WO2019187226A1 - 垂直磁気記録媒体 - Google Patents

垂直磁気記録媒体 Download PDF

Info

Publication number
WO2019187226A1
WO2019187226A1 PCT/JP2018/035132 JP2018035132W WO2019187226A1 WO 2019187226 A1 WO2019187226 A1 WO 2019187226A1 JP 2018035132 W JP2018035132 W JP 2018035132W WO 2019187226 A1 WO2019187226 A1 WO 2019187226A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
granular
recording medium
cap layer
granular layer
Prior art date
Application number
PCT/JP2018/035132
Other languages
English (en)
French (fr)
Inventor
愛美 増田
清水 正義
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to JP2020508965A priority Critical patent/JP7116782B2/ja
Priority to SG11202009585QA priority patent/SG11202009585QA/en
Priority to CN201880091890.8A priority patent/CN111971745B/zh
Publication of WO2019187226A1 publication Critical patent/WO2019187226A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/658Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing oxygen, e.g. molecular oxygen or magnetic oxide
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention provides a granular layer in which a magnetic material is dispersed in a nonmagnetic material containing a metal oxide as a layer constituting at least a part of the recording layer, and a cap layer that is formed on the granular layer and does not contain a metal oxide,
  • the present invention proposes a technique that can contribute to the improvement of switching field dispersion (SFD) required for high-density recording.
  • SFD switching field dispersion
  • a perpendicular magnetic recording medium is generally configured by sequentially stacking a soft magnetic layer, an intermediate layer, a recording layer, and the like on a substrate such as aluminum or glass.
  • the recording layer has a granular layer in which a non-magnetic material of SiO 2 or other metal oxide is dispersed in a magnetic material such as a Co—Pt alloy containing Co as a main component.
  • a magnetic material such as a Co—Pt alloy containing Co as a main component.
  • Each layer of such a magnetic recording medium is usually formed by sputtering with a magnetron sputtering apparatus using a sputtering target having a predetermined composition corresponding to that layer, as described in Patent Document 2, for example. Is done.
  • the recording layer of the perpendicular magnetic recording medium as described above further includes a cap layer made of a magnetic material that does not include a metal oxide and is formed on the granular layer, in addition to the granular layer.
  • a cap layer made of a magnetic material that does not include a metal oxide and is formed on the granular layer, in addition to the granular layer.
  • the cap layer is formed thick, the SFD is improved, but the distance between the head and the center of the medium is increased and the resolution is lowered. Also, the thick cap layer increases the exchange coupling between the magnetic particles, and the magnetic cluster size is reduced. The recording density cannot be increased due to the increase.
  • An object of the present invention is to solve such problems of conventional perpendicular magnetic recording media, and an object thereof is to uniformly stack a cap layer on the granular layer of the recording layer, thereby improving efficiency. It is another object of the present invention to provide a perpendicular magnetic recording medium that can improve the reversed magnetic field dispersion (SFD).
  • SFD reversed magnetic field dispersion
  • the inventor has included a predetermined metal oxide in the boundary portion between the granular layer located immediately below the cap layer in the recording layer and the cap layer, so that the metal oxide and Co, etc. Based on the good wettability with the cap layer containing a large amount of the cap layer, the cap layer is laminated on the non-magnetic part of the granular layer in the same manner as on the magnetic part of the granular layer from the early stage of growth. As a result, it was found that a uniform cap layer was formed on the granular layer. In addition, since a predetermined metal oxide effectively separates magnetic particles, when used as a metal oxide at the boundary of the granular layer, the required magnetic separation of the magnetic particles in the granular layer can be realized. it can.
  • the perpendicular magnetic recording medium of the present invention includes a metal oxide as a non-magnetic material, a magnetic layer dispersed in the non-magnetic material, and a metal oxide formed on the granular layer.
  • a cap layer that does not contain at least a part of the recording layer, and the oxide phase at the boundary between the granular layer immediately below the cap layer and the cap layer is Zn, W , At least one selected from the group consisting of Mn, Fe and Mo.
  • the oxide phase at the boundary portion of the granular layer contains at least Zn among the above metals.
  • the oxide phase at the boundary portion of the granular layer may further contain at least one of B and Si.
  • the oxide phase at the boundary part may further contain Ti.
  • the remainder of the granular layer excluding the boundary portion has a layer not containing Zn.
  • the remainder of the granular layer contains, as an oxide phase, an oxide of at least one element selected from the group consisting of Si, B and Ti, and the total content of oxides of the oxide phase in the remainder The amount is 20 vol. % To 50 vol. % Is even more preferable.
  • the oxide phase at the boundary portion of the granular layer contains Zn, and the Zn content in the oxide phase is 3 at% or more.
  • the ratio of the thickness of the boundary portion to the entire granular layer is 3% to 50% in the recording layer stacking direction.
  • the magnetic particles in the entire granular layer including the boundary portion include at least one metal selected from the group consisting of Pt, Ru, and Cr as a magnetic material.
  • This magnetic body can have a so-called ECL (Exchange Coupling Layer) divided in a vertical direction by a nonmagnetic layer mainly composed of Co or Ru.
