WO2022259624A1 - インバータ制御装置、インバータ制御方法 - Google Patents

インバータ制御装置、インバータ制御方法 Download PDF

Info

Publication number
WO2022259624A1
WO2022259624A1 PCT/JP2022/005918 JP2022005918W WO2022259624A1 WO 2022259624 A1 WO2022259624 A1 WO 2022259624A1 JP 2022005918 W JP2022005918 W JP 2022005918W WO 2022259624 A1 WO2022259624 A1 WO 2022259624A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
inverter
phase
control mode
motor
Prior art date
Application number
PCT/JP2022/005918
Other languages
English (en)
French (fr)
Inventor
滋久 青柳
崇文 原
貴哉 塚越
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to DE112022001599.3T priority Critical patent/DE112022001599T5/de
Priority to CN202280036967.8A priority patent/CN117397161A/zh
Priority to JP2023527492A priority patent/JPWO2022259624A1/ja
Publication of WO2022259624A1 publication Critical patent/WO2022259624A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0041Control circuits in which a clock signal is selectively enabled or disabled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control

Definitions

  • the present invention relates to an inverter control device and control method.
  • Permanent magnet synchronous motors do not require mechanical current commutation mechanisms such as brushes or commutators, are easy to maintain, and are compact, lightweight, and have high efficiency and power factor. Widespread.
  • a permanent magnet synchronous motor consists of a stator composed of armature coils and the like, and a rotor composed of permanent magnets, an iron core and the like.
  • An inverter converts a DC voltage supplied from a DC power source such as a battery into an AC voltage, and the AC voltage is used to supply an AC current to an armature coil of a permanent magnet synchronous motor, thereby generating an armature magnetic flux. Magnet torque generated by attraction and repulsion generated between the armature magnetic flux and the magnetic flux of the permanent magnet, and reluctance torque generated to minimize the magnetic resistance of the armature magnetic flux passing through the rotor, A permanent magnet synchronous motor is driven.
  • An inverter that supplies AC current to a permanent magnet synchronous motor to control its drive is generally equipped with multiple semiconductor switching elements such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors). ing.
  • An inverter control device is connected to the inverter, and a gate signal generated in the inverter control device is output to the gate terminal of each semiconductor switching element through a drive circuit, thereby switching the ON/OFF state of each semiconductor switching element. A power conversion from electric power to AC power is performed.
  • a generation method by PWM modulation is well known as a method for generating a gate signal in an inverter control device.
  • PWM modulation a voltage command generated according to an external torque command is compared with a carrier wave such as a triangular wave or a sawtooth wave, and a gate signal having a pulse width corresponding to the comparison result is generated.
  • a carrier wave such as a triangular wave or a sawtooth wave
  • a gate signal having a pulse width corresponding to the comparison result is generated.
  • synchronous pulse control in which the frequency of the carrier wave is changed in synchronization with the number of revolutions of the motor
  • asynchronous pulse control in which the frequency of the carrier wave is kept constant regardless of the number of revolutions of the motor, is selected.
  • asynchronous pulse control was selected to suppress noise and vibration at low motor rotation speeds and rotation speeds near the resonance frequency band of the mechanism where the motor is installed, and synchronous pulse control was selected at other rotation speeds.
  • synchronous pulse control was selected at other rotation speeds.
  • Patent Literature 1 discloses a technique of switching from asynchronous PWM to synchronous PWM at the timing when the carrier phases of the triangular wave for asynchronous PWM and the triangular wave for synchronization match.
  • the present invention has been made in view of the above problems, and provides an inverter control device and a control method capable of stably controlling a motor while immediately switching from asynchronous pulse control to synchronous pulse control. for the purpose.
  • An inverter control device generates a PWM pulse signal for driving a plurality of switching elements of an inverter by pulse width modulation and outputs the signal to the inverter, thereby controlling the inverter and rotationally driving the motor.
  • a synchronous pulse control mode in which the frequency of the carrier wave used in the pulse width modulation is varied according to the rotation speed of the motor, and a constant frequency of the carrier wave regardless of the rotation speed of the motor. and the asynchronous pulse control mode, and performing the pulse width modulation, and when switching from the asynchronous pulse control mode to the synchronous pulse control mode, a carrier reference phase that is a reference value of the phase of the carrier wave. are changed to different values before and after the switching.
  • a PWM pulse signal for driving a plurality of switching elements of an inverter is generated by pulse width modulation and output to the inverter, thereby controlling the inverter and rotationally driving the motor.
  • a method comprising a synchronous pulse control mode in which the frequency of the carrier wave used in the pulse width modulation is varied according to the rotation speed of the motor, and a constant frequency of the carrier wave regardless of the rotation speed of the motor. and the asynchronous pulse control mode, and performing the pulse width modulation, and when switching from the asynchronous pulse control mode to the synchronous pulse control mode, a carrier reference phase that is a reference value of the phase of the carrier wave. are changed to different values before and after the switching.
  • an inverter control device and control method capable of stably controlling a motor while immediately switching from asynchronous pulse control to synchronous pulse control.
  • FIG. 1 is an overall configuration diagram of a motor drive system including an inverter control device according to an embodiment of the present invention
  • FIG. 1 is a block diagram showing the functional configuration of an inverter control device according to one embodiment of the present invention
  • FIG. 3 is a block diagram of a carrier frequency calculator according to the first embodiment of the present invention
  • FIG. 4 is a diagram showing an operation example of a carrier frequency selection unit
  • FIG. 4 is a diagram showing an example of carrier reference phase and torque fluctuation when switching from an asynchronous pulse control mode to a synchronous pulse control mode according to the first embodiment of the present invention
  • FIG. 4 is a diagram showing changes in the synchronous carrier frequency when switching from the asynchronous pulse control mode to the synchronous pulse control mode
  • FIG. 5 is a block diagram of a carrier frequency calculator according to the second embodiment of the present invention
  • FIG. 10 is a diagram showing an example of carrier reference phase and torque fluctuation when switching from the asynchronous pulse control mode to the synchronous pulse control mode in the second embodiment of the present invention
  • FIG. 11 is a block diagram of a carrier frequency calculator according to a third embodiment of the present invention
  • FIG. 11 is a diagram showing an example of carrier reference phase and torque fluctuation when switching from the asynchronous pulse control mode to the synchronous pulse control mode according to the third embodiment of the present invention
  • FIG. 1 is an overall configuration diagram of a motor drive system equipped with an inverter control device according to one embodiment of the present invention.
  • a motor drive system 100 has an inverter control device 1 , a motor 2 , an inverter 3 , a rotational position detector 4 , a high voltage battery 5 and a current detector 7 .
  • the rotational position ⁇ of the motor 2 is input from the rotational position detector 4 to the inverter control device 1 .
  • Iu, Iv, and Iw representing three-phase alternating currents flowing in the motor 2 are input from the current detection unit 7, and a torque command T* is input from a host controller (not shown).
  • the inverter control device 1 Based on the input information, the inverter control device 1 generates a PWM pulse signal for driving the switching elements of the inverter 3 and outputs the PWM pulse signal to the inverter 3 . Thereby, the operation of the inverter 3 is controlled, and the motor 2 is rotationally driven. Details of the inverter control device 1 will be described later.
  • the inverter 3 has an inverter circuit 31 , a PWM signal drive circuit 32 and a smoothing capacitor 33 .
  • the PWM signal drive circuit 32 generates a gate drive signal for controlling each switching element included in the inverter circuit 31 based on the PWM pulse signal input from the inverter control device 1 and outputs the gate drive signal to the inverter circuit 31 .
  • the inverter circuit 31 has switching elements corresponding to upper and lower arms of the U-phase, V-phase, and W-phase, respectively. These switching elements are switched and driven according to the gate drive signal input from the PWM signal drive circuit 32 , so that the DC power supplied from the high voltage battery 5 is converted into AC power and output to the motor 2 .
  • the smoothing capacitor 33 smoothes the DC power supplied from the high voltage battery 5 to the inverter circuit 31 .
  • the high-voltage battery 5 is a DC voltage source for the motor drive system 100 and outputs power supply voltage Hvdc to the inverter 3 .
  • the power supply voltage Hvdc of the high-voltage battery 5 is converted into a variable voltage, variable frequency pulse-like three-phase AC voltage by the inverter circuit 31 and the PWM signal drive circuit 32 of the inverter 3, and applied to the motor 2 as a line voltage.
  • AC power is supplied from the inverter 3 to the motor 2 based on the DC power of the high-voltage battery 5 .
  • the power supply voltage Hvdc of the high-voltage battery 5 fluctuates according to its state of charge.
  • the motor 2 is a three-phase electric motor that is rotationally driven by AC power supplied from the inverter 3, and has a stator and a rotor.
  • a permanent magnet synchronous motor is used as the motor 2
  • the AC power input from the inverter 3 is applied to the three-phase coils Lu, Lv, and Lw provided in the stator
  • the three-phase AC currents Iu, Iv, and Iw are conducted in the motor 2, and magnetic flux is generated in each coil. occurs.
  • Attractive force and repulsive force are generated between the magnetic flux of each coil and the magnet magnetic flux of the permanent magnet arranged in the rotor, and torque is generated in the rotor, and the motor 2 is rotationally driven.
  • a rotational position sensor 8 for detecting the rotational position ⁇ of the rotor is attached to the motor 2 .
  • a rotational position detector 4 calculates a rotational position ⁇ from an input signal of the rotational position sensor 8 .
  • the calculation result of the rotational position ⁇ by the rotational position detector 4 is input to the inverter control device 1, and the inverter control device 1 generates a PWM pulse signal in accordance with the phase of the induced voltage of the motor 2 to determine the phase of the AC power. Used in control.
  • a resolver composed of an iron core and windings is more suitable for the rotational position sensor 8, but a sensor using a magnetoresistive element such as a GMR sensor or a Hall element is also acceptable. Any sensor can be used as the rotational position sensor 8 as long as it can measure the magnetic pole position of the rotor. Further, the rotational position detector 4 does not use the input signal from the rotational position sensor 8, but detects the three-phase AC currents Iu, Iv, and Iw flowing through the motor 2 and the three-phase AC voltage Vu applied to the motor 2 from the inverter 3. , Vv, and Vw may be used to estimate the rotational position ⁇ .
  • a current detector 7 is arranged on the current path between the inverter 3 and the motor 2 .
  • Current detector 7 detects three-phase AC currents Iu, Iv, and Iw (U-phase AC current Iu, V-phase AC current Iv, and W-phase AC current Iw) that energize motor 2 .
  • the current detection unit 7 is configured using, for example, a Hall current sensor or the like. The detection results of the three-phase AC currents Iu, Iv, and Iw by the current detection unit 7 are input to the inverter control device 1 and used by the inverter control device 1 to generate PWM pulse signals.
  • the current detection unit 7 is composed of three current detectors, the number of current detectors is two, and the remaining one-phase alternating currents are three-phase alternating currents Iu, Iv, It may be calculated from the fact that the sum of Iw is zero. Also, a pulsed DC current flowing from the high-voltage battery 5 to the inverter 3 is detected by a shunt resistor or the like inserted between the smoothing capacitor 33 and the inverter 3, and this DC current and the inverter 3 are applied to the motor 2. The three-phase AC currents Iu, Iv, Iw may be obtained based on the three-phase AC voltages Vu, Vv, Vw.
  • FIG. 2 is a block diagram showing the functional configuration of the inverter control device 1 according to one embodiment of the invention.
  • the inverter control device 1 includes a current command generation unit 11, a speed calculation unit 12, a three-phase/dq conversion unit 13, a current control unit 14, a dq/three-phase voltage conversion unit 15, a carrier frequency calculation unit It has functional blocks of a section 16 , a carrier wave generation section 17 and a PWM control section 18 .
  • the inverter control device 1 is configured by, for example, a microcomputer, and can realize these functional blocks by executing a predetermined program in the microcomputer. Alternatively, some or all of these functional blocks may be implemented using hardware circuits such as logic ICs and FPGAs.
  • the current command generator 11 calculates a d-axis current command Id* and a q-axis current command Iq* based on the input torque command T* and power supply voltage Hvdc.
  • the d-axis current commands Id*, q Obtain the shaft current command Iq*.
  • the speed calculation unit 12 calculates a motor rotation speed ⁇ r representing the rotation speed (number of rotations) of the motor 2 from the time change of the rotation position ⁇ .
