WO2019123634A1 - 回転電機の制御装置及び制御方法 - Google Patents

回転電機の制御装置及び制御方法 Download PDF

Info

Publication number
WO2019123634A1
WO2019123634A1 PCT/JP2017/046140 JP2017046140W WO2019123634A1 WO 2019123634 A1 WO2019123634 A1 WO 2019123634A1 JP 2017046140 W JP2017046140 W JP 2017046140W WO 2019123634 A1 WO2019123634 A1 WO 2019123634A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carrier
pwm
mode
timing
Prior art date
Application number
PCT/JP2017/046140
Other languages
English (en)
French (fr)
Inventor
遼 宮下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112017008293.5T priority Critical patent/DE112017008293T5/de
Priority to US16/757,883 priority patent/US11063547B2/en
Priority to PCT/JP2017/046140 priority patent/WO2019123634A1/ja
Priority to JP2019559986A priority patent/JP6925449B2/ja
Publication of WO2019123634A1 publication Critical patent/WO2019123634A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases

Definitions

  • the present invention relates to a control device and control method of a rotating electrical machine, and more particularly to control of a double-winding rotating electrical machine having a first group of windings and a second group of windings.
  • Patent Document 1 provides a configuration in which two inverters are provided for a double-winding three-phase motor, and each of the two inverters has a U-phase leg, a V-phase leg, and a W-phase leg. It is illustrated. Furthermore, in Patent Document 1, for PWM (Pulse Width Modulation) control generally used for inverter switching control, the frequency of a PWM carrier wave (hereinafter, also simply referred to as “carrier wave”) is an integral multiple of the rotational frequency of the rotating electrical machine Control that selectively uses so-called “synchronous PWM control” and "asynchronous PWM” for fixing the frequency of the carrier wave to be synchronized with each other is described. Specifically, asynchronous PWM and synchronous PWM are selected according to the rotation speed of the motor and the temperatures of the semiconductor switching elements and the diodes that constitute the inverter.
  • PWM Pulse Width Modulation
  • the first group of windings and the second group of windings are wound so as to have a mechanical angle difference
  • the first group of windings and the second group of windings PWM control is performed on each of the first and second inverters that control the voltage applied to the line.
  • synchronous PWM since the phase of the carrier wave is synchronized with the phase of the electrical angle in each winding group, a phase difference also exists between the carrier waves in each of the first and second inverters.
  • Patent Document 1 does not particularly consider the phase of the carrier wave when switching between synchronous PWM and asynchronous PWM.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a first group of windings and a second group of coils wound so as to have a mechanical angle difference.
  • inverter control of a double-winding rotary electric machine having a winding synchronous PWM and asynchronous PWM are smoothly switched.
  • a control device of a double-winding rotary electric machine having a first group of windings wound with a mechanical angle difference and a second group of windings comprises: An arithmetic unit, a carrier supply unit, and a PWM control unit are provided.
  • the carrier supply unit includes a carrier control unit.
  • the voltage command calculation unit controls a first voltage command group for a first inverter controlling a voltage applied to the first group of windings, and a second inverter controls a voltage applied to a second group of windings. And generating a second voltage command group.
  • the carrier supply unit generates a first carrier used for the first pulse width modulation control in the first inverter and a second carrier used for the second pulse width modulation control in the second inverter.
  • the PWM control unit generates a first PWM signal group for controlling the first inverter by the first pulse width modulation control based on the comparison between the first voltage command group and the first carrier wave, and A second PWM signal group for controlling a second inverter is generated by a second pulse width modulation control based on the comparison of the second voltage command group and the second carrier wave.
  • the carrier controller controls a first mode in which the frequencies of the first and second carriers change to be an integral multiple of the frequency of the applied voltage, and a second mode in which the frequencies of the first and second carriers are constant.
  • the first and second carriers used in the first and second pulse width modulation control are switched according to one of the modes selected.
  • the carrier controller controls the carrier phase and the second mode according to the first mode for one of the first and second carriers. Mode switching is performed at a first timing at which the carrier wave phase according to.
  • the carrier control unit causes the carrier phase according to the first mode and the carrier phase according to the second mode to coincide with each other for the other carrier of the first and second carriers after the first timing. Mode switching is performed at the second timing.
  • a control method of a double-winding rotary electric machine having a first group of windings wound with a mechanical angle difference and a second group of windings is: (3) A first voltage command group for the first inverter controlling the voltage applied to the first group of windings, and a second voltage command group for the second inverter controlling the applied voltage to the second group of windings (2) generating a voltage command group, (2) a first carrier wave used for the first pulse width modulation control in the first inverter, and a second pulse width modulation control in the second inverter A step of supplying a second carrier to be used, and (3) a first pulse width modulation control based on a comparison between the first voltage command group and the first carrier for controlling the first inverter.
  • the step of supplying the first and second carriers comprises: a first mode in which the frequencies of the first and second carriers are an integral multiple of the frequency of the applied voltage; Switching the first and second carriers used for the first and second pulse width modulation control according to one of the selection of the second mode in which the frequency is constant.
  • the step of switching the first and second carriers follows the first mode for one of the first and second carriers when mode switching between the first and second modes is instructed.
  • first and second inverters for controlling a double-winding rotary electric machine having a first group of windings and a second group of windings wound so as to have a mechanical angle difference. Since the continuity of the carrier wave phase at the time of mode switching can be secured for both of the first and second carriers used for PWM control in mode 1, mode switching between synchronous PWM and asynchronous PWM can be smoothly performed.
  • FIG. 16 is a conceptual waveform diagram for explaining a comparative example of PWM control in mode switching between asynchronous PWM and synchronous PWM.
  • FIG. 6 is a conceptual waveform diagram for explaining mode switching between asynchronous PWM and synchronous PWM by the control device for a rotary electric machine according to the present embodiment.
  • FIG. 7 is a conceptual waveform diagram for explaining mode switching to which the triangular wave for interpolation is applied by the control device for a rotary electric machine according to the present embodiment.
  • FIG. 9 is a conceptual waveform diagram for explaining an example of PWM control when the mode switching shown in FIG. 8 is applied.
  • 3 is a flowchart illustrating a control method of the rotating electrical machine according to the present embodiment. It is a flowchart which demonstrates the setting process of the triangular wave voltage in FIG. 10 in more detail. It is a flowchart explaining an example of the flag setting process for mode switching. It is a flowchart explaining the modification of the flag setting process for mode switching.
  • FIG. 1 is a block diagram showing a schematic configuration of a motor system controlled by a control device of a rotating electrical machine according to the present embodiment.
  • the motor system includes a double-winding rotary electric machine 10 (hereinafter, also simply referred to as a rotary electric machine 10) to be controlled, inverters 15a and 15b, and a control device 100.
  • the rotational angle sensor 11 and the current sensors 22a and 22b are disposed at 10.
  • the double-winding type rotary electric machine has a first group of windings 20a and a second group of windings 20b.
  • the first group of windings 20a is a U-phase, V-phase, W-phase three-phase winding
  • the second group of windings 20b is a U-phase, V-phase, W-phase three-phase windings
  • the first and second groups of windings 20a and 20b are wound on a stator.
  • a permanent magnet synchronous AC rotating electric machine in which a permanent magnet is provided on a rotor can be applied to the rotating electric machine 10.
  • two groups of windings 20a and 20b are provided on one stator (not shown), and one rotor (not shown) disposed radially inward of the stator. It is assumed that one or more pole-log permanent magnets are provided.
  • the first group of windings 20a and the second group of windings 20b are wound around the stator with a fixed mechanical phase difference (angular difference). That is, between the first group U-phase winding and the second group U-phase winding, between the first group V-phase winding and the second group V-phase winding, and the first group W A fixed phase difference is provided between the phase winding and the winding of the second group W phase.
  • the inverter 15a converts DC power supplied from a DC power supply (not shown) into AC power and supplies the AC power to the first group of windings 20a.
  • the inverter 15 b converts similar DC power into AC power and supplies it to the second group of windings 20 b.
  • the inverter 15a is also referred to as a first group inverter 15a
  • the inverter 15b is also referred to as a second group inverter 15b.
  • Each of the first group inverter 15a and the second group inverter 15b has a plurality of switching elements.
  • Each inverter 15a, 15b is a series circuit of one phase in which a switching element on the positive side connected to the positive terminal of the DC power supply and a switching element on the negative side connected to the negative terminal of the DC power supply are connected in series. It can be set as composition provided corresponding to three-phase winding. The connection point of the two switching elements in each series circuit is connected to the corresponding phase winding.
  • a switching element a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor) or the like can be used.
  • each switching element is connected to the control device 100 via a gate drive circuit (not shown).
  • the on / off of the switching elements for three phases constituting the first group inverter 15a is controlled by the PWM signals Sua, Sva, Swa of the first group.
  • the PWM signal Sua On / off of the switching elements on the positive side and the negative side connected to the U-phase winding is controlled by the PWM signal Sua, and the switching elements on the positive side and the negative side connected to the V-phase winding are The on / off is controlled by the PWM signal Sva, and the switching elements on the positive electrode side and the negative electrode side connected to the W-phase winding are controlled on / off by the PWM signal Swa.
  • the on / off of the switching elements for three phases is controlled by the second group of PWM signals Sub, Svb, Swb also for the second group inverter 15 b.
  • the current sensor 22a is arranged to detect the current flowing in the first group of windings 20a
  • the current sensor 22b is arranged to detect the current flowing in the second group of windings 20b.
  • the current sensor 22a is disposed on a power line connected to a series circuit (not shown) of switching elements constituting the first group inverter 15a and windings of respective phases constituting the first group of windings 20a. be able to.
  • current sensor 22b is arranged on a power line connecting a series circuit (not shown) of switching elements constituting second group inverter 15b and windings of respective phases constituting winding 20b of the second group. can do.
  • the current sensor 22a is also referred to as a first group current sensor 22a
  • the current sensor 22b is also referred to as a second group current sensor 22b.
  • the rotation angle sensor 11 detects the rotation angle (magnetic pole position) of the rotor (not shown) of the rotary electric machine 10.
  • the rotation angle sensor 11 can be configured by a resolver.
  • Control device 100 includes a magnetic pole position detection unit 130, a voltage command calculation unit 140, a triangular wave supply unit 150, and a PWM control unit 133, which are shown as functional blocks for motor control.
  • the control device 100 controls the rotating electrical machine 10 via the first group inverter 15a and the second group inverter 15b.
  • the feedback control using the detected values of the rotation angle and current of the rotating electrical machine 10 allows the rotating electrical machine 10 to operate according to the current command value based on the operation command (output torque).
  • the first group PWM signals Sua, Sva, Swa and the second group PWM signals Sub, Svb, Swb are generated to control the AC voltage output from the inverters 15a, 15b.
  • FIG. 2 is a block diagram for explaining a configuration example of the control device 100.
  • control device 100 has input circuit 112, arithmetic device 115, storage device 116, and output circuit 120 as hardware.
  • the arithmetic unit 115 can be configured by a central processing unit (CPU), a digital signal processor (DSP), an application specific integrated circuit (ASIC), and the like.
  • the storage device 116 exchanges data with the computing device 115.
  • the storage device 116 is, for example, a RAM (Random Access Memory) 116 a configured to be able to read and write data from the arithmetic device 115, and a ROM (Read Only Memory) to be able to read data from the arithmetic device 115.
  • 116 b a RAM (Random Access Memory) 116 a configured to be able to read and write data from the arithmetic device 115.
  • ROM Read Only Memory
  • the input circuit 112 has an A / D conversion function for inputting a signal from a sensor or switch outside the control device 100 to the arithmetic device 115.
  • the output values of the rotation angle sensor 11 and the current sensors 22a and 22b shown in FIG. 1 are supplied to the input circuit 112, and the inverters 15a and 15b are supplied from a DC power supply (not shown).
  • the output value of the voltage sensor 24 for detecting the output DC voltage is input.
  • Arithmetic device 115 receives the rotation angle detected by rotation angle sensor 11 via input circuit 112, the current values (three phases) detected by current sensors 22a and 22b, and the voltage detected by voltage sensor 24. You can get the value (DC).
  • the output circuit 120 has a function of outputting an electrical signal to an external device of the control device 100.
  • the output circuit 120 outputs first group PWM signals Sua, Sva, Swa and a second group to gate drive circuits (not shown) of the first group inverter 15a and the second group inverter 15b.
  • the PWM signals Sub, Svb and Swb are output.
  • each functional block constituting control device 100 is such that arithmetic device 115 executes software (program) stored in storage device 116 such as ROM 116 b and the like. This can be realized by cooperating with other hardware of the control device 100 such as the storage device 116, the input circuit 112, and the output circuit 120. Further, some or all of the functions of the functional blocks can be realized by dedicated electronic circuits (hardware).
  • the magnetic pole position detection unit 130 determines the rotation angle of the rotary electric machine 10 (hereinafter referred to as “the position of the N pole of the permanent magnet in this example”). , Also referred to as “motor rotation angle”.
  • the magnetic pole position detection unit 130 can calculate the rotational angular velocity at the electrical angle by temporally differentiating the motor rotation angle.
  • the magnetic pole position detection unit 130 detects the rotational angle corresponding to the magnetic pole position of the rotor with respect to the first group of windings 20a (for example, U-phase winding), and the second group.
  • a detected value of the rotation angle corresponding to the magnetic pole position of the rotor with respect to the winding 20 b (for example, U-phase winding) is input from the rotation angle sensor 11.
  • the magnetic pole position detection unit 130 calculates a motor rotation angle ⁇ a based on the first group winding and a motor rotation angle ⁇ b based on the second group winding based on the detection values obtained by the rotation angle sensor 11.
  • the inter-group phase difference ⁇ coil in the equation (1) is obtained by multiplying the mechanical phase difference between the first group of windings 20 a and the second group of windings 20 b by pole-pole multiplication and dividing by 2 It can be determined by electrical angle conversion.
  • the magnetic pole position detection unit 130 can further obtain the motor rotation angle ⁇ b by the calculation according to Equation (1).
  • Voltage command calculation unit 140 generates voltage commands Vua, Vva, Vwa for the voltage applied to winding 20a of the first group, and voltage command calculation unit 140 for the voltage applied to winding 20b of the second group. And a voltage command calculation unit 140b for generating voltage commands Vub, Vvb, Vwb.
  • voltage command calculation unit 140a is also referred to as first group voltage command calculation unit 140a
  • voltage command calculation unit 140b is also referred to as second group voltage command calculation unit 140b.
  • voltage commands Vua, Vva, Vwa are also referred to as a first group voltage command
  • voltage commands Vub, Vvb, Vwb are also referred to as a second group voltage command.
  • the voltage command calculation units 140a and 140b can generate a voltage command by performing current feedback control on the dq axis rotational coordinate system.
  • the dq-axis rotational coordinate system is a two-axis rotational coordinate system that rotates in synchronization with the rotation at the electrical angle of the rotor (not shown).
  • the d-axis is defined at the magnetic pole position of the rotor (for example, the direction of the N pole of the permanent magnet).
  • the q-axis is determined to be 90 ° ( ⁇ / 2) ahead of the d-axis in electrical angle.
  • the first group voltage command calculation unit 140a the dq axis currents Ida and Iqa of the first group of windings 20a approach the dq axis current commands Ida * and Iqa * of the first group.
  • Dq axis voltage commands Vda, Vqa of the first group are changed.
  • the second group voltage command operation unit 140b causes the dq axis currents Idb and Iqb of the second group winding 20b to approach the second group dq axis current commands Idb * and Iqb *.
