WO2023136340A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2023136340A1
WO2023136340A1 PCT/JP2023/000926 JP2023000926W WO2023136340A1 WO 2023136340 A1 WO2023136340 A1 WO 2023136340A1 JP 2023000926 W JP2023000926 W JP 2023000926W WO 2023136340 A1 WO2023136340 A1 WO 2023136340A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
phase
modulation
pulse width
width modulation
Prior art date
Application number
PCT/JP2023/000926
Other languages
English (en)
French (fr)
Inventor
雄志 荒木
辰樹 柏原
孝次 小林
潔 大石
勇希 横倉
勇斗 小林
Original Assignee
サンデン株式会社
国立大学法人長岡技術科学大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社, 国立大学法人長岡技術科学大学 filed Critical サンデン株式会社
Publication of WO2023136340A1 publication Critical patent/WO2023136340A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a power converter that converts DC voltage into AC voltage.
  • PWM pulse width modulation
  • the former method includes pulse width modulation that outputs only odd voltage vectors or only even voltage vectors. According to this method, it is possible to completely suppress the fluctuation of the common mode voltage within the carrier period. There is also pulse width modulation that switches between outputting only odd voltage vectors and outputting only even voltage vectors according to the electrical angle phase. This technique can also greatly suppress fluctuations in the common mode voltage (see, for example, Patent Document 1).
  • Patent Document 1 is the most effective method for suppressing common-mode voltage fluctuations, but because it limits the voltage vector to be used, the linear output region (the voltage vector can rotate once in a constant radius) There is a drawback that the maximum amplitude) is limited and the modulation rate that can be output is limited. For this reason, it is difficult to apply it when driving a motor of a compressor, or when the number of revolutions/modulation rate is high, it is necessary to switch the modulation method as in Patent Document 3.
  • Patent Document 2 Patent Document 3
  • Patent Document 3 can use the linear output region to the normal maximum, and can realize a high modulation rate, but the effect of suppressing the common mode voltage fluctuation is the former method. inferior to the method.
  • Patent Document 3 two-phase modulation and three-phase modulation are switched according to the operating region, and it is conceivable to switch between the former method and the latter method as described above, but switching of the pulse width modulation method A shock problem arises.
  • the present invention has been made to solve such conventional technical problems, and it is possible to realize pulse width modulation with a high noise suppression effect but a limited modulation rate, and high modulation rate with a poor noise suppression effect. It is an object of the present invention to provide a power converter capable of linearly switching between various pulse width modulations.
  • the power converter of the present invention converts a DC voltage into an AC voltage, and controls the inverter circuit that applies the phase voltage at the connection point of the upper and lower arm switching elements of each phase to the load, and the switching of each switching element.
  • pulse width modulation that outputs only odd voltage vectors during one control period, or pulse width modulation that outputs only even voltage vectors during one control period, or electrical angle phase pulse width modulation for outputting only odd voltage vectors during one control period and pulse width modulation for switching between pulse width modulation for outputting only even voltage vectors during one control period according to the common
  • a determination unit that determines a zero voltage output time for outputting a zero voltage vector; pulse width modulation by the first modulation unit within one electrical angle cycle based on the zero voltage output time determined by the determination unit; It is characterized by comprising a selection section for selecting pulse width modulation by the second modulation section.
  • the selection unit selects pulse width modulation by the first modulation unit when the zero voltage output time is a value of zero or more, or when it is a positive value.
  • the pulse width modulation by the second modulation section is selected when the zero voltage output time is a negative value or a value less than or equal to zero.
  • the first modulation unit corrects the odd voltage vector or the even voltage vector to realize the zero voltage output time for outputting the zero voltage vector. It is characterized by
  • the first modulation unit controls only the pulse width modulation and the even voltage vector for outputting only the odd voltage vector during one control period according to the control state. It is characterized in that the pulse width modulation to be output during the period is switched and executed.
  • a power conversion apparatus is provided with a phase voltage command calculation unit for calculating the phase voltage command value of each phase in the above invention, and the first modulation unit is configured to calculate the phase voltage command value for the phase where the amplitude of the phase voltage command value is maximum. If the sign of is positive, pulse width modulation is performed to output only even voltage vectors during one control period. It is characterized by performing pulse width modulation for output during the control period.
  • a power conversion apparatus according to the first to fifth aspects of the invention, wherein the second modulation section performs pulse width modulation for outputting only adjacent voltage vectors during one control period.
  • a power conversion apparatus is provided with a phase voltage command calculation unit for calculating the phase voltage command value of each phase in the above invention, and the second modulation unit is configured to provide the phase voltage command value for the phase at which the amplitude of the phase voltage command value is maximized. If the sign of is positive, pulse width modulation is performed to output only two even voltage vectors and the odd voltage vector sandwiched between them during one control cycle, and the sign of the phase that maximizes the amplitude of the phase voltage command value is In the case of negative, pulse width modulation is performed to output only two odd voltage vectors and an even voltage vector sandwiched between them during one control period.
  • the second modulation section is configured such that the phase voltage of the other phase is adjusted at the rise timing and the fall timing of the phase voltage of the specific phase. It is characterized by performing pulse width modulation that synchronizes the fall timing and the rise timing.
  • a ninth aspect of the invention there is provided a power conversion device according to the first to fifth aspects of the invention, wherein the second modulation section fixes the ON/OFF state of the upper and lower arm switching elements of a predetermined one phase, and the other two phases. pulse width modulation for modulating the ON/OFF state of the upper and lower arm switching elements.
  • the power conversion apparatus of the invention of claim 10 is characterized in that in each of the above inventions, the inverter circuit applies a phase voltage at a connection point of the upper and lower arm switching elements of each phase to the motor to drive it.
  • an inverter circuit that applies a phase voltage at a connection point between upper and lower arm switching elements of each phase to a load, and a control that controls switching of each switching element.
  • the control device uses pulse width modulation to output only odd voltage vectors during one control period, or pulse width modulation to output only even voltage vectors during one control period, or according to the electrical angle phase common mode noise by performing either pulse width modulation to output only odd voltage vectors during one control period or pulse width modulation to switch between pulse width modulation to output only even voltage vectors during one control period.
  • a determination unit that determines a zero voltage output time for outputting a zero voltage vector; a pulse width modulation by a first modulation unit within one electrical angle cycle based on the zero voltage output time determined by the determination unit; Since the selection unit is provided for selecting the pulse width modulation by the modulation unit of , it is possible to reduce the common mode noise and the pulse width modulation by the first modulation unit having a high common mode noise suppression effect, but the first modulation It becomes possible to linearly (seamlessly) switch the pulse width modulation by the second modulation section capable of realizing a higher modulation rate than the pulse width modulation by the section.
  • the selector selects pulse width modulation by the first modulator when the zero voltage output time is a value equal to or greater than zero, or when the zero voltage output time is a positive value.
  • the time is a negative value or a value less than or equal to zero, if the pulse width modulation by the second modulation section is selected, the pulse width by the first modulation section is It is possible to smoothly switch between modulation and pulse width modulation by the second modulation section.
  • the pulse width modulation of the modulating section 1 makes it possible to completely suppress the fluctuation of the common mode voltage.
  • the first modulation section provides pulse width modulation for outputting only odd voltage vectors during one control period and pulse width modulation for outputting only even voltage vectors during one control period according to the control state. If the width modulation is switched and executed, it becomes possible to realize the optimum pulse width modulation by the first modulation section according to the control state.
  • the first modulation unit converts only the even-numbered voltage vectors into one.
  • Execute pulse width modulation to output during a control period and execute pulse width modulation to output only an odd voltage vector during one control period when the sign of the phase with the maximum amplitude of the phase voltage command value is negative. , it is possible to appropriately switch between pulse width modulation in which only even voltage vectors are output during one control period and pulse width modulation in which only odd voltage vectors are output during one control period.
  • the pulse width modulation performed by the second modulation section includes pulse width modulation in which only adjacent voltage vectors are output during one control period, as in the sixth aspect of the invention.
  • the second modulation unit converts only two even voltage vectors and an odd voltage vector sandwiched between them.
  • the sign of the phase in which the amplitude of the phase voltage command value is the maximum is positive
  • the second modulation unit converts only two even voltage vectors and an odd voltage vector sandwiched between them.
  • the sign of the phase with the maximum amplitude of the phase voltage command value is negative, only the two odd voltage vectors and the even voltage vector sandwiched between them are used for one control cycle.
  • Smooth pulse width modulation by the second modulation unit can be realized by executing the pulse width modulation output in the second modulation unit.
  • the pulse width modulation performed by the second modulating section can be performed at the rise timing and the fall timing of the phase voltage of a specific phase as in the eighth aspect of the invention.
  • FIG. 1 is an electric circuit diagram of a power converter of one embodiment to which the present invention is applied; FIG. It is a figure which shows a three-phase alternating current voltage command value.
  • FIG. 4 is a diagram showing a voltage space for explaining a linear output region; FIG. FIG. 4 is a diagram showing the relationship between voltage vectors and phase voltages; FIG. 4 is a diagram showing a voltage vector (output basic vector);
  • FIG. 2 is a flow chart explaining the operation of one embodiment of the control device of FIG. 1 (Embodiment 1);
  • FIG. FIG. 4 is a diagram representing a voltage space for explaining IRSPWM with odd voltage vectors; It is a figure which shows the value which an output area
  • FIG. 4 is a diagram showing a voltage space for explaining a linear output region; FIG. 4 is a diagram showing the relationship between voltage vectors and phase voltages; FIG. 4 is a diagram showing a voltage vector (output basic vector);
  • FIG. 2
  • FIG. 11 illustrates the linear output region of IRSPWM with odd voltage vectors
  • FIG. 10 is a diagram showing output vectors and output times of RSPWM with odd voltage vectors
  • FIG. 10 is a diagram showing output vectors and output times of NSPWM with odd voltage vectors
  • FIG. 10 is a diagram showing an example of output vectors of IRSPWM with odd voltage vectors (in the case of RSPWM);
  • FIG. 10 is a diagram showing an example of IRSPWM output vectors with odd voltage vectors (for NSPWM);
  • FIG. 11 shows PWM patterns for IRSPWM with odd voltage vectors (for RSPWM);
  • FIG. 11 shows PWM patterns for IRSPWM with odd voltage vectors (for NSPWM);
  • FIG. 11 shows PWM patterns for IRSPWM with odd voltage vectors (for NSPWM);
  • FIG. 10 shows PWM patterns for IRSPWM with odd voltage vectors (for NSPWM);
  • FIG. 10 shows PWM patterns for IRSPWM with odd voltage vectors (for NSPWM);
  • FIG. 10 is a diagram showing modulated waveforms at a low modulation factor of IRSPWM with odd voltage vectors;
  • FIG. 10 is a diagram showing modulated waveforms at a high modulation factor of IRSPWM with odd voltage vectors;
  • FIG. 4 is a diagram representing a voltage space for explaining IRSPWM with even voltage vectors;
  • FIG. 19 is a diagram showing values taken by the output regions and functions of FIG. 18;
  • FIG. 11 illustrates the linear output region of IRSPWM with even voltage vectors;
  • FIG. 10 is a diagram showing output vectors and output times of RSPWM with even voltage vectors;
  • FIG. 10 is a diagram showing output vectors and output times of NSPWM with even voltage vectors;
  • FIG. 10 is a diagram showing an example of an IRSPWM output vector with an even voltage vector (in the case of RSPWM);
  • FIG. 10 is a diagram showing an example of output vectors of IRSPWM with even voltage vectors (in the case of NSPWM);
  • Fig. 12 shows a PWM pattern for IRSPWM with even voltage vectors (for RSPWM);
  • FIG. 11 shows PWM patterns for IRSPWM with even voltage vectors (for NSPWM);
  • FIG. 10 is a diagram showing modulated waveforms at a low modulation factor of IRSPWM with even voltage vectors;
