JP6555186B2 - 交流電動機の制御装置 - Google Patents

交流電動機の制御装置 Download PDF

Info

Publication number
JP6555186B2
JP6555186B2 JP2016094519A JP2016094519A JP6555186B2 JP 6555186 B2 JP6555186 B2 JP 6555186B2 JP 2016094519 A JP2016094519 A JP 2016094519A JP 2016094519 A JP2016094519 A JP 2016094519A JP 6555186 B2 JP6555186 B2 JP 6555186B2
Authority
JP
Japan
Prior art keywords
control
inverter
pulse signal
asynchronous
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016094519A
Other languages
English (en)
Other versions
JP2017204918A (ja
Inventor
泰三 近藤
泰三 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016094519A priority Critical patent/JP6555186B2/ja
Priority to US15/590,072 priority patent/US10158317B2/en
Publication of JP2017204918A publication Critical patent/JP2017204918A/ja
Application granted granted Critical
Publication of JP6555186B2 publication Critical patent/JP6555186B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0021Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators

Description

本発明は、インバータの駆動により交流電動機の通電を制御する交流電動機の制御装置に関する。
従来、インバータの駆動によりパルス電圧を交流電動機に出力する制御装置において、インバータの駆動信号の生成方式を動作条件に応じて切り替える技術が知られている。
例えば、特許文献1に開示された回転機の制御装置では、電気角に同期した操作信号を生成する制御と、PWM信号を生成する制御とを電圧利用率に応じて切り替える。なお、電圧利用率は、比例定数を乗じることにより「変調率」に読み替えられる。また、電気角に同期した操作信号は、変調率毎にマップデータとして記憶された、いわゆるパルスパターン信号である。
非特許文献1には、PWM制御の搬送波周波数について、出力基本波周波数が高い領域(交流電動機の高回転領域)では同期変調とし、出力基本波周波数が低い領域(交流電動機の低回転領域)では非同期変調とすることが記載されている。
特許第5510444号公報
電気学会・半導体電力変換システム調査専門委員会(編)(平成12年11月30日)「パワーエレクトロニクス回路」 pp.166-167.
非同期パルス信号によりインバータを駆動する非同期制御では、実パルスが安定しないため、相電流が乱れ、交流電動機のトルク振動や騒音が増大する。例えば、ハイブリッド車両の動力源として用いられるモータジェネレータの駆動システムでは、車両の振動や騒音が悪化するため商品性の低下につながるおそれがある。
一方、同期パルス信号によりインバータを駆動する同期制御では、電気角に対して実パルスが安定するため、車両の振動や騒音を低減することができる。しかし、低回転領域において制御性確保のために電気1周期のパルス数を増加させると、処理負荷が増加するという問題がある。
そのため、非同期制御領域と同期制御領域とを適切に区分することが求められる。
ところで、特許文献1の従来技術は、PWM信号が電気角に同期しない非同期パルス信号であると想定すると、同期パルス信号による同期制御と、非同期パルス信号による非同期制御とを変調率に応じて切り替える技術である。この技術は、図15(a)の回転数−変調率特性図、及び、図15(b)の回転数−トルク特性図のように表される。
非特許文献1の従来技術による回転数と搬送波周波数との関係を図16(a)に示す。また、これに基づいて推定される回転数と電気1周期のパルス数との関係を図16(b)に示す。回転数が閾値Nth未満の非同期制御領域では、制御性確保のため、回転数Nが下がるほどパルス数nを増加させている。
なお、図15、図16中、回転数、回転数閾値、変調率及び変調率閾値の記号として、本実施形態の記号「N」、「Nth」、「MR」、「MRth」を援用している。
特許文献1及び非特許文献1の知見を組み合わせると、図15(a)に実線の楕円で示すように、高回転且つ高変調率領域(HNHM)では同期制御を採用し、低回転且つ低変調率領域(LNLM)では非同期制御を採用することが好ましいと考えられる。
しかし、これらの従来技術の知見からだけでは、二点鎖線の楕円で示す「低回転で高変調率の領域(LNHM)」、及び、「高回転で低変調率の領域(HNLM)」における制御モードをどのように設定するのが最適であるかを判断することはできない。
したがって、交流電動機の回転数及び変調率についての全領域で、振動や騒音の低減と処理負荷の増加抑制との両立を図るためには、特許文献1及び非特許文献1の従来技術とは別の技術的思想に基づく更なる検討が必要となる。
本発明は、このような点に鑑みて創作されたものであり、その目的は、交流電動機の回転数及び変調率に応じて、振動や騒音の低減と処理負荷の増加抑制とを両立する交流電動機の制御装置を提供することにある。
本発明の交流電動機の制御装置は、インバータ(20)と、制御器(43)と、同期パルス生成回路(501、502)と、非同期パルス生成回路(60)と、制御切替判定部(71)と、セレクタ部(72、73)とを備える。
インバータは、電源(11)から入力される直流電力を複数のスイッチング素子(21−26)の動作により交流電力に変換し交流電動機(80)に供給する。
制御器は、インバータに指令する電圧ベクトルの振幅とインバータ電圧(Vsys)との比に基づく変調率(MR)、及び、電圧ベクトルの位相(φ)を演算する。