  • the dq axis voltage commands Vdb and Vqb are changed.
  • the first group voltage command calculation unit 140a includes a first group current command calculation unit 141a, a first group current detection unit 142a, a first group three-phase dq conversion unit 143a, a first group current feedback control unit 144a, and a first group non It includes an interference processing unit 145a and a first group dq three-phase conversion unit 146a.
  • the second group voltage command calculation unit 140b includes a second group current command calculation unit 141b, a second group current detection unit 142b, a second group three-phase dq conversion unit 143b, a second group current feedback control unit 144b, and A second group non-interference processing unit 145 b and a second group dq three-phase conversion unit 146 b are included.
  • the first group current command calculation unit 141a calculates the d-axis current command Ida * and the q-axis current command Iqa * of the first group.
  • the second group current command calculation unit 141 b calculates the d-axis current command Idb * and the q-axis current command Iqb * of the second group.
  • the first group current detection unit 142a detects the currents Iua, Iva, and Iwa of the respective phases of the winding 20a of the first group based on the output signal of the current sensor 22a.
  • the second group current detection unit 142b detects the currents Iub, Ivb, Iwb of the respective phases of the winding 20b of the second group based on the output signal of the current sensor 22b.
  • the first group three-phase dq conversion unit 143a converts each phase current Iua, Iva, Iwa of the first group detected by the first group current detection unit 142a into the d-axis current Ida and the q-axis current Iqa of the first group. Convert.
  • the second group three-phase dq conversion unit 143b converts each phase current Iub, Ivb, Iwb of the second group detected by the second group current detection unit 142b into the d axis current Idb of the second group and the q axis. Convert to current Iqb.
  • each phase current is a dq-axis rotational coordinate system based on the first group or the second group of windings by three-phase to two-phase conversion based on the motor rotation angle ⁇ a and rotational coordinate conversion. It is converted to dq current represented by
  • the first group current feedback control unit 144a causes the first group dq axis voltage commands Vdba, Vqba to make the first group dq axis currents Ida, Iqa approach the first group dq axis current commands Ida *, Iqa *. Change.
  • the first group of dq-axis current feedback control can be performed by PI control arithmetic illustrated in equations (2) and (3).
  • Vdba (Kpd + Kid / s) ⁇ (Ida * ⁇ Ida) (2)
  • Vqba (Kpq + Kiq / s) ⁇ (Iqa * ⁇ Iqa) (3)
  • Kpd is a d-axis proportional gain
  • Kpq is a q-axis proportional gain
  • Kid is a d-axis integral gain
  • Kiq is a q-axis integral gain.
  • s is the Laplace operator.
  • the second group current feedback control unit 144b causes the second group dq axis voltage commands to be brought close to the second group dq axis current commands Idb * and Iqb *.
  • Vdbb and Vqbb are changed.
  • the first group of dq-axis current feedback control can be performed by PI control arithmetic illustrated in equations (4) and (5).
  • Vdbb (Kpd + Kid / s) ⁇ (Idb * ⁇ Idb) (4)
  • Vqbb (Kpq + Kiq / s) ⁇ (Iqb * ⁇ Iqb) (5)
  • Kpd, Kpq, Kid, Kiq and s are the same as in formulas (2) and (3).
  • Each of the first group decoupling processing unit 145a and the second group decoupling processing unit 145b compensates for the interference due to the magnetic coupling between the windings of the same group with respect to the feedback value of the dq-axis voltage command of each group. And a second non-interference process that compensates for the interference due to the magnetic coupling between the different groups of windings.
  • the final dq-axis voltage commands Vda, Vqa and Vdb, Vqb of the first group and the second group are generated by the first and second non-interference processes by the non-interference processing units 145a and 145b.
  • the first group non-interference processing unit 145a performs non-interference processing by the calculation as shown in equations (6) and (7).
  • Vda Vdba- ⁇ ⁇ Lqa ⁇ Iqa + Mdb ⁇ s ⁇ Idb- ⁇ ⁇ Mqb ⁇ Iqb (6)
  • Vqa Vqba ⁇ ⁇ (Lda ⁇ Iqa ++) + Mqb ⁇ s ⁇ Iqb ⁇ ⁇ Mdb ⁇ Idb (7)
  • the second group non-interference processing unit 145 b performs non-interference processing by the calculation as shown in equations (8) and (9).
  • Vdb Vdbb ⁇ ⁇ Lqb ⁇ Iqb + Mda ⁇ s ⁇ Ida ⁇ ⁇ Mqa ⁇ Iqa (8)
  • Vqb Vqbb ⁇ ⁇ (Ldb ⁇ Idb + ⁇ ) + Mqa ⁇ s ⁇ Iqa ⁇ ⁇ Mda ⁇ Ida (9)
  • Lda and Lqa are the same group d-axis inductance and the same group q-axis inductance which affect the first group.
  • Ldb and Lqb are the same group d-axis inductance and the same group q-axis inductance which affect the second group.
  • Mda and Mqa are the inter-group d-axis inductance and inter-group q-axis inductance of the first group that affect the second group.
  • Mdb and Mqb are an inter-group d-axis inductance and an inter-group q-axis inductance of the second group that affect the first group.
  • is a flux linkage due to a permanent magnet
  • s is a Laplace operator
  • is an angular acceleration that can be calculated by differentiating the motor rotation angle ⁇ a.
  • the first-group non-interference processing unit 145a determines the feedback value Vdba of the first group of dq-axis voltage commands based on the second group of dq-axis currents Idb, Iqb. Correct Vqba.
  • the second group non-interference processing unit 145 b corrects feedback values Vdbb and Vqbb of the dq axis voltage command of the second group based on the dq axis currents Ida and Iqa of the first group.
  • the first group non-interference processing unit 145a and the second group non-interference processing unit 145b The feedback value of the dq-axis voltage command of each group can be set as it is as the final dq-axis voltage command of each group.
  • the first group non-interference processing unit 145 a and the second group non-interference processing unit 145 b may calculate the values obtained by performing only the same-group non-interference processing on the feedback values of the dq-axis voltage commands of the respective groups. It may be set to the final dq axis voltage command of the group.
  • the first group three-phase dq conversion unit 146a performs the fixed coordinate conversion and the two-phase three-phase conversion based on the motor rotation angle ⁇ a based on the winding 20a of the first group to obtain the first group of dq axis voltages.
  • the commands Vda, Vqa are converted into first group voltage commands Vua, Vva, Vwa, which are AC voltage commands of respective phases (three phases) of the winding 20a of the first group.
  • the second group three-phase dq conversion unit 146 b performs fixed coordinate conversion and two-phase three-phase conversion based on the motor rotation angle ⁇ b based on the winding 20 b of the second group,
  • the dq axis voltage commands Vdb, Vqb are converted into second group voltage commands Vub, Vvb, Vwb which are AC voltage commands of the respective phases (three phases) of the winding 20b of the second group.
  • the first group voltage commands Vua, Vva and Vwa generated by the first group voltage command computation unit 140a are represented by sine wave voltages that differ in phase by 120 degrees (electrical angle).
  • the voltage commands Vub, Vvb and Vwb of the second group generated by the second group voltage command computation unit 140b are also represented by sine wave voltages that differ in phase by 120 degrees (electrical angle).
  • triangular wave supply unit 150 includes triangular wave generation unit 152 and triangular wave control unit 154.
  • the triangular wave supply unit 150 generates a triangular wave CWa used for PWM control of the first group inverter 15 a and a triangular wave CWb used for PWM control of the second group inverter 15 b.
  • the PWM control unit 133 includes a first group PWM control unit 133a and a second group PWM control unit 133b.
  • the PWM control unit 133a of the first group generates a first group PWM signal Sua, Sva, Swa by voltage comparison between the first group voltage commands Vua, Vva, Vwa and the triangular wave CWa for the first group.
  • the on / off of the positive electrode side switching element and the negative electrode side switching element of each phase constituting the first group inverter 15a is controlled in accordance with the first group PWM signals Sua, Sva, Swa.
  • the first group inverter 15a controls the voltage applied to the first group of windings 20a in accordance with the first group PWM signals Sua, Sva, Swa.
  • the second group PWM control unit 133b generates a second group PWM signal Sub, Svb, Swb by comparing the voltage of the second group voltage commands Vub, Vvb, Vwb with the triangular wave CWb for the second group.
  • the on / off of the positive electrode side switching element and the negative electrode side switching element of each phase constituting the second group inverter 15 b is controlled in accordance with the second group PWM signal Sub, Svb, Swb.
  • the second group inverter 15b controls the voltage applied to the winding 20b of the second group in accordance with the second group PWM signals Sub, Svb, Swb.
  • synchronous PWM or asynchronous PWM is selectively applied in PWM control for controlling the output voltage of inverters 15a and 15b.
  • the selection of synchronous PWM and asynchronous PWM is switched according to the rotational speed region of the rotary electric machine 10 and the heat generation degree of the inverters 15a and 15b. Accordingly, the triangular wave supply unit 150 is configured to switch between synchronous PWM and asynchronous PWM.
  • the triangular wave generation unit 152 includes a first group triangular wave generation unit 152 a and a second group triangular wave generation unit 152 b.
  • the triangular wave control unit 154 includes a first group triangular wave control unit 154 a and a second group triangular wave control unit 154 b.
  • the first group triangular wave generation unit 152a generates a synchronous PWM triangular wave CWXa and an asynchronous PWM triangular wave CWYa.
  • the second group triangular wave generation unit 152 b generates a synchronous PWM triangular wave CWXb and an asynchronous PWM triangular wave CWYb.
  • phase differences may occur between the synchronous PWM triangular waves CWXa and CWXb and between the asynchronous PWM triangular waves CWYa and CWYb.
  • FIG. 4 is a conceptual waveform diagram of a triangular wave used for synchronous PWM.
  • first group triangular wave generation unit 152 a changes phase ⁇ Xa (hereinafter also referred to as carrier phase ⁇ Xa) of synchronous PWM triangular wave CWXa for the first group according to reference phase ⁇ refa of the first group.
  • the reference phase ⁇ refa of the first group is determined according to the motor rotation angle ⁇ a based on the winding 20a of the first group and the voltage command phase ⁇ vdqa of the first group with respect to the motor rotation angle ⁇ a. Calculated by 11).
  • the second group triangular wave generation unit 152 b changes the phase ⁇ Xb (hereinafter also referred to as carrier phase ⁇ Xb) of the synchronous PWM triangular wave CWXb for the second group in accordance with the reference phase ⁇ refb of the second group.
  • ⁇ Xb carrier phase
  • the reference phase ⁇ refb of the second group corresponds to the equations (12) and (12) in accordance with the motor rotation angle ⁇ b based on the winding 20b of the second group and the voltage command phase ⁇ vdqb of the second group with respect to the motor rotation angle ⁇ b. Calculated by 13).
  • the first group triangular wave generation unit 152a synchronizes the carrier with the first group reference phase ⁇ refa so that M triangular waves are generated within one period (0 to 2 ⁇ ) of the first group reference phase ⁇ refa.
  • the phase ⁇ Xa is calculated.
  • the first group triangular wave generation unit 152 a calculates the carrier phase ⁇ Xa so as to change at a rate three times (M times) the reference phase ⁇ refa of the first group.
  • the carrier phase ⁇ Xa is calculated so as to repeat changes of 0 to 2 ⁇ three times.
  • the first group triangular wave generation unit 152a generates the synchronous PWM triangular wave CWXa so as to oscillate once from “valley” to “valley” in response to the change of the carrier phase ⁇ Xa from 0 to 2 ⁇ .
  • map data that associates the carrier phase ⁇ Xa with the voltage ratio to the amplitude of the synchronous PWM triangular wave CWXa is created in advance. For example, it is possible to create map data so that when the carrier phase is 0 or 2 ⁇ , it becomes the “valley” of the triangular wave and when the carrier phase is ⁇ , it becomes the “peak” of the triangular wave.
  • the amplitude value of the synchronous PWM triangular wave CWXa is set to the DC voltage Vdc (that is, the detected value by the voltage sensor 24) input to the inverter 15a. Therefore, the first group triangular wave generation unit 152a can calculate the voltage value of the synchronous PWM triangular wave CWXa at each timing by referring to the map data using the carrier phase ⁇ Xa and the DC voltage Vdc.
  • the second group triangular wave generation unit 152b calculates the carrier phase ⁇ Xb so as to change at a rate three times (M times) the reference phase ⁇ refb of the second group.
  • the carrier phase ⁇ Xb is calculated so as to repeat changes of 0 to 2 ⁇ three times while the reference phase ⁇ refb changes from 0 to 2 ⁇ .
  • the second group triangular wave generation unit 152b generates the synchronous PWM triangular wave CWXb so as to oscillate once from “valley” to “valley” while the carrier phase ⁇ Xb changes from 0 to 2 ⁇ .
  • the second group triangular wave generation unit 152b calculates the voltage value of the synchronous PWM triangular wave CWXb at each timing from the carrier phase ⁇ Xb and the direct current voltage Vdc using the map data common to the first group triangular wave generation unit 152a. can do.
  • the synchronous PWM triangular waves CWXa and CWXb correspond to an aggregate of the voltage values calculated at each timing.
  • a phase difference corresponding to M times ⁇ ref of equation (15) occurs between the synchronous PWM triangular waves CWXa and CWXb.
  • FIG. 5 is a conceptual waveform diagram of a triangular wave used for asynchronous PWM.
  • the first group reference phase ⁇ refa and the second group reference phase ⁇ refb are calculated by the first group triangular wave generation unit 152a and the second group triangular wave generation unit 152b in the same manner as in FIG.
  • the first group triangular wave generation unit 152a changes the phase ⁇ Ya (hereinafter, also referred to as carrier phase ⁇ Ya) of the asynchronous PWM triangular wave CWYa for the first group according to the carrier period Tcw specified from the outside of the control device 100.
  • Carrier phase ⁇ Ya is calculated such that one triangular wave is generated for each carrier period Tcw. That is, the carrier phase ⁇ Ya changes from 0 to 2 ⁇ every carrier period Tcw.
  • the first group triangular wave generation unit 152 a generates a synchronous PWM triangular wave so that the asynchronous PWM triangular wave CWYa vibrates once from “valley” to “valley” while the carrier phase ⁇ Ya changes from 0 to 2 ⁇ .
  • a triangular wave CWYa for asynchronous PWM is generated using common map data.
  • the first group triangular wave generation unit 152a can calculate the voltage value of the asynchronous PWM triangular wave CWYa at each timing by referring to the map data using the carrier phase ⁇ Ya and the DC voltage Vdc.
  • the second group triangular wave generation unit 152b changes the phase ⁇ Yb (hereinafter, also referred to as carrier phase ⁇ Yb) of the asynchronous PWM triangular wave CWYb for the second group according to the carrier period Tcw. Similar to the carrier phase ⁇ Xa, the carrier phase ⁇ Yb is calculated so as to change from 0 to 2 ⁇ for each carrier period Tcw.
  • the second group triangular wave generation unit 152b can calculate the voltage value of the asynchronous PWM triangular wave CWYb at each timing from the carrier phase ⁇ Yb and the DC voltage Vdc using the map data. Thereby, the asynchronous PWM triangular wave CWYb is generated so as to oscillate once from the “valley” to the “valley” at each carrier period Tcw.
  • the asynchronous PWM triangular waves CWYa and CWYb correspond to a set of the voltage values calculated at each timing.
  • a constant phase difference specified from the outside of the control device 100 occurs between the asynchronous PWM triangular waves CWYa and CWYb.
  • the frequency of the synchronous PWM triangular waves CWXa and CWXb is M times the frequency of the voltage command.
  • the frequencies of the asynchronous PWM triangular waves CWYa and CWYb are constant according to the carrier period Tcw. That is, synchronous PWM corresponds to the "first mode", and asynchronous PWM corresponds to the "second mode”. In the following, switching between synchronous PWM and asynchronous PWM is also referred to as "mode switching".
  • FIG. 6 is a conceptual waveform diagram for explaining a comparative example of PWM control in mode switching between asynchronous PWM and synchronous PWM.
  • FIG. 6 shows the control operation in the U-phase of the first group inverter 15a and the second group inverter 15b by the first group PWM control unit 133a and the second group PWM control unit 133b.
  • FIG. 6 exemplifies a waveform at the time of mode switching from asynchronous PWM to synchronous PWM.
  • triangular wave CWa for the first group and triangular wave CWb for the second group have a constant carrier period (Tcw) according to triangular waves CWYa and CWYb for asynchronous PWM (FIG. 5). It is generated.
  • both of the PWM control of the first group inverter 15a and the second group inverter 15b simultaneously A mode switch from asynchronous PWM to synchronous PWM is performed.
  • the carrier phases ⁇ Xa and ⁇ Xb and ⁇ Yb of the second group do not match at time td. Therefore, before and after time td, that is, at the time of mode switching, the phase of triangular wave CWb for the second group is discontinuous.
  • the first group PWM control unit 133a generates the PWM signal Sua based on the voltage comparison between the triangular wave CWa and the voltage command Vua in the U phase. Specifically, in the period of Vca> CWa, the PWM signal Sua is set to the logic high level (hereinafter also referred to as “H level”). During the H level period of the PWM signal Sua, the switching element on the positive electrode side is turned on to apply the DC voltage Vdc to the U-phase winding in the U-phase series circuit. On the other hand, in the period of Vca ⁇ CWa, the PWM signal Sua is set to the logic low level (hereinafter also referred to as “L level”). In the L level period of the PWM signal Sua, the switching element on the negative electrode side is turned on to disconnect the U-phase winding from the DC voltage Vdc.
  • H level logic high level
  • L level logic low level
  • the voltage applied to the U-phase winding is subjected to PWM control in accordance with the sinusoidal voltage command Vua.
  • the second group PWM control unit 133 b generates a PWM signal Sub by PWM control based on voltage comparison of the triangular wave CWb and the voltage command Vub.