  • FIG. 10 is a diagram showing a modulated waveform at a high modulation factor of IRSPWM with an even voltage vector; It is a figure which shows the operation
  • FIG. 11 shows the linear output region of IRSPWM with full voltage vector; It is a figure which shows the correspondence of RSPWM of IRSPWM by all voltage vectors, and each phase.
  • FIG. 10 is a diagram showing modulation waveforms at a low modulation factor of IRSPWM by all voltage vectors;
  • FIG. 10 is a diagram showing modulation waveforms at a high modulation rate of IRSPWM with all voltage vectors;
  • FIG. 12 is a diagram showing a PWM pattern of pulse width modulation that matches the rise and fall timings of a specific phase with the fall and rise timings of other phases (Embodiment 3);
  • Figure 35 shows the linear output region of Figure 34;
  • a power converter 1 of an embodiment to which the present invention is applied drives a motor 8 (load) of a so-called inverter-integrated electric compressor that constitutes a refrigerant circuit of a vehicle air conditioner mounted on a vehicle such as an electric vehicle. It is.
  • the power converter 1 of the embodiment includes a three-phase inverter circuit 28 and a control device 21 .
  • the inverter circuit 28 is a circuit that converts the DC voltage of a DC power supply (vehicle battery: for example, 350 V) 29 into a three-phase AC voltage and applies it to the motor 8 .
  • the motor 8 of the embodiment is an IPMSM (Interior Permanent Magnet Synchronous Motor).
  • the inverter circuit 28 has a U-phase half-bridge circuit 19U, a V-phase half-bridge circuit 19V, and a W-phase half-bridge circuit 19W. and lower arm switching elements 18D to 18F. Further, a flywheel diode 31 is connected in anti-parallel to each of the switching elements 18A-18F.
  • Each of the upper and lower arm switching elements 18A to 18F is composed of an insulated gate bipolar transistor (IGBT) in which a MOS structure is incorporated in the gate portion in the embodiment.
  • IGBT insulated gate bipolar transistor
  • the collectors of the upper arm switching elements 18A to 18C of the inverter circuit 28 are connected to the DC power supply 29 and the upper arm power supply line (positive bus line) 10 of the smoothing capacitor 32 .
  • the emitters of the lower arm switching elements 18D to 18F of the inverter circuit 28 are connected to the DC power supply 29 and the lower arm power supply line (negative bus line) 15 of the smoothing capacitor 32 .
  • the emitter of the upper arm switching element 18A and the collector of the lower arm switching element 18D are connected in series, and the emitter of the upper arm switching element 18B and the lower arm switching element of the V phase half bridge circuit 19V are connected in series.
  • 18E are connected in series, and the emitter of the upper arm switching element 18C and the collector of the lower arm switching element 18F of the W-phase half bridge circuit 19W are connected in series.
  • a connection point (U-phase voltage Vu) between the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half-bridge circuit 19U is connected to the U-phase armature coil of the motor 8, and the V-phase half-bridge circuit 19V is connected to the U-phase armature coil.
  • a connection point (V-phase voltage Vv) between the upper arm switching element 18B and the lower arm switching element 18E is connected to the V-phase armature coil of the motor 8, and the upper arm switching element 18C and the lower arm switching element 18C of the W-phase half-bridge circuit 19W are connected to the V-phase armature coil of the motor 8.
  • a connection point (W-phase voltage Vw) of the arm switching element 18F is connected to a W-phase armature coil of the motor 8 .
  • the control device 21 is composed of a microcomputer having a processor. are input, and based on these, the ON/OFF state (switching) of each of the switching elements 18A to 18F of the inverter circuit 28 is controlled. Specifically, it controls the gate voltage applied to the gates of the switching elements 18A to 18F.
  • the control device 21 of the embodiment includes a command value calculation unit 30, a PWM signal generation unit 36, a gate driver 37, a U-phase current iu which is a motor current (phase current) of each phase flowing through the motor 8, a V-phase current It has current sensors 26A, 26B, and 26C consisting of current transformers for measuring iv and W-phase currents iw.
  • the command value calculation unit 30 of the embodiment includes a phase voltage command calculation unit 33, a first modulation unit 34, a second modulation unit 35, a selection unit 40, and a determination unit 45. Each current The sensors 26A-26C are connected to the phase voltage command calculator 33. FIG.
  • the current sensor 26A measures the U-phase current iu
  • the current sensor 26B measures the V-phase current iv
  • the current sensor 26C measures the W-phase current iw. may be measured
  • the V-phase current iv may be measured by the current sensor 26B
  • the W-phase current iw may be calculated from these.
  • the method of detecting the motor current of each phase in addition to measuring with the current sensors 26A to 26C as in the embodiment, the current value of the lower arm power supply line 15 is detected by a shunt resistor, and the current value and the motor 8 Since there is a method of estimating by the phase voltage command calculation unit 33 from the operating state of the motor, the method of detecting and estimating each phase current is not particularly limited.
  • Phase voltage command calculator 33 The phase voltage command calculation unit 33 of the embodiment applies to the armature coil of each phase of the motor 8 by vector control based on the d-axis current and the q-axis current obtained from the electrical angle of the motor 8, the current command value, and the phase current.
  • Phase voltage command value Vu ref (hereinafter referred to as U-phase voltage command value Vu ref ), Vv ref (hereinafter referred to as V-phase voltage A command value Vv ref ) and Vw ref (hereinafter referred to as a W-phase voltage command value Vw ref ) are calculated and output.
  • the phase voltage command calculation unit 33 uses the d-axis voltage command value Vd ref and the q-axis voltage command value Vq ref obtained from the d-axis current and the q-axis current to calculate the ⁇ -axis voltage command using the following formula (I).
  • a value V ⁇ ref and a ⁇ -axis voltage command value V ⁇ ref are calculated, and from these ⁇ -axis voltage command value V ⁇ ref and ⁇ -axis voltage command value V ⁇ ref , the voltage command values Vu ref and Vv for each phase of the UVW are obtained using Equation (II). ref and Vw ref (phase voltage command value) are calculated.
  • FIG. 2 shows the waveforms of the voltage command values Vu ref , Vv ref and Vw ref for each phase calculated by Equation (III), and FIG. 3 shows the linear output region kH.
  • the linear output region is the maximum value of the amplitude at which the voltage vector can perfectly rotate (draw a circle) in the diagram representing the voltage space in FIG. Since the voltage space of the three-phase inverter is hexagonal as shown in FIG. 3, theoretically, the linear output region is the inscribed circle of the hexagon.
  • the linear output region kH in general three-phase modulation is expressed as 1, and the linear output regions of other modulation schemes are normalized for discussion.
  • V1 the states of the U-phase voltage Vu, the V-phase voltage Vv, and the W-phase voltage Vw are summarized
  • V1 the states of eight voltage vectors (output basic vectors) V0 to V7 as shown in FIG. 4 are expressed. be able to.
  • V1, V3 and V5 are odd voltage vectors
  • V2, V4 and V6 are even voltage vectors
  • V0 and V7 are zero voltage vectors.
  • the phase voltage command calculation unit 33 of the embodiment further calculates the voltage command values Vu ref2 , Vv ref2 , and Vw ref2 for two-phase modulation of each phase using the following formulas (IV) and (V).
  • Vmod in each of formulas (IV) and (V) calculates voltage command values Vu ref2 , Vv ref2 , and Vw ref2 for two-phase modulation from voltage command values Vu ref , Vv ref , and Vw ref for three-phase modulation.
  • the minimum value (min) of the three-phase voltage command values Vu ref , Vv ref , and Vw ref is added to Vdc/2, and in equation (V) It is a value obtained by subtracting the maximum value (max) among the phase voltage command values Vu ref , Vv ref and Vw ref from Vdc/2.
  • the amplitude is determined to be the maximum using the formula (V).
  • Two-phase modulation is performed in which the upper arm switching element of each phase is fixed ON, and if the sign of the phase with the largest amplitude among the voltage command values Vu ref , Vv ref , and Vw ref is negative, the expression (IV) is used to Two-phase modulation is employed in which the lower arm switching element of the phase with the maximum amplitude is fixed ON.
  • the first modulation section 34 of the embodiment performs pulse width modulation to output only the odd voltage vectors V1, V3, and V5 among the voltage vectors described above during one control period, and the voltage command values V ⁇ ref and V ⁇ ref to directly generate the ON times tu, tv, and tw of the upper arm switching elements of each phase, and output voltage vectors (V1, V3, V5) and their output times.
  • this pulse width modulation is hereinafter referred to as RSPWM (Remote State PWM) with odd voltage vectors.
  • RSPWM Remote State PWM
  • Such pulse width modulation is based on the concept of instantaneous space vector modulation, in which space vector modulation is performed without waiting for the next sampling point.
  • the first modulation unit 34 further performs pulse width modulation to output only the even voltage vectors V2, V4, and V6 among the voltage vectors described above during one control period, and directly from the voltage command values V ⁇ ref and V ⁇ ref .
  • ON times tuv, tvw, and twu of two-phase upper arm switching elements are generated, and voltage vectors (V2, V4, V6) and their output times are output.
  • this pulse width modulation is hereinafter referred to as RSPWM with even voltage vectors.
  • the first modulation section 34 performs pulse width modulation to switch between RSPWM using the odd voltage vector and RSPWM using the even voltage vector according to the electrical angle phase.
  • This pulse width modulation is hereinafter referred to as RSPWM with full voltage vectors in the present application.
  • the pulse width modulation by the first modulation section 34 as described above will be described in detail later.
  • Second modulation section 35 performs pulse width modulation that achieves a modulation rate higher than that of the pulse width modulation by the first modulation section 34 and that can reduce common mode noise.
  • the second modulation section 35 of the embodiment performs pulse width modulation to output only adjacent voltage vectors in FIG. 5 during one control period.
  • NSPWM Near State PWM
  • the determination unit 45 of the embodiment determines the zero voltage output times t0 and t7, which are the times for outputting the zero voltage vector obtained from the calculation by the first modulation unit 34, for each control cycle. The operation of this determination unit 45 will also be described in detail later.
  • the selection unit 40 of the embodiment Based on the zero voltage output times t0 and t7 determined by the determination unit 45, the selection unit 40 of the embodiment performs pulse width modulation by the first modulation unit 34 and pulse width modulation by the second modulation unit 35 within one electrical angle cycle. Pulse width modulation is selected every control period. Then, the selected voltage vector and the output time are output to the PWM signal generator 36 . The operation of this selector 40 will also be described in detail later.
  • the PWM signal generator 36 receives the voltage vector and the output time output from the selector 40 and compares the magnitudes of the voltage vector and the carrier signal to determine the U-phase inverter 19U, the V-phase inverter 19V, and the W-phase inverter of the inverter circuit 28 .
  • a PWM signal which is a 19 W drive command signal, is generated and output.
  • the gate driver 37 Based on the PWM signal output from the PWM signal generator 36, the gate driver 37 generates the gate voltage of the switching elements 18A and 18D of the U-phase inverter 19U, the gate voltage of the switching elements 18B and 18E of the V-phase inverter 19V, and the W Gate voltages for the switching elements 18C and 18F of the phase inverter 19W are generated.
  • Each of the switching elements 18A to 18F of the inverter circuit 28 is turned ON/OFF based on the gate voltage output from the gate driver 37. That is, when the gate voltage is turned on (predetermined voltage value), the switching element is turned on, and when the gate voltage is turned off (zero), the switching element is turned off.
  • This gate driver 37 is a circuit for applying a gate voltage to the IGBT based on the PWM signal when the switching elements 18A to 18F are the aforementioned IGBTs, and is composed of a photocoupler, a logic IC, a transistor, and the like. be.
  • the voltage at the connection point between the upper arm switching element 18B and the lower arm switching element 18E of the V-phase half bridge circuit 19V is applied (output) to the V-phase armature coil of the motor 8 as the V-phase voltage Vv (phase voltage)
  • the voltage at the connection point between the upper arm switching element 18C and the lower arm switching element 18F of the W-phase half bridge circuit 19W is applied (output) to the W-phase armature coil of the motor 8 as the W-phase voltage Vw (phase voltage).
  • FIG. 6 is a flow chart for explaining the overall flow of pulse width modulation (hereinafter referred to as IRSPWM (Instantaneous Remote State PWM) in the present application) performed by the command value calculation unit 30 .
  • Step S1 is the calculation of the above-described formulas (I) to (V ) . , Vv ref , Vw ref , and two-phase modulation voltage command values Vu ref2 , Vv ref2 , Vw ref2 are calculated.
  • step S2 among the voltage command values Vu ref , Vv ref , and Vw ref (phase voltage command values) of the three-phase modulation described above, it is determined whether the sign of the phase having the maximum amplitude is positive or negative. discriminate. This determination is performed by the first modulating section 34 and the second modulating section 35 in the embodiment. If the sign of the phase having the maximum amplitude among the voltage command values Vu ref , Vv ref and Vw ref of the three-phase modulation is negative, the process proceeds to step S3 to execute IRSPWM using odd voltage vectors.