同期パルス生成回路は、変調率、電圧ベクトルの位相、及び交流電動機の電気角(θe)に応じてインバータを駆動する駆動信号として、電気角に同期した同期パルス信号を生成する。
非同期パルス生成回路は、駆動信号として、電気角とは独立した周期を有する非同期パルス信号を生成する。
制御切替判定部は、変調率を正の値である変調率閾値(MRth)と比較する。そして、変調率が変調率閾値より高い領域では、「同期パルス信号によりインバータを駆動する同期制御」を実行し、変調率が変調率閾値より低い領域では、「非同期パルス信号によりインバータを駆動する非同期制御」を実行するように制御の切替モードを切り替える。
セレクタ部は、制御切替判定部の判定結果に従って同期パルス信号又は非同期パルス信号の生成又は出力を選択する。
そして、正の値である回転数閾値(Nth)に対し、「交流電動機の回転数の絶対値が回転数閾値未満である低回転領域」における変調率閾値(MRth2)は、「交流電動機の回転数の絶対値が回転数閾値以上である高回転領域」における変調率閾値(MRth1)より高く設定されている。
ここで、変調率閾値及び回転数閾値を正の値と特定することには二つの意義がある。一つ目は、変調率及び回転数が正の値で定義されることを前提として、以下での高低関係を規定するためである。二つ目は、閾値が「0」である場合、すなわち、閾値以下の領域が実質的に存在しない場合を排除するためである。本発明では、低回転領域及び高回転領域において、変調率が変調率閾値より小さい非同期制御の領域が必ず存在する。
低回転領域では、制御性確保のために電気1周期のパルス数を増加させると処理負荷が増加するという問題がある。しかし、変調率が比較的高い領域ではパルス数を減らすことができる。したがって、低回転領域では、高回転領域に対して変調率閾値を高く設定し、全体として非同期制御による処理負荷の増加抑制効果に重点を置きつつ、一部の高変調率領域で、同期制御による振動、騒音の低減効果を得ることができる。
一方、高回転領域では、低回転領域に対して変調率閾値を低く設定することにより、振動や騒音の低減に有利な同期制御領域を可及的に広く設定することができる。
このように本発明では、交流電動機の回転数及び変調率についての全領域で、振動や騒音の低減と処理負荷の増加抑制とを好適に両立させることができる。
各実施形態による交流電動機の制御装置が適用されるMG駆動システムの概略構成図。 第1実施形態によるインバータ制御部の制御ブロック図。 非同期PWM制御モードでの実パルスの乱れを説明する図(1)。 非同期PWM制御モードでの実パルスの乱れを説明する図(2)。 同期PWM制御モードでの(a)高回転領域、(b)低回転領域でパルス数を増加しないとき、(c)低回転領域でパルス数を増加したときの図。 パルスパターンでの変調率とパルス数との関係を示す図。 各実施形態による同期/非同期制御領域を示す回転数−変調率特性図。 各実施形態による同期/非同期制御領域を示す回転数−トルク特性図。 各実施形態による制御モード切替判定処理のフローチャート。 (a)変調率とパルス数との関係を示す図、(b)制御モード切替におけるヒステリシスを示す図。 第2実施形態によるインバータ制御部の制御ブロック図。 PWM制御での変調率とパルス数との関係を示す図。 第3実施形態によるサイレントモード処理のフローチャート。 サイレントモードでのパラメータの変更を説明する(a)回転数−変調率特性図、(b)変調率−パルス数特性図。 特許文献1の従来技術に基づく、同期/非同期制御領域を示す(a)回転数−変調率特性図、(b)回転数−トルク特性図。 非特許文献1の従来技術に基づく、回転数と(a)搬送波周波数、(b)パルス数との関係を示す図。
以下、交流電動機の制御装置の複数の実施形態を図面に基づいて説明する。複数の実施形態において実質的に同一の構成には、同一の符号を付して説明を省略する。また、以下の第1〜第3実施形態を包括して「本実施形態」という。
本実施形態の交流電動機の制御装置は、ハイブリッド自動車や電気自動車の動力源であるモータジェネレータ(以下「MG」)を駆動するシステムにおいて、三相交流モータであるMGの通電を制御する装置である。各実施形態の「MG」及び「MG制御装置」は、特許請求の範囲に記載の「交流電動機」及び「交流電動機の制御装置」に相当する。
[システム構成]
まず、第1〜第3実施形態のMG制御装置が適用されるMG駆動システムの全体構成について図1を参照して説明する。図1には、一つのMGを備えるシステムを例示する。
MG駆動システム90は、充放電可能な二次電池である「電源」としてのバッテリ11の直流電力をインバータ20で三相交流電力に変換してMG80に供給するシステムである。MG駆動システム90においてMG制御装置10は、主にインバータ20及びインバータ制御部30を含む。
なお、MG制御装置10は、バッテリ11の電圧を昇圧してインバータ20に出力するコンバータを備えたMG駆動システムに適用されてもよい。また、MG制御装置10は、二つ以上のMGを備えたMG駆動システムにも同様に適用可能である。
MG80は、例えば永久磁石式同期型の三相交流モータである。本実施形態では、MG80は、ハイブリッド自動車の駆動輪を駆動するトルクを発生する電動機としての機能、及び、エンジンや駆動輪から伝達されるトルクを発電によってエネルギー回収する発電機としての機能を兼ね備える。
MG80の三相巻線81、82、83のうち二相の巻線に接続される電流経路には、相電流を検出する電流センサが設けられる。図1の例では、V相巻線82及びW相巻線83に接続される電流経路に、それぞれ相電流Iv、Iwを検出する電流センサ87、88が設けられており、残るU相の電流Iuをキルヒホッフの法則に基づいて推定している。他の実施形態では、どの二相の電流を検出してもよく、三相の電流を検出してもよい。或いは、一相の電流検出値に基づいて他の二相の電流を推定する技術を採用してもよい。
MG80の電気角θeは、例えばレゾルバ等の回転角センサ85により検出される。
インバータ20は、上下アームの6つのスイッチング素子21−26がブリッジ接続されている。詳しくは、スイッチング素子21、22、23は、それぞれU相、V相、W相の上アームのスイッチング素子であり、スイッチング素子24、25、26は、それぞれU相、V相、W相の下アームのスイッチング素子である。スイッチング素子21−26は、例えばIGBTで構成され、低電位側から高電位側へ向かう電流を許容する還流ダイオードが並列に接続されている。