  • the cap layer may contain Co as a main component and at least one metal selected from the group consisting of Cr, Pt, and B.
  • the thickness of the cap layer is 1 nm to 3 nm in the recording layer stacking direction.
  • the granular layer is formed from the initial growth stage of the cap layer. Since the cap layer also grows on the non-magnetic portion of the oxide phase containing the metal, the cap layer can be uniformly stacked on the granular layer, thereby improving the reversal magnetic field dispersion (SFD).
  • SFD reversal magnetic field dispersion
  • FIG. 1 is a cross-sectional view along a recording layer lamination direction schematically showing a recording layer of a perpendicular magnetic recording medium according to an embodiment of the present invention.
  • FIG. It is sectional drawing in alignment with the lamination direction of a recording layer which shows typically the recording layer of the conventional perpendicular magnetic recording medium.
  • It is a graph which shows the change of Ra accompanying the increase in the film thickness tc of a cap layer at the time of sputtering of Test example 1 of an Example.
  • 6 is a graph showing a change in ⁇ Hn with an increase in a cap layer thickness tc during sputtering in Test Example 1 of an example.
  • a perpendicular magnetic recording medium includes a recording layer.
  • the recording layer 1 includes a metal oxide as a nonmagnetic material as a layer constituting at least a part thereof.
  • the magnetic layer has a granular layer 2 in which the non-magnetic material is dispersed, and a cap layer 3 formed on the granular layer 2 and containing no metal oxide. Therefore, in the recording layer 1 of this embodiment, the granular layer 2 includes the non-magnetic oxide phase 4a and the magnetic metal phase 4b, while the cap layer 3 does not include the metal oxide. It consists only of a predetermined metal.
  • the perpendicular magnetic recording medium can be formed by stacking, for example, a substrate, a soft magnetic layer, an intermediate layer, and the recording layer 1 in this order. Therefore, the description is omitted here.
  • the recording layer 1 of this embodiment is composed of the granular layer 2 and the cap layer 3, but may further include an Onset layer, an ECL layer, or the like having nonmagnetic properties or a magnetic property with a small magnetic moment depending on circumstances. There is.
  • the cap layer 3 does not include a metal oxide and is made of only a magnetic metal. Specifically, such a metal is mainly selected from the group consisting of Co, Cr, Pt, and B. And those containing at least one metal.
  • the metal constituting the cap layer 3 is typically composed mainly of Co and Pt, and may contain one or more metals selected from the group consisting of Cr and B as required.
  • the cap layer 3 is usually an alloy mainly composed of CoCrPtB.
  • the cap layer 3 when the cap layer 3 is formed, the cap layer 3 can be uniformly laminated on the granular layer 2 from the initial stage of the formation, so that the thickness tc of the cap layer 3 is required. Without increasing the thickness, the switching field dispersion (SFD) can be improved efficiently.
  • the thickness tc of the cap layer 3 is a percentage with respect to the total thickness tg of the granular layer 2, and can be preferably 3% to 30%. Specifically, the thickness tc of the cap layer 3 is preferably 0.5 nm to 3 nm.
  • the granular layer 2 is entirely composed of an oxide phase 4a made of a non-magnetic metal oxide and a magnetic metal phase 4b.
  • the granular layer 2 is viewed in the stacking direction of the recording layer 1.
  • the boundary portion 2a located immediately below the cap layer 3 and the remaining portion 2b located below the boundary portion 2a other than the boundary portion 2a may be configured as at least two layers. It is essential.
  • the boundary portion 2a and the remaining portion 2b are different from each other in the metal oxide constituting the oxide phase 4a.
  • the oxide phase 4a of the boundary portion 2a contains at least one selected from the group consisting of Zn, W, Mn, Fe, and Mo, and preferably contains Zn.
  • the oxide contained in the boundary portion 2a is mainly ZnO. According to this, when the cap layer 3 is formed on the granular layer 2 by sputtering, the metal constituting the cap layer 3 not containing a metal oxide and ZnO in the boundary portion 2a of the granular layer 2 are formed. By showing good wettability, the constituent metal of the cap layer 3 can be uniformly laminated on the entire surface including the oxide phase 4a of the boundary portion 2a of the granular layer 2 from the initial growth stage of the cap layer 3.
  • the function by the cap layer 3 is effectively exhibited, and the reversed magnetic field dispersion (SFD) can be improved. Further, since ZnO can effectively separate the magnetic particles of the metal phase 4b of the granular layer 2, the required magnetic separation property is ensured at the boundary portion 2a of the granular layer 2 in substantially the same manner as the remaining portion 2b. be able to.
  • the oxide phase 14a of the granular layer 12 is made of an oxide of a metal other than the above-mentioned metal in the entire stacking direction.
  • the metal of the cap layer 13 is selectively stacked on the metal phase 14b of the granular layer 12 where the metal oxide does not exist at the initial growth stage. That is, as schematically shown in FIG. 2, a portion where the metal of the cap layer 13 cannot be laminated is formed due to excellent crystallinity of the metal of the cap layer 13, so-called epitaxial growth, near the granular layer 12.
  • the oxide phase of the boundary portion 2 a contains Zn, W, Mn, Fe and / or Mo that easily wets the cap layer 3. The problem can be solved effectively.
  • the Zn content is preferably 3 at% or more.