  • step S3 of IRSPWM using this odd voltage vector the first modulation unit 34 uses the following equations (VI) and (VII) to convert the upper arm switching element 18A of each phase from the voltage command values V ⁇ ref and V ⁇ ref . , 18B and 18C are calculated.
  • V1, V3, and V5 in Equation (VI) are odd voltage vectors, and Ts is one control cycle. This control period Ts may be one carrier period. However, this one control cycle Ts is set to be sufficiently shorter than one electrical angle cycle.
  • Su, Sv, and Sw are functions corresponding to the output regions (Sectors) A to C of the voltage space shown in FIG.
  • step S4 the zero voltage output time t0, which is the time to output the zero voltage vector V0, is calculated using the formula (VIII), and whether or not this zero voltage output time t0 is a value equal to or greater than zero. judge. This determination is made by the determination unit 45 for each control cycle.
  • step S5 selects RSPWM based on the odd voltage vector of the first modulation section 34. If the zero voltage output time t0 is a negative value, the process proceeds to step S7. NSPWM with an odd voltage vector by the modulating unit 35 of No. 2 is selected. This selection is performed by the selection unit 40 for each control cycle based on the determination by the determination unit 45 . The determination in step S4 may proceed to step S5 if the zero voltage output time t0 has a positive value, and to step S7 if it has a value equal to or less than zero.
  • the first modulation unit 34 in step S5 determines the ON time of the upper arm switching element of each phase using the following formula (IX). fix it. This is done by adding t0/3 to all of the ON times tu, tv and tw. As a result, the zero voltage output time is eliminated, and the fluctuation of the common mode voltage Vc of the motor 8 is eliminated.
  • step S6 using FIG. 10, the first modulation unit 34 determines the odd voltage vectors (V1, V3, V5) for each output region (Sector) and their output times. These values are finally output to the PWM signal generator 36 in step S14.
  • FIG. 10 shows the relationship between the RSPWM output region (Sector), voltage vector, and output time using odd voltage vectors.
  • FIG. 9 shows the linear output region (inner circle) of RSPWM (odd RSPWM) by this odd voltage vector.
  • FIG. 12 also shows odd voltage vectors V1, V3 and V5 in the output region A and their output times.
  • FIG. 14 shows the output pattern of the odd voltage vectors V1, V3, V5 of the RSPWM in the output region A (when kH ⁇ 2/3).
  • FIG. 11 shows the relationship between the output area (Sector) of NSPWM with odd voltage vectors, the voltage vector, and the output time.
  • the output region A only the odd voltage vectors V1 and V3 and the even voltage vector V2 between them are output, and in the output region B only the odd voltage vectors V3 and V5 and the even voltage vector V4 between them are output.
  • the output region C only the odd voltage vectors V5 and V1 and the even voltage vector V6 between them are output.
  • Fig. 9 also shows the linear output region of NSPWM with this odd voltage vector (outer circle).
  • the common mode voltage Vc of the motor 8 fluctuates twice, but it can be seen that the linear output region is expanded more than in RSPWM with odd voltage vectors.
  • FIG. 13 shows the odd voltage vector V1, the even voltage vector V2, the odd voltage vector V5 and their output times in the output region A, for example.
  • FIG. 15 shows the output pattern of each voltage vector V1, V2, V3 of NSPWM by the odd voltage vector in the output region A (in the case of kH ⁇ 2/3).
  • the RSPWM using the odd voltage vector of the first modulating section 34 and the NSPWM using the odd voltage vector of the second modulating section 35 are performed within one electrical angle cycle. selected for each This selection is made in step S4 based on the zero voltage output time t0 obtained from the formula (VIII). The fact that this zero voltage output time t0 is a value equal to or greater than zero indicates a control state with a low modulation factor. 16, there is no change in the common mode voltage Vc (modulation waveform at low modulation rate).
  • the zero voltage output time t0 is a negative value, it means that the control state has a high modulation rate. 17 from the state to the state of FIG. 17, the number of cases where NSPWM with odd voltage vectors is selected (the phase region surrounded by a square in FIG. 17) increases, and variations in the common mode voltage Vc also occur (high modulation modulation waveform).
  • the IRSPWM using the odd-numbered voltage vectors of the embodiment it is possible to realize the RSPWM using the odd-numbered voltage vectors having a high common-mode noise suppression effect within one period of the electrical angle, and the higher modulation rate than that, but the suppression of the common-mode noise.
  • the effect is that the lesser NSPWM rate is switched linearly, ie seamlessly.
  • it is possible to achieve both an improvement in the effect of suppressing common mode noise and an expansion of the operating range while minimizing the switching shock. In some cases, it is extremely effective.
  • step S8 the first modulation unit 34 uses the following equations (X) and (XI) to convert the two-phase upper arm switching element from the voltage command values V ⁇ ref and V ⁇ ref . ON times tuv, tvw, and twu are calculated.
  • tuv is the ON time of the U-phase and V-phase upper arm switching elements 18A and 18B
  • tvw is the ON time of the V-phase and W-phase upper arm switching elements 18B and 18C
  • twu is the W-phase and U-phase upper arm switching elements. This is the ON time of the switching elements 18C and 18A.
  • V2, V4, and V6 in Equation (X) are even voltage vectors
  • Suv, Svw, and Swu are functions corresponding to the output regions (Sectors) A to C of the voltage space shown in FIG. The correspondence of Suv, Svw and Swu is shown in FIG. These functions Suv, Svw and Swu select voltage vectors in space vector modulation.
  • the first modulating section 34 calculates the OFF times tu (upper bar), tv (upper bar), tw (upper bar ) is calculated. Since the calculation result of formula (XII) is the same as that of formula (V), either can be used in step S8.
  • step S9 the zero voltage output time t7, which is the time for outputting the zero voltage vector V7, is calculated using the formula (XIII), and whether or not the zero voltage output time t7 is a value equal to or greater than zero. judge. This determination is made by the determination unit 45 for each control cycle.
  • step S10 selects the RSPWM by the even voltage vector of the first modulation section 34. If it is a negative value, the process proceeds to step S12 to select the NSPWM with an even voltage vector by the modulating section 35 of No. 2 is selected. This selection is performed by the selection unit 40 for each control cycle based on the determination by the determination unit 45 . The determination in step S9 may proceed to step S10 if the zero voltage output time t7 is a positive value, and to step S12 if it is less than or equal to zero.
  • the first modulation unit 34 in step S10 uses the following equations (XIV) and (XV) to calculate the upper arm switching element of each phase. Correct the OFF time of This is done by adding t7/3 to all of the OFF times tu (upper bar), tv (upper bar), and tw (upper bar). As a result, the zero voltage output time is eliminated, and the fluctuation of the common mode voltage Vc of the motor 8 is eliminated.
  • the first modulation unit 34 determines the even voltage vectors (V2, V4, V6) for each output region (Sector) and their output times. These values are finally output to the PWM signal generator 36 in step S14.
  • FIG. 21 shows the relationship between the RSPWM output region (Sector), voltage vector, and output time using even-numbered voltage vectors.
  • FIG. 20 shows the linear output region of RSPWM (even RSPWM) by this even voltage vector (inner circle).
  • FIG. 23 shows even voltage vectors V2, V4, V6 and their output times in the output region A, for example.
  • FIG. 25 shows the output pattern of each voltage vector V4, V2, V6 of RSPWM with even voltage vectors in the output region C (in the case of kH ⁇ 2/3).
  • the second modulation unit 35 uses the following formula (XVI) in step S12 to determine the ON times tu, tv, and Calculate tw.
  • the second modulation section 35 determines three adjacent voltage vectors and their output times for each output region (Sector). These values are finally output to the PWM signal generator 36 in step S14.
  • FIG. 22 shows the relationship between the output region (Sector) of NSPWM with even voltage vectors, the voltage vector, and the output time.
  • the output region A only the even voltage vectors V6 and V2 and the odd voltage vector V1 between them are output, and in the output region B only the even voltage vectors V2 and V4 and the odd voltage vector V3 between them are output.
  • the output region C only the even voltage vectors V4 and V6 and the odd voltage vector V5 between them are output.
  • Fig. 20 also shows the linear output region of NSPWM with this even voltage vector (outer circle).
  • the common mode voltage Vc of the motor 8 fluctuates twice, but it can be seen that the linear output region is expanded more than in RSPWM with even voltage vectors.
  • FIG. 24 shows the even voltage vector V6, the odd voltage vector V1, the even voltage vector V2 and their output times in the output area A, for example.
  • FIG. 26 shows the output patterns of the voltage vectors V4, V5, and V6 of the NSPWM with even-numbered voltage vectors in the output region C (when kH ⁇ 2/3).
  • the RSPWM using the even voltage vector of the first modulating section 34 and the NSPWM using the even voltage vector of the second modulating section 35 are performed within one electrical angle cycle. selected for each This selection is made in step S9 based on the zero voltage output time t7 obtained from the formula (XIII). The fact that this zero voltage output time t7 is a value equal to or greater than zero indicates a control state with a low modulation factor. 27, there is no change in the common mode voltage Vc (modulation waveform at low modulation factor).
  • the control state has a high modulation rate. 28 from the state to the state of FIG. 28, the number of cases where NSPWM with even voltage vectors is selected (the phase region surrounded by a square in FIG. 28) increases, and variations in the common mode voltage Vc also occur (high modulation modulation waveform).
  • the first modulation unit 34 performs either RSPWM using an odd voltage vector or RSPWM using an even voltage vector, and modulates the three-phase modulation voltage command values Vu ref , Vv ref , Of Vw ref (phase voltage command value), the sign of the phase with the maximum amplitude is switched between negative and positive. It is also possible to switch between vector-based RSPWM and even-numbered voltage vector-based RSPWM.
  • RSPWM pulse width modulation that selects between this RSPWM based on all voltage vectors and the aforementioned NSPWM for each control cycle within one electrical angle cycle
  • IRPWM pulse width modulation that selects between this RSPWM based on all voltage vectors and the aforementioned NSPWM for each control cycle within one electrical angle cycle
  • FIG. 29 shows the operating region of IRSPWM with all voltage vectors
  • FIG. 30 shows the linear output region of IRSPWM with all voltage vectors
  • FIG. 31 shows the correspondence relationship between RSPWM and each phase based on all voltage vectors.
  • odd IRSPWM is the IRSPWM in this case with odd voltage vectors
  • even IRSPWM is the operating region of IRSPWM in this case with even voltage vectors.
  • one period of the electrical angle has six regions (330° ⁇ m ⁇ 30°, 30° ⁇ m ⁇ 90°, 90° ⁇ m ⁇ 150°, 150° ⁇ m ⁇ 210°, 210° ⁇ m ⁇ 270°, 270° ⁇ m ⁇ 330°), and RSPWM using odd voltage vectors and RSPWM using even voltage vectors are alternately switched.
  • the linear output region of RSPWM is expanded as shown by the second innermost circle in FIG. 30, compared to the case where each is performed alone (the innermost circle in FIG. 30).
  • RSPWM and NSPWM are selected at the zero voltage output times t0 and t7 described above.
  • RSPWM and NSPWM are selected at the zero voltage output times t0 and t7 described above.
  • the modulated waveforms of the UVW phases are as shown in FIG.
  • the common mode voltage Vc fluctuates when switching between odd and even RSPWM (modulation waveform at low modulation rate).
  • the pulse width modulation by the second modulating section 35 is not limited to the NSPWM of the above-described embodiment. Pulse width modulation that synchronizes the fall timing and rise timing of the phase voltage of the other phase with the timing may be used.
  • the PWM turns in this case are shown in FIG. 34, and the linear output region is shown in FIG.
  • the falling timing of the U-phase voltage Vu and the rising timing of the W-phase voltage Vw are synchronized, and the rising timing of the U-phase voltage Vu and the falling timing of the V-phase voltage Vv are synchronized.
  • the fluctuation of the common mode voltage Vc can be reduced to twice during one control period, and the linear output region kH can also be 2/(route 3).
  • the odd voltage vector and even-numbered voltage vector IRSPWM are switched, but the inventions of claims 1 to 4 are not limited to this, and switching is performed using another control state that can determine whether an odd-numbered voltage vector or an even-numbered voltage vector is appropriate. You may do so.
  • the flowchart of FIG. 6 shows a flow in which the calculations of the first modulation unit 34 and the second modulation unit 35 are performed after the selection by the selection unit 40, but not limited to this, the first modulation
  • the calculations of the unit 34 and the second modulation unit 35 are always performed, and the output thereof may be selected by the selection unit 40 and sent to the PWM signal generation unit 36.
  • the determination unit 45 and the selection unit 40 determine the zero voltage output time and select the RSPWM and NSPWM for each control cycle. It may be performed for a period sufficiently shorter than one period of the angle).
  • the driving of the motor (load) of the electric compressor has been described as an example.
  • the present invention can be applied to various power converters in which a DC voltage is converted into an AC voltage by an inverter and applied to a load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】ノイズ抑制効果は高いが変調率が限られるパルス幅変調と、ノイズ抑制効果は劣るものの高い変調率を実現可能なパルス幅変調とを線形的に切り換え可能な電力変換装置を提供する。 【解決手段】奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行してコモンモードノイズを低減する第1の変調部34と、それによるパルス幅変調よりも高い変調率を実現し、且つ、コモンモードノイズを低減可能なパルス幅変調を実行する第2の変調部35と、零電圧ベクトルを出力する零電圧出力時間を判定する判定部45と、判定部が判定した零電圧出力時間に基づき、電気角一周期内において第1の変調部によるパルス幅変調と、第2の変調部によるパルス幅変調を選択する選択部40を備える。