インバータ20は、インバータ制御部30からのゲート信号UU、UL、VU、VL、WU、WLに従ってスイッチング素子21−26が動作することで直流電力を三相交流電力に変換する。そして、インバータ制御部30が演算した電圧指令に応じた相電圧Vu、Vv、VwをMG80の各相巻線81、82、83に印加する。平滑コンデンサ15は、インバータ20に入力されるシステム電圧Vsysを平滑化する。システム電圧Vsysは、特許請求の範囲に記載の「インバータ電圧」に相当する。
電圧センサ27はシステム電圧Vsysを検出する。
インバータ制御部30は、マイコン等により構成され、図示しないCPU、ROM、I/O、及び、これらの構成を接続するバスライン等を内部に備えている。マイコンは、予め記憶されたプログラムをCPUで実行することによるソフトウェア処理や、専用の電子回路によるハードウェア処理による制御を実行する。
インバータ制御部30は、各センサが検出したシステム電圧Vsys、二相の相電流Iv、Iw、電気角θeを取得する。また、インバータ制御部30は、微分器86により電気角θeが時間微分された電気角速度ω[deg/s]を取得する。電気角速度ωは、比例定数を乗じることにより回転数N[rpm]に換算される。
なお、インバータ制御部30の内部に微分器86を有してもよい。
さらにインバータ制御部30は、上位制御回路からトルク指令Trq*が入力される。
インバータ制御部30は、これらの情報に基づいて、インバータ20の各スイッチング素子21−26の動作を指令するゲート信号UU、UL、VU、VL、WU、WLを演算する。インバータ20は、ゲート信号UU、UL、VU、VL、WU、WLに従ってスイッチング素子21−26が動作することにより、バッテリ11から入力される直流電力を交流電力に変換しMG80に供給する。
[インバータ制御部の構成]
以下、インバータ制御部30の構成について、第1、第2実施形態毎に説明する。第1、第2実施形態のインバータ制御部の符号を、それぞれ「301」、「302」とする。また、第1実施形態と第2実施形態とで構成の異なる「同期パルス信号生成回路」の符号を「501」及び「502」とする。
(第1実施形態)
図2を参照し、第1実施形態のインバータ制御部301の構成を説明する。図2には、dq軸電流Id、Iqから推定したトルク推定値Trq_estをトルク指令値Trq*に対してフィードバックするトルクフィードバック制御の構成を示す。3相2相変換部41は、電気角θeに基づき相電流検出値Iv、Iwをdq軸電流Id、Iqに変換する。トルク推定部42は、dq軸電流Id、Iq及びMG80のモータ定数に基づきトルク推定値Trq_estを演算する。なお、MG80にトルクセンサを備えたシステムでは、トルク推定部42を設けず、トルク検出値を取得してもよい。
「制御器」としてのトルク制御器43は、トルク推定値Trq_estをトルク指令値Trq*に追従させるように、PI制御等により、インバータ20に指令する電圧ベクトルの振幅Vr及び位相φを演算する。さらに、トルク制御器43は、電圧振幅指令値Vrとシステム電圧Vsysとの比(すなわち、特許文献1の「電圧利用率」)に基づいて、式(1)により変調率指令値MRを演算する。
MR=2√(2/3)×(Vr/Vsys)≒1.63×(Vr/Vsys)
・・・(1)
例えば電圧利用率(Vr/Vsys)が0.78のとき、変調率指令値MRは1.27となる。
以下、トルク制御器4が出力する変調率指令値MR及び電圧位相指令値φを、単に「変調率MR」及び「電圧位相φ」と記す。位相角算出器44は、電圧位相φに電気角θeを加算した位相角(φ+θe)を算出する。変調率MR及び位相角(φ+θe)は、同期パルス信号生成回路501及び非同期パルス信号生成回路60に取得される。
なお、図2に示すトルクフィードバック制御の構成に代えて、dq軸電流Id、Iqを電流指令値Id*、Iq*に対してフィードバックする電流フィードバック制御の構成を採用してもよい。その場合、インバータ制御部301は、「制御器」として電流制御器を有する。一般的なモータ制御におけるトルクフィードバック制御又は電流フィードバック制御は周知技術であるため、詳細な説明を省略する。
インバータ制御部301は、変調率MR及び位相角(φ+θe)に応じてインバータ20を駆動する駆動信号Su、Sv、Swを生成する回路として、同期パルス信号生成回路501及び非同期パルス信号生成回路60を備える。同期パルス信号生成回路501は、電気角θeに同期した「同期パルス信号」を生成し、非同期パルス信号生成回路60は、電気角θeとは独立した周期を有する「非同期パルス信号」を生成する。
以下、同期パルス信号生成回路501が生成した同期パルス信号によりインバータ20を駆動する制御を「同期制御」という。また、非同期パルス信号生成回路60が生成した非同期パルス信号によりインバータ20を駆動する制御を「非同期制御」という。
第1実施形態の同期パルス信号生成回路501は、パターンマップに予め記憶された複数のパルスパターンから、いずれかのパターンをパターン信号生成部51が設定することにより同期パルス信号を生成する。パターンマップは、電気角θeに同期した複数のパターンデータを変調率毎に記憶している。パターンデータは、マイコンのRAM/ROMに記憶されてもよい。或いは、外部の記憶装置に保持されたパターンデータを、通信によりパターン信号生成部51が取得してもよい。
パターン信号生成部51は、変調率MR、位相角(φ+θe)、及びMG80の回転数Nを取得する。以下の実施形態の説明では回転数Nは絶対値で表すものとする。パターン信号生成部51は、変調率MRに応じて、パターンマップに記憶された複数のパルスパターンの中から適当なパターンを検索して設定する。また、回転数Nに応じて電気1周期のパルス数nを規定してもよい。ここで、パルス数nが増えると、パターンデータの検索やパターン信号生成部51での設定処理が増加する。なお、変調率MRが1.27の場合、パルス数nが「1」の矩形波パターンが設定される。
パターン信号生成部51は、設定されたパルスパターン及び位相角(φ+θe)に基づいて同期パルス信号を生成する。
非同期パルス信号生成回路60は、搬送波発生器62、正弦波生成器63及び搬送波比較部64を含む。
搬送波発生器62は、電気角θeとは独立した周期の搬送波を生成する。搬送波として典型的には三角波が用いられるが、鋸波を用いてもよい。
正弦波生成器63は、変調率MR及び位相角(φ+θe)に基づいて、正弦波状の相電圧指令値Du*、Dv*、Dw*を発生させる。
