WO2019180763A1 - 電力変換装置および回転機駆動システム - Google Patents
電力変換装置および回転機駆動システム Download PDFInfo
- Publication number
- WO2019180763A1 WO2019180763A1 PCT/JP2018/010731 JP2018010731W WO2019180763A1 WO 2019180763 A1 WO2019180763 A1 WO 2019180763A1 JP 2018010731 W JP2018010731 W JP 2018010731W WO 2019180763 A1 WO2019180763 A1 WO 2019180763A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- time
- terminal voltage
- sec
- phase leg
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
- H02M7/53878—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current by time shifting switching signals of one diagonal pair of the bridge with respect to the other diagonal pair
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
- H02P27/08—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
- H02P27/085—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/084—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- H02M1/084—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system
- H02M1/0845—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters using a control circuit common to several phases of a multi-phase system digitally controlled (or with digital control)
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
- H02M1/123—Suppression of common mode voltage or current
Definitions
- This application relates to a power converter and a rotating machine drive system.
- the terminal voltage of each phase fluctuates in the switching operation, so that a leakage current is generated via the stray capacitance between the ground and electromagnetic noise is generated.
- a conventional power converter control device has proposed a technique for reducing electromagnetic noise by adjusting the phase of a carrier that determines on / off of a switching element. (For example, refer to Patent Document 1 and Patent Document 2).
- JP 2008-271617 A page 7, lines 18 to 29, FIGS. 5 and 6) Japanese Unexamined Patent Publication No. 2016-208664 (page 6, lines 6 to 24, FIG. 3)
- the power converter disclosed in the present application includes a one-phase leg composed of an upper arm switching element and a lower arm switching element, and a plurality of one-phase legs connected in parallel to a DC power source. It has a power converter whose connection point is connected to a load, and a control device that controls the switching operation of the upper arm switching element and the lower arm switching element of the power converter, and converts DC power into AC power to the load.
- the control device supplies the rising edge of the terminal voltage of the first one-phase leg based on the rising time and the falling time of the terminal voltage at the connection point connected to the load of the first one-phase leg. Time and the falling time of the terminal voltage of the second one-phase leg, and the falling time of the terminal voltage of the first one-phase leg and the rising time of the terminal voltage of the second one-phase leg, Characterized by switching control by synchronizing at least one.
- the power conversion device disclosed in the present application it is possible to synchronize the terminal voltage between at least two phases under a wide range of driving conditions, and it is possible to reduce electromagnetic noise caused by the neutral point potential fluctuation.
- FIG. 2 is a diagram illustrating a configuration of a control device for a power converter according to Embodiment 1.
- FIG. 2 is a functional block diagram of a control device according to Embodiment 1.
- FIG. 3 is a functional block diagram of a switching signal generation unit according to the first embodiment.
- FIG. 2 is a diagram illustrating an example of hardware of a control device according to Embodiment 1.
- FIG. 3 is a flowchart illustrating an operation of a switching signal generation unit according to the first embodiment.
- 3 is a conceptual diagram showing a method for calculating a V-phase carrier frequency according to Embodiment 1.
- FIG. 3 is a conceptual diagram showing a method for calculating a W-phase carrier frequency according to Embodiment 1.
- FIG. 10 is another conceptual diagram showing a method for calculating a W-phase carrier frequency according to the first embodiment.
- A is a figure which shows the terminal voltage and neutral point potential of the U-phase and V-phase by Embodiment 1.
- FIG. (B) is a figure which shows the terminal voltage and neutral point potential of the U phase by the Embodiment 1, and a W phase.
- A is a figure which shows the terminal voltage and neutral point potential of the U-phase and V-phase by the conventional triangular wave comparison PWM.
- B is a figure which shows the terminal voltage and neutral point potential of the U phase by the conventional triangular wave comparison PWM, and a W phase.
- FIG. 6 is a functional block diagram of a switching signal generation unit according to a second embodiment.
- FIG. 6 is a flowchart illustrating an operation of a switching signal generation unit according to the second embodiment.
- A) is a figure which shows the terminal voltage and neutral point potential of the U phase after the switching signal operation in Embodiment 2, and a V phase.
- B) is a figure which shows the terminal voltage and neutral point potential of the U phase after the switching signal operation in Embodiment 2, and a W phase.
- FIG. 10 is a functional block diagram of a switching signal generation unit according to a third embodiment. 10 is a flowchart illustrating an operation of a switching signal generation unit according to the third embodiment.
- FIG. 10 is a diagram illustrating an example of each phase terminal voltage in the third embodiment. It is a figure explaining the delay of the ON time of a terminal voltage and OFF time by Embodiment 3.
- FIG. It is a figure which shows the structure of the six-phase inverter to which Embodiment 1 to 3 is applied. It is a figure explaining the 6-phase phase voltage command to which Embodiment 1 to 3 is applied.
- (A) is a figure which shows the conventional terminal voltage and neutral point electric potential regarding Embodiment 3.
- FIG. 10 is a functional block diagram of a switching signal generation unit according to a third embodiment. 10 is a flowchart illustrating an operation of a switching signal generation unit according to the third embodiment.
- FIG. 10 is a diagram illustrating an example of each phase terminal voltage in the third embodiment. It is
- (B) is a figure which shows the example of the terminal voltage and neutral point potential to which Embodiment 3 is applied. It is a figure which shows the structure which drives two rotary machines with two three-phase inverters to which Embodiments 1 to 3 are applied. It is a figure explaining each phase voltage command of two three-phase inverters to which Embodiments 1 to 3 are applied.
- FIG. 1 shows a control apparatus for a power converter according to the first embodiment.
- the control device is applied to a three-phase rotating machine drive system using a three-phase inverter.
- a three-phase rotating machine drive system includes a power converter 10 that converts DC power into three-phase AC power, a rotating machine 20 that is driven by power supplied from the power converter 10, and a power converter 10. Is provided with a control device 30 for controlling the control.
- a DC bus of the power converter 10 is connected to a DC power supply 11.
- the power converter 10 includes a smoothing capacitor 12 on a DC bus.
- the power converter 10 includes switching elements of a U-phase upper arm switch 13a, a U-phase lower arm switch 13b, a V-phase upper arm switch 13c, a V-phase lower arm switch 13d, a W-phase upper arm switch 13e, and a W-phase lower arm switch 13f. 13 and the upper and lower arm switches of each phase are connected in series.
- the upper and lower arm switches connected in series are connected in parallel to the DC bus and constitute a three-phase inverter.
- the switching element 13 is configured by, for example, a MOSFET (Metal-Oxide-semicon
- the U-phase output terminal of the rotating machine 20 is connected to the arm connection point between the U-phase upper arm switch 13a and the U-phase lower arm switch 13b, and the V-phase output terminal is connected to the V-phase upper arm switch 13c and the V-phase lower arm switch.
- the W-phase output terminal is connected to the arm connection point between the W-phase upper arm switch 13e and the W-phase lower arm switch 13f.
- the potential at the connection point of each phase upper and lower arm to which each phase terminal of the rotating machine 20 is connected is defined as the terminal voltage of each phase.
- the rotating machine 20 includes a current detector 21 that detects a current of each phase and an angle detector 22 that detects a rotor angle.
- the phase arm switches 13a to 13f are controlled to be turned on and off based on switching signals SW_UP, SW_UN, SW_VP, SW_VN, SW_WP, and SW_WN generated by the control device 30.
- the control device 30 includes a voltage command generation unit 40 and a switching signal generation unit 50.
- the voltage command generation unit 40 is a torque command or current command input externally, a bus voltage Vdc [V], and three-phase current values iu [A], iv [A ⁇ , iw [A] obtained from the current detector 21.
- the phase voltage commands vu *, vv *, and vw * of each phase that are calculated based on the rotor position ⁇ obtained from the angle detector 22 and normalized by Vdc / 2 are generated.
- the switching signal generation unit 50 generates a switching signal based on a comparison between the phase voltage command and a triangular wave that is a carrier.
- the switching signal generation unit 50 includes a voltage fluctuation time estimation unit 51 and a switching signal operation unit 52
- the switching signal operation unit 52 includes a carrier generation unit 53, a triangular wave comparison PWM unit 54, and the like. Consists of.
- the triangular wave comparison PWM unit 54 When the voltage command is greater than the triangular wave, the triangular wave comparison PWM unit 54 generates a switching signal by turning on the upper arm switch (P side) and turning off the lower arm switch (N side) of each phase. If smaller, a switching signal is generated that turns off the upper arm switch (P side) and turns on the lower arm switch (N side) of each phase.
- the triangular wave comparison PWM unit 54 generates a switching signal that synchronizes the rising and falling of the terminal voltage between the two phases by comparing the triangular wave with three different carriers.
- the storage device includes a volatile storage device such as a random access memory and a non-volatile auxiliary storage device such as a flash memory. Further, an auxiliary storage device of a hard disk may be provided instead of the flash memory.
- the processor 1 executes a program input from the storage device 2 and performs part or all of the configuration of the control device 30 described above. In this case, a program is input from the auxiliary storage device to the processor 1 via the volatile storage device.
- the processor 1 may output data such as a calculation result to the volatile storage device of the storage device 2 or may store the data in the auxiliary storage device via the volatile storage device.
- a logic circuit and an analog circuit may be used in combination.
- the control device 30 until the generation of the switching signal that synchronizes the rising and falling of the terminal voltage between the two phases will be described in detail below with reference to the flowchart of FIG.
- the voltage command generation unit 40 calculates the phase voltage command at the U-phase carrier peak P1, and updates each phase voltage command at the next U-phase carrier peak (step S102).
- each phase voltage command normalized by the current Vdc / 2 is defined as vu1 *, vv1 *, vw1 *, and the next carrier period Vdc / 2 updated at the peak P2 of the next U-phase carrier.
- the normalized phase voltage commands are vu2 *, vv2 *, and vw2 *. After calculating each phase voltage command, start calculating each phase carrier frequency.
- the carrier generation unit 53 calculates the carrier frequencies at which the rising and falling of the terminal voltages of the V phase and the W phase are synchronized with the U phase.
- the frequency of the V-phase carrier is calculated (step S104). A conceptual diagram showing the calculation method is shown in FIG.
- the frequency of the V-phase carrier is updated with the peak of the U-phase carrier (P2, P3, etc. in FIG. 6).
- the rising frequency of the carrier is Fcv_up [Hz]
- the falling frequency is Fcv_dw [Hz].
- the fall time tVL [Hz] of the V-phase terminal voltage is the rise frequency Fcv_up [Hz], the V-phase voltage command vv2 *, the time difference ⁇ tuv [sec] between the next U-phase carrier peak P2 and the V-phase carrier valley Q2 Based on the above, it is calculated by the expression (3).
- the rise time tUH [sec] of the U-phase terminal voltage is the same as the fall time tVL [sec] of the V-phase terminal voltage, it is possible to synchronize the rise and fall of the terminal voltage. 4) should be satisfied. From the expressions (1) and (3), the rising frequency Fcv_up [Hz] of the V-phase carrier satisfying the expression (4) is obtained by the expression (5).
- the time differences ⁇ tuv [sec] and ⁇ tuv2 [sec] are parameters for adjusting the time required for the rise of the V-phase carrier so as not to exceed the U-phase carrier period Tcu [sec], and are set so as to satisfy Equation (6)
- the time difference ⁇ tuv2 [sec] that does not exceed the U-phase carrier period Tcu can be calculated by Expression (8).
- the falling frequency Fcv_dw [Hz] of the V-phase carrier can be calculated by the equation (9) because the valley Q3 of the V-phase carrier is determined to be Tcu + ⁇ tuv2 from the peak P3 of the next U-phase carrier. it can.
- the carrier frequency of the W phase is calculated (step S105).
- the rising frequency Fcw_up [Hz] and the falling frequency Fcw_dw [Hz] of the W-phase carrier will be described.
- the W-phase carrier frequency corresponds to the case where the valley of the W-phase carrier and the peak of the U-phase carrier are synchronized according to the values of the U-phase and W-phase voltage commands, and the W-phase carrier peak and the U-phase carrier. It is calculated separately when the valleys of the two are synchronized.
- the carrier frequency of the W phase is updated at the peaks and valleys of the W phase carrier.
- FIG. 7 shows a conceptual diagram of a W-phase carrier frequency calculation method in the case where the valley of the W-phase carrier and the peak of the U-phase carrier are synchronized.
- the rising time tWH [sec] of the W-phase terminal voltage can be calculated by Expression (10).
- the rising frequency Fcw_up [Hz] of the W-phase carrier is calculated by Equation (13) so that the carrier period is the same as that of the U-phase carrier.
- the falling frequency Fcw_dw [Hz] of the next W-phase carrier and the rising frequency Fcw_up2 [Hz] of the next W-phase carrier are calculated.
