WO2019155866A1 - ガスセンサ - Google Patents

ガスセンサ Download PDF

Info

Publication number
WO2019155866A1
WO2019155866A1 PCT/JP2019/001864 JP2019001864W WO2019155866A1 WO 2019155866 A1 WO2019155866 A1 WO 2019155866A1 JP 2019001864 W JP2019001864 W JP 2019001864W WO 2019155866 A1 WO2019155866 A1 WO 2019155866A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous layer
water intrusion
disposed
sensor element
dense
Prior art date
Application number
PCT/JP2019/001864
Other languages
English (en)
French (fr)
Inventor
裕葵 中山
翔太 蔭山
雄介 藤井
圭 小坂
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67549035&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019155866(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201980002142.2A priority Critical patent/CN111699383B/zh
Priority to DE112019000036.5T priority patent/DE112019000036T5/de
Priority to JP2019570655A priority patent/JP6810286B2/ja
Publication of WO2019155866A1 publication Critical patent/WO2019155866A1/ja
Priority to US16/669,555 priority patent/US11391691B2/en
Priority to US17/838,546 priority patent/US12007352B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4077Means for protecting the electrolyte or the electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells

Definitions

  • the present invention relates to a gas sensor.
  • Patent Document 1 a gas sensor including a sensor element that detects a concentration of a specific gas such as NOx in a measurement gas such as an exhaust gas of an automobile is known (for example, Patent Documents 1 and 2).
  • the sensor element of Patent Document 1 includes a laminate in which oxygen ion conductive solid electrolyte layers are laminated.
  • the sensor element includes an outer pump electrode, an outer pump electrode lead wire, a connector electrode, and a porous protective layer, each disposed on the upper surface of the laminate.
  • the outer pump electrode, the outer pump electrode lead wire, and the connector electrode are connected in this order and are conductive, and the connector electrode is electrically connected to the outside.
  • the porous protective layer covers and protects the outer pump electrode and the outer pump electrode lead wire.
  • Patent Document 2 describes the structure of a gas sensor provided with such a sensor element.
  • the gas sensor of patent document 2 is provided with the element sealing body which fixes a sensor element.
  • the element sealing body includes a cylindrical metal shell and an inner cylinder through which the sensor element penetrates the inside, a plurality of supporters that are disposed inside the metal shell and the inner cylinder, and the sensor element penetrates through the inside. A plurality of green compacts.
  • the present invention has been made to solve such a problem, and a main object thereof is to suppress moisture from reaching the connector electrode.
  • the present invention adopts the following means in order to achieve the above-mentioned main object.
  • the gas sensor of the present invention is A sensor element, a metallic cylindrical body having a through-hole through which the sensor element penetrates in the axial direction, and a space between the inner peripheral surface of the through-hole and the sensor element disposed in the through-hole 1 or more of the green compacts formed, and a hollow columnar 1 having a porosity of less than 10% and disposed in the through-hole and through which the sensor element penetrates and presses the green compact in the axial direction.
  • a gas sensor comprising:
  • the sensor element is A long element body having a front end and a rear end that are both ends along the longitudinal direction, and one or more side surfaces that are surfaces along the longitudinal direction;
  • a plurality of electrodes disposed on the front end side of the element body, and a detection unit for detecting a specific gas concentration in the measurement gas;
  • a porous layer covering at least the front end side of the side surface on which the connector electrode is disposed and having a porosity of 10% or more;
  • the porous layer is divided along the longitudinal direction or disposed on the side surface so as to be located on the rear end side with respect to the porous layer, located on the front end side with respect to the connector electrode,
  • the overlapping distance W which is the length of a continuous overlapping portion between the longitudinal existence range and the longitudinal existence range of the inner peripheral surface of the one or more dense bodies, is 0.5
  • a water intrusion suppression unit that With Is.
  • a connector electrode is disposed on the rear end side of any one or more side surfaces of the element body, and a porous layer covering at least the front end side of the side surface is disposed.
  • the sensor element divides the porous layer along the longitudinal direction, or is disposed on the side surface so as to be positioned on the rear end side of the porous layer, and is located on the front end side of the connector electrode.
  • An intrusion suppression unit is provided.