Description

電力変換装置
 本発明は、直流電圧を交流電圧に変換する電力変換装置に関するものである。
 従来より電源に伝搬する伝導ノイズを抑制するためのパルス幅変調(PWM)は種々提案されているが、その手法は大きく二つに分けられる。一つはコモンモードノイズの要因となるコモンモード電圧の変動を完全に抑制する手法であり、もう一つはコモンモード電圧の変動を許容しながら部分的に抑制する手法である。
 前者の手法としては奇数電圧ベクトルのみ、或いは、偶数電圧ベクトルのみを出力するパルス幅変調が挙げられる。この手法によれば、キャリア周期内におけるコモンモード電圧の変動を完全に抑制することが可能である。また、電気角位相に応じて奇数電圧ベクトルのみを出力するか、偶数電圧ベクトルのみを出力するかを切り換えるパルス幅変調もある。この手法によっても、コモンモード電圧の変動を大きく抑制することができる(例えば、特許文献1参照)。
 後者の手法としてはPWMパターンにおいて特定の相の相電圧の立ち上がりと立ち下がりに他の相の相電圧の立ち下がりと立ち上がりのタイミングを合わせるパルス幅変調が挙げられる(例えば、特許文献2参照)。更に、一相のスイッチングを固定し、他の二相をスイッチングする二相変調のパルス幅変調によってもコモンモード電圧の変動を抑制することができる(例えば、特許文献3参照)。
特許第5397448号公報 WO2019/180763 特許第5298003号公報
 前者の手法(特許文献1)はコモンモード電圧変動抑制の方法として最も有効であるものの、使用する電圧ベクトルに制限があるため、線形出力領域(電圧ベクトルが一定の半径で一回転することができる振幅の最大値)が限られ、出力可能な変調率が制限される欠点がある。そのため、コンプレッサのモータを駆動する場合などには適用が困難であるか、或いは、回転数・変調率が高い場合には特許文献3の如く変調方式を切り換える必要がある。
 これに対して後者の手法(特許文献2、特許文献3)は、線形出力領域を通常の最大まで利用可能であり、高い変調率を実現できるものの、やはりコモンモード電圧の変動抑制効果は前者の手法よりも劣る。
 ここで、特許文献3では、二相変調と三相変調を運転領域によって切り換えており、これと同様に前述した前者の手法と後者の手法を切り換えることが考えられるが、パルス幅変調方式の切り換えショックが発生する問題が生じる。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、ノイズ抑制効果は高いが変調率が限られるパルス幅変調と、ノイズ抑制効果は劣るものの高い変調率を実現可能なパルス幅変調を線形的に切り換え可能な電力変換装置を提供することを目的とする。
 本発明の電力変換装置は、直流電圧を交流電圧に変換するものであって、各相の上下アームスイッチング素子の接続点における相電圧を負荷に印加するインバータ回路と、各スイッチング素子のスイッチングを制御する制御装置を備え、この制御装置が、奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調、又は、偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調、若しくは、電気角位相に応じて奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調と偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を切り換えるパルス幅変調、のうちの何れかを実行してコモンモードノイズを低減する第1の変調部と、この第1の変調部によるパルス幅変調よりも高い変調率を実現し、且つ、コモンモードノイズを低減可能なパルス幅変調を実行する第2の変調部と、零電圧ベクトルを出力する零電圧出力時間を判定する判定部と、この判定部が判定した零電圧出力時間に基づき、電気角一周期内において第1の変調部によるパルス幅変調と、第2の変調部によるパルス幅変調を選択する選択部を備えたことを特徴とする。
 請求項2の発明の電力変換装置は、上記発明において選択部は、零電圧出力時間が零以上の値の場合、又は、正の値の場合、第1の変調部によるパルス幅変調を選択し、零電圧出力時間が負の値の場合、又は、零以下の値の場合、第2の変調部によるパルス幅変調を選択することを特徴とする。
 請求項3の発明の電力変換装置は、上記各発明において第1の変調部は、奇数電圧ベクトル、又は、偶数電圧ベクトルを修正することにより、零電圧ベクトルを出力する零電圧出力時間を実現することを特徴とする。
 請求項4の発明の電力変換装置は、上記各発明において第1の変調部は、制御状態に応じて奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調と偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を切り換えて実行することを特徴とする。
 請求項5の発明の電力変換装置は、上記発明において各相の相電圧指令値を演算する相電圧指令演算部を備え、第1の変調部は、相電圧指令値の振幅が最大となる相の符号が正の場合、偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行し、相電圧指令値の振幅が最大となる相の符号が負の場合、奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行することを特徴とする。
 請求項6の発明の電力変換装置は、請求項1乃至請求項5の発明において第2の変調部は、隣り合う電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行することを特徴とする。
 請求項7の発明の電力変換装置は、上記発明において各相の相電圧指令値を演算する相電圧指令演算部を備え、第2の変調部は、相電圧指令値の振幅が最大となる相の符号が正の場合、二つの偶数電圧ベクトルとそれらで挟まれる奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行し、相電圧指令値の振幅が最大となる相の符号が負の場合、二つの奇数電圧ベクトルとそれらで挟まれる偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行することを特徴とする。
 請求項8の発明の電力変換装置は、請求項1乃至請求項5の発明において第2の変調部は、特定の相の相電圧の立ち上がりタイミングと立ち下がりタイミングに、他の相の相電圧の立ち下がりタイミングと立ち上がりタイミングを同期させるパルス幅変調を実行することを特徴とする。
 請求項9の発明の電力変換装置は、請求項1乃至請求項5の発明において第2の変調部は、所定の一相の上下アームスイッチング素子のON/OFF状態を固定させ、他の二相の上下アームスイッチング素子のON/OFF状態を変調させるパルス幅変調を実行することを特徴とする。
 請求項10の発明の電力変換装置は、上記各発明においてインバータ回路は、各相の上下アームスイッチング素子の接続点における相電圧をモータに印加して駆動することを特徴とする。
 本発明によれば、直流電圧を交流電圧に変換する電力変換装置において、各相の上下アームスイッチング素子の接続点における相電圧を負荷に印加するインバータ回路と、各スイッチング素子のスイッチングを制御する制御装置を備え、この制御装置が、奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調、又は、偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調、若しくは、電気角位相に応じて奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調と偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を切り換えるパルス幅変調、のうちの何れかを実行してコモンモードノイズを低減する第1の変調部と、この第1の変調部によるパルス幅変調よりも高い変調率を実現し、且つ、コモンモードノイズを低減可能なパルス幅変調を実行する第2の変調部と、零電圧ベクトルを出力する零電圧出力時間を判定する判定部と、この判定部が判定した零電圧出力時間に基づき、電気角一周期内において第1の変調部によるパルス幅変調と、第2の変調部によるパルス幅変調を選択する選択部を備えているので、コモンモードノイズ抑制効果の高い第1の変調部によるパルス幅変調と、コモンモードノイズを低減可能であるが、第1の変調部によるパルス幅変調よりも高い変調率を実現可能な第2の変調部によるパルス幅変調を、線形的(シームレス)に切り換えることができるようになる。
 これにより、切り換えショックの最小化を図りながら、コモンモードノイズの抑制効果の改善と運転範囲の拡大を両立させることができるようになるので、例えば請求項10の発明の如く、負荷としてモータを駆動する場合に極めて有効なものとなる。
 この場合、請求項2の発明の如く選択部が、零電圧出力時間が零以上の値の場合、又は、正の値の場合、第1の変調部によるパルス幅変調を選択し、零電圧出力時間が負の値の場合、又は、零以下の値の場合、第2の変調部によるパルス幅変調を選択するようにすれば、要求される変調率に応じて第1の変調部によるパルス幅変調と第2の変調部によるパルス幅変調を円滑に切り換えることが可能となる。
 また、請求項3の発明の如く第1の変調部が、奇数電圧ベクトル、又は、偶数電圧ベクトルを修正することにより、零電圧ベクトルを出力する零電圧出力時間を実現するようにすれば、第1の変調部のパルス幅変調により、コモンモード電圧の変動を完全に抑制することができるようになる。
 また、請求項4の発明の如く第1の変調部が、制御状態に応じて奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調と偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を切り換えて実行するようにすれば、制御状態に応じて第1の変調部による最適なパルス幅変調を実現することが可能となる。
 この場合、例えば請求項5の発明の如く第1の変調部が、相電圧指令演算部が演算する相電圧指令値の振幅が最大となる相の符号が正の場合、偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行し、相電圧指令値の振幅が最大となる相の符号が負の場合、奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行することで、偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調と奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を適切に切り換えることができる。
 ここで、第2の変調部が実行するパルス幅変調としては、請求項6の発明の如く隣り合う電圧ベクトルのみを一制御周期中に出力するパルス幅変調が挙げられる。この場合、請求項7の発明の如く第2の変調部が、相電圧指令値の振幅が最大となる相の符号が正の場合、二つの偶数電圧ベクトルとそれらで挟まれる奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行し、相電圧指令値の振幅が最大となる相の符号が負の場合、二つの奇数電圧ベクトルとそれらで挟まれる偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行することで、第2の変調部による円滑なパルス幅変調を実現することができるようになる。
 また、第2の変調部が実行するパルス幅変調には上記の他、請求項8の発明の如く特定の相の相電圧の立ち上がりタイミングと立ち下がりタイミングに、他の相の相電圧の立ち下がりタイミングと立ち上がりタイミングを同期させるパルス幅変調や、請求項9の発明の如く所定の一相の上下アームスイッチング素子のON/OFF状態を固定させ、他の二相の上下アームスイッチング素子のON/OFF状態を変調させるパルス幅変調を採用することができる。