搬送波比較部64は、正弦波生成器63が生成した相電圧指令値Du*、Dv*、Dw*と、搬送波発生器62が生成した搬送波との大小関係を比較するPWM制御により、非同期パルス信号を生成する。
また、インバータ制御部301は、制御切替判定部71及びセレクタ部72を備える。
制御切替判定部71は、MG80の回転数N及び変調率MRを取得し、これに基づいて同期制御又は非同期制御の制御モードを切り替える。詳しくは、変調率MRを正の値である変調率閾値MRthと比較し、変調率MRが変調率閾値MRthより高い領域では同期制御を実行し、変調率MRが変調率閾値MRthより低い領域では非同期制御を実行するように制御モードを切り替える。なお、回転数Nの扱いに関しては後述する。
セレクタ部72は、制御切替判定部71の判定結果に従って、同期パルス信号又は非同期パルス信号の生成又は出力を選択する。
図2に示す構成では、セレクタ部72は、同期パルス信号生成回路501及び非同期パルス信号生成回路60の後に設けられ、両パルス信号生成回路501、60が生成した駆動信号Su、Sv、Swを取得する。そして、セレクタ部72は、制御切替判定部71の判定結果に従って、デッドタイム付与部74に出力する一方の駆動信号Su、Sv、Swを選択する。この構成では、両パルス信号生成回路501、60は、選択されるか否かにかかわらず、同期パルス信号及び非同期パルス信号を常に生成する。
これに対し他の実施形態では、同期パルス信号生成回路501及び非同期パルス信号生成回路60の前にセレクタ部72を設け、制御切替判定部71の判定結果に従って、セレクタ部72が一方の駆動信号Su、Sv、Swの生成を選択してもよい。この構成では、セレクタ部72により選択された同期パルス信号生成回路501又は非同期パルス信号生成回路60の一方がパルス信号の生成処理を実行するため、他方の処理を休止することができる。選択された側のパルス信号生成回路が生成した駆動信号Su、Sv、Swは、デッドタイム付与部74に出力される。
上記の構成で両パルス信号生成回路501、60が生成する駆動信号Su、Sv、Swは、図3、図4におけるデッドタイム付与前の「指令パルス」に相当する。デッドタイム付与部74は、この駆動信号Su、Sv、Swに、各相上下アームのスイッチング素子が同時にオフするデッドタイムDTを付与した「実パルス」を生成する。
デッドタイム付与部74は、インバータ20の各相上下アームのスイッチング素子21−26に対し、実パルスに対応するゲート信号UU、UL、VU、VL、WU、WLを出力する。
以上の構成のインバータ制御部301において、制御切替判定部71が同期/非同期の制御モードをどのように切り替えるかについて、次に説明する。
まず、図3、図4を参照し、非同期制御における課題について説明する。非同期PWM制御では、電気角θeに基づいて生成された相電圧指令値(Du*、Dv*、Dw*)と、電気角θeとは関係なく生成された搬送波との位相差は成り行きとなる。そのため、図3に示すように、相電圧指令値の任意の点V[1]、V[2]が搬送波の谷のタイミングに一致する場合もあり、図4に示すように、点V[1]、V[2]が搬送波の谷のタイミングからずれる場合もある。
図3、図4において、相電圧指令値と搬送波との比較により得られるデッドタイム付与前の指令パルスは、厳密にはパルス位置及び幅が少し異なるものの、4つのパルスP1〜P4の波形に大きな変化は無い。
しかし、デッドタイムDTの付与により、上アーム及び下アームのオンタイミングを遅らせると、デッドタイムDTよりも幅の小さいパルスは、実パルスにおいて消滅する。図3の例では3番目のパルスP3が消滅し、図4の例では2番目のパルスP2が消滅する。このように、消滅するパルスの違いにより、実パルスの波形の変化が顕著に現れる。
すなわち、非同期制御では、電気角θeと指令パルスとの関係が成り行きであるため、回転数N及び変調率MRが一定であっても、実パルスの波形は、時間に連れて刻々と変化する場合がある。その結果、インバータ20からMG80に通電される相電流が乱れ、振動や騒音が悪化するおそれがある。
一方、同期制御では電気角θeと指令パルスとの関係が一定であるため、回転数N及び変調率MRが一定であれば、実パルスの波形は変化せず継続する。その結果、インバータ20からMG80に通電される相電流が安定し、振動や騒音を低減することができる。
しかし、その反面、同期制御では、特に低回転領域において処理負荷が増加するという問題がある。それについて、図5を参照して説明する。図5(a)〜(c)において、時間軸のスケールは同等である。また、duty=50%の基準ラインに相電圧の正弦波がクロスするタイミングは、搬送波が基準ラインにクロスするタイミングと一致している。
図5(a)に、高回転で電気1周期の搬送波周波数が5回である状態を示す。相電圧の最大振幅は0〜100%以内にあり過変調ではないため、原則として、電気1周期のパルス数nは、搬送波周波数と同じ「5」である。なお、通常に用いられるパルス数はもっと大きな数であるが、説明の便宜上、比較的小さな「5」という数を例示する。
図5(b)は、図5(a)の高回転状態から、電気1周期のパルス数「n=5」を維持しつつ、回転数Nを3分の1に低下させた状態を示す。このとき、時間当たりのパルス数であるパルス密度が低下するため、リップル電流が増える等の弊害が生じる。
そこで、図5(c)に示すように、制御性を確保可能なレベルまでパルス密度を増加させるため、電気1周期のパルス数nを例えば5から9に増加させる。これにより制御性を確保することができるが、それに伴い、指令パルスを設定するための演算処理負荷が増加する。したがって、処理能力に十分な余裕の無いMG制御装置10を用いる場合、基本的に低回転領域では、同期制御に適さないと考えられる。
例えば、図16(a)に示すように、従来技術である非特許文献1(「パワーエレクトロニクス回路」)には、高回転領域では同期パルス信号を用い、低回転領域では非同期パルス信号を用いてインバータを駆動する技術が開示されている。図16(b)において、低回転の非同期制御領域における電気1周期のパルス数nは、制御性確保のため、回転数Nが下がるほど増加するように設定されている
ところで、非特許文献1の上記技術記載箇所には、変調率と同期/非同期制御との関係については言及されていない。一方、特許文献1(特許第5510444号公報)には、PWM信号が電気角に同期しない非同期パルス信号であると想定すると、パルスパターンによる同期パルス信号と、PWM信号による非同期パルス信号とを変調率に応じて切り替える技術が開示されている。