  • the moisture in the gas to be measured passes through the porous layer due to capillary action on the rear end side of the element body Even if it moves toward, moisture reaches the water intrusion suppression part before reaching the connector electrode.
  • the water intrusion suppression part has at least a dense layer among the dense layer and the gap region, and unlike the porous layer, the capillary action of water along the longitudinal direction of the element body hardly occurs. It is difficult to pass through the inside of the water intrusion suppression part.
  • the overlapping distance W which is the length of a continuous overlapping portion between the existing range of the water intrusion suppressing portion and the existing range of the inner peripheral surface of the one or more dense bodies, in the longitudinal direction of the sensor element. It is 0.5 mm or more.
  • the dense body has a porosity of less than 10%, moisture does not easily pass through the dense body. Since the powder has water absorption, moisture can move not only in the porous layer but also in the green compact.
  • the overlapping distance W is 0 mm
  • the water intrusion suppressing portion is arranged only at the same position as the green compact in the longitudinal direction of the sensor element, the water enters the green compact by passing through the inside of the green compact. There is a case where it moves around the suppression part and moves to the rear end side.
  • the overlap distance W is 0.5 mm or more, a region for suppressing moisture from moving around the water intrusion suppressing portion by moving inside the green compact extends over a sufficient length. Therefore, the movement of moisture due to wraparound can be sufficiently suppressed.
  • the water intrusion suppression unit suppresses the water that has moved in the porous layer from passing through the water intrusion suppression unit, and the water moves around the water intrusion suppression unit via the green compact. This is also suppressed. Therefore, in this gas sensor, it can suppress that a water
  • the length L in the longitudinal direction of the water intrusion suppression portion is always a value equal to or greater than the overlap distance W, the length L is also 0.5 mm or more.
  • the overlapping distance W may be 5 mm or more.
  • the overlapping distance W may be 20 mm or less.
  • the dense layer may have a porosity of 8% or less, or 5% or less.
  • the dense layer may have a length Le of 0.5 mm or more in the longitudinal direction. If it carries out like this, it can fully suppress that a water
  • the dense layer may have a length Le of 20 mm or less in the longitudinal direction.
  • the dense layer may have a length Le of 30% or less of the length of the element body in the longitudinal direction.
  • the dense layer may have a length Le of 30% or less of the length of the element body in the longitudinal direction.
  • the gap region may have a length Lg in the longitudinal direction of 1 mm or less.
  • the water intrusion suppression unit may not include the gap region.
  • the length Lg in the longitudinal direction of the gap region may be 0 mm in the water intrusion suppression unit. In this way, the portion where the side surface of the element body is exposed (the portion not covered by the porous layer or the dense layer) can be further reduced.
  • the sensor element includes an outer lead portion that is disposed on the side surface where the connector electrode is disposed and electrically connects any one of the plurality of electrodes to the connector electrode,
  • the layer may cover at least a part of the outer lead portion. In this way, at least a part of the outer lead portion can be protected by the porous layer. Further, when the outer lead portion is protected by the porous layer, the porous layer is likely to be present at a position close to the connector electrode, and therefore, the significance of applying the present invention is high.
  • the porous layer may cover all of the outer lead portion, or the porous layer may cover all of the outer lead portion where the water intrusion suppressing portion does not exist.
  • the gas sensor according to the present invention is one of a plurality of electrodes of the detection unit, and is electrically connected to the connector electrode through the outer lead portion, and is disposed on the side surface on which the connector electrode is disposed.
  • An outer electrode may be provided.
  • the porous layer may cover the outer electrode.
  • the porous layer may be arranged on the front end side of the connector electrode from the front end of the side surface of the side surface on which the connector electrode is disposed, except for a region where the water intrusion suppressing portion is present.
  • the water intrusion suppressing portion may be disposed on the side surface so as to divide the porous layer along the longitudinal direction.
  • the element main body has a rectangular parallelepiped shape, and has the four side surfaces that are surfaces along the longitudinal direction, and the connector electrode faces each other among the four side surfaces.
  • One or more are disposed on each of the first side surface and the second side surface, and the porous layer covers the first side surface and the second side surface, respectively, and the water intrusion suppression unit includes the first side surface and the second side surface. It may be disposed on each of the side surface and the second side surface.
