solvent combinations of good and poor solvents include N-methyl-2-pyrrolidone and ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone and ⁇ -butyrolactone and ethylene glycol monobutyl ether, and N-methyl-2-.
  • the polymer composition of the present invention may additionally contain a component other than the polymer component and the organic solvent (hereinafter, also referred to as an additive component).
  • additive components include a crosslinkable compound having at least one substituent selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a blocked isocyanate group, a hydroxy group and an alkoxy group, and a non-polymerizable compound.
  • crosslinkable compound examples include compounds represented by any of the following formulas (CL-1) to (CL-11).
  • Examples of the compound for adjusting the dielectric constant and the electric resistance of the resin film include monoamines having a nitrogen-containing aromatic heterocycle such as 3-picorylamine.
  • a monoamine having a nitrogen-containing aromatic heterocycle is used, it is preferably 0.1 to 30 parts by mass, more preferably 0.1 parts by mass, based on 100 parts by mass of the polymer component contained in the polymer composition. ⁇ 20 parts by mass.
  • Preferred specific examples of the functional silane compound are 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyldiethoxymethylsilane, 2-aminopropyltrimethoxysilane, and 2-aminopropyltriethoxysilane.
  • the solid content concentration in the polymer composition (the ratio of the total mass of the components other than the solvent of the polymer composition to the total mass of the polymer composition) is appropriately selected in consideration of viscosity, volatility and the like. , Preferably in the range of 1 to 10% by mass. That is, the polymer composition is applied to the surface of the substrate as described later, and preferably heated to form a resin film.
  • the range of particularly preferable solid content concentration differs depending on the method used when applying the polymer composition to the substrate.
  • the solid content concentration is in the range of 1.5 to 4.5% by mass.
  • the solid content concentration is in the range of 3 to 9% by mass, and the solution viscosity is in the range of 12 to 50 mPa ⁇ s.
  • the inkjet method it is particularly preferable to set the solid content concentration in the range of 1 to 5% by mass and thereby the solution viscosity in the range of 3 to 15 mPa ⁇ s.
  • the temperature at which the polymer composition is prepared is preferably 10 to 50 ° C, more preferably 20 to 30 ° C.
  • the polymer composition described above can be applied, for example, on a substrate, and preferably by heat treatment to volatilize the solvent component to form a resin film.
  • the polymer composition and resin film according to the present invention can be effectively applied to various technical applications, for example, alignment film material, electronic circuit material, semiconductor material, electrical insulating material, electric wire coating material, lighting application, molding. It can be applied to various uses such as materials. Specifically, it can be applied to various resin films provided in display elements, semiconductor elements, actuators such as motors, various sensors such as piezoelectric sensors and charcoal sensors, and liquid crystal alignment films, protective films, spacer films, and interlayer insulation. Examples include a film, an antireflection film, a wiring coating film, an antistatic film, an electric motor insulating film, and the like.
  • the polymer composition according to the present invention can be preferably applied as a liquid crystal alignment agent.
  • the liquid crystal alignment agent according to the present invention contains the above polymer (A). Further, it is preferable to contain at least one of other polymers, organic solvents and additive components.
  • the description of the polymer composition can be applied to the details of the polymer (A), other polymers, organic solvents, specific examples of additive components, blending ratios, solid content concentrations, and the like.
  • the liquid crystal display element according to the present invention includes a liquid crystal alignment film formed by using the polymer composition or the liquid crystal alignment agent.
  • the operation mode of the liquid crystal display element according to the present invention is not particularly limited, and is, for example, TN type, STN (Super Twisted Nematic) type, vertical alignment type (including VA-MVA type, VA-PVA type, etc.), and in-plane switching. It can be applied to various operation modes such as a type (IPS type), an FFS type, and an optical compensation bend type (OCB type).
  • the liquid crystal display element of the present invention is, for example, a method including the following steps (1) to (4), a method including steps (1) to (2) and (4), steps (1) to (3), (4). It can be produced by a method including -2) and (4-4) or a method including steps (1) to (3), (4-3) and (4-4).
  • the step (1) is a step of applying the liquid crystal alignment agent of the present invention on the substrate.
  • Specific examples of the step (1) are as follows.
  • the liquid crystal alignment agent of the present invention is applied to one surface of a substrate provided with a patterned transparent conductive film by an appropriate coating method such as a roll coater method, a spin coating method, a printing method, or an inkjet method.
  • the substrate is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with the glass substrate and the silicon nitride substrate.
  • the reflective liquid crystal display element if only one side of the substrate is used, an opaque object such as a silicon wafer can be used, and in this case, a material that reflects light such as aluminum can also be used for the electrode.
  • a substrate provided with an electrode made of a transparent conductive film or a metal film patterned in a comb tooth shape and a facing substrate not provided with an electrode are used.
  • Examples of the method of applying the liquid crystal alignment agent to the substrate to form a film include screen printing, offset printing, flexographic printing, inkjet method, spray method and the like. Among them, the coating and film forming methods by the inkjet method can be preferably used.
  • the step (2) is a step of firing the liquid crystal alignment agent applied on the substrate to form a film.
  • Specific examples of the step (2) are as follows. After applying the liquid crystal aligning agent on the substrate in the step (1), the solvent is evaporated by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven, or a polyamic acid or a polyamic acid ester is used. Thermal imidization can be performed.
  • the drying and firing steps after applying the liquid crystal alignment agent of the present invention can be performed at any temperature and time, and may be performed a plurality of times.
  • the temperature for reducing the solvent of the liquid crystal alignment agent can be, for example, 40 to 180 ° C.
  • the firing time is not particularly limited, and examples thereof include 1 to 10 minutes or 1 to 5 minutes.
  • a step of firing in a temperature range of, for example, 150 to 300 ° C. or 150 to 250 ° C. may be added after the above steps.
  • the firing time is not particularly limited, and examples thereof include a firing time of 5 to 40 minutes or 5 to 30 minutes. If the film-like material after firing is too thin, the reliability of the liquid crystal display element may decrease, so 5 to 300 nm is preferable, and 10 to 200 nm is more preferable.
  • the step (3) is, in some cases, a step of orienting the film obtained in the step (2). That is, in a horizontally oriented liquid crystal display element such as an IPS system or an FFS system, an alignment ability imparting process is performed on the coating film. On the other hand, in a vertically oriented liquid crystal display element such as a VA method or a PSA mode, the formed coating film can be used as it is as a liquid crystal alignment film, but the coating film may be subjected to an alignment ability imparting treatment. Examples of the liquid crystal alignment film alignment treatment method include a rubbing treatment method and a photoalignment treatment method.
  • the surface of the film-like material is irradiated with radiation deflected in a certain direction, and in some cases, heat treatment is performed at a temperature of 150 to 250 ° C. to achieve liquid crystal orientation (liquid crystal orientation).
  • heat treatment is performed at a temperature of 150 to 250 ° C. to achieve liquid crystal orientation (liquid crystal orientation).
  • the radiation ultraviolet rays having a wavelength of 100 to 800 nm or visible light can be used. Among them, ultraviolet rays having a wavelength of preferably 100 to 400 nm, more preferably 200 to 400 nm.
  • the irradiation amount of the above radiation is preferably 1 to 10,000 mJ / cm 2 . Of these, 100 to 5,000 mJ / cm 2 is preferable.
  • the substrate having the film-like substance may be irradiated while being heated at 50 to 250 ° C.
  • the liquid crystal alignment film thus produced can stably orient liquid crystal molecules in a certain direction.
  • the liquid crystal alignment film irradiated with polarized radiation can be contact-treated with water or a solvent, or the liquid crystal alignment film irradiated with radiation can be heat-treated.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves the decomposition product generated from the film-like substance by irradiation with radiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3-.
  • Examples thereof include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like.
  • water, 2-propanol, 1-methoxy-2-propanol or ethyl lactate is preferable, and water, 1-methoxy-2-propanol or ethyl lactate is more preferable from the viewpoint of versatility and solvent safety.
  • the solvent may be used alone or in combination of two or more.
  • the temperature of the heat treatment for the coating film irradiated with the above radiation is more preferably 50 to 300 ° C, further preferably 120 to 250 ° C.
  • the heat treatment time is preferably 1 to 30 minutes, respectively.
  • Step (4) Step of manufacturing a liquid crystal cell> Two substrates on which the liquid crystal alignment film is formed as described above are prepared, and the liquid crystal is arranged between the two substrates arranged opposite to each other. Specifically, the following two methods can be mentioned. In the first method, first, two substrates are arranged facing each other through a gap (cell gap) so that the liquid crystal alignment films face each other. Next, the two substrates are bonded to the peripheral portion using a sealant, and the liquid crystal composition is injected and filled into the surface of the substrate and the cell gap partitioned by the sealant to contact the film surface, and then the injection hole is sealed. Stop.
  • the second method is a method called an ODF (One Drop Fill) method.
  • ODF One Drop Fill
  • an ultraviolet light-curable sealant is applied to a predetermined place on one of the two substrates on which the liquid crystal alignment film is formed, and the liquid crystal composition is further applied to a predetermined number of places on the liquid crystal alignment film surface. Is dropped. Then, the other substrate is bonded so that the liquid crystal alignment film faces each other, and the liquid crystal composition is spread over the entire surface of the substrate and brought into contact with the film surface. Next, the entire surface of the substrate is irradiated with ultraviolet light to cure the sealant.
  • the two substrates are arranged so as to face each other so that the rubbing directions of the coating films are opposite to each other at a predetermined angle, for example, orthogonal or antiparallel.
  • the sealing agent for example, an epoxy resin containing a curing agent and aluminum oxide spheres as a spacer can be used.
  • the liquid crystal include a nematic liquid crystal and a smectic liquid crystal, and among them, the nematic liquid crystal is preferable.
  • the liquid crystal alignment agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and contains a polymerizable compound polymerized by at least one of active energy rays and heat between the pair of substrates.
  • a liquid crystal display element PSA type liquid crystal display element
  • the liquid crystal alignment agent of the present invention has a liquid crystal layer between a pair of substrates provided with electrodes, and a polymerizable group polymerized by at least one of active energy rays and heat between the pair of substrates. It is also preferably used for a liquid crystal display element (SC-PVA mode type liquid crystal display element) manufactured through a step of arranging a liquid crystal alignment film containing the liquid crystal alignment film and applying a voltage between the electrodes.
  • SC-PVA mode type liquid crystal display element SC-PVA mode type liquid crystal display element
  • the compound having a polymerizable group is a compound having one or more polymerizable unsaturated groups in the molecule such as an acrylate group and a methacrylate group represented by the above formulas (M-1) to (M-7).
  • the content thereof is preferably 0.1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of all the polymer components.
  • the above-mentioned polymerizable group may be contained in the polymer used for the liquid crystal aligning agent, and as such a polymer, for example, a diamine component containing a diamine having the above-mentioned photopolymerizable group at the end is used in the reaction. Examples thereof include the obtained polymer.
  • Step (4-4) Step of irradiating ultraviolet rays