- the rise time tWH [sec] of the W-phase terminal voltage can be calculated by equation (15).
- the falling frequency Fcw_dw [Hz] of the W-phase carrier satisfying the expression (11) can be calculated by the expression (16).
- the rising frequency Fcw_up2 [Hz] of the next W-phase carrier is calculated by Expression (17) so that the W-phase carrier period is the same as that of the U-phase carrier.
- Fcw_dw the transition is made to a condition in which the valley of the W-phase carrier and the peak of the U-phase carrier are synchronized.
- the carrier generation unit 53 Based on the rising frequencies Fcw_up [Hz], Fcw_up2 [Hz], and the falling frequency Fcw_dw [Hz], the carrier generation unit 53 generates carriers CarrU, CarrV, and CarrW for each phase (step S106).
- the U-phase carrier CarrU generates a triangular wave that rises and falls at 1/2 Fcu.
- the V-phase carrier CarrV generates a triangular wave that rises at 1 / 2Fcv_up and falls at 1 / 2Fcv_dw.
- the W-phase carrier generates a triangular wave that rises at 1/2 Fcw_up or 1/2 Fcw_up 2 and falls at 1/2 Fcw_dw.
- the triangular wave comparison PWM unit 54 generates switching signals for the upper and lower arms of each phase based on each phase carrier generated by the carrier generation unit 53 and the voltage command generated by the voltage command generation unit 40. (Step S107).
- FIG. 9A The U-phase and V-phase terminal voltages and neutral point potentials measured with this configuration are shown in FIG. 9A, and the U-phase and W-phase terminal voltages and neutral point potentials are measured.
- FIG. 10B shows the measurement results of the phase voltage, the W-phase terminal voltage, and the neutral point potential.
- the rising edge of the U-phase terminal voltage is synchronized with the falling edge of the V-phase terminal voltage
- the falling edge of the U-phase terminal voltage is synchronized with the rising edge of the W-phase terminal voltage.
- the rise of the U-phase terminal voltage may be synchronized with the fall of the W-phase terminal voltage
- the fall of the U-phase terminal voltage may be synchronized with the rise of the V-phase terminal voltage.
- the phase to be canceled may be replaced with other than the U phase.
- the voltage command is updated at the U-phase carrier peak every carrier cycle, but may be updated at the U-phase carrier valley and updated every two carrier cycles or more. May be.
- the terminal voltage is at least between two phases in a wide range of driving conditions where the voltage command is not zero regardless of the modulation rate.
- Carriers capable of synchronizing rising and falling can be generated, and neutral point potential fluctuations can be reduced.
- the noise filter can be downsized.
- FIG. The second embodiment shows an example in which the switching signal is operated after the triangular wave comparison PWM to synchronize the terminal voltage fluctuation between phases and reduce the neutral point potential fluctuation.
- a method of synchronizing the terminal voltage fluctuation of each phase with different polarity by operating the switching signal after triangular wave comparison PWM (1) A method of operating the switching signal of the next cycle based on the voltage command of the next cycle. (2) A method of detecting the rise and fall of the current switching signal generated and shifting the time of the signal until the switching signal time to be synchronized is detected.
- FIG. 12 shows a functional block diagram of switching signal generator 150 in the second embodiment.
- the configurations of the power converter 10, the rotating machine 20, and the voltage command generation unit 40 in the control device 30 are the same as those in the first embodiment.
- the hardware configuration is the same as that shown in FIG.
- the switching signal generation unit 150 in the control device 30 includes a voltage fluctuation time estimation unit 151 and a switching signal operation unit 152.
- the switching signal operation unit 152 includes a synchronization time calculation unit 153, a triangular wave comparison PWM unit 154, and a synchronization operation. Part 155.
- the rise and fall of the U-phase terminal voltage are synchronized with either the rise or fall of the V-phase and W-phase terminal voltages.
- the three-phase carrier frequency Fc [Hz] is fixed (step S201 in FIG. 13).
- the voltage command generator 40 calculates each phase voltage command at the peak of the U-phase carrier, and updates each phase voltage command at the next peak of the U-phase carrier.
- each phase voltage command normalized by the current Vdc / 2 is vu1 *, vv1 *, vw1 *, and normalized by Vdc / 2 of the next carrier period updated at the next U-phase carrier peak.
- Each phase voltage command is vu2 *, vv2 *, vw2 *.
- the voltage fluctuation time estimation unit 151 calculates the three-phase terminal voltage fluctuation times (step S203).
- the next peak of the U-phase carrier is time 0, the U-phase terminal voltage rise time tUH [sec], the fall time tUL [sec], the V-phase terminal voltage rise time tVH [sec], the fall time tVL [sec. ], W-phase terminal voltage rise time tWH [sec], fall time tWL [sec].
- the terminal voltage fluctuation time of each phase can be estimated by equations (18) to (23), respectively. However, And
- the triangular wave comparison PWM unit 154 generates a switching signal based on the triangular wave comparison between each phase voltage command vu *, vv *, vw * and each phase carrier CarrU, CarrV, CarrW, and dead
- the switching signals SW_UPtmp, SW_UNtmp, SW_VPtmp, SW_VNtmp, SW_WPtmp, and SW_WNtmp to which the time td is added are generated (step S204).
- the synchronization time calculation unit 153 calculates the switching signal operation times Usft [sec], Vsft [sec], and Wsft [sec] of each phase based on the difference in terminal voltage fluctuation time of each phase.
- the difference ⁇ ULVH [sec] of the rise time of the V-phase terminal voltage with respect to the fall time of the terminal voltage, and the difference ⁇ ULWH [sec] of the rise time of the V-phase terminal voltage with respect to the fall time of the U-phase terminal voltage are expressed by equations (24) to Obtained in (27).
- ⁇ UHVL tUH-tVL
- ⁇ UHWL tUH-tWL
- ⁇ ULVH tUL-tVH (26)
- the synchronization operation unit 155 outputs the switching signals SW_UPtmp, SW_UNtmp, SW_VPtmp, SW_VNtmp, SW_WPtmp, and SW_WNtmp for each phase output from the triangular wave comparison PWM unit 154.
- Switching signals SW_UP and SW_UN obtained by shifting the U-phase switching signals SW_UPtmp and SW_UNtmp by the operation time Usft [sec] time
- Switching signals SW_VP and SW_VN obtained by shifting the V-phase switching signals SW_VPtmp and SW_VNtmp by the operation time Vsft [sec] time
- Switching signals SW_WP and SW_WN obtained by shifting the W-phase switching signals SW_WPtmp and SW_WNtmp by the operation time Wsft [sec] time Are respectively generated (step S206).
- FIGS. 14A and 14B show the terminal voltages and neutral point potentials of the U phase and V phase, and the U phase and W phase generated based on the above switching signal operations, respectively.
- the U-phase terminal voltage fluctuation is the V-phase and W-phase terminals. It can be confirmed that the neutral point potential fluctuation is reduced by synchronizing with the voltage fluctuation.
- the example of synchronizing with the terminal voltage fluctuation of the V phase and the W phase based on the terminal voltage fluctuation of the U phase has been shown.
- the V phase and the W phase may be used as a reference, respectively.
- the phase may be changed.
- the carrier frequency may be variable.
- the terminal voltage rises at least between two phases under a wide range of driving conditions where the voltage command is not zero regardless of the modulation rate.
- Embodiment 3 In the first embodiment and the second embodiment, an example in which the triangular wave comparison PWM is applied has been described. However, in the third embodiment, the upper and lower arm switches are directly used from the voltage command value obtained from the voltage command generator by using a timer. An example of controlling ON / OFF of the is shown.
- the configurations of the power converter 10, the rotating machine 20, and the voltage command generation unit 40 of the control device 30 in the third embodiment are the same as those in the first embodiment.
- FIG. 15 shows a functional block diagram of switching signal generation section 250 in the third embodiment.
- the operation of the switching signal generator 250 will be described in sequence with reference to the flowchart of FIG.
- the switching signal generation unit 250 includes a voltage variation time calculation unit 251 and a timer 252.
- the voltage command generator 40 generates a voltage command for each phase for each control cycle Ts (step S301 in FIG. 16). Calculation of each phase voltage command is started at a predetermined time (for example, time T1 in FIG. 17), and the calculated voltage command is reflected in the next control cycle.
- each phase voltage command normalized by Vdc / 2 in the current control cycle is defined as vu1 *, vv1 *, vw1 *, and each phase normalized by Vdc / 2 in the next control cycle
- the voltage command is vu2 *, vv2 *, vw2 *.
- the detected current is updated every switching cycle (Ts) using an average value of values detected a plurality of times by the current detector within the control cycle.
- step S302 After calculating the U-phase switching signal as the reference phase and the terminal voltage fluctuation times tUPon [sec], tUPoff [sec], tUNon [sec], tUNoff [sec] (step S302), the V-phase switching time tVPon [ sec], tVPoff [sec], tVNon [sec], tVNoff [sec], W-phase switching times tWPon [sec], tWPoff [sec], tWNon [sec], tWNoff [sec] are calculated (step S303).
- a dead time td is provided so that the upper switch and the lower switch are not turned on simultaneously.
- the on / off time of the up / down switch is calculated in consideration of the dead time. Based on the current polarity of each phase, the on / off times of the upper and lower arm switches are calculated.
- tVPon td + td + ((1-vv2 *) Ts / 2) + td
- tVPon [sec] When iv ⁇ 0: ON / OFF times of the V-phase upper and lower arm switches, tVPon [sec], tVPoff [sec], tVNon [sec], and tVNoff [sec] are determined by the following equations.
- the rise time of the V-phase terminal voltage is tVNoff [sec]
- the fall time is tVNon [sec].
- Switching timing is determined so that tUPon [sec] and tVNon [sec] are the same.
- tVPon td + ((1-vv2 *) Ts / 2) + td
- the timer 252 Based on the switching time of each phase upper and lower arms calculated by the voltage fluctuation time calculation unit 251, the timer 252 generates a switching signal for each phase upper and lower arms.
- the on / off times of the upper and lower arm switches for each phase are adjusted by the timer 252 to generate a switching signal (step S304).
- the on / off of each phase switch is controlled by the switching signal generated by the timer 252.
- the upper and lower arm switching times are calculated by calculating the switching time of each phase in consideration of the dead time td, but the time when the switching element is actually turned on after the ON switching signal is input, or OFF It is also necessary to consider the time when the switching element is actually turned off after the switching signal is input. Specifically, for example, as shown in FIG. 18, even if the U-phase switching signal OFF is input to the switching element at time T3, it does not fall at the U-phase terminal voltage falling start time (estimation), and after time difference tDl, U Starts falling at the phase terminal voltage falling start time (actual).
- the method of calculating the on / off time of each phase upper and lower arm switch based on the rising time and falling time of the U-phase terminal voltage as the phase to be canceled has been shown.
- the rising and falling of the terminal voltage of one phase (for example, U phase) to be detected may be used to generate the switching signal of the other phase.
- the upper arm switch of the V phase preferably the phase having a positive phase current
- the V-phase lower arm switch is turned on after the dead time td [sec] with reference to (0 [sec]).
- the lower arm switch of the V phase is turned off after (1-vv1 *) Ts / 2
- the upper arm switch of the V phase is turned on after ((1-vv1 *) Ts / 2 + td).
- the lower arm switch of the W-phase (preferably a phase with a negative phase current) is turned off, and the detection time of the falling of the U-phase terminal voltage is set as a reference ( 0 [sec]), and turn on the upper arm switch of the W phase after the dead time td [sec].
- the upper arm switch of the W phase is turned off after (1 + vw1 *) Ts / 2
- the upper arm switch of the V phase is turned on after ((1 + vw1 *) Ts / 2 + td).
- the controller that generates the switching signals for the upper and lower arms of each phase is configured by the voltage fluctuation time calculation unit 251 and the timer 252, thereby simplifying the configuration without using the triangular wave comparison PWM.
- a switching signal capable of synchronizing the rising and falling of the terminal voltage between at least two phases can be generated under a wide range of driving conditions where the voltage command is not zero.
- neutral point potential fluctuation can be reduced, and electromagnetic noise caused by the potential fluctuation can be reduced.
- the noise filter can be reduced in size.
- Embodiments 1 to 3 the configuration of a three-phase inverter is shown as an example of the power converter 10, but as shown in FIG. 19, a configuration like a six-phase inverter is used as the power converter 10.
- the rising and falling of the terminal voltage between the two phases may be synchronized with the A phase as a reference.
- the phase difference between the two phases for example, the A phase and the D phase in FIG. 20
- the neutral point potential fluctuation reducing effect is obtained.
- the power converter 10 has been described as an example in which one three-phase rotating machine 20 is driven by a three-phase inverter, but as shown in FIG. 22, two three-phase inverters 10a are used.
- Control device 30 may be controlled in the same manner as described in the first to third embodiments, and control for synchronizing the rising and falling of the terminal voltage between the two phases may be performed.