  • the element body is a laminated body in which a plurality of layers are laminated, and the first side surface and the second side surface are an upper surface and a lower surface of the element body when the stacking direction is the vertical direction. May be.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2.
  • FIG. 3 is a top view of the sensor element 20.
  • FIG. 6 is a bottom view of the sensor element 20.
  • Explanatory drawing which shows the positional relationship of the insulator 44b and the water penetration
  • FIG. Explanatory drawing which shows arrangement
  • invasion suppression part 90 in case of overlap distance W 0mm.
  • the graph which shows the time change of the penetration distance at the time of the liquid penetration test of Experimental example 2A, 8A.
  • FIG. 1 is a longitudinal sectional view showing a state in which a gas sensor 10 according to an embodiment of the present invention is attached to a pipe 58.
  • FIG. 2 is a perspective view of the sensor element 20 as viewed from the upper right front. 3 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is a top view of the sensor element 20.
  • FIG. 5 is a bottom view of the sensor element 20.
  • the longitudinal direction of the element body 60 of the sensor element 20 is the front-rear direction (length direction)
  • the stacking direction (thickness direction) of the element body 60 is the up-down direction
  • the direction perpendicular to the front-rear direction and the up-down direction is the left-right direction (width direction).
  • the gas sensor 10 includes an assembly 15, a nut 47, an outer cylinder 48, a connector 50, a lead wire 55, and a rubber plug 57.
  • the assembly 15 includes a sensor element 20, a protective cover 30, and an element sealing body 40.
  • the gas sensor 10 is attached to, for example, a pipe 58 such as an exhaust gas pipe of a vehicle, and is used for measuring the concentration (specific gas concentration) of a specific gas such as NOx or O 2 contained in the exhaust gas as the gas to be measured. .
  • the gas sensor 10 measures the NOx concentration as the specific gas concentration.
  • the front end side is the side exposed to the gas to be measured.
  • the protective cover 30 includes a bottomed cylindrical inner protective cover 31 that covers the front end side of the sensor element 20, and a bottomed cylindrical outer protective cover 32 that covers the inner protective cover 31. ing.
  • Each of the inner and outer protective covers 31 and 32 is formed with a plurality of holes for circulating the gas to be measured.
  • An element chamber 33 is formed as a space surrounded by the inner protective cover 31, and the fifth surface 60 e (front end surface) of the sensor element 20 is disposed in the element chamber 33.
  • the element sealing body 40 is a member that seals and fixes the sensor element 20.
  • the element sealing body 40 includes a cylindrical body 41 including a metal shell 42 and an inner cylinder 43, insulators 44a to 44c (an example of a dense body), green compacts 45a and 45b, and a metal ring 46. ing.
  • the sensor element 20 is located on the central axis of the element sealing body 40 and penetrates the element sealing body 40 in the vertical direction.
  • the metal shell 42 is a cylindrical metal member.
  • the metal shell 42 has a thick portion 42a having a smaller inner diameter on the front side than on the rear side.
  • a protective cover 30 is attached to the same side (front side) of the metal shell 42 as the front end of the sensor element 20.
  • the rear end of the metal shell 42 is welded to the flange portion 43 a of the inner cylinder 43.
  • a part of the inner peripheral surface of the thick portion 42a is a bottom surface 42b which is a step surface.
  • the bottom surface 42b holds the insulator 44a so that it does not jump forward.
  • the metal shell 42 has a through-hole penetrating the metal shell 42 along the axial direction (the front-rear direction here), and the sensor element 20 passes through the through-hole.
  • the inner cylinder 43 is a cylindrical metal member and has a flange portion 43a at the front end.
  • the inner cylinder 43 and the metal shell 42 are coaxially welded and fixed.
  • the inner cylinder 43 has a reduced diameter portion 43c for pressing the green compact 45b in the central axis direction of the inner cylinder 43, and insulators 44a to 44c and green compacts 45a and 45b through a metal ring 46. 1 is formed with a reduced diameter portion 43d for pressing downward.
  • the inner cylinder 43 has a through-hole penetrating the inner cylinder 43 along the axial direction (here, the front-rear direction), and the sensor element 20 passes through the inside of the through-hole.