  • the motor rotation speed ⁇ r may be a value represented by either angular velocity (rad/s) or rotation speed (rpm). Also, these values may be converted to each other and used.
  • a three-phase/dq conversion unit 13 performs dq conversion on the three-phase AC currents Iu, Iv, and Iw detected by the current detection unit 7 based on the rotational position ⁇ obtained by the rotational position detector 4 to obtain d-axis currents.
  • a value Id and a q-axis current value Iq are calculated.
  • the current control unit 14 generates a d-axis current command Id* and a q-axis current command Iq* output from the current command generation unit 11, and a d-axis current value Id and a q-axis current output from the three-phase/dq conversion unit 13. Based on the deviation from the value Iq, the d-axis voltage command Vd* and the q-axis voltage command Vq* corresponding to the torque command T* are calculated such that these values match each other.
  • the d-axis voltage command Vd* corresponding to the deviation between the d-axis current command Id* and the d-axis current value Id, the q-axis current command Iq* and the q-axis current value Iq are calculated by a control method such as PI control.
  • a q-axis voltage command Vq* corresponding to the deviation is obtained.
  • the dq/three-phase voltage conversion unit 15 performs three-phase conversion on the d-axis voltage command Vd* and the q-axis voltage command Vq* calculated by the current control unit 14 based on the rotational position ⁇ obtained by the rotational position detector 4. to calculate three-phase voltage commands Vu*, Vv*, Vw* (U-phase voltage command value Vu*, V-phase voltage command value Vv* and W-phase voltage command value Vw*). Thereby, three-phase voltage commands Vu*, Vv*, Vw* corresponding to the torque command T* are generated.
  • the carrier frequency calculator 16 selects either the synchronous pulse control mode or the asynchronous pulse control mode based on the motor rotation speed ⁇ r obtained by the speed calculator 12 .
  • the synchronous pulse control mode is a mode in which the frequency of the carrier wave used for generating the PWM pulse signal is changed according to the motor rotation speed ⁇ r.
  • the asynchronous pulse control mode is a mode in which the carrier wave frequency is kept constant regardless of the motor rotation speed ⁇ r.
  • the carrier frequency calculator 16 calculates the d-axis voltage command Vd* and the q-axis voltage command Vq* generated by the current command generator 11, the rotational position ⁇ obtained by the rotational position detector 4, A carrier frequency fc representing the frequency of the carrier wave is calculated based on the motor rotation speed ⁇ r.
  • the carrier frequency calculator 16 sets a predetermined frequency as the carrier frequency fc.
  • a mode corresponding to the motor rotation speed ⁇ r is selected to determine the carrier frequency fc. The details of how the carrier frequency calculator 16 calculates the carrier frequency fc will be described later.
  • the carrier wave generator 17 controls the PWM controller 18 to generate PWM pulse signals for each of the three-phase voltage commands Vu*, Vv*, and Vw*.
  • a carrier wave Tr used in pulse width modulation is generated.
  • the carrier wave Tr may be either a triangular wave or a sawtooth wave. In the present embodiment, the case where the carrier wave Tr is a sawtooth wave will be described, but the same processing can be performed in the case of a triangular wave as well.
  • the PWM control unit 18 uses the carrier wave Tr output from the carrier wave generation unit 17 to convert the three-phase voltage commands Vu*, Vv*, Vw* output from the dq/three-phase voltage conversion unit 15 into pulse widths. It modulates and generates a PWM pulse signal for controlling the operation of the inverter 3 . Specifically, based on the result of comparison between the three-phase voltage commands Vu*, Vv*, Vw* output from the dq/three-phase voltage converter 15 and the carrier wave Tr output from the carrier wave generator 17, PWM pulse signals for the switching elements of the inverter 3 are generated for each of the U-phase, V-phase, and W-phase.
  • the upper arm PWM pulse signals Gup, Gvp, and Gwp of each phase are logically inverted to generate the lower arm PWM pulse signals Gun, Gvn, and Gwn.
  • the PWM pulse signal generated by the PWM control unit 18 is output from the inverter control device 1 to the PWM signal drive circuit 32 of the inverter 3, and is converted by the PWM signal drive circuit 32 into a gate drive signal. Thereby, each switching element of the inverter circuit 31 is on/off controlled, and the output voltage of the inverter 3 is adjusted.
  • the carrier frequency calculator 16 selects either the synchronous pulse control mode or the asynchronous pulse control mode, as described above.
  • the carrier frequency fc is calculated based on the d-axis voltage command Vd*, the q-axis voltage command Vq*, the rotational position ⁇ , and the motor rotational speed ⁇ r.
  • the carrier wave Tr are adjusted so that the period and phase of are in a predetermined relationship.
  • FIG. 3 is a block diagram of the carrier frequency calculator 16 according to the first embodiment of the present invention.
  • Carrier frequency calculator 16 has pulse control determiner 161 , voltage phase calculator 162 , carrier reference phase setter 163 , voltage phase error calculator 164 , synchronous carrier frequency calculator 165 , and carrier frequency selector 166 .
  • the pulse control determination unit 161 determines the number of pulses of the carrier wave per cycle of the voltage command in the synchronous PWM control, that is, the carrier frequency fc for the three-phase voltage commands Vu*, Vv*, and Vw*.
  • a synchronization pulse number Nc representing a magnification is determined.
  • the voltage phase calculator 162 calculates the following equations (1) to (4): to calculate the voltage phase ⁇ v.
  • Voltage phase ⁇ v represents the phase of three-phase voltage commands Vu*, Vv*, Vw*, which are voltage commands for inverter 3 .
  • ⁇ v ⁇ + ⁇ v+ ⁇ dqv+0.5 ⁇ (1)
  • ⁇ v ⁇ r ⁇ 1.5Tc (2)
  • Tc 1/fc (3)
  • ⁇ dqv atan(Vq/Vd) (4)
  • ⁇ v represents the calculation delay compensation value of the voltage phase
  • Tc represents the period of the carrier wave Tr
  • ⁇ dqv represents the voltage phase from the d-axis.
  • ⁇ v a calculation delay of 1.5 control cycles occurs from when the rotational position detector 4 acquires the rotational position ⁇ to when the inverter control device 1 outputs a gate signal to the inverter 3. It is a value that compensates for In this embodiment, 0.5 ⁇ is added to the fourth term on the right side of equation (1). Since the voltage phases calculated by the first to third terms on the right side of the equation (1) are cosine waves, this is a calculation for converting them into sinusoidal waves.
  • the carrier reference phase setting unit 163 sets the reference value of the phase of the carrier wave Tr based on the synchronization pulse number Nc determined by the pulse control determination unit 161 and the voltage phase error ⁇ v calculated by the voltage phase error calculation unit 164.
  • a reference phase ⁇ c1 is set.
  • the carrier reference phase setting unit 163 controls the torque ripple generated in the motor 2 when switching from the asynchronous pulse control mode to the synchronous pulse control mode. value to set the carrier reference phase ⁇ c1.
  • a specific method of setting carrier reference phase ⁇ c1 by carrier reference phase setting section 163 will be described later.
  • Equation (6) corresponds to the amount of change in the voltage phase ⁇ v per cycle of the carrier wave Tr.
  • mod in Expression (5) represents a remainder operation.
  • the voltage phase error ⁇ v obtained by Equation (5) represents the position of the voltage phase ⁇ v with respect to one cycle of the carrier wave Tr.
  • the voltage phase error ⁇ v is the relative phase difference between the three-phase voltage commands Vu*, Vv*, Vw*, which are the voltage commands for the inverter 3, and the carrier wave Tr used for pulse width modulation. represent.
  • the carrier phase error ⁇ c obtained by equation (8) represents how much the value obtained by replacing the voltage phase error ⁇ v with the phase of the carrier wave deviates from the carrier reference phase ⁇ c1.
  • the carrier phase error ⁇ c represents the difference between the phase of the carrier wave Tr based on the three-phase voltage commands Vu*, Vv*, Vw* and the carrier reference phase ⁇ c1.
  • the synchronous carrier frequency calculation unit 165 can calculate the synchronous carrier frequency fcs based on Equations (7) and (8), for example, by PLL (Phase Locked Loop) control. Note that the gain K in equation (7) may be a constant value, or may be variable depending on the conditions.
  • the voltage phase error calculator 164 calculates the voltage phase error ⁇ v in accordance with equations (5) and (6) for each predetermined calculation period, and the synchronous carrier frequency calculator uses the calculation result. 165 calculates the synchronous carrier frequency fcs in accordance with equations (7) and (8) for each predetermined calculation period.
  • the carrier frequency calculator 16 the phase of the carrier wave Tr based on the voltage command to the inverter 3 is adjusted to the carrier reference phase ⁇ c1, and the number of carrier waves Tr included in one cycle of the voltage command is equal to the synchronizing pulse.
  • the carrier wave Tr can be frequency adjusted to match the number Nc.
  • the carrier frequency selection unit 166 selects either the synchronous pulse control mode or the asynchronous pulse control mode based on the motor rotation speed ⁇ r. According to the mode selection result, either the synchronous carrier frequency fcs calculated by the synchronous carrier frequency calculator 165 or the predetermined asynchronous carrier frequency fcns is selected and output as the carrier frequency fc. That is, when the synchronous pulse control mode is selected, the carrier frequency selector 166 outputs the synchronous carrier frequency fcs as the carrier frequency fc. On the other hand, when the asynchronous pulse control mode is selected, the carrier frequency selector 166 outputs the asynchronous carrier frequency fcns as the carrier frequency fc.
  • the asynchronous carrier frequency fcns is a constant value preset in carrier frequency selection section 166 . Further, the carrier frequency selection unit 166 outputs a mode selection signal Sm indicating whether the synchronous pulse control mode or the asynchronous pulse control mode is selected according to the mode selection result based on the motor rotation speed ⁇ r.
  • FIG. 4 is a diagram showing an operation example of the carrier frequency selection unit 166. As shown in FIG.
  • FIG. 4(a) is an example of a rotation speed profile showing how the motor rotation speed ⁇ r changes over time.
  • the motor rotation speed ⁇ r increases and decreases at a rate of 500 (rpm/s) and becomes constant when reaching 19500 (rpm).
  • FIG. 4(b) is an example of a control profile of the carrier frequency fc based on the motor rotation speed ⁇ r.
  • the motor rotation speed ⁇ r is within the range of 6000 to 10000 (rpm) or within the range of 11000 to 19500 (rpm)
  • select the synchronous pulse control mode and set the number of synchronous pulses to Nc 15 and 9, respectively.
  • the carrier frequency fc is controlled to change according to the motor rotation speed ⁇ r.
  • the carrier frequency selection unit 166 controls the carrier frequency fc as described above, the asynchronous A switch from pulse control mode to synchronous pulse control mode occurs.
  • the carrier frequency calculator 16 of the present embodiment selects either the synchronous pulse control mode or the asynchronous pulse control mode by performing the processing described above in each block, and controls the carrier frequency fc. can be done.
  • FIG. 5 is a diagram showing an example of carrier reference phase and torque fluctuation when switching from the asynchronous pulse control mode to the synchronous pulse control mode in the first embodiment of the present invention.
  • the carrier reference phase ⁇ c1 is fixed at 0° as shown in graph 51, for example.
  • the value of the carrier phase error ⁇ c obtained by the above equation (8) increases immediately after switching, and the synchronous carrier frequency fcs obtained by the equation (7) becomes temporary. fluctuates greatly to As a result, a large torque fluctuation occurs as shown in graph 53 .
  • the value of the carrier reference phase ⁇ c1 set in the carrier reference phase setting section 163 is set to , from 0° to 90°.
  • the value of the carrier phase error ⁇ c immediately after switching can be reduced, and variations in the synchronous carrier frequency fcs can be suppressed.
  • torque fluctuation can be suppressed as compared with the conventional inverter control device.
  • the synchronous carrier frequency calculator 165 calculates the carrier phase error ⁇ c representing the difference between the phase of the carrier wave Tr and the carrier reference phase ⁇ c1 using the above equation (8).
  • the carrier frequency selector 166 switches from the asynchronous pulse control mode to the synchronous pulse control mode, the value of the carrier frequency fc is switched from the asynchronous carrier frequency fcns to the synchronous carrier frequency fcs.
  • the synchronous carrier frequency calculator 165 calculates the value of the carrier frequency fc (synchronous carrier frequency fcs) according to Equation (7) so that the phase of the carrier wave Tr matches the carrier reference phase ⁇ c1. adjust.
  • the carrier reference phase ⁇ c1 is fixed at 0° as in the conventional inverter control device described with reference to FIG. value becomes large.
  • the carrier frequency fc immediately after switching greatly changes as shown in FIG.
  • deviation occurs in the waveform of the carrier wave Tr.
  • Such a waveform deviation of the carrier wave Tr results in an error in the PWM pulse signal generated by the PWM control section 18 and causes an error in the output voltage of the inverter 3 .
  • torque fluctuations as described above occur in the motor 2 .
  • the value of the carrier reference phase ⁇ c1 set by the carrier reference phase setting section 163 is changed when switching from the asynchronous pulse control mode to the synchronous pulse control mode. Specifically, the value of the carrier reference phase ⁇ c1 is changed from 0° to 90° as described with reference to FIG. 5, for example. As a result, the value of the voltage phase error ⁇ v obtained from the value of the voltage phase ⁇ v at the time of switching is reduced to ⁇ v ⁇ 90°, and as shown in FIG. 6(a). As a result, the error in the PWM pulse signal generated by the PWM control section 18 can be reduced, and the torque fluctuation of the motor 2 can be suppressed.