- the power converter is switched based on the phase voltage commands of six phases U1, V1, W1, U2, V2, and W2, which are different in phase by 60 degrees as shown in FIG.
- the phase difference between the two phases (for example, U1 phase and U2 phase in FIG. 23) of the phases that are 180 degrees different from each other is set to 180 degrees.
- the effect of reducing the neutral point potential fluctuation can be obtained in the same manner as shown in FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Inverter Devices (AREA)
Abstract
上下アームスイッチ素子(13a、13b)からなるU相の端子電圧の立ち上がり(tuH)と立下り(tUL)を算出し、算出されたU相の端子電圧の立ち上がり(tUH)とV相またはW相の端子電圧の立下り(tVL)、又はU相の端子電圧の立下り(tUL)とV相またはW相の端子電圧の立ち上がり(tWH)とを同期させてインバータのスイッチング制御を行うことを特徴とする。
Description
本願は、電力変換装置および回転機駆動システムに関するものである。
スイッチング素子のオン、オフによって出力電圧を制御する変換器では、スイッチング動作で各相端子電圧が変動することで対地間との浮遊容量を介して漏洩電流が発生し、電磁ノイズが発生する。
製品分類ごとに電磁ノイズの規格が定められていることから、電力変換器で発生する電磁ノイズが規制を超過する場合は対策が必要となる。一般的には受動素子によるノイズフィルタによる電磁ノイズ対策が実施されるが、フィルタによる電力変換器の占有スペースの確保、及びコストの問題がある。
そこで、従来の電力変換器の制御装置では、スイッチング素子のオン、オフを決定するキャリアの位相を調整することで電磁ノイズを低減する技術が提案されている。(例えば、特許文献1、特許文献2参照)。
特許文献1に示す手法では、各相のキャリアに位相差を設けることで、中性点電位の最大値および最小値は低減できるものの、中性点電位が変動する頻度は下がらないため、電磁ノイズの低減効果が小さい問題がある。
また,特許文献2に示す手法では、相間で端子電圧変動をキャンセルすることにより、中性点電位変動の頻度を低減可能であるため、電磁ノイズ低減効果が大きくなるが、提案されている手法では,電圧指令が略0である場合のみに限定して有効であり、変調率が大きくなるにつれ,電磁ノイズの低減効果が小さくなる問題があった。
本願は、上記のような問題点を解決するためになされたものであり、広範囲の駆動条件において電磁ノイズを低減可能な電力変換装置を得ることを目的としている。
本願は、上記のような問題点を解決するためになされたものであり、広範囲の駆動条件において電磁ノイズを低減可能な電力変換装置を得ることを目的としている。
本願に開示される電力変換装置は、上アームスイッチング素子と下アームスイッチング素子からなる一相レグ、一相レグが直流電源に対して複数並列に接続され、上アームスイッチング素子と下アームスイッチング素子の接続点が負荷に接続される電力変換器と、電力変換器の上アームスイッチング素子と下アームスイッチング素子のスイッチング動作を制御する制御装置とを有し、直流電力を交流電力に変換して負荷に供給するものであって、制御装置は、第1の一相レグの負荷に接続される接続点の端子電圧の立ち上がり時刻と立下り時刻に基づいて、第1の一相レグの端子電圧の立ち上がり時刻と第2の一相レグの端子電圧の立下り時刻、及び第1の一相レグの端子電圧の立下り時刻と第2の一相レグの端子電圧の立ち上がり時刻、の少なくとも一方を同期させてスイッチング制御することを特徴とする。
本願に開示される電力変換装置によれば、広範囲の駆動条件において、少なくとも二相間で端子電圧を同期させることが可能となり、中性点電位変動に伴って生じる電磁ノイズを低減することができる。
実施の形態1.
実施の形態1による電力変換器の制御装置を図1に示す。実施の形態1では、制御装置を三相インバータによる三相回転機駆動システムに適用した例で説明する。
実施の形態1による電力変換器の制御装置を図1に示す。実施の形態1では、制御装置を三相インバータによる三相回転機駆動システムに適用した例で説明する。
図1中、三相回転機駆動システムは、直流電力を三相交流電力に変換する電力変換器10と、電力変換器10より電力を供給されて駆動される回転機20と、電力変換器10を制御する制御装置30を備えている。
電力変換器10の直流母線は直流電源11に接続される。電力変換器10は、直流母線に平滑コンデンサ12を備える。電力変換器10は、U相上アームスイッチ13a、U相下アームスイッチ13b、V相上アームスイッチ13c、V相下アームスイッチ13d、W相上アームスイッチ13e、W相下アームスイッチ13fのスイッチング素子13があり,各相の上下アームスイッチは直列に接続される。直列に接続された各相上下アームスイッチは直流母線に並列接続され、三相インバータを構成する。スイッチング素子13は、例えばMOSFET(Metal-Oxide-semiconductor field-effect transistor)などで構成される。
電力変換器10の直流母線は直流電源11に接続される。電力変換器10は、直流母線に平滑コンデンサ12を備える。電力変換器10は、U相上アームスイッチ13a、U相下アームスイッチ13b、V相上アームスイッチ13c、V相下アームスイッチ13d、W相上アームスイッチ13e、W相下アームスイッチ13fのスイッチング素子13があり,各相の上下アームスイッチは直列に接続される。直列に接続された各相上下アームスイッチは直流母線に並列接続され、三相インバータを構成する。スイッチング素子13は、例えばMOSFET(Metal-Oxide-semiconductor field-effect transistor)などで構成される。
回転機20のU相出力端子は、U相上アームスイッチ13aとU相下アームスイッチ13bとのアーム接続点に接続され、V相出力端子は、V相上アームスイッチ13cとV相下アームスイッチ13dとのアーム接続点に接続され、W相出力端子はW相上アームスイッチ13eとW相下アームスイッチ13fとのアーム接続点に接続される。
前記回転機20の各相端子が接続される各相上下アームの接続点の電位を、各相の端子電圧と定義する。
前記回転機20は、各相の電流を検出する電流検出器21、回転子角度を検出する角度検出器22を備える。
各相アームスイッチ13a~13fは、前記制御装置30で生成されるスイッチング信号SW_UP、SW_UN、SW_VP、SW_VN、SW_WP、SW_WNに基づいてオン、オフを制御される。
前記回転機20の各相端子が接続される各相上下アームの接続点の電位を、各相の端子電圧と定義する。
前記回転機20は、各相の電流を検出する電流検出器21、回転子角度を検出する角度検出器22を備える。
各相アームスイッチ13a~13fは、前記制御装置30で生成されるスイッチング信号SW_UP、SW_UN、SW_VP、SW_VN、SW_WP、SW_WNに基づいてオン、オフを制御される。
実施の形態1の制御装置30の機能ブロック図を図2に示す。制御装置30は、電圧指令生成部40とスイッチング信号生成部50とで構成される。電圧指令生成部40は,外部入力されるトルク指令、又は電流指令、母線電圧Vdc[V]、電流検出器21より得られる三相電流値iu[A]、iv[A}、iw[A]、角度検出器22より得られる回転子位置θに基づいて計算され、Vdc/2で正規化される各相の相電圧指令vu*、vv*、vw*を生成する。
スイッチング信号生成部50は、相電圧指令とキャリアである三角波との比較に基づいてスイッチング信号を生成する。即ち、図3に示すように、スイッチング信号生成部50は、電圧変動時刻推定部51とスイッチング信号操作部52とで構成され,スイッチング信号操作部52はキャリア生成部53と三角波比較PWM部54とで構成される。三角波比較PWM部54でのスイッチング信号の生成は、電圧指令が三角波よりも大きい場合は各相の上アームスイッチ(P側)をオン、下アームスイッチ(N側)をオフとし、電圧指令が三角波より小さい場合は各相の上アームスイッチ(P側)をオフ、下アームスイッチ(N側)をオンとするスイッチング信号を生成する。このとき、上下アームスイッチが同時にオンすることを防止するため、P側、N側スイッチがそれぞれオンする場合、デッドタイムtd時間遅らせてオン信号が生成される。この三角波比較PWM部54において、三相でそれぞれ異なるキャリアと三角波比較することで、二相間で端子電圧の立ち上がりと立下りを同期させるスイッチング信号を生成する。
スイッチング信号生成部50は、相電圧指令とキャリアである三角波との比較に基づいてスイッチング信号を生成する。即ち、図3に示すように、スイッチング信号生成部50は、電圧変動時刻推定部51とスイッチング信号操作部52とで構成され,スイッチング信号操作部52はキャリア生成部53と三角波比較PWM部54とで構成される。三角波比較PWM部54でのスイッチング信号の生成は、電圧指令が三角波よりも大きい場合は各相の上アームスイッチ(P側)をオン、下アームスイッチ(N側)をオフとし、電圧指令が三角波より小さい場合は各相の上アームスイッチ(P側)をオフ、下アームスイッチ(N側)をオンとするスイッチング信号を生成する。このとき、上下アームスイッチが同時にオンすることを防止するため、P側、N側スイッチがそれぞれオンする場合、デッドタイムtd時間遅らせてオン信号が生成される。この三角波比較PWM部54において、三相でそれぞれ異なるキャリアと三角波比較することで、二相間で端子電圧の立ち上がりと立下りを同期させるスイッチング信号を生成する。
このような構成を有する制御装置30のハードウエアの一例を図4に示す。プロセッサ1と記憶装置2から構成され、図示していないが、記憶装置はランダムアクセスメモリ等の揮発性記憶装置と、フラッシュメモリ等の不揮発性の補助記憶装置とを具備する。また、フラッシュメモリの代わりにハードディスクの補助記憶装置を具備してもよい。プロセッサ1は、記憶装置2から入力されたプログラムを実行し、上述した制御装置30の構成の一部又は全部を遂行する。この場合、補助記憶装置から揮発性記憶装置を介してプロセッサ1にプログラムが入力される。また、プロセッサ1は、演算結果等のデータを記憶装置2の揮発性記憶装置に出力してもよいし、揮発性記憶装置を介して補助記憶装置にデータを保存してもよい。また、プロセッサ1及び記憶装置2に加え、ロジック回路、アナログ回路を併用してもよい。
二相間の端子電圧の立ち上がりと立下りを同期させるスイッチング信号を生成するまでの制御装置30の動作を図5のフローチャートを参照し、以下に詳述する。
前提として、U相のキャリア周波数Fcu[Hz]は固定とする(図5中、ステップS101)。従って、U相キャリア周期Tcu[sec]は、Tcu=1/Fcuと定義される。
電圧指令生成部40は,例えば、図6において、U相キャリアの山P1で相電圧指令を計算し、次のU相キャリアの山で各相電圧指令を更新する(ステップS102)。ここで,現在のVdc/2で正規化された各相電圧指令をvu1*、vv1*、vw1*と定義し,次のU相キャリアの山P2で更新される次キャリア周期のVdc/2で正規化された各相電圧指令をvu2*、vv2*、vw2*とする。各相電圧指令の計算完了後に,各相キャリア周波数の計算を開始する。
前提として、U相のキャリア周波数Fcu[Hz]は固定とする(図5中、ステップS101)。従って、U相キャリア周期Tcu[sec]は、Tcu=1/Fcuと定義される。