  • the liquid crystal cell is irradiated with light in a state where a voltage is applied between the conductive films of the pair of substrates obtained in the above (4-2) or (4-3).
  • the voltage applied here can be, for example, a direct current or an alternating current of 5 to 50 V.
  • the light to be irradiated for example, ultraviolet rays containing light having a wavelength of 150 to 800 nm and visible light can be used, but ultraviolet rays containing light having a wavelength of 300 to 400 nm are preferable.
  • the light source of the irradiation light for example, a low pressure mercury lamp, a high pressure mercury lamp, a heavy hydrogen lamp, a metal halide lamp, an argon resonance lamp, a xenon lamp, an excima laser and the like can be used.
  • the irradiation amount of light is preferably 1,000 to 200,000 J / m 2 , and more preferably 1,000 to 100,000 J / m 2 .
  • a liquid crystal display element can be obtained by attaching a polarizing plate to the outer surface of the liquid crystal cell.
  • a polarizing plate attached to the outer surface of the liquid crystal cell a polarizing plate called an "H film" in which polyvinyl alcohol is stretched and oriented to absorb iodine is sandwiched between a cellulose acetate protective film or the H film itself.
  • a polarizing plate made of the above can be mentioned.
  • FIG. 1 is a schematic cross-sectional view showing an example of the liquid crystal display element of the present invention, and is an example of an IPS mode liquid crystal display element.
  • the liquid crystal 3 is sandwiched between the comb tooth electrode substrate 2 provided with the liquid crystal alignment film 2c and the opposed substrate 4 provided with the liquid crystal alignment film 4a.
  • the comb tooth electrode substrate 2 is formed on the base material 2a and the base material 2a so as to cover the plurality of linear electrodes 2b arranged in a comb tooth shape and the linear electrodes 2b on the base material 2a. It also has a liquid crystal alignment film 2c.
  • the facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2c is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4c is also the liquid crystal alignment film of the present invention.
  • the lateral electric field liquid crystal display element 1 when a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by the electric lines of force L.
  • FIG. 2 is a schematic cross-sectional view showing another example of the liquid crystal display element of the present invention, and is an example of an FFS mode liquid crystal display element.
  • the liquid crystal 3 is sandwiched between the comb tooth electrode substrate 2 provided with the liquid crystal alignment film 2h and the opposed substrate 4 provided with the liquid crystal alignment film 4a.
  • the comb tooth electrode substrate 2 is formed on the base material 2d, the surface electrode 2e formed on the base material 2d, the insulating film 2f formed on the surface electrode 2e, and the insulating film 2f, and has a comb tooth shape.
  • the facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2h is, for example, the liquid crystal alignment film of the present invention.
  • the liquid crystal alignment film 4a is also the liquid crystal alignment film of the present invention.
  • the lateral electric field liquid crystal display element 1 when a voltage is applied to the surface electrode 2e and the linear electrode 2g, an electric field is generated between the surface electrode 2e and the linear electrode 2g as shown by the electric lines of force L.
  • the liquid crystal display element of the present invention can be effectively applied to various devices, for example, a clock, a portable game, a word processor, a notebook computer, a car navigation system, a camcorder, a PDA, a digital camera, a mobile phone, a smartphone, and the like. It can be used for various display devices such as various monitors, liquid crystal televisions, and information displays.
  • the polymer composition contained in the liquid crystal alignment agent is a liquid crystal alignment film for a retardation film, a liquid crystal alignment film for a scanning antenna or a liquid crystal array antenna, or a liquid crystal alignment film for a transmission scattering type liquid crystal photochromic element. Alternatively, it can be used for other applications such as a protective film for a color filter, a gate insulating film for a flexible display, and a substrate material.
  • the compounds corresponding to the above-mentioned diamine (c) are the following diamines (WA-1) to (WA-15), (WB-1) to (WB-3), and (WD-5). Further, diamines (WB-4), (WC-1) to (WC-8), and (WD-1) to (WD-4) are comparative examples. Diamines (WA-16) to (WA-17) are reference examples. WA-1 to WA-17: Compounds represented by the following formulas (WA-1) to (WA-17), respectively.
  • WB-1 to WB-4 Compounds represented by the following formulas (WB-1) to (WB-4), respectively.
  • WC-1 to WC-8 Compounds represented by the following formulas (WC-1) to (WC-8), respectively.
  • WD-1 to WD-5 Compounds represented by the following formulas (WD-1) to (WD-5), respectively.
  • DA-1 to DA-2 Compounds represented by the following formulas (DA-1) to (DA-2), respectively.
  • CA-1 A compound represented by the following formula (CA-1)
  • the viscosity of the solution was measured at a temperature of 25 ° C. using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.) with a sample volume of 1.1 mL and a cone rotor TE-1 (1 ° 34', R24). did.
  • the Mulliken charge with an absolute value of less than 0.550 is determined to be "difficult to transfer charge from the main chain to the side chain R". did.
  • diamines WA-1 to WA-15, WB-1 to WB-3, and WD-5 having 2 or 3 aromatic rings directly connected to the target nitrogen atom are efficient from the main chain to the side chain R. It was determined that the charge was transferred.
  • * 1) The number of aromatic hydrocarbon rings satisfying at least one of the conditions (I) and (II).
  • WA-3 was synthesized according to the route shown below.
  • Tetrahydrofuran (THF) 100 g was added to WA-3a (4.74 g, 9.21 mmol), and Pd-C (palladium-carbon) (manufactured by NE Chemcat, 50% water-containing product) (0.970 g). )
  • Pd-C palladium-carbon
  • nitroreduction was performed at room temperature in a hydrogen atmosphere.
  • Pd-C was filtered by filtration, the crude product obtained by concentrating the filtrate was recrystallized from isopropyl alcohol, and the target product (WA-3) (3.52 g, 7.74 mmol) was a yellowish green solid. , Yield: 84.0%). From the results of 1 H-NMR shown below, it was confirmed that this solid was WA-3.
  • a polyamic acid solution (PAA-) having the viscosities shown in Table 2 is the same as in Comparative Synthesis Example 1 except that the types and amounts of the diamine compound and the tetracarboxylic acid dianhydride are changed as shown in Table 2 below. R2, PAA-S1, PAA-1 to PAA-2) were obtained, respectively.
  • Example 2 Comparative Examples 1 and 2, Reference Example 1
  • the liquid crystal alignment agents V-2 and VR shown in Table 3 were carried out in the same manner as in Example 1 except that the polyamic acid solution was changed to PAA-2, PAA-R1 to PAA-R2, or PAA-S1.
  • -1 to VR-2 and VS-1 were obtained.
  • a liquid crystal cell having a configuration of a Fringe Field Switching (FFS) mode liquid crystal display element was produced.
  • a substrate with electrodes was prepared.
  • a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm was used.
  • An ITO electrode having a solid pattern forming a counter electrode as a first layer is formed on the substrate, and CVD (chemical vapor deposition) as a second layer is formed on the counter electrode of the first layer.
  • a SiN (silicon nitride) film formed by the method was formed.
  • the SiN film of the second layer As the SiN film of the second layer, a film having a film thickness of 500 nm that functions as an interlayer insulating film was used. On the SiN film of the second layer, a comb-shaped pixel electrode formed by patterning an ITO film as a third layer is arranged, and two pixels, a first pixel and a second pixel, are formed. The size of each pixel was 10 mm in length and about 5 mm in width. At this time, the counter electrode of the first layer and the pixel electrode of the third layer were electrically insulated by the action of the SiN film of the second layer.
  • the pixel electrode of the third layer has a comb-teeth shape in which a plurality of electrode elements having a width of 3 ⁇ m in which the central portion is bent at an internal angle of 160 ° are arranged in parallel with an interval of 6 ⁇ m.
  • the pixel had a first region and a second region with a line connecting the bent portions of the plurality of electrode elements as a boundary.
  • the formation directions of the electrode elements of the pixel electrodes constituting them were different. That is, when the rubbing direction of the liquid crystal alignment film described later is used as a reference, the electrode elements of the pixel electrodes are formed so as to form an angle of 10 ° clockwise in the first region of the pixel, and the pixel electrodes are formed in the second region of the pixel.
  • the electrode elements of the above were formed so as to form an angle of 10 ° counterclockwise. That is, in the first region and the second region of each pixel, the directions of the rotational movement (inplane switching) of the liquid crystal in the substrate surface induced by the voltage application between the pixel electrode and the counter electrode are mutual. It was configured to be in the opposite direction.
  • the prepared substrate with electrodes and a columnar spacer having a height of 4 ⁇ m having an ITO film formed on the back surface were formed. It was applied to each of the glass substrates to be provided by spin coating. After drying on a hot plate at 80 ° C. for 2 minutes, firing was performed in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a polyimide film having a film thickness of 100 nm.
  • the liquid crystal cell produced above is placed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, and the pixel electrode and the counter electrode are short-circuited to have the same potential.
  • the LED backlight was irradiated from below, and the angle of the liquid crystal cell was adjusted so that the brightness of the transmitted light of the LED backlight measured on the two polarizing plates was minimized. This evaluation was performed under the temperature condition that the temperature of the liquid crystal cell was 23 ° C.
  • the VT curve (voltage-transmittance curve) was measured while applying an AC voltage having a frequency of 30 Hz to the liquid crystal cell, and the AC voltage having a relative transmittance of 23% was calculated as the drive voltage.
  • a rectangular wave of 20 mV was applied to the liquid crystal cell at 23 ° C. at a frequency of 1 kHz for 10 minutes.
  • a rectangular wave having a relative transmittance of 23% and a frequency of 30 Hz was applied for 5 minutes, and then a DC voltage of + 1.0 V was superimposed and driven for 30 minutes. After that, the DC voltage was turned off, and only a rectangular wave having a relative transmittance of 23% and a frequency of 30 Hz was applied for 30 minutes.
  • the relaxation characteristic of the stored charge is that the relative transmittance immediately after the DC voltage is superimposed exceeds 30%. It was evaluated by the time required to decrease from 30% to 30%. It can be said that the shorter this time is, the better the relaxation characteristic of the accumulated charge. Specifically, the time during which the relative transmittance decreased to 30% or less from the time when the application of the DC voltage was started until 30 minutes passed was quantified. " ⁇ " when the relative transmittance drops to 30% or less within 4 minutes, " ⁇ " when the relative transmittance drops to 30% or less within 8 minutes over 4 minutes, and 30 minutes over 8 minutes. When it decreased to 30% or less within, it was evaluated as " ⁇ ", and when the relative transmittance did not decrease to 30% or less within 30 minutes, it was evaluated as "x".
  • UV-3600 manufactured by Shimadzu Corporation
  • the transmittance was measured under the conditions of a temperature of 25 ° C. and a scan wavelength of 300 to 800 nm.
  • a quartz substrate on which nothing was applied to the reference was used.
  • the average transmittance of wavelengths of 400 to 800 nm was calculated, and the higher the transmittance, the better the transparency.
  • Table 4 below shows the evaluation results of the accumulated charge relaxation characteristics and optical characteristics carried out as described above for the liquid crystal display elements using the liquid crystal alignment agents of Examples 1 and 2, Comparative Examples 1 and 2, and Reference Example 1. Shown in.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent using diamine (c) having a specific aromatic amine structure is derived from the liquid crystal alignment agent using no diamine having a specific aromatic amine structure. It was found that the relaxation rate of the accumulated charge was increased while showing the same or higher transparency as compared with the obtained liquid crystal alignment film. Specifically, it is shown in the comparison between Example 1 and Example 2 and Comparative Example 1 shown in Table 4. The difference of 0.5% in the transmittance is a remarkable difference in the art.
  • the polymer composition of the present invention as a liquid crystal alignment agent, it is possible to obtain a liquid crystal display element having a high relaxation rate of accumulated charges and a small afterimage. Therefore, it can be expected to be used in liquid crystal display elements that require high display quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Liquid Crystal (AREA)