  • the through hole of the metal shell 42 and the through hole of the inner cylinder 43 communicate with each other in the axial direction, and these constitute the through hole of the cylindrical body 41.
  • the insulators 44 a to 44 c and the green compacts 45 a and 45 b are arranged between the inner peripheral surface of the through hole of the cylindrical body 41 and the sensor element 20.
  • the insulators 44a to 44c serve as supporters for the green compacts 45a and 45b.
  • Examples of the material of the insulators 44a to 44c include ceramics such as alumina, steatite, zirconia, spinel, cordierite, mullite, or glass.
  • the insulators 44a to 44c are dense members, and the porosity is, for example, less than 1%.
  • Each of the insulators 44a to 44c has a through-hole penetrating itself along the axial direction (the front-rear direction in this case), and the sensor element 20 passes through the inside of the through-hole.
  • Each through hole of the insulators 44a to 44c has a quadrangular cross section perpendicular to the axial direction in accordance with the shape of the sensor element 20 in this embodiment.
  • the green compacts 45a and 45b are formed by molding powder, for example, and serve as a sealing material. Examples of the material of the green compacts 45a and 45b include talc, ceramic powder such as alumina powder and boron nitride, and the green compacts 45a and 45b may each include at least one of these.
  • the average particle diameter of the particles constituting the green compacts 45a and 45b may be 150 to 300 ⁇ m.
  • the green compact 45a is filled between the insulators 44a and 44b, and is sandwiched and pressed from both sides (front and rear) in the axial direction by the insulators 44a and 44b.
  • the green compact 45b is filled between the insulators 44b and 44c, and is sandwiched and pressed from both sides (front and rear) in the axial direction by the insulators 44b and 44c.
  • the insulators 44a to 44c and the green compacts 45a and 45b are sandwiched between the reduced diameter portion 43d and the metal ring 46 and the bottom surface 42b of the thick portion 42a of the metal shell 42 and are pressed from the front and rear.
  • the green compacts 45 a and 45 b are compressed between the cylindrical body 41 and the sensor element 20 by the pressing force from the reduced diameter portions 43 c and 43 d, so that the green compacts 45 a and 45 b are elements in the protective cover 30.
  • the space between the chamber 33 and the space 49 in the outer cylinder 48 is sealed, and the sensor element 20 is fixed.
  • the nut 47 is fixed to the outside of the metal shell 42 coaxially with the metal shell 42.
  • a male thread portion is formed on the outer peripheral surface of the nut 47.
  • the male screw portion is inserted into a fixing member 59 welded to the pipe 58 and provided with a female screw portion on the inner peripheral surface.
  • the outer cylinder 48 is a cylindrical metal member and covers the inner cylinder 43, the rear end side of the sensor element 20, and the connector 50.
  • the upper part of the metal shell 42 is inserted inside the outer cylinder 48.
  • the lower end of the outer cylinder 48 is welded to the metal shell 42.
  • a plurality of lead wires 55 connected to the connector 50 are drawn out from the upper end of the outer cylinder 48.
  • the connector 50 is in contact with and electrically connected to the upper connector electrode 71 and the lower connector electrode 72 disposed on the surface on the rear end side of the sensor element 20.
  • the lead wire 55 is electrically connected to the electrodes 64 to 68 and the heater 69 inside the sensor element 20 through the connector 50.
  • a gap between the outer cylinder 48 and the lead wire 55 is sealed with a rubber plug 57.
  • a space 49 in the outer cylinder 48 is filled with a reference gas. In the space 49, the sixth surface 60f (rear end surface) of the sensor element 20 is disposed.
  • the sensor element 20 includes an element body 60, a detection unit 63, a heater 69, an upper connector electrode 71, a lower connector electrode 72, a porous layer 80, and water intrusion suppression. Part 90.
  • the element body 60 has a laminate in which a plurality (six in FIG. 3) of oxygen ion conductive solid electrolyte layers such as zirconia (ZrO 2 ) are laminated.
  • the element body 60 has a long rectangular parallelepiped shape whose longitudinal direction is along the front-rear direction, and has first to sixth surfaces 60a to 60f as outer surfaces on the top, bottom, left, and right.