電圧指令生成部40は,例えば、図6において、U相キャリアの山P1で相電圧指令を計算し、次のU相キャリアの山で各相電圧指令を更新する(ステップS102)。ここで,現在のVdc/2で正規化された各相電圧指令をvu1*、vv1*、vw1*と定義し,次のU相キャリアの山P2で更新される次キャリア周期のVdc/2で正規化された各相電圧指令をvu2*、vv2*、vw2*とする。各相電圧指令の計算完了後に,各相キャリア周波数の計算を開始する。
電圧変動時刻推定部51で、キャンセル対象として基準とするU相の端子電圧変動時刻を計算する。図6に示すように、U相キャリアの山P2の時刻を0として、U相端子電圧の立ち上がり時刻tUH[sec]、立下り時刻tUL[sec]とする。
U相端子電圧の立ち上がり時刻tUH[sec]、立下り時刻tUL[sec]は、U相端子電圧の変動時刻であり、電圧指令生成部40で生成されたU相電圧指令vu2*、固定値であるU相キャリア周期Tcu[sec]に基づいて、式(1)、式(2)で計算する(ステップS103)。
ただし、U相端子電流iu>0のときKu=1、iu≦0のときKu=0
U相端子電圧の立ち上がり時刻tUH[sec]、立下り時刻tUL[sec]は、U相端子電圧の変動時刻であり、電圧指令生成部40で生成されたU相電圧指令vu2*、固定値であるU相キャリア周期Tcu[sec]に基づいて、式(1)、式(2)で計算する(ステップS103)。
次に、キャリア生成部53にて、V相及びW相の端子電圧の立ち上がり、立下りがU相と同期するキャリア周波数をそれぞれ計算する。
まず、V相キャリアの周波数を計算する(ステップS104)。計算方法を示す概念図を図6に示す。
V相キャリアの周波数は、U相キャリアの山(図6中、P2、P3等)で更新する。キャリアの立ち上がり周波数をFcv_up[Hz]、立下り周波数をFcv_dw[Hz]とする。
V相端子電圧の立下り時刻tVL[Hz]は、立ち上がり周波数Fcv_up[Hz]、V相電圧指令vv2*、次のU相キャリアの山P2とV相キャリアの谷Q2との時間差Δtuv[sec]に基づいて式(3)で計算される。
ただし、V相端子電流iv>0のときKv=1,iv≦0のときKv=0
まず、V相キャリアの周波数を計算する(ステップS104)。計算方法を示す概念図を図6に示す。
V相キャリアの周波数は、U相キャリアの山(図6中、P2、P3等)で更新する。キャリアの立ち上がり周波数をFcv_up[Hz]、立下り周波数をFcv_dw[Hz]とする。
V相端子電圧の立下り時刻tVL[Hz]は、立ち上がり周波数Fcv_up[Hz]、V相電圧指令vv2*、次のU相キャリアの山P2とV相キャリアの谷Q2との時間差Δtuv[sec]に基づいて式(3)で計算される。
U相端子電圧の立ち上がり時刻tUH[sec]と、V相端子電圧立下り時刻tVL[sec]が同じであれば、端子電圧の立ち上がりと立下りとを同期させることが可能であるため、式(4)を満たせばよい。
式(1)、(3)より、式(4)を満たすV相キャリアの立ち上がり周波数Fcv_up[Hz]は式(5)で得られる。
ここで、時間差Δtuv[sec]の計算方法について説明する。
時間差Δtuv[sec]、Δtuv2[sec]は、V相キャリアの立ち上がりに要する時間がU相キャリア周期Tcu[sec]を超えないよう調整するためのパラメータであり、式(6)を満たすように設定する必要がある。
ここで、Fcv_up_min[Hz]は、V相キャリアの立ち上がり周波数の最小値であり、式(5)のKuv=-1の場合のFcv_up[Hz]に該当し、式(7)で計算される。
時間差Δtuv[sec]、Δtuv2[sec]は、V相キャリアの立ち上がりに要する時間がU相キャリア周期Tcu[sec]を超えないよう調整するためのパラメータであり、式(6)を満たすように設定する必要がある。
式(6)、式(7)より、V相キャリアの立ち上がりに要する時間がU相キャリア周期Tcuを超えないような時間差Δtuv2[sec]は、式(8)で計算できる。
また、V相キャリアの立下り周波数Fcv_dw[Hz]は、V相キャリアの谷Q3が次のU相キャリアの山P3よりTcu+Δtuv2となるように決定すればよいため、式(9)で計算できる。
次に、W相のキャリア周波数を計算する(ステップS105)。
W相キャリアの立ち上がり周波数Fcw_up[Hz]、立下り周波数Fcw_dw[Hz]について示す。
W相のキャリア周波数は、U相とW相の電圧指令の値に応じてW相のキャリアの谷とU相のキャリアの山が同期する場合と、W相のキャリアの山とU相のキャリアの谷が同期する場合とに分けて計算する。W相のキャリア周波数は、W相キャリアの山、谷で更新される。
W相キャリアの立ち上がり周波数Fcw_up[Hz]、立下り周波数Fcw_dw[Hz]について示す。
W相のキャリア周波数は、U相とW相の電圧指令の値に応じてW相のキャリアの谷とU相のキャリアの山が同期する場合と、W相のキャリアの山とU相のキャリアの谷が同期する場合とに分けて計算する。W相のキャリア周波数は、W相キャリアの山、谷で更新される。
まず、W相のキャリアの谷とU相のキャリアの山が同期する場合で計算を開始する。W相のキャリアの谷とU相のキャリアの山を同期させる場合のW相キャリア周波数計算方法の概念図を図7に示す。
このとき、W相端子電圧の立ち上がり時刻tWH[sec]は式(10)で計算できる。
ただし,W相端子電流iw>0のとき,Kw=1,iw≦0のとき,Kw=0
このとき、W相端子電圧の立ち上がり時刻tWH[sec]は式(10)で計算できる。
U相端子電圧立下り時刻tUL[sec]と、W相端子電圧立ち上がり時刻tWH[sec]が同じとなれば端子電圧の立ち上がりと立下りを同期させることが可能であるため、式(11)を満たせばよい。
式(2)、式(10)より、式(11)を満たすW相キャリアの立下り周波数Fcw_dw[Hz]は、式(12)で得られる。
次に,W相キャリアの山をU相キャリアの谷に同期する条件について説明する。この場合のW相キャリア周波数計算方法の概念図を図8に示す。
式(12)で、Fcw_dw<Fcu/2となる場合、W相キャリアの谷をU相キャリアの山に同期させることができなくなるため、W相のキャリアの山とU相のキャリアの谷を同期する場合に遷移する。切り替えの際,W相キャリアの立ち上がり周波数Fcw_up[Hz]は、式(14)で与え、W相キャリアの山をU相キャリアの谷に同期させる。
式(12)で、Fcw_dw<Fcu/2となる場合、W相キャリアの谷をU相キャリアの山に同期させることができなくなるため、W相のキャリアの山とU相のキャリアの谷を同期する場合に遷移する。切り替えの際,W相キャリアの立ち上がり周波数Fcw_up[Hz]は、式(14)で与え、W相キャリアの山をU相キャリアの谷に同期させる。
次のW相キャリアの立下り周波数Fcw_dw[Hz]と、次の次のW相キャリアの立ち上がり周波数Fcw_up2[Hz]を計算する。
W相キャリアの山をU相キャリアの谷に同期する条件では、W相端子電圧の立ち上がり時刻tWH[sec]は式(15)で計算できる。
式(2)、式(15)より式(11)を満たすW相キャリアの立下り周波数Fcw_dw[Hz]は式(16)で計算できる。
W相キャリアの山をU相キャリアの谷に同期する条件では、W相端子電圧の立ち上がり時刻tWH[sec]は式(15)で計算できる。
また、次の次のW相キャリアの立ち上がり周波数Fcw_up2[Hz]は、W相キャリア周期がU相キャリアと同じになるように、式(17)で計算する。
式(16)において、Fcw_dw<Fcuとなると、W相のキャリアの谷とU相のキャリアの山を同期する条件に遷移させる。
U相キャリア周波数Fcu[Hz]と、式(1)~式(17)に基づいて計算されたV相キャリアの立ち上がり周波数Fcv_up[Hz]、立下り周波数Fcv_dw[Hz]、及びW相キャリア周波数の立ち上がり周波数Fcw_up[Hz]、Fcw_up2[Hz]、立下り周波数Fcw_dw[Hz]に基づいて、キャリア生成部53は各相のキャリアCarrU、CarrV、 CarrWを生成する(ステップS106)。
具体的には、U相キャリアCarrUは、1/2Fcuで立ち上がり、立ち下る三角波を生成する。V相キャリアCarrVは、1/2Fcv_upで立ち上がり,1/2Fcv_dwで立ち下がる三角波を生成する。W相キャリアは、1/2Fcw_up、又は1/2Fcw_up2で立ち上がり,1/2Fcw_dwで立ち下がる三角波を生成する。
このような計算により、キャリア生成部53で生成される各相キャリアと、電圧指令生成部40で生成される電圧指令に基づいて,三角波比較PWM部54は各相上下アームのスイッチング信号を生成する(ステップS107)。
具体的には、U相キャリアCarrUは、1/2Fcuで立ち上がり、立ち下る三角波を生成する。V相キャリアCarrVは、1/2Fcv_upで立ち上がり,1/2Fcv_dwで立ち下がる三角波を生成する。W相キャリアは、1/2Fcw_up、又は1/2Fcw_up2で立ち上がり,1/2Fcw_dwで立ち下がる三角波を生成する。
このような計算により、キャリア生成部53で生成される各相キャリアと、電圧指令生成部40で生成される電圧指令に基づいて,三角波比較PWM部54は各相上下アームのスイッチング信号を生成する(ステップS107)。
このような構成により測定したU相,V相の端子電圧、及び中性点電位を測定結果を図9(a)に、U相,W相の端子電圧、及び中性点電位の測定結果を図9(b)に示す。比較のため、三相キャリアが同一である従来の場合のU相、V相の端子電圧、及び中性点電位の測定結果を図10(a)に、三相キャリアが同一である場合のU相、W相の端子電圧、及び中性点電位の測定結果を図10(b)に示す。三相キャリアが同一の場合の三角波比較PWMによる従来のスイッチングよりも、本実施の形態によるスイッチングは、二相間の端子電圧の立下り時刻と立ち上がり時刻が同期しており、中性点電位が低減されていることが分かる。
さらに、特許文献2に記載の手法を用いた測定結果を図11(a)、(b)に示す。U相、V相の中性点電位(図11(a)参照)、及びU相、W相の中性点電位(図11(b)参照)よりも、中性点電位変動が低減されることも分かる。
さらに、特許文献2に記載の手法を用いた測定結果を図11(a)、(b)に示す。U相、V相の中性点電位(図11(a)参照)、及びU相、W相の中性点電位(図11(b)参照)よりも、中性点電位変動が低減されることも分かる。
このように、実施の形態1では,U相の端子電圧の立ち上がりをV相の端子電圧の立下りと同期させ、U相の端子電圧の立下りをW相の端子電圧の立ち上がりと同期させる例を示した。しかし、U相の端子電圧の立ち上がりをW相の端子電圧の立下りと同期させ、U相の端子電圧の立下りをV相の端子電圧の立ち上がりと同期させてもよい。また、キャンセルする相をU相以外に入れ替えても良い。
また、キャリア周波数を操作する例を示したが、各相電圧指令値を操作することによっても同様の効果が得られる。
さらに、実施の形態1では、電圧指令をU相キャリアの山で1キャリア周期毎に更新する例を示したが、U相キャリアの谷で更新してもよく、2キャリア周期以上毎に更新してもよい。
また、キャリア周波数を操作する例を示したが、各相電圧指令値を操作することによっても同様の効果が得られる。
さらに、実施の形態1では、電圧指令をU相キャリアの山で1キャリア周期毎に更新する例を示したが、U相キャリアの谷で更新してもよく、2キャリア周期以上毎に更新してもよい。
このような構成によれば、三角波比較PWMによって各相上下アームのスイッチング信号を生成する制御装置において、変調率にかかわらず、電圧指令がゼロでない広範囲の駆動条件において、少なくとも二相間で端子電圧の立ち上がりと立下りを同期させることが可能なキャリアを生成することができ、中性点電位変動を低減することが可能となる。これにより電位変動に伴って生じる電磁ノイズを低減することが可能となる。さらに、電磁ノイズを低減可能であることから、ノイズフィルタの小型化も可能となる。
実施の形態2.