本発明を適用した一実施例の電力変換装置の電気回路図である。 三相交流電圧指令値を示す図である。 線形出力領域を説明するための電圧空間を表す図である。 電圧ベクトルと相電圧の関係を示す図である。 電圧ベクトル(出力基本ベクトル)を示す図である。 図1の制御装置の一実施例の動作を説明するフローチャートである(実施例1)。 奇数電圧ベクトルによるIRSPWMを説明するための電圧空間を表す図である。 図7の出力領域と関数のとる値を示す図である。 奇数電圧ベクトルによるIRSPWMの線形出力領域を説明する図である。 奇数電圧ベクトルによるRSPWMの出力ベクトルと出力時間を示す図である。 奇数電圧ベクトルによるNSPWMの出力ベクトルと出力時間を示す図である。 奇数電圧ベクトルによるIRSPWMの出力ベクトルの例を示す図である(RSPWMの場合)。 奇数電圧ベクトルによるIRSPWMの出力ベクトルの例を示す図である(NSPWMの場合)。 奇数電圧ベクトルによるIRSPWMのPWMパターンを示す図である(RSPWMの場合)。 奇数電圧ベクトルによるIRSPWMのPWMパターンを示す図である(NSPWMの場合)。 奇数電圧ベクトルによるIRSPWMの低変調率時の変調波形を示す図である。 奇数電圧ベクトルによるIRSPWMの高変調率時の変調波形を示す図である。 偶数電圧ベクトルによるIRSPWMを説明するための電圧空間を表す図である。 図18の出力領域と関数のとる値を示す図である。 偶数電圧ベクトルによるIRSPWMの線形出力領域を説明する図である。 偶数電圧ベクトルによるRSPWMの出力ベクトルと出力時間を示す図である。 偶数電圧ベクトルによるNSPWMの出力ベクトルと出力時間を示す図である。 偶数電圧ベクトルによるIRSPWMの出力ベクトルの例を示す図である(RSPWMの場合)。 偶数電圧ベクトルによるIRSPWMの出力ベクトルの例を示す図である(NSPWMの場合)。 偶数電圧ベクトルによるIRSPWMのPWMパターンを示す図である(RSPWMの場合)。 偶数電圧ベクトルによるIRSPWMのPWMパターンを示す図である(NSPWMの場合)。 偶数電圧ベクトルによるIRSPWMの低変調率時の変調波形を示す図である。 偶数電圧ベクトルによるIRSPWMの高変調率時の変調波形を示す図である。 全電圧ベクトルによるIRSPWMの動作領域を示す図である(実施例2)。 全電圧ベクトルによるIRSPWMの線形出力領域を示す図である。 全電圧ベクトルによるIRSPWMのRSPWMと各位相の対応関係を示す図である。 全電圧ベクトルによるIRSPWMの低変調率時の変調波形を示す図である。 全電圧ベクトルによるIRSPWMの高変調率時の変調波形を示す図である。 特定の相の立ち上がりと立ち下がりのタイミングに他の相の立ち下がりと立ち上がりのタイミングを合わせるパルス幅変調のPWMパターンを示す図である(実施例3)。 図34の線形出力領域を示す図である。
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 本発明を適用した実施例の電力変換装置1は、電気自動車等の車両に搭載される車両用空気調和装置の冷媒回路を構成する所謂インバータ一体型電動圧縮機のモータ8(負荷)を駆動するものである。
 (1)電力変換装置1の回路構成
 図1において実施例の電力変換装置1は、三相のインバータ回路28と、制御装置21を備えている。インバータ回路28は、直流電源(車両のバッテリ:例えば、350V)29の直流電圧を三相の交流電圧に変換してモータ8に印加する回路である。この場合、実施例のモータ8はIPMSM(Interior Permanent Magnet Synchronous Motor)である。
 インバータ回路28は、U相ハーフブリッジ回路19U、V相ハーフブリッジ回路19V、W相ハーフブリッジ回路19Wを有しており、各相のハーフブリッジ回路19U~19Wは、それぞれ上アームスイッチング素子18A~18Cと、下アームスイッチング素子18D~18Fを個別に有している。更に、各スイッチング素子18A~18Fには、それぞれフライホイールダイオード31が逆並列に接続されている。各上下アームスイッチング素子18A~18Fは、実施例ではMOS構造をゲート部に組み込んだ絶縁ゲートバイポーラトランジスタ(IGBT)から構成されている。
 そして、インバータ回路28の上アームスイッチング素子18A~18Cのコレクタは、直流電源29及び平滑コンデンサ32の上アーム電源ライン(正極側母線)10に接続されている。一方、インバータ回路28の下アームスイッチング素子18D~18Fのエミッタは、直流電源29及び平滑コンデンサ32の下アーム電源ライン(負極側母線)15に接続されている。
 この場合、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aのエミッタと下アームスイッチング素子18Dのコレクタが直列に接続され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bのエミッタと下アームスイッチング素子18Eのコレクタが直列に接続され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cのエミッタと下アームスイッチング素子18Fのコレクタが直列に接続されている。
 そして、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aと下アームスイッチング素子18Dの接続点(U相電圧Vu)は、モータ8のU相の電機子コイルに接続され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bと下アームスイッチング素子18Eの接続点(V相電圧Vv)は、モータ8のV相の電機子コイルに接続され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cと下アームスイッチング素子18Fの接続点(W相電圧Vw)は、モータ8のW相の電機子コイルに接続されている。
 (2)制御装置21の構成
 次に、制御装置21はプロセッサを有するマイクロコンピュータから構成されており、実施例では車両のECUから回転数指令値を入力し、モータ8からモータ電流(相電流)を入力して、これらに基づき、インバータ回路28の各スイッチング素子18A~18FのON/OFF状態(スイッチング)を制御する。具体的には、各スイッチング素子18A~18Fのゲートに印加するゲート電圧を制御する。
 実施例の制御装置21は、指令値演算部30と、PWM信号生成部36と、ゲートドライバ37と、モータ8に流れる各相のモータ電流(相電流)であるU相電流iu、V相電流iv、W相電流iwを測定するためのカレントトランスから成る電流センサ26A、26B、26Cを有している。
 (2-1)指令値演算部30
 実施例の指令値演算部30は、相電圧指令演算部33と、第1の変調部34と、第2の変調部35と、選択部40と、判定部45を有しており、各電流センサ26A~26Cは相電圧指令演算部33に接続されている。
 尚、実施例では電流センサ26AはU相電流iuを測定し、電流センサ26BはV相電流ivを測定し、電流センサ26CはW相電流iwを測定するが、電流センサ26AによりU相電流iuを測定し、電流センサ26BによりV相電流ivを測定して、W相電流iwはこれらから計算により求めてもよい。また、各相のモータ電流を検出する方法については実施例のように電流センサ26A~26Cで測定する以外に、下アーム電源ライン15の電流値をシャント抵抗により検出し、その電流値とモータ8の運転状態から相電圧指令演算部33が推定する方法などがあることから、各相電流を検出・推定する方法に関しては、特に限定しない。
 (2-2)相電圧指令演算部33
 実施例の相電圧指令演算部33は、モータ8の電気角、電流指令値と相電流から得られるd軸電流、q軸電流に基づくベクトル制御により、モータ8の各相の電機子コイルに印加するU相電圧Vu、V相電圧Vv、W相電圧Vwを生成するための三相変調の相電圧指令値Vuref(以下、U相電圧指令値Vuref)、Vvref(以下、V相電圧指令値Vvref)、Vwref(以下、W相電圧指令値Vwref)を演算し、出力する。
 この場合、相電圧指令演算部33は、d軸電流及びq軸電流から得られるd軸電圧指令値Vdref及びq軸電圧指令値Vqrefにより、下記数式(I)を用いてα軸電圧指令値Vαref及びβ軸電圧指令値Vβrefを算出し、これらα軸電圧指令値Vαref及びβ軸電圧指令値Vβrefから数式(II)を用いてUVW各相の電圧指令値Vuref、Vvref、Vwref(相電圧指令値)を算出する。
Figure JPOXMLDOC01-appb-M000001
 上記数式(II)をα軸を基準とした位相θmと、α軸電圧指令値Vαref及びβ軸電圧指令値Vβrefから構成される電圧ベクトルVmで書き直すと下記数式(III)のようになる。
Figure JPOXMLDOC01-appb-M000002
 図2は数式(III)で算出された各相の電圧指令値Vuref、Vvref、Vwrefの波形を示し、図3は線形出力領域kHを示している。線形出力領域とは、図3の電圧空間を表す図において、電圧ベクトルが綺麗に一回転する(円を描く)ことができる振幅の最大値である。三相インバータの電圧空間は図3のように六角形となるため、理論上、線形出力領域は六角形の内接円となる。この出願では一般的な三相変調における線形出力領域kHを1として表記し、他の変調方式の線形出力領域を正規化して論ずる。
 また、U相電圧Vu、V相電圧Vv、W相電圧VwのHigh、Lowの状態を纏めると、図4に示すようなV0~V7の8つの電圧ベクトル(出力基本ベクトル)の状態に表現することができる。このうち、V1、V3、V5が奇数電圧ベクトル、V2、V4、V6が偶数電圧ベクトル、V0、V7が零電圧ベクトルであり、各電圧ベクトルを電圧空間で示すと図5のようになる。
 実施例の相電圧指令演算部33は、更に下記数式(IV)と数式(V)を用いて各相の二相変調の電圧指令値Vuref2、Vvref2、Vwref2を算出している。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 尚、各数式(IV)、(V)中のVmodは、三相変調の電圧指令値Vuref、Vvref、Vwrefから二相変調の電圧指令値Vuref2、Vvref2、Vwref2を算出するための補正値であり、数式(IV)では三相の電圧指令値Vuref、Vvref、Vwrefのうち最小の値(min)をVdc/2に加算した値となり、数式(V)では三相の電圧指令値Vuref、Vvref、Vwrefのうち最大の値(max)をVdc/2から減算した値となる。
 そして、三相変調の電圧指令値Vuref、Vvref、Vwref(相電圧指令値)のうち振幅が最大となる相の符号が正の場合、数式(V)を用いて当該振幅が最大となる相の上アームスイッチング素子をON固定する二相変調とし、電圧指令値Vuref、Vvref、Vwrefのうち振幅が最大となる相の符号が負の場合、数式(IV)を用いて当該振幅が最大となる相の下アームスイッチング素子をON固定する二相変調とするものである。
 (2-3)第1の変調部34
 実施例の第1の変調部34は、前述した電圧ベクトルのうちの奇数電圧ベクトルV1、V3、V5のみを一制御周期中に出力するパルス幅変調を実行し、電圧指令値Vαref及びVβrefから直接各相の上アームスイッチング素子のON時間tu、tv、twを生成し、電圧ベクトル(V1、V3、V5)とそれらの出力時間を出力する。本出願ではこのパルス幅変調を以下、奇数電圧ベクトルによるRSPWM(Remote State PWM)と称する。尚、係るパルス幅変調は、次のサンプリング点を待たずに空間ベクトル変調を行う瞬時空間ベクトル変調の考え方に基づくものである。
 第1の変調部34は、更に前述した電圧ベクトルのうちの偶数電圧ベクトルV2、V4、V6のみを一制御周期中に出力するパルス幅変調を実行し、電圧指令値Vαref及びVβrefから直接二相の上アームスイッチング素子のON時間tuv、tvw、twuを生成し、電圧ベクトル(V2、V4、V6)とそれらの出力時間を出力する。本出願ではこのパルス幅変調を以下、偶数電圧ベクトルによるRSPWMと称する。
 また、第1の変調部34は、電気角位相に応じて上記奇数電圧ベクトルによるRSPWMと偶数電圧ベクトルによるRSPWMを切り換えるパルス幅変調を実行する。本出願ではこのパルス幅変調を以下、全電圧ベクトルによるRSPWMと称する。上記ような第1の変調部34によるパルス幅変調については後に詳述する。