  • the first to fourth surfaces 60 a to 60 d are surfaces along the longitudinal direction of the element body 60 and correspond to the side surfaces of the element body 60.
  • the fifth surface 60e is a front end surface of the element body 60
  • the sixth surface 60f is a rear end surface of the element body 60.
  • the dimensions of the element body 60 may be, for example, 25 mm to 100 mm in length, 2 mm to 10 mm in width, and 0.5 mm to 5 mm in thickness.
  • the element body 60 has a measured gas inlet 61 that opens to the fifth surface 60e and introduces a measured gas into itself, and a reference that opens to the sixth surface 60f and serves as a reference for detecting a specific gas concentration.
  • a reference gas introduction port 62 for introducing gas (here, air) into the inside of the device is formed.
  • the detection unit 63 is for detecting a specific gas concentration in the gas to be measured.
  • the detection unit 63 has a plurality of electrodes disposed on the front end side of the element body 60.
  • the detection unit 63 includes an outer electrode 64 disposed on the first surface 60a, an inner main pump electrode 65, an inner auxiliary pump electrode 66, a measurement electrode 67, And a reference electrode 68.
  • the inner main pump electrode 65 and the inner auxiliary pump electrode 66 are disposed on the inner peripheral surface of the space inside the element body 60 and have a tunnel-like structure.
  • the detection unit 63 detects the specific gas concentration as follows, for example. Based on the voltage applied between the outer electrode 64 and the inner main pump electrode 65, the detection unit 63 pumps out oxygen in the gas to be measured around the inner main pump electrode 65 to the outside (element chamber 33) or Pump in. In addition, the detection unit 63 outputs oxygen in the measurement gas around the inner auxiliary pump electrode 66 to the outside (element chamber 33) based on the voltage applied between the outer electrode 64 and the inner auxiliary pump electrode 66. Pump out or pump in.
  • the gas to be measured after the oxygen concentration is adjusted to a predetermined value reaches the periphery of the measurement electrode 67.
  • the measurement electrode 67 functions as a NOx reduction catalyst, and reduces the specific gas (NOx) in the reached measurement gas.
  • the detection unit 63 generates an electromotive force generated between the measurement electrode 67 and the reference electrode 68 according to the oxygen concentration after reduction, or a current flowing between the measurement electrode 67 and the outer electrode 64 based on the electromotive force. Are generated as electrical signals.
  • the electrical signal generated by the detection unit 63 in this way is a signal indicating a value corresponding to the specific gas concentration in the gas to be measured (a value from which the specific gas concentration can be derived), and the detection value detected by the detection unit 63 It corresponds to.
  • the heater 69 is an electric resistor disposed inside the element body 60.
  • the heater 69 generates heat by being supplied with power from the outside and heats the element body 60.
  • the heater 69 can be adjusted to a temperature at which the solid electrolyte layer is activated (for example, 800 ° C.) by heating and keeping the temperature of the solid electrolyte layer forming the element body 60.
  • the upper connector electrode 71 and the lower connector electrode 72 are disposed on either rear end side of the side surface of the element body 60, and are electrodes that are electrically connected to the outside. Both the upper and lower connector electrodes 71 and 72 are exposed without being covered with the porous layer 80.
  • four upper connector electrodes 71a to 71d are arranged as the upper connector electrode 71 along the left-right direction, and are arranged on the rear end side of the first surface 60a.
  • Four lower connector electrodes 72a to 72d as the lower connector electrode 72 are arranged along the left-right direction and arranged on the rear end side of the second surface 60b (lower surface) opposite to the first surface 60a (upper surface). It is installed.
  • Each of the connector electrodes 71a to 71d and 72a to 72d is electrically connected to any of the plurality of electrodes 64 to 68 and the heater 69 of the detection unit 63.
  • the upper connector electrode 71a is electrically connected to the measurement electrode 67
  • the upper connector electrode 71b is electrically connected to the outer electrode 64
  • the upper connector electrode 71c is electrically connected to the inner auxiliary pump electrode 66
  • the upper connector electrode 71d is the inner main electrode.
  • the pump electrode 65 is electrically connected
  • the lower connector electrodes 72 a to 72 c are electrically connected to the heater 69
  • the lower connector electrode 72 d is electrically connected to the reference electrode 68.