実施の形態2では、三角波比較PWM後にスイッチング信号を操作することで、相間の端子電圧変動を同期させ、中性点電位変動を低減する例を示す。
三角波比較PWM後にスイッチング信号を操作することにより、極性の異なる各相の端子電圧変動を同期する手法としては、
(1)次周期の電圧指令に基づいて次周期のスイッチング信号を操作する手法。
(2)生成された現在のスイッチング信号の立ち上がり、立下りを検出し、同期させたいスイッチング信号時刻が検出されるまで信号を時間シフトする手法。
の2つの手法が想定されるが、手法(1)を適用した例を示す。
実施の形態2では、三角波比較PWM後にスイッチング信号を操作することで、相間の端子電圧変動を同期させ、中性点電位変動を低減する例を示す。
三角波比較PWM後にスイッチング信号を操作することにより、極性の異なる各相の端子電圧変動を同期する手法としては、
(1)次周期の電圧指令に基づいて次周期のスイッチング信号を操作する手法。
(2)生成された現在のスイッチング信号の立ち上がり、立下りを検出し、同期させたいスイッチング信号時刻が検出されるまで信号を時間シフトする手法。
の2つの手法が想定されるが、手法(1)を適用した例を示す。
実施の形態2におけるスイッチング信号生成部150の機能ブロック図を図12に示す。
電力変換器10、回転機20、及び制御装置30内の電圧指令生成部40の構成は、実施の形態1と同様とする。ハードウエア構成も図4に示すのと同様である。
制御装置30内のスイッチング信号生成部150は、電圧変動時刻推定部151及びスイッチング信号操作部152で構成され、スイッチング信号操作部152は、同期時間計算部153、三角波比較PWM部154、及び同期操作部155で構成される。
電力変換器10、回転機20、及び制御装置30内の電圧指令生成部40の構成は、実施の形態1と同様とする。ハードウエア構成も図4に示すのと同様である。
制御装置30内のスイッチング信号生成部150は、電圧変動時刻推定部151及びスイッチング信号操作部152で構成され、スイッチング信号操作部152は、同期時間計算部153、三角波比較PWM部154、及び同期操作部155で構成される。
次に実施の形態2のスイッチング信号生成部150の動作を図13のフローチャートを参照し順に説明する。
まず、電圧変動時刻推定部151では、Vdc/2で正規化された相電圧指令vu*、vv*、vw*、デッドタイムtd[sec]、相電流iu[A]、iv[A]、iw[A]に基づいて、U相キャリアの山からの各相の端子電圧変動時刻である、立ち上がり時刻、立下り時刻、tUH[sec]、tUL[sec]、tVH[sec]、tVL[sec]、tWH[sec]、tWL[sec]を計算する。
まず、電圧変動時刻推定部151では、Vdc/2で正規化された相電圧指令vu*、vv*、vw*、デッドタイムtd[sec]、相電流iu[A]、iv[A]、iw[A]に基づいて、U相キャリアの山からの各相の端子電圧変動時刻である、立ち上がり時刻、立下り時刻、tUH[sec]、tUL[sec]、tVH[sec]、tVL[sec]、tWH[sec]、tWL[sec]を計算する。
実施の形態2では、実施の形態1と同様に、U相端子電圧の立ち上がり、及び立下りをV相、W相の端子電圧の立ち上がり、又は立下りのいずれかと同期させる。また、三相のキャリア周波数Fc[Hz]は固定とする(図13中、ステップS201)。キャリア周期はTc(=1/Fc)と定義する。
実施の形態1と同様、U相キャリアに対し、V相、W相キャリアが反転している例で説明する。電圧指令生成部40は,U相キャリアの山で各相電圧指令を計算し、次のU相キャリアの山で各相電圧指令を更新する。ここで、現在のVdc/2で正規化された各相電圧指令をvu1*、vv1*、vw1*とし、次のU相キャリアの山で更新される次キャリア周期のVdc/2で正規化された各相電圧指令をvu2*、vv2*、vw2*とする。
実施の形態1と同様、U相キャリアに対し、V相、W相キャリアが反転している例で説明する。電圧指令生成部40は,U相キャリアの山で各相電圧指令を計算し、次のU相キャリアの山で各相電圧指令を更新する。ここで、現在のVdc/2で正規化された各相電圧指令をvu1*、vv1*、vw1*とし、次のU相キャリアの山で更新される次キャリア周期のVdc/2で正規化された各相電圧指令をvu2*、vv2*、vw2*とする。
各相電圧指令vu2*、vv2*、vw2*の計算完了後(ステップS202)に、電圧変動時刻推定部151で、三相の端子電圧変動時刻をそれぞれ計算する(ステップS203)。
U相キャリアの次の山を時刻0として、U相端子電圧の立ち上がり時刻tUH[sec]、立下り時刻tUL[sec]、V相端子電圧の立ち上がり時刻tVH[sec]、立下り時刻tVL[sec]、W相端子電圧の立ち上がり時刻tWH[sec]、立下り時刻tWL[sec]とする。
各相の端子電圧変動時刻はそれぞれ式(18)~(23)で推定できる。
ただし、
とする。
U相キャリアの次の山を時刻0として、U相端子電圧の立ち上がり時刻tUH[sec]、立下り時刻tUL[sec]、V相端子電圧の立ち上がり時刻tVH[sec]、立下り時刻tVL[sec]、W相端子電圧の立ち上がり時刻tWH[sec]、立下り時刻tWL[sec]とする。
各相の端子電圧変動時刻はそれぞれ式(18)~(23)で推定できる。
ただし、
次に、スイッチング信号操作部152の動作を説明する。スイッチング信号操作部152では、三角波比較PWM部154にて、各相電圧指令vu*、vv*、vw*と各相キャリアCarrU、CarrV、CarrWとの三角波比較に基づいてスイッチング信号を生成し,デッドタイムtdが付加されたスイッチング信号SW_UPtmp、SW_UNtmp、SW_VPtmp、SW_VNtmp、SW_WPtmp、SW_WNtmpを生成する(ステップS204)。
同期時間計算部153では、各相の端子電圧変動時刻の差に基づいて、各相のスイッチング信号操作時間Usft[sec]、Vsft[sec]、Wsft[sec]を計算する。
まず、U相端子電圧の立ち上がり時刻に対するV相端子電圧の立下り時刻の差ΔUHVL[sec]、U相端子電圧の立ち上がり時刻に対するW相端子電圧の立下り時刻の差ΔUHWL[sec]、U相端子電圧の立下り時刻に対するV相端子電圧の立ち上がり時刻の差ΔULVH[sec]、U相端子電圧の立下り時刻に対するV相端子電圧の立ち上がり時刻の差ΔULWH[sec]をそれぞれ式(24)~(27)で求める。
ΔUHVL=tUH-tVL (24)
ΔUHWL=tUH-tWL (25)
ΔULVH=tUL-tVH (26)
ΔULWH=tUL-tWH (27)
まず、U相端子電圧の立ち上がり時刻に対するV相端子電圧の立下り時刻の差ΔUHVL[sec]、U相端子電圧の立ち上がり時刻に対するW相端子電圧の立下り時刻の差ΔUHWL[sec]、U相端子電圧の立下り時刻に対するV相端子電圧の立ち上がり時刻の差ΔULVH[sec]、U相端子電圧の立下り時刻に対するV相端子電圧の立ち上がり時刻の差ΔULWH[sec]をそれぞれ式(24)~(27)で求める。
ΔUHVL=tUH-tVL (24)
ΔUHWL=tUH-tWL (25)
ΔULVH=tUL-tVH (26)
ΔULWH=tUL-tWH (27)
次に、ΔUHVL[sec]、ΔUHWL[sec]、ΔHLVH[sec]、ΔULWH[sec]の大小関係に基づく(A)~(E)の条件に場合分けし、U相の端子電圧の立ち上がり、又は立下りをV相、W相の端子電圧の立ち上がり、又は立下りのいずれかに同期させるためのスイッチング信号操作時間Usft、Vsft、Wsftを計算する(ステップS205)。
(A)ΔUHVL<0、かつΔUHWL<0、かつΔULVH>0、かつΔULWH>0のとき、
(a)ΔUHVL<ΔUHWLのとき、
Usft=|ΔUHVL|
Vsft=0
Wsft=ΔULWH+|ΔUHVL|
(b)ΔUHVL≧ΔUHWLのとき、
Usft=|ΔUHWL|
Vsft=ΔULVH+|ΔUHWL|
Wsft=0
(A)ΔUHVL<0、かつΔUHWL<0、かつΔULVH>0、かつΔULWH>0のとき、
(a)ΔUHVL<ΔUHWLのとき、
Usft=|ΔUHVL|
Vsft=0
Wsft=ΔULWH+|ΔUHVL|
(b)ΔUHVL≧ΔUHWLのとき、
Usft=|ΔUHWL|
Vsft=ΔULVH+|ΔUHWL|
Wsft=0
(B)ΔUHVL>0、かつΔUHWL>0、かつΔULVH<0、かつΔULWH<0のとき、
(a)ΔULVH<ΔULWHのとき、
Usft=|ΔULVH|
Vsft=0
Wsft=ΔUHWL+|ΔULVH|
(b)ΔULVH≧ΔULWHのとき、
Usft=|ΔULWH|
Vsft=ΔUHVL+|ΔULWH|
Wsft=0
(a)ΔULVH<ΔULWHのとき、
Usft=|ΔULVH|
Vsft=0
Wsft=ΔUHWL+|ΔULVH|
(b)ΔULVH≧ΔULWHのとき、
Usft=|ΔULWH|
Vsft=ΔUHVL+|ΔULWH|
Wsft=0
(C)ΔUHVL<0、かつΔUHWL>0、かつΔULVH>0、かつΔULWH<0のとき、
Usft=0
Vsft=ΔULVH
Wsft=ΔUHWL
Usft=0
Vsft=ΔULVH
Wsft=ΔUHWL
(D)ΔUHVL>0、かつΔUHWL<0、かつΔULVH<0、かつΔULWH>0のとき、
Usft=0
Vsft=ΔUHVL
Wsft=ΔULWH
Usft=0
Vsft=ΔUHVL
Wsft=ΔULWH
(E)それ以外のとき
Usft=0
Vsft=0
Wsft=0
Usft=0
Vsft=0
Wsft=0
最後に,同期操作部155は、三角波比較PWM部154にて出力された各相のスイッチング信号SW_UPtmp、SW_UNtmp、SW_VPtmp、SW_VNtmp、SW_WPtmp、SW_WNtmpに対して、
(1)U相スイッチング信号SW_UPtmp、及びSW_UNtmpを操作時間Usft[sec]時間シフトさせたスイッチング信号SW_UP、SW_UN
(2)V相スイッチング信号SW_VPtmp、及びSW_VNtmpを操作時間Vsft[sec]時間シフトさせたスイッチング信号SW_VP、SW_VN
(3)W相スイッチング信号SW_WPtmp、及びSW_WNtmpを操作時間Wsft[sec]時間シフトさせたスイッチング信号SW_WP、SW_WN
をそれぞれ生成する(ステップS206)。
(1)U相スイッチング信号SW_UPtmp、及びSW_UNtmpを操作時間Usft[sec]時間シフトさせたスイッチング信号SW_UP、SW_UN
(2)V相スイッチング信号SW_VPtmp、及びSW_VNtmpを操作時間Vsft[sec]時間シフトさせたスイッチング信号SW_VP、SW_VN
(3)W相スイッチング信号SW_WPtmp、及びSW_WNtmpを操作時間Wsft[sec]時間シフトさせたスイッチング信号SW_WP、SW_WN
をそれぞれ生成する(ステップS206)。
以上のスイッチング信号操作に基づいて生成されるU相とV相、及びU相とW相の端子電圧と中性点電位をそれぞれ図14(a)、(b)に示す。
スイッチング信号を操作していない場合の三相の端子電圧、及び中性点電位を示した図11(a)、(b)と比較して、U相端子電圧変動がV相、W相の端子電圧変動に同期することで、中性点電位変動が低減されていることが確認できる。
スイッチング信号を操作していない場合の三相の端子電圧、及び中性点電位を示した図11(a)、(b)と比較して、U相端子電圧変動がV相、W相の端子電圧変動に同期することで、中性点電位変動が低減されていることが確認できる。
実施の形態2ではU相の端子電圧変動を基準としてV相、W相の端子電圧変動と同期する例を示したが,V相、W相をそれぞれ基準としても良く、電圧位相に応じて基準とする相を変化させても良い。また,キャリア周波数は可変としても良い。
このような構成によれば、三角波PWMによって各相上下アームのスイッチング信号を生成する制御装置において、変調率にかかわらず、電圧指令がゼロでない広範囲の駆動条件において、少なくとも二相間で端子電圧の立ち上がりと立下りを同期させることが可能なスイッチング信号を生成することができ、中性点電位変動を低減することが可能となる。これにより、電位変動に伴って生じる電磁ノイズを低減することが可能となり、ノイズフィルタの小型化も可能となる。
実施の形態3
実施の形態1、及び実施の形態2では三角波比較PWMを適用する例を示したが、実施の形態3では、電圧指令生成部より得られる電圧指令値より、直接タイマを使用して上下アームスイッチのオン、オフを制御する例を示す。
実施の形態3の電力変換器10、回転機20、及び制御装置30の電圧指令生成部40の構成は、実施の形態1と同様とする。
実施の形態1、及び実施の形態2では三角波比較PWMを適用する例を示したが、実施の形態3では、電圧指令生成部より得られる電圧指令値より、直接タイマを使用して上下アームスイッチのオン、オフを制御する例を示す。
実施の形態3の電力変換器10、回転機20、及び制御装置30の電圧指令生成部40の構成は、実施の形態1と同様とする。
実施の形態3におけるスイッチング信号生成部250の機能ブロック図を図15に示す。スイッチング信号生成部250の動作を図16のフローチャートを参照して順に説明する。
スイッチング信号生成部250は、電圧変動時刻計算部251及びタイマ252で構成される。電圧指令生成部40は、制御周期Ts毎に各相の電圧指令を生成する(図16中、ステップS301)。
所定時刻(例えば図17中、時刻T1)で各相電圧指令の計算を開始し、演算された電圧指令は次の制御周期で反映する。ここで、現在の制御周期内のVdc/2で正規化された各相電圧指令をvu1*、vv1*、vw1*と定義し,次の制御周期内のVdc/2で正規化された各相電圧指令をvu2*、vv2*、vw2*とする。
検出電流は、制御周期内で電流検出器より複数回検出した値の平均値を使用し、スイッチング周期(Ts)毎に更新する。
スイッチング信号生成部250は、電圧変動時刻計算部251及びタイマ252で構成される。電圧指令生成部40は、制御周期Ts毎に各相の電圧指令を生成する(図16中、ステップS301)。
所定時刻(例えば図17中、時刻T1)で各相電圧指令の計算を開始し、演算された電圧指令は次の制御周期で反映する。ここで、現在の制御周期内のVdc/2で正規化された各相電圧指令をvu1*、vv1*、vw1*と定義し,次の制御周期内のVdc/2で正規化された各相電圧指令をvu2*、vv2*、vw2*とする。
検出電流は、制御周期内で電流検出器より複数回検出した値の平均値を使用し、スイッチング周期(Ts)毎に更新する。
電圧変動時刻計算部251で、次周期で更新される電圧指令vu2*、vv2*、vw2*検出電流iu[A]、iv[A]、iw[A]、デッドタイムtd[sec]に基づいて、スイッチング周期(Ts[sec])毎に次の制御周期の各相上下アームのスイッチング時刻を計算する。スイッチング時刻の演算は,スイッチング周期Ts[sec]直前までに完了する。