そこで、非特許文献1および特許文献1の知見を組み合わせると、図15(a)における高回転且つ高変調率領域(HNHM)では同期制御を採用し、低回転且つ低変調率領域(LNLM)では非同期制御を採用することが好ましいと考えられる。しかし、これらの従来技術の知見からだけでは、「低回転で高変調率の領域(LNHM)」、及び、「高回転で低変調率の領域(HNLM)」における制御モードをどのように設定するのが最適であるかを判断することはできない。
このような従来技術の課題に対し、本実施形態のMG制御装置10は、回転数−変調率領域の全領域において、同期制御又は非同期制御の制御モードを適切に切り替えるための新しい考え方を提供するものである。
そこで、本実施形態のMG制御装置10は、特に「低回転で高変調率の領域」における電気1周期のパルス数nに着目する。
例えば第1実施形態では、同期パルス信号生成回路501のパターン信号生成部51のパターンマップには、図6に示すように、変調率MRに応じたパターン信号が記憶されている。このパターンマップによると、変調率MRが低いときには電気1周期のパルス数nが比較的大きい(例えばn=9)パターンが設定されるのに対し、変調率MRが高くなると、設定されるパターンのパルス数nが小さくなる(例えばn=5)。更に変調率MRが高いときには、パルス数n=1の矩形波パターンが設定される。この関係に着目すると、高変調率領域ではパルス数nが低下するため、処理負荷の増加を抑制可能である。
続いて、図7、図8を参照し、本実施形態による同期/非同期制御領域の設定について説明する。図7には回転数−変調率、図8には回転数−トルクの関係で表したMG80の動作点での制御領域を示す。また、図7(a)及び図8(a)には、本実施形態による領域設定の基本パターンを示し、図7(b)及び図8(b)には、低回転領域での変調率閾値MRth2を最大に設定した場合の特殊なパターンを示す。
図7(a)に示すように、回転数Nが回転数閾値Nth以上である高回転領域、及び、回転数Nが回転数閾値Nth未満である低回転領域において、それぞれ、変調率閾値MRth1、MRth2が設定される。ここで、回転数閾値Nth、変調率閾値MRth1、MRth2は、いずれも正の値である。すなわち、本実施形態の制御を論じる範囲では、回転数N及び変調率閾値MRは正の値として定義される。また、回転数閾値Nth、変調率閾値MRth1、MRth2を「0」に設定することは想定しない。
高回転領域、低回転領域に共通に、変調率MRが閾値MRth1、MRth2より高い領域では同期制御が実行され、変調率MRが閾値MRth1、MRth2より低い領域では非同期制御が実行される。そして、低回転領域における変調率閾値MRth2は、高回転領域における変調率閾値MRth1より高く設定されている点が特徴である。
図8(a)の回転数−トルク特性図では、一定の変調率閾値MRth1、MRth2に対応する境界線が反比例曲線に類似する曲線で表される。回転数に依らず変調率閾値MRthを一律に定める従来技術(図15(b)参照)に比べ、回転数閾値Nthの線上に直線部が表される点が特徴となる。
本実施形態では、低回転領域と高回転領域とで変調率閾値MRthに差を設けることにより、「振動、騒音の低減」及び「処理負荷の増加抑制」の二つの課題に対する優先順位の判断基準を回転数Nに応じて変更する。つまり、同期制御での処理負荷の増加が問題となりやすい低回転領域では、変調率閾値MRth2を相対的に高く設定し、非同期制御の領域を広げる。一方、高回転領域では、変調率閾値MRth1を相対的に低く設定し、振動、騒音の低減に有利な同期制御領域を広く確保する。これにより、MG80の全ての動作点で、振動、騒音の低減と処理負荷の増加抑制とを好適に両立することができる。
ここで、高回転領域の変調率閾値MRth1と低回転領域の変調率閾値MRth2との差を具体的にどの程度に設定するかは、静粛性に対する要求レベルと装置の処理能力とのバランス等に応じて決められる。処理負荷に対する余裕が比較的ある場合には、両変調率閾値MRth1、MRth2の差を比較的小さく設定してもよい。一方、処理負荷に対する余裕が無い場合には、両変調率閾値MRth1、MRth2の差を比較的大きく設定することが好ましい。
そこで、低回転領域の変調率閾値MRth2をできるだけ高く設定する場合の上限は、図7(b)に示すように、矩形波に対応する値である1.27となる。このとき、変調率MRが閾値MRth2よりも高い領域は実質的に存在しない。そのため、図7(b)及び図8(b)に示すように、低回転領域では、変調率MRに依らず、常に非同期制御が実行されることとなる。本実施形態には、このようなケースを含むものとする。
次に、制御切替判定部71による制御モード切替判定処理について、図9のフローチャート及び図10を参照する。フローチャートの記号「S」はステップを意味する。
S1では、MG80の回転数Nが回転数閾値Nth以上であるか判断する。回転数Nが回転数閾値Nth以上である場合(S1:YES)、S2にて、高回転領域の変調率閾値MRth1を選択する。回転数Nが回転数閾値Nth未満である場合(S1:NO)、S3にて、低回転領域の変調率閾値MRth2を選択する。
また、図10(a)に示すように、変調率MRと電気1周期のパルス数nとは、変調率MRの上昇に伴ってパルス数nがステップ状に減少する関係にある。したがって、制御装置の処理能力及び制御周期から、制御周期内に演算可能なパルス数nが算出され、これに基づいて変調率閾値MRth1、MRth2の値が決定される。
S4では、現在の制御モードが同期制御であるか非同期制御であるか判別する。現在、同期制御の場合(S4:YES)にはS5に移行し、非同期制御の場合(S4:NO)にはS7に移行する。
S5では、変調率MRが変調率閾値MRth未満の場合(S5:YES)に同期制御から非同期制御に切り替える(S6)。変調率MRが変調率閾値MRth以上の場合(S5:NO)には現在の同期制御を維持する。
図10(b)に示すように、制御モードの切替におけるハンチング防止のためヒステリシスが設定される。そこで、非同期制御から同期制御への切替には、MRthに所定のマージンΔMRを加えた「MRth+ΔMR」が変調率閾値として用いられる。
S7では、変調率MRが変調率閾値「MRth+ΔMR」以上の場合(S7:YES)に非同期制御から同期制御に切り替える(S8)。変調率MRが変調率閾値「MRth+ΔMR」未満の場合(S7:NO)には現在の非同期制御を維持する。
この制御モード切替判定処理のフローチャートは、次の第2実施形態でも共通である。