 (2-4)第2の変調部35
 第2の変調部35は、第1の変調部34によるパルス幅変調よりも高い変調率を実現し、且つ、コモンモードノイズを低減可能なパルス幅変調を実行する。実施例の第2の変調部35は、図5において隣り合う電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行する。
 例えば、二つの奇数電圧ベクトルV1、V3と、図5においてそれらに挟まれる偶数電圧ベクトルV2、又は、二つの奇数電圧ベクトルV3、V5と、図5においてそれらに挟まれる偶数電圧ベクトルV4、或いは、二つの奇数電圧ベクトルV5、V1と、図5においてそれらに挟まれる偶数電圧ベクトルV6の組み合わせの電圧ベクトルと出力時間を出力する。本出願ではこのパルス幅変調を以下、奇数電圧ベクトルによるNSPWM(Near State PWM)と称する。
 また、例えば、二つの偶数電圧ベクトルV2、V4と、図5においてそれらに挟まれる奇数電圧ベクトルV3、又は、二つの偶数電圧ベクトルV4、V6と、図5においてそれらに挟まれる奇数電圧ベクトルV5、或いは、二つの偶数電圧ベクトルV6、V2と、図5においてそれらに挟まれる奇数電圧ベクトルV1の組み合わせの電圧ベクトルと出力時間を出力する。本出願ではこのパルス幅変調を以下、偶数電圧ベクトルによるNSPWMと称する。この第2の変調部35によるパルス幅変調についても後に詳述する。
 (2-5)判定部45
 実施例の判定部45は、第1の変調部34による演算から得られる零電圧ベクトルを出力する時間である零電圧出力時間t0、t7について一制御周期毎に判定する。この判定部45の動作についても後に詳述する。
 (2-6)選択部40
 実施例の選択部40は、判定部45が判定した零電圧出力時間t0、t7に基づいて、電気角一周期内において第1の変調部34によるパルス幅変調と、第2の変調部35によるパルス幅変調を一制御周期毎に選択する。そして、選択された方の電圧ベクトルと出力時間がPWM信号生成部36に出力される。この選択部40の動作についても後に詳述する。
 (2-7)PWM信号生成部36
 PWM信号生成部36は、選択部40が出力する電圧ベクトルと出力時間を入力し、キャリア信号との大小を比較することによって、インバータ回路28のU相インバータ19U、V相インバータ19V、W相インバータ19Wの駆動指令信号となるPWM信号を生成し、出力する。
 ゲートドライバ37は、PWM信号生成部36から出力されるPWM信号に基づき、U相インバータ19Uのスイッチング素子18A、18Dのゲート電圧と、V相インバータ19Vのスイッチング素子18B、18Eのゲート電圧と、W相インバータ19Wのスイッチング素子18C、18Fのゲート電圧を発生させる。
 そして、インバータ回路28の各スイッチング素子18A~18Fは、ゲートドライバ37から出力されるゲート電圧に基づき、ON/OFF駆動される。即ち、ゲート電圧がON状態(所定の電圧値)となるとスイッチング素子がON動作し、ゲート電圧がOFF状態(零)となるとスイッチング素子がOFF動作する。このゲートドライバ37は、スイッチング素子18A~18Fが前述したIGBTである場合には、PWM信号に基づいてゲート電圧をIGBTに印加するための回路であり、フォトカプラやロジックIC、トランジスタ等から構成される。
 そして、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aと下アームスイッチング素子18Dの接続点の電圧がU相電圧Vu(相電圧)としてモータ8のU相の電機子コイルに印加(出力)され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bと下アームスイッチング素子18Eの接続点の電圧がV相電圧Vv(相電圧)としてモータ8のV相の電機子コイルに印加(出力)され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cと下アームスイッチング素子18Fの接続点の電圧がW相電圧Vw(相電圧)としてモータ8のW相の電機子コイルに印加(出力)される。
 (3)指令値演算部30の動作
 次に、図6~図28を参照しながら、この実施例における指令値演算部30の動作について説明する。図6は指令値演算部30が行うパルス幅変調(本出願では以下、IRSPWM(Instantaneous Remote State PWM)と称する)の全体の流れを説明するフローチャートである。ステップS1は前述した数式(I)~(V)の演算であり、相電圧指令演算部33がα軸電圧指令値Vαref及びβ軸電圧指令値Vβref、三相変調の電圧指令値Vuref、Vvref、Vwref、二相変調の電圧指令値Vuref2、Vvref2、Vwref2を算出する。
 そして、ステップS2では前述した三相変調の電圧指令値Vuref、Vvref、Vwref(相電圧指令値)のうち、振幅が最大となる相の符号が正であるか、負であるかを判別する。この判別は実施例では第1の変調部34及び第2の変調部35が行うことになる。そして、三相変調の電圧指令値Vuref、Vvref、Vwrefのうち、振幅が最大となる相の符号が負の場合、ステップS3に進み、奇数電圧ベクトルによるIRSPWMを実行する。
 (3-1)奇数電圧ベクトルによるIRSPWM
 この奇数電圧ベクトルによるIRSPWMのステップS3で、第1の変調部34は、下記数式(VI)と数式(VII)を用いて、電圧指令値Vαref及びVβrefから各相の上アームスイッチング素子18A、18B、18CのON時間tu、tv、twを算出する。尚、数式(VI)のV1、V3、V5は奇数電圧ベクトル、Tsは一制御周期である。この制御周期Tsは一キャリア周期であってもよい。但し、この一制御周期Tsは、電気角一周期よりも十分に短い期間とする。また、Su、Sv、Swは、図7に示す電圧空間の出力領域(Sector)A~Cに対応する関数であり、各出力領域と関数Su、Sv、Swの対応は図8に示される。これら関数Su、Sv、Swは空間ベクトル変調における電圧ベクトルを選択するものである。尚、数式(VII)の演算結果は数式(IV)と同じになるため、ステップS3ではどちらを使用してもよい。
Figure JPOXMLDOC01-appb-M000005
 次に、ステップS4では、数式(VIII)を用いて、零電圧ベクトルV0を出力する時間である零電圧出力時間t0を算出し、この零電圧出力時間t0が零以上の値であるか否かを判定する。この判定は一制御周期毎に判定部45が行う。
Figure JPOXMLDOC01-appb-M000006
 そして、零電圧出力時間t0が零以上の値である場合、ステップS5に進んで第1の変調部34の奇数電圧ベクトルによるRSPWMを選択し、負の値である場合、ステップS7に進んで第2の変調部35による奇数電圧ベクトルによるNSPWMを選択する。この選択は判定部45の判定に基づいて一制御周期毎に選択部40が行う。尚、ステップS4の判定は零電圧出力時間t0が正の値の場合にステップS5に進み、零以下の値の場合にステップS7に進むようにしてもよい。
 (3-1-1)奇数電圧ベクトルによるRSPWM
 零電圧出力時間t0が零以上の値の場合の奇数電圧ベクトルによるRSPWMでは、第1の変調部34がステップS5で、下記数式(IX)を用いて各相の上アームスイッチング素子のON時間を修正する。これはON時間tu、tv、twの全てにt0/3を加算することで行われる。これにより、零電圧出力時間が無くなり、モータ8のコモンモード電圧Vcの変動が解消されることになる。
Figure JPOXMLDOC01-appb-M000007
 そして、ステップS6で図10を用い、第1の変調部34が各出力領域(Sector)毎の奇数電圧ベクトル(V1、V3、V5)とそれらの出力時間を判別する。そして、これらの値がステップS14で最終的にPWM信号生成部36に出力される。尚、図10は奇数電圧ベクトルによるRSPWMの出力領域(Sector)と電圧ベクトル、出力時間の関係を示している。
 図9にはこの奇数電圧ベクトルによるRSPWM(odd RSPWM)の線形出力領域(内側の円)を示している。また、図12には例えば出力領域Aでの奇数電圧ベクトルV1、V3、V5とそれらの出力時間を示している。更に、図14には出力領域Aでの奇数電圧ベクトルによるRSPWMの奇数電圧ベクトルV1、V3、V5の出力パターン(kH<2/3の場合)を示している。
 (3-1-2)奇数電圧ベクトルによるNSPWM
 一方、零電圧出力時間t0が負の値の場合の奇数電圧ベクトルによるNSPWMでは、第2の変調部35がステップS7で図11を用い、各出力領域(Sector)毎に隣り合う三つの電圧ベクトルとそれらの出力時間を判別する。そして、これらの値がステップS14で最終的にPWM信号生成部36に出力される。尚、図11は奇数電圧ベクトルによるNSPWMの出力領域(Sector)と電圧ベクトル、出力時間の関係を示している。出力領域Aでは奇数電圧ベクトルV1とV3、及び、それらで挟まれる偶数電圧ベクトルV2のみを出力し、出力領域Bでは奇数電圧ベクトルV3とV5、及び、それらで挟まれる偶数電圧ベクトルV4のみを出力し、出力領域Cでは奇数電圧ベクトルV5とV1、及び、それらで挟まれる偶数電圧ベクトルV6のみを出力する。
 図9にはこの奇数電圧ベクトルによるNSPWMの線形出力領域も示している(外側の円)。奇数電圧ベクトルによるNSPWMでは、モータ8のコモンモード電圧Vcが2回変動するが、奇数電圧ベクトルによるRSPWMよりも線形出力領域が拡大しているのが分かる。また、図13には例えば出力領域Aでの奇数電圧ベクトルV1、偶数電圧ベクトルV2、奇数電圧ベクトルV5とそれらの出力時間を示している。更に、図15には出力領域Aでの奇数電圧ベクトルによるNSPWMの各電圧ベクトルV1、V2、V3の出力パターン(kH≧2/3の場合)を示している。
 このステップS3~S7の奇数電圧ベクトルによるIRSPWMでは、第1の変調部34の奇数電圧ベクトルによるRSPWMと、第2の変調部35の奇数電圧ベクトルによるNSPWMが電気角一周期内において、一制御周期毎に選択される。そして、この選択はステップS4で数式(VIII)から求められる零電圧出力時間t0に基づいて行われる。この零電圧出力時間t0が零以上の値ということは、変調率が低い制御状態であり、その状態が続く場合には、奇数電圧ベクトルによるRSPWMのみが選択され、UVW各相の変調波形は図16に示すようになって、コモンモード電圧Vcの変動は無い(低変調率時の変調波形)。
 一方、零電圧出力時間t0が負の値ということは、変調率が高い制御状態になっていることであり、零電圧出力時間t0が負の値となる制御周期が多くなる程、図16の状態から図17の状態に示すように奇数電圧ベクトルによるNSPWMが選択される場合(図17に四角で囲んだ位相領域)が多くなって、コモンモード電圧Vcの変動も発生してくる(高変調率時の変調波形)。
 即ち、実施例の奇数電圧ベクトルによるIRSPWMによれば、電気角一周期内において、コモンモードノイズ抑制効果の高い奇数電圧ベクトルによるRSPWMと、それよりも高い変調率を実現できるがコモンモードノイズの抑制効果はそれよりも劣るNSPWMの割合が線形的、即ち、シームレスに切り換えられることになる。これにより、切り換えショックの最小化を図りながら、コモンモードノイズの抑制効果の改善と運転範囲の拡大を両立させることができるようになるので、実施例のように電動圧縮機のモータ8を駆動する場合には極めて有効なものとなる。
(3-2)偶数電圧ベクトルによるIRSPWM
 一方、ステップS2で三相変調の電圧指令値Vuref、Vvref、Vwref(相電圧指令値)のうち、振幅が最大となる相の符号が正の場合、ステップS8に進み、偶数電圧ベクトルによるIRSPWMを実行する。この偶数電圧ベクトルによるIRSPWMのステップS8で、第1の変調部34は、下記数式(X)と数式(XI)を用いて、電圧指令値Vαref及びVβrefから二相の上アームスイッチング素子のON時間tuv、tvw、twuを算出する。
Figure JPOXMLDOC01-appb-M000008