Abstract

式(i-1)~(i-3)のいずれかで表される部分構造を有し、部分構造からRを除いた構造を主鎖に有する重合体(A)、を含有する、重合体組成物。(Rは2つの芳香族炭化水素環と窒素原子(A)とを有する1価の有機基である。 1価の有機基において、2つの芳香族炭化水素環のそれぞれは、条件(I):芳香族炭化水素環の炭素原子の1つと窒素原子(A)とは直接結合している、及び、条件(II):窒素原子(A)が芳香族複素環に含まれている場合、芳香族炭化水素環と芳香族複素環とは縮合環を形成している、の少なくともいずれかを満たす。 2つの芳香族炭化水素環の1つは、*1が付された窒素原子(B)と共役している。 *は結合手を表す。)

Description

重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子
 本発明は、重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子に関する。
 液晶表示素子は、パソコン、携帯電話、スマートフォン、テレビ等の表示部として幅広く用いられている。液晶表示素子は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式等の縦電界方式や、IPS(In-Plane Switching)方式、FFS(Fringe Field Switching)方式等の横電界方式が知られている。基板の片側のみに電極を形成させ、基板と平行方向に電界を印加する横電界方式では、従来の上下基板に形成された電極に電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有し、また高品位な表示が可能な液晶表示素子として知られている。
 液晶表示素子などに用いられる液晶配向膜としては、ポリイミド系の樹脂膜が広く使用されている。このポリイミド系の液晶配向膜は、ポリアミド酸(ポリアミック酸ともいう)、ポリアミド酸エステル、ポリイミドなどの重合体と溶剤とを主成分とする液晶配向剤を基板に塗布することで作製されている。
 視野角特性に優れる横電界方式は、主に携帯電話やタブレット型の端末に広く採用されている。最近の急速に高精細化しているパネルでは、高い表示品位が重要視されており、所謂「残像現象」もしくは単に「残像」と称されるような表示不良に対するスペックも益々厳しいものとなっている。残像の一因として、駆動によって生じる正負非対称電圧の印加による液晶セル内の電荷蓄積が知られており、この蓄積を高速緩和化させる技術がいくつか提案されている(特許文献1~3)。
国際公開第2004/021076号公報 国際公開第2018/062440号公報 国際公開第2018/110354号公報
 しかしながら、蓄積電荷の緩和速度を速くさせる手法は多くは知られていない。
 本発明は、蓄積電荷の緩和速度が速く残像の少ない液晶表示素子を得ることができる液晶配向剤に好適な新規な重合体組成物を提供することを目的とする。
 本発明者は、鋭意研究を進めたところ、特定の配合組成の重合体組成物を用いて樹脂膜を形成することにより、上記課題を解決可能であることを見出し、本発明を完成するに至った。具体的には下記を要旨とするものである。
 下記式(i-1)~(i-3)のいずれかで表される部分構造を有する重合体(A)でありかつ前記部分構造からRを除いた構造を主鎖に有する重合体(A)、を含有する重合体組成物であって、
 前記重合体(A)が、下記式(i-1)~(i-3)のいずれかで表される部分構造を有するジアミン(c)を含むジアミン成分と、テトラカルボン酸誘導体成分とを反応させることにより得られる重合体である、重合体組成物。
Figure JPOXMLDOC01-appb-C000006
(前記式(i-1)~(i-3)中、Rは2つの芳香族炭化水素環と窒素原子(A)とを有する1価の有機基である。
 前記1価の有機基において、前記2つの芳香族炭化水素環のそれぞれは、下記条件(I)及び(II)の少なくともいずれかを満たす。
 条件(I):芳香族炭化水素環の炭素原子の1つと前記窒素原子(A)とは直接結合している。
 条件(II):前記窒素原子(A)が芳香族複素環に含まれている場合、芳香族炭化水素環と前記芳香族複素環とは縮合環を形成している。
 前記2つの芳香族炭化水素環の1つは、*1が付された窒素原子(B)と共役している。
 *は結合手を表す。)
 本発明によれば、蓄積電荷の緩和速度が速く残像の少ない液晶表示素子を得ることができる液晶配向剤に好適な新規な重合体組成物を提供することができる。
本発明の液晶表示素子の一例を示す概略断面図である。 本発明の液晶表示素子の他の例を示す概略断面図である。
 本明細書において、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
<重合体(A)>
 本発明の重合体組成物は、重合体(A)を含有する。
 上記重合体(A)は、下記式(i-1)~(i-3)のいずれかで表される部分構造を有する。
 また、上記重合体(A)は、上記部分構造からRを除いた構造を主鎖に有する。
 更に、上記重合体(A)は、下記式(i-1)~(i-3)のいずれかで表される部分構造を有するジアミン(c)を含むジアミン成分と、テトラカルボン酸成分とを反応させることにより得られる重合体である。
Figure JPOXMLDOC01-appb-C000007
(式(i-1)~(i-3)中、Rは2つの芳香族炭化水素環と窒素原子(A)とを有する1価の有機基である。
 1価の有機基において、当該2つの芳香族炭化水素環のそれぞれは、下記条件(I)及び(II)の少なくともいずれかを満たす。
 条件(I):芳香族炭化水素環の炭素原子の1つと窒素原子(A)とは直接結合している。
 条件(II):窒素原子(A)が芳香族複素環に含まれている場合、芳香族炭化水素環と当該芳香族複素環とは縮合環を形成している。
 当該2つの芳香族炭化水素環の1つは、*1が付された窒素原子(B)と共役している。
 *は結合手を表す。)
 なお、以下、条件(I)及び(II)の少なくともいずれかを満たす芳香族炭化水素と窒素原子(A)とからなる構造を、「特定の芳香族アミン構造」と称することがある。
 上記重合体(A)の主骨格としては、例えばポリアミック酸、ポリアミック酸エステルなどのポリイミド前駆体、該ポリイミド前駆体のイミド化合物であるポリイミド、ポリアミド及びポリウレアなどからなる骨格を挙げることができる。上記重合体(A)は、これらから選択される重合体の1種又は2種以上を重合体組成物の用途等に応じて適宜選択して用いることができる。重合体(A)の主骨格は、中でもポリアミック酸、ポリアミック酸エステル及びポリイミドよりなる群から選ばれる少なくとも一種であることが好ましい。
 本発明における重合体の「主鎖」とは、重合体のうち最も長い原子の連鎖からなる「幹」の部分をいう。したがって「式(i-1)~(i-3)のいずれかで表される部分構造からRを除いた構造を主鎖に有する」とは、当該部分構造からRを除いた構造が重合体の主鎖の一部分を構成することをいう。
 他方、本発明においてRは側鎖に該当する。そこで、以下、Rを側鎖Rということがある。
 ここで、本発明において、上記式(i-1)~(i-3)におけるRを規定する際の芳香族炭化水素環に関しては、単環(例:ベンゼン環)又は縮合環(例:ナフタレン環)の芳香族炭化水素環を指す。例えば、Rはビフェニル構造を有していてもよいが、Rがビフェニル構造を有する場合、Rを規定する際の芳香族炭化水素環においては、ビフェニル構造は2つの芳香族炭化水素環からなると考える。
 具体的には、Rが下記式(r2)で表される1価の有機基である場合において、*3が付された窒素原子が窒素原子(A)であるとき、*4が付されたベンゼン環、及び*5が付されたベンゼン環は一体となってビフェニル構造を構成しているとも考えられるが、本発明においては、*4が付されたベンゼン環、及び*5が付されたベンゼン環のそれぞれが、Rを規定する1つの芳香族炭化水素環に該当する。そのため、下記式(r2)で表される1価の有機基において、Rが芳香族炭化水素環ではない場合でも、下記式(r2)で表される1価の有機基は、2つの芳香族炭化水素環と窒素原子(A)とを有する1価の有機基であって、当該2つの芳香族炭化水素環のそれぞれは、上記条件(I)を満たしている。そのため、下記式(r2)で表される1価の有機基からRを除いた構造は特定の芳香族アミン構造に該当する。
Figure JPOXMLDOC01-appb-C000008
(Rは、水素原子又は1価の有機基である。*は窒素原子(B)との結合手を表す。)
 Rが有する2つの芳香族炭化水素環上の水素原子は、それぞれ独立してヒドロキシ基、ハロゲン原子、又は1価の有機基で置換されても良い。
 これらの中でも、本発明の効果を効率的に得る観点から、2つの芳香族炭化水素環は、それぞれ独立して、ベンゼン環、又はナフタレン環が好ましい。
 1価の有機基としては、例えば1価の炭化水素基、1価の炭化水素基における炭素-炭素結合間に-O-、-COO-、-CO-、-NHCO-、-S-等の官能基が導入されてなる1価の基等が挙げられる。
 上記式(i-1)~(i-3)におけるRが有する窒素原子の数は1又は2個以上であり、合成が容易である観点から、好ましくは1又は2~4個であり、更に好ましくは1又は2個である。また、Rの炭素数としては特に限定されないが、Rの好ましい炭素数は12~40であり、より好ましい炭素数は12~30である。
 上記式(i-1)~(i-3)においては、Rは3つ以上の芳香族炭化水素環を有していてもよい。その場合、3つ以上の芳香族炭化水素環の少なくとも2つが、上記条件(I)及び(II)の少なくともいずれかを満たしていればよい。そのようなRも、本発明における上記式(i-1)~(i-3)のRに該当する。
 Rが有する芳香族炭化水素環の数としては、特に限定されない。
 また、Rにおいては、2つの芳香族炭化水素環の1つのみが窒素原子(B)と共役しているのではなく、2つの芳香族炭化水素環の2つともが窒素原子(B)と共役していてもよい。
 上記式(i-1)~(i-3)のいずれかで表される部分構造においては、Rにおける2つの芳香族炭化水素環が上記条件(I)及び(II)の少なくともいずれかを満たすことと、当該2つの芳香族炭化水素環の1つが*1が付された窒素原子(B)と共役していることとにより、重合体(A)の主鎖から側鎖Rの特定の芳香族アミン構造の少なくとも一部までHOMO(最高被占分子軌道、Highest Occupied Molecular Orbital)が拡がりを持ち、主鎖上で発生または蓄積される電荷が効率的に側鎖R上の特定の芳香族アミン構造へと移動し、蓄積電荷の緩和特性が高速化するという効果を奏する。
 上記式(i-1)~(i-3)のいずれかで表される部分構造においてRにおける2つの芳香族炭化水素環が上記条件(I)及び(II)の少なくともいずれかを満たす場合、窒素原子(A)のMulliken電荷の絶対値が0.550以上となることを本発明者は見出した。そして、Mulliken電荷の絶対値が0.550以上であり、更に、上記式(i-1)~(i-3)のいずれかで表される部分構造において2つの芳香族炭化水素環の1つが*1が付された窒素原子(B)と共役していることにより、主鎖から側鎖Rへ効率的に電荷移動すると考えられる。
 ここで、Mulliken電荷は、分子軌道計算によって算出される電子密度分布から求められる電荷であり、電荷の絶対値が大きいほど、電荷の算出対象の原子への電荷移動がしやすいことを意味する。Mulliken電荷は、例えば、計算対象分子の真空下での基底状態における最安定構造を、汎関数としてB3LYP、基底関数として6-31G*を用いて計算することにより求めることができる。
 分子軌道計算に使用する分子軌道計算用ソフトウェアとしては、例えば、米国Gaussian社製のGaussian09(RevisionC.01,M.J.Frisch,etal,Gaussian,Inc.,2010.)を利用することが可能である。但し、分子軌道計算を行う手段は、これに制限されるものではない。
 上記Rは、特定の芳香族アミン構造における2つの芳香族炭化水素環の1つが窒素原子(B)と共役している関係を満たす。
 そのような関係を満たす一態様としては、例えば、以下の(i)、(ii)などが挙げられる。
 (i)当該2つの芳香族炭化水素環の1つが窒素原子(B)と直接結合することによって、当該2つの芳香族炭化水素環の1つが窒素原子(B)と共役している。
 (ii)当該2つの芳香族炭化水素環の1つが1つの芳香族炭化水素環を介して窒素原子(B)と共役していることによって、当該2つの芳香族炭化水素環の1つが窒素原子(B)と共役している。
 上記(ii)において介在する1つの芳香族炭化水素環としては、2価の芳香族炭化水素環であれば、特に限定されないが、例えば、フェニレン基などが挙げられる。当該フェニレン基の水素原子は、それぞれ独立してヒドロキシ基、ハロゲン原子、又は1価の有機基で置換されても良い。1価の有機基としては、例えば1価の炭化水素基、1価の炭化水素基における炭素-炭素結合間に-O-、-COO-、-CO-、-NHCO-、-S-等の官能基が導入されてなる1価の基等が挙げられる。
 本発明の効果を得る観点からは、当該2つの芳香族炭化水素環の1つが窒素原子(B)と直接結合することによって、当該2つの芳香族炭化水素環の1つが窒素原子(B)と共役していることが好ましい。
 上記式(i-1)~(i-3)におけるRとしては、下記式(r1)~(r3)のいずれかで表される1価の有機基が好ましい。より好ましいのは、(r2)で表される1価の有機基である。
Figure JPOXMLDOC01-appb-C000009
(R、Rは、水素原子又は1価の有機基である。Rは、1価の有機基である。nは、1~3の整数を表す。ただし、nが1の場合、Rは*2が付されたキノリン環のピリジン環に直接結合する芳香族炭化水素基を有する有機基であり、nが2又は3の場合、Rの少なくとも1つは*2が付されたキノリン環のピリジン環に直接結合する芳香族炭化水素基を有する有機基である。*は結合手を表し、式(r3)における*はキノリン環を構成するベンゼン環と結合する。ベンゼン環上の水素原子は、ヒドロキシ基、ハロゲン原子、又は1価の有機基で置換されていても良い。)
 上記R、R、及びRにおける1価の有機基としては、例えば1価の炭化水素基、1価の炭化水素基における炭素-炭素結合間に-O-、-COO-、-CO-、-NHCO-、-S-、-NH-等の官能基が導入されてなる1価の基、1価の芳香族複素環基、及びアミノ基の保護基などが挙げられる。なお、R、R、及びRにおいて、上記炭化水素基及び芳香族複素環基の炭素原子に結合する水素原子は、ハロゲン原子やヒドロキシ基等で置換されていてもよい。1価の芳香族複素環基としては、例えば、ピリジル基等の1価の含窒素芳香族複素環基が挙げられる。
 Rにおける、*2が付されたキノリン環のピリジン環に直接結合する芳香族炭化水素基を有する有機基としては、例えば、フェニル基、ナフチル基等のアリール基が挙げられる。アリール基は置換基を有していてもよい。当該置換基としては、例えば、1価の炭化水素基、1価の炭化水素基における炭素-炭素結合間に-O-、-COO-、-CO-、-NHCO-、-S-、-NH-等の官能基が導入されてなる1価の基、1価の芳香族複素環基、及びアミノ基の保護基などが挙げられる。1価の芳香族複素環基としては、例えば、ピリジル基等の1価の含窒素芳香族複素環基が挙げられる。
 上記アミノ基の保護基の具体例としては、例えばtert-ブトキシカルボニル基、ベンジルオキシカルボニル基、1,1-ジメチル-2-ハロエチルオキシカルボニル基、1,1-ジメチル-2-シアノエチルオキシカルボニル基、9-フルオレニルメチルオキシカルボニル基、アリルオキシカルボニル基、2-(トリメチルシリル)エトキシカルボニル基などが挙げられ、好ましくはtert-ブトキシカルボニル基である。
 また、ベンゼン環上の水素原子が置き換えられても良い1価の有機基としては、例えば1価の炭化水素基、1価の炭化水素基における炭素-炭素結合間に-O-、-COO-、-CO-、-NHCO-、-S-等の官能基が導入されてなる1価の基等が挙げられる。
 本明細書における炭化水素基としては、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が挙げられる。鎖状炭化水素基として、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等の炭素数1~30のアルキル基;エテニル基、プロペニル基、ブテニル基等の炭素数2~30のアルケニル基;エチニル基、プロピニル基等の炭素数2~30のアルキニル基などを挙げることができ、これらは直鎖状であっても分岐状であってもよい。また、脂環式炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基などを;芳香族炭化水素基としては、例えばフェニル基、トリル基、ベンジル基、フェネチル基などを;それぞれ挙げることができる。1価の炭化水素基とは、上記炭化水素基から水素原子を一つ除いた基を意味する。
 上記(r2)で表される1価の有機基の具体例を挙げると、下記式(r2-1)~(r2-2)で表される1価の有機基を挙げることができる。
Figure JPOXMLDOC01-appb-C000010
<ジアミン(c)>