  • the carrier reference phase setting unit 163 can determine the value of the changed carrier reference phase ⁇ c1, for example, as follows.
  • carrier reference phase setting section 163 detects that switching from the asynchronous pulse control mode to synchronous pulse control mode is performed by mode selection signal Sm output from carrier frequency selection section 166, the voltage phase error immediately before switching is detected.
  • the value of ⁇ v is acquired from the voltage phase error calculator 164 .
  • the value of this voltage phase error ⁇ v represents the relative phase difference between the three-phase voltage commands Vu*, Vv*, Vw* and the carrier wave Tr output in the asynchronous pulse control mode.
  • Carrier reference phase setting section 163 determines the set value of carrier reference phase ⁇ c1 based on the calculated carrier reference phase determination value ⁇ cd and using the determination conditions of the following equations (10) to (13). 315° ⁇ cd or ⁇ cd ⁇ 45°
  • ⁇ c1 0° (10) 45° ⁇ cd ⁇ 135°
  • ⁇ c1 90° (11) 135° ⁇ cd ⁇ 225°
  • ⁇ c1 180° (12) 225° ⁇ cd ⁇ 315°
  • ⁇ c1 270° (13)
  • the carrier reference phase setting section 163 can set the carrier reference phase ⁇ c1 by the method described above.
  • the inverter control device 1 generates a PWM pulse signal for driving a plurality of switching elements of the inverter 3 by pulse width modulation and outputs the signal to the inverter 3, thereby controlling the inverter 3 and driving the motor 2. rotate.
  • the inverter control device 1 has a synchronous pulse control mode in which the frequency fc of the carrier wave Tr used in pulse width modulation is varied according to the rotation speed of the motor 2, and a constant carrier frequency fc regardless of the rotation speed of the motor 2. Pulse width modulation is performed by selecting either the asynchronous pulse control mode or the asynchronous pulse control mode.
  • the carrier reference phase ⁇ c1 which is the reference value of the phase of the carrier wave Tr, is changed to a different value before and after switching. Since it did in this way, the motor 2 can be controlled stably, switching from asynchronous pulse control to synchronous pulse control immediately.
  • the inverter control device 1 includes a pulse control determination unit 161, a carrier reference phase setting unit 163, a voltage phase error calculation unit 164, a synchronous carrier frequency calculation unit 165, a carrier frequency selection unit 166, and a carrier wave generation unit. A part 17 and a PWM control part 18 are provided.
  • the pulse control determination unit 161 determines a synchronous pulse number Nc representing the number of pulses of the carrier wave Tr per cycle of the voltage command in the synchronous pulse control mode based on the motor rotation speed ⁇ r representing the number of revolutions of the motor 2 .
  • Carrier reference phase setting section 163 sets carrier reference phase ⁇ c1.
  • a voltage phase error calculation unit 164 calculates a relative value between the voltage command and the carrier wave Tr based on the synchronous pulse number Nc determined by the pulse control determination unit 161 and the voltage phase ⁇ v representing the phase of the voltage command to the inverter 3.
  • a voltage phase error ⁇ v representing a phase difference is calculated.
  • Synchronous carrier frequency calculator 165 calculates carrier wave in synchronous pulse control mode based on voltage phase error ⁇ v calculated by voltage phase error calculator 164 and carrier reference phase ⁇ c1 set by carrier reference phase setting unit 163. Determine the synchronous carrier frequency fcs, which is the frequency of Tr.
  • the carrier frequency selector 166 selects either the synchronous carrier frequency fcs determined by the synchronous carrier frequency calculator 165 or the asynchronous carrier frequency fcns, which is the predetermined frequency of the carrier wave Tr.
  • the carrier wave generator 17 generates the carrier wave Tr at the frequency selected by the carrier frequency selector 166 .
  • the PWM control unit 18 performs pulse width modulation using the carrier wave Tr generated by the carrier wave generation unit 17 and the three-phase voltage commands Vu*, Vv*, Vw* to generate a PWM pulse signal. Since this is done, it is possible to arbitrarily switch between the asynchronous pulse control and the synchronous pulse control, and realize the generation of the PWM pulse signal in each control mode.
  • the inverter control device 1 generates the carrier wave Tr with the number of signals corresponding to the number of phases of the alternating current that the inverter 3 outputs to the motor 2 .
  • a carrier wave Tr is generated for each of the three-phase voltage commands Vu*, Vv*, and Vw* for the inverter 3 that outputs a three-phase AC current to the motor 2, which is, for example, a three-phase motor. Since this is done, it is possible to generate a suitable carrier wave for the alternating current of each phase regardless of the number of phases of the inverter.
  • FIG. 7 is a block diagram of the carrier frequency calculator 16 according to the second embodiment of the present invention.
  • the block diagram of FIG. 7 differs from the block diagram of FIG. 3 described in the first embodiment in that the carrier reference phase setting section 163 is replaced with a carrier reference phase setting section 163A.
  • the present embodiment will be described below with a focus on this difference.
  • the carrier reference phase setting section 163A uses the number of synchronization pulses Nc determined by the pulse control determination section 161 and the voltage phase error calculation section 164 to calculate A carrier reference phase ⁇ c1 is set based on the voltage phase error ⁇ v.
  • carrier reference phase setting section 163A changes the value of carrier reference phase ⁇ c1 multiple times based on voltage phase ⁇ v when switching from the asynchronous pulse control mode to the synchronous pulse control mode. As a result, compared to the first embodiment, the torque ripple generated in the motor 2 during mode switching is further suppressed.
  • FIG. 8 is a diagram showing an example of carrier reference phase and torque fluctuation when switching from the asynchronous pulse control mode to the synchronous pulse control mode in the second embodiment of the present invention.
  • Graphs 51 and 53 in FIG. 8 are the same as the graphs 51 and 53 in FIG. 5 described in the first embodiment, respectively. That is, graph 51 represents the carrier reference phase ⁇ c1 that is fixed at 0° at the time of switching in the conventional inverter control device, and graph 53 represents the state of torque fluctuation at the time of conventional switching corresponding to graph 51. .
  • the value of the carrier reference phase ⁇ c1 set in the carrier reference phase setting section 163A is set to 0 as shown in graph 82, for example. Change from ° to 90°. After that, the value of the carrier reference phase ⁇ c1 is further changed from 90° to 0°, and then from 0° to -45°.
  • the change timing of these carrier reference phases ⁇ c1 can be determined based on the voltage phase ⁇ v.
  • the value of the carrier reference phase ⁇ c1 is changed multiple times when switching from the asynchronous pulse control mode to the synchronous pulse control mode.
  • torque ripple generated in motor 2 immediately after switching can be reduced.
  • the final value of the carrier reference phase ⁇ c1 at this time can be determined, for example, from an optimal value predetermined according to the operating state of the motor 2 (rotational speed, torque, power supply voltage, etc.).
  • the first change of the carrier reference phase ⁇ c1 (0° to 90°) and the second change of the carrier reference phase ⁇ c1 (90° to 0°) are Each change is 90°, and the third change (from 0° to ⁇ 45°) of the carrier reference phase ⁇ c1 has a change amount of 45° per time.
  • the change amount of the carrier reference phase ⁇ c1 per one time is 90° or less in this embodiment.
  • the carrier reference phase ⁇ c1 can be changed stepwise a plurality of times until the carrier reference phase ⁇ c1 reaches the optimum value.
  • the torque fluctuation shock of the motor 2 due to the change of the carrier reference phase ⁇ c1 can be alleviated.
  • the inverter control device 1 changes the carrier reference phase ⁇ c1 multiple times when switching from the asynchronous pulse control mode to the synchronous pulse control mode. Since it did in this way, the torque ripple which generate
  • FIG. 9 is a block diagram of the carrier frequency calculator 16 according to the third embodiment of the present invention.
  • the block diagram of FIG. 9 differs from the block diagram of FIG. 3 described in the first embodiment in that a recording unit 167 is further provided.
  • the present embodiment will be described below with a focus on this difference.
  • the recording unit 167 receives the torque T of the motor 2 and the three-phase alternating currents Iu, Iv, and Iw, and switches from the asynchronous pulse control mode to the synchronous pulse control mode according to the mode selection signal Sm output from the carrier frequency selection unit 166. When it is detected that the switching has been performed, the amount of change in the torque T and the three-phase AC currents Iu, Iv, and Iw before and after the switching is recorded.
  • the torque T may be measured, for example, by a torque sensor (not shown) installed on the output shaft of the motor 2, or may be obtained indirectly from other measured values.
  • the three-phase AC currents Iu, Iv, and Iw may be measured for only one phase or two phases, or may be measured for all three phases.
  • the recording unit 167 does not necessarily record the amount of change in both the torque T and the three-phase alternating currents Iu, Iv, and Iw, and may record the amount of change in at least one of them.
  • the recording unit 167 After recording the amount of change in the torque T and/or the three-phase AC currents Iu, Iv, and Iw at the time of switching as described above, the recording unit 167 determines whether or not each of these amounts of change exceeds a predetermined threshold. do. As a result, when it is determined that the threshold value is exceeded, a determination signal Dth indicating that fact is output to carrier reference phase setting section 163 .
  • the carrier reference phase setting section 163 switches from the asynchronous pulse control mode to the synchronous pulse control mode according to the mode selection signal Sm output from the carrier frequency selection section 166.
  • the value of the carrier reference phase ⁇ c1 is changed.
  • the determination signal Dth is output from the recording unit 167
  • the changed carrier reference phase ⁇ c1 is replaced with a value different from that at the previous switching.
  • FIG. 10 is a diagram showing an example of carrier reference phase and torque fluctuation (or current fluctuation) when switching from the asynchronous pulse control mode to the synchronous pulse control mode in the third embodiment of the present invention.
  • the inverter control device 1 of the present embodiment first, when switching from the asynchronous pulse control mode to the synchronous pulse control mode, the value of the carrier reference phase ⁇ c1 set in the carrier reference phase setting section 163 is set to , from 0° to the first candidate value of 90°. The amount of change in the torque (or current) of the motor 2 at this time is recorded in the recording unit 167 .
  • the amount of change in the torque (or current) of the motor 2 at the time of switching from the asynchronous pulse control mode to the synchronous pulse control mode is changed as shown in graph 93, for example. Assume that the amount is recorded in the recording unit 167 . The amount of change in this graph 93 is greater than or equal to a predetermined threshold value 95 set in advance. In such a case, the recording unit 167 outputs the determination signal Dth to the carrier reference phase setting unit 163 to notify that the amount of change in torque (or current) at the time of switching has exceeded the threshold value 95 .
  • the carrier reference phase setting section 163 changes the carrier reference phase ? Change the value from 0° to the second candidate value of -90°.
  • the amount of change in the torque (or current) of the motor 2 at this time is recorded in the recording unit 167 .
  • the amount of change in the torque (or current) of the motor 2 at the time of switching from the asynchronous pulse control mode to the synchronous pulse control mode is changed as shown in graph 94, for example.
  • the amount is recorded in the recording unit 167 . Since the amount of change in this graph 94 is less than the predetermined threshold value 95 set in advance, the recording unit 167 stops outputting the determination signal Dth.
  • the carrier reference phase setting unit 163 changes the value of the carrier reference phase ⁇ c1 to the second candidate value, thereby suppressing the amount of change in torque (or current) at the time of switching. can.
  • the inverter control device 1 changes the value of the carrier reference phase ⁇ c1 before and after switching from the asynchronous pulse control mode to the synchronous pulse control mode.
  • a recording unit 167 is provided for recording the amount of change in at least one of torque and current. Then, when the amount of change recorded in the recording unit 167 exceeds a predetermined threshold value, the value of the changed carrier reference phase ⁇ c1 is replaced with another value. Since this is done, the value of the carrier reference phase ⁇ c1 after change can be adjusted to an optimum value capable of suppressing the torque and current of the motor 2 .
  • each configuration (FIGS. 2, 3, 7, 9, etc.) in the inverter control device 1 does not depend on the hardware configuration, but the functions of each configuration are controlled by the CPU and the program. may be realized.
  • this program can be stored in advance in a storage medium of the inverter control device and provided.
  • the program can be stored and provided in an independent storage medium, or the program can be recorded and stored in the storage medium of the inverter control device via a network line. It may be supplied as a computer readable computer program product in various forms such as a data signal (carrier wave).
  • the present invention is not limited to the above embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the features of the present invention are not impaired. . Moreover, it is good also as a structure which combined above-mentioned several embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