  • the level of the PWM signal Sub is maintained beyond one cycle of the triangular wave CWb, sandwiching the time td. A period has occurred.
  • the alternating current voltage applied to the U-phase winding from the inverter 15b is a voltage by maintaining the ON of the positive electrode side switching element connected to the winding 20b (U phase) of the second group or the negative electrode side switching.
  • the command Vub As a result, there is a concern that control of the inverter 15b may become unstable.
  • the controller of the rotating electrical machine performs mode switching between synchronous PWM and asynchronous PWM while securing the continuity of the carrier phase.
  • FIG. 7 is a conceptual waveform diagram for explaining mode switching between asynchronous PWM and synchronous PWM by the control device for a rotary electric machine according to the present embodiment.
  • the synchronous PWM triangular wave CWXa and the asynchronous PWM triangular wave CWYa are generated as described with reference to FIGS. 4 and 5 with respect to the change of the first group reference phase ⁇ refa.
  • the synchronous PWM triangular wave CWXb and the asynchronous PWM triangular wave CWYb are generated.
  • M 9 in the synchronous PWM
  • one cycle of the synchronous PWM triangular waves CWXa and CWXb corresponds to 2 ⁇ / 9 of the reference phases ⁇ refa and ⁇ refb. That is, triangular waves CWXa and CWXb for synchronous PWM are generated such that nine triangular waves are included in one cycle (0 to 2 ⁇ ) of the reference phases ⁇ refa and ⁇ refb.
  • the first group triangular wave control unit 154a compares the phases of the synchronous PWM triangular wave CWXa and the asynchronous PWM triangular wave CWYa in the first group with changes in the reference phase ⁇ refa in the first group.
  • the second group triangular wave control unit 154b compares the phases of the synchronous PWM triangular wave CWXb and the asynchronous PWM triangular wave CWYb in the second group with respect to the change in the reference phase ⁇ refb in the second group.
  • both of the synchronous PWM triangular wave CWXa and the asynchronous PWM triangular wave CWYa have phases corresponding to “peaks”, as at time td in FIG.
  • time t1 corresponds to “first timing” according to an embodiment
  • time t2 corresponds to “second timing”.
  • the mode switching of the PWM control of the first group inverter 15a is performed first, but it is also possible to cause the mode switching of the PWM control of the second group inverter 15b to precede in a fixed manner.
  • the triangular wave before mode switching (a triangular wave for asynchronous PWM in the example of FIG. 7) It is understood that control of the inverter 15b can be continued using
  • one of the first group and the second group of inverters 15a and 15b is controlled by synchronous PWM while the other is controlled by asynchronous PWM.
  • a difference in AC voltage applied to the first group of windings 20a and the second group of windings 20b may cause control instability.
  • control device of the rotating electrical machine it is possible to execute mode switching by applying the interpolation triangular wave shown in FIG. 8 in order to shorten the mode transition period.
  • FIG. 8 is a conceptual waveform diagram for explaining mode switching to which the triangular wave for interpolation is applied by the control device for a rotary electric machine according to the present embodiment.
  • the reference phases ⁇ refa and ⁇ refb, the synchronous PWM triangular waves CWXa and CWXb, and the asynchronous PWM triangular waves CWYa and CWYb change in the same manner as in FIG. Furthermore, similarly to FIG. 7, when mode switching from asynchronous PWM to synchronous PWM is instructed at time t0, the first group triangular wave control unit 154a switches the triangular wave CWa from asynchronous PWM to synchronous PMW at time t1. .
  • the second group triangular wave control unit 154b determines the time t2 at which the mode switching timing of the triangular wave CWb is reached at time t1, and generates the triangular wave CWint for interpolation based on the synchronous PWM triangular wave CWXb and the asynchronous PWM triangular wave CWYb.
  • Perform the operation to Time t2 corresponds to an interpolation end point at which application of the interpolation triangular wave CWint is ended.
  • the interpolation triangle wave CWint has the same carrier phase ⁇ 1 at time t1 as that of the asynchronous triangle wave CWYb before mode switching, and the carrier phase ⁇ 2 at time t2 has the same carrier phase of synchronization triangle wave CWXb after switching. Is generated to be Furthermore, the triangular wave for interpolation CWint is generated such that the carrier phase changes at a constant rate toward ⁇ 2 at the interpolation end point.
  • time t1 corresponds to an example of “first timing”
  • time t2 corresponds to an example of “second timing”.
  • the mode switching timing (time t2) of the triangular wave CWb can be set to a timing at which the phase corresponding to a “peak” after time t1 because the asynchronous triangular wave CWYb is close to the “valley” at time t1.
  • the mode transition period can be shortened after securing the continuity of the carrier phase at the time of mode switching for the triangular wave to which mode switching is applied later (triangular wave CWb for the second group in FIG. 8) to which mode switching is applied. .
  • the second group triangular wave control unit 154b can set the time t2 in accordance with the carrier phase of the synchronous PWM triangular wave CWXb and the change rate of the reference phase ⁇ refb at time t1. Furthermore, the carrier phase of the synchronous PWM triangular wave CWXb at time t2 which is the interpolation end point ( ⁇ if it is “peak”) and the carrier phase of the triangular wave CWb at time t1 (current time) (ie, asynchronous PWM triangular wave CWYb)
  • the change rate of the interpolation triangular wave CWint can be calculated by dividing the phase difference by the required time from the time t1 to the time t2.
  • the second group triangular wave control unit 154b periodically executes an interpolation operation to change the carrier phase in accordance with the calculated constant change rate in the mode transition period (time t1 to t2).
  • the triangular wave CWb can be generated according to the interpolation triangular wave CWint.
  • the mode transition period can be shortened, so that mode switching is delayed. Control of the applied inverter 15b can be further stabilized.
  • the application start timing of the triangular wave for interpolation CWint does not have to be simultaneous with the time t1 (first timing), and the “peak” of the triangular wave for the mode switching incomplete (the triangular wave CWb for the second group in FIG. 8).
  • it may be the timing when the “valley” first arrives after time t1.
  • the timing at which the “valley” or “peak” of the triangular wave (the synchronous PWM triangular wave CWXb in the example of FIG. 8) applied after mode switching is first reached after the application start of the triangular wave CWint for interpolation , Interpolation end point (ie, at time t2).
  • FIG. 9 is a conceptual waveform diagram for explaining an example of PWM control when the mode switching shown in FIG. 8 is applied.
  • the triangular wave CWb for the second group is generated according to the triangular wave for interpolation CWint after time t1. Then, at time t2 that is the timing of the next “peak” of the synchronous PWM triangular wave CWXb, mode switching of the second group triangular wave CWb is executed.
  • the PWM signal Sub of the first group inverter 15b can also be generated so that switching (transition between H level and L level) occurs in one cycle of the triangular wave at the time of mode switching.
  • a double having the first group of windings and the second group of windings wound so as to have a mechanical angle difference It is possible to smoothly perform mode switching of synchronous PWM and asynchronous PWM in PWM control in the first group inverter 15a and the second group inverter 15b for controlling the winding type rotating electric machine.
  • the triangular wave (for synchronous PWM) applied before mode switching is also used for mode switching from synchronous PWM to asynchronous PWM. It is possible to control in the same manner in accordance with the matching comparison of the carrier phase with the triangular wave (for asynchronous PWM) after switching.
  • the timing of mode switching is limited to the timing of “peak” or “valley” of triangular wave. It is preferable to set.
  • the timing of time t2 is not limited to the timing of the next "peak” or “valley”, but the time t2 is set at the timing described in FIG. Thus, the effect of shortening the mode transition period can be enhanced.
  • each step shown in the flowchart shown below can be realized mainly by control device 100 executing a program stored in advance in ROM 116 b by arithmetic device 115 (CPU). Alternatively, some or all of the steps described below may be processed using dedicated electronic circuits (hardware) provided in the arithmetic device 115.
  • FIG. 10 is a flow chart for explaining the control method of the rotary electric machine according to the present embodiment.
  • control device 100 calculates the motor rotation angle based on the output signal of rotation angle sensor 11 in step S100.
  • the process of step S100 is realized by the function of the magnetic pole position detection unit 130 of FIG.
  • control device 100 samples the output signals of current sensors 22a and 22b to generate currents Iua, Iva, Iwa of coils 20a of the first group and currents Iub, Ivb of coils 20b of the second group. , Iwb.
  • the process of step S110 is implemented by the functions of the current detection units 142a and 142b illustrated in FIG.
  • control device 100 calculates voltage commands Vua, Vva, Vwa of first group inverter 15a and voltage commands Vub, Vvb, Vwb of second group inverter 15b.
  • the processing in step S120 is realized by the function of voltage command calculation unit 140 in FIG.
  • control device 100 controls PWM signal Sua, for controlling first group inverter 15a by comparing voltage command (S120) and triangular wave voltage (S200) in step S150.
  • Sva and Swa, and PWM signals Sub, Svb and Swb for controlling the second group inverter 15b are generated.
  • the AC voltage applied to the windings 20a and 20b of the rotary electric machine 10 by the inverters 15a and 15b is controlled in accordance with the voltage command by feedback control.
  • step S200 is realized by the function that the triangular wave supply unit 150 generates the triangular waves CWa and CWb.
  • the processing in step S150 is realized by the function of the PWM control unit 133.
  • synchronous PWM and asynchronous PWM are selectively applied in setting of the triangular wave voltage in step S200.
  • FIG. 11 is a flowchart illustrating the setting process of the triangular wave voltage in step S200 of FIG. 10 in further detail.
  • control device 100 calculates the carrier phase in step S210.
  • reference phases ⁇ refa and ⁇ refb are calculated by the equations (10) and (11) from the motor rotation angles ⁇ a and ⁇ b calculated in step S100.
  • the carrier phases ⁇ Xa (synchronous PWM) and ⁇ Xb (asynchronous PWM) for the first group and the carrier phases ⁇ Ya (synchronous) for the second group PWM) and ⁇ Yb (asynchronous PWM) are calculated.
  • step S212 the control device 100 confirms the value of the flag FLa indicating which of the synchronous PWM control and the asynchronous PWM control is to be applied to the PWM control of the first group of inverters 15a.
  • a flag FLb is introduced for the second group of inverters 15b.
  • mode switching is controlled by setting the values (0/1) of the flags FLa and FLb.
  • control device 100 proceeds to step S214 to calculate the voltage value of the triangular wave CWa using map data from the carrier phase ⁇ Xa for synchronous PWM.
  • control device 100 calculates the voltage value of triangular wave CWa from carrier phase ⁇ Ya for asynchronous PWM using map data at step S216.
  • one of the asynchronous PWM and the synchronous PWM is selected, and the voltage value of the first group triangular wave CWa is calculated.
  • control device 100 confirms the value of flag FLb at step S230.
  • FLb 1 (YES in S230)
  • the process proceeds to step S234, and the voltage value of the triangular wave CWb is calculated from the carrier phase ⁇ Xb for synchronous PWM using map data.
  • control device 100 proceeds to step S236 to use the map data from carrier phase ⁇ Yb for asynchronous PWM to set the voltage value of triangular wave CWb to It is calculated.
  • control device 100 determines that the voltage value of triangular wave CWb according to the interpolation calculation for obtaining triangular wave CWint for interpolation described in FIG. 8 in step S225.
  • FIG. 12 shows a process of setting flags FLa, FLb, and FLint for mode switching.
  • the control process shown in FIG. 12 is repeatedly executed separately from the process shown in FIG. 11, the latest values of the carrier phases ⁇ Xa, ⁇ Xb, ⁇ Ya, ⁇ Yb periodically updated in step S210 of FIG. It is used in each step of the control process at 12.
  • steps S212, S220, and S230 of FIG. 11 the latest values of the flags FLa, FLb, and FLint updated each time by the processing of FIG. 12 are referred to.
  • control device 100 determines in step S310 whether a mode switching instruction has been issued.
  • control device 100 sets flag FLint to 0 which is a default value in step S315, while maintaining the values of flags FLa and FLb as they are. Do.
  • voltage values of the triangular waves CWa, CWb when mode switching is not performed are set.
  • step S320 when there is a mode switching instruction (YES in S310), the control device 100 compares the carrier phases of the first group inverter 15a to match in step S320. That is, when the carrier phase ⁇ Xa for synchronous PWM and the carrier phase ⁇ Ya for asynchronous PWM coincide (specifically, when
  • YES is determined only when the carrier phases ⁇ Xa and ⁇ Ya are phases corresponding to “peaks” or “valleys” and the two coincide with each other.
  • Control device 100 repeats the matching comparison (S320) while maintaining the values of flags FLa and FLb in step S325 until carrier phases ⁇ Xa and ⁇ Ya match (when NO in S320).
  • controller 100 When carrier phases ⁇ Xa and ⁇ Ya match (when YES in S320), controller 100 changes the value of flag FLa from 0 to 1, to switch the mode of PWM control of first group inverter 15a in step S330. Or change from 1 to 0. Thereby, the mode switching at the first timing (time t1) shown in FIG. 8 can be realized.
  • control device 100 determines in step S340 whether the carrier phase of triangular wave CWb for which mode switching is not complete corresponds to "peaks" or "valleys". In mode switching from synchronous PWM to asynchronous PWM, the determination in step S340 is performed based on the carrier phase ⁇ Xb. On the other hand, in mode switching from asynchronous PWM to synchronous PWM, the determination in step S340 is performed based on the carrier phase ⁇ Yb. As a result, after mode switching in the inverter 15a of the first group, step S340 is determined as NO until "peak” or "valley" of the triangular wave CWb of the second group that has not completed mode switching first arrives.
  • step S340 When the “peaks” or “valleys” of triangular wave CWb arrive (YES in S340), control device 100 proceeds to step S350 to change the value of flag FLint from 0 to 1. Furthermore, in step S360, the control device 100 sets an interpolation end point (that is, the second timing) and executes an interpolation operation. As described above, the interpolation end point is set to a timing (second timing) at which the triangular wave applied after mode switching has a phase of “peak” or “valley”. For example, when S340 is determined as YES in the “peak” of the triangular wave CWb before the mode switching, the timing when the triangular wave applied after the mode switching reaches the next “valley” can be set as the interpolation end point . On the other hand, when step S340 is determined as YES in the "valley” of triangular wave CWb before mode switching, the timing at which the triangular wave applied after mode switching reaches "peak” next is set as the interpolation
  • the carrier phase of the triangular wave for interpolation CWint changes at a constant rate toward the phase (corresponding to “peak” or “valley”) of the triangular wave applied after the interpolation end point. To be executed.
  • the voltage value of the triangular wave CWint is calculated (S360).
  • step S225 of FIG. 11 the voltage value of the triangular wave CWb is calculated according to the calculation result in step S360.
  • steps S340 and S350 in the process of FIG. 12 it is possible to start applying the triangular wave for interpolation CWint through the mode transition period from the mode switching time point (time t1) of the inverter 15a of the first group is there.
  • FIG. 13 is a flow chart for explaining a variation of the flag setting process for mode switching.
  • steps S310 to S330 that is, the process of mode switching relating to first group inverter 15a is common to FIG.
  • control device 100 When mode switching of one inverter 15a is completed, control device 100 performs carrier phase ⁇ Xb of synchronous PWM and carrier phase of asynchronous PWM for triangular wave CWb used for PWM control of inverter 15b for which mode switching is not completed in step S400. Compare ⁇ Yb.
  • step S400 can be performed similarly to step S320. While carrier phases ⁇ Xb and ⁇ Yb do not match (NO in S400), control device 100 maintains the value of flag FLb in step S405. On the other hand, when carrier phases ⁇ Xb and ⁇ Yb match (YES in S400), control device 100 proceeds to step S410 to switch the value of flag FLb to 0 in order to switch the PWM control mode of inverter 15b. Change from 1 or 1 to 0.
  • step S320 both carrier phase comparison (S320) relating to the first group inverter 15a and phase comparison relating to the second group inverter 15b are executed to obtain the carrier phase first.
  • step S340 After switching the mode of one of the matched inverters, it is possible to control the mode switching of the other inverter according to step S340 or later in FIG. 12 or step S400 or later in FIG. 13b.
  • control device 100 executes the control processing according to the flowcharts shown in FIGS. 11 to 14 to control the double-winding type rotating electric machine as in the first embodiment.
  • Mode switching of synchronous PWM and asynchronous PWM in PWM control in the first group inverter 15a and the second group inverter 15b can be smoothly performed.
  • the triangular wave is exemplified as the carrier wave (carrier wave) of PWM control, but periodic waves other than the triangular wave such as a sawtooth wave can also be used as the carrier wave.
  • the first group inverter 15a corresponds to one embodiment of the "first inverter”
  • the second group inverter 15b corresponds to one embodiment of the "second inverter”
  • the triangular wave CWa corresponds to the "first carrier”.
  • the triangular wave CWb corresponds to an example of the “second carrier”.
  • the triangular wave supply unit 150 corresponds to an example of the “carrier supply unit”
  • the triangular wave control unit 154 corresponds to an example of the “carrier control unit”.