  • the Zn content in the boundary portion 2a is less than 3 at%, improvement in wettability cannot be expected, and the cap layer may not be easily epitaxially grown on the oxide phase, and the Zn content in the boundary portion 2a
  • the content exceeds 25 at% or more, there is a concern that magnetic anisotropy and crystallinity are lowered due to Zn entering the metal phase in a large amount.
  • the oxide phase of the boundary portion 2a of the granular layer 2 is at least one selected from the group consisting of Zn, W, Mn, Fe, and Mo in order to improve wettability, B and Si that improve amorphousness, separation It is even more preferable to use a metal oxide containing Ti that improves the properties. That is, the oxide phase of the boundary portion 2a of the granular layer 2 can contain only at least one selected from the group consisting of Zn, W, Mn, Fe and Mo. In addition, At least one of B and Si, and / or Ti can be contained.
  • the ratio (tb / tg) of the thickness tb of the boundary portion 2a of the granular layer 2 to the total thickness tg of the granular layer 2 as viewed in the recording layer stacking direction should be 3% to 50%. Is preferred. If the ratio (tb / tg) of the thickness tb of the boundary portion 2a to the total thickness tg is less than 3%, the effect of uniform film formation of the cap layer 3 with ZnO in the boundary portion 2a may not be sufficiently obtained. is there.
  • the ratio (tb / tg) of the thickness tb of the boundary portion 2a to the total thickness tg of the granular layer 2 is more preferably 3% to 30%.
  • the oxide phase of the remaining portion 2b of the granular layer 2 that does not significantly affect the uniform film formation of the cap layer 3 can contain Zn, as with the boundary portion 2a. It is preferable not to contain. Further, it is preferable that the remaining portion 2b of the granular layer 2 is a layer containing not only ZnO but also Zn. This is because if the remaining portion 2b of the granular layer 2 contains Zn, the magnetic anisotropy Ku may be lowered.
  • the remaining portion 2b of the granular layer 2 contains, as an oxide phase, an oxide of at least one element selected from the group consisting of Si, B, and Ti instead of a predetermined metal oxide such as ZnO as described above. Can be.
  • the total content of oxides in the balance 2b including oxides other than the oxides is preferably 20 vol. % To 50 vol. %.
  • the total content of the oxide of the remainder 2b is 20 vol. %,
  • the separation of the metal phase is insufficient and the magnetic cluster size may increase, and 50 vol. If it exceeds 50%, the ratio of the metal phase is small, and sufficient Ku and magnetic anisotropy cannot be obtained, and thermal stability and reproduction signal strength may be insufficient.
  • membrane is calculated
  • the metal phase 4b which is a magnetic material of the granular layer 2, contains Co as a main component and further contains at least one metal selected from the group consisting of Pt, Ru, and Cr.
  • Example 1-1 Cr—Ti (6 nm), Ni—W (5 nm), and Ru (20 nm) were formed in this order on a glass substrate using a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva). Then, Co—Pt—SiO 2 (10 nm) is formed as a lower granular layer (the remainder of the granular layer), and an upper granular layer (granular layer) is formed thereon using a sputtering target made of Co—Pt—ZnO.
  • Each of the magnetic films having a film thickness of 3 nm is formed by sputtering at 300 W in an Ar 5.0 Pa atmosphere as a boundary portion with the cap layer, and further, Co—Cr—Pt—B (as a cap layer) is formed thereon. (0 to 8 nm) was formed to form each layer.
  • the oxide of the upper granular layer is made of ZnO.
  • Example 1-2 to 1-5 films similar to those in Example 1 were formed except that the oxide of the upper granular layer was composed of WO 3 , MnO, Fe 2 O 3 , and MoO 3 . . Furthermore, as Comparative Example 1, each layer was formed in the same manner as in Example 1 except that the oxide phase of the upper granular layer was made of SiO 2 .
  • Example 1 the lower granular layer is 67Co-23Pt-10SiO 2 (mol%), and the cap layer is 60Co-10Cr-15Pt-5B. (Mol%).
  • Example 1-5 3 30 vol.%).
  • the roughness (Ra) was measured by an atomic force microscope (AFM) manufactured by SII, and the reversal start magnetic field (-Hn) was measured by a sample vibration magnetometer (VSM) manufactured by Tamagawa Seisakusho.
  • the value of Ku was 6.16 ⁇ 10 6 erg / cc when the oxide of the granular layer was SiO 2 , whereas it was 5.04 ⁇ 10 6 erg / cc when ZnO was used. . From this, it can be seen that Ku is lowered when a sputtering target containing Zn is used. Therefore, since a sputtering target having a composition with high Ku is often used for the lower granular layer, it can be said that it is desirable that the lower granular layer has a layer containing no Zn.
  • Examples 3-1 to 3-22 are Co—Pt—ZnO, Co—Pt—SiO 2 —ZnO, Co—Pt—B 2 O 3 —ZnO, and Co—Pt—TiO 2 —ZnO sputtering targets, A plurality of prototypes with different Zn contents were manufactured. The composition of each sputtering target is shown in Table 1 for reference.
  • FIG. 5 shows the relationship between the Zn content and the cap layer thickness at which the Ra of the cap layer is less than 5%
  • FIG. 6 shows the relationship between the Zn content and the cap layer thickness at which ⁇ Hn is positive. Show. As shown in FIG. 5, in particular, Examples 3-5 to 3-8, Examples 3-12 to 3-15, and Examples 3-19 to 3-22 in which Zn of the upper granular layer is 3 at% or more are shown in FIG.
  • the wettability of the cap layer mainly composed of Co and the Zn oxide is further improved since the Ra is sufficiently lowered even when the thickness is thin.
  • Examples 3-5 to 3-8, Examples 3-12 to 3-15, and Examples 3-19 to 3-22 in which Zn of the upper granular layer is 3 at% or more, Since the thickness of the cap layer where d (-Hn) / dtc becomes positive is considerably reduced, it can be understood that the SFD is further improved in the thin cap layer by adding Zn.