インバータ制御装置は、パルス幅変調において用いられるキャリア波の周波数をモータの回転数に応じて変化させる同期パルス制御モードと、前記キャリア波の周波数を前記モータの回転数によらず一定とする非同期パルス制御モードと、のいずれかを選択して、前記パルス幅変調を行い、前記非同期パルス制御モードから前記同期パルス制御モードへの切替時に、前記キャリア波の位相の基準値であるキャリア基準位相を、前記切替の前後で異なる値に変更する。

Description

インバータ制御装置、インバータ制御方法
 本発明は、インバータの制御装置および制御方法に関する。
 永久磁石同期モータは、ブラシや整流子といった機械的な電流の整流機構を必要とせず保守が容易な上、小型軽量で効率、力率ともに高いため、電気自動車の駆動・発電等の用途に広く普及している。一般的に永久磁石同期モータは、電機子コイル等で構成される固定子と、永久磁石や鉄心等で構成される回転子から成る。バッテリ等の直流電源から供給される直流電圧をインバータで交流電圧に変換し、この交流電圧を用いて永久磁石同期モータの電機子コイルに交流電流を流すことにより、電機子磁束が発生する。この電機子磁束と永久磁石の磁石磁束との間に生じる吸引力・反発力によって発生するマグネットトルクや、回転子を透過する電機子磁束の磁気抵抗を最小化するために発生するリラクタンストルクにより、永久磁石同期モータが駆動される。
 永久磁石同期モータに交流電流を供給してその駆動を制御するインバータは、一般に、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal‐Oxide‐Semiconductor Field‐Effect Transistor)等の半導体スイッチング素子が複数搭載されている。インバータにはインバータ制御装置が接続され、インバータ制御装置において生成したゲート信号を、駆動回路を介して各半導体スイッチング素子のゲート端子へ出力することにより、各半導体スイッチング素子のオンオフ状態が切り替えられ、直流電力から交流電力への電力変換が行われる。
 インバータ制御装置におけるゲート信号の生成方法として、PWM変調による生成方法が周知である。PWM変調では、外部からのトルク指令に応じて生成した電圧指令と、三角波やのこぎり波等の搬送波とを比較し、その比較結果に応じたパルス幅のゲート信号を生成する。このとき、搬送波の周波数をモータの回転数に同期して変化させる同期パルス制御と、搬送波の周波数をモータの回転数に関わらず一定にする非同期パルス制御とのいずれかが選択される。
 従来、モータの低回転時や、モータが設置された機構部の共振周波数帯付近の回転数では、騒音や振動を抑制するために非同期パルス制御を選択し、それ以外の回転数では同期パルス制御を選択することで、モータの回転数に応じて非同期パルス制御と同期パルス制御を切り替える手法が知られている。このような場合、非同期パルス制御と同期パルス制御とを切り替える際に搬送波の位相が不連続となることで、モータの制御が不安定になるおそれがある。
 上記の問題点を解決するものとして、下記特許文献1の技術が知られている。特許文献1には、非同期PWM用三角波と同期用三角波のキャリア位相が一致するタイミングで、非同期PWMから同期PWMへの切り替えを行う技術が開示されている。
国際公開第2019/123634号
 特許文献1に記載の技術では、非同期パルス制御から同期パルス制御への切り替えを実施すべきタイミングになっても、その時点から非同期PWM用三角波と同期用三角波のキャリア位相が一致するタイミングまで待たなければならないため、即時の切り替えを行うことができない。
 本発明は、上記の課題に鑑みてなされたものであり、非同期パルス制御から同期パルス制御への切り替えを即時に行いつつ、モータを安定して制御可能なインバータの制御装置および制御方法を提供することを目的とする。
 本発明によるインバータ制御装置は、インバータが有する複数のスイッチング素子を駆動させるためのPWMパルス信号をパルス幅変調により生成して前記インバータに出力することで、前記インバータを制御してモータを回転駆動させるものであって、前記パルス幅変調において用いられるキャリア波の周波数を前記モータの回転数に応じて変化させる同期パルス制御モードと、前記キャリア波の周波数を前記モータの回転数によらず一定とする非同期パルス制御モードと、のいずれかを選択して、前記パルス幅変調を行い、前記非同期パルス制御モードから前記同期パルス制御モードへの切替時に、前記キャリア波の位相の基準値であるキャリア基準位相を、前記切替の前後で異なる値に変更する。
 本発明によるインバータ制御方法は、インバータが有する複数のスイッチング素子を駆動させるためのPWMパルス信号をパルス幅変調により生成して前記インバータに出力することで、前記インバータを制御してモータを回転駆動させる方法であって、前記パルス幅変調において用いられるキャリア波の周波数を前記モータの回転数に応じて変化させる同期パルス制御モードと、前記キャリア波の周波数を前記モータの回転数によらず一定とする非同期パルス制御モードと、のいずれかを選択して、前記パルス幅変調を行い、前記非同期パルス制御モードから前記同期パルス制御モードへの切替時に、前記キャリア波の位相の基準値であるキャリア基準位相を、前記切替の前後で異なる値に変更する。
 本発明によれば、非同期パルス制御から同期パルス制御への切り替えを即時に行いつつ、モータを安定して制御可能なインバータの制御装置および制御方法を提供できる。
本発明の一実施形態に係るインバータ制御装置を備えたモータ駆動システムの全体構成図。 本発明の一実施形態に係るインバータ制御装置の機能構成を示すブロック図。 本発明の第1の実施形態に係るキャリア周波数演算部のブロック図。 キャリア周波数選択部の動作例を示す図。 本発明の第1の実施形態における非同期パルス制御モードから同期パルス制御モードへの切替時のキャリア基準位相とトルク変動の例を示す図。 非同期パルス制御モードから同期パルス制御モードへの切替時における同期キャリア周波数の変化を示す図。 本発明の第2の実施形態に係るキャリア周波数演算部のブロック図。 本発明の第2の実施形態における非同期パルス制御モードから同期パルス制御モードへの切替時のキャリア基準位相とトルク変動の例を示す図。 本発明の第3の実施形態に係るキャリア周波数演算部のブロック図。 本発明の第3の実施形態における非同期パルス制御モードから同期パルス制御モードへの切替時のキャリア基準位相とトルク変動の例を示す図。
[第1の実施形態]
 以下、本発明の第1の実施形態について図面を用いて説明する。
 図1は、本発明の一実施形態に係るインバータ制御装置を備えたモータ駆動システムの全体構成図である。図1において、モータ駆動システム100は、インバータ制御装置1、モータ2、インバータ3、回転位置検出器4、高圧バッテリ5、電流検出部7を有している。
 インバータ制御装置1には、回転位置検出器4からモータ2の回転位置θが入力される。また、電流検出部7から、モータ2に流れる三相の交流電流をそれぞれ表すIu、Iv、Iwが入力され、図示省略した上位制御装置よりトルク指令T*が入力される。インバータ制御装置1は、これらの入力情報を基に、インバータ3が有する複数のスイッチング素子を駆動させるためのPWMパルス信号を生成し、インバータ3に出力する。これにより、インバータ3の動作を制御し、モータ2を回転駆動させる。なお、インバータ制御装置1の詳細については後で説明する。
 インバータ3は、インバータ回路31、PWM信号駆動回路32および平滑キャパシタ33を有する。PWM信号駆動回路32は、インバータ制御装置1から入力されるPWMパルス信号に基づいて、インバータ回路31が有する各スイッチング素子を制御するためのゲート駆動信号を生成し、インバータ回路31に出力する。インバータ回路31は、U相、V相、W相の上アームおよび下アームにそれぞれ対応するスイッチング素子を有している。PWM信号駆動回路32から入力されたゲート駆動信号に従ってこれらのスイッチング素子がそれぞれスイッチング駆動されることで、高圧バッテリ5から供給される直流電力が交流電力に変換され、モータ2に出力される。平滑キャパシタ33は、高圧バッテリ5からインバータ回路31に供給される直流電力を平滑化する。
 高圧バッテリ5は、モータ駆動システム100の直流電圧源であり、インバータ3へ電源電圧Hvdcを出力する。高圧バッテリ5の電源電圧Hvdcは、インバータ3のインバータ回路31とPWM信号駆動回路32によって可変電圧、可変周波数のパルス状の三相交流電圧に変換され、線間電圧としてモータ2に印加される。これにより、高圧バッテリ5の直流電力を基に、インバータ3からモータ2へ交流電力が供給される。なお、高圧バッテリ5の電源電圧Hvdcは、その充電状態に応じて変動する。
 モータ2は、インバータ3から供給される交流電力により回転駆動される三相電動機であり、固定子(ステータ)および回転子(ロータ)を有する。本実施形態では、モータ2として永久磁石同期モータを用いる例を説明するが、例えば誘導モータやシンクロナスリラクタンスモータなど、他の方式のモータ2を用いても構わない。インバータ3から入力された交流電力が固定子に設けられた三相のコイルLu、Lv、Lwに印加されると、モータ2において三相交流電流Iu、Iv、Iwが導通し、各コイルに磁束が発生する。この各コイルの磁束と、回転子に配置された永久磁石の磁石磁束との間で吸引力・反発力が発生することで、回転子にトルクが発生し、モータ2が回転駆動される。
 モータ2には、回転子の回転位置θを検出するための回転位置センサ8が取り付けられている。回転位置検出器4は、回転位置センサ8の入力信号から回転位置θを演算する。回転位置検出器4による回転位置θの演算結果はインバータ制御装置1に入力され、インバータ制御装置1がモータ2の誘起電圧の位相に合わせてPWMパルス信号を生成することで行われる交流電力の位相制御において利用される。
 ここで、回転位置センサ8には、鉄心と巻線とから構成されるレゾルバがより好適であるが、GMRセンサなどの磁気抵抗素子や、ホール素子を用いたセンサであっても問題ない。回転子の磁極位置を測定することができれば、任意のセンサを回転位置センサ8として用いることができる。また、回転位置検出器4は、回転位置センサ8からの入力信号を用いず、モータ2に流れる三相交流電流Iu、Iv、Iwや、インバータ3からモータ2に印加される三相交流電圧Vu、Vv、Vwを用いて回転位置θを推定してもよい。
 インバータ3とモータ2の間の電流経路には、電流検出部7が配置されている。電流検出部7は、モータ2を通電する三相交流電流Iu、Iv、Iw(U相交流電流Iu、V相交流電流IvおよびW相交流電流Iw)を検出する。電流検出部7は、例えばホール電流センサ等を用いて構成される。電流検出部7による三相交流電流Iu、Iv、Iwの検出結果はインバータ制御装置1に入力され、インバータ制御装置1が行うPWMパルス信号の生成に利用される。なお、図1では電流検出部7が3つの電流検出器により構成される例を示しているが、電流検出器を2つとし、残る1相の交流電流は、三相交流電流Iu、Iv、Iwの和が零であることから算出してもよい。また、高圧バッテリ5からインバータ3に流入するパルス状の直流電流を、平滑キャパシタ33とインバータ3の間に挿入されたシャント抵抗等により検出し、この直流電流とインバータ3からモータ2に印加される三相交流電圧Vu、Vv、Vwに基づいて三相交流電流Iu、Iv、Iwを求めてもよい。