 ジアミン(c)は、上記式(i-1)~(i-3)のいずれかで表される部分構造を重合体(A)の主鎖中に導入可能な構造を有していることが好ましく、上記式(i-1)~(i-3)のいずれかで表される部分構造の少なくともいずれかを1又は2以上有する。より具体的には、下記式(d1-1)~(d1-3)のいずれかで表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(d1-1)において、nが1である場合、Rは上記式(i-1)におけるRと同義であり、nが2又は3である場合、n個のRは、それぞれ独立して、水素原子、炭素数1~6の炭化水素基、又は上記式(i-1)におけるRと同じ1価の有機基を表し、n個のRの少なくとも一つは上記式(i-1)におけるRと同じ1価の有機基を表す。また、Rの少なくとも一つが上記式(i-1)におけるRと同じ1価の有機基である場合、Rの好ましい態様は、上記式(i-1)におけるRと同様である。
 式(d1-2)~(d1-3)において、Rは、上記式(i-2)~(i-3)におけるRと同じである。(d1-2)~(d1-3)におけるRの好ましい態様は、上記式(i-2)~(i-3)におけるRと同様である。
 L、及びLは、単結合、-NR’-、-O-、-NR’-CO-、-CO-NR’-、-O-CO-、又は-CO-O-を表し、R’は水素原子又は1価の有機基を表す。R’の1価の有機基の具体例としては、上記式(r1)~(r2)におけるR、Rで例示した構造が挙げられる。Ar、及びArは、芳香族環基を表す。該芳香族環基の具体例は、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、キノリン環、イソキノリン環、カルバゾール環、ベンゾイミダゾール環、インドール環、キノキサリン環、アクリジン環などの芳香族環の環部分から水素原子を2個取り除いた基が挙げられる。該芳香族環上の水素原子は、ヒドロキシ基、ハロゲン原子、炭素数1~5のアルキル基、又は炭素数1~5のアルコキシ基で置き換えられても良い。中でも、ベンゼン環、ナフタレン環、アントラセン環、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、カルバゾール環がより好ましい。
 式(d1-1)において、nが2又は3の場合、n個のm2は同じであってもよいし、異なっていてもよい。
 式(d1-2)において、Arが2つ以上ある場合、2つ以上のArは同じであってもよいし、異なっていてもよい。
 式(d1-2)において、Lが2つ以上ある場合、2つ以上のLは同じであってもよいし、異なっていてもよい。
 式(d1-3)において、2つ以上のArは同じであってもよいし、異なっていてもよい。
 式(d1-3)において、2つ以上のLは同じであってもよいし、異なっていてもよい。
 ジアミン(c)は、上記の中でも、上記式(d1-1)において、nが1である場合、式(d1-1)におけるRが上記式(r2)で表される1価の有機基を表し、nが2又は3である場合、上記式(d1-1)におけるn個のRは、それぞれ独立して、水素原子、炭素数1~6の炭化水素基、又は上記式(r2)で表される1価の有機基を表し、n個のRの少なくとも一つは上記式(r2)で表される1価の有機基を表す場合が好ましく、上記式(d1-2)~(d1-3)において、上記式(d1-2)~(d1-3)におけるRが上記式(r2)で表される1価の有機基である場合が好ましい。更に好ましくは、ジアミン(c)は、後述する最高被占分子軌道における上記式(r2)が有する窒素原子(A)の軌道係数が0.01未満であることが好ましい。
 液晶パネルの高精細化に伴い表示領域の面積が狭くなるため、液晶配向膜にはこれまで以上に高い透明性が求められる場合がある。液晶配向膜を高透明化させる方法として、アリールアミンを3級構造にすること(国際公開第2020/166623号公報)、直鎖状のメタアリーレン構造を導入すること(国際公開第2019/093037号公報)が提案されている。
 しかしながら、本発明者らが検討したところ、国際公開第2019/093037号公報に記載されるような主鎖方向の構造を変化させる手法は、特許文献1~特許文献3に記載の技術に比べると蓄積電荷の緩和特性が低下してしまうデメリットがある。また、国際公開第2020/166623号公報に記載される手法も有効ではあるが、蓄積電荷の緩和速度を高めつつ、高い透明性を得る観点で改善の余地があった。
 蓄積電荷の緩和速度を高めつつ、高い透明性を得るためには、本発明で用いるジアミン(c)において、更に、最高被占分子軌道における窒素原子(A)の軌道係数が0.01未満であることが好ましい。さらにこの軌道係数は0.005未満であることがより好ましく、0.0025未満であることがさらに好ましい。
 このような構成とすることで共役する側鎖R上の窒素原子(A)由来の吸収強度が抑制されるため、重合体組成物から得られる樹脂膜の透過率が高くなるという効果を奏する。ここで、軌道係数は、対象分子(例えば、ジアミン(c))についての分子軌道計算により得られる構造最適化した際の対象分子の電子密度分布から求めることができる。具体的には、軌道係数は、構造最適化と電子密度解析を行う分子軌道計算において、汎関数としてB3LYP、基底関数として6-31G*を用いて導かれる。分子軌道計算用ソフトウェアとしては、例えば、米国Gaussian社製のGaussian09(RevisionC.01,M.J.Frisch,etal,Gaussian,Inc.,2010.)を利用することが可能である。但し、分子軌道計算を行う手段は、これに制限されるものではない。
 ここで、窒素原子の軌道係数は、対象分子のHOMOの軌道係数のうち該当する窒素原子の展開係数を二乗し合算したものである。
 以下に、最高被占分子軌道における計算対象原子の軌道係数の算出方法を示す。
 i番目の分子軌道Ψは次のように展開される。
Figure JPOXMLDOC01-appb-M000012
 式中、Ψはi番目の分子軌道を表し、Cμiは展開係数を表し、Φμは基底関数を表し、Kは基底関数の総数を表す。
 6-31G*基底関数の場合、第1周期元素は2個、第2周期元素は15個の基底関数を使う。
 例えば、以下のジアミンの場合、15×35+2×26=577個の基底関数を使って分子軌道は展開される。
Figure JPOXMLDOC01-appb-C000013
 HOMOの窒素原子の軌道係数をCHOMO,Nとすると、CHOMO,Nは次の式で計算できる。
Figure JPOXMLDOC01-appb-M000014
 式中、左辺のCHOMO,Nは軌道係数であり、右辺のCμ,HOMO,Nは便宜上、展開係数と称する。
 例えば、上記ジアミンの場合、HOMOの展開係数577個のうち、注目している窒素原子の基底関数の展開係数15個について二乗して合算することで、窒素原子の軌道係数CHOMO,Nが求められる。
 ジアミン(c)は、本発明の効果が得られる観点から、下記式(d-1)~(d-8)のいずれかで表される化合物であることが好ましい。また、各化合物の軌道係数は、d-1(0.0023)、d-3(0.0018)、d-4(0.0016)、d-5(0.0009)、d-6(0.0013)、d-7(0.0018)、d-8(0.0007)である。
Figure JPOXMLDOC01-appb-C000015
<ジアミン成分>
 上記重合体(A)がポリイミド前駆体である場合(以下、ポリイミド前駆体(A)ともいう。)、上記重合体(A)は、上記ジアミン(c)を含有するジアミン成分とテトラカルボン酸誘導体成分との重合反応により得ることができる。上記重合体(A)は、中でも、上記式(d1-1)において、nが1である場合、式(d1-1)におけるRが上記式(r2)で表される1価の有機基を表す化合物、及びnが2又は3である場合、上記式(d1-1)におけるn個のRは、それぞれ独立して、水素原子、炭素数1~6の炭化水素基、又は上記式(r2)で表される1価の有機基を表し、n個のRの少なくとも一つは上記式(r2)で表される1価の有機基を表す化合物、並びに上記式(d1-2)~(d1-3)において、式(d1-2)~(d1-3)におけるRが上記式(r2)で表される1価の有機基である化合物、からなる群から選ばれる少なくとも1種の化合物を含むジアミン成分とテトラカルボン酸誘導体成分との重合反応により得ることができるポリイミド前駆体が好ましい。蓄積電荷の緩和速度を高めつつ、高い透明性を得るためには、最高被占分子軌道における上記式(r2)のカルバゾール骨格が有する窒素原子の軌道係数が0.01未満であることが好ましい。更に好ましくは、上記式(d-1)~(d-8)のいずれかで表される化合物からなる群から選ばれる少なくとも1種の化合物を含むジアミン成分とテトラカルボン酸誘導体成分との重合反応により得ることができるポリイミド前駆体が好ましい。上記いずれかの場合、ジアミン(c)の使用量は、テトラカルボン酸誘導体成分と反応させるジアミン成分に対して、1~100モル%が好ましく、1~99モル%がより好ましく、5~95モル%がさらに好ましい。
 上記ポリイミド前駆体(A)の製造に用いられるジアミン成分は、ジアミン(c)以外のジアミン(以下、その他のジアミンともいう。)を含んでいてもよい。以下にその他のジアミンの例を挙げるが、本発明はこれらに限定されるものではない。
 4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパノン、2-(4-(2-ヒドロキシ-2-メチルプロパノイル)フェノキシ)エチル 3,5-ジアミノベンゾエート、1,4-ビス(4-アミノベンジル)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン;下記式(g-1)~(g-9)で表されるジアミンなどの光配向性基を有するジアミン;下記式(u-1)~(u-3)で表されるジアミンなどのウレア結合を有するジアミン;下記式(u-4)~(u-6)で表されるジアミンなどのアミド結合を有するジアミン;2,6-ジアミノピリジン、3,4-ジアミノピリジン、2,4-ジアミノピリミジン、3,6-ジアミノカルバゾール、N-メチル-3,6-ジアミノカルバゾール、N-エチル-3,6-ジアミノカルバゾール、N-フェニル-3,6-ジアミノカルバゾール、1,4-ビス-(4-アミノフェニル)-ピペラジン、3,6-ジアミノアクリジン、下記式(Dp-1)~(Dp-8)で表されるジアミン、下記式(z-1)~式(z-28)で表されるジアミン;2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール;2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、3,5-ジアミノ安息香酸及び下記式(3b-1)~式(3b-4)で示されるジアミン化合物などのカルボキシ基を有するジアミン;4-(2-(メチルアミノ)エチル)アニリン、4-(2-アミノエチル)アニリン、4,4’-ジアミノベンゾフェノン、1-(4-アミノフェニル)-1,3,3-トリメチル-1H-インダン-5-アミン、1-(4-アミノフェニル)-2,3-ジヒドロ-1,3,3-トリメチル-1H-インデン-6-アミン;メタクリル酸2-(2,4-ジアミノフェノキシ)エチル及び2,4-ジアミノ-N,N-ジアリルアニリン等の光重合性基を末端に有するジアミン;下記式(Ra-1)~(Ra-5)などのラジカル開始機能を有するジアミン、9,9-ビス(4-アミノフェニル)フルオレンなどの光照射により増感作用を示す光増感機能を有するジアミン;コレスタニルオキシ-3,5-ジアミノベンゼン、コレステニルオキシ-3,5-ジアミノベンゼン、コレスタニルオキシ-2,4-ジアミノベンゼン、3,5-ジアミノ安息香酸コレスタニル、3,5-ジアミノ安息香酸コレステニル、3,5-ジアミノ安息香酸ラノスタニル及び3,6-ビス(4-アミノベンゾイルオキシ)コレスタン等のステロイド骨格を有するジアミン;下記式(V-1)~(V-6)で表されるジアミン;1,3-ビス(3-アミノプロピル)-テトラメチルジシロキサン等のシロキサン結合を有するジアミン;下記式(Ox-1)~(Ox-2)等のオキサゾリン環構造を有するジアミン、下記式(5-1)~(5-10)で表される、基「-N(D)-」(Dは加熱によって脱離し水素原子に置き換わる保護基を表し、好ましくはtert-ブトキシカルボニル基である。)を有するジアミン、下記式(2)又は式(2i)で表されるジアミン、WO2018/117239号公報に記載の式(Y-1)~(Y-167)のいずれかで表される基に2つのアミノ基が結合したジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(式中、Pyはピリジン環又はピリミジン環を表す。)
Figure JPOXMLDOC01-appb-C000022
(nは1~6の整数である。)
Figure JPOXMLDOC01-appb-C000023
(上記(3b-1)中、Aは単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、m1及びm2はそれぞれ独立して、0~4の整数を示し、かつm1+m2は1~4の整数を示す。式(3b-2)中、m3及びm4はそれぞれ独立して、1~5の整数を示す。式(3b-3)中、Aは炭素数1~5の直鎖又は分岐アルキル基を示し、m5は1~5の整数を示す。式(3b-4)中、A及びAはそれぞれ独立して、単結合、-CH-、-C-、-C(CH-、-CF-、-C(CF-、-O-、-CO-、-NH-、-N(CH)-、-CONH-、-NHCO-、-CHO-、-OCH-、-COO-、-OCO-、-CON(CH)-又は-N(CH)CO-を示し、m6は1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000024
(上記式(V-1)~(V-6)中、Xv1~Xv4、及びXp1~Xp2は、それぞれ独立に、-(CH-(aは1~15の整数である。)、-CONH-、-NHCO-、-CON(CH)-、-NH-、-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を表し、Xv5は-O-、-CHO-、-CHOCO-、-COO-、又は-OCO-を表す。Xは、単結合、-O-、-NH-、-O-(CH-O-(mは1~6の整数を表す。)、-C(CH-、-CO-、-(CH-、-SO-、-O-C(CH-、-CO-(CH-(mは1~6の整数を表す。)、-NH-(CH-(mは1~6の整数を表す。)、-SO-(CH-(mは1~6の整数を表す。)、-CONH-(CH-(mは1~6の整数を表す。)、-CONH-(CH-NHCO-(mは1~6の整数を表す。)、-COO-(CH-OCO-(mは1~6の整数を表す。)、-CONH-、-NH-(CH-NH-(mは1~6の整数を表す。)、又は-SO-(CH-SO-(mは1~6の整数を表す。)を示し、Rv1~Rv4、及びR1a~R1bは、それぞれ独立に、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基又は炭素数2~20のアルコキシアルキル基を示す。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
(Bocは、tert-ブトキシカルボニル基を表す。)
Figure JPOXMLDOC01-appb-C000027
(Yは下記式(O)で表される2価の有機基を表す。Rは水素原子又は炭素数1~6のアルキル基を表す。Y2iは、下記式(O’)で表される2価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000028
(Arは、2価のベンゼン環、ビフェニル構造、又はナフタレン環を表す。2つのArは同一でも異なってもよく、Arが有するベンゼン環又はナフタレン環上の任意の水素原子は1価の置換基で置換されていてもよい。pは0又は1の整数である。Qは-(CH-(nは2~18の整数である。)、又は該-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。*は結合手を表す。)
Figure JPOXMLDOC01-appb-C000029
(Ar’は、2価のベンゼン環、又はビフェニル構造を表す。2つのAr’は同一でも異なってもよく、Ar’が有するベンゼン環上の任意の水素原子は1価の置換基で置換されていてもよい。p’は0又は1の整数である。Q2’は-(CH-(nは2~18の整数である。)、又は上記-(CH-の-CH-の少なくとも一部を-O-、-C(=O)-又は-O-C(=O)-のいずれかで置き換えた基を表す。*は結合手を表す。)
 上記式(O)、及び(O’)におけるベンゼン環、又はナフタレン環の置換基としては、例えば、ハロゲン原子、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数1~10のアルコキシ基、炭素数1~10のフルオロアルキル基、炭素数2~10のフルオロアルケニル基、炭素数1~10のフルオロアルコキシ基、カルボキシ基、ヒドロキシ基、炭素数1~10のアルキルオキシカルボニル基、シアノ基、ニトロ基等が挙げられる。
 上記式(2)又は式(2i)で表されるジアミンは、重合体組成物を液晶配向剤として用いる場合、液晶配向膜の液晶配向性を高める観点から、p-フェニレンジアミン、m-フェニレンジアミン、4-(2-(メチルアミノ)エチル)アニリン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,2-ビス(4-アミノフェノキシ)エタン、1,2-ビス(4-アミノ-2-メチルフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、4-(2-(4-アミノフェノキシ)エトキシ)-3-フルオロアニリン、ビス(2-(4-アミノフェノキシ)エチル)エーテル、4-アミノ-4’-(2-(4-アミノフェノキシ)エトキシ)ビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、下記式(nh-1)~(nh-8)のいずれかで表されるジアミンが好ましい。