 尚、tuvはU相とV相の上アームスイッチング素子18A、18BのON時間、tvwはV相とW相の上アームスイッチング素子18B、18CのON時間、twuはW相とU相の上アームスイッチング素子18C、18AのON時間である。また、数式(X)のV2、V4、V6は偶数電圧ベクトル、Suv、Svw、Swuは図18に示す電圧空間の出力領域(Sector)A~Cに対応する関数であり、各出力領域と関数Suv、Svw、Swuの対応は図19に示される。これら関数Suv、Svw、Swuは空間ベクトル変調における電圧ベクトルを選択するものである。
 更に、第1の変調部34は、下記数式(XII)を用いて、各相の上アームスイッチング素子18A、18B、18CのOFF時間tu(アッパーバー)、tv(アッパーバー)、tw(アッパーバー)を算出する。尚、数式(XII)の演算結果は数式(V)と同じになるため、ステップS8ではどちらを使用してもよい。
Figure JPOXMLDOC01-appb-M000009
 次に、ステップS9では、数式(XIII)を用いて、零電圧ベクトルV7を出力する時間である零電圧出力時間t7を算出し、この零電圧出力時間t7が零以上の値であるか否かを判定する。この判定は一制御周期毎に判定部45が行う。
Figure JPOXMLDOC01-appb-M000010
 そして、零電圧出力時間t7が零以上の値である場合、ステップS10に進んで第1の変調部34の偶数電圧ベクトルによるRSPWMを選択し、負の値である場合、ステップS12に進んで第2の変調部35による偶数電圧ベクトルによるNSPWMを選択する。この選択は判定部45の判定に基づいて一制御周期毎に選択部40が行う。尚、ステップS9の判定は零電圧出力時間t7が正の値の場合にステップS10に進み、零以下の値の場合にステップS12に進むようにしてもよい。
 (3-2-1)偶数電圧ベクトルによるRSPWM
 零電圧出力時間t7が零以上の値の場合の偶数電圧ベクトルによるRSPWMでは、第1の変調部34がステップS10で、下記数式(XIV)、(XV)を用いて各相の上アームスイッチング素子のOFF時間を修正する。これはOFF時間tu(アッパーバー)、tv(アッパーバー)、tw(アッパーバー)の全てにt7/3を加算することで行われる。これにより、零電圧出力時間が無くなり、モータ8のコモンモード電圧Vcの変動が解消されることになる。
Figure JPOXMLDOC01-appb-M000011
 そして、ステップS11で図21を用い、第1の変調部34が各出力領域(Sector)毎の偶数電圧ベクトル(V2、V4、V6)とそれらの出力時間を判別する。そして、それらの値がステップS14で最終的にPWM信号生成部36に出力される。尚、図21は偶数電圧ベクトルによるRSPWMの出力領域(Sector)と電圧ベクトル、出力時間の関係を示している。
 図20にはこの偶数電圧ベクトルによるRSPWM(even RSPWM)の線形出力領域を示している(内側の円)。また、図23には例えば出力領域Aでの偶数電圧ベクトルV2、V4、V6とそれらの出力時間を示している。更に、図25には出力領域Cでの偶数電圧ベクトルによるRSPWMの各電圧ベクトルV4、V2、V6の出力パターン(kH<2/3の場合)を示している。
 (3-2-2)偶数電圧ベクトルによるNSPWM
 一方、零電圧出力時間t7が負の値の場合の偶数電圧ベクトルによるNSPWMでは、第2の変調部35がステップS12で下記数式(XVI)を用い、上アームスイッチング素子のON時間tu、tv、twを算出する。
Figure JPOXMLDOC01-appb-M000012
 次に、ステップS13で図22を用い、第2の変調部35が各出力領域(Sector)毎に隣り合う三つの電圧ベクトルとそれらの出力時間を判別する。そして、それらの値がステップS14で最終的にPWM信号生成部36に出力される。尚、図22は偶数電圧ベクトルによるNSPWMの出力領域(Sector)と電圧ベクトル、出力時間の関係を示している。出力領域Aでは偶数電圧ベクトルV6とV2、及び、それらで挟まれる奇数電圧ベクトルV1のみを出力し、出力領域Bでは偶数電圧ベクトルV2とV4、及び、それらで挟まれる奇数電圧ベクトルV3のみを出力し、出力領域Cでは偶数電圧ベクトルV4とV6、及び、それらで挟まれる奇数電圧ベクトルV5のみを出力する。
 図20にはこの偶数電圧ベクトルによるNSPWMの線形出力領域も示している(外側の円)。偶数電圧ベクトルによるNSPWMでは、モータ8のコモンモード電圧Vcが2回変動するが、偶数電圧ベクトルによるRSPWMよりも線形出力領域が拡大しているのが分かる。また、図24には例えば出力領域Aでの偶数電圧ベクトルV6、奇数電圧ベクトルV1、偶数電圧ベクトルV2とそれらの出力時間を示している。更に、図26には出力領域Cでの偶数電圧ベクトルによるNSPWMの各電圧ベクトルV4、V5、V6の出力パターン(kH≧2/3の場合)を示している。
 このステップS8~S13の偶数電圧ベクトルによるIRSPWMでは、第1の変調部34の偶数電圧ベクトルによるRSPWMと、第2の変調部35の偶数電圧ベクトルによるNSPWMが電気角一周期内において、一制御周期毎に選択される。そして、この選択はステップS9で数式(XIII)から求められる零電圧出力時間t7に基づいて行われる。この零電圧出力時間t7が零以上の値ということは、変調率が低い制御状態であり、その状態が続く場合には、偶数電圧ベクトルによるRSPWMのみが選択され、UVW各相の変調波形は図27に示すようになって、コモンモード電圧Vcの変動は無い(低変調率時の変調波形)。
 一方、零電圧出力時間t7が負の値ということは、変調率が高い制御状態になっていることであり、零電圧出力時間t7が負の値となる制御周期が多くなる程、図27の状態から図28の状態に示すように偶数電圧ベクトルによるNSPWMが選択される場合(図28に四角で囲んだ位相領域)が多くなって、コモンモード電圧Vcの変動も発生してくる(高変調率時の変調波形)。
 即ち、実施例の偶数電圧ベクトルによるIRSPWMによっても、電気角一周期内において、コモンモードノイズ抑制効果の高い偶数電圧ベクトルによるRSPWMと、それよりも高い変調率を実現できるがコモンモードノイズの抑制効果は劣るNSPWMの割合が線形的、即ち、シームレスに切り換えられることになる。これにより、切り換えショックの最小化を図りながら、コモンモードノイズの抑制効果の改善と運転範囲の拡大を両立させることができるようになる。
 (4)全電圧ベクトルによるIRSPWM
 ここで、上記実施例では第1の変調部34が奇数電圧ベクトルによるRSPWMと、偶数電圧ベクトルによるRSPWMのうちの何れかを実行し、それを三相変調の電圧指令値Vuref、Vvref、Vwref(相電圧指令値)のうち、振幅が最大となる相の符号が負の場合と正の場合とで切り換えるようにしたが、それに限らず、α軸を基準とした位相θmによって奇数電圧ベクトルによるRSPWMと偶数電圧ベクトルによるRSPWMを切り換えるようにしてもよい。これを本出願では全電圧ベクトルによるRSPWMと称し、この全電圧ベクトルによるRSPWMと前述したNSPWMを電気角一周期内で一制御周期毎に選択するパルス幅変調を全電圧ベクトルによるIRPWMと称する。
 図29は全電圧ベクトルによるIRSPWMの動作領域を示し、図30は全電圧ベクトルによるIRSPWMの線形出力領域を示す。また、図31は全電圧ベクトルによるRSPWMと各位相の対応関係を示している。尚、図29でodd IRSPWMは奇数電圧ベクトルによるこの場合のIRSPWM、even IRSPWMは偶数電圧ベクトルによるこの場合のIRSPWMの動作領域である。
 図31に示すように、電気角一周期を六つの領域(330°<θm≦30°、30°<θm≦90°、90°<θm≦150°、150°<θm≦210°、210°<θm≦270°、270°<θm≦330°)に分け、交互に奇数電圧ベクトルによるRSPWMと偶数電圧ベクトルによるRSPWMを切り換える。これにより、RSPWMによる線形出力領域は、それぞれを単体で行う場合(図30の最も内側の円)に比して、図30に内側から2番目の円で示すように拡大することになる。
 この場合も前述した零電圧出力時間t0、t7でRSPWMとNSPWMを選択するものとする。それにより、変調率が低い制御状態では全電圧ベクトルによるRSPWMのみが選択され、UVW各相の変調波形は図32に示すようになる。この場合、奇数と偶数のRSPWMの切り換え時にコモンモード電圧Vcは変動する(低変調率時の変調波形)。
 一方、変調率が高い制御状態になってくると図32の状態から図33の状態に示すように全電圧ベクトルによるNSPWMが選択される場合(図33の四角で囲んだ位相領域)が多くなって、コモンモード電圧Vcの変動は更に多くなるが(高変調率時の変調波形)、RSPWMの線形出力領域が拡大しているため、その分NSPWMの割合が減ることになり、総じて前述した実施例1の場合よりもコモンモードノイズは低減されることになる。
 そして、この場合も全電圧ベクトルによるRSPWMと、それよりも高い変調率を実現できるがコモンモードノイズ抑制効果は劣るNSPWMの割合が線形的、即ち、シームレスに切り換えられることになるので、切り換えショックの最小化を図りながら、コモンモードノイズの抑制効果の改善と運転範囲の拡大を両立させることができるようになる。
 (5)第2の変調部35の他の例
 また、第2の変調部35によるパルス幅変調も前述した実施例のNSPWMに限らず、例えば、特定の相の相電圧の立ち上がりタイミングと立ち下がりタイミングに、他の相の相電圧の立ち下がりタイミングと立ち上がりタイミングを同期させるパルス幅変調でもよい。
 この場合のPWMターンを図34に示し、線形出力領域を図35に示す。この例ではU相電圧Vuの立ち下がりタイミングとW相電圧Vwの立ち上がりタイミングを同期させ、U相電圧Vuの立ち上がりタイミングとV相電圧Vvの立ち下がりタイミングを同期させている。
 このようなパルス幅変調によってもコモンモード電圧Vcの変動を一制御期間中に2回に低減でき、更に、線形出力領域kHも2/(ルート3)とすることができる。
 (6)第2の変調部35の更に他の例
 更に、第2の変調部35によるパルス幅変調として、前述した数式(VI)、(V)を用いた二相変調によるパルス幅変調を採用してもよい。二相変調によっても、コモンモード電圧Vcの変動を制御期間中に4回に低減することができる。
 尚、前述した実施例のIRSPWMでは、三相変調の電圧指令値Vuref、Vvref、Vwrefのうち、振幅が最大となる相の符号が負であるか、正であるかで奇数電圧ベクトルによるIRSPWMと偶数電圧ベクトルによるIRSPWMを切り換えるようにしたが、請求項1~請求項4の発明ではそれに限らず、奇数電圧ベクトルと偶数電圧ベクトルの適否を判別可能な他の制御状態を用いて切り換えるようにしてもよい。
 また、請求項1~請求項3の発明では、奇数電圧ベクトルによるIRSPWMと偶数電圧ベクトルによるIRSPWMを切り換えること無く、何れか一方のみを実行するようにしてもよい。
 更に、図6のフローチャートは、選択部40による選択後に第1の変調部34や第2の変調部35の演算が行われるような流れで示されているが、それに限らず、第1の変調部34や第2の変調部35の演算は常時行われていて、それらの出力を選択部40が選択してPWM信号生成部36に送出する方式でもよく、何れの場合にも本発明に含まれるものとする。また、実施例では判定部45及び選択部40が一制御周期毎に零電圧出力時間の判定とRSPWM及びNSPWMの選択を行うようにしたが、それに限らず、複数の制御周期毎(但し、電気角一周期よりも十分に短い期間)に行うようにしてもよい。
 更にまた、上記各実施例では電動圧縮機のモータ(負荷)の駆動を例に説明したが、それに限らず、電動圧縮機のモータ以外のモータを駆動する場合も有効である。また、請求項10以外の発明では、インバータにより直流電圧を交流電圧に変換して負荷に印加する各種電力変換装置に本発明は適用可能である。
 1 電力変換装置
 8 モータ
 18A~18F 上下アームスイッチング素子
 19U U相インバータ
 19V V相インバータ
 19W W相インバータ
 21 制御装置
 28 インバータ回路
 30 指令値演算部
 33 相電圧指令演算部
 34 第1の変調部
 35 第2の変調部
 36 PWM信号生成部
 37 ゲートドライバ
 40 選択部
 45 判定部