 次に、インバータ制御装置1の詳細について説明する。図2は、本発明の一実施形態に係るインバータ制御装置1の機能構成を示すブロック図である。
 図2に示されるように、インバータ制御装置1は、電流指令生成部11、速度算出部12、三相/dq変換部13、電流制御部14、dq/三相電圧変換部15、キャリア周波数演算部16、キャリア波生成部17、PWM制御部18の各機能ブロックを有する。インバータ制御装置1は、例えばマイクロコンピュータにより構成され、マイクロコンピュータにおいて所定のプログラムを実行することにより、これらの機能ブロックを実現することができる。あるいは、これらの機能ブロックの一部または全部をロジックICやFPGA等のハードウェア回路を用いて実現してもよい。
 電流指令生成部11は、入力されたトルク指令T*と電源電圧Hvdcに基づき、d軸電流指令Id*およびq軸電流指令Iq*を演算する。ここでは、例えば予め設定された電流指令マップや、d軸電流Id,q軸電流Iqとモータトルクの関係を表す数式等を用いて、トルク指令T*に応じたd軸電流指令Id*、q軸電流指令Iq*を求める。
 速度算出部12は、回転位置θの時間変化から、モータ2の回転速度(回転数)を表すモータ回転速度ωrを演算する。なお、モータ回転速度ωrは、角速度(rad/s)または回転数(rpm)のいずれで表される値であってもよい。また、これらの値を相互に変換して用いてもよい。
 三相/dq変換部13は、電流検出部7が検出した三相交流電流Iu、Iv、Iwに対して、回転位置検出器4が求めた回転位置θに基づくdq変換を行い、d軸電流値Idおよびq軸電流値Iqを演算する。
 電流制御部14は、電流指令生成部11から出力されるd軸電流指令Id*およびq軸電流指令Iq*と、三相/dq変換部13から出力されるd軸電流値Idおよびq軸電流値Iqとの偏差に基づき、これらの値がそれぞれ一致するように、トルク指令T*に応じたd軸電圧指令Vd*およびq軸電圧指令Vq*を演算する。ここでは、例えばPI制御等の制御方式により、d軸電流指令Id*とd軸電流値Idの偏差に応じたd軸電圧指令Vd*と、q軸電流指令Iq*とq軸電流値Iqの偏差に応じたq軸電圧指令Vq*とを求める。
 dq/三相電圧変換部15は、電流制御部14が演算したd軸電圧指令Vd*およびq軸電圧指令Vq*に対して、回転位置検出器4が求めた回転位置θに基づく三相変換を行い、三相電圧指令Vu*、Vv*、Vw*(U相電圧指令値Vu*、V相電圧指令値Vv*およびW相電圧指令値Vw*)を演算する。これにより、トルク指令T*に応じた三相電圧指令Vu*、Vv*、Vw*を生成する。
 キャリア周波数演算部16は、速度算出部12が求めたモータ回転速度ωrに基づき、同期パルス制御モードまたは非同期パルス制御モードのいずれかを選択する。同期パルス制御モードとは、PWMパルス信号の生成に用いられるキャリア波の周波数をモータ回転速度ωrに応じて変化させるモードである。非同期パルス制御モードとは、キャリア波の周波数をモータ回転速度ωrによらず一定とするモードである。同期パルス制御モードを選択した場合、キャリア周波数演算部16は、電流指令生成部11が生成したd軸電圧指令Vd*およびq軸電圧指令Vq*、回転位置検出器4が求めた回転位置θ、モータ回転速度ωrに基づき、キャリア波の周波数を表すキャリア周波数fcを演算する。非同期パルス制御モードを選択した場合、キャリア周波数演算部16は、予め定められた周波数をキャリア周波数fcに設定する。これにより、モータ回転速度ωrに応じたモードを選択してキャリア周波数fcを決定する。なお、キャリア周波数演算部16によるキャリア周波数fcの演算方法の詳細については後述する。
 キャリア波生成部17は、キャリア周波数演算部16が決定したキャリア周波数fcに基づき、三相電圧指令Vu*、Vv*、Vw*のそれぞれについて、PWM制御部18がPWMパルス信号を生成するために行うパルス幅変調において用いられるキャリア波Trを生成する。キャリア波Trは、三角波、のこぎり波のいずれであってもよい。本実施形態では、キャリア波Trがのこぎり波である場合を説明するが、三角波の場合でも同様の処理が可能である。
 PWM制御部18は、キャリア波生成部17から出力されるキャリア波Trを用いて、dq/三相電圧変換部15から出力される三相電圧指令Vu*、Vv*、Vw*をそれぞれパルス幅変調し、インバータ3の動作を制御するためのPWMパルス信号を生成する。具体的には、dq/三相電圧変換部15から出力される三相電圧指令Vu*、Vv*、Vw*と、キャリア波生成部17から出力されるキャリア波Trとの比較結果に基づき、U相、V相、W相の各相について、インバータ3のスイッチング素子に対するPWMパルス信号を生成する。このとき、各相の上アームのPWMパルス信号Gup、Gvp、Gwpをそれぞれ論理反転させ、下アームのPWMパルス信号Gun、Gvn、Gwnを生成する。PWM制御部18が生成したPWMパルス信号は、インバータ制御装置1からインバータ3のPWM信号駆動回路32に出力され、PWM信号駆動回路32によってゲート駆動信号に変換される。これにより、インバータ回路31の各スイッチング素子がオン/オフ制御され、インバータ3の出力電圧が調整される。
 次に、インバータ制御装置1におけるキャリア周波数演算部16の動作について説明する。キャリア周波数演算部16は前述のように、同期パルス制御モードまたは非同期パルス制御モードのいずれかを選択する。そして、同期パルス制御モードを選択した場合は、d軸電圧指令Vd*およびq軸電圧指令Vq*と、回転位置θと、モータ回転速度ωrとに基づき、キャリア周波数fcを演算する。このキャリア周波数fcに従って、キャリア波生成部17が生成するキャリア波Trの周波数を逐次的に制御することで、三相電圧指令Vu*、Vv*、Vw*の電圧波形に対して、キャリア波Trの周期と位相がそれぞれ所定の関係となるように調整する。
 図3は、本発明の第1の実施形態に係るキャリア周波数演算部16のブロック図である。キャリア周波数演算部16は、パルス制御判定部161、電圧位相演算部162、キャリア基準位相設定部163、電圧位相誤差演算部164、同期キャリア周波数演算部165、キャリア周波数選択部166を有する。
 パルス制御判定部161は、モータ回転速度ωrに基づき、同期PWM制御における電圧指令の1周期あたりのキャリア波のパルス数、すなわち、三相電圧指令Vu*、Vv*、Vw*に対するキャリア周波数fcの倍率を表す同期パルス数Ncを決定する。パルス制御判定部161は例えば、モータ回転速度ωrが比較的低いときにはNc=15、モータ回転速度ωrが比較的高いときにはNc=9のように、同期パルス数Ncを決定することができる。
 電圧位相演算部162は、d軸電圧指令Vd*およびq軸電圧指令Vq*と、回転位置θと、モータ回転速度ωrと、キャリア周波数fcに基づいて、以下の式(1)~(4)により電圧位相θvを演算する。電圧位相θvは、インバータ3に対する電圧指令である三相電圧指令Vu*、Vv*、Vw*の位相を表している。
 θv=θ+φv+φdqv+0.5π ・・・(1)
 φv=ωr・1.5Tc ・・・(2)
 Tc=1/fc ・・・(3)
 φdqv=atan(Vq/Vd) ・・・(4)
 ここで、φvは電圧位相の演算遅れ補償値を、Tcはキャリア波Trの周期を、φdqvはd軸からの電圧位相をそれぞれ表すものとする。演算遅れ補償値φvは、回転位置検出器4が回転位置θを取得してからインバータ制御装置1がインバータ3にゲート信号を出力するまでの間に、1.5制御周期分の演算遅れが発生することを補償する値である。なお、本実施形態では、式(1)右辺の第4項で0.5πを加算している。これは、式(1)右辺の第1項~第3項で演算される電圧位相がcos波であるため、これをsin波に視点変換するための演算である。
 キャリア基準位相設定部163は、パルス制御判定部161により決定された同期パルス数Ncと、電圧位相誤差演算部164が演算する電圧位相誤差Δθvに基づき、キャリア波Trの位相の基準値であるキャリア基準位相θc1を設定する。このときキャリア基準位相設定部163は、キャリア周波数選択部166が出力するモード選択信号Smに基づき、非同期パルス制御モードから同期パルス制御モードへの切替時に、モータ2において生じるトルクリプルがなるべく低減できるような値で、キャリア基準位相θc1を設定する。なお、キャリア基準位相設定部163によるキャリア基準位相θc1の具体的な設定方法については後述する。
 電圧位相誤差演算部164は、同期パルス数Ncと電圧位相θvに基づき、以下の式(5)、(6)により電圧位相誤差Δθvを演算する。
 Δθv=mod(θv/θvc1) ・・・(5)
 θvc1=2π/Nc ・・・(6)
 ここで、式(6)で求められるθvc1の値は、キャリア波Trの1周期あたりの電圧位相θvの変化量に相当する。また、式(5)におけるmodは、剰余演算を表すものとする。
 式(5)で求められる電圧位相誤差Δθvは、キャリア波Trの1周期に対する電圧位相θvの位置を表している。換言すると、電圧位相誤差Δθvは、インバータ3に対する電圧指令である三相電圧指令Vu*、Vv*、Vw*と、パルス幅変調に用いるキャリア波Trとの間での、相対的な位相差を表している。
 同期キャリア周波数演算部165は、電圧位相誤差演算部164により演算された電圧位相誤差Δθvと、モータ回転速度ωrと、同期パルス数Ncと、キャリア基準位相設定部163により設定されたキャリア基準位相θc1に基づき、以下の式(7)、(8)により同期キャリア周波数fcsを演算する。
 fcs=ωr・Nc・(1+Δθc・K)/(2π) ・・・(7)
 Δθc=Δθv・Nc-θc1 ・・・(8)
 式(8)で求められるキャリア位相誤差Δθcは、電圧位相誤差Δθvをキャリア波の位相に置き換えた値がキャリア基準位相θc1に対してどの程度ずれているかを表している。換言すると、キャリア位相誤差Δθcは、三相電圧指令Vu*、Vv*、Vw*を基準としたキャリア波Trの位相とキャリア基準位相θc1との差分を表している。
 同期キャリア周波数演算部165は、例えばPLL(Phase Locked Loop)制御により、式(7)、(8)に基づく同期キャリア周波数fcsを演算することができる。なお、式(7)においてゲインKは一定値としてもよいし、条件により可変としてもよい。
 同期パルス制御モードの選択時には、電圧位相誤差演算部164が所定の演算周期ごとに式(5)、(6)に従って電圧位相誤差Δθvを演算し、その演算結果を用いて、同期キャリア周波数演算部165が所定の演算周期ごとに式(7)、(8)に従って同期キャリア周波数fcsを演算する。これにより、キャリア周波数演算部16において、インバータ3に対する電圧指令を基準としたキャリア波Trの位相をキャリア基準位相θc1に合わせつつ、電圧指令の1周期中に含まれるキャリア波Trの数が同期パルス数Ncと一致するように、キャリア波Trの周波数調整を行うことができる。