  • the upper connector electrode 71b and the outer electrode 64 are electrically connected via an outer lead wire 75 disposed on the first surface 60a (see FIGS. 3 and 4).
  • Other connector electrodes are electrically connected to corresponding electrodes or heaters 69 via lead wires, through holes, or the like disposed inside the element body 60.
  • the porous layer 80 is a porous body that covers at least the front end side of the side surface of the element body 60 where the upper and lower connector electrodes 71 and 72 are disposed, that is, the first and second surfaces 60a and 60b.
  • the porous layer 80 includes an inner porous layer 81 that covers the first and second surfaces 60a and 60b, an outer porous layer 85 disposed outside the inner porous layer 81, and It has.
  • the inner porous layer 81 includes a first inner porous layer 83 that covers the first surface 60a and a second inner porous layer 84 that covers the second surface 60b.
  • the first inner porous layer 83 is formed from the front end to the rear end of the first surface 60a where the upper connector electrodes 71a to 71d are disposed, except for the region where the first water intrusion suppressing portion 91 and the upper connector electrode 71 are present. (See FIGS. 2 to 4).
  • the left and right widths of the first inner porous layer 83 are the same as the left and right widths of the first surface 60a, and the first inner porous layer 83 has a first surface 60a extending from the left end to the right end of the first surface 60a. Is covered.
  • the first inner porous layer 83 includes the first water intrusion suppression unit 91, the front end side portion 83a positioned on the front end side of the first water intrusion suppression unit 91 along the longitudinal direction, and the first water It is divided into a rear end portion 83b located on the rear end side with respect to the intrusion suppressing portion 91.
  • the first inner porous layer 83 covers at least a part of each of the outer electrode 64 and the outer lead wire 75. In this embodiment, as shown in FIGS. 3 and 4, the first inner porous layer 83 covers the entire outer electrode 64, and covers all portions of the outer lead wire 75 where the first water intrusion suppressing portion 91 does not exist. doing.
  • the first inner porous layer 83 serves as a protective layer that protects the outer electrode 64 and the outer lead wire 75 from components such as sulfuric acid in the gas to be measured, and suppresses these corrosion and the like.
  • the second inner porous layer 84 extends from the front end of the second surface 60b where the lower connector electrodes 72a to 72d are disposed, except for the region where the second water intrusion suppressing portion 94 and the lower connector electrode 72 are present. The entire area up to the end is covered (see FIGS. 2, 3 and 5).
  • the left and right widths of the second inner porous layer 84 are the same as the left and right widths of the second surface 60b, and the second inner porous layer 84 has a second surface 60b extending from the left end to the right end of the second surface 60b. Is covered.
  • the second inner porous layer 84 includes the second water intrusion suppression portion 94, the front end side portion 84a positioned on the front end side of the second water intrusion suppression portion 94 along the longitudinal direction, and the second water intrusion suppression portion 94. It is divided into a rear end side portion 84b located on the rear end side with respect to the intrusion suppressing portion 94.
  • the outer porous layer 85 covers the first to fifth surfaces 60a to 60e.
  • the outer porous layer 85 covers the first surface 60 a and the second surface 60 b by covering the inner porous layer 81.
  • the outer porous layer 85 has a shorter length in the front-rear direction than the inner porous layer 81, and unlike the inner porous layer 81, covers only the front end of the element body 60 and a region near the front end. .
  • the outer porous layer 85 is a portion of the element body 60 that is disposed around the electrodes 64 to 68 of the detector 63, in other words, a portion of the element body 60 that is disposed in the element chamber 33 and exposed to the gas to be measured. , Are covered.
  • the outer porous layer 85 serves as a protective layer that suppresses the occurrence of cracks in the element body 60 due to, for example, moisture in the gas to be measured attached thereto.
  • the porous layer 80 is made of a ceramic porous body such as an alumina porous body, a zirconia porous body, a spinel porous body, a cordierite porous body, a titania porous body, or a magnesia porous body.
  • the porous layer 80 is made of an alumina porous body.
  • the thickness of each of the first inner porous layer 83 and the second inner porous layer 84 may be, for example, not less than 5 ⁇ m and not more than 40 ⁇ m.