Abstract

二重巻線型回転電機を制御する第1及び第2のインバータのPWM制御は、非同期PWM及び同期PWMの間のモード切換を伴って実行される。第1のインバータのPWM制御に用いられる第1群の三角波(CWa)は、非同期PWM用三角波及び同期用三角波のキャリア位相が一致する第1のタイミング(t1)で、非同期PWMから同期PWMへ切換えられる。第2のインバータのPWM制御に用いられる第2群の三角波(CWb)は、第1のタイミング(t1)よりも後で、非同期PWM用三角波及び同期用三角波のキャリア位相が一致する第2のタイミング(t2)で、非同期PWMから同期PWMへ切換えられる。

Description

回転電機の制御装置及び制御方法
 本発明は回転電機の制御装置及び制御方法に関し、より特定的には、第1群の巻線及び第2群の巻線を有する二重巻線型回転電機の制御に関する。
 回転電機の巻線を多重化した回転電機において、多重化された巻線群毎にインバータを別個に設ける制御構成が、例えば、特開2017-93208号公報(特許文献1)に記載されている。
 特許文献1には、二重巻線型の三相電動機に対して、2個のインバータを設けるとともに、2個のインバータの各々がU相レグ、V相レグ、及び、W相レグを有する構成が例示されている。さらに、特許文献1では、インバータのスイッチング制御に一般的に用いられるPWM(Pulse Width Modulation)制御について、PWM搬送波(以下、単に「キャリア波」とも称する)の周波数を回転電機の回転周波数の整数倍に同期させる、いわゆる「同期PWM制御」と、キャリア波の周波数を固定する「非同期PWM」とを選択的に用いる制御が記載されている。具体的には、非同期PWM及び同期PWMは、電動機の回転速度、並びに、インバータを構成する半導体スイッチング素子及びダイオードの温度に応じて選択される。
特開2017-93208号公報
 二次巻線型回転電機において、第1群の巻線及び第2群の巻線が機械的な角度差を有するように巻回された構成では、第1群の巻線及び第2群の巻線への印加電圧を制御する第1及び第2のインバータのそれぞれでPWM制御が実行される。同期PWMでは、各巻線群での電気角の位相にキャリア波の位相が同期するので、第1及び第2のインバータのそれぞれでのキャリア波間にも位相差が存在することになる。
 このため、第1及び第2のインバータのPWM制御で、同期PWM及び非同期PWMを同時に切換えると、キャリア波の位相が不連続となることにより制御が不安定になることが懸念される。しかしながら、特許文献1は、同期PWM及び非同期PWMを切換える際のキャリア波の位相については特に問題視していない。
 この発明はこのような問題点を解決するためになされたものであって、本発明の目的は、機械的な角度差を有するように巻回された第1群の巻線及び第2群の巻線を有する二重巻線型回転電機のインバータ制御において、同期PWM及び非同期PWMを円滑に切換えることである。
 この発明のある局面によれば、機械的な角度差を有して巻回された第1群の巻線及び第2群の巻線を有する二重巻線型回転電機の制御装置は、電圧指令演算部と、搬送波供給部と、PWM制御部とを備える。搬送波供給部は、搬送波制御部を含む。電圧指令演算部は、第1群の巻線への印加電圧を制御する第1のインバータに対する第1の電圧指令群と、第2群の巻線への印加電圧を制御する第2のインバータに対する第2の電圧指令群とを生成する。搬送波供給部は、第1のインバータでの第1のパルス幅変調制御に用いられる第1の搬送波と、第2のインバータでの第2のパルス幅変調制御に用いられる第2の搬送波とを生成する。PWM制御部は、第1の電圧指令群と第1の搬送波との比較に基づく第1のパルス幅変調制御によって第1のインバータを制御するための第1のPWM信号群を生成するとともに、第2の電圧指令群と第2の搬送波との比較に基づく第2のパルス幅変調制御によって第2のインバータを制御するための第2のPWM信号群を生成する。搬送波制御部は、第1及び第2の搬送波の周波数が印加電圧の周波数の整数倍となるように変化する第1のモードと、第1及び第2の搬送波の周波数が一定である第2のモードとの一方の選択に従って、第1及び第2のパルス幅変調制御で用いられる第1及び第2の搬送波を切換える。第1及び第2のモード間でのモード切換が指示されると、搬送波制御部は、第1及び第2の搬送波のうちの一方の搬送波について、第1のモードに従う搬送波位相と第2のモードに従う搬送波位相とが一致した第1のタイミングでモード切換を実行する。さらに、搬送波制御部は、第1のタイミングよりも後において、第1及び第2の搬送波のうちの他方の搬送波について、第1のモードに従う搬送波位相と第2のモードに従う搬送波位相とが一致した第2のタイミングでモード切換を実行する。
 この発明の他のある局面によれば、機械的な角度差を有して巻回された第1群の巻線及び第2群の巻線を有する二重巻線型回転電機の制御方法は、(3)第1群の巻線への印加電圧を制御する第1のインバータに対する第1の電圧指令群と、第2群の巻線への印加電圧を制御する第2のインバータに対する第2の電圧指令群とを生成するステップと、(2)第1のインバータでの第1のパルス幅変調制御に用いられる第1の搬送波、及び、第2のインバータでの第2のパルス幅変調制御に用いられる第2の搬送波を供給するステップと、(3)第1の電圧指令群と第1の搬送波との比較に基づく第1のパルス幅変調制御によって第1のインバータを制御するための第1のPWM信号群を生成するとともに、第2の電圧指令群と第2の搬送波との比較に基づく第2のパルス幅変調制御によって第2のインバータを制御するための第2のPWM信号群を生成するステップとを備える。第1及び第2の搬送波を供給するステップは、第1及び第2の搬送波の周波数が印加電圧の周波数の整数倍となるように変化する第1のモードと、第1及び第2の搬送波の周波数が一定である第2のモードとの一方の選択に従って、第1及び第2のパルス幅変調制御に用いられる第1及び第2の搬送波を切換えるステップを含む。第1及び第2の搬送波を切換えるステップは、第1及び第2のモード間でのモード切換が指示されると、第1及び第2の搬送波のうちの一方の搬送波について、第1のモードに従う搬送波位相と第2のモードに従う搬送波位相とが一致した第1のタイミングでモード切換を実行するステップと、第1のタイミングよりも後において、第1及び第2の搬送波のうちの他方の搬送波について、第1のモードに従う搬送波位相と第2のモードに従う搬送波位相とが一致した第2のタイミングでモード切換を実行するステップとを有する。
 本発明によれば、機械的な角度差を有するように巻回された第1群の巻線及び第2群の巻線を有する二重巻線型回転電機を制御する第1及び第2のインバータでのPWM制御に用いられる第1及び第2の搬送波の両方についてモード切換時における搬送波位相の連続性を確保できるので、同期PWM及び非同期PWMの間のモード切換を円滑に実行することができる。
本実施の形態に従う回転電機の制御装置によって制御されるモータシステムの概略構成を示すブロック図である。 図1に示された制御装置の構成例を説明するためのブロック図である。 電圧指令演算のための具体的な制御構成例を説明する機能ブロック図である。 同期PWMに用いられる三角波の概念的な波形図である。 非同期PWMに用いられる三角波の概念的な波形図である。 非同期PWM及び同期PWMの間のモード切換におけるPWM制御の比較例を説明する概念的な波形図である。 本実施の形態に従う回転電機の制御装置による非同期PWM及び同期PWMの間のモード切換を説明する概念的な波形図である。 本実施の形態に従う回転電機の制御装置による補間用三角波を適用したモード切換を説明する概念的な波形図である。 図8に示されたモード切換の適用時におけるPWM制御の一例を説明する概念的な波形図である。 本実施の形態に従う回転電機の制御方法を説明するフローチャートである。 図10での三角波電圧の設定処理をさらに詳細に説明するフローチャートである。 モード切換のためのフラグ設定処理の一例を説明するフローチャートである。 モード切換のためのフラグ設定処理の変形例を説明するフローチャートである。
 以下、本開示の実施の形態について図面を用いて説明する。なお、以下では、図中の同一又は相当部分に同一符号を付して、その説明は原則的に繰り返さないものとする。
 実施の形態1.
 図1は、本実施の形態に従う回転電機の制御装置によって制御されるモータシステムの概略構成を示すブロック図である。
 図1を参照として、モータシステムは、制御対象となる2重巻線型回転電機10(以下、単に回転電機10とも称する)と、インバータ15a及び15bと、制御装置100とを備える、さらに、回転電機10には、回転角度センサ11及び電流センサ22a及び22bが配置される。
 2重巻線型の回転電機は、第1群の巻線20a及び第2群の巻線20bを有している。第1群の巻線20aは、U相、V相、W相の3相巻線とされ、第2群の巻線20bは、U相、V相、W相の3相巻線とされている。第1群及び第2群の巻線20a,20bは、固定子に巻回される。例えば、回転電機10には、回転子に永久磁石が設けられた、永久磁石同期交流回転電機を適用することができる。本実施の形態では、1つの固定子(図示せず)に2つの群の巻線20a,20bが設けられており、固定子の径方向内側に配置された1つの回転子(図示せず)に、単数又は複数の極対数の永久磁石が設けられているものとする。
 第1群の巻線20a及び第2群の巻線20bは、機械的な一定の位相差(角度差)を持って固定子に巻回されている。すなわち、第1群のU相巻線と第2群のU相巻線との間、第1群のV相巻線と第2群のV相巻線との間、及び第1群のW相巻線と第2群W相の巻線との間には、一定の位相差が設けられている。
 インバータ15aは、直流電源(図示せず)から供給された直流電力を交流電力に変換して第1群の巻線20aに供給する。インバータ15bは、同様の直流電力を交流電力に変換して第2群の巻線20bに供給する。以下では、インバータ15aを第1群インバータ15aとも称し、インバータ15bを第2群インバータ15bとも称する。
 第1群インバータ15a及び第2群インバータ15bの各々は、複数のスイッチング素子を有している。各インバータ15a,15bは、直流電源の正極端子に接続される正極側のスイッチング素子、及び、直流電源の負極端子に接続される負極側のスイッチング素子が直列接続された1相分の直列回路を、3相の巻線に対応して3セット設けた構成とすることができる。当該各直列回路における2つのスイッチング素子の接続点が、対応する相の巻線に接続される。スイッチング素子には、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等を用いることができる。
 各スイッチング素子のゲート端子は、図示しないゲート駆動回路を介して、制御装置100に接続される。第1群インバータ15aを構成する3相分のスイッチング素子のオンオフは、第1群のPWM信号Sua,Sva,Swaによって制御される。具体的には、U相巻線と接続される正極側及び負極側のスイッチング素子は、PWM信号Suaによってオンオフが制御され、V相巻線と接続される正極側及び負極側のスイッチング素子は、PWM信号Svaによってオンオフが制御され、W相巻線と接続される正極側及び負極側のスイッチング素子は、PWM信号Swaによってオンオフが制御される。第2群インバータ15bについても同様に、3相分のスイッチング素子のオンオフが、第2群のPWM信号Sub,Svb,Swbによって制御される。
 電流センサ22aは、第1群の巻線20aに流れる電流を検出するために配置され、電流センサ22bは、第2群の巻線20bに流れる電流を検出するために配置される。例えば、電流センサ22aは、第1群インバータ15aを構成するスイッチング素子の直列回路(図示せず)と、第1群の巻線20aを構成する各相の巻線と接続する電力線上に配置することができる。同様に、電流センサ22bは、第2群インバータ15bを構成するスイッチング素子の直列回路(図示せず)と、第2群の巻線20bを構成する各相の巻線と接続する電力線上に配置することができる。以下では、電流センサ22aを第1群電流センサ22aとも称し、電流センサ22bを第2群電流センサ22bとも称する。
 回転角度センサ11は、回転電機10の回転子(図示せず)の回転角度(磁極位置)を検出する。例えば、回転角度センサ11は、レゾルバによって構成することができる。
 制御装置100は、モータ制御のための機能ブロックとして示される、磁極位置検出部130、電圧指令演算部140、三角波供給部150、及び、PWM制御部133を含む。以降の説明で明らかになるように、制御装置100は、第1群インバータ15a及び第2群インバータ15bを介して、回転電機10を制御する。具体的には、回転電機10の回転角度及び電流の検出値を用いたフィードバック制御により、回転電機10が動作指令(出力トルク)に基づく電流指令値に従って動作するように第1群及び第2群のインバータ15a,15bが出力する交流電圧を制御するための、第1群PWM信号Sua,Sva,Swa及び第2群PWM信号Sub,Svb,Swbが生成される。
 図2は、制御装置100の構成例を説明するためのブロック図である。
 図2を参照して、制御装置100は、図2に示すように、ハードウェアとして、入力回路112、演算装置115、記憶装置116、及び、出力回路120を有する。演算装置115は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)等によって構成することができる。
 記憶装置116は、演算装置115とデータをやり取りする。記憶装置116は、例えば、演算装置115からデータの読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)116a、及び、演算装置115からデータを読み出し可能に構成されたROM(Read Only Memory)116bを有する。
 入力回路112は、制御装置100の外部のセンサやスイッチからの信号を、演算装置115へ入力するためのA/D変換機能を有する。図1の構成例では、入力回路112に対して、図1に示された回転角度センサ11及び電流センサ22a,22bの出力値、並びに、インバータ15a,15bに対して、図示しない直流電源から供給された直流電圧を検出するための電圧センサ24の出力値が入力される。演算装置115は、入力回路112を経由して、回転角度センサ11によって検出された回転角、電流センサ22a,22bによって検出された電流値(三相)、及び、電圧センサ24によって検出された電圧値(DC)を取得することができる。
 出力回路120は、制御装置100の外部装置に対して電気信号を出力する機能を有する。図1の構成例では、出力回路120は、第1群インバータ15a及び第2群インバータ15bのゲート駆動回路(図示せず)に対して、第1群PWM信号Sua,Sva,Swa及び第2群PWM信号Sub,Svb,Swbが出力される。
 再び図1を参照して、制御装置100を構成する各機能ブロックによる機能は、代表的には、演算装置115が、ROM116b等の記憶装置116に記憶されたソフトウェア(プログラム)を実行し、かつ、記憶装置116、入力回路112、及び出力回路120等の制御装置100の他のハードウェアと協働することにより実現することができる。また、各機能ブロックによる機能の一部又は全部について、専用の電子回路(ハードウェア)によって実現することも可能である。
 以下、制御装置100の各機能について詳細に説明する。
 磁極位置検出部130は、回転角度センサ11の出力信号に基づいて、電気角での回転子の磁極位置(本例では永久磁石のN極の位置)に相当する回転電機10の回転角度(以下、「モータ回転角」とも称する)を算出する。磁極位置検出部130は、モータ回転角を時間微分することによって、電気角での回転角速度を算出することができる。
 本実施の形態では、磁極位置検出部130には、第1群の巻線20a(例えば、U相巻線)に対する回転子の磁極位置に相当する回転角度の検出値、及び、第2群の巻線20b(例えば、U相巻線)に対する回転子の磁極位置に相当する回転角度の検出値が、回転角度センサ11から入力される。磁極位置検出部130は、回転角度センサ11によるこれらの検出値に基づき、第1群巻線基準のモータ回転角θaと、第2群巻線基準のモータ回転角θbとを算出する。
 第1群巻線基準のモータ回転角θaと、第2群巻線基準のモータ回転角θbとの間には、固定子に巻回された第1群の巻線20aと第2群の巻線20bとの間の機械的な角度差(位相差)を、電気角に換算した角度差(位相差)が存在する。すなわち、上述した群間位相差(電気角)Δθcoilを用いると、第1群巻線基準のモータ回転角θa及び第2群巻線基準のモータ回転角θbの間には、式(1)に示す関係が成立する。