 キャリア周波数選択部166は、モータ回転速度ωrに基づいて、同期パルス制御モードまたは非同期パルス制御モードのいずれかを選択する。このモード選択結果に応じて、同期キャリア周波数演算部165により演算された同期キャリア周波数fcsと、所定の非同期キャリア周波数fcnsとのいずれかを選択し、キャリア周波数fcとして出力する。すなわち、同期パルス制御モードを選択した場合、キャリア周波数選択部166は、キャリア周波数fcとして同期キャリア周波数fcsを出力する。一方、非同期パルス制御モードを選択した場合、キャリア周波数選択部166は、キャリア周波数fcとして非同期キャリア周波数fcnsを出力する。ここで、非同期キャリア周波数fcnsは、キャリア周波数選択部166において予め設定された一定値である。さらにキャリア周波数選択部166は、モータ回転速度ωrに基づく上記のモード選択結果に応じて、同期パルス制御モードまたは非同期パルス制御モードのいずれかを選択したかを示すモード選択信号Smを出力する。
 キャリア周波数選択部166の具体的な動作例について、図4を参照して以下に説明する。図4は、キャリア周波数選択部166の動作例を示す図である。
 図4(a)は、モータ回転速度ωrの時間変化の様子を示す回転数プロファイルの一例である。例えば図4(a)に示すように、モータ駆動システム100において、モータ回転速度ωrは500(rpm/s)の割合で増減し、19500(rpm)に達すると一定となる。
 図4(b)は、モータ回転速度ωrに基づくキャリア周波数fcの制御プロファイルの一例である。キャリア周波数選択部166は、図4(a)の回転数プロファイルに従って上記のように変化するモータ回転速度ωrに応じて、例えば図4(b)に示すようにキャリア周波数fcの制御を行う。すなわち、モータ回転速度ωrが6000(rpm)未満のときには、非同期パルス制御モードを選択し、キャリア周波数を一定のfc=6(kHz)に制御する。一方、モータ回転速度ωrが6000~10000(rpm)の範囲内または11000~19500(rpm)の範囲内にある場合は、同期パルス制御モードを選択して同期パルス数をそれぞれNc=15、9とすることで、モータ回転速度ωrに応じてキャリア周波数fcを変化させるように制御する。ただし、モータ2の取り付け構造等に起因する機械的共振を避けるため、モータ回転速度ωrが10000~11000(rpm)の範囲内にある場合は、非同期パルス制御モードを選択し、キャリア周波数を一定のfc=12(kHz)に制御する。
 キャリア周波数選択部166が上記のようなキャリア周波数fcの制御を行う場合、モータ2の加速時、すなわちモータ回転速度ωrが増加しているときには、ωr=6000、11000(rpm)のときに、非同期パルス制御モードから同期パルス制御モードへの切り替えが発生する。一方、モータ2の減速時、すなわちモータ回転速度ωrが減少しているときには、ωr=10000(rpm)のときに、非同期パルス制御モードから同期パルス制御モードへの切り替えが発生する。
 本実施形態のキャリア周波数演算部16は、各ブロックにおいて以上説明したような処理をそれぞれ行うことにより、同期パルス制御モードまたは非同期パルス制御モードのいずれかを選択して、キャリア周波数fcを制御することができる。
 次に、キャリア周波数演算部16のうち、キャリア基準位相設定部163におけるキャリア基準位相θc1の設定方法の詳細について説明する。
 図5は、本発明の第1の実施形態における非同期パルス制御モードから同期パルス制御モードへの切替時のキャリア基準位相とトルク変動の例を示す図である。従来のインバータ制御装置では、非同期パルス制御モードから同期パルス制御モードへの切替時に、例えばグラフ51に示すように、キャリア基準位相θc1を0°で固定する。この場合、切替時の電圧位相θvの値によっては、前述の式(8)で求められるキャリア位相誤差Δθcの値が切替直後に大きくなり、式(7)で求められる同期キャリア周波数fcsが一時的に大きく変動する。その結果、グラフ53に示すように大きなトルク変動が生じる。
 一方、本実施形態のインバータ制御装置1では、非同期パルス制御モードから同期パルス制御モードへの切替時に、例えばグラフ52に示すように、キャリア基準位相設定部163において設定するキャリア基準位相θc1の値を、0°から90°に変更する。これにより、切替直後におけるキャリア位相誤差Δθcの値を減少させ、同期キャリア周波数fcsの変動を抑えることができる。その結果、グラフ54に示すように、従来のインバータ制御装置と比較してトルク変動を抑制することができる。
 上記のように、非同期パルス制御モードから同期パルス制御モードへの切替時にキャリア基準位相θc1の値を変更することで、同期キャリア周波数fcsの変動を抑えることができる理由を、以下に図6を参照して説明する。
 同期キャリア周波数演算部165は、前述の式(8)により、キャリア波Trの位相とキャリア基準位相θc1との差分を表すキャリア位相誤差Δθcを計算する。キャリア周波数選択部166において非同期パルス制御モードから同期パルス制御モードへの切替が行われると、キャリア周波数fcの値が非同期キャリア周波数fcnsから同期キャリア周波数fcsに切り替えられる。このとき同期キャリア周波数演算部165は、キャリア位相誤差Δθcに基づき、キャリア波Trの位相をキャリア基準位相θc1と一致させるように、式(7)に従ってキャリア周波数fc(同期キャリア周波数fcs)の値を調整する。
 ここで、図5で説明した従来のインバータ制御装置のように、キャリア基準位相θc1が0°で固定されていると、切替時の電圧位相θvの値によっては、切替直後にキャリア位相誤差Δθcの値が大きくなってしまう。例えば、切替時の電圧位相θvの値から求められる電圧位相誤差Δθvの値がΔθv≒180°である場合には、図6(a)に示すように、切替直後のキャリア周波数fcが大きく変化することで、キャリア波Trの波形にずれが生じてしまう。このようなキャリア波Trの波形ずれは、PWM制御部18において生成されるPWMパルス信号の誤差となり、インバータ3の出力電圧に誤差を生じさせる。その結果、モータ2において前述のようなトルク変動が生じることになる。
 一方、本実施形態のインバータ制御装置1では、非同期パルス制御モードから同期パルス制御モードへの切替時に、キャリア基準位相設定部163において設定するキャリア基準位相θc1の値を変更する。具体的には、例えば図5で説明したように、キャリア基準位相θc1の値を0°から90°に変更する。これにより、切替時の電圧位相θvの値から求められる電圧位相誤差Δθvの値をΔθv≒90°に低減し、図6(b)に示すように、切替直後のキャリア波Trの波形ずれを図6(a)の場合よりも小さくする。これにより、PWM制御部18において生成されるPWMパルス信号の誤差を小さくして、モータ2のトルク変動を抑制することができる。
 なお、キャリア基準位相設定部163は、例えば次のようにして、変更後のキャリア基準位相θc1の値を定めることができる。
 キャリア基準位相設定部163は、キャリア周波数選択部166から出力されるモード選択信号Smにより、非同期パルス制御モードから同期パルス制御モードへの切替が行われたことを検知すると、切替直前の電圧位相誤差Δθvの値を電圧位相誤差演算部164から取得する。この電圧位相誤差Δθvの値は、三相電圧指令Vu*、Vv*、Vw*と非同期パルス制御モードで出力されていたキャリア波Trとの相対的な位相差を表している。キャリア基準位相設定部163は、取得した切替直前の電圧位相誤差Δθvの値から、以下の式(9)で表されるキャリア基準位相判定値Δθcdを求める。
 Δθcd=Δθv・Nc ・・・(9)
 キャリア基準位相設定部163は、求めたキャリア基準位相判定値Δθcdの値に基づき、以下の式(10)~(13)の判定条件を用いて、キャリア基準位相θc1の設定値を決定する。
 315°≦Δθcd または Δθcd<45° | θc1=0° ・・・(10)
 45°≦Δθcd<135° | θc1=90° ・・・(11)
 135°≦Δθcd<225° | θc1=180° ・・・(12)
 225°≦Δθcd<315° | θc1=270° ・・・(13)
 キャリア基準位相設定部163では、以上説明したような方法により、キャリア基準位相θc1を設定することができる。
 以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)インバータ制御装置1は、インバータ3が有する複数のスイッチング素子を駆動させるためのPWMパルス信号をパルス幅変調により生成してインバータ3に出力することで、インバータ3を制御してモータ2を回転駆動させる。インバータ制御装置1は、パルス幅変調において用いられるキャリア波Trの周波数fcをモータ2の回転数に応じて変化させる同期パルス制御モードと、キャリア周波数fcをモータ2の回転数によらず一定とする非同期パルス制御モードと、のいずれかを選択して、パルス幅変調を行う。そして、非同期パルス制御モードから同期パルス制御モードへの切替時に、キャリア波Trの位相の基準値であるキャリア基準位相θc1を、切替の前後で異なる値に変更する。このようにしたので、非同期パルス制御から同期パルス制御への切り替えを即時に行いつつ、モータ2を安定して制御することができる。
(2)インバータ制御装置1は、パルス制御判定部161と、キャリア基準位相設定部163と、電圧位相誤差演算部164と、同期キャリア周波数演算部165と、キャリア周波数選択部166と、キャリア波生成部17と、PWM制御部18とを備える。パルス制御判定部161は、モータ2の回転数を表すモータ回転速度ωrに基づいて、同期パルス制御モードにおける電圧指令の1周期あたりのキャリア波Trのパルス数を表す同期パルス数Ncを決定する。キャリア基準位相設定部163は、キャリア基準位相θc1を設定する。電圧位相誤差演算部164は、パルス制御判定部161により決定された同期パルス数Ncと、インバータ3に対する電圧指令の位相を表す電圧位相θvとに基づいて、電圧指令とキャリア波Trとの相対的な位相差を表す電圧位相誤差Δθvを演算する。同期キャリア周波数演算部165は、電圧位相誤差演算部164により演算された電圧位相誤差Δθvと、キャリア基準位相設定部163により設定されたキャリア基準位相θc1とに基づいて、同期パルス制御モードにおけるキャリア波Trの周波数である同期キャリア周波数fcsを決定する。キャリア周波数選択部166は、同期キャリア周波数演算部165により決定された同期キャリア周波数fcs、または、予め定められたキャリア波Trの周波数である非同期キャリア周波数fcnsのいずれかを選択する。キャリア波生成部17は、キャリア周波数選択部166により選択された周波数でキャリア波Trを生成する。PWM制御部18は、キャリア波生成部17により生成されたキャリア波Trと三相電圧指令Vu*、Vv*、Vw*とを用いてパルス幅変調を行い、PWMパルス信号を生成する。このようにしたので、非同期パルス制御と同期パルス制御を任意に切り替えつつ、それぞれの制御モードにおいてPWMパルス信号の生成を実現できる。