Claims (10)

  1.  直流電圧を交流電圧に変換する電力変換装置において、
     各相の上下アームスイッチング素子の接続点における相電圧を負荷に印加するインバータ回路と、
     前記各スイッチング素子のスイッチングを制御する制御装置を備え、
     該制御装置は、
     奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調、又は、偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調、若しくは、電気角位相に応じて前記奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調と前記偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を切り換えるパルス幅変調、のうちの何れかを実行してコモンモードノイズを低減する第1の変調部と、
     該第1の変調部によるパルス幅変調よりも高い変調率を実現し、且つ、コモンモードノイズを低減可能なパルス幅変調を実行する第2の変調部と、
     零電圧ベクトルを出力する零電圧出力時間を判定する判定部と、
     該判定部が判定した前記零電圧出力時間に基づき、電気角一周期内において前記第1の変調部によるパルス幅変調と、前記第2の変調部によるパルス幅変調を選択する選択部を備えたことを特徴とする電力変換装置。
  2.  前記選択部は、前記零電圧出力時間が零以上の値の場合、又は、正の値の場合、前記第1の変調部によるパルス幅変調を選択し、前記零電圧出力時間が負の値の場合、又は、零以下の値の場合、前記第2の変調部によるパルス幅変調を選択することを特徴とする請求項1に記載の電力変換装置。
  3.  前記第1の変調部は、前記奇数電圧ベクトル、又は、前記偶数電圧ベクトルを修正することにより、前記零電圧ベクトルを出力する零電圧出力時間を実現することを特徴とする請求項1又は請求項2に記載の電力変換装置。
  4.  前記第1の変調部は、制御状態に応じて前記奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調と前記偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を切り換えて実行することを特徴とする請求項1乃至請求項3のうちの何れかに記載の電力変換装置。
  5.  前記各相の相電圧指令値を演算する相電圧指令演算部を備え、
     前記第1の変調部は、前記相電圧指令値の振幅が最大となる相の符号が正の場合、前記偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行し、前記相電圧指令値の振幅が最大となる相の符号が負の場合、前記奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行することを特徴とする請求項4に記載の電力変換装置。
  6.  前記第2の変調部は、隣り合う電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行することを特徴とする請求項1乃至請求項5のうちの何れかに記載の電力変換装置。
  7.  前記各相の相電圧指令値を演算する相電圧指令演算部を備え、
     前記第2の変調部は、前記相電圧指令値の振幅が最大となる相の符号が正の場合、二つの偶数電圧ベクトルとそれらで挟まれる奇数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行し、前記相電圧指令値の振幅が最大となる相の符号が負の場合、二つの奇数電圧ベクトルとそれらで挟まれる偶数電圧ベクトルのみを一制御周期中に出力するパルス幅変調を実行することを特徴とする請求項6に記載の電力変換装置。
  8.  前記第2の変調部は、特定の相の相電圧の立ち上がりタイミングと立ち下がりタイミングに、他の相の相電圧の立ち下がりタイミングと立ち上がりタイミングを同期させるパルス幅変調を実行することを特徴とする請求項1乃至請求項5のうちの何れかに記載の電力変換装置。
  9.  前記第2の変調部は、所定の一相の前記上下アームスイッチング素子のON/OFF状態を固定させ、他の二相の前記上下アームスイッチング素子のON/OFF状態を変調させるパルス幅変調を実行することを特徴とする請求項1乃至請求項5のうちの何れかに記載の電力変換装置。
  10.  前記インバータ回路は、各相の前記上下アームスイッチング素子の接続点における相電圧をモータに印加して駆動することを特徴とする請求項1乃至請求項9のうちの何れかに記載の電力変換装置。
PCT/JP2023/000926 2022-01-17 2023-01-16 電力変換装置 WO2023136340A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-005356 2022-01-17
JP2022005356A JP2023104398A (ja) 2022-01-17 2022-01-17 電力変換装置

Publications (1)

Publication Number Publication Date
WO2023136340A1 true WO2023136340A1 (ja) 2023-07-20

Family

ID=87279266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000926 WO2023136340A1 (ja) 2022-01-17 2023-01-16 電力変換装置

Country Status (2)

Country Link
JP (1) JP2023104398A (ja)
WO (1) WO2023136340A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020419A1 (ja) * 2003-08-25 2005-03-03 Mitsubishi Denki Kabushiki Kaisha 電力変換器の制御装置
JP2006254671A (ja) * 2005-03-14 2006-09-21 Denso Corp 三相電圧型インバータ装置
US20080225561A1 (en) * 2005-12-30 2008-09-18 Lg Electronics Inc. Apparatus and Method for Controlling Inverter
JP5298003B2 (ja) * 2009-12-28 2013-09-25 株式会社日立製作所 エレベータの速度制御装置および速度制御方法
WO2019180763A1 (ja) * 2018-03-19 2019-09-26 三菱電機株式会社 電力変換装置および回転機駆動システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005020419A1 (ja) * 2003-08-25 2005-03-03 Mitsubishi Denki Kabushiki Kaisha 電力変換器の制御装置
JP2006254671A (ja) * 2005-03-14 2006-09-21 Denso Corp 三相電圧型インバータ装置
US20080225561A1 (en) * 2005-12-30 2008-09-18 Lg Electronics Inc. Apparatus and Method for Controlling Inverter
JP5298003B2 (ja) * 2009-12-28 2013-09-25 株式会社日立製作所 エレベータの速度制御装置および速度制御方法
WO2019180763A1 (ja) * 2018-03-19 2019-09-26 三菱電機株式会社 電力変換装置および回転機駆動システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DABOUR SHERIF M.; ABDEL-WAHAB SAMAR M.; RASHAD ESSAM M.: "Common-Mode Voltage Reduction Algorithm with Minimum Switching Losses for Three-Phase Inverters", 2019 21ST INTERNATIONAL MIDDLE EAST POWER SYSTEMS CONFERENCE (MEPCON), IEEE, 17 December 2019 (2019-12-17), pages 1210 - 1215, XP033725659, DOI: 10.1109/MEPCON47431.2019.9008072 *
VAZQUEZ G.; HERNANDEZ-AVILA I.; SOSA J.M.; LIMONES-POZOS C. A.; ARAU JAIME: "A Comparative Analysis of Space-Vector PWM Techniques for Transformerless Three-Phase Voltage Source Inverters", 2018 14TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS (CIEP), IEEE, 24 October 2018 (2018-10-24), pages 183 - 187, XP033472521, DOI: 10.1109/CIEP.2018.8573322 *

Also Published As

Publication number Publication date
JP2023104398A (ja) 2023-07-28

Similar Documents

Publication Publication Date Title
EP3163742B1 (en) Inverter control device and air-conditioner
US6690593B2 (en) Power inverter designed to minimize switching loss
US10374503B2 (en) Power conversion device
US10103675B2 (en) Control device of alternating-current electric motor
US9130481B2 (en) Power converting appartatus
KR20040024447A (ko) 공기 조화 장치
WO2013046462A1 (ja) 電力変換制御装置、電力変換制御方法、電動機および車両駆動システム
US11677309B2 (en) Inverter device
JP2006121877A (ja) モータ制御装置
US11979104B2 (en) Rotary electric machine control apparatus
WO2020171110A1 (ja) インバータ装置
WO2023136340A1 (ja) 電力変換装置
JP6732063B1 (ja) 電力変換装置、発電電動機の制御装置、および、電動パワーステアリング装置
US11070143B2 (en) Power conversion device with selective voltage control
KR20210081057A (ko) 모터구동장치 및 이를 구비하는 홈 어플라이언스
WO2023100868A1 (ja) 電力変換装置
WO2024057913A1 (ja) 電力変換装置
WO2022259624A1 (ja) インバータ制御装置、インバータ制御方法
JP5998804B2 (ja) 電力変換装置
JP7394619B2 (ja) インバータ装置
JP2003209999A (ja) モータ制御装置
WO2023176282A1 (ja) 電力変換装置
WO2023195172A1 (ja) モータ制御装置、モータ制御方法
US11342877B2 (en) Controller of rotating electric machine
JPH0614590A (ja) Pwmインバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740348

Country of ref document: EP

Kind code of ref document: A1