Figure JPOXMLDOC01-appb-C000030
 上記その他のジアミンとしては、なかでも、本発明の効果を好適に得る観点から,p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、カルボキシ基を有するジアミン、ウレア結合を有するジアミン、アミド結合を有するジアミン、上記式(Dp-1)~(Dp-8)で表されるジアミン、上記式(z-1)~(z-28)で表されるジアミンが好ましい。
 上記ジアミン(c)に加えてその他のジアミンを使用する場合、その他のジアミンの使用量は、使用される全ジアミン成分に対して、好ましくは1~99モル%であり、より好ましくは5~95モル%である。
<テトラカルボン酸誘導体成分>
 上記ポリイミド前駆体(A)を製造する場合、ジアミン成分と反応させるテトラカルボン酸誘導体成分は、テトラカルボン酸二無水物だけでなく、テトラカルボン酸ジハライド、テトラカルボン酸ジアルキルエステル、又はテトラカルボン酸ジアルキルエステルジハライドなどのテトラカルボン酸二無水物の誘導体を用いることもできる。
 上記テトラカルボン酸二無水物又はその誘導体は、芳香族、脂肪族若しくは脂環式テトラカルボン酸二無水物、又はこれらの誘導体が挙げられる。ここで、芳香族テトラカルボン酸二無水物は、芳香族環に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。脂肪族テトラカルボン酸二無水物は、鎖状炭化水素構造に結合する4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、鎖状炭化水素構造のみで構成されている必要はなく、その一部に脂環式構造や芳香族環構造を有していてもよい。
 また、脂環式テトラカルボン酸二無水物は、脂環式構造に結合する少なくとも1つのカルボキシ基を含めて4つのカルボキシ基が分子内脱水することにより得られる酸二無水物である。但し、これら4つのカルボキシ基はいずれも芳香族環には結合していない。また、脂環式構造のみで構成されている必要はなく、その一部に鎖状炭化水素構造や芳香族環構造を有していてもよい。
 本願発明において、高い透過率を得ることができ、且つ、蓄積電荷の緩和特性が高速化するという観点から、テトラカルボン酸誘導体成分は、脂肪族若しくは脂環式テトラカルボン酸二無水物、又はこれらの誘導体を用いることが好ましい。中でも、シクロブタン環構造、シクロペンタン環構造及びシクロヘキサン環構造よりなる群から選ばれる少なくとも一種の部分構造を有するテトラカルボン酸二無水物又はこれらの誘導体を含むことがより好ましい。また、その使用量は、使用される全テトラカルボン酸誘導体成分1モルに対して、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上がさらに好ましい。上記テトラカルボン酸誘導体が、脂肪族若しくは脂環式テトラカルボン酸二無水物、及びこれらの誘導体以外のテトラカルボン酸二無水物、又はこれらの誘導体を含む場合は、その上限値は、95モル%以下が好ましく、90モル%以下がより好ましい。
 なかでも、上記テトラカルボン酸二無水物又はその誘導体は、下記式(T)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000031
 但し、式(T)中、Xは、下記(x-1)~(x-13)からなる群から選ばれる構造を表す。
Figure JPOXMLDOC01-appb-C000032
 上記式(x-1)~(x-13)中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、炭素数2~6のアルキニル基、フッ素原子を含有する炭素数1~6の1価の有機基、又はフェニル基を表す。R及びRは、それぞれ独立して、水素原子又はメチル基を表す。j及びkは、0又は1の整数であり、A及びAは、それぞれ独立して、単結合、エーテル(-O-)、カルボニル(-CO-)、エステル(-COO-)、フェニレン基、スルホニル基(-SO-)又はアミド基(-CONH-)を表す。*1は一方の酸無水物基に結合する結合手であり、*2は他方の酸無水物基に結合する結合手である。前記式(x-13)において、2個のAは、互いに同一であっても異なっていてもよい。
 前記式(x-1)のより好ましい具体例として、下記式(X1-1)~(X1-6)が挙げられる。式中、*は結合手を表す。
Figure JPOXMLDOC01-appb-C000033
 上記式(x-12)、(x-13)の好ましい具体例としては、下記式(x-14)~(x-29)が挙げられる。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 上記式(T)で表されるテトラカルボン酸二無水物又はその誘導体は、高い透過率を得ることができ、且つ、蓄積電荷の緩和特性を高速化するという観点から、Xは(x-1)~(x-11)から選ばれるものが好ましく、(x-1)~(x-7)から選ばれるものがより好ましい。また、蓄積電荷の緩和特性を高速化する観点から、(x-11)~(x-13)から選ばれるものが好ましい。
 上記式(T)で表されるテトラカルボン酸二無水物又はその誘導体の使用割合は、使用される全テトラカルボン酸誘導体成分1モルに対して、1モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上がさらに好ましい。
 ポリイミド前駆体(A)の製造に用いられるテトラカルボン酸二無水物及びその誘導体は、上記式(T)以外のテトラカルボン酸二無水物又はその誘導体を含有していてもよい。
 ポリイミド前駆体であるポリアミック酸の製造は、例えば、上記ジアミン成分とテトラカルボン酸二無水物とを溶媒中で(縮重合)反応させることにより行われる。溶媒としては、生成した重合体が溶解するものであれば特に限定されない。
 上記溶媒の具体例としては、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノンが挙げられる。また、重合体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は下記の式[D-1]~式[D-3]で示される溶媒を用いることができる。
Figure JPOXMLDOC01-appb-C000036
(式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を表す。)。
 上記のこれら溶媒は単独で使用しても、混合して使用してもよい。さらに、重合体を溶解させない溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。
 ジアミン成分とテトラカルボン酸二無水物とを溶媒中で反応させる際には、反応は任意の濃度で行うことができるが、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、溶媒を追加することができる。
 反応においては、ジアミン成分の合計モル数とテトラカルボン酸二無水物の合計モル数との比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成する重合体の分子量は大きくなる。
 ポリイミド前駆体であるポリアミック酸エステルは、例えば、[I]上記合成反応により得られたポリアミック酸とエステル化剤とを反応させる方法、[II]テトラカルボン酸ジエステルとジアミンとを反応させる方法、[III]テトラカルボン酸ジエステルジハロゲン化物とジアミンとを反応させる方法、などの既知の方法によって得ることができる。
[ポリイミド]
 本発明の重合体組成物に用いられるポリイミドは上記ポリイミド前駆体(A)を閉環させて得られるポリイミドである。ポリイミドにおいては、アミック酸基の閉環率(ポリイミド前駆体の有する全繰り返し単位に対する閉環される繰り返し単位の割合。イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
 ポリイミド前駆体をイミド化してポリイミドを得る方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化、又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、通常100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、通常-20℃~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量はアミド酸基の通常0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の通常1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、なかでも、ピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、なかでも、無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
 ポリイミド前駆体のイミド化の反応溶液から、生成したポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、エタノール、イソプロピルアルコール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類炭化水素などが挙げられる。これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。
 以上のようにして得られるポリイミド前駆体(A)及びそのイミド化合物であるポリイミドは、濃度10質量%の溶液としたときに、10~800mPa・sの溶液粘度を持つものであることが好ましく、15~500mPa・sの溶液粘度を持つものであることがより好ましい。なお、ポリイミド前駆体(A)及びそのイミド化合物であるポリイミドの溶液粘度(mPa・s)は、これら重合体の良溶媒(例えばγ-ブチロラクトン、N-メチル-2-ピロリドンなど)を用いて調製した濃度10質量%の重合体溶液につき、E型回転粘度計を用いて25℃において測定した値である。
<末端封止剤>
 本発明における重合体(A)は、その製造に際して、上記テトラカルボン酸誘導体成分、及びジアミン成分とともに、適当な末端封止剤を用いて末端封止型の重合体としてもよい。末端封止型の重合体は、得られる樹脂膜の膜硬度の向上や、シール剤と樹脂膜の密着特性の向上という効果を有する。
 本発明における重合体(A)の末端の例としては、アミノ基、カルボキシ基、酸無水物基又はこれらの誘導体が挙げられる。アミノ基、カルボキシ基、酸無水物基又はこれらの誘導体は通常の縮合反応或いは以下の末端封止剤を用いて得ることができ、前記誘導体は、例えば、以下の末端封止剤を用いて得ることができる。
 末端封止剤としては、例えば、無水酢酸、無水マレイン酸、無水ナジック酸、無水フタル酸、無水イタコン酸、1,2-シクロヘキサンジカルボン酸無水物、3-ヒドロキシフタル酸無水物、トリメリット酸無水物、下記式(m-1)~(m-6)のいずれかで表される化合物、3-(3-トリメトキシシリル)プロピル)-3,4-ジヒドロフラン-2,5-ジオン、4,5,6,7-テトラフルオロイソベンゾフラン-1,3-ジオン、4-エチニルフタル酸無水物などの酸無水物;
Figure JPOXMLDOC01-appb-C000037
 二炭酸ジ-tert-ブチル、二炭酸ジアリルなどの二炭酸ジエステル化合物;アクリロイルクロリド、メタクリロイルクロリド、ニコチン酸クロリドなどのクロロカルボニル化合物;アニリン、2-アミノフェノール、3-アミノフェノール、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、シクロヘキシルアミン、n-ブチルアミン、n-ペンチルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミンなどのモノアミン化合物;エチルイソシアネート、フェニルイソシアネート、ナフチルイソシアネートなどのモノイソシアネート化合物などを挙げることができる。
 末端封止剤の使用割合は、使用するジアミン成分の合計100モル部に対して、0.01~20モル部とすることが好ましく、0.01~10モル部とすることがより好ましい。
 本発明の重合体組成物は、重合体(A)以外のその他の重合体を含有してもよい。その他の重合体の具体例を挙げると、テトラカルボン酸誘導体成分と、上記ジアミン(c)を含まないジアミン成分とを用いて得られるポリイミド前駆体、該ポリイミド前駆体のイミド化物であるポリイミド、ポリシロキサン、ポリエステル、上記ジアミン(c)を含まないジアミン成分を用いて得られるポリアミド、上記ジアミン(c)を含まないジアミン成分を用いて得られるポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレン誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートからなる群から選ばれる重合体が挙げられる。上記ポリイミド前駆体の具体例としては、ポリアミック酸、ポリアミック酸エステルなどが挙げられる。その他の重合体は、一種を単独で使用してもよく、また二種以上を組み合わせて使用してもよい。その他の重合体の含有割合は、重合体組成物中に含まれる重合体の合計100質量部に対して、90質量部以下が好ましく、10~90質量部がより好ましく、20~80質量部が更に好ましい。
 本発明に係る重合体組成物は、上記重合体(A)が有機溶媒中に溶解又は分散された液状の組成物であることが好ましい。具体的には、上記重合体組成物に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されないが、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルラクトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、γ-バレロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-(n-プロピル)-2-ピロリドン、N-イソプロピル-2-ピロリドン、N-(n-ブチル)-2-ピロリドン、N-(tert-ブチル)-2-ピロリドン、N-(n-ペンチル)-2-ピロリドン、N-メトキシプロピル-2-ピロリドン、N-エトキシエチル-2-ピロリドン、N-メトキシブチル-2-ピロリドン、N-シクロヘキシル-2-ピロリドン(これらを総称して「良溶媒」ともいう)が挙げられる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド又はγ-ブチロラクトンが好ましい。良溶媒の含有量は、重合体組成物に含まれる溶媒全体の20~99質量%であることが好ましく、20~90質量%がより好ましく、特に好ましいのは、30~80質量%である。
 また、重合体組成物に含有される有機溶媒は、上記溶媒に加えて重合体組成物を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒(貧溶媒ともいう。)を併用した混合溶媒の使用が好ましい。併用する貧溶媒の具体例を下記するが、これらに限定されない。貧溶媒の含有量は、重合体組成物に含まれる溶媒全体の1~80質量%が好ましく、10~80質量%がより好ましく、20~70質量%が特に好ましい。貧溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
 例えば、ジイソプロピルエーテル、ジイソブチルエーテル、ジイソブチルカルビノール(2,6-ジメチル-4-ヘプタノール)、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、プロピレングリコールモノブチルエーテル、1-(2-ブトキシエトキシ)-2-プロパノール、2-(2-ブトキシエトキシ)-1-プロパノール、プロピレングリコールモノメチルエーテルアセタート、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、エチレングリコールモノブチルエーテルアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、プロピレングリコールジアセテート、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸n-ブチル、乳酸イソアミル、ジエチレングリコールモノエチルエーテル、ジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)など。
 なかでも、ジイソブチルカルビノール、プロピレングリコールモノブチルエーテル、プロピレングリコールジアセテート、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジメチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテルアセタート、又はジイソブチルケトンが好ましい。