 θb=θa+θcoil   …(1)
 式(1)中の群間位相差Δθcoilは、第1群の巻線20a及び第2群の巻線20bの間の機械的な位相差に対して、極対数を乗算し、2で除算する電気角換算によって求めることができる。
 磁極位置検出部130は、回転角度センサ11の検出値からモータ回転角θaを算出すると、式(1)による演算によって、モータ回転角θbをさらに求めることができる。
 電圧指令演算部140は、第1群の巻線20aへの印加電圧についての電圧指令Vua,Vva,Vwaを生成する電圧指令演算部140aと、第2群の巻線20bへの印加電圧についての電圧指令Vub,Vvb,Vwbを生成する電圧指令演算部140bとを有する。以下では、電圧指令演算部140aを第1群電圧指令演算部140aとも称し、電圧指令演算部140bを第2群電圧指令演算部140bとも称する。同様に、電圧指令Vua,Vva,Vwaを第1群電圧指令とも称し、電圧指令Vub,Vvb,Vwbを第2群電圧指令とも称する。
 電圧指令演算部140a,140bは、dq軸の回転座標系上で電流フィードバック制御を行うことにより、電圧指令を生成することができる。公知のように、dq軸の回転座標系は、図示しない回転子の電気角での回転に同期して回転する2軸の回転座標系である。d軸は、回転子の磁極位置(例えば、永久磁石のN極の向き)に定められる。q軸は、d軸より電気角で90°(π/2)進んだ方向に定められる。
 次に、図3を用いて、電圧指令演算のための具体的な制御構成例を説明する。
 図3を参照して、第1群電圧指令演算部140aは、第1群の巻線20aのdq軸電流Ida,Iqaが、第1群のdq軸電流指令Ida*、Iqa*に近づくように、第1群のdq軸電圧指令Vda,Vqaを変化させる。同様に、第2群電圧指令演算部140bは、第2群の巻線20bのdq軸電流Idb,Iqbが、第2群のdq軸電流指令Idb*,Iqb*に近づくように第2群のdq軸電圧指令Vdb,Vqbを変化させる。
 第1群電圧指令演算部140aは、第1群電流指令算出部141a、第1群電流検出部142a、第1群三相dq変換部143a、第1群電流フィードバック制御部144a、第1群非干渉化処理部145a、及び、第1群dq三相変換部146aを有する。同様に、第2群電圧指令演算部140bは、第2群電流指令算出部141b、第2群電流検出部142b、第2群三相dq変換部143b、第2群電流フィードバック制御部144b、第2群非干渉化処理部145b、及び、第2群dq三相変換部146bを有する。
 第1群電流指令算出部141aは、第1群のd軸電流指令Ida*及びq軸電流指令Iqa*を算出する。第2群電流指令算出部141bは、第2群のd軸電流指令Idb*及びq軸電流指令Iqb*を算出する。例えば、最大トルク電流制御、弱め磁束制御、又は、Id=0制御等の電流ベクトル制御方法に従って、回転電機10のトルク指令から各群のdq軸電流指令が演算される。
 第1群電流検出部142aは、電流センサ22aの出力信号に基づいて、第1群の巻線20aの各相の電流Iua,Iva,Iwaを検出する。第2群電流検出部142bは、電流センサ22bの出力信号に基づいて、第2群の巻線20bの各相の電流Iub,Ivb,Iwbを検出する。
 第1群三相dq変換部143aは、第1群電流検出部142aによって検出された第1群の各相電流Iua,Iva,Iwaを、第1群のd軸電流Ida及びq軸電流Iqaに変換する。同様に、第2群三相dq変換部143bは、第2群電流検出部142bによって検出された第2群の各相電流Iub,Ivb,Iwbを、第2群のd軸電流Idb及びq軸電流Iqbに変換する。三相dq変換部143a,143bにおいて、各相電流は、モータ回転角θaに基づく3相-2相変換及び回転座標変換により、第1群又は第2群の巻線基準のdq軸回転座標系で表したdq電流に変換される。
 第1群電流フィードバック制御部144aは、第1群のdq軸電流Ida,Iqaが、第1群のdq軸電流指令Ida*,Iqa*に近づくように第1群のdq軸電圧指令Vdba,Vqbaを変化させる。例えば、式(2),(3)に例示されるPI制御演算によって、第1群のdq軸電流フィードバック制御を実行することができる。
 Vdba=(Kpd+Kid/s)・(Ida*-Ida)  …(2)
 Vqba=(Kpq+Kiq/s)・(Iqa*-Iqa)  …(3)
 式(2),(3)において、Kpdは、d軸比例ゲインであり、Kpqは、q軸比例ゲインであり、Kidは、d軸積分ゲインであり、Kiqは、q軸積分ゲインである。また、sは、ラプラス演算子である。
 同様に、第2群電流フィードバック制御部144bは、第2群のdq軸電流Idb,Iqbが、第2群のdq軸電流指令Idb*,Iqb*に近づくように第2群のdq軸電圧指令Vdbb,Vqbbを変化させる。例えば、式(4),(5)に例示されるPI制御演算によって、第1群のdq軸電流フィードバック制御を実行することができる。
 Vdbb=(Kpd+Kid/s)・(Idb*-Idb)  …(4)
 Vqbb=(Kpq+Kiq/s)・(Iqb*-Iqb)  …(5)
 式(4),(5)において、Kpd、Kpq、Kid、Kiq、及び、sは、式(2),(3)と同様である。
 第1群非干渉化処理部145a及び第2群非干渉化処理部145bの各々は、各群のdq軸電圧指令のフィードバック値に対して、同じ群の巻線間の磁気結合による干渉を補償する第1の非干渉化処理と、異なる群の巻線間の磁気結合による干渉を補償する第2の非干渉化処理とを実行する。非干渉化処理部145a,145bの各々による第1及び第2の非干渉化処理によって、第1群及び第2群の最終的なdq軸電圧指令Vda,Vqa及びVdb,Vqbが生成される。
 例えば、第1群非干渉化処理部145aは、式(6),(7)に示すような演算によって非干渉化処理を実行する。
 Vda=Vdba-ω・Lqa・Iqa+Mdb・s・Idb-ω・Mqb・Iqb  …(6)
 Vqa=Vqba-ω・(Lda・Iqa+Φ)+Mqb・s・Iqb-ω・Mdb・Idb  …(7)
 同様に、第2群非干渉化処理部145bは、式(8),(9)に示すような演算によって非干渉化処理を実行する。
 Vdb=Vdbb-ω・Lqb・Iqb+Mda・s・Ida-ω・Mqa・Iqa  …(8)
 Vqb=Vqbb-ω・(Ldb・Idb+Φ)+Mqa・s・Iqa-ω・Mda・Ida  …(9)
 式(6)~(9)において、Lda及びLqaは、第1群に影響する第1群の同群d軸インダクタンス及び同群q軸インダクタンスである。Ldb及びLqbは、第2群に影響する第2群の同群d軸インダクタンス及び同群q軸インダクタンスである。Mda及びMqaは、第2群に影響する第1群の群間d軸インダクタンス及び群間q軸インダクタンスである。Mdb及びMqbは、第1群に影響する第2群の群間d軸インダクタンス及び群間q軸インダクタンスである。さらに、Φは、永久磁石による鎖交磁束であり、sは、ラプラス演算子であり、ωは、モータ回転角θaの微分によって算出できる角加速度である。
 式(6),(7)における「ω・Lqa・Iqa」及び「ω・(Lqa・Iqa+Φ)」は、同群非干渉化処理のための項であり、「Mdb・s・Idb」、「ω・Mqb・Iqb」、「Mqb・s・Iqb」及び「ω・Mdb・Idb」は、群間非干渉化処理のための項である。
 同様に、式(8),(9)における「ω・Lqb・Iqb」、「ω・(Lqb・Iqb+Φ)」は、同群非干渉化処理のための項であり、「Mda・s・Ida」、「ω・Mqa・Iqa」、「Mqa・s・Iqa」及び「ω・Mda・Ida」の項は、群間非干渉化処理のための項である。なお、非干渉化処理のための演算は、上記の例示に限定されるものではない、例えば、特開2016-149904号公報、又は、特開2014-138494号公報等での記載に従って、第1群非干渉化処理部145a及び第2群非干渉化処理部145bでの非干渉化処理演算を実行することも可能である。
 このように、群間非干渉化処理において、第1群非干渉化処理部145aは、第2群のdq軸電流Idb,Iqbに基づいて、第1群のdq軸電圧指令のフィードバック値Vdba,Vqbaを補正する。同様に、第2群非干渉化処理部145bは、第1群のdq軸電流Ida,Iqaに基づいて、第2群のdq軸電圧指令のフィードバック値Vdbb,Vqbbを補正する。
 一方、回転電機10の運転条件等に基づいて同群及び群間非干渉化処理を行わないと判定した場合は、第1群非干渉化処理部145a及び第2群非干渉化処理部145bは、各群のdq軸電圧指令のフィードバック値を、そのまま各群の最終的なdq軸電圧指令に設定することが可能である。或いは、第1群非干渉化処理部145a及び第2群非干渉化処理部145bは、各群のdq軸電圧指令のフィードバック値に対して同群非干渉化処理のみを行った値を、各群の最終的なdq軸電圧指令に設定してもよい。
 第1群三相dq変換部146aは、第1群の巻線20aを基準としたモータ回転角θaに基づく固定座標変換及び2相3相変換を実行することによって、第1群のdq軸電圧指令Vda,Vqaを、第1群の巻線20aの各相(3相)の交流電圧指令である第1群電圧指令Vua,Vva,Vwaに変換する。
 同様に、第2群三相dq変換部146bは、第2群の巻線20bを基準としたモータ回転角θbに基づく固定座標変換及び2相3相変換を実行することによって、第2群のdq軸電圧指令Vdb,Vqbを、第2群の巻線20bの各相(3相)の交流電圧指令である第2群電圧指令Vub,Vvb,Vwbに変換する。
 このようにして第1群電圧指令演算部140aによって生成された第1群電圧指令Vua、Vva及びVwaは、120度(電気角)ずつ位相が異なる正弦波電圧で示される。同様に、第2群電圧指令演算部140bによって生成された第2群の電圧指令Vub、Vvb及びVwbについても、120度(電気角)ずつ位相が異なる正弦波電圧で示される。
 再び図1を参照して、三角波供給部150は、三角波生成部152及び三角波制御部154を含む。三角波供給部150は、第1群インバータ15aのPWM制御に用いられる三角波CWaと、第2群インバータ15bのPWM制御に用いられる三角波CWbとを生成する。
 PWM制御部133は、第1群PWM制御部133aと、第2群PWM制御部133bとを含む。第1群のPWM制御部133aは、第1群電圧指令Vua,Vva,Vwaと第1群用の三角波CWaとの電圧比較により、第1群PWM信号Sua,Sva,Swaを生成する。第1群PWM信号Sua,Sva,Swaに従って、第1群インバータ15aを構成する各相の正極側スイッチング素子及び負極側スイッチング素子のオンオフが制御される。これにより、第1群インバータ15aは、第1群PWM信号Sua,Sva,Swaに応じて、第1群の巻線20aへの印加電圧を制御する。
 第2群のPWM制御部133bは、第2群電圧指令Vub,Vvb,Vwbと第2群用の三角波CWbとの電圧比較により、第2群PWM信号Sub,Svb,Swbを生成する。第2群PWM信号Sub,Svb,Swbに従って、第2群インバータ15bを構成する各相の正極側スイッチング素子及び負極側スイッチング素子のオンオフが制御される。これにより、第2群インバータ15bは、第2群PWM信号Sub,Svb,Swbに応じて第2群の巻線20bへの印加電圧を制御する。
 本実施の形態に従うモータシステムでは、インバータ15a,15bの出力電圧を制御するためのPWM制御において、同期PWM又は非同期PWMが選択的に適用される。
 例えば、回転電機10の回転速度領域やインバータ15a,15bの発熱度合に応じて、同期PWM及び非同期PWMの選択が切換えられる。したがって、三角波供給部150は、同期PWM及び非同期PWMを切換えるように構成される。
 三角波生成部152は、第1群三角波生成部152aと、第2群三角波生成部152bとを有する。三角波制御部154は、第1群三角波制御部154a及び第2群三角波制御部154bを有する。
 第1群三角波生成部152aは、同期PWM用三角波CWXa及び非同期PWM用三角波CWYaを生成する。第2群三角波生成部152bは、同期PWM用三角波CWXb及び非同期PWM用三角波CWYbを生成する。後述するように、同期PWM用三角波CWXa及びCWXbの間、並びに、非同期PWM用三角波CWYa及びCWYbの間には位相差が発生する場合がある。
 図4は、同期PWMに用いられる三角波の概念的な波形図である。
 図4を参照して、第1群三角波生成部152aは、第1群の基準位相θrefaに従って、第1群用の同期PWM用三角波CWXaの位相θXa(以下、キャリア位相θXaとも称する)を変化させる。第1群の基準位相θrefaは、第1群の巻線20aを基準とするモータ回転角θaと、モータ回転角θaに対する第1群の電圧指令位相θvdqaとに応じて、式(10),(11)によって算出される。
 θrefa=θa+θvdqa-(π/2)  …(10)
 θvdqa=tan-1(Vqa/Vda)   …(11)
 同様に、第2群三角波生成部152bは、第2群の基準位相θrefbに従って、第2群用の同期PWM用三角波CWXbの位相θXb(以下、キャリア位相θXbとも称する)を変化させる。第2群の基準位相θrefbは、第2群の巻線20bを基準とするモータ回転角θbと、モータ回転角θbに対する第2群の電圧指令位相θvdqbとに応じて、式(12),(13)によって算出される。
 θrefb=θb+θvdqb-(π/2)  …(12)
 θvdqb=tan-1(Vqb/Vdb)   …(13)
 式(1)を用いて式(12)を変形すると、式(14)が得られるので、基準位相θrefa及びθrefbの間の位相差Δθref(Δθref=θrefa-θrefb)は、式(15)で示される。
 θrefb=θa+Δθcoil+θvdqb-(π/2) …(14)
 Δθref=(θvdqa-θvdqb)-Δθcoil  …(15)
 第1群三角波生成部152aは、第1群の基準位相θrefaの1周期(0~2π)内に、M個の三角波が発生されるように、第1群の基準位相θrefaと同期させてキャリア位相θXaを算出する。Mは、2以上の整数であるが、代表的には、3及び9等の、3・(2・i-1)で示される整数に設定される(i:予め設定された自然数)。本実施の形態では、M=3に設定されるものとする。
 図4に示されるように、第1群三角波生成部152aは、第1群の基準位相θrefaの3倍(M倍)の速度で変化するようにキャリア位相θXaを算出する。これにより、基準位相θrefaが0~2πまで変化する間に、キャリア位相θXaは、0~2πの変化を3回繰り返すように算出される。
 第1群三角波生成部152aは、キャリア位相θXaが0~2πまで変化するのに応じて「谷」から「谷」まで1回振動するように、同期PWM用三角波CWXaを生成する。例えば、キャリア位相θXaと、同期PWM用三角波CWXaの振幅に対する電圧比とを対応付けるマップデータが予め作成されている。例えば、キャリア位相が0又は2πのときに三角波の「谷」となり、キャリア位相がπのときに三角波の「山」となるように、マップデータを作成することができる。
 同期PWM用三角波CWXaの振幅値は、インバータ15aに入力される直流電圧Vdc(すなわち、電圧センサ24による検出値)に設定される。したがって、第1群三角波生成部152aは、キャリア位相θXa及び直流電圧Vdcを用いて上記マップデータを参照することによって、各タイミングでの同期PWM用三角波CWXaの電圧値を算出することができる。
 同様に、第2群三角波生成部152bは、第2群の基準位相θrefbの3倍(M倍)の速度で変化するようにキャリア位相θXbを算出する。これにより、基準位相θrefbが0~2πまで変化する間に、キャリア位相θXbは、0~2πの変化を3回繰り返すように算出される。
 第2群三角波生成部152bは、キャリア位相θXbが0~2πまで変化する間に、「谷」から「谷」まで1回振動するように、同期PWM用三角波CWXbを生成する。例えば、第1群三角波生成部152aと共通の上記マップデータを用いて、第2群三角波生成部152bは、キャリア位相θXb及び直流電圧Vdcから各タイミングでの同期PWM用三角波CWXbの電圧値を算出することができる。なお、同期PWM用三角波CWXa,CWXbは、各タイミングで算出された上記電圧値の集合体に相当する。同期PWM用三角波CWXa,CWXbの間には、式(15)のΔθrefのM倍に相当する位相差が生じる。
 図5は、非同期PWMに用いられる三角波の概念的な波形図である。