各相電圧指令、及び検出電流の極性に応じて、次周期の時刻T2=0を基準とした上下アームスイッチのオン、オフ時刻を以下の要領で計算する。スイッチング時刻は、0~2Tsの間で操作する。
各相電圧指令、及び検出電流の極性に応じて、次周期の時刻T2=0を基準とした上下アームスイッチのオン、オフ時刻を以下の要領で計算する。スイッチング時刻は、0~2Tsの間で操作する。
図17に示すように、U相の端子電圧の立ち上がりをV相の端子電圧の立下りに、U相の端子電圧の立下りをW相の端子電圧の立ち上がりに同期する例を示す。基準相とするU相のスイッチング信号、及び端子電圧変動時刻tUPon[sec]、tUPoff[sec]、tUNon[sec]、tUNoff[sec]を計算した後(ステップS302)、V相のスイッチング時刻tVPon[sec]、tVPoff[sec]、tVNon[sec]、tVNoff[sec]、W相のスイッチング時刻tWPon[sec]、tWPoff[sec]、tWNon[sec]、tWNoff[sec]を計算する(ステップS303)。
上側スイッチと下側スイッチは同時にオンしないよう、デッドタイムtdを設ける。
デッドタイムを考慮して上下スイッチのオン時刻、オフ時刻を計算する。
各相の電流極性に基づいて場合分けして、上下アームスイッチのオン、オフ時刻を計算する。
上側スイッチと下側スイッチは同時にオンしないよう、デッドタイムtdを設ける。
デッドタイムを考慮して上下スイッチのオン時刻、オフ時刻を計算する。
各相の電流極性に基づいて場合分けして、上下アームスイッチのオン、オフ時刻を計算する。
(A)iu>0のとき
U相の上下アームスイッチのオン、オフ時刻tUPon[sec]、tUPoff[sec]、tUNon[sec]、tUNoff[sec]を次式で決定する。
iu>0のとき、U相の上アームスイッチの端子電圧の立ち上がり時刻はtUPon[sec]、立下り時刻はtUPoff[sec]、U相の下アームスイッチの端子電圧の立ち上がり時刻はtUNon[sec]、立下り時刻はtUNoff[sec]となる。
tUNoff=0+td
tUPon=0+td+td
tUPoff=td+(1+vu2*)Ts/2
tUNon=td+(1+vu2*)Ts/2+td
U相の上下アームスイッチのオン、オフ時刻tUPon[sec]、tUPoff[sec]、tUNon[sec]、tUNoff[sec]を次式で決定する。
iu>0のとき、U相の上アームスイッチの端子電圧の立ち上がり時刻はtUPon[sec]、立下り時刻はtUPoff[sec]、U相の下アームスイッチの端子電圧の立ち上がり時刻はtUNon[sec]、立下り時刻はtUNoff[sec]となる。
tUNoff=0+td
tUPon=0+td+td
tUPoff=td+(1+vu2*)Ts/2
tUNon=td+(1+vu2*)Ts/2+td
(a)iv>0のとき
V相の上下アームスイッチのオン、オフ時刻tVPon[sec]、tVPoff[sec]、tVNon[sec]、tVNoff[sec]を次式で決定する。
V相の端子電圧の立ち上がり時刻はtVPon[sec]、立下り時刻はtVPoff[sec]となる。
スイッチングのタイミングは、tUPon[sec]とtVPoff[sec]が同じになるように決定する。
tVPoff=td+td
tVNon=td+td+td
tVNoff=td+td+((1-vv2*)Ts/2)
tVPon=td+td+((1-vv2*)Ts/2)+td
V相の上下アームスイッチのオン、オフ時刻tVPon[sec]、tVPoff[sec]、tVNon[sec]、tVNoff[sec]を次式で決定する。
V相の端子電圧の立ち上がり時刻はtVPon[sec]、立下り時刻はtVPoff[sec]となる。
スイッチングのタイミングは、tUPon[sec]とtVPoff[sec]が同じになるように決定する。
tVPoff=td+td
tVNon=td+td+td
tVNoff=td+td+((1-vv2*)Ts/2)
tVPon=td+td+((1-vv2*)Ts/2)+td
(b)iv<0のとき
V相の上下アームスイッチのON、OFF時刻tVPon[sec]、tVPoff[sec]、tVNon[sec]、tVNoff[sec]を次式で決定する。
V相の端子電圧の立ち上がり時刻はtVNoff[sec]、立下り時刻はtVNon[sec]となる。
スイッチングのタイミングは、tUPon[sec]とtVNon[sec]が同じになるように決定する。
tVPoff=0+td
tVNon=td+td
tVNoff=td+((1-vv2*)Ts/2)
tVPon=td+((1-vv2*)Ts/2)+td
V相の上下アームスイッチのON、OFF時刻tVPon[sec]、tVPoff[sec]、tVNon[sec]、tVNoff[sec]を次式で決定する。
V相の端子電圧の立ち上がり時刻はtVNoff[sec]、立下り時刻はtVNon[sec]となる。
スイッチングのタイミングは、tUPon[sec]とtVNon[sec]が同じになるように決定する。
tVPoff=0+td
tVNon=td+td
tVNoff=td+((1-vv2*)Ts/2)
tVPon=td+((1-vv2*)Ts/2)+td
(c)iw>0のとき
W相の上下アームスイッチのオン、オフ時刻tWPon[sec]、tWPoff[sec]、tWNon[sec]、tWNoff[sec]を次式で決定する。
W相の端子電圧の立ち上がり時刻はtWPon[sec]、立下り時刻はtWPoff[sec]となる。
スイッチングのタイミングは、tUPoff[sec]とtWPon[sec]が同じになるように決定する。
tWNoff=(1+vu2*)Ts/2
tWPon=td+(1+vu2*)Ts/2
tWPoff=(1+vu2*)Ts/2+((1-vw2*)Ts/2)
tWNon=(1+vu2*)Ts/2+((1-vw2*)Ts/2)+td
W相の上下アームスイッチのオン、オフ時刻tWPon[sec]、tWPoff[sec]、tWNon[sec]、tWNoff[sec]を次式で決定する。
W相の端子電圧の立ち上がり時刻はtWPon[sec]、立下り時刻はtWPoff[sec]となる。
スイッチングのタイミングは、tUPoff[sec]とtWPon[sec]が同じになるように決定する。
tWNoff=(1+vu2*)Ts/2
tWPon=td+(1+vu2*)Ts/2
tWPoff=(1+vu2*)Ts/2+((1-vw2*)Ts/2)
tWNon=(1+vu2*)Ts/2+((1-vw2*)Ts/2)+td
(d)iw<0のとき
W相の上下アームスイッチのオン、オフ時刻tWPon[sec]、tWPoff[sec]、tWNon[sec]、tWNoff[sec]を次式で決定する。
W相の端子電圧の立ち上がり時刻はtWNoff[sec]、立下り時刻はtWNon[sec]となる。
スイッチングのタイミングは、tUPoff[sec]とtWNoff[sec]が同じになるように決定する。
tWNoff=td+(1+vu2*)Ts/2
tWPon=td+(1+vu2*)Ts/2+td
tWPoff=td+(1+vu2*)Ts/2+(1-vw2*)Ts/2
tWNon=td+(1+vu2*)Ts/2+(1-vw2*)Ts/2 +td
W相の上下アームスイッチのオン、オフ時刻tWPon[sec]、tWPoff[sec]、tWNon[sec]、tWNoff[sec]を次式で決定する。
W相の端子電圧の立ち上がり時刻はtWNoff[sec]、立下り時刻はtWNon[sec]となる。
スイッチングのタイミングは、tUPoff[sec]とtWNoff[sec]が同じになるように決定する。
tWNoff=td+(1+vu2*)Ts/2
tWPon=td+(1+vu2*)Ts/2+td
tWPoff=td+(1+vu2*)Ts/2+(1-vw2*)Ts/2
tWNon=td+(1+vu2*)Ts/2+(1-vw2*)Ts/2 +td
(B)iu<0のとき
U相の上下アームスイッチのオン、オフ時刻tUPon[sec]、tUPoff[sec]、tUNon[sec]、tUNoff[sec]を次式で決定する。
iu<0のとき、U相端子電圧の立ち上がり時刻はtUNoff[sec]、立下り時刻はtUNon[sec]となる。
tUNoff=0+td
tUPon=0+td+td
tUPoff=td+(1+vu2*)Ts/2
tUNon=td+(1+vu2*)Ts/2+td
U相の上下アームスイッチのオン、オフ時刻tUPon[sec]、tUPoff[sec]、tUNon[sec]、tUNoff[sec]を次式で決定する。
iu<0のとき、U相端子電圧の立ち上がり時刻はtUNoff[sec]、立下り時刻はtUNon[sec]となる。
tUNoff=0+td
tUPon=0+td+td
tUPoff=td+(1+vu2*)Ts/2
tUNon=td+(1+vu2*)Ts/2+td
(a)iv>0のとき
V相の上下アームスイッチのオン、オフ時刻tVPon[sec]、tVPoff[sec]、tVNon[sec]、tVNoff[sec]を次式で決定する。
V相の端子電圧の立ち上がり時刻はtVPon[sec]、立下り時刻はtVPoff[sec]となる。
スイッチングのタイミングは、tUNoff[sec]とtVPoff[sec]が同じになるように決定する。
tVPoff=0+td
tVNon=td+td
tVNoff=td+(1-vv2*)Ts/2
tVPon=td+(1-vv2*)Ts/2+td
V相の上下アームスイッチのオン、オフ時刻tVPon[sec]、tVPoff[sec]、tVNon[sec]、tVNoff[sec]を次式で決定する。
V相の端子電圧の立ち上がり時刻はtVPon[sec]、立下り時刻はtVPoff[sec]となる。
スイッチングのタイミングは、tUNoff[sec]とtVPoff[sec]が同じになるように決定する。
tVPoff=0+td
tVNon=td+td
tVNoff=td+(1-vv2*)Ts/2
tVPon=td+(1-vv2*)Ts/2+td
(b)iv<0のとき
V相の上下アームスイッチのオン、オフ時刻tVPon[sec]、tVPoff[sec]、tVNon[sec]、tVNoff[sec]を次式で決定する。
V相の端子電圧の立ち上がり時刻はtVNoff[sec]、立下り時刻はtVNon[sec]となる。
スイッチングのタイミングは、tUNoff[sec]とtVNon[sec]が同じになるように決定する。
tVPoff=0
tVNon=0+td
tVNoff=(1-vv2*)Ts/2
tVPon=(1-vv2*)Ts/2+td
V相の上下アームスイッチのオン、オフ時刻tVPon[sec]、tVPoff[sec]、tVNon[sec]、tVNoff[sec]を次式で決定する。
V相の端子電圧の立ち上がり時刻はtVNoff[sec]、立下り時刻はtVNon[sec]となる。
スイッチングのタイミングは、tUNoff[sec]とtVNon[sec]が同じになるように決定する。
tVPoff=0
tVNon=0+td
tVNoff=(1-vv2*)Ts/2
tVPon=(1-vv2*)Ts/2+td
(c)iw>0のとき
W相の上下アームスイッチのオン、オフ時刻tWPon[sec]、tWPoff[sec]、tWNon[sec]、tWNoff[sec]を次式で決定する。
W相の端子電圧の立ち上がり時刻はtWPon[sec]、立下り時刻はtWPoff[sec]となる。
スイッチングのタイミングは、tUNon[sec]とtWPon[sec]が同じになるように決定する。
tWNoff=td+(1+vu2*)Ts/2
tWPon=td +(1+vu2*)Ts/2+td
tWPoff=td+(1+vu2*)Ts/2+(1-vw2*)Ts/2
tWNon=td+(1+vu2*)Ts/2+(1-vw2*)Ts/2+td
W相の上下アームスイッチのオン、オフ時刻tWPon[sec]、tWPoff[sec]、tWNon[sec]、tWNoff[sec]を次式で決定する。
W相の端子電圧の立ち上がり時刻はtWPon[sec]、立下り時刻はtWPoff[sec]となる。
スイッチングのタイミングは、tUNon[sec]とtWPon[sec]が同じになるように決定する。
tWNoff=td+(1+vu2*)Ts/2
tWPon=td +(1+vu2*)Ts/2+td
tWPoff=td+(1+vu2*)Ts/2+(1-vw2*)Ts/2
tWNon=td+(1+vu2*)Ts/2+(1-vw2*)Ts/2+td
(d)iw<0のとき
W相の上下アームスイッチのオン、オフ時刻tWPon[sec]、tWPoff[sec]、tWNon[sec]、tWNoff[sec]を次式で決定する。
W相の端子電圧の立ち上がり時刻はtWNoff[sec]、立下り時刻はtWNon[sec]となる。
スイッチングのタイミングは、tUNon[sec]とtWNoff[sec]が同じになるように決定する。
tWNoff=td+(1+vu2*)Ts/2+td
tWPon=td+(1+vu2*)Ts/2+td+td
tWPoff= td+(1+vu2*)Ts/2+td+(1-vw2*)Ts/2
tWNon=td+(1+vu2*)Ts/2+td+(1-vw2*)Ts/2+td
W相の上下アームスイッチのオン、オフ時刻tWPon[sec]、tWPoff[sec]、tWNon[sec]、tWNoff[sec]を次式で決定する。
W相の端子電圧の立ち上がり時刻はtWNoff[sec]、立下り時刻はtWNon[sec]となる。
スイッチングのタイミングは、tUNon[sec]とtWNoff[sec]が同じになるように決定する。
tWNoff=td+(1+vu2*)Ts/2+td
tWPon=td+(1+vu2*)Ts/2+td+td
tWPoff= td+(1+vu2*)Ts/2+td+(1-vw2*)Ts/2
tWNon=td+(1+vu2*)Ts/2+td+(1-vw2*)Ts/2+td
次に電圧変動時刻計算部251で計算された各相上下アームスイッチング時刻に基づいて、タイマ252は各相上下アームのスイッチング信号を生成する。
各相の上下アームスイッチのオン、オフ時刻をタイマ252で調整し、スイッチング信号を生成する(ステップS304)。タイマ252で生成されたスイッチング信号により、各相スイッチのオン、オフを制御する。
各相の上下アームスイッチのオン、オフ時刻をタイマ252で調整し、スイッチング信号を生成する(ステップS304)。タイマ252で生成されたスイッチング信号により、各相スイッチのオン、オフを制御する。
上記の各上下アームスイッチング時刻は、デッドタイムtdを考慮して各相のスイッチング時刻を計算する例を示したが、オンのスイッチング信号が入力されてからスイッチング素子が実際にオンする時間、又はオフのスイッチング信号が入力されてからスイッチング素子が実際にオフする時間を考慮することも必要である。