 良溶媒と貧溶媒との好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンとプロピレングリコールジアセテート、N,N-ジメチルラクトアミドとジイソブチルケトン、N-メチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-エチル-2-ピロリドンと3-エトキシプロピオン酸エチル、N-メチル-2-ピロリドンとエチレングリコールモノブチルエーテルアセタート、N-エチル-2-ピロリドンとジプロピレングリコールジメチルエーテル、N,N-ジメチルラクトアミドとエチレングリコールモノブチルエーテル、N,N-ジメチルラクトアミドとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとジエチレングリコールジエチルエーテル、N,N-ジメチルラクトアミドとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-エチル-2-ピロリドンとN-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノン、N-エチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとジプロピレングリコールモノメチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジイソブチルケトン、γ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとプロピレングリコールジアセテート、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソブチルカルビノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、N-メチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールジメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジプロピレングリコールモノメチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとプロピレングリコールジアセテート、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテルとジイソブチルケトン、N-エチル-2-ピロリドンとγ-ブチロラクトンとジイソブチルケトン、N-エチル-2-ピロリドンとN,N-ジメチルラクトアミドとジイソブチルケトンなどを挙げることができる。
 本発明の重合体組成物は、重合体成分及び有機溶媒以外の成分(以下、添加剤成分ともいう。)を追加的に含有してもよい。かかる添加剤成分としては、例えば、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ブロックイソシアネート基、ヒドロキシ基及びアルコキシ基から選ばれる少なくとも1種の置換基を有する架橋性化合物、並びに重合性不飽和基を有する架橋性化合物からなる群から選ばれる少なくとも1種の化合物、官能性シラン化合物、金属キレート化合物、硬化促進剤、界面活性剤、酸化防止剤、増感剤、防腐剤、樹脂膜の誘電率や電気抵抗を調整するための化合物などが挙げられる。
 上記架橋性化合物の好ましい具体例としては、下記式(CL-1)~(CL-11)のいずれかで表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000038
 上記樹脂膜の誘電率や電気抵抗を調整するための化合物としては、3-ピコリルアミンなどの窒素含有芳香族複素環を有するモノアミンが挙げられる。窒素含有芳香族複素環を有するモノアミンを使用する場合は、重合体組成物に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
 官能性シラン化合物の好ましい具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルジエトキシメチルシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。官能性シラン化合物を使用する場合、その使用量は、重合体組成物に含まれる重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは0.1~20質量部である。
 重合体組成物における固形分濃度(重合体組成物の溶媒以外の成分の合計質量が重合体組成物の全質量に占める割合)は、粘性、揮発性などを考慮して適宜に選択されるが、好ましくは1~10質量%の範囲である。すなわち、重合体組成物は、後述するように基板表面に塗布され、好ましくは加熱されることにより樹脂膜が形成される。
 特に好ましい固形分濃度の範囲は、基板に重合体組成物を塗布する際に用いる方法によって異なる。例えばスピンコート法を用いる場合には、固形分濃度が1.5~4.5質量%の範囲であることが特に好ましい。印刷法による場合には、固形分濃度を3~9質量%の範囲とし、それにより溶液粘度を12~50mPa・sの範囲とすることが特に好ましい。インクジェット法による場合には、固形分濃度を1~5質量%の範囲とし、それにより、溶液粘度を3~15mPa・sの範囲とすることが特に好ましい。重合体組成物を調製する際の温度は、好ましくは10~50℃であり、より好ましくは20~30℃である。
<用途および樹脂膜>
 上記に説明した重合体組成物は、例えば基板上に塗布し、好ましくは加熱処理によって溶媒成分を揮発させることで樹脂膜を形成することができる。本発明に係る重合体組成物及び樹脂膜は、種々の技術用途に有効に適用することができ、例えば配向膜材料、電子回路材料、半導体材料、電気絶縁材料、電線被覆材料、照明用途、成形材料等の各種用途に適用することができる。具体的には、表示素子、半導体素子、モータ等のアクチュエータ、圧電センサや焦電センサ等の各種センサ類などが備える種々の樹脂膜に適用でき、液晶配向膜、保護膜、スペーサー膜、層間絶縁膜、反射防止膜、配線被覆膜、帯電防止フィルム、電動機絶縁膜等が挙げられる。これらの中でも、本発明に係る重合体組成物は、液晶配向剤として好ましく適用することができる。
<液晶配向剤>
 本発明に係る液晶配向剤は、上記重合体(A)を含有する。また、その他の重合体、有機溶媒及び添加剤成分の少なくともいずれかを含有することが好ましい。上記重合体(A)、その他の重合体、有機溶媒、及び添加剤成分の具体例、配合割合、固形分濃度などの詳細については、上記重合体組成物の説明を適用することができる。
[液晶配向膜及び液晶表示素子]
 上記重合体組成物又は上記液晶配向剤を用いることにより、樹脂膜として液晶配向膜を製造することができる。また、本発明に係る液晶表示素子は、上記重合体組成物又は上記液晶配向剤を用いて形成した液晶配向膜を具備する。本発明に係る液晶表示素子の動作モードは特に限定せず、例えばTN型、STN(Super Twisted Nematic)型、垂直配向型(VA-MVA型、VA-PVA型などを含む。)、面内スイッチング型(IPS型)、FFS型、光学補償ベンド型(OCB型)など種々の動作モードに適用することができる。
 本発明の液晶表示素子は、例えば以下の工程(1)~(4)を含む方法、工程(1)~(2)及び(4)を含む方法、工程(1)~(3)、(4-2)及び(4-4)を含む方法、又は工程(1)~(3)、(4-3)及び(4-4)を含む方法により製造することができる。
<工程(1):液晶配向剤を基板上に塗布する工程>
 工程(1)は、本発明の液晶配向剤を基板上に塗布する工程である。工程(1)の具体例は以下のとおりである。
 パターニングされた透明導電膜が設けられている基板の一面に、本発明の液晶配向剤を、例えばロールコーター法、スピンコート法、印刷法、インクジェット法などの適宜の塗布方法により塗布する。ここで基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることもできる。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極にはアルミニウム等の光を反射する材料も使用できる。また、IPS型又はFFS型の液晶表示素子を製造する場合には、櫛歯型にパターニングされた透明導電膜又は金属膜からなる電極が設けられている基板と、電極が設けられていない対向基板とを用いる。
 液晶配向剤を基板に塗布し、成膜する方法としては、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法、又はスプレー法等が挙げられる。なかでも、インクジェット法による塗布、成膜法が好適に使用できる。
<工程(2):塗布した液晶配向剤を焼成する工程>
 工程(2)は、基板上に塗布した液晶配向剤を焼成し、膜を形成する工程である。工程(2)の具体例は以下のとおりである。
 工程(1)において液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させたり、ポリアミック酸又はポリアミック酸エステルの熱イミド化を行ったりすることができる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができ、複数回行ってもよい。液晶配向剤の溶媒を低減する温度としては、例えば40~180℃で行うことができる。プロセスを短縮する観点で、40~150℃で行ってもよい。焼成時間としては特に限定されないが、1~10分又は、1~5分が挙げられる。ポリアミック酸又はポリアミック酸エステルの熱イミド化を行う場合には、上記工程の後、例えば150~300℃、又は150~250℃の温度範囲で焼成する工程を追加してもよい。焼成時間としては特に限定されないが、5~40分、又は、5~30分の焼成時間が挙げられる。
 焼成後の膜状物は、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmが好ましく、10~200nmがより好ましい。
 <工程(3):工程(2)で得られた膜に配向処理する工程>
 工程(3)は、場合により、工程(2)で得られた膜に配向処理する工程である。即ち、IPS方式又はFFS方式等の水平配向型の液晶表示素子では該塗膜に対し配向能付与処理を行う。一方、VA方式又はPSAモード等の垂直配向型の液晶表示素子では、形成した塗膜をそのまま液晶配向膜として使用することができるが、該塗膜に対し配向能付与処理を施してもよい。液晶配向膜の配向処理方法としては、ラビング処理法、光配向処理法が挙げられる。光配向処理法としては、上記膜状物の表面に、一定方向に偏向された放射線を照射し、場合により、好ましくは、150~250℃の温度で加熱処理を行い、液晶配向性(液晶配向能ともいう)を付与する方法が挙げられる。放射線としては、100~800nmの波長を有する紫外線又は可視光線を用いることができる。なかでも、好ましくは100~400nm、より好ましくは、200~400nmの波長を有する紫外線である。
 上記放射線の照射量は、1~10,000mJ/cmが好ましい。なかでも、100~5,000mJ/cmが好ましい。また、放射線を照射する場合、液晶配向性を改善するために、上記膜状物を有する基板を、50~250℃で加熱しながら照射してもよい。このようにして作製した上記液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 更に、上記の方法で、偏光された放射線を照射した液晶配向膜に、水や溶媒を用いて、接触処理するか、放射線を照射した液晶配向膜を加熱処理することもできる。
 上記接触処理に使用する溶媒としては、放射線の照射によって膜状物から生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシル等が挙げられる。なかでも、汎用性や溶媒の安全性の点から、水、2-プロパンール、1-メトキシ-2-プロパノール又は乳酸エチルが好ましく、水、1-メトキシ-2-プロパノール又は乳酸エチルがより好ましい。溶媒は、1種類でも、2種類以上組み合わせてもよい。
 上記の放射線を照射した塗膜に対する加熱処理の温度は、50~300℃がより好ましく、120~250℃がさらに好ましい。加熱処理の時間としては、それぞれ1~30分とすることが好ましい。
<工程(4):液晶セルを作製する工程>
 上記のようにして液晶配向膜が形成された基板を2枚準備し、対向配置した2枚の基板間に液晶を配置する。具体的には以下の2つの方法が挙げられる。
 第一の方法は、先ず、それぞれの液晶配向膜が対向するように間隙(セルギャップ)を介して2枚の基板を対向配置する。次いで、2枚の基板を周辺部にシール剤を用いて貼り合わせ、基板表面及びシール剤により区画されたセルギャップ内に液晶組成物を注入充填して膜面に接触した後、注入孔を封止する。
 また、第二の方法は、ODF(One Drop Fill)方式と呼ばれる手法である。液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に、例えば紫外光硬化性のシール剤を塗布し、更に液晶配向膜面上の所定の数箇所に液晶組成物を滴下する。その後、液晶配向膜が対向するように他方の基板を貼り合わせて液晶組成物を基板の全面に押し広げて膜面に接触させる。次いで、基板の全面に紫外光を照射してシール剤を硬化する。いずれの方法による場合でも、更に、用いた液晶組成物が等方相をとる温度まで加熱した後、室温まで徐冷することにより、液晶充填時の流動配向を除去することが望ましい。
 なお、塗膜に対してラビング処理を行った場合には、2枚の基板は、各塗膜におけるラビング方向が互いに所定の角度、例えば直交又は逆平行となるように対向配置される。
 シール剤としては、例えば硬化剤及びスペーサーとしての酸化アルミニウム球を含有するエポキシ樹脂等を用いることができる。液晶としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましい。
 本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性化合物を含む液晶組成物を配置し、電極間に電圧を印加しつつ、活性エネルギー線の照射及び加熱の少なくとも一方により、重合性化合物を重合させる工程を経て製造される液晶表示素子(PSA型液晶表示素子)にも好ましく用いられる。
 また、本発明の液晶配向剤は、電極を備えた一対の基板の間に液晶層を有してなり、上記一対の基板の間に活性エネルギー線及び熱の少なくとも一方により重合する重合性基を含む液晶配向膜を配置し、電極間に電圧を印加する工程を経て製造される液晶表示素子(SC-PVAモード型の液晶表示素子)にも好ましく用いられる。
(4-2)PSA型液晶表示素子の場合
 重合性化合物を含有する液晶組成物を注入又は滴下する点以外は上記(4)と同様にする。重合性化合物としては、例えば下記式(M-1)~(M-7)で表されるような重合性化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000039
(4-3)SC-PVAモード型の液晶表示素子の場合
 上記(4)と同様にした後、後述する紫外線を照射する工程を経て液晶表示素子を製造する方法を採用してもよい。この方法によれば、上記PSA型液晶表示素子を製造する場合と同様に、少ない光照射量で応答速度に優れた液晶表示素子を得ることができる。重合性基を有する化合物は、上記式(M-1)~(M-7)で表されるようなアクリレート基やメタクリレート基などの重合性不飽和基を分子内に1個以上有する化合物であってもよく、その含有量は、全ての重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。また、上記重合性基は液晶配向剤に用いる重合体が有していてもよく、このような重合体としては、例えば上記光重合性基を末端に有するジアミンを含むジアミン成分を反応に用いて得られる重合体が挙げられる。
工程(4-4):紫外線を照射する工程
 上記(4-2)又は(4-3)で得られた一対の基板の有する導電膜間に電圧を印加した状態で液晶セルに光照射する。ここで印加する電圧は、例えば5~50Vの直流又は交流とすることができる。また、照射する光としては、例えば150~800nmの波長の光を含む紫外線及び可視光線を用いることができるが、300~400nmの波長の光を含む紫外線が好ましい。照射光の光源としては、例えば低圧水銀ランプ、高圧水銀ランプ、重水素ランプ、メタルハライドランプ、アルゴン共鳴ランプ、キセノンランプ、エキシマレーザーなどを使用することができる。光の照射量としては、好ましくは1,000~200,000J/mであり、より好ましくは1,000~100,000J/mである。
 そして、必要に応じて液晶セルの外側表面に偏光板を貼り合わせることにより液晶表示素子を得ることができる。液晶セルの外表面に貼り合わされる偏光板としては、ポリビニルアルコールを延伸配向させながらヨウ素を吸収させた「H膜」と称される偏光フィルムを酢酸セルロース保護膜で挟んだ偏光板又はH膜そのものからなる偏光板を挙げることができる。
 図1は、本発明の液晶表示素子の一例を示す概略断面図であり、IPSモード液晶表示素子の例である。
 図1に例示する横電界液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2cは、例えば、本発明の液晶配向膜である。液晶配向膜4cも同様に本発明の液晶配向膜である。
 この横電界液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
 図2は、本発明の液晶表示素子の他の例を示す概略断面図であり、FFSモード液晶表示素子の例である。
 図2に例示する横電界液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2hは、例えば、本発明の液晶配向膜である。液晶配向膜4aも同様に本発明の液晶配向膜である。