以上のように本実施形態のMG制御装置10は、制御切替判定部71が判定に用いる変調率閾値MRthについて、低回転領域における変調率閾値MRth2を、高回転領域における変調率閾値MRth1より高く設定する。
低回転領域では、制御性確保のために電気1周期のパルス数nを増加させると処理負荷が増加するという問題がある。しかし、変調率MRが比較的高い領域ではパルス数nを減らすことができる。したがって、低回転領域では、高回転領域に対して変調率閾値MRth2を高く設定し、全体として非同期制御による処理負荷の増加抑制効果に重点を置きつつ、一部の高変調率領域で、同期制御による振動、騒音の低減効果を得ることができる。
一方、高回転領域では、低回転領域に対して変調率閾値MRth1を低く設定することにより、振動や騒音の低減に有利な同期制御領域を可及的に広く設定することができる。
このように本実施形態では、MG80の回転数及び変調率についての全領域で、振動や騒音の低減と処理負荷の増加抑制とを好適に両立させることができる。
(第2実施形態)
第2実施形態について図11、図12を参照して説明する。図11は、第1実施形態の図2に対応するインバータ制御部のブロック図である。図12は、同じく図6に対応する変調率MRとパルス数nとの関係を表す図である。
図11に示すように、第2実施形態のインバータ制御部302は、同期パルス生成回路502の構成が第1実施形態と異なる。すなわち、インバータ制御部302では、同期パルス生成回路502及び非同期パルス生成回路60が正弦波生成器63及び搬送波比較部64を共通に含む。また、同期パルス生成回路502は電気角同期搬送波発生器52を更に含み、非同期パルス生成回路60は搬送波発生器62を更に含む。
同期パルス生成回路502の電気角同期搬送波発生器52は、電気角θeを取得し、電気角θeに同期した周期の同期搬送波を生成する。一方、非同期パルス生成回路60の搬送波発生器62は、電気角θeとは独立した周期の非同期搬送波を生成する。
電気角同期搬送波発生器52が生成した同期搬送波、及び、搬送波発生器62が生成した非同期搬送波はセレクタ部73に入力される。セレクタ部73は、制御切替判定部71の判定結果に従って、いずれかの搬送波を選択し、搬送波比較部64に出力する。
搬送波比較部64は、同期搬送波が入力されたとき、同期パルス生成回路502の構成要素として機能し、同期パルス信号を生成する。一方、非同期搬送波が入力されたとき、搬送波比較部64は、非同期パルス生成回路60の構成要素として機能し、非同期パルス信号を生成する。こうして搬送波比較部64により生成された駆動信号Su、Sv、Swは、デッドタイム付与部74に出力される。
図12に、PWM制御による変調率MRとパルス数nとの関係を示す。相電圧の変調率MRは<1>、<2>、<3>の順に大きくなり、最大振幅がduty0〜100%の範囲を超える<2>及び<3>では過変調となる。なお、<3>は説明用に示すものであって現実的な波形ではない。
<1>の場合、搬送波の毎周期に相電圧が搬送波と交差するため、パルス数nは搬送波周波数と同数となり、図12の例では「n=9」となる。<2>の場合、一部の搬送波周期で相電圧が搬送波と交差しない分、<1>に比べてパルス数nが低下する。図12の例では「n=5」となる。究極的には、<3>のように「n=1」の矩形波となる。
したがって、第1実施形態における図6の説明と同様に、同期制御でも変調率MRが比較的高い場合にはパルス数nが低下するため、処理負荷の増加を抑制することができる。そのため、低回転領域においても変調率MRが変調率閾値MRth2より高い領域では、同期搬送波を用いて生成した同期パルス信号でインバータ20を駆動することにより、処理負荷を増加することなく、振動や騒音の低減を図ることができる。
(第3実施形態)
第3実施形態について、図13のフローチャート及び図14を参照して説明する。第3実施形態のインバータ制御部30の構成自体は第1又は第2実施形態と同様であり、制御切替判定部71における機能が更に追加される点が異なる。
例えば車両のMG駆動システム90において、静粛性の要求が特に大きくなる駐車時や夜間には、通常時に比べ、処理負荷の増加抑制よりも振動、騒音の低減を優先することが求められる。このような要求がある状態を「サイレントモード」という。通常モードからサイレントモードへの移行は、例えば車両の上位制御回路により判断され、MG制御装置10の制御切替判定部71に指令される(図13のS11)。
サイレントモードでは、制御切替判定部71は、時間あたりのパルス数であるパルス密度を増加させる(S12)ことにより振動や騒音を低減する。ここで、過変調以外のPWM制御では、パルス密度は、搬送波周波数に置き換え可能である。
ただし、パルス密度を増加させると、非同期制御では実パルスの変化による相電流の乱れが生じやすくなる。そこで制御切替判定部71は、同期制御領域を拡張するため、下記[I]、[II]、[III]の一つ以上によりパラメータを変更する(S13)。
[I]回転数閾値Nthを低くする。
[II]変調率閾値MRth1、MRth2を低くする。
[III]変調率閾値MRth1、MRth2に対応する電気1周期のパルス数n1、n2を大きくする。
[I]、[II]の処理を図14(a)に、[II]、[III]の処理を図14(b)に示す。これらの処理により同期制御領域が拡張するため、広範囲の動作点で振動や騒音の低減が優先される。このように、第3実施形態では、MG制御装置10が使用されるシステムの環境に応じて、同期制御領域と非同期制御領域とのバランスを随時調整することができる。
(その他の実施形態)
(a)上記実施形態では、低回転領域及び高回転領域の二段階の回転数領域を設けているが、三段階以上の回転数領域を設け、高回転側から低回転側に向かって変調率閾値MRthを順に高くするように設定してもよい。
(b)本発明による交流電動機の制御装置は、ハイブリッド自動車や電気自動車のMG駆動システムに限らず、振動や騒音の低減、及び、制御装置の処理負荷の増加抑制が課題となり得るどのような用途の交流電動機の駆動システムに適用されてもよい。
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。
10・・・MG制御装置(交流電動機の制御装置)、
11・・・バッテリ(電源)、
20・・・インバータ、 21−26・・・スイッチング素子、
43・・・制御器、
50(501、502)・・・同期パルス生成回路、
60・・・非同期パルス生成回路、
71・・・制御切替判定部、
72、73・・・セレクタ部、
80・・・MG(交流電動機)。