具体的には、例えば図18に示すように、U相スイッチング信号オフが時刻T3にスイッチング素子に入力されても、U相端子電圧立下り開始時刻(推定)では立ち下がらず、時間差tDl後にU相端子電圧立下り開始時刻(実際)で立下り始める。従って、各相端子電圧の立ち上がり時刻、及び立下り時刻を計算する際には、このような時間差tDlを加算または減算して各相端子電圧の立下り時刻と立ち上がり時刻とを同期させることが効果的である。これは実施の形態3に限らず、実施の形態1及び実施の形態2でも効果がある。
具体的には、例えば図18に示すように、U相スイッチング信号オフが時刻T3にスイッチング素子に入力されても、U相端子電圧立下り開始時刻(推定)では立ち下がらず、時間差tDl後にU相端子電圧立下り開始時刻(実際)で立下り始める。従って、各相端子電圧の立ち上がり時刻、及び立下り時刻を計算する際には、このような時間差tDlを加算または減算して各相端子電圧の立下り時刻と立ち上がり時刻とを同期させることが効果的である。これは実施の形態3に限らず、実施の形態1及び実施の形態2でも効果がある。
また、本実施の形態では、キャンセル対象とする相としてU相端子電圧の立ち上がり時刻、立下り時刻に基づいて各相上下アームスイッチのオン、オフ時刻を算出する方式を示したが、キャンセル対象とする一相(例えばU相)の端子電圧の立ち上がり、立下りを検出して他相のスイッチング信号の生成に用いてもよい。
具体的には、U相の端子電圧の立ち上がりを検出した場合に、例えばV相(相電流が正である相が望ましい)の上アームスイッチをオフし、U相の端子電圧の立ち上がりの検出時刻を基準(0[sec])としてデッドタイムtd[sec]後にV相の下アームスイッチをオンする。電圧指令に基づいて(1-vv1*)Ts/2後にV相の下アームスイッチをオフし、((1-vv1*)Ts/2+td)後にV相の上アームスイッチをオンする。
具体的には、U相の端子電圧の立ち上がりを検出した場合に、例えばV相(相電流が正である相が望ましい)の上アームスイッチをオフし、U相の端子電圧の立ち上がりの検出時刻を基準(0[sec])としてデッドタイムtd[sec]後にV相の下アームスイッチをオンする。電圧指令に基づいて(1-vv1*)Ts/2後にV相の下アームスイッチをオフし、((1-vv1*)Ts/2+td)後にV相の上アームスイッチをオンする。
U相の端子電圧の立下りを検出した場合に、例えばW相(相電流が負である相が望ましい)の下アームスイッチをオフとし、U相の端子電圧の立下りの検出時刻を基準(0[sec])としてデッドタイムtd[sec]後にW相の上アームスイッチをオンする。電圧指令に基づいて(1+vw1*)Ts/2後にW相の上アームスイッチをオフし、((1+vw1*)Ts/2+td)後にV相の上アームスイッチをオンする。
これにより、キャンセル対象とする相の端子電圧の立ち上がり、立下りを検出することにより、必ずしも端子電圧の立ち上がり、立下りを算出することなく、少なくとも1組の2相間で端子電圧の立ち上がり、立下りを同期させることが可能となる。
これにより、キャンセル対象とする相の端子電圧の立ち上がり、立下りを検出することにより、必ずしも端子電圧の立ち上がり、立下りを算出することなく、少なくとも1組の2相間で端子電圧の立ち上がり、立下りを同期させることが可能となる。
このような実施の形態3の構成によれば、各相上下アームのスイッチング信号を生成する制御装置を電圧変動時刻計算部251とタイマ252で構成することで、三角波比較PWMを使用しない簡単な構成で、変調率にかかわらず、電圧指令がゼロでない広範囲の駆動条件において、少なくとも二相間で端子電圧の立ち上がりと立下りを同期させることが可能なスイッチング信号を生成することができる。これにより、中性点電位変動を低減することが可能となり、電位変動に伴って生じる電磁ノイズを低減することができる。また、ノイズフィルタの小型化も可能となる。
実施の形態1から3では、電力変換器10として、三相インバータの構成を例に挙げて示したが、図19に示すように、電力変換器10として六相インバータのような構成を使用し、実施の形態1から3に示したのと同様に制御装置30を制御することにより、A相を基準として、各二相間の端子電圧の立ち上がりと立下りを同期させてもよい。
例えば実施の形態2の制御により、図20に示すように互いに60度位相が異なる六相の相電圧指令に基づいて電力変換器をスイッチングして回転機を駆動する場合においては、互いに相電圧指令の位相が180度異なる二相(例えば図20中、A相とD相)のキャリアの位相差を180度とすることにより、図21(a)に示した従来の手法と比較し、図21(b)で示すように中性点電位変動の低減効果が得られる。
例えば実施の形態2の制御により、図20に示すように互いに60度位相が異なる六相の相電圧指令に基づいて電力変換器をスイッチングして回転機を駆動する場合においては、互いに相電圧指令の位相が180度異なる二相(例えば図20中、A相とD相)のキャリアの位相差を180度とすることにより、図21(a)に示した従来の手法と比較し、図21(b)で示すように中性点電位変動の低減効果が得られる。
また、実施の形態1から3では、電力変換器10として、三相インバータによって三相回転機20を1台駆動する例で説明したが、図22に示すように、2台の三相インバータ10a、10bで三相回転機20a、20bを駆動するような駆動システムで、同一インバータ10a内の二相間だけでなく、インバータ10aとインバータ10bの間の二相間の端子電圧の立ち上がりと立下りを、実施の形態1から3に示したのと同様に制御装置30を制御し、二相間の端子電圧の立ち上がりと立下りを同期させる制御を行っても良い。
さらに、例えば実施の形態2の制御により、図23に示すように互いに60度位相が異なる六相U1、V1、W1、U2、V2、W2の相電圧指令に基づいて電力変換器をスイッチングして回転機を駆動する場合においては、互いに相電圧指令の位相が180度異なる二相(例えば図23中、U1相とU2相)のキャリアの位相差を180度とすることにより、図21(b)で示すのと同様に中性点電位変動の低減効果が得られる。
さらに、例えば実施の形態2の制御により、図23に示すように互いに60度位相が異なる六相U1、V1、W1、U2、V2、W2の相電圧指令に基づいて電力変換器をスイッチングして回転機を駆動する場合においては、互いに相電圧指令の位相が180度異なる二相(例えば図23中、U1相とU2相)のキャリアの位相差を180度とすることにより、図21(b)で示すのと同様に中性点電位変動の低減効果が得られる。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
10:電力変換器、11:直流電源、12:平滑コンデンサ、13:スイッチング素子、20:回転機、21:電流検出器、22:角度検出器、30:制御装置、40:電圧指令生成部、50、150、250:スイッチング信号生成部、51、151:電圧変動時刻推定部、52、152:スイッチング信号操作部、53:キャリア生成部、54、154:三角波比較PWM部、153:同期時間計算部、155:同期操作部、251:電圧変動時刻計算部、252:タイマ。
Claims (11)
- 上アームスイッチング素子と下アームスイッチング素子からなる一相レグ、前記一相レグが直流電源に対して複数並列に接続され、前記上アームスイッチング素子と前記下アームスイッチング素子の接続点が負荷に接続される電力変換器と、前記電力変換器の前記上アームスイッチング素子と前記下アームスイッチング素子のスイッチング動作を制御する制御装置とを有し、直流電力を交流電力に変換して前記負荷に供給する電力変換装置であって、
前記制御装置は、第1の一相レグの前記負荷に接続される接続点の端子電圧の立ち上がり時刻と立下り時刻に基づいて、前記第1の一相レグの端子電圧の立ち上がり時刻と第2の一相レグの端子電圧の立下り時刻、及び前記第1の一相レグの端子電圧の立下り時刻と前記第2の一相レグの端子電圧の立ち上がり時刻、の少なくとも一方を同期させてスイッチング制御することを特徴とする電力変換装置。 - 前記制御装置は、複数の一相レグの内、前記第1の一相レグの前記負荷に接続される接続点の端子電圧の立ち上がり時刻と立下り時刻を算出する電圧変動時刻推定部と、
前記電圧変動時刻推定部で算出された前記第1の一相レグの端子電圧の立ち上がり時刻と第2の一相レグの端子電圧の立下り時刻、又は前記第1の一相レグの端子電圧の立下り時刻と前記第2の一相レグの端子電圧の立ち上がり時刻とを同期させ、複数相のキャリア周波数を算出し、各相キャリアを生成するキャリア生成部と、
前記キャリア生成部で生成した前記各相キャリアと各相の電圧指令に基づき、スイッチング信号を生成する三角波比較PWM部とを有していることを特徴とする請求項1に記載の電力変換装置。 - 前記第1の一相レグに対するキャリア周波数は固定とすることを特徴とする請求項2に記載の電力変換装置
- 前記制御装置は、複数の前記一相レグの前記負荷に接続される接続点の端子電圧の立ち上がり時刻と立下り時刻を算出する電圧変動時刻推定部と、
前記電圧変動時刻推定部で算出された各相の立ち上がり時刻又は立下り時刻を同期させるスイッチング操作時間を算出する同期時間計算部と、
各相キャリアと各相の電圧指令に基づき、スイッチング信号を生成する三角波比較PWM部と、
前記スイッチング操作時間に基づいて、前記スイッチング信号を制御する同期操作部とを備えたことを特徴とする請求項1に記載の電力変換装置。 - 前記各相キャリアのキャリア周波数は固定とすることを特徴とする請求項4に記載の電力変換装置。
- 前記各相キャリアの内、少なくとも一つのキャリアは他のキャリアに対して反転していることを特徴とする請求項4または5に記載の電力変換装置。
- 前記負荷は、mを1以上の整数、及びnを2以上の整数とするとき、n相の巻線をそれぞれ具備する回転機をm台有し、
前記各相キャリアの内、第1のキャリアは第2のキャリアに対して反転しており、前記第1のキャリアの相の電圧指令の位相と前記第2のキャリアの相の電圧指令の位相とが180度異なることを特徴とする請求項2から6のいずれか1項に記載の電力変換装置。 - 前記電圧変動時刻推定部は、
前記一相レグの前記上アームスイッチング素子をオンする前記スイッチング信号のスイッチング時刻と前記一相レグの前記上アームスイッチング素子がオンする時刻との差に基づいて、前記一相レグの前記負荷に接続される接続点の端子電圧の立ち上がり時刻を補正し、または
前記一相レグの前記下アームスイッチング素子をオンする前記スイッチング信号のスイッチング時刻と前記一相レグの前記下アームスイッチング素子がオンする時刻との差に基づいて、前記一相レグの前記負荷に接続される接続点の端子電圧の立下り時刻を補正することを特徴とする請求項2から7のいずれか1項に記載の電力変換装置。 - 前記制御装置は、複数の一相レグの内、前記第1の一相レグの前記負荷に接続される接続点の端子電圧の立ち上がり時刻と立下り時刻を算出し、算出された前記第1の一相レグの端子電圧の立ち上がり時刻と第2の一相レグの端子電圧の立下り時刻、又は前記第1の一相レグの端子電圧の立下り時刻と前記第2の一相レグの端子電圧の立ち上がり時刻とを同期させる端子変動時刻を計算し、各相の電圧指令と前記端子変動時刻から前記上アームスイッチング素子と前記下アームスイッチング素子のスイッチング時刻を算出する電圧変動時刻計算部と、
前記上アームスイッチング素子と前記下アームスイッチング素子のスイッチング時刻に基づいてスイッチング信号を生成するタイマとを備えたことを特徴とする請求項1に記載の電力変換装置。 - 前記電圧変動時刻計算部は、
前記一相レグの前記上アームスイッチング素子をオンする前記スイッチング信号のスイッチング時刻と前記一相レグの前記上アームスイッチング素子がオンする時刻との差に基づいて、前記一相レグの前記負荷に接続される接続点の端子電圧の立ち上がり時刻を補正し、または
前記一相レグの前記下アームスイッチング素子をオンする前記スイッチング信号のスイッチング時刻と前記一相レグの前記下アームスイッチング素子がオンする時刻との差に基づいて、前記一相レグの前記負荷に接続される接続点の端子電圧の立下り時刻を補正することを特徴とする請求項9に記載の電力変換装置。 - 請求項1から10のいずれか1項に記載の電力変換装置と、
mを1以上の整数、及びnを2以上の整数とするとき、n相の巻線をそれぞれ具備する回転機をm台有する負荷とを備えることを特徴とする回転機駆動システム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880090957.6A CN111886790B (zh) | 2018-03-19 | 2018-03-19 | 电力变换装置以及旋转机械驱动系统 |
JP2020508107A JP7005746B2 (ja) | 2018-03-19 | 2018-03-19 | 電力変換装置および回転機駆動システム |
US16/966,949 US11329593B2 (en) | 2018-03-19 | 2018-03-19 | Power conversion device and rotating machine drive system |
PCT/JP2018/010731 WO2019180763A1 (ja) | 2018-03-19 | 2018-03-19 | 電力変換装置および回転機駆動システム |
EP18910739.4A EP3771086A4 (en) | 2018-03-19 | 2018-03-19 | POWER CONVERTER DEVICE AND LATHE DRIVE SYSTEM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/010731 WO2019180763A1 (ja) | 2018-03-19 | 2018-03-19 | 電力変換装置および回転機駆動システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019180763A1 true WO2019180763A1 (ja) | 2019-09-26 |
Family
ID=67986884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/010731 WO2019180763A1 (ja) | 2018-03-19 | 2018-03-19 | 電力変換装置および回転機駆動システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11329593B2 (ja) |
EP (1) | EP3771086A4 (ja) |
JP (1) | JP7005746B2 (ja) |
CN (1) | CN111886790B (ja) |