 図5を参照して、第1群の基準位相θrefa及び第2群の基準位相θrefbは、第1群三角波生成部152a及び第2群三角波生成部152bによって、図4と同様に算出される。
 第1群三角波生成部152aは、制御装置100の外部から指定されるキャリア周期Tcwに従って、第1群用の非同期PWM用三角波CWYaの位相θYa(以下、キャリア位相θYaとも称する)を変化させる。キャリア位相θYaは、キャリア周期Tcw毎に1個の三角波が発生されるように算出される。すなわち、キャリア周期Tcw毎に、キャリア位相θYaは、0から2πまで変化する。
 第1群三角波生成部152aは、キャリア位相θYaが0~2πまで変化する間に、非同期PWM用三角波CWYaが「谷」から「谷」まで1回振動するように、同期PWM用三角波の生成と共通のマップデータを用いて非同期PWM用三角波CWYaを生成する。第1群三角波生成部152aは、キャリア位相θYa及び直流電圧Vdcを用いて上記マップデータを参照することによって、各タイミングでの非同期PWM用三角波CWYaの電圧値を算出することができる。
 同様に、第2群三角波生成部152bは、キャリア周期Tcwに従って、第2群用の非同期PWM用三角波CWYbの位相θYb(以下、キャリア位相θYbとも称する)を変化させる。キャリア位相θYbは、キャリア位相θXaと同様に、キャリア周期Tcw毎に0から2πまで変化するように算出される。
 第2群三角波生成部152bは、上記マップデータを用いて、キャリア位相θYb及び直流電圧Vdcから各タイミングでの非同期PWM用三角波CWYbの電圧値を算出することができる。これにより、キャリア周期Tcw毎に、「谷」から「谷」まで1回振動するように、非同期PWM用三角波CWYbが生成される。
 非同期PWM用三角波CWYa,CWYbは、各タイミングで算出された上記電圧値の集合体に相当する。非同期PWM用三角波CWYa,CWYbの間には、制御装置100の外部から指定される一定の位相差が生じる。
 基準位相θrefa,θrefbの1周期は、電気角の1回転に相当するので、第1群電圧指令Vua,Vva,Vwa及び第2群電圧指令Vub,Vvb,Vwbの1周期と等しい。したがって、同期PWM用三角波CWXa,CWXbの周波数は、電圧指令の周波数のM倍となる。一方で、非同期PWM用三角波CWYa,CWYbの周波数は、キャリア周期Tcwに従って一定である。すなわち、同期PWMは「第1のモード」に対応し、非同期PWMは「第2のモード」に対応する。また、以下では、同期PWM及び非同期PWMの間の切換を「モード切換」とも称する。
 図6は、非同期PWM及び同期PWMの間のモード切換におけるPWM制御の比較例を説明する概念的な波形図である。図6には、第1群PWM制御部133a及び第2群PWM制御部133bによる、第1群インバータ15a及び第2群インバータ15bのU相における制御動作が示される。特に、図6では、非同期PWMから同期PWMへのモード切換時の波形例が例示される。
 図6を参照して、時刻td以前において、第1群用の三角波CWa及び第2群用の三角波CWbは、非同期PWM用三角波CWYa,CWYb(図5)に従って、一定のキャリア周期(Tcw)で生成される。
 比較例では、非同期PWM用三角波CWYa及び同期PWM用三角波CWXaの両方が「山」に相当する位相となる時刻tdにおいて、第1群インバータ15a及び第2群インバータ15bのPWM制御の両方で、同時に非同期PWMから同期PWMへのモード切換が実行される。
 この結果、時刻tdでは、第1群のキャリア位相θXa及びθYaは一致しているので、時刻tdの前後、すなわちモード切換時に、第1群用の三角波CWaの位相の連続性は確保される。
 一方で、キャリア位相θXa及びθXbの間、並びに、キャリア位相θYa及びθYbの間に位相差が存在するため、時刻tdでは、第2群のキャリア位相θXb及びθYbは不一致となる。したがって、時刻tdの前後、すなわちモード切換時に、第2群用の三角波CWbの位相が不連続となっている。
 第1群PWM制御部133aは、U相において、三角波CWa及び電圧指令Vuaの電圧比較に基づいて、PWM信号Suaを生成する。具体的には、Vca>CWaの期間では、PWM信号Suaが論理ハイレベル(以下、「Hレベル」とも称する)に設定される。PWM信号SuaのHレベル期間では、U相の直列回路において、U相巻線に直流電圧Vdcを印加するために正極側のスイッチング素子がオンされる。一方で、Vca<CWaの期間では、PWM信号Suaが論理ローレベル(以下、「Lレベル」とも称する)に設定される。PWM信号SuaのLレベル期間では、U相巻線を直流電圧Vdcから切り離すために負極側のスイッチング素子がオンされる。
 三角波CWaの1周期毎に、PWM信号SuaのHレベル期間及びLレベル期間の比が制御されることによって、U相巻線への印加電圧は、正弦波状の電圧指令Vuaに従ってPWM制御される。同様に、第2群PWM制御部133bは、U相において、三角波CWb及び電圧指令Vubの電圧比較に基づくPWM制御によって、PWM信号Subを生成する。
 図6におけるPWM信号Sua,Subの波形から、キャリア位相の連続性が確保された、第1群インバータ15aのPWM制御では、三角波CWaの各周期において、PWM信号SuaにてHレベル及びLレベル間の遷移が発生する。これにより、第1群の巻線20a(U相)と接続された正極側スイッチング素子及び負極側スイッチングのオンオフが切換えられている。
 これに対して、キャリア位相の連続性が確保されていない第2群のインバータ15bのPWM制御では、時刻tdを挟んで、三角波CWbの1周期を超えて、PWM信号Subのレベルが維持される期間が発生している。これにより、第2群の巻線20b(U相)と接続された正極側スイッチング素子又は負極側スイッチングのオンが維持されることによって、インバータ15bからU相巻線に印加される交流電圧が電圧指令Vubから乖離する虞がある。この結果、インバータ15bの制御が不安定化することが懸念される。
 図6で説明した現象を回避するために、本実施の形態に従う回転電機の制御装置は、キャリア位相の連続性を確保しながら同期PWM及び非同期PWM間のモード切換を実行する。
 図7は、本実施の形態に従う回転電機の制御装置による非同期PWM及び同期PWMの間のモード切換を説明する概念的な波形図である。
 図7を参照して、第1群の基準位相θrefaの変化に対して、図4及び図5で説明したように、同期PWM用三角波CWXa及び非同期PWM用三角波CWYaが生成される。同様に、第2群の基準位相θrefbの変化に対して、図4及び図5で説明したように、同期PWM用三角波CWXb及び非同期PWM用三角波CWYbが生成される。図7の例では、同期PWMにおけるM=9であり、同期PWM用三角波CWXa,CWXbの1周期は、基準位相θrefa,θrefbの2π/9に相当する。すなわち、基準位相θrefa,θrefbの1周期(0~2π)に、9個の三角波を含むように、同期PWM用三角波CWXa及びCWXbが生成される。
 非同期PWMが適用されて、CWa=CWYa、かつ、CWb=CWYbとされている時刻t0において、非同期PWMから同期PWMへのモード切換が指示される。時刻t0以降では、第1群三角波制御部154aにより、第1群の基準位相θrefaの変化に対して、第1群の同期PWM用三角波CWXa及び非同期PWM用三角波CWYaの位相が比較される。同様に、第2群三角波制御部154bは、第2群の基準位相θrefbの変化に対して、第2群の同期PWM用三角波CWXb及び非同期PWM用三角波CWYbの位相を比較する。
 時刻t1において、図6の時刻tdと同様に、同期PWM用三角波CWXa及び非同期PWM用三角波CWYaの両方が「山」に相当する位相となる。このタイミングにおいて、第1群三角波制御部154aは、三角波CWaを非同期PWMから同期PMWへ切換える。すなわち、時刻t1以後では、CWa=CWXaとされる。
 一方、時刻t1において、第2群の同期PWM用三角波CWXb及び非同期PWM用三角波CWYbの位相は不一致である。したがって、このタイミングで、第2群三角波制御部154bが、三角波CWbを非同期PWMから同期PMWへ切換えると、図6で説明したような位相の不連続が発生する。
 したがって、第2群三角波制御部154bは、第1群三角波制御部154aと同じタイミングでは同期PWMへの切換を実行せず、第2群の同期PWM用三角波CWXb及び非同期PWM用三角波CWYbの位相比較を継続する。すなわち、時刻t1以後においても、CWb=CWYbとされる。
 第2群三角波制御部154bは、時刻t2において、同期PWM用三角波CWXb及び非同期PWM用三角波CWYbの両方が「山」に相当する位相になると、三角波CWbを非同期PWMから同期PMWへ切換える。すなわち、時刻t2以後では、CWb=CWXbとされる。
 このようなモード切換とすることにより、第1群インバータ15a及び第2群インバータ15bのPWM制御の両方において、キャリア位相の連続性を確保することができる。この結果、同期PWM及び非同期PWMの間のモード切換に際して、図6で説明したような、インバータ制御の不安定化を防止することができる。図7の例では、時刻t1が「第1のタイミング」に一実施例に対応し、時刻t2が「第2のタイミング」の一実施例に対応する。
 また、図7の例では、第1群インバータ15aのPWM制御のモード切換を先に実行したが、第2群インバータ15bのPWM制御のモード切換を固定的に先行させることも可能である。また、先行してモード切換の対象とするインバータを必ずしも固定する必要はない。例えば、第1群及び第2群のうちで、同期PWM用三角波及び非同期PWM用三角波のキャリア位相が先に一致した一方において、モード切換を実行することが可能である。
 なお、一方のインバータ15bにおいてモード切換が待機される時刻t1~t2の期間(以下、「モード遷移期間」とも称する)においても、モード切換前の三角波(図7の例では、非同期PWM用三角波)を用いて、当該インバータ15bの制御を継続することが可能であることが理解される。
 一方で、モード遷移期間(時刻t1~t2)では、第1群及び第2群のインバータ15a,15bについて、一方が同期PWMで制御される一方で、他方が非同期PWMで制御されることになる。このため、モード遷移期間が長くなると、第1群の巻線20a及び第2群の巻線20bに印加される交流電圧に差が生じることによって、制御が不安定化することが懸念される。
 したがって、本実施の形態に従う回転電機の制御装置によれば、モード遷移期間の短縮のために、図8に示す補間用三角波を適用してモード切換を実行することも可能である。
 図8は、本実施の形態に従う回転電機の制御装置による補間用三角波を適用したモード切換を説明する概念的な波形図である。
 図8を参照して、基準位相θrefa,θrefb、並びに、同期PWM用三角波CWXa,CWXb及び非同期PWM用三角波CWYa,CWYbは、図7と同様に変化する。さらに、図7と同様に、時刻t0において、非同期PWMから同期PWMへのモード切換が指示されると、時刻t1において、第1群三角波制御部154aは、三角波CWaを非同期PWMから同期PMWへ切換える。一方で、第2群三角波制御部154bは、時刻t1において、三角波CWbのモード切換タイミングとなる時刻t2を定めるとともに、同期PWM用三角波CWXb及び非同期PWM用三角波CWYbに基づき、補間用三角波CWintを生成するための演算を実行する。時刻t2は、補間用三角波CWintの適用が終了される、補間終了点に相当する。
 補間用三角波CWintは、時刻t1におけるキャリア位相θ1が、モード切換前の非同期用三角波CWYbのキャリア位相が同じであり、時刻t2におけるキャリア位相θ2が、切換後の同期用三角波CWXbのキャリア位相が同じとなるように生成される。さらに、補間用三角波CWintは、キャリア位相が補間終了点でのθ2に向けて一定レートで変化するように生成される。
 これにより、時刻t2からCWb=CWXbとしてモード切換を実行しても、第2群用の三角波CWbのキャリア位相の連続性が確保される。すなわち、補間用三角波CWintを導入することで、第2群用の三角波CWbのモード切換のタイミングを意図的に設定することが可能となる。すなわち、図8の例においても、時刻t1が「第1のタイミング」の一実施例に対応し、時刻t2が「第2のタイミング」の一実施例に対応する。
 例えば、三角波CWbのモード切換タイミング(時刻t2)は、時刻t1において非同期用三角波CWYbが「谷」に近いため、時刻t1以降で「山」に相当する位相となるタイミングに設定することができる。これにより、後発でモード切換が適用される三角波(図8では、第2群用の三角波CWb)についてモード切換時のキャリア位相の連続性を確保した上で、モード遷移期間を短くすることができる。
 第2群三角波制御部154bは、時刻t1における、同期PWM用三角波CWXbのキャリア位相及び基準位相θrefbの変化レートに従って時刻t2を設定することができる。さらに、補間終了点である時刻t2における同期PWM用三角波CWXbのキャリア位相(「山」であればπ)と時刻t1(現時点)における三角波CWbのキャリア位相(すなわち、非同期PWM用三角波CWYb)との位相差を、時刻t1から時刻t2までの所要時間で除算することによって、補間用三角波CWintの変化レートを算出することができる。
 第2群三角波制御部154bは、モード遷移期間(時刻t1~t2)では、算出された一定の変化レートに従ってキャリア位相を変化させる補間演算を周期的に実行する。
 これにより、補間用三角波CWintに従って三角波CWbを生成することができる。この結果、段階的なモード切換の適用によって、インバータ15a及び15bの両方のPWM制御におけるキャリア位相の連続性を確保できることに加えて、モード遷移期間を短くすることができるので、遅れてモード切換が適用されるインバータ15bの制御をさらに安定化することができる。
 なお、補間用三角波CWintの適用開始タイミングは、時刻t1(第1のタイミング)と同時でなくてもよく、モード切換未完の三角波(図8では、第2群用の三角波CWb)の「山」又は「谷」が時刻t1以降で最初に到来するタイミングとすることができる。この場合には、補間用三角波CWintの適用開始以降で、モード切換後に適用される三角波(図8の例では、同期PWM用三角波CWXb)の「谷」又は「山」が最初に到来するタイミングを、補間終了点(すなわち、時刻t2)に定めることができる。
 図9は、図8に示されたモード切換の適用時におけるPWM制御の一例を説明する概念的な波形図である。
 図9を参照して、図6と同様に、時刻t1における非同期PWMから同期PWMへのモード切換において、第1群用の三角波CWaのキャリア位相の連続性は確保されている。したがって、第1群インバータ15aのPWM信号Suaは、モード切換時においても、三角波の1周期毎にスイッチング(Hレベル及びLレベル間の遷移)が生じるように生成される。
 一方で、第2群用の三角波CWbは、時刻t1以降では、補間用三角波CWintに従って生成される。そして、同期PWM用三角波CWXbの次の「山」のタイミングである時刻t2において、第2群用の三角波CWbのモード切換が実行される。この結果、第1群インバータ15bのPWM信号Subについても、モード切換時において三角波の1周期毎にスイッチング(Hレベル及びLレベル間の遷移)が生じるように生成することができる。
 以上説明したように、本実施の形態に従う回転電機の制御装置によれば、機械的な角度差を有するように巻回された第1群の巻線及び第2群の巻線を有する二重巻線型回転電機を制御するための第1群インバータ15a及び第2群インバータ15bでのPWM制御における、同期PWM及び非同期PWMのモード切換を円滑に行うことができる。
 なお、実施の形態1では、非同期PWMから同期PWMへのモード切換を説明したが、同期PWMから非同期PWMへのモード切換についても、モード切換前に適用される三角波(同期PWM用)と、モード切換後の三角波(非同期PWM用)とのキャリア位相の一致比較に従って同様に制御することが可能である。
 また、キャリア位相の連続性が確保される限り、同期PWM用及び/又は非同期PWM用の「山」又は「谷」に相当するタイミング以外でもモード切換を実行することが可能である。但し、三角波の1周期単位でスイッチング素子のオンオフを安定的に制御する観点からは、三角波の「山」又は「谷」のタイミングに限定して、モード切換のタイミング(第1及び第2のタイミング)を設定することが好ましい。