Claims (4)

  1. 電源(11)から入力される直流電力を複数のスイッチング素子(21−26)の動作により交流電力に変換し交流電動機(80)に供給するインバータ(20)と、
    前記インバータに指令する電圧ベクトルの振幅とインバータ電圧(Vsys)との比に基づく変調率(MR)、及び、前記電圧ベクトルの位相(φ)を演算する制御器(43)と、
    前記変調率、前記電圧ベクトルの位相、及び前記交流電動機の電気角(θe)に応じて前記インバータを駆動する駆動信号として、電気角に同期した同期パルス信号を生成する同期パルス生成回路(501、502)と、
    前記駆動信号として、電気角とは独立した周期を有する非同期パルス信号を生成する非同期パルス生成回路(60)と、
    前記変調率を正の値である変調率閾値(MRth)と比較し、前記変調率が前記変調率閾値より高い領域では、前記同期パルス信号により前記インバータを駆動する同期制御を実行し、前記変調率が前記変調率閾値より低い領域では、前記非同期パルス信号により前記インバータを駆動する非同期制御を実行するように制御モードを切り替える制御切替判定部(71)と、
    前記制御切替判定部の判定結果に従って、前記同期パルス信号又は前記非同期パルス信号の生成又は出力を選択するセレクタ部(72、73)と、
    を備え、
    正の値である回転数閾値(Nth)に対し、前記交流電動機の回転数(N)の絶対値が前記回転数閾値未満である低回転領域における前記変調率閾値(MRth2)は、前記交流電動機の回転数の絶対値が前記回転数閾値以上である高回転領域における前記変調率閾値(MRth1)より高く設定されている交流電動機の制御装置。
  2. 前記同期パルス生成回路(501)は、予め記憶された複数のパルスパターンからいずれかのパルスパターンを設定し、前記同期パルス信号を生成する請求項1に記載の交流電動機の制御装置。
  3. 前記同期パルス生成回路(502)は、前記制御器の出力に基づいて算出される相電圧と搬送波との比較により前記駆動信号を生成するPWM制御において、電気角に同期した周期の搬送波を用いて前記同期パルス信号を生成する請求項1に記載の交流電動機の制御装置。
  4. 前記制御切替判定部は、
    前記同期制御の領域を拡張するモードにおいて、前記回転数閾値を低く、又は、前記変調率閾値を低く、又は、電気1周期あたりのパルス数を大きくするように変更する請求項1〜3のいずれか一項に記載の交流電動機の制御装置。
JP2016094519A 2016-05-10 2016-05-10 交流電動機の制御装置 Active JP6555186B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016094519A JP6555186B2 (ja) 2016-05-10 2016-05-10 交流電動機の制御装置
US15/590,072 US10158317B2 (en) 2016-05-10 2017-05-09 Control apparatus for AC motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016094519A JP6555186B2 (ja) 2016-05-10 2016-05-10 交流電動機の制御装置