(3)インバータ制御装置1は、インバータ3がモータ2に出力する交流電流の相数に応じた信号数でキャリア波Trを生成する。具体的には、例えば三相電動機であるモータ2に三相交流電流を出力するインバータ3に対して、三相電圧指令Vu*、Vv*、Vw*のそれぞれについてキャリア波Trを生成する。このようにしたので、インバータの相数に関わらず、各相の交流電流に対して適切なキャリア波を生成することができる。
[第2の実施形態]
 次に、本発明の第2の実施形態について説明する。本実施形態に係るモータ駆動システムおよびインバータ制御装置は、第1の実施形態で説明した図1、図2とそれぞれ同一の構成を有しており、キャリア周波数演算部16における処理内容のみが第1の実施形態とは異なっている。したがって以下では、図1、図2の各構成を用いて、本実施形態の説明を行う。
 図7は、本発明の第2の実施形態に係るキャリア周波数演算部16のブロック図である。図7のブロック図では、第1の実施形態で説明した図3のブロック図と比べて、キャリア基準位相設定部163がキャリア基準位相設定部163Aに置き換えられている点が異なっている。以下では、この相違点を中心に本実施形態を説明する。
 キャリア基準位相設定部163Aは、第1の実施形態で説明したキャリア基準位相設定部163と同様に、パルス制御判定部161により決定された同期パルス数Ncと、電圧位相誤差演算部164が演算する電圧位相誤差Δθvに基づき、キャリア基準位相θc1を設定する。このときキャリア基準位相設定部163Aは、電圧位相θvに基づき、非同期パルス制御モードから同期パルス制御モードへの切替時に、キャリア基準位相θc1の値を複数回変更する。これにより、第1の実施形態と比べて、モード切替時にモータ2において生じるトルクリプルをさらに抑制するようにしている。
 図8は、本発明の第2の実施形態における非同期パルス制御モードから同期パルス制御モードへの切替時のキャリア基準位相とトルク変動の例を示す図である。図8において、グラフ51,53は、第1の実施形態で説明した図5のグラフ51,53とそれぞれ同じものである。すなわち、グラフ51は、従来のインバータ制御装置において切替時に0°に固定されているキャリア基準位相θc1を表し、グラフ53は、グラフ51に対応する従来の切替時のトルク変動の様子を表している。
 本実施形態のインバータ制御装置1では、非同期パルス制御モードから同期パルス制御モードへの切替時に、例えばグラフ82に示すように、キャリア基準位相設定部163Aにおいて設定するキャリア基準位相θc1の値を、0°から90°に変更する。その後、さらにキャリア基準位相θc1の値を90°から0°に変更し、続けて0°から-45°に変更する。これらのキャリア基準位相θc1の変更タイミングは、電圧位相θvに基づいて判断することができる。
 以上説明したように、本実施形態のインバータ制御装置1では、非同期パルス制御モードから同期パルス制御モードへの切替時に、キャリア基準位相θc1の値を複数回変更する。これにより、グラフ84に示すように、切替直後にモータ2において発生するトルクリプルを低減することができる。このときの最終的なキャリア基準位相θc1の値は、例えばモータ2の運転状態(回転数、トルク、電源電圧等)に応じて予め定められた最適値から決定することができる。
 なお、上記の例では、1回目のキャリア基準位相θc1の変更(0°から90°)と、2回目のキャリア基準位相θc1の変更(90°から0°)では、1回当たりの変更量がそれぞれ90°であり、3回目のキャリア基準位相θc1の変更(0°から-45°)では、1回当たりの変更量が45°である。このように、本実施形態における1回当たりのキャリア基準位相θc1の変更量は90°以下とすることが好ましい。このようにすれば、キャリア基準位相θc1が最適値となるまでに、複数回に渡って段階的にキャリア基準位相θc1の変更を行うことができる。その結果、キャリア基準位相θc1の変更によるモータ2のトルク変動ショックを緩和することができる。
 以上説明した本発明の第2の実施形態によれば、インバータ制御装置1は、非同期パルス制御モードから同期パルス制御モードへの切替時にキャリア基準位相θc1を複数回変更する。このようにしたので、切替直後にモータ2において発生するトルクリプルを低減することができる。なお、このときの1回当たりのキャリア基準位相θc1の変更量は、90°以下とすることが好ましい。このようにすれば、トルク変動ショックを緩和することが可能となる。
[第3の実施形態]
 次に、本発明の第3の実施形態について説明する。本実施形態に係るモータ駆動システムおよびインバータ制御装置も、前述の第2の実施形態と同様に、第1の実施形態で説明した図1、図2とそれぞれ同一の構成を有しており、キャリア周波数演算部16における処理内容のみが第1の実施形態とは異なっている。したがって以下では、図1、図2の各構成を用いて、本実施形態の説明を行う。
 図9は、本発明の第3の実施形態に係るキャリア周波数演算部16のブロック図である。図9のブロック図では、第1の実施形態で説明した図3のブロック図と比べて、記録部167をさらに有する点が異なっている。以下では、この相違点を中心に本実施形態を説明する。
 記録部167は、モータ2のトルクTおよび三相交流電流Iu、Iv、Iwを入力し、キャリア周波数選択部166から出力されるモード選択信号Smにより、非同期パルス制御モードから同期パルス制御モードへの切替が行われたことを検知すると、その前後でのトルクTおよび三相交流電流Iu、Iv、Iwの変化量を記録する。なお、トルクTは、例えばモータ2の出力軸に設置された不図示のトルクセンサにより測定してもよいし、他の測定値から間接的に求めてもよい。また、三相交流電流Iu、Iv、Iwは、いずれか1相分または2相分のみを測定してもよいし、3相分全てを測定してもよい。さらに、記録部167では、トルクTと三相交流電流Iu、Iv、Iwの両方の変化量を必ずしも記録する必要はなく、少なくとも一方の変化量を記録すればよい。
 上記のように切替時のトルクTおよび/または三相交流電流Iu、Iv、Iwの変化量を記録したら、記録部167は、これらの変化量がそれぞれ所定の閾値を超えているか否かを判定する。その結果、閾値を超えていると判定した場合には、そのことを示す判定信号Dthをキャリア基準位相設定部163に出力する。
 本実施形態において、キャリア基準位相設定部163は、第1の実施形態と同様に、キャリア周波数選択部166から出力されるモード選択信号Smに応じて、非同期パルス制御モードから同期パルス制御モードへの切替時に、キャリア基準位相θc1の値を変更する。このとき、記録部167から判定信号Dthが出力されている場合には、変更後のキャリア基準位相θc1を、前回の切替時とは別の値に置き換える。これを記録部167から判定信号Dthが出力されなくなるまで繰り返すことにより、切替時のトルクTや三相交流電流Iu、Iv、Iwの変化量が閾値未満となるように、キャリア基準位相θc1の値を変更している。
 図10は、本発明の第3の実施形態における非同期パルス制御モードから同期パルス制御モードへの切替時のキャリア基準位相とトルク変動(または電流変動)の例を示す図である。
 本実施形態のインバータ制御装置1では、まず、非同期パルス制御モードから同期パルス制御モードへの切替時に、例えばグラフ91に示すように、キャリア基準位相設定部163において設定するキャリア基準位相θc1の値を、0°から第一候補値である90°に変更する。このときのモータ2のトルク(または電流)の変化量が記録部167に記録される。
 ここで、キャリア基準位相θc1の第一候補値に対し、非同期パルス制御モードから同期パルス制御モードへの切替時におけるモータ2のトルク(または電流)の変化量として、例えばグラフ93に示すような変化量が記録部167において記録されたとする。このグラフ93の変化量は、予め設定された所定の閾値95以上である。このような場合に記録部167は、判定信号Dthをキャリア基準位相設定部163へ出力することで、切替時のトルク(または電流)の変化量が閾値95を超えたことを通知する。
 記録部167から判定信号Dthが入力されると、キャリア基準位相設定部163は、次の非同期パルス制御モードから同期パルス制御モードへの切替時には、例えばグラフ92に示すように、キャリア基準位相θc1の値を0°から第二候補値である-90°に変更する。このときのモータ2のトルク(または電流)の変化量が記録部167に記録される。
 ここで、キャリア基準位相θc1の第二候補値に対し、非同期パルス制御モードから同期パルス制御モードへの切替時におけるモータ2のトルク(または電流)の変化量として、例えばグラフ94に示すような変化量が記録部167において記録されたとする。このグラフ94の変化量は、予め設定された所定の閾値95未満であるため、記録部167は判定信号Dthの出力を停止する。これにより、次回以降の切替においても、キャリア基準位相設定部163がキャリア基準位相θc1の値を第二候補値に変更するようにして、切替時のトルク(または電流)の変化量を抑えることができる。
 以上説明した本発明の第3の実施形態によれば、インバータ制御装置1は、非同期パルス制御モードから同期パルス制御モードへの切替の前後でキャリア基準位相θc1の値を変更したときのモータ2のトルクおよび電流の少なくとも一方の変化量をそれぞれ記録する記録部167を備える。そして、この記録部167に記録された変化量が所定の閾値を超える場合に、変更後のキャリア基準位相θc1の値を別の値に置き換える。このようにしたので、変更後のキャリア基準位相θc1の値を、モータ2のトルクや電流を抑制可能な最適な値に調整することができる。
 なお、以上説明した各実施形態において、インバータ制御装置1内の各構成(図2、図3、図7、図9など)は、ハードウェアによる構成によらず、CPUとプログラムによって各構成の機能を実現するようにしてもよい。インバータ制御装置1内の各構成をCPUとプログラムによって実現する場合、ハードウェアの個数が減るため低コスト化できるという利点がある。また、このプログラムは、予めインバータ制御装置の記憶媒体に格納して提供することができる。あるいは、独立した記憶媒体にプログラムを格納して提供したり、ネットワーク回線によりプログラムをインバータ制御装置の記憶媒体に記録して格納することもできる。データ信号(搬送波)などの種々の形態のコンピュータ読み込み可能なコンピュータプログラム製品として供給してもよい。
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の複数の実施形態を組み合わせた構成としてもよい。
 1…インバータ制御装置、2…モータ、3…インバータ、4…回転位置検出器、5…高圧バッテリ、7…電流検出部、8…回転位置センサ、11…電流指令生成部、12…速度算出部、13…三相/dq変換部、14…電流制御部、15…dq/三相電圧変換部、16…キャリア周波数演算部、17…キャリア波生成部、18…PWM制御部、31…インバータ回路、32…PWM信号駆動回路、33…平滑キャパシタ、161…パルス制御判定部、162…電圧位相演算部、163,163A…キャリア基準位相設定部、164…電圧位相誤差演算部、165…同期キャリア周波数演算部、166…キャリア周波数選択部、167…記録部