Abstract

この発明の垂直磁気記録媒体は、非磁性体として金属酸化物を含み、磁性体が前記非磁性体に分散したグラニュラ層2と、前記グラニュラ層2上に形成されて、金属酸化物を含まないキャップ層3とを、記録層1の少なくとも一部を構成する層として有する垂直磁気記録媒体であって、前記キャップ層3の直下のグラニュラ層の、キャップ層との境界部分の酸化物相が、Zn、W、Mn、Fe及びMoからなる群から選択される少なくとも一種を含有してなるものである。

Description

垂直磁気記録媒体
 この発明は、記録層の少なくとも一部を構成する層として、金属酸化物を含む非磁性体に磁性体が分散したグラニュラ層と、グラニュラ層上に形成されて金属酸化物を含まないキャップ層とを有する垂直磁気記録媒体に関するものであり、特には、高密度記録に求められる反転磁界分散(SFD)の改善に寄与することのできる技術を提案するものである。
 ハードディスクドライブでは、記録面に対して垂直方向に磁気を記録する垂直磁気記録方式が実用化され、この方式は、それまでの面内磁気記録方式に比べて高密度の記録が可能であることから広く採用されている。
 垂直磁気記録媒体は、概して、アルミニウムやガラス等の基板上に、軟磁性層、中間層、記録層等を順次に積層して構成される。このうち、記録層は下部に、Coを主成分としたCo-Pt系合金等の磁性体に、SiO2その他の金属酸化物の非磁性体が分散したグラニュラ層が存在する。これにより、当該記録層中で、非磁性体である上記の金属酸化物が、垂直方向に配向するCo合金等の磁性体の磁性粒子の粒界へ析出して、磁性粒子間の磁気的な相互作用が低減され、それによるノイズ特性の向上および、高い記録密度を実現している。これに関連する技術としては、特許文献1に記載されたもの等がある。
 なお、このような磁気記録媒体の各層は通常、たとえば特許文献2に記載されているように、その層に対応する所定の組成を有するスパッタリングターゲットを用いて、マグネトロンスパッタリング装置でスパッタリングすることにより形成される。
特許第4021435号公報 特許第5960287号公報
 上述したような垂直磁気記録媒体の記録層は一般に、記録層が、グラニュラ層の他、グラニュラ層上に形成されて金属酸化物を含まず主として磁性体からなるキャップ層をさらに有する。このことによれば、金属酸化物によって磁性粒子が磁気的に分離されたグラニュラ層の粒子分離性により低ノイズ化を実現しつつ、金属酸化物を存在させないことによって磁性粒子間の相互作用を残したキャップ層で、グラニュラ層に適度な磁性粒子間の相互作用を付与し、媒体の書込み容易性、SFD低減、熱安定性等が確保される。
 ところで、このような垂直磁気記録媒体の記録層を形成するべく、グラニュラ層上に、スパッタリング等によりキャップ層を成膜すると、グラニュラ層中の金属酸化物とキャップ層の金属との間の濡れ性の違いによって、キャップ層の薄膜が、グラニュラ層の金属酸化物が存在しない部分に選択的に成長する。それにより、キャップ層の薄膜の初期成長が、金属酸化物を含むグラニュラ層の形態に倣って不均一となるので、所定の厚みのキャップ層を形成しても、反転磁界分散(SFD:switching field distribution)が改善しないという問題があった。この一方で、キャップ層を厚く形成すれば、SFDは改善するがヘッドと媒体中心の距離が大きくなり分解能が低下し、また、厚いキャップ層によって磁性粒子間の交換結合が大きくなり磁気クラスタサイズが増大して記録密度を高くできない。
 この発明は、従来の垂直磁気記録媒体が抱えるこのような問題を解決することを課題とするものであり、その目的は、記録層のグラニュラ層上にキャップ層が均一に積層し、それにより効率的に反転磁界分散(SFD)を改善することのできる垂直磁気記録媒体を提供することにある。
 発明者は鋭意検討の結果、記録層におけるキャップ層の直下に位置するグラニュラ層の、キャップ層との境界部分に、所定の金属の酸化物を含ませることにより、当該金属の酸化物とCo等を多く含有するキャップ層との良好な濡れ性に基づき、キャップ層がその成長初期から、グラニュラ層の磁性体部分上と同様にグラニュラ層の非磁性体部分上にも積層することになり、その結果としてグラニュラ層上に均一なキャップ層が形成されることを見出した。また、所定の金属の酸化物は磁性粒子を有効に分離させることから、グラニュラ層の境界部分の金属酸化物として用いた場合、グラニュラ層における磁性粒子の所要の磁気的分離性を実現することができる。
 かかる知見の下、この発明の垂直磁気記録媒体は、非磁性体として金属酸化物を含み、磁性体が前記非磁性体に分散したグラニュラ層と、前記グラニュラ層上に形成されて、金属酸化物を含まないキャップ層とを、記録層の少なくとも一部を構成する層として有するものであって、前記キャップ層の直下のグラニュラ層の、キャップ層との境界部分の酸化物相が、Zn、W、Mn、Fe及びMoからなる群から選択される少なくとも一種を含有してなるものである。
 この発明の垂直磁気記録媒体では、前記グラニュラ層の前記境界部分の酸化物相が、上記の金属のうち、少なくともZnを含有することが好ましい。
 なお、この発明の垂直磁気記録媒体では、前記グラニュラ層の前記境界部分の酸化物相がさらに、B及びSiのうちの少なくとも一種を含有するものとすることができ、また、前記グラニュラ層の前記境界部分の酸化物相がさらに、Tiを含有するものとすることができる。
 この発明の垂直磁気記録媒体は、前記グラニュラ層の前記境界部分を除く残部が、Znを含有しない層を有することが好ましい。
 この場合、前記グラニュラ層の前記残部が、酸化物相として、Si、B及びTiからなる群から選択される少なくとも一種の元素の酸化物を含み、前記残部における酸化物相の酸化物の合計含有量が20vol.%~50vol.%であることがより一層好ましい。
 また、この発明の垂直磁気記録媒体は、前記グラニュラ層の前記境界部分の酸化物相がZnを含有し、該酸化物相のZnの含有量が3at%以上であることが好ましい。
 そしてまた、この発明の垂直磁気記録媒体は、記録層の積層方向で、前記境界部分の厚みの、グラニュラ層全体の厚みに占める割合が、3%~50%であることが好ましい。
 なおここでは、前記境界部分を含むグラニュラ層全体の磁性粒子が、磁性体として、Coを主体とし、さらにPt、Ru及びCrからなる群から選択される少なくとも一種の金属を含有するものとすることができる。この磁性体は垂直方向にCoまたはRuを主体とする非磁性の層で分断されている所謂ECL(Exchange Coupling Layer)を有することができる。
 また、前記キャップ層は、Coを主体とし、さらにCr、Pt及びBからなる群から選択される少なくとも一種の金属を含有するものとすることができる。
 そしてまた、この発明の垂直磁気記録媒体は、記録層の積層方向で、前記キャップ層の厚みが1nm~3nmであることが好ましい。
 この発明の垂直磁気記録媒体によれば、キャップ層の直下のグラニュラ層の、キャップ層との境界部分の酸化物相が、上述した金属を含有することにより、キャップ層の成長初期から、グラニュラ層の当該金属を含む酸化物相の非磁性部分上にもキャップ層が成長するので、グラニュラ層上にキャップ層が均一に積層し、それにより、反転磁界分散(SFD)を改善することができる。