 この横電界液晶表示素子1においては、面電極2eおよび線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2eおよび線状電極2g間で電界が発生する。
 本発明の液晶表示素子は、種々の装置に有効に適用することができ、例えば、時計、携帯型ゲーム、ワープロ、ノート型パソコン、カーナビゲーションシステム、カムコーダー、PDA、デジタルカメラ、携帯電話、スマートフォン、各種モニター、液晶テレビ、インフォメーションディスプレイなどの各種表示装置に用いることができる。また、上記液晶配向剤に含まれる重合体組成物は、位相差フィルム用の液晶配向膜、走査アンテナや液晶アレイアンテナ用の液晶配向膜又は透過散乱型の液晶調光素子用の液晶配向膜、或いはこれら以外の用途、例えばカラーフィルタの保護膜、フレキシブルディスプレイのゲート絶縁膜、基板材料にも用いることができる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。使用した化合物の略語及び各物性の測定方法は、以下の通りである。なお、後述するジアミンの量子化学計算では、化学構造式中に矢印で示した窒素原子上のMulliken電荷と軌道係数を算出した。
(ジアミン)
 上記したジアミン(c)に該当する化合物は、下記するジアミン(WA-1)~(WA-15)、(WB-1)~(WB-3)、及び(WD-5)である。また、ジアミン(WB-4)、(WC-1)~(WC-8)、及び(WD-1)~(WD-4)は比較例である。ジアミン(WA-16)~(WA-17)は参考例である。
 WA-1~WA-17:それぞれ、下記式(WA-1)~(WA-17)で表される化合物
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 WB-1~WB-4:それぞれ、下記式(WB-1)~(WB-4)で表される化合物
Figure JPOXMLDOC01-appb-C000042
 WC-1~WC-8:それぞれ、下記式(WC-1)~(WC-8)で表される化合物
Figure JPOXMLDOC01-appb-C000043
 WD-1~WD-5:それぞれ、下記式(WD-1)~(WD-5)で表される化合物
Figure JPOXMLDOC01-appb-C000044
(その他のジアミン)
 DA-1~DA-2:それぞれ、下記式(DA-1)~(DA-2)で表される化合物
Figure JPOXMLDOC01-appb-C000045
(テトラカルボン酸二無水物)
 CA-1:下記式(CA-1)で表される化合物
Figure JPOXMLDOC01-appb-C000046
(溶媒)
 NMP:N-メチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
(粘度の測定)
 溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)を用いて、温度25℃で測定した。
<分子軌道計算によるジアミンの物性評価>
 ジアミンについて、分子軌道計算を行うことにより物性を評価した。分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(RevisionC.01,M.J.Frisch,etal,Gaussian,Inc.,2010.)を用い、構造最適化した際の電子密度分布を算出した。
(1)Mulliken電荷
 ジアミンの真空下での基底状態における最安定構造を、汎関数としてB3LYP、基底関数として6-31G*を用いて計算した。この最安定構造において、表1に記載のジアミンについて上記において矢印で示した窒素原子上のMulliken電荷を算出した。側鎖上の窒素原子と主鎖内のジアミン部位とが共役していることを満たしつつ、Mulliken電荷の絶対値が0.550以上のものを「主鎖から側鎖Rへ効率的に電荷移動する」と判定した。また、側鎖上の窒素原子と主鎖内のジアミン部位とが共役していてもMulliken電荷の絶対値が0.550未満のものを「主鎖から側鎖Rに電荷移動しにくい」と判定した。その結果、対象窒素原子に直結する芳香族環数が2または3であるジアミンWA-1~WA-15、WB-1~WB-3、及びWD-5が、主鎖から側鎖Rへ効率的に電荷移動すると判定された。
(2)軌道係数
 (1)で得られた最安定構造にて、汎関数としてB3LYP、基底関数として6-31G*を用いて一点エネルギー計算を行い、最高被占分子軌道(HOMO軌道)の分布を求めた。ジアミンの側鎖上のアリールアミンまたは芳香族複素環に含まれる窒素原子上のHOMOの分布状態は、該当の窒素原子の軌道係数から数値化することができる。該当の窒素原子の軌道係数は、HOMOの軌道係数のうち該当する窒素原子の展開係数を二乗し合算したものである。軌道係数が0.0025未満のものを「◎」、0.0025以上0.005未満のものを「〇」、0.005以上0.01未満のものを「△」、0.01以上のものを「×」と判定した。側鎖Rの窒素原子が芳香族環と環形成し、かつ主鎖内の窒素原子と芳香族環を介してメタアリーレン配置となるジアミンが、特に透明性に優れていると言える。
Figure JPOXMLDOC01-appb-T000047
 *1):条件(I)及び(II)の少なくともいずれかを満たす芳香族炭化水素環の数である。
 *2):主鎖内のアミン部位(-NH)と、化学構造式中に矢印で示した窒素原子との共役の有無を示す。
 ここで、本実施例で上記したジアミンの中からいくつかを抜粋し、分子中の窒素原子の軌道係数を以下に示した。[1]~[8]で示した窒素原子の軌道係数は、0.01を大きく上回る値となっている。
Figure JPOXMLDOC01-appb-C000048
[モノマーの合成]
H-NMRの測定>
 装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER製)500MHz。
 溶媒:重水素化ジメチルスルホキシド([D]-DMSO)。標準物質:テトラメチルシラン(TMS)。
<モノマー合成例1(実施例A)>
[WA-3aの合成]
 下記に示す経路に従って、WA-3aを合成した。
Figure JPOXMLDOC01-appb-C000049
 窒素雰囲気下、ビス-(4-ニトロフェニル)アミン(7.56g、29.1mmol)に対し、9-ベンジル-2-ブロモ-9H-カルバゾール(10.8g、32.1mmol)、Pd(dba)(Tris(dibenzylideneacetone)dipalladium(0))(0.534g、0.583mmol)、及びt-BuXPhos(2-Di-tert-ブチルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル)(0.991g、2.33mmol)を加えた後に、窒素ガス吹き込みにより酸素を脱気させたトルエン(226g)を加え、さらに減圧下で酸素脱気-窒素ガス復圧を行い、厳密に酸素を除去した後に、t-BuONa(ナトリウム tert-ブトキシド)(4.20g、43.7mmol)を加え、再度減圧下で酸素脱気-窒素ガス復圧を行い、窒素雰囲気下で還流温度条件にて反応を開始した。72時間反応後、反応が停止したところで後処理に移った。
 反応液に1規定塩酸(200g)を加えて中和した後、分液操作を行って得られた有機層を1規定塩酸(200g)で再度洗浄し、分液操作により有機層を得た。得られた有機層に特製白鷺活性炭(1.60g)を加え30分撹拌し、その後、ろ過により活性炭を除去して得た溶液を濃縮して黒色オイルを得た。この黒色オイルを酢酸エチル:ヘプタン=1:6(体積比)の展開溶媒でカラム精製を行った後に得られた結晶を、トルエンで再結晶を行い、橙色固体の目的物(WA-3a)(4.87g、9.46mmol、収率:32.5%)を得た。
[WA-3の合成]
 下記に示す経路に従って、WA-3を合成した。
Figure JPOXMLDOC01-appb-C000050
 WA-3a(4.74g、9.21mmol)に対し、テトラヒドロフラン(THF)(100g)を加え、Pd-C(パラジウム-炭素)(N.E.ケムキャット製、50%含水品)(0.970g)加え、水素雰囲気下室温にてニトロ還元を行った。反応後、ろ過によりPd-Cを濾過し、ろ液を濃縮して得られた粗物をイソプロピルアルコールで再結晶し、黄緑色固体の目的物(WA-3)(3.52g、7.74mmol、収率:84.0%)を得た。
 以下に示すH-NMRの結果から、この固体がWA-3であることを確認した。
 H-NMR(500MHz,[D]-DMSO):δ(ppm)=7.91(d,1H,J=7.7Hz),7.79(d,1H,J=8.6Hz),7.51(d,1H,J=8.2Hz),7.27-7.20(m,4H),7.11-7.06(m,3H),6.80(d,4H,J=8.6Hz),6.76(d,1H,J=1.8Hz),6.57-6.52(m,5H),5.32(s,2H),4.95(s,4H)
<重合体の合成>
(比較合成例1)
 撹拌装置付き及び窒素導入管付きの50mL四つ口フラスコに、DA-1(0.638g、3.20mmol)、DA-2(0.239g、0.801mmol)及びNMP(10.0g)を加えて、室温で撹拌して溶解させた。その後、室温に冷却した後、CA-1(0.737g、3.76mmol)及びNMP(4.66g)を加えて、室温で4時間撹拌して、濃度10%のポリアミック酸溶液(PAA-R1)(粘度:204.8mPa・s)を得た。
(比較合成例2、参考合成例1、合成例1~2(実施例B、及びC))
 ジアミン化合物及びテトラカルボン酸二無水物の種類と量をそれぞれ下記表2に記載の通りに変更した以外は比較合成例1と同様にして、表2に記載の粘度を有するポリアミック酸溶液(PAA-R2、PAA-S1、PAA-1~PAA-2)をそれぞれ得た。
Figure JPOXMLDOC01-appb-T000051
<液晶配向剤の調製>
(実施例1)
 合成例1で得られたポリアミック酸溶液(PAA-1)(5.00g)に、NMP(3.00g)、及びBCS(2.00g)を加え、室温で2時間撹拌して、液晶配向剤(V-1)を得た。この液晶配向剤に、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
(実施例2、比較例1~2、参考例1)
 ポリアミック酸溶液をPAA-2、PAA-R1~PAA-R2、又はPAA-S1、に変更した以外は実施例1と同様に実施することにより、表3に記載の液晶配向剤V-2、VR-1~VR-2、及びVS-1を得た。
Figure JPOXMLDOC01-appb-T000052
<FFS型液晶表示素子の作製>
 フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード液晶表示素子の構成を備えた液晶セルを作製した。
 始めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板を用いた。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成され、第1層目の対向電極の上には第2層目として、CVD(化学蒸着)法により成膜されたSiN(窒化珪素)膜が形成されていた。第2層目のSiN膜は、層間絶縁膜として機能する膜厚は500nmのものを用いた。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成されており、各画素のサイズは、縦10mmで横約5mmであった。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されていた。
 第3層目の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境に第1領域と第2領域を有していた。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっていた。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が時計回りに10°の角度をなすように形成され、画素の第2領域では画素電極の電極要素が反時計回りに10°の角度をなすように形成されていた。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されていた。
 次に、実施例1で得られた液晶配向剤を孔径1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、各々スピンコート塗布にて塗布した。80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm、ラビング方向:第3層目ITO櫛歯電極に対して10°傾いた方向)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した。その後、80℃で15分間乾燥して、液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、ラビング方向が逆平行になるようにして張り合わせた。その後、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、ポジ型液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、23℃で一晩放置してから液晶配向性の評価に使用した。
<蓄積電荷の緩和速度測定>
 上記で作製した液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように、液晶セルの角度を調節した。本評価は液晶セルの温度が23℃の状態の温度条件下で行った。
 次に、この液晶セルに周波数30Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%となる交流電圧を駆動電圧として算出した。続いて、液晶セルを23℃にて、周波数1kHzで20mVの矩形波を10分間印加した。
 次に、相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波を5分間印加した後、+1.0Vの直流電圧を重畳し30分間駆動させた。その後、直流電圧を切り、再び相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波のみを30分間印加した。
 蓄積した電荷の緩和が速いほど、直流電圧を重畳したときの液晶セルへの電荷蓄積も速いことから、蓄積電荷の緩和特性は、直流電圧を重畳した直後の相対透過率が30%を超える状態から30%に低下するまでに要した時間で評価した。この時間が短いほど蓄積電荷の緩和特性が良好であると言える。具体的には、直流電圧の印加を開始した時点から30分間が経過するまでに、相対透過率が30%以下に低下した時間を数値化した。4分以内に相対透過率が30%以下に低下した場合には「◎」、4分を超えて8分以内で30%以下に低下した場合には「○」、8分を超えて30分以内で30%以下に低下した場合には「△」、30分間では相対透過率が30%以下に低下しなかった場合には「×」として評価した。
<光学特性(液晶配向膜の透明性)の評価>
 40mm×40mmの大きさで、厚さが1.0mmの石英基板を準備した。次に、液晶配向剤を孔径1.0μmのフィルターで濾過した後、上記石英基板にスピンコートした。次いで、80℃のホットプレート上で2分間乾燥後、230℃で20分間焼成し、各基板上に膜厚100nmのポリイミド膜を得た。
 透明性の評価は、前記手法で得られた基板の透過率を測定することで行った。具体的には、測定装置にUV-3600(島津製作所社製)を用い、温度25℃、スキャン波長を300~800nmの条件で、透過率を測定した。その際、リファレンス(参照例)に何も塗布していない石英基板を用いて行った。評価は、400~800nmの波長の平均透過率を算出し、透過率が高いものほど、透明性に優れるとした。
 上記実施例1~2、比較例1~2、及び参考例1の各液晶配向剤を使用する液晶表示素子について、上記の通り実施した蓄積電荷の緩和特性、光学特性の評価結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000053
 上記の結果からわかるように、特定の芳香族アミン構造を有するジアミン(c)を用いた液晶配向剤から得られる液晶配向膜は、特定の芳香族アミン構造を有するジアミンを用いない液晶配向剤から得られる液晶配向膜と比較して、同等以上の透明性を示しつつ、蓄積電荷の緩和速度を高速化させることが分かった。具体的には表4に示す実施例1及び実施例2と比較例1の比較において示される。なお、透過率における0.5%の差は当技術分野においては顕著な差である。
 また、比較例2と比較例1の比較より、特定の芳香族アミン構造を有しないジアミンを用いた液晶配向剤から得られる液晶配向膜では、透明性は向上するものの蓄積電荷の緩和速度は悪化した。
 参考例1と比較例1の比較より、ジアミンWB-4を用いた液晶配向剤から得られる液晶配向膜では、蓄積電荷の緩和速度は高速化するものの透明性は悪化した。
 算出対象の窒素原子の軌道係数が0.01以上であるジアミンを用いた参考例1と、算出対象の窒素原子の軌道係数が0.01未満であり、かつ特定の芳香族アミン構造を有するジアミン(c)を用いた実施例1及び2とを比較すると、実施例1及び2の液晶配向膜では、参考例1の液晶配向膜に比べて、透明性が優れていた。
 本発明の重合体組成物を液晶配向剤として用いることにより、蓄積電荷の緩和速度が速く残像の少ない液晶表示素子を得ることができる。そのため、高い表示品位が求められる液晶表示素子における利用が期待できる。