 さらに、補間用三角波CWintの導入時において、時刻t2のタイミングは、次の「山」又は「谷」のタイミングに限定されることはないが、図8で説明したタイミングで時刻t2を設定することにより、モード遷移期間を短縮する効果が高められる。
 実施の形態2.
 実施の形態2では、本実施の形態に従う回転電機の制御装置による同期PWM及び非同期PWMの間のモード切換の制御処理について説明する。すなわち、実施の形態2では、実施の形態1で説明したモード切換がフローチャートを用いて説明される。
 以下に示すフローチャートに示された各ステップの処理は、主に、制御装置100がROM116bに予め格納されたプログラムを演算装置115(CPU)によって実行することによって実現することができる。或いは、以下に説明する各ステップの一部又は全部について、演算装置115内に設けられた専用の電子回路(ハードウェア)を用いて処理することも可能である。
 図10は、本実施の形態に従う回転電機の制御方法を説明するフローチャートである。
 図10を参照して、制御装置100は、ステップS100により、回転角度センサ11の出力信号に基づいてモータ回転角を算出する。ステップS100の処理は、図1の磁極位置検出部130の機能により実現される。
 さらに、制御装置100は、ステップS110により、電流センサ22a,22bの出力信号のサンプリングによって、第1群の巻線20aの電流Iua,Iva,Iwa及び第2群の巻線20bの電流Iub,Ivb,Iwbを検出する。ステップS110による処理は、図3に示された電流検出部142a,142bの機能により実現される。
 制御装置100は、ステップS120により、第1群インバータ15aの電圧指令Vua,Vva,Vwa、及び、第2群インバータ15bの電圧指令Vub,Vvb,Vwbを演算する。ステップS120による処理は、図1の電圧指令演算部140の機能により実現される。
 さらに、制御装置100は、ステップS200により、三角波電圧を設定すると、ステップS150により、電圧指令(S120)及び三角波電圧(S200)の比較により、第1群インバータ15aを制御するためのPWM信号Sua,Sva,Swaと、第2群インバータ15bを制御するためのPWM信号Sub,Svb,Swbとを生成する。これにより、インバータ15a,15bによって回転電機10の巻線20a,20bに印加される交流電圧が、フィードバック制御による電圧指令に従って制御される。
 ステップS200による処理は、三角波供給部150が三角波CWa,CWbを生成する機能によって実現される。ステップS150による処理は、PWM制御部133の機能によって実現される。
 実施の形態1でも説明したように、ステップS200による三角波電圧の設定では、同期PWM及び非同期PWMが選択的に適用される。
 図11は、図10のステップS200による三角波電圧の設定処理をさらに詳細に説明するフローチャートである。
 図11を参照して、制御装置100は、ステップS210により、キャリア位相を演算する。具体的には、ステップS100で算出されたモータ回転角θa,θbから、式(10),(11)によって基準位相θrefa,θrefbが算出される。さらに、図4及び図5で説明したように、基準位相θrefa,θrefbから、第1群用のキャリア位相θXa(同期PWM)及びθXb(非同期PWM)と、第2群用のキャリア位相θYa(同期PWM)及びθYb(非同期PWM)が算出される。
 制御装置100は、ステップS212により、第1群のインバータ15aのPWM制御に同期PWM制御及び非同期PWM制御のいずれを適用するかを示す、フラグFLaの値を確認する。
 フラグFLaは、同期PWMの選択時にはFLa=1に設定され、非同期PWMの選択時時にはFLa=0に設定される。同様に、第2群のインバータ15bに関するフラグFLbが導入される。フラグFLbについても、同期PWMの選択時にはFLb=1に設定され、非同期PWMの選択時時にはFLb=0に設定される。後述するように、フラグFLa及びFLbの値(0/1)の設定によって、モード切換が制御される。
 制御装置100は、FLa=1のときには(S212のYES判定時)、ステップS214に処理を進めて、同期PWM用のキャリア位相θXaからマップデータを用いて、三角波CWaの電圧値を算出する。一方で、制御装置100は、FLa=0のとき(S212のNO判定時)には、ステップS216により、非同期PWM用のキャリア位相θYaからマップデータを用いて三角波CWaの電圧値を算出する。これにより、非同期PWM及び同期PWMの一方を選択して、第1群用の三角波CWaの電圧値が算出される。
 さらに、制御装置100は、ステップS220により、フラグFLintが1であるかどうかを判定する。フラグFLintは、図7及び図8で説明したモード遷移期間において、補間用三角波を適用するときにFLint=1に設定される一方で、それ以外では、FLint=0(デフォルト値)とされる。フラグFLintの値の設定についても、後程詳細に説明する。
 制御装置100は、FLint=0のとき(S220のNO判定時)には、ステップS230により、フラグFLbの値を確認する。FLb=1のとき(S230のYES判定時)には、処理がステップS234に進められて、同期PWM用のキャリア位相θXbからマップデータを用いて、三角波CWbの電圧値が算出される。一方で、制御装置100は、FLb=0のとき(S230のNO判定時)には、ステップS236に進められて、非同期PWM用のキャリア位相θYbからマップデータを用いて、三角波CWbの電圧値が算出される。
 一方で、制御装置100は、FLint=1のときには、(S220のYES判定時)には、ステップS225により、図8で説明した、補間用三角波CWintを求めるための補間演算に従って三角波CWbの電圧値を算出する。
 図12には、モード切換のためのフラグFLa,FLb,FLintの設定処理が示される。図12に示す制御処理は、図11に示す処理とは別個に繰返し実行されるが、図11のステップS210により周期的に更新されるキャリア位相θXa,θXb,θYa,θYbの最新値が、図12での制御処理の各ステップで使用される。同様に、図11のステップS212,S220,S230では、図12の処理によって都度更新されるフラグFLa,FLb,FLintの最新値が参照される。
 図12を参照して、制御装置100は、ステップS310により、モード切換指示が発生されたかどうかを判定する。制御装置100は、モード切換指示のないとき(S310のNO判定時)には、ステップS315により、フラグFLintをデフォルト値である0に設定する一方で、フラグFLa,FLbの値を現在のまま維持する。このように設定されたフラグFLa,FLb,FLintに従って、図11に示す制御処理が実行されることにより、モード切換がないときの三角波CWa,CWbの電圧値が設定される。
 一方、制御装置100は、モード切換指示があった場合(S310のYES判定時)には、ステップS320により、第1群インバータ15aに関するキャリア位相の一致比較を行なう。すなわち、同期PWM用のキャリア位相θXaと非同期PWM用のキャリア位相θYaが一致すると(具体的には、|θXa-θYa|<εが成立すると)、ステップS320がYES判定とされ、それ例外のときには、ステップS320はNO判定とされる。好ましくは、ステップS320では、キャリア位相θXa及びθYaが「山」又は「谷」に対応する位相で、かつ、両者が一致するときに限って、YES判定とされる。
 制御装置100は、キャリア位相θXa,θYaが一致するまで(S320のNO判定時)、ステップS325によりフラグFLa,FLbの値を維持したままで、当該一致比較(S320)を繰返す。
 制御装置100は、キャリア位相θXa及びθYaが一致すると(S320のYES判定時)、ステップS330により、第1群インバータ15aのPWM制御のモードを切換えるために、フラグFLaの値を、0から1、又は、1から0に変更する。これにより、図8で示した第1のタイミング(時刻t1)におけるモード切換を実現することができる。
 さらに、制御装置100は、一方のインバータ15aのモード切換が完了すると、ステップS340により、モード切換未完の三角波CWbのキャリア位相が「山」又は「谷」に相当するか否かを判定する。同期PWMから非同期PWMへのモード切換では、ステップS340による判定は、キャリア位相θXbに基づいて実行される。一方で、非同期PWMから同期PWMへのモード切換では、ステップS340による判定は、キャリア位相θYbに基づいて実行される。これにより、第1群のインバータ15aでのモード切換後、モード切換未完の第2群の三角波CWbの「山」又は「谷」が最初に到来するまで、ステップS340はNO判定とされて、制御装置100は、ステップS345により、フラグFLint=0に維持する。フラグFLint=0の期間では、第2群用の三角波CWbは、補間用三角波CWintが適用されることなく、モード切換前の三角波がそのまま用いられる。
 制御装置100は、三角波CWbの「山」又は「谷」が到来すると(S340のYES判定時)、ステップS350に処理を進めて、フラグFLintの値を0から1に変更する。さらに、制御装置100は、ステップS360により、補間終了点(すなわち、第2のタイミング)を設定するとともに、補間演算を実行する。上述のように、補間終了点は、モード切換後に適用される三角波が「山」又は「谷」の位相となるタイミング(第2のタイミング)に設定される。例えば、モード切換前の三角波CWbの「山」でS340がYES判定とされた場合には、モード切換後に適用される三角波が次に「谷」を迎えるタイミングを補間終了点に設定することができる。反対に、モード切換前の三角波CWbの「谷」でステップS340がYES判定とされた場合には、モード切換後に適用される三角波が次に「山」を迎えるタイミングを補間終了点に設定することができる。
 補間演算は、上述のように、補間用三角波CWintのキャリア位相が、補間終了点以降で適用される三角波の位相(「山」又は「谷」に相当)に向けて一定のレートで変化するように実行される。
 制御装置100は、補間演算が開始されると、補間終了点すなわち図8における時刻t2が到来するまで(S370のNO判定時)、FLint=1に維持(S350)するとともに、補間演算に従って補間用三角波CWintの電圧値を演算する(S360)。図11のステップS225では、ステップS360での演算結果に従って、三角波CWbの電圧値が算出される。
 制御装置100は、補間演算の実行時に補間終了点が到来すると(S370のYES判定時)、ステップS380に処理を進めて、補間用三角波の適用を終了するためにFLint=0にするとともに、第2群インバータ15bのPWM制御のモードを切換えるために、フラグFLbの値を、0から1、又は、1から0に変更する。これにより、図8で示した第2のタイミング(時刻t2)におけるモード切換を実現することができる。
 図12の制御処理に従って制御されたフラグFLa,FLb,FLintに従って、図11の制御処理により三角波CWa,CWbの電圧値を設定することにより、図8で説明した、同期PWM及び非同期PWMの間のモード切換を実現することができる。
 なお、図12の処理においてステップS340及びS350を省略することにより、第1群のインバータ15aのモード切換時点(時刻t1)から、モード遷移期間を通じて補間用三角波CWintの適用を開始することも可能である。
 図13は、モード切換のためのフラグ設定処理の変形例を説明するフローチャートである。
 図13を参照して、ステップS310~S330の処理、すなわち、第1群インバータ15aに関するモード切換の処理は、図12と共通である。
 制御装置100は、一方のインバータ15aのモード切換が完了すると、ステップS400により、モード切換未完の他方のインバータ15bのPWM制御に用いられる三角波CWbについて、同期PWMのキャリア位相θXb及び非同期PWMのキャリア位相θYbを比較する。
 ステップS400による判定は、ステップS320と同様に実行することができる。制御装置100は、キャリア位相θXb及びθYbが不一致の間(S400のNO判定時)は、ステップS405により、フラグFLbの値を維持する。一方、キャリア位相θXb及びθYbが一致すると(S400のYES判定時)、制御装置100は、ステップS410に処理を進めて、インバータ15bのPWM制御のモードを切換えるために、フラグFLbの値を、0から1、又は、1から0に変更する。
 これにより、補間用三角波CWintを適用しないモード切換によって、図7の第2のタイミング(時刻t2)における動作を実現することができる。
 すなわち、図13に示された制御処理に従って制御されたフラグFLa,FLbを用いて図11の制御処理により三角波CWa,CWbの電圧値を設定することにより、図7で説明した、同期PWM及び非同期PWMの間のモード切換を実現することができる。なお、図13及び図11の制御処理を組合せる場合には、FLint=0に固定されることにより、ステップS220が常にNO判定とされることで、ステップS225による処理はスキップされる。
 なお、図12及び図13では、固定的に第1群インバータ15aのモード切換が先行して実行される制御例を説明したが、これとは逆に、第2群インバータ15bのキャリア位相比較を先に行ってもよい。或いは、ステップS320(図12及び図13)において、第1群インバータ15aに係るキャリア位相比較(S320)と、第2群インバータ15bに係る位相比較との両方を実行して、先にキャリア位相が一致した一方のインバータのモードを切換た後に、他方のインバータのモード切換を、図12のステップS340以降、又は、図13bのステップS400以降に従って制御する変形例とすることも可能である。
 このように、制御装置100が、図11~図14に示されたフローチャートに従った制御処理を実行することにより、実施の形態1と同様に、二重巻線型回転電機を制御するための第1群インバータ15a及び第2群インバータ15bでのPWM制御における、同期PWM及び非同期PWMのモード切換を円滑に行うことができる。
 なお、実施の形態1及び2では、PWM制御のキャリア波(搬送波)として三角波を例示したが、のこぎり波等の三角波以外の周期的な波形についても、搬送波として用いることが可能である。
 すなわち、第1群インバータ15aは「第1のインバータ」の一実施例に対応し、第2群インバータ15bは「第2のインバータ」の一実施例に対応し、三角波CWaは「第1の搬送波」の一実施例に対応し、三角波CWbは「第2の搬送波」の一実施例に対応する。同様に、三角波供給部150は「搬送波供給部」の一実施例に対応し、三角波制御部154は「搬送波制御部」の一実施例に対応する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 10 二重巻線型回転電機、11 回転角度センサ、15a 第1群インバータ、15b 第2群インバータ、20a 巻線(第1群)、20b 巻線(第2群)、22a 第1群電流センサ、22b 第2群電流センサ、24 電圧センサ、100 制御装置、112 入力回路、115 演算装置、116 記憶装置、120 出力回路、130 磁極位置検出部、133 PWM制御部、133a 第1群PWM制御部、133b 第2群PWM制御部、140 電圧指令演算部、140a 第1群電圧指令演算部、140b 第2群電圧指令演算部、141a 第1群電流指令算出部、141b 第2群電流指令算出部、142a 第1群電流検出部、142b 第2群電流検出部、143a 第1群三相dq変換部、143b 第1群三相dq変換部、144a 第1群電流フィードバック制御部、144b 第2群電流フィードバック制御部、145a 第1群非干渉化処理部、145b 第2群非干渉化処理部、146a 第1群dq三相変換部、146b 第2群dq三相変換部、150 三角波供給部、152 三角波生成部、152a 第1群三角波生成部、152b 第2群三角波生成部、154 三角波制御部、154a 第1群三角波制御部、154b 第2群三角波制御部、CWXa 同期用三角波(第1群)、CWXb 同期用三角波(第2群)、CWYa 非同期用三角波(第1群)、CWYb 非同期用三角波(第2群)、CWa 三角波(第1群)、CWb 三角波(第2群)、CWint 補間用三角波、Ida,Idb,Iqa,Iqb 軸電流指令、Iua,Iub,Iva 巻線電流(第1群)、Ivb,Iwa,Iwb 巻線電流(第2群)、Sua,Sva,Swa 第1群PWM信号、Sub,Svb,Swb 第21群PWM信号、Tcw キャリア周期、Vua,Vva,Vwa 第1群電圧指令、Vub,Vvb,Vwb 第2群電圧指令。