この発明の一の実施形態の垂直磁気記録媒体の記録層を模式的に示す、記録層の積層方向に沿う断面図である。 従来の垂直磁気記録媒体の記録層を模式的に示す、記録層の積層方向に沿う断面図である。 実施例の試験例1のスパッタリング時にキャップ層の膜厚tcの増大に伴うRaの変化を示すグラフである。 実施例の試験例1のスパッタリング時にキャップ層の膜厚tcの増大に伴う-Hnの変化を示すグラフである。 実施例の試験例3におけるZn含有量とキャップ層のRaが5Å未満になるキャップ層の膜厚との関係を示すグラフである。 実施例の試験例3におけるZnの含有量と-Hnが正になるキャップ層の膜厚との関係を示すグラフである。
 以下に、この発明の実施形態について詳細に説明する。
 この発明の一の実施形態の垂直磁気記録媒体は記録層を備え、図1に例示するように、記録層1が、その少なくとも一部を構成する層として、非磁性体として金属酸化物を含み磁性体が前記非磁性体に分散したグラニュラ層2と、グラニュラ層2上に形成されて金属酸化物を含まないキャップ層3とを有するものである。したがって、この実施形態の記録層1は、グラニュラ層2は、非磁性体からなる酸化物相4aおよび、磁性体からなる金属相4bを含む一方で、キャップ層3は、金属酸化物を含まず所定の金属のみからなる。
 なおこの垂直磁気記録媒体は、たとえば、基板、軟磁性層、中間層および当該記録層1をこの順序で積層したものとすることができ、このうち記録層1以外のものについてはこれまでと同様とすることができるので、ここでは説明を省略する。また、この実施形態の記録層1は、グラニュラ層2およびキャップ層3からなるものであるが、場合によってはさらに、非磁性または磁気モーメントの小さい磁性を持ったOnset層、ECL層等を含むことがある。
(キャップ層)
 キャップ層3は、金属酸化物を含まず、磁性体の金属のみからなるものであり、このような金属として具体的には、Coを主体とし、さらにCr、Pt及びBからなる群から選択される少なくとも一種の金属を含むものを挙げることができる。
 キャップ層3を構成する金属は典型的には、主としてCoとPtからなり、必要に応じてCr及びBからなる群から選択される一種以上の金属を含むことがある。キャップ層3は通常、CoCrPtBを主体とする合金である。
 この実施形態では、後述するように、キャップ層3の成膜時に、その成膜初期から、グラニュラ層2上にキャップ層3を均一に積層させることができるので、キャップ層3の厚みtcを必要以上に厚くすることなしに、反転磁界分散(SFD)を効率的に向上させることができる。キャップ層3の厚みtcは、グラニュラ層2の全体の厚みtgに対する百分率で、好ましくは3%~30%とすることができる。具体的には、キャップ層3の厚みtcは、0.5nm~3nmとすることが好適である。
(グラニュラ層)
 グラニュラ層2はその全体が、非磁性体の金属酸化物からなる酸化物相4aおよび、磁性体の金属相4bからなるものであるが、このグラニュラ層2を、記録層1の積層方向に視て、図1に示すように、キャップ層3の直下に位置する境界部分2aと、境界部分2a以外の、その境界部分2aより下部に位置する残部2bとを含む少なくとも二層で構成することが肝要である。かかる境界部分2aと残部2bとは、その酸化物相4aを構成する金属酸化物が異なるものである。
 具体的には、境界部分2aの酸化物相4aは、Zn、W、Mn、Fe及びMoからなる群から選択される少なくとも一種を含有するものとし、好ましくはZnを含有するものとする。ここでは、境界部分2aに含まれる酸化物を、主としてZnOとする。
 このことによれば、グラニュラ層2上に、スパッタリングによりキャップ層3を成膜する際に、金属酸化物を含まないキャップ層3を構成する金属と、グラニュラ層2の境界部分2aのZnOとが良好な濡れ性を示すことにより、キャップ層3の成長初期から、キャップ層3の構成金属を、グラニュラ層2の境界部分2aの酸化物相4aを含む全体に均一に積層させることができる。それにより、キャップ層3による機能が有効に発揮されて、反転磁界分散(SFD)を向上させることができる。また、ZnOはグラニュラ層2の金属相4bの磁性粒子を有効に分離させることができるので、グラニュラ層2の境界部分2aでも、残部2bと実質的に同様に所要の磁気的分離性を確保することができる。
 なお従来の垂直磁気記録媒体では、図2に示すように、グラニュラ層12の酸化物相14aが積層方向の全体で、上記の金属以外の金属の酸化物からなるものであったことから、キャップ層13を成膜した場合、その成長初期に、キャップ層13の金属が、グラニュラ層12の当該金属酸化物が存在しない金属相14b上に選択的に積層されることになる。つまり、図2に模式的に示すように、グラニュラ層12に近接するキャップ層13の下部では、キャップ層13の金属が優れた結晶性、所謂エピタキシャル成長によって積層できない部分が生じる。それにより、所定の厚みのキャップ層13を形成しても、反転磁界分散(SFD)の改善を実現することができない。また、キャップ層13を十分厚くすることにより、これを防止できるとも考えられるが、この場合は、ヘッドと媒体中心の距離が大きくなり分解能が低下し、また、厚いキャップ層13によって磁性粒子間の交換結合が大きくなって磁気クラスタサイズが増大して記録密度を高くできないという他の問題がある。
 図1に示すようなこの発明の実施形態では、境界部分2aの酸化物相が、キャップ層3と濡れやすいZn、W、Mn、Fe及び/又はMoを含有することから、従来のこのような問題を有効に解決することができる。
 グラニュラ層2の境界部分2aは、Znを含有する場合、そのZnの含有量は3at%以上とすることが好ましい。境界部分2aのZnの含有量が3at%未満である場合は、濡れ性の改善が望めず、酸化物相上にキャップ層がエピタキシャル成長しにくくなるおそれがあり、また境界部分2aのZnの含有量が25at%以上を超える場合は、Znが金属相に多量に入ることによって磁気異方性、結晶性が低下することが懸念される。
 グラニュラ層2の境界部分2aの酸化物相は、濡れ性を改善するためにZn、W、Mn、Fe、およびMoからなる群から選択される少なくとも一種、アモルファス性を改善するBおよびSi、分離性を改善するTiを含む金属酸化物とすることがより一層好ましい。つまり、グラニュラ層2の境界部分2aの酸化物相は、Zn、W、Mn、FeおよびMoからなる群から選択される少なくとも一種のみを含有するものとすることもできるが、それに加えてさらに、B及びSiのうちの少なくとも一種、ならびに/あるいは、Tiを含有することができる。
 記録層の積層方向で視て、グラニュラ層2の境界部分2aの厚みtbがグラニュラ層2の全体の厚みtgに占める割合(tb/tg)は、百分率で表して3%~50%とすることが好適である。全体厚みtgに対する境界部分2aの厚みtbのこの割合(tb/tg)を3%未満とすれば、境界部分2aのZnOによるキャップ層3の均一な成膜の効果が十分に得られないことがある。グラニュラ層2の全体厚みtgに対する境界部分2aの厚みtbの割合(tb/tg)は、3%~30%とすることがさらに好ましい。