 

Claims (16)

  1.  下記式(i-1)~(i-3)のいずれかで表される部分構造を有する重合体(A)でありかつ前記部分構造からRを除いた構造を主鎖に有する重合体(A)、を含有する重合体組成物であって、
     前記重合体(A)が、下記式(i-1)~(i-3)のいずれかで表される部分構造を有するジアミン(c)を含むジアミン成分と、テトラカルボン酸誘導体成分とを反応させることにより得られる重合体である、重合体組成物。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(i-1)~(i-3)中、Rは2つの芳香族炭化水素環と窒素原子(A)とを有する1価の有機基である。
     前記1価の有機基において、前記2つの芳香族炭化水素環のそれぞれは、下記条件(I)及び(II)の少なくともいずれかを満たす。
     条件(I):芳香族炭化水素環の炭素原子の1つと前記窒素原子(A)とは直接結合している。
     条件(II):前記窒素原子(A)が芳香族複素環に含まれている場合、芳香族炭化水素環と前記芳香族複素環とは縮合環を形成している。
     前記2つの芳香族炭化水素環の1つは、*1が付された窒素原子(B)と共役している。
     *は結合手を表す。)
  2.  前記2つの芳香族炭化水素環の1つが前記窒素原子(B)と直接結合することによって、前記2つの芳香族炭化水素環の1つが前記窒素原子(B)と共役している、又は
     前記2つの芳香族炭化水素環の1つが1つの芳香族炭化水素環を介して前記窒素原子(B)と共役していることによって、前記2つの芳香族炭化水素環の1つが前記窒素原子(B)と共役している、
     請求項1に記載の重合体組成物。
  3.  前記ジアミン(c)の最高被占分子軌道における前記窒素原子(A)の軌道係数が、0.01未満である、請求項1又は2に記載の重合体組成物。
  4.  前記Rが、下記式(r1)~(r3)のいずれかで表される1価の有機基である、請求項1~3のいずれか一項に記載の重合性組成物。
    Figure JPOXMLDOC01-appb-C000002
    (R、及びRは、水素原子又は1価の有機基である。Rは、1価の有機基である。nは、1~3の整数を表す。ただし、nが1の場合、Rは*2が付されたキノリン環のピリジン環に直接結合する芳香族炭化水素基を有する有機基であり、nが2又は3の場合、Rの少なくとも1つは*2が付されたキノリン環のピリジン環に直接結合する芳香族炭化水素基を有する有機基である。*は結合手を表し、式(r3)における*はキノリン環を構成するベンゼン環と結合する。ベンゼン環上の水素原子は、ヒドロキシ基、ハロゲン原子、又は1価の有機基で置換されていても良い。)
  5.  前記式(r1)~(r3)のいずれかで表される1価の有機基が、*で表される結合手により前記窒素原子(B)に直接結合している、請求項4に記載の重合性組成物。
  6.  前記テトラカルボン酸誘導体成分が、脂肪族若しくは脂環式テトラカルボン酸二無水物、又はこれらの誘導体を含む、請求項1~5のいずれか一項に記載の重合体組成物。
  7.  請求項1~6のいずれか一項に記載の重合体組成物を含有する液晶配向剤。
  8.  請求項1~6のいずれか一項に記載の重合体組成物を用いて得られる樹脂膜。
  9.  請求項7に記載の液晶配向剤から得られる液晶配向膜。
  10.  請求項9に記載の液晶配向膜を具備する液晶表示素子。
  11.  下記の工程(1)~(3)を含む、液晶表示素子の製造方法。
     工程(1):請求項7に記載の液晶配向剤を基板上に塗布する工程
     工程(2):塗布した前記液晶配向剤を焼成し、膜を得る工程
     工程(3):工程(2)で得られた前記膜に配向処理する工程
  12.  請求項11に記載の液晶表示素子の製造方法により得られる液晶表示素子。
  13.  下記式(d1-1)~(d1-3)のいずれかで表される化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(d1-1)において、nが1である場合、Rは下記式(r2)で表される1価の有機基であり、nが2又は3である場合、n個のRは、それぞれ独立して、水素原子、炭素数1~6の炭化水素基、又は下記式(r2)で表される1価の有機基を表し、n個のRの少なくとも一つは下記式(r2)で表される1価の有機基を表す。
     式(d1-2)~(d1-3)において、Rは下記式(r2)で表される1価の有機基である。L、及びLは、単結合、-NR’-、-O-、-NR’-CO-、-CO-NR’-、-O-CO-、又は-CO-O-を表し、R’は水素原子又は1価の有機基を表す。Ar、及びArは、芳香族環基を表す。該芳香族環上の水素原子は、ヒドロキシ基、ハロゲン原子、炭素数1~5のアルキル基、又は炭素数1~5のアルコキシ基で置き換えられても良い。
     式(d1-1)において、nが2又は3の場合、n個のm2は同じであってもよいし、異なっていてもよい。
     式(d1-2)において、Arが2つ以上ある場合、2つ以上のArは同じであってもよいし、異なっていてもよい。
     式(d1-2)において、Lが2つ以上ある場合、2つ以上のLは同じであってもよいし、異なっていてもよい。
     式(d1-3)において、2つ以上のArは同じであってもよいし、異なっていてもよい。
     式(d1-3)において、2つ以上のLは同じであってもよいし、異なっていてもよい。)
    Figure JPOXMLDOC01-appb-C000004
    (Rは、水素原子又は1価の有機基である。但し、最高被占分子軌道における式(r2)のカルバゾール骨格が有する窒素原子の軌道係数は0.01未満である。*は結合手を表す。)
  14.  下記式(d-1)~(d-8)のいずれかで表される化合物。
    Figure JPOXMLDOC01-appb-C000005
  15.  請求項13に記載の前記式(d1-1)~(d1-3)のいずれかで表される化合物からなる群から選ばれる少なくとも1種の化合物を含むジアミン成分とテトラカルボン酸誘導体成分との重合反応により得ることができるポリイミド前駆体。
  16.  請求項14に記載の前記式(d-1)~(d-8)のいずれかで表される化合物からなる群から選ばれる少なくとも1種の化合物を含むジアミン成分とテトラカルボン酸誘導体成分との重合反応により得ることができるポリイミド前駆体。

     
PCT/JP2021/041117 2020-11-17 2021-11-09 重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子 WO2022107640A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022563699A JPWO2022107640A1 (ja) 2020-11-17 2021-11-09
CN202180076791.4A CN116457338A (zh) 2020-11-17 2021-11-09 聚合物组合物、液晶取向剂、树脂膜、液晶取向膜、液晶显示元件的制造方法以及液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-190768 2020-11-17
JP2020190768 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022107640A1 true WO2022107640A1 (ja) 2022-05-27

Family

ID=81708828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041117 WO2022107640A1 (ja) 2020-11-17 2021-11-09 重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子

Country Status (4)

Country Link
JP (1) JPWO2022107640A1 (ja)
CN (1) CN116457338A (ja)
TW (1) TW202227534A (ja)
WO (1) WO2022107640A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102757560A (zh) * 2012-08-08 2012-10-31 中山大学 一种含咔唑结构的可溶性功能聚酰亚胺及其制备方法和应用
CN105384680A (zh) * 2015-11-10 2016-03-09 南京航空航天大学 9-(2’-芳基苄基)-3,6-二氨基咔唑化合物及其制备方法
CN105601917A (zh) * 2015-11-10 2016-05-25 江苏爱姆欧光电材料有限公司 一种可溶性聚酰亚胺及其制备方法
CN106146839A (zh) * 2016-07-04 2016-11-23 北京化工大学常州先进材料研究院 信息存储性能可调的可溶性含脂肪链聚酰亚胺
CN108559082A (zh) * 2018-05-09 2018-09-21 黑龙江大学 含咔唑胺结构及萘酰亚胺荧光基团的聚酰亚胺衍生物及其制备方法和应用
CN110128652A (zh) * 2019-05-21 2019-08-16 武汉华星光电半导体显示技术有限公司 交联型聚酰亚胺、聚酰亚胺薄膜及其制备方法、oled器件
CN110408026A (zh) * 2019-09-10 2019-11-05 中国人民解放军海军勤务学院 一种含吡咯基团的三芳胺基聚酰亚胺及其制备方法和应用
CN110577643A (zh) * 2019-09-03 2019-12-17 武汉华星光电半导体显示技术有限公司 聚酰亚胺及其制备方法与柔性oled面板
CN110655649A (zh) * 2019-08-28 2020-01-07 武汉华星光电半导体显示技术有限公司 聚酰亚胺及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663876B2 (ja) * 2008-01-25 2015-02-04 日産化学工業株式会社 液晶配向処理剤、及びそれを用いた液晶表示素子
CN103022377B (zh) * 2012-12-06 2015-12-23 昆山维信诺显示技术有限公司 一种oled器件
JP6361168B2 (ja) * 2013-06-17 2018-07-25 Jsr株式会社 液晶配向剤、液晶配向膜、液晶表示素子、液晶表示素子の製造方法、重合体及び化合物
JP2017181965A (ja) * 2016-03-31 2017-10-05 日産化学工業株式会社 液晶配向剤、液晶配向膜および液晶表示素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102757560A (zh) * 2012-08-08 2012-10-31 中山大学 一种含咔唑结构的可溶性功能聚酰亚胺及其制备方法和应用
CN105384680A (zh) * 2015-11-10 2016-03-09 南京航空航天大学 9-(2’-芳基苄基)-3,6-二氨基咔唑化合物及其制备方法
CN105601917A (zh) * 2015-11-10 2016-05-25 江苏爱姆欧光电材料有限公司 一种可溶性聚酰亚胺及其制备方法
CN106146839A (zh) * 2016-07-04 2016-11-23 北京化工大学常州先进材料研究院 信息存储性能可调的可溶性含脂肪链聚酰亚胺
CN108559082A (zh) * 2018-05-09 2018-09-21 黑龙江大学 含咔唑胺结构及萘酰亚胺荧光基团的聚酰亚胺衍生物及其制备方法和应用
CN110128652A (zh) * 2019-05-21 2019-08-16 武汉华星光电半导体显示技术有限公司 交联型聚酰亚胺、聚酰亚胺薄膜及其制备方法、oled器件
CN110655649A (zh) * 2019-08-28 2020-01-07 武汉华星光电半导体显示技术有限公司 聚酰亚胺及其制备方法
CN110577643A (zh) * 2019-09-03 2019-12-17 武汉华星光电半导体显示技术有限公司 聚酰亚胺及其制备方法与柔性oled面板
CN110408026A (zh) * 2019-09-10 2019-11-05 中国人民解放军海军勤务学院 一种含吡咯基团的三芳胺基聚酰亚胺及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IQBAL ASMA, LEE SEOK HWAN, PARK O OK, SIDDIQI HUMAIRA M., AKHTER TOHEED: "Synthesis and characterization of blue light emitting redox-active polyimides bearing a noncoplanar fused carbazole–triphenylamine unit", NEW JOURNAL OF CHEMISTRY, vol. 40, no. 6, 5 April 2016 (2016-04-05), GB , pages 5285 - 5293, XP055931810, ISSN: 1144-0546, DOI: 10.1039/C6NJ00702C *

Also Published As

Publication number Publication date
CN116457338A (zh) 2023-07-18
JPWO2022107640A1 (ja) 2022-05-27
TW202227534A (zh) 2022-07-16

Similar Documents

Publication Publication Date Title
TWI758513B (zh) 液晶配向劑、液晶配向膜及使用其之液晶顯示元件
JP2017181965A (ja) 液晶配向剤、液晶配向膜および液晶表示素子
WO2021177080A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2022107545A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022176680A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022107640A1 (ja) 重合体組成物、液晶配向剤、樹脂膜、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子
WO2021210252A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2022085674A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2024029576A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7311047B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2022181311A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7302744B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2022190896A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP7318826B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
CN116615689B (zh) 液晶取向剂、液晶取向膜以及液晶显示元件
WO2023210532A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022168722A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子の製造方法及び液晶表示素子
WO2021246431A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP2024022213A (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2023008203A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、化合物、及び重合体
WO2023068084A1 (ja) 液晶配向剤、液晶配向膜、液晶表示素子、化合物、及び重合体
KR20240090439A (ko) 액정 배향제, 액정 배향막, 액정 표시 소자, 화합물, 및 중합체
TW202146633A (zh) 新穎二胺、聚合物、液晶配向劑、液晶配向膜及使用該膜之液晶顯示元件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894514

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563699

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180076791.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894514

Country of ref document: EP

Kind code of ref document: A1