Claims (7)

  1.  インバータが有する複数のスイッチング素子を駆動させるためのPWMパルス信号をパルス幅変調により生成して前記インバータに出力することで、前記インバータを制御してモータを回転駆動させるインバータ制御装置であって、
     前記パルス幅変調において用いられるキャリア波の周波数を前記モータの回転数に応じて変化させる同期パルス制御モードと、前記キャリア波の周波数を前記モータの回転数によらず一定とする非同期パルス制御モードと、のいずれかを選択して、前記パルス幅変調を行い、
     前記非同期パルス制御モードから前記同期パルス制御モードへの切替時に、前記キャリア波の位相の基準値であるキャリア基準位相を、前記切替の前後で異なる値に変更するインバータ制御装置。
  2.  請求項1に記載のインバータ制御装置であって、
     前記切替時に前記キャリア基準位相を複数回変更するインバータ制御装置。
  3.  請求項2に記載のインバータ制御装置であって、
     1回当たりの前記キャリア基準位相の変更量を90°以下とするインバータ制御装置。
  4.  請求項1に記載のインバータ制御装置であって、
     前記モータの回転数に基づいて、前記同期パルス制御モードにおける電圧指令の1周期あたりの前記キャリア波のパルス数を表す同期パルス数を決定するパルス制御判定部と、
     前記キャリア基準位相を設定するキャリア基準位相設定部と、
     前記パルス制御判定部により決定された前記同期パルス数と、前記インバータに対する前記電圧指令の位相を表す電圧位相とに基づいて、前記電圧指令と前記キャリア波との相対的な位相差を表す電圧位相誤差を演算する電圧位相誤差演算部と、
     前記電圧位相誤差演算部により演算された前記電圧位相誤差と、前記キャリア基準位相設定部により設定された前記キャリア基準位相とに基づいて、前記同期パルス制御モードにおける前記キャリア波の周波数を決定する同期キャリア周波数演算部と、
     前記同期キャリア周波数演算部により決定された前記キャリア波の周波数、または、予め定められた前記キャリア波の周波数のいずれかを選択するキャリア周波数選択部と、
     前記キャリア周波数選択部により選択された周波数で前記キャリア波を生成するキャリア波生成部と、
     前記キャリア波生成部により生成された前記キャリア波と、前記電圧指令とを用いて前記パルス幅変調を行い、前記PWMパルス信号を生成するPWM制御部と、を備えるインバータ制御装置。
  5.  請求項1に記載のインバータ制御装置であって、
     前記インバータが前記モータに出力する交流電流の相数に応じた信号数で前記キャリア波を生成するインバータ制御装置。
  6.  請求項1に記載のインバータ制御装置であって、
     前記切替の前後で前記キャリア基準位相の値を変更したときの前記モータのトルクおよび電流の少なくとも一方の変化量をそれぞれ記録する記録部を備え、
     前記記録部に記録された前記変化量が所定の閾値を超える場合に、変更後の前記キャリア基準位相の値を別の値に置き換えるインバータ制御装置。
  7.  インバータが有する複数のスイッチング素子を駆動させるためのPWMパルス信号をパルス幅変調により生成して前記インバータに出力することで、前記インバータを制御してモータを回転駆動させる方法であって、
     前記パルス幅変調において用いられるキャリア波の周波数を前記モータの回転数に応じて変化させる同期パルス制御モードと、前記キャリア波の周波数を前記モータの回転数によらず一定とする非同期パルス制御モードと、のいずれかを選択して、前記パルス幅変調を行い、
     前記非同期パルス制御モードから前記同期パルス制御モードへの切替時に、前記キャリア波の位相の基準値であるキャリア基準位相を、前記切替の前後で異なる値に変更するインバータ制御方法。
PCT/JP2022/005918 2021-06-09 2022-02-15 インバータ制御装置、インバータ制御方法 WO2022259624A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112022001599.3T DE112022001599T5 (de) 2021-06-09 2022-02-15 Wechselrichter-steuervorrichtung und wechselrichter-steuerverfahren
CN202280036967.8A CN117397161A (zh) 2021-06-09 2022-02-15 逆变器控制装置、逆变器控制方法
JP2023527492A JPWO2022259624A1 (ja) 2021-06-09 2022-02-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021096908 2021-06-09
JP2021-096908 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022259624A1 true WO2022259624A1 (ja) 2022-12-15

Family

ID=84425062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005918 WO2022259624A1 (ja) 2021-06-09 2022-02-15 インバータ制御装置、インバータ制御方法

Country Status (4)

Country Link
JP (1) JPWO2022259624A1 (ja)
CN (1) CN117397161A (ja)
DE (1) DE112022001599T5 (ja)
WO (1) WO2022259624A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125070A (ja) * 1990-09-14 1992-04-24 Toshiba Corp インバータの制御装置
JP2010213485A (ja) * 2009-03-11 2010-09-24 Toyota Motor Corp 回転電機制御システム
JP2017050977A (ja) * 2015-09-02 2017-03-09 三菱電機株式会社 電力変換装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123634A1 (ja) 2017-12-22 2019-06-27 三菱電機株式会社 回転電機の制御装置及び制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125070A (ja) * 1990-09-14 1992-04-24 Toshiba Corp インバータの制御装置
JP2010213485A (ja) * 2009-03-11 2010-09-24 Toyota Motor Corp 回転電機制御システム
JP2017050977A (ja) * 2015-09-02 2017-03-09 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
CN117397161A (zh) 2024-01-12
JPWO2022259624A1 (ja) 2022-12-15
DE112022001599T5 (de) 2024-01-11

Similar Documents

Publication Publication Date Title
US9998059B2 (en) Motor driving apparatus
US7075267B1 (en) Space vector-based current controlled PWM inverter for motor drives
JP3971979B2 (ja) 空気調和装置
JP3636340B2 (ja) 交流回転機用電力変換装置
US6900613B2 (en) Motor control apparatus
US20070296371A1 (en) Position sensorless control apparatus for synchronous motor
US9490735B2 (en) Motor driving module and brushless DC motor system
JP6293401B2 (ja) 空気調和機のモータ制御装置及び空気調和機
JP2020096400A (ja) 電力変換装置、発電電動機の制御装置、および、電動パワーステアリング装置
JP6348779B2 (ja) 同期電動機の駆動システム
JP5405224B2 (ja) モータ駆動装置、及びモータに備えられたロータの相対位置の判別方法
JP2013034315A (ja) インバータの制御装置
WO2022259624A1 (ja) インバータ制御装置、インバータ制御方法
JP2017205017A (ja) 空気調和機のモータ制御装置及び空気調和機
JP2002010675A (ja) Dcブラシレスモータ装置
JP6203418B2 (ja) 電力変換装置およびその制御方法、電動パワーステアリングの制御装置
JP2007014115A (ja) モータ制御装置
JP2017034767A (ja) 3相ブラシレスモータのセンサレス駆動方法
CN114270695A (zh) 推测装置以及交流电动机的驱动装置
KR101539867B1 (ko) 구동 신호 생성 장치, 그를 이용한 모터 구동 시스템 및 그 방법
JP6590457B2 (ja) 車両駆動制御装置及び車両駆動制御方法
CN110620459B (zh) 用于操作bldc电动机的驱动电路
JP7367628B2 (ja) インバータの制御装置
JP2003209999A (ja) モータ制御装置
WO2023195172A1 (ja) モータ制御装置、モータ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819815

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527492

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112022001599

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202280036967.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18565657

Country of ref document: US