 一方、キャップ層3の均一な成膜に大きな影響を及ぼさないグラニュラ層2の残部2bの酸化物相は、境界部分2aと同様にZnを含有するものとすることも可能であるが、Znを含有しないものとすることが好ましい。また、グラニュラ層2の残部2bは、ZnOのみならずZnを含有しない層とすることが好適である。これはすなわち、グラニュラ層2の残部2bがZnを含有するものとした場合は、磁気異方性Kuが低下する懸念があるからである。
 グラニュラ層2の残部2bは、酸化物相として、上述したようなZnO等の所定の金属酸化物ではなく、Si、B及びTiからなる群から選択される少なくとも一種の元素の酸化物を含有するものとすることができる。当該酸化物以外の酸化物も含めてその残部2bの酸化物の合計含有量は、好ましくは20vol.%~50vol.%である。なお、残部2bの酸化物の合計含有量が、20vol.%未満である場合は、金属相の分離が不十分で磁気クラスタサイズが大きくなるおそれがあり、また50vol.%を超える場合は、金属相の割合が少なく十分なKuおよび磁気異方性が得られず、熱安定性や再生信号強度が不足する可能性がある。なお、膜中の酸化物の体積率はTEM観察により求められる。
 なお、グラニュラ層2の磁性体である金属相4bは、Coを主体とし、さらにPt、Ru及びCrからなる群から選択される少なくとも一種の金属を含有するものである。
 次に、この発明の垂直磁気記録媒体を試作し、その性能を評価したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。
(試験例1)
 実施例1-1として、マグネトロンスパッタリング装置(キヤノンアネルバ製C‐3010スパッタリングシステム)により、ガラス基板上にCr-Ti(6nm)、Ni-W(5nm)、Ru(20nm)をこの順序で成膜したものに、下部グラニュラ層(グラニュラ層の残部)としてCo-Pt-SiO2(10nm)を成膜し、その上に、Co-Pt-ZnOからなるスパッタリングターゲットを用いて上部グラニュラ層(グラニュラ層の、キャップ層との境界部分)としてAr5.0Pa雰囲気下にて300Wでスパッタリングして膜厚が3nmの各磁性膜を形成し、さらにその上に、キャップ層としてCo-Cr-Pt-B(0~8nm)を成膜して、各層を形成した。実施例1-1は、上部グラニュラ層の酸化物がZnOからなるものである。
 また実施例1-2~実施例1-5として、上部グラニュラ層の酸化物がWO3、MnO、Fe23、MoO3から成ることを除いて、実施例1と同様の膜を形成した。
 さらに比較例1として、上部グラニュラ層の酸化物相がSiO2からなることを除いて、実施例1と同様に各層を形成した。
 これらの実施例1-1~1-5及び比較例1について、キャップ層膜厚に対するラフネス(Ra)と反転開始磁界(-Hn)を測定した。それらの比較を図3および4にグラフで示す。図3及び図4中、SiO2は比較例1、ZnOは実施例1-1、WO3は実施例1-2、MnOは実施例1-3、Fe23は実施例1-4、MoO3は実施例1-5をそれぞれ意味する。
 なお、実施例1-1~1-5および比較例1のいずれにおいても、下部グラニュラ層は67Co-23Pt-10SiO2(mol%)であるものとし、またキャップ層は60Co-10Cr-15Pt-5B(mol%)であるものとした。
 また、実施例1-1において、上部グラニュラ層は62Co-21Pt-17ZnO(mol%)(ZnO=30vol.%)とし、比較例1において、上部グラニュラ層は67Co-22Pt-10SiO2(mol%)(SiO2=30vol.%)とした。上部グラニュラ層は、実施例1-2では70Co-23Pt-7WO3(mol%)(WO3=30vol.%)、実施例1-3では61Co-20Pt-19MnO(mol%)(MnO=30vol.%)、実施例1-4では68Co-23Pt-10Fe23(mol%)(Fe23=30vol.%)、実施例1-5では62Co-21Pt-18MoO3(mol%)(MoO3=30vol.%)である。
 なお、ラフネス(Ra)はSII製の原子間力顕微鏡(AFM)、反転開始磁界(-Hn)は玉川製作所製の試料振動型磁力計(VSM)により測定した。
 図3に示すところから、実施例1-1~1-5は、SiO2とした比較例1に比してキャップ層の膜厚(tc)が薄くてもRaの十分な低下がみられることから、上層のCoを主とするキャップ層とZn酸化物の濡れが良いことが解かる。また、図4より、実施例1-1~1-5では、SiO2とした比較例1に比してキャップ層がより薄い範囲でd(-Hn)/dtcが正になっていることから、キャップ層のSFD効果が得られていることが解かる。
(試験例2)
 参考例として、Znを含まないスパッタリングターゲットである67Co-22Pt-10SiO2(mol%)(SiO2=30vol.%)、Znを含むスパッタリングターゲットである62Co-21Pt-17ZnO(mol%)(ZnO=30vol.%)をそれぞれ用いて、試験例1と同様にRuまで成膜した上に13nm単一のグラニュラ層を形成した試料を作製し、磁気異方性Kuを測定した。
 なお、磁気異方性(Ku)は玉川製作所製の磁気トルク計(TRQ)により測定した。
 Kuの値は、グラニュラ層の酸化物をSiO2とした場合は6.16×106erg/ccであったのに対し、ZnOとした場合は5.04×106erg/ccであった。このことから、Znを含むスパッタリングターゲットを用いるとKuが低くなることが解かる。したがって、下部グラニュラ層にはKuが高くなる組成のスパッタリングターゲットを用いる場合が多いため、下部グラニュラ層にはZnを含有しない層が存在することが望ましいといえる。
(試験例3)
 実施例3-1~3-22として、Co-Pt-ZnO、Co-Pt-SiO2-ZnO、Co-Pt-B23-ZnO、Co-Pt-TiO2-ZnOのスパッタリングターゲットで、Znの含有量を変化させた複数の試作品を製造した。各スパッタリングターゲットの組成を、参考として表1に示す。
Figure JPOXMLDOC01-appb-T000001
 これらの試作品のそれぞれを用いて試験例1と同様の方法により磁性膜を成膜し、キャップ層の膜厚に対するラフネス(Ra)と反転開始磁界(-Hn)を測定した。なお、上記の試作品は、磁性膜の上部グラニュラ層の成膜に用いたものである。Zn含有量とキャップ層のRaが5Å未満になるキャップ層の膜厚との関係を図5に示し、Znの含有量と-Hnが正になるキャップ層の膜厚との関係を図6に示す。
 図5より、特に、上部グラニュラ層のZnが3at%以上である実施例3-5~3-8、実施例3-12~3-15および実施例3-19~3-22は、キャップ層が薄くてもRaの十分な低下がみられることから、上層のCoを主とするキャップ層とZn酸化物の濡れがさらに良くなることが解かる。また、図6より、特に、上部グラニュラ層のZnが3at%以上である実施例3-5~3-8、実施例3-12~3-15および実施例3-19~3-22は、d(-Hn)/dtcが正になるキャップ層の膜厚がかなり薄くなっていることから、Zn添加によって薄いキャップ層でSFDがより一層改善されていることが解かる。
 1 記録層
 2 グラニュラ層
 2a 境界部分
 2b 残部
 3 キャップ層
 4a 金属相
 4b 酸化物相
 tg グラニュラ層全体の厚み
 tb 境界部分の厚み
 tc キャップ層の厚み