WO (1) | WO2019180763A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022083581A (ja) * | 2020-11-25 | 2022-06-06 | 株式会社豊田自動織機 | インバータ制御装置及び車載用流体機械 |
DE112021003206T5 (de) | 2020-08-17 | 2023-04-27 | Sanden Corporation | Wechselrichtervorrichtung |
WO2023136340A1 (ja) * | 2022-01-17 | 2023-07-20 | サンデン株式会社 | 電力変換装置 |
US12040725B2 (en) | 2020-04-10 | 2024-07-16 | Mitsubishi Electric Corporation | Power conversion device and rotary machine drive system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11929689B2 (en) * | 2019-09-13 | 2024-03-12 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power conversion device |
US20230152375A1 (en) * | 2020-04-03 | 2023-05-18 | Nagasaki Institute Of Applied Science | Deterioration estimation device and deterioration estimation program for power conversion device |
DE102022212388A1 (de) * | 2022-11-21 | 2024-05-23 | Robert Bosch Gesellschaft mit beschränkter Haftung | Wechselrichter zur Erzeugung eines mindestens einphasigen Wechselstroms |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005295625A (ja) * | 2004-03-31 | 2005-10-20 | Yaskawa Electric Corp | 電力変換装置 |
JP2008271617A (ja) | 2007-04-16 | 2008-11-06 | Hitachi Ltd | 電力変換装置とその制御方法 |
JP2014100025A (ja) * | 2012-11-15 | 2014-05-29 | Toshiba Corp | 電力変換装置 |
WO2015102049A1 (ja) * | 2014-01-06 | 2015-07-09 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
JP2016039739A (ja) * | 2014-08-11 | 2016-03-22 | 株式会社明電舎 | 単相npcインバータの中性点電位制御方法 |
JP2016208664A (ja) | 2015-04-22 | 2016-12-08 | 株式会社日本自動車部品総合研究所 | インバータの制御装置 |
JP2017184309A (ja) * | 2016-03-28 | 2017-10-05 | 三菱電機エンジニアリング株式会社 | 電力変換装置 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5317248A (en) * | 1992-11-12 | 1994-05-31 | General Motors Corporation | Micro-controller based PWM waveform generation for a multiple phase AC machine |
JP3337119B2 (ja) * | 1997-03-11 | 2002-10-21 | 株式会社日立製作所 | Pwm制御装置 |
US6252362B1 (en) * | 1999-11-23 | 2001-06-26 | Texas Instruments Incorporated | Method and apparatus for synchronizing PWM sinusoidal drive to a DC motor |
JP4680367B2 (ja) * | 2000-10-10 | 2011-05-11 | ルネサスエレクトロニクス株式会社 | ブラシレスモータ駆動回路 |
JP3929428B2 (ja) * | 2003-09-29 | 2007-06-13 | 三菱電機株式会社 | 電力制御装置 |
DE602004029505D1 (de) * | 2004-02-19 | 2010-11-18 | Mitsubishi Electric Corp | Mehrphasen-simultanumschaltungsverhinderungsschaltung, pwm-wechselrichter und ansteuerverfahren dafür |
JP5045137B2 (ja) | 2006-03-31 | 2012-10-10 | 株式会社富士通ゼネラル | 電力変換装置 |
JP4941223B2 (ja) * | 2007-10-12 | 2012-05-30 | 三菱電機株式会社 | 半導体装置 |
JP5412969B2 (ja) * | 2009-06-09 | 2014-02-12 | 株式会社リコー | モータドライバ制御装置、モータ制御装置、及び画像形成装置 |
JP5480593B2 (ja) * | 2009-10-23 | 2014-04-23 | 株式会社荏原製作所 | 電力変換装置 |
JP5079055B2 (ja) * | 2010-06-28 | 2012-11-21 | 三菱電機株式会社 | 電力変換装置 |
US8558497B2 (en) * | 2011-07-15 | 2013-10-15 | Cypress Semiconductor Corporation | Reduced electromagnetic interference for pulse-width modulation |
JP2013055801A (ja) * | 2011-09-05 | 2013-03-21 | Nissan Motor Co Ltd | 電力変換装置 |
JP5819010B2 (ja) * | 2012-11-07 | 2015-11-18 | 三菱電機株式会社 | 電力変換装置 |
JP6045765B1 (ja) | 2015-05-20 | 2016-12-14 | 三菱電機株式会社 | 電力変換装置およびこれを適用した車両駆動システム |
FR3050337B1 (fr) * | 2016-04-14 | 2020-01-10 | Schneider Toshiba Inverter Europe Sas | Procede et systeme de commande pour une installation de commande de moteur electrique |
-
2018
- 2018-03-19 JP JP2020508107A patent/JP7005746B2/ja active Active
- 2018-03-19 CN CN201880090957.6A patent/CN111886790B/zh active Active
- 2018-03-19 WO PCT/JP2018/010731 patent/WO2019180763A1/ja unknown
- 2018-03-19 US US16/966,949 patent/US11329593B2/en active Active
- 2018-03-19 EP EP18910739.4A patent/EP3771086A4/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005295625A (ja) * | 2004-03-31 | 2005-10-20 | Yaskawa Electric Corp | 電力変換装置 |
JP2008271617A (ja) | 2007-04-16 | 2008-11-06 | Hitachi Ltd | 電力変換装置とその制御方法 |
JP2014100025A (ja) * | 2012-11-15 | 2014-05-29 | Toshiba Corp | 電力変換装置 |
WO2015102049A1 (ja) * | 2014-01-06 | 2015-07-09 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
JP2016039739A (ja) * | 2014-08-11 | 2016-03-22 | 株式会社明電舎 | 単相npcインバータの中性点電位制御方法 |
JP2016208664A (ja) | 2015-04-22 | 2016-12-08 | 株式会社日本自動車部品総合研究所 | インバータの制御装置 |
JP2017184309A (ja) * | 2016-03-28 | 2017-10-05 | 三菱電機エンジニアリング株式会社 | 電力変換装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3771086A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12040725B2 (en) | 2020-04-10 | 2024-07-16 | Mitsubishi Electric Corporation | Power conversion device and rotary machine drive system |
DE112021003206T5 (de) | 2020-08-17 | 2023-04-27 | Sanden Corporation | Wechselrichtervorrichtung |
JP2022083581A (ja) * | 2020-11-25 | 2022-06-06 | 株式会社豊田自動織機 | インバータ制御装置及び車載用流体機械 |
JP7380536B2 (ja) | 2020-11-25 | 2023-11-15 | 株式会社豊田自動織機 | インバータ制御装置及び車載用流体機械 |
WO2023136340A1 (ja) * | 2022-01-17 | 2023-07-20 | サンデン株式会社 | 電力変換装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7005746B2 (ja) | 2022-01-24 |
US20200395881A1 (en) | 2020-12-17 |
EP3771086A4 (en) | 2021-03-31 |
JPWO2019180763A1 (ja) | 2021-01-07 |
CN111886790B (zh) | 2024-05-28 |
US11329593B2 (en) | 2022-05-10 |
CN111886790A (zh) | 2020-11-03 |
EP3771086A1 (en) | 2021-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019180763A1 (ja) | 電力変換装置および回転機駆動システム | |
JP6555186B2 (ja) | 交流電動機の制御装置 | |
US8817499B2 (en) | Control method and system for reducing the common-mode current in a power converter | |
US11218107B2 (en) | Control device for power converter | |
JP3967657B2 (ja) | 電力変換装置 | |
CN111656664A (zh) | 电力转换装置 | |
JP5124979B2 (ja) | 多軸電動機制御装置 | |
WO2012066914A1 (ja) | 電力変換装置 | |
TW200414660A (en) | Pulse width modulation method and device thereof, power conversion method and power converter | |
JP2007221903A (ja) | 電力変換装置 | |
JP2005065439A (ja) | 電圧形インバータの制御方法 | |
US11677309B2 (en) | Inverter device | |
EP3591828B1 (en) | Power supply control device, power conversion system, and power supply control method | |
JP2010110179A (ja) | 整流回路 | |
JP2009247110A (ja) | インバータ制御装置 | |
JP2014007854A (ja) | 電力変換装置 | |
JP2008109790A (ja) | 電力変換装置 | |
JP5894031B2 (ja) | 電力変換装置 | |
JP7523693B2 (ja) | 電力変換器の制御部および電力変換装置 | |
JP7471991B2 (ja) | 電力変換装置 | |
JP7394619B2 (ja) | インバータ装置 | |
JP4493308B2 (ja) | 無停電電源装置及び無停電電源システム | |
WO2019038814A1 (ja) | 電力変換装置および電動パワーステアリング装置 | |
JP2012029377A (ja) | 負荷制御装置 | |
JPH0824426B2 (ja) | パルス幅変調形インバ−タ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18910739 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020508107 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018910739 Country of ref document: EP Effective date: 20201019 |