Publications (2)

Publication Number Publication Date
JP2017204918A JP2017204918A (ja) 2017-11-16
JP6555186B2 true JP6555186B2 (ja) 2019-08-07

Family

ID=60297190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016094519A Active JP6555186B2 (ja) 2016-05-10 2016-05-10 交流電動機の制御装置

Country Status (2)

Country Link
US (1) US10158317B2 (ja)
JP (1) JP6555186B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354773B2 (ja) * 2016-02-24 2018-07-11 株式会社デンソー インバータ制御装置
JP6777008B2 (ja) * 2017-05-19 2020-10-28 株式会社デンソー 駆動装置
DE102017119740A1 (de) * 2017-08-29 2019-02-28 Elektrosil Systeme Der Elektronik Gmbh Ansteuerung eines Lüftermotors für ein verbessertes EMV-Verhalten
CN108418478A (zh) * 2018-01-31 2018-08-17 东莞市力辉马达有限公司 一种高速直流无刷电机的降噪方法
JP6896114B2 (ja) * 2018-02-06 2021-06-30 三菱電機株式会社 電力変換装置
JP7372027B2 (ja) * 2018-03-08 2023-10-31 株式会社日立製作所 インバータ装置
JP7144197B2 (ja) * 2018-06-01 2022-09-29 株式会社Soken 回転電機の制御装置
WO2020049767A1 (ja) * 2018-09-04 2020-03-12 株式会社日立製作所 駆動制御装置および駆動制御方法、当該駆動制御装置を搭載する鉄道車両
CN109270405B (zh) * 2018-11-02 2021-01-26 广东电网有限责任公司 一种基于双回线路特征方程的零序参数计算方法及系统
JP6814830B2 (ja) * 2019-02-18 2021-01-20 本田技研工業株式会社 制御システム、車両システム、および制御方法
JP7111026B2 (ja) * 2019-02-21 2022-08-02 株式会社明電舎 電動機駆動システムおよび電動機駆動システムにおけるインバータ制御方法
JP2020137385A (ja) * 2019-02-26 2020-08-31 東洋電機製造株式会社 電力変換装置
JP7272026B2 (ja) * 2019-03-18 2023-05-12 富士電機株式会社 インバータ装置
JP6813074B1 (ja) * 2019-10-30 2021-01-13 株式会社明電舎 電力変換システム
JP7264037B2 (ja) * 2019-12-17 2023-04-25 株式会社明電舎 電力変換システム
CN111654217B (zh) * 2020-06-01 2023-09-22 河北建投能源科学技术研究院有限公司 基于电流控制的热网首站异步发电机组有功功率控制方法
JP2023121614A (ja) * 2022-02-21 2023-08-31 ミネベアミツミ株式会社 モータ駆動制御装置、モータユニット、およびモータ駆動制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101157732B1 (ko) 2007-09-25 2012-06-25 미쓰비시덴키 가부시키가이샤 전동기의 제어 장치
WO2010070723A1 (ja) * 2008-12-15 2010-06-24 三菱電機株式会社 電動機駆動用電力変換装置
JP5510444B2 (ja) 2011-12-28 2014-06-04 株式会社デンソー 回転機の制御装置

Also Published As

Publication number Publication date
US10158317B2 (en) 2018-12-18
JP2017204918A (ja) 2017-11-16
US20170331410A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
JP6555186B2 (ja) 交流電動機の制御装置
US8278865B2 (en) Control device
US8232753B2 (en) Control device for electric motor drive apparatus
JP4497235B2 (ja) 交流電動機の制御装置および制御方法
JP5471255B2 (ja) 電動機駆動装置の制御装置
US7417393B2 (en) Load driver capable of suppressing overcurrent
JP4506889B2 (ja) 交流電動機の制御装置および制御方法
JP4329855B2 (ja) 交流モータの制御装置および交流モータの制御方法
US20100013421A1 (en) Drive controller and drive control method for electric motor
US9166513B2 (en) Inverter apparatus, method of controlling inverter apparatus, and electric motor drive system
JP2006311768A (ja) モータ駆動システムの制御装置
WO2016006386A1 (ja) 車両用回転電機の制御装置、及び制御方法
JP2009261099A (ja) 同期電動機の駆動装置
JP2004304868A (ja) モーター制御装置
JP2002300800A (ja) 電力変換装置
JP6635059B2 (ja) 交流電動機の制御装置
JP7354953B2 (ja) 電力変換装置の制御装置、プログラム
JP2005269722A (ja) 電動機駆動制御装置
JP2011155787A (ja) 回転電機制御システム
JP5277846B2 (ja) 交流電動機の制御システム
JP6681266B2 (ja) 電動機の制御装置及びそれを備えた電動車両
US20220278621A1 (en) Power conversion apparatus
JP2005269723A (ja) 電動機駆動制御装置
JP2010088240A (ja) 交流電動機の制御システム
US20150180385A1 (en) Driving signal generating apparatus, and system and method for driving motor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190624

R151 Written notification of patent or utility model registration

Ref document number: 6555186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250