Claims (11)

  1.  非磁性体として金属酸化物を含み、磁性体が前記非磁性体に分散したグラニュラ層と、前記グラニュラ層上に形成されて、金属酸化物を含まないキャップ層とを、記録層の少なくとも一部を構成する層として有する垂直磁気記録媒体であって、前記キャップ層の直下のグラニュラ層の、キャップ層との境界部分の酸化物相が、Zn、W、Mn、Fe、及びMoからなる群から選択される少なくとも一種を含有してなる垂直磁気記録媒体。
  2.  前記グラニュラ層の前記境界部分の酸化物相が、Znを含有してなる請求項1に記載の垂直磁気記録媒体。
  3.  前記グラニュラ層の前記境界部分の酸化物相がさらに、B及びSiのうちの少なくとも一種を含有してなる請求項1又は2に記載の垂直磁気記録媒体。
  4.  前記グラニュラ層の前記境界部分の酸化物相がさらに、Tiを含有してなる請求項1~3のいずれか一項に記載の垂直磁気記録媒体。
  5.  前記グラニュラ層の前記境界部分を除く残部が、Znを含有しない層を有する請求項1~4のいずれか一項に記載の垂直磁気記録媒体。
  6.  前記グラニュラ層の前記残部が、酸化物相として、Si、B及びTiからなる群から選択される少なくとも一種の元素の酸化物を含み、前記残部における酸化物相の酸化物の合計含有量が20vol.%~50vol.%である請求項5に記載の垂直磁気記録媒体。
  7.  前記グラニュラ層の前記境界部分の酸化物相がZnを含有し、該酸化物相のZnの含有量が3at%以上である請求項1~6のいずれか一項に記載の垂直磁気記録媒体。
  8.  記録層の積層方向で、前記境界部分の厚みの、グラニュラ層全体の厚みに占める割合が、3%~50%である請求項1~7のいずれか一項に記載の垂直磁気記録媒体。
  9.  前記境界部分を含むグラニュラ層全体が、金属相として、Co、Pt、Ru及びCrからなる群から選択される少なくとも一種の金属を含有してなる請求項1~8のいずれか一項に記載の垂直磁気記録媒体。
  10.  前記キャップ層が、Co、Cr、Pt及びBからなる群から選択される少なくとも一種の金属を含有してなる請求項1~9のいずれか一項に記載の垂直磁気記録媒体。
  11.  記録層の積層方向で、前記キャップ層の厚みが1nm~3nmである請求項1~10のいずれか一項に記載の垂直磁気記録媒体。
PCT/JP2018/035132 2018-03-28 2018-09-21 垂直磁気記録媒体 WO2019187226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020508965A JP7116782B2 (ja) 2018-03-28 2018-09-21 垂直磁気記録媒体
SG11202009585QA SG11202009585QA (en) 2018-03-28 2018-09-21 Perpendicular magnetic recording medium
CN201880091890.8A CN111971745B (zh) 2018-03-28 2018-09-21 垂直磁记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-063229 2018-03-28
JP2018063229 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019187226A1 true WO2019187226A1 (ja) 2019-10-03

Family

ID=68061014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035132 WO2019187226A1 (ja) 2018-03-28 2018-09-21 垂直磁気記録媒体

Country Status (5)

Country Link
JP (1) JP7116782B2 (ja)
CN (1) CN111971745B (ja)
SG (1) SG11202009585QA (ja)
TW (1) TWI713985B (ja)
WO (1) WO2019187226A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238299A (ja) * 2008-03-26 2009-10-15 Hoya Corp 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP2011113604A (ja) * 2009-11-26 2011-06-09 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体
JP2012181902A (ja) * 2011-03-02 2012-09-20 Hitachi Ltd 磁気記録媒体
WO2014087665A1 (ja) * 2012-12-06 2014-06-12 富士電機株式会社 垂直磁気記録媒体
JP2016157493A (ja) * 2015-02-23 2016-09-01 富士電機株式会社 磁気記録媒体