Claims (10)

  1.  機械的な角度差を有して固定子に巻回された第1群の巻線及び第2群の巻線を有する回転電機の制御装置であって、
     前記第1群の巻線への印加電圧を制御する第1のインバータに対する第1群の電圧指令と、前記第2群の巻線への印加電圧を制御する第2のインバータに対する第2群の電圧指令とを生成する電圧指令演算部と、
     前記第1のインバータでの第1のパルス幅変調制御に用いられる第1の搬送波と、前記第2のインバータでの第2のパルス幅変調制御に用いられる第2の搬送波とを生成する搬送波供給部と、
     前記第1群の電圧指令と前記第1の搬送波との比較に基づく前記第1のパルス幅変調制御によって前記第1のインバータを制御するための第1群のPWM信号を生成するとともに、前記第2群の電圧指令と前記第2の搬送波との比較に基づく前記第2のパルス幅変調制御によって前記第2のインバータを制御するための第2群のPWM信号を生成するPWM制御部とを備え、
     前記搬送波供給部は、
     前記第1及び第2の搬送波の周波数が前記印加電圧の周波数の整数倍となるように変化する第1のモードと、前記第1及び第2の搬送波の周波数が一定である第2のモードとの一方の選択に従って、前記第1及び第2のパルス幅変調制御で用いられる前記第1及び第2の搬送波を切換える搬送波制御部を含み、
     前記搬送波制御部は、前記第1及び第2のモード間でのモード切換が指示されると、前記第1及び第2の搬送波のうちの一方の搬送波について、前記第1のモードに従う搬送波位相と前記第2のモードに従う搬送波位相とが一致した第1のタイミングで前記モード切換を実行し、前記第1のタイミングよりも後において、前記第1及び第2の搬送波のうちの他方の搬送波について、前記第1のモードに従う搬送波位相と前記第2のモードに従う搬送波位相とが一致した第2のタイミングで前記モード切換を実行する、回転電機の制御装置。
  2.  前記搬送波制御部は、前記第1のタイミング及び前記第2のタイミングの間のモード遷移期間において、前記PWM制御部に対して、前記第1及び第2のモードのうちの前記モード切換の前に選択されていた一方のモードに従って前記他方の搬送波を供給する、請求項1記載の回転電機の制御装置。
  3.  前記搬送波制御部は、前記第1のタイミング及び前記第2のタイミングの間のモード遷移期間において、前記第1のモードに従う前記他方の搬送波及び前記第2のモードに従う前記他方の搬送波から生成された補間用搬送波を、前記PWM制御部に対して前記他方の搬送波として供給し、
     前記補間用搬送波は、前記モード遷移期間において、前記搬送波位相が、前記第2のタイミングにおける前記モード切換の後の前記一方の搬送波の位相に向けて一定のレートで変化するように生成される、請求項1記載の回転電機の制御装置。
  4.  前記第1のタイミングは、前記一方の搬送波の山又は谷に対応して設定される、請求項1~3のいずれか1項に記載の回転電機の制御装置。
  5.  前記第1のタイミングは、前記一方の搬送波の山及び谷の一方に対応して設定され、
     前記第2のタイミングは、前記第1のタイミングの次に到来する、前記他方の搬送波の山及び谷の他方に対応して設定される、請求項3に記載の回転電機の制御装置。
  6.  機械的な角度差を有して固定子に巻回された第1群の巻線及び第2群の巻線を有する回転電機の制御方法であって、
     前記第1群の巻線への印加電圧を制御する第1のインバータに対する第1群の電圧指令と、前記第2群の巻線への印加電圧を制御する第2のインバータに対する第2群の電圧指令とを生成するステップと、
     前記第1のインバータでの第1のパルス幅変調制御に用いられる第1の搬送波、及び、前記第2のインバータでの第2のパルス幅変調制御に用いられる第2の搬送波を供給するステップと、
     前記第1群の電圧指令と前記第1の搬送波との比較に基づく前記第1のパルス幅変調制御によって前記第1のインバータを制御するための第1群のPWM信号を生成するとともに、前記第2群の電圧指令と前記第2の搬送波との比較に基づく前記第2のパルス幅変調制御によって前記第2のインバータを制御するための第2群のPWM信号を生成するステップとを備え、
     前記第1及び第2の搬送波を供給するステップは、
     前記第1及び第2の搬送波の周波数が前記印加電圧の周波数の整数倍となるように変化する第1のモードと、前記第1及び第2の搬送波の周波数が一定である第2のモードとの一方の選択に従って、前記第1及び第2のパルス幅変調制御に用いられる前記第1及び第2の搬送波を切換えるステップを含み、
     前記第1及び第2の搬送波を切換えるステップは、
     前記第1及び第2のモード間でのモード切換が指示されると、前記第1及び第2の搬送波のうちの一方の搬送波について、前記第1のモードに従う搬送波位相と前記第2のモードに従う搬送波位相とが一致した第1のタイミングで前記モード切換を実行するステップと、
     前記第1のタイミングよりも後において、前記第1及び第2の搬送波のうちの他方の搬送波について、前記第1のモードに従う搬送波位相と前記第2のモードに従う搬送波位相とが一致した第2のタイミングで前記モード切換を実行するステップとを有する、回転電機の制御方法。
  7.  前記第1及び第2の搬送波を切換えるステップは、前記第1のタイミング及び前記第2のタイミングの間のモード遷移期間において、前記第1及び第2のモードのうちの前記モード切換の前に選択されていた一方のモードに従って、前記第1又は第2のパルス幅変調制御に用いられる前記他方の搬送波を供給するステップをさらに有する、請求項6記載の回転電機の制御方法。
  8.  前記第1及び第2の搬送波を切換えるステップは、
     前記第1のタイミング及び前記第2のタイミングの間のモード遷移期間において、前記第1のモードに従う前記他方の搬送波及び前記第2のモードに従う前記他方の搬送波から生成された補間用搬送波を、前記第1又は第2のパルス幅変調制御に用いられる前記他方の搬送波として供給するステップをさらに有し、
     前記補間用搬送波は、前記モード遷移期間において、前記搬送波位相が、前記第2のタイミングにおける前記モード切換の後の前記一方の搬送波の位相に向けて一定のレートで変化するように生成される、請求項6記載の回転電機の制御方法。
  9.  前記第1のタイミングは、前記一方の搬送波の山又は谷に対応して設定される、請求項6~8のいずれか1項に記載の回転電機の制御方法。
  10.  前記第1のタイミングは、前記一方の搬送波の山及び谷の一方に対応して設定され、
     前記第2のタイミングは、前記第1のタイミングの次に到来する、前記他方の搬送波の山及び谷の他方に対応して設定される、請求項8に記載の回転電機の制御方法。
PCT/JP2017/046140 2017-12-22 2017-12-22 回転電機の制御装置及び制御方法 WO2019123634A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112017008293.5T DE112017008293T5 (de) 2017-12-22 2017-12-22 Steuerungseinrichtung und steuerungsverfahren für elektrischerotationsmaschine
US16/757,883 US11063547B2 (en) 2017-12-22 2017-12-22 Control device and control method for rotating electric machine
PCT/JP2017/046140 WO2019123634A1 (ja) 2017-12-22 2017-12-22 回転電機の制御装置及び制御方法
JP2019559986A JP6925449B2 (ja) 2017-12-22 2017-12-22 回転電機の制御装置及び制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/046140 WO2019123634A1 (ja) 2017-12-22 2017-12-22 回転電機の制御装置及び制御方法

Publications (1)

Publication Number Publication Date
WO2019123634A1 true WO2019123634A1 (ja) 2019-06-27

Family

ID=66994002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046140 WO2019123634A1 (ja) 2017-12-22 2017-12-22 回転電機の制御装置及び制御方法

Country Status (4)

Country Link
US (1) US11063547B2 (ja)
JP (1) JP6925449B2 (ja)
DE (1) DE112017008293T5 (ja)
WO (1) WO2019123634A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114450885A (zh) * 2019-09-26 2022-05-06 三菱电机株式会社 交流旋转电机装置
DE112022001599T5 (de) 2021-06-09 2024-01-11 Hitachi Astemo, Ltd. Wechselrichter-steuervorrichtung und wechselrichter-steuerverfahren

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088647B2 (en) * 2018-02-23 2021-08-10 Mitsubishi Electric Corporation Dynamoelectric machine control method, dynamoelectric machine control device, and drive system
JP7003768B2 (ja) * 2018-03-22 2022-01-21 株式会社デンソー モータシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051129A (ja) * 2008-08-22 2010-03-04 Toyota Central R&D Labs Inc モータ制御装置
JP2011151916A (ja) * 2010-01-20 2011-08-04 Mitsubishi Electric Corp 交流回転機の制御装置
JP2017093208A (ja) * 2015-11-13 2017-05-25 三菱電機株式会社 モータ駆動装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3336588B2 (ja) 1997-05-28 2002-10-21 株式会社日立製作所 Pwmパルス発生装置
JP5439352B2 (ja) 2010-04-28 2014-03-12 株式会社日立製作所 電力変換装置
JP5965766B2 (ja) 2012-07-26 2016-08-10 株式会社日立製作所 交流電動機の駆動システム及び電動機車両
JP5725047B2 (ja) 2013-01-17 2015-05-27 株式会社デンソー 多重巻線回転機の制御装置
EP3176943B1 (en) * 2014-09-04 2019-10-30 Nsk Ltd. Motor control device, failure detection method, electric power steering device equipped with same, and vehicle
JP6497106B2 (ja) 2015-02-13 2019-04-10 株式会社デンソー 多重巻線回転機の制御装置
JP6416414B2 (ja) * 2015-12-07 2018-10-31 三菱電機株式会社 交流回転機の制御装置
EP3651351B1 (en) * 2017-07-03 2022-04-20 Mitsubishi Electric Corporation Power conversion device and electric power steering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051129A (ja) * 2008-08-22 2010-03-04 Toyota Central R&D Labs Inc モータ制御装置
JP2011151916A (ja) * 2010-01-20 2011-08-04 Mitsubishi Electric Corp 交流回転機の制御装置
JP2017093208A (ja) * 2015-11-13 2017-05-25 三菱電機株式会社 モータ駆動装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114450885A (zh) * 2019-09-26 2022-05-06 三菱电机株式会社 交流旋转电机装置
EP4037181A4 (en) * 2019-09-26 2022-08-24 Mitsubishi Electric Corporation DEVICE WITH AN AC LATHE
US11750134B2 (en) 2019-09-26 2023-09-05 Mitsubishi Electric Corporation AC rotary machine apparatus
CN114450885B (zh) * 2019-09-26 2024-02-06 三菱电机株式会社 交流旋转电机装置
DE112022001599T5 (de) 2021-06-09 2024-01-11 Hitachi Astemo, Ltd. Wechselrichter-steuervorrichtung und wechselrichter-steuerverfahren

Also Published As

Publication number Publication date
JP6925449B2 (ja) 2021-08-25
JPWO2019123634A1 (ja) 2020-11-19
US20200343847A1 (en) 2020-10-29
US11063547B2 (en) 2021-07-13
DE112017008293T5 (de) 2020-10-08

Similar Documents

Publication Publication Date Title
JP5348153B2 (ja) 回転機の制御装置
US9236821B2 (en) Magnetic pole position estimating apparatus for electric motor, controlling apparatus for electric motor, and magnetic pole position estimating method for electric motor
US8446117B2 (en) Methods, systems and apparatus for adjusting duty cycle of pulse width modulated (PWM) waveforms
WO2019123634A1 (ja) 回転電機の制御装置及び制御方法
JP5757304B2 (ja) 交流電動機の制御装置
US9112436B2 (en) System for controlling controlled variable of rotary machine
JP5435292B2 (ja) 制御装置
JP5477659B2 (ja) 回転電機制御装置
JP5333256B2 (ja) 交流回転機の制御装置
JP5910583B2 (ja) 交流電動機の制御装置
JP2012029378A (ja) 負荷制御装置
JP2019208329A (ja) センサレスベクトル制御装置及びセンサレスベクトル制御方法
JP2012138982A (ja) モータ制御装置及び電気機器
JP6328280B1 (ja) 2重巻線型回転電機の制御装置
JP2000175485A (ja) 同期モ―タ制御装置及び電気車制御装置並びに同期モ―タ制御方法
JP5428796B2 (ja) モータ駆動制御装置
JP2019161704A (ja) モータ制御装置
JP3722948B2 (ja) 永久磁石界磁同期電動機のセンサレス制御方法
WO2019087644A1 (ja) モータ制御装置及びモータ制御方法
JP2017046528A (ja) 電力制御方法、及び、電力制御装置
JP2007166730A (ja) 電動機の制御装置
JP7393763B2 (ja) 回転電機制御システム
JP5910582B2 (ja) 交流電動機の制御装置
JP5458626B2 (ja) モータ制御駆動装置
JP2001169591A (ja) 位置センサレスモータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559986

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17935753

Country of ref document: EP

Kind code of ref document: A1