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492775A (en) * 1993-05-28 1996-02-20 International Business Machines Corporation Barium ferrite thin film for longitudinal recording
TW594695B (en) * 1999-12-21 2004-06-21 Matsushita Electric Ind Co Ltd Optical information recording medium, method of recording and reproducing, and optical recording and reproducing system
US6999255B2 (en) * 2001-11-09 2006-02-14 Fuji Photo Film Co., Ltd. Magnetic recording and reproducing system and magnetic recording medium used therein
JP4316506B2 (ja) * 2002-12-13 2009-08-19 パナソニック株式会社 光学的情報記録媒体およびその製造方法
US20040253539A1 (en) * 2003-06-13 2004-12-16 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for manufacturing the same
JP4021435B2 (ja) * 2004-10-25 2007-12-12 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ 垂直磁気記録媒体、その製造方法及び磁気記録再生装置
JP2006127588A (ja) * 2004-10-27 2006-05-18 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体
CN100440323C (zh) * 2005-03-30 2008-12-03 富士通株式会社 垂直磁记录介质及其制造方法和磁存储装置
JP2007026536A (ja) * 2005-07-15 2007-02-01 Showa Denko Kk 磁気記録媒体およびその製造方法並びに磁気記録再生装置
ATE518226T1 (de) * 2005-09-22 2011-08-15 Toray Industries Halterung für ein magnetisches aufzeichnungsmedium und magnetisches aufzeichnungsmedium
TWI331329B (en) * 2006-11-14 2010-10-01 Nat Univ Tsing Hua Perpendicular magnetic recording media
JP5184843B2 (ja) * 2007-08-21 2013-04-17 エイチジーエスティーネザーランドビーブイ 垂直磁気記録媒体及び磁気記憶装置
JP4292226B1 (ja) * 2007-12-20 2009-07-08 株式会社東芝 垂直磁気記録媒体、及びこれを用いた磁気記録再生装置
US7862912B2 (en) * 2008-03-04 2011-01-04 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording medium and system with low-curie-temperature multilayer for heat-assisted writing and/or reading
TWI371036B (en) * 2008-10-30 2012-08-21 Nat Univ Tsing Hua Exchange coupled composite type of perpendicular magnetic recording media
US7867637B2 (en) * 2008-11-17 2011-01-11 Seagate Technology Llc Low coupling oxide media (LCOM)
US8048546B2 (en) * 2009-12-16 2011-11-01 Hitachi Global Storage Technologies Netherlands B.V. Perpendicular magnetic recording disk with ordered nucleation layer and method for making the disk
CN103262166B (zh) * 2010-12-21 2016-10-26 吉坤日矿日石金属株式会社 磁记录膜用溅射靶及其制造方法
JP5943340B2 (ja) * 2011-03-18 2016-07-05 セイコーインスツル株式会社 磁気記録媒体
JP5964121B2 (ja) * 2012-04-18 2016-08-03 山陽特殊製鋼株式会社 磁気記録媒体に用いる密着膜層用CrTi系合金およびスパッタリング用ターゲット材並びにそれを使用した垂直磁気記録媒体
SG11201502573SA (en) * 2012-10-10 2015-05-28 Fuji Electric Co Ltd Magnetic recording medium
JP5960287B2 (ja) * 2012-12-18 2016-08-02 Jx金属株式会社 焼結体スパッタリングターゲット
JP6161991B2 (ja) * 2013-08-15 2017-07-12 山陽特殊製鋼株式会社 Fe−Co系合金スパッタリングターゲット材
JP6485353B2 (ja) * 2013-08-23 2019-03-20 ソニー株式会社 フェリ磁性粒子粉末の製造方法、および磁気記録媒体の製造方法
US10020016B2 (en) * 2013-12-10 2018-07-10 Fuji Electric Co., Ltd. Perpendicular magnetic recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238299A (ja) * 2008-03-26 2009-10-15 Hoya Corp 垂直磁気記録媒体および垂直磁気記録媒体の製造方法
JP2011113604A (ja) * 2009-11-26 2011-06-09 Hitachi Global Storage Technologies Netherlands Bv 磁気記録媒体
JP2012181902A (ja) * 2011-03-02 2012-09-20 Hitachi Ltd 磁気記録媒体
WO2014087665A1 (ja) * 2012-12-06 2014-06-12 富士電機株式会社 垂直磁気記録媒体
JP2016157493A (ja) * 2015-02-23 2016-09-01 富士電機株式会社 磁気記録媒体

Also Published As

Publication number Publication date
SG11202009585QA (en) 2020-10-29
TWI713985B (zh) 2020-12-21
JPWO2019187226A1 (ja) 2021-05-27
TW201942900A (zh) 2019-11-01
JP7116782B2 (ja) 2022-08-10
CN111971745B (zh) 2022-05-10
CN111971745A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
US9064518B2 (en) Perpendicular magnetic recording medium
JP4741685B2 (ja) 垂直磁気記録媒体
JP2008176858A (ja) 垂直磁気記録媒体、及びそれを用いたハードディスクドライブ
JPWO2006003922A1 (ja) 垂直磁気記録ディスク及びその製造方法
JP2009070540A (ja) 垂直磁気記録媒体及びその製造方法
JP5999290B2 (ja) 磁気記録媒体
US10971181B2 (en) Sputtering target for magnetic recording media
KR20070067600A (ko) 내식성을 개선하기 위한 초박형 핵형성 막을 가진 수직자기 기록 디스크 및 이 디스크의 제조 방법
JP2006331622A (ja) 高酸素含有量の記録層を有する垂直磁気記録ディスク
JP6447739B2 (ja) 垂直磁気記録媒体
JP4534711B2 (ja) 垂直磁気記録媒体
US8846219B2 (en) Perpendicular magnetic recording medium
JP2007164941A (ja) 垂直磁気記録媒体
WO2019187226A1 (ja) 垂直磁気記録媒体
US10566019B2 (en) Magnetic recording medium
TWI812869B (zh) 磁性記錄媒體用濺鍍靶
JP2009026394A (ja) 磁気記録媒体及び磁気記録再生装置
WO2016067579A1 (ja) 磁気記録媒体
JP6085088B2 (ja) 垂直磁気記録媒体の製造方法
JP4993296B2 (ja) 垂直磁気記録媒体
JP2007102833A (ja) 垂直磁気記録媒体
JP6451011B2 (ja) 垂直磁気記録媒体及び磁気記録再生装置
TWI671418B (zh) 濺鍍靶、積層膜之製造方法、積層膜及磁記錄媒體
JP3947771B2 (ja) 磁気記録媒体
JP2008090913A (ja) 磁気記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18911668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508965

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18911668

Country of ref document: EP

Kind code of ref document: A1