  • the thickness of the outer porous layer 85 may be, for example, 40 ⁇ m or more and 800 ⁇ m or less.
  • the porous layer 80 has a porosity of 10% or more.
  • the porous layer 80 covers the outer electrode 64 and the measured gas inlet 61, but the measured gas can pass through the porous layer 80 as long as the porosity is 10% or more.
  • the porosity of the inner porous layer 81 may be 10% or more and 50% or less.
  • the porosity of the outer porous layer 85 may be 10% or more and 85% or less.
  • the outer porous layer 85 may have a higher porosity than the inner porous layer 81.
  • the porosity of the inner porous layer 81 is a value derived as follows using an image (SEM image) obtained by observation using a scanning electron microscope (SEM).
  • SEM image an image obtained by observation using a scanning electron microscope (SEM).
  • the sensor element 20 is cut along the thickness direction of the inner porous layer 81 so that the cross section of the inner porous layer 81 is an observation surface, and the cut surface is filled with resin and polished to obtain an observation sample.
  • an SEM image of the inner porous layer 81 is obtained by setting the SEM magnification to 1000 to 10,000 times and photographing the observation surface of the observation sample.
  • the threshold value is determined by the discriminant analysis method (binarization of Otsu) from the luminance distribution of the luminance data of the pixels in the image.
  • each pixel in the image is binarized into an object portion and a pore portion based on the determined threshold value, and the area of the object portion and the area of the pore portion are calculated. Then, the ratio of the area of the pore portion to the total area (the total area of the object portion and the pore portion) is derived as the porosity (unit:%).
  • the porosity of the outer porous layer 85 and the porosity of the first dense layer 92 and the second dense layer 95 described later are similarly derived values.
  • the water intrusion suppression unit 90 suppresses the capillary action of water along the longitudinal direction of the element body 60.
  • the water intrusion suppression unit 90 includes a first water intrusion suppression unit 91 and a second water intrusion suppression unit 94.
  • the first water intrusion suppression unit 91 is disposed on the first surface 60a on which the upper connector electrode 71 and the first inner porous layer 83 are disposed. As described above, the first water intrusion suppression unit 91 is disposed on the first surface 60a so as to divide the first inner porous layer 83 back and forth along the longitudinal direction.
  • the first water intrusion suppression portion 91 is disposed on the front end side of the element body 60 relative to the upper connector electrode 71, that is, in front of the upper connector electrode 71.
  • the first water intrusion suppression unit 91 is disposed behind the outer electrode 64.
  • the first water intrusion suppression unit 91 is arranged behind the plurality of electrodes 64 to 68 included in the detection unit 63 including the outer electrode 64 (see FIG. 3).
  • the first water intrusion suppression unit 91 suppresses the passage of water through the first water intrusion suppression unit 91 when the water has moved backward in the front end side portion 83a by capillary action, so that the water is in the upper connector. It plays the role which suppresses reaching
  • the first water intrusion suppression unit 91 includes a first dense layer 92 and a first gap region 93.
  • the first dense layer 92 is a dense layer having a porosity of less than 10%.
  • the left and right widths of the first dense layer 92 are the same as the left and right widths of the first surface 60a, and the first dense layer 92 covers the first surface 60a from the left end to the right end of the first surface 60a. Yes.
  • the first dense layer 92 is adjacent to the rear end of the front end side portion 83a. As shown in FIG. 4, the first dense layer 92 covers a part of the outer lead wire 75.
  • the first gap region 93 is a region on the first surface 60a where the porous layer 80 and the first dense layer 92 are not present.
  • the first gap region 93 is formed as a region between the rear end of the first dense layer 92 and the front end of the rear end side portion 83b. In the portion where the first gap region 93 exists, the outer lead wire 75 is exposed.
  • the second water intrusion suppressing portion 94 is disposed on the second surface 60b on which the lower connector electrode 72 and the second inner porous layer 84 are disposed. As described above, the second water intrusion suppression unit 94 is disposed on the second surface 60b so as to divide the second inner porous layer 84 back and forth along the longitudinal direction. The second water intrusion suppression portion 94 is disposed on the front end side of the element body 60 relative to the lower connector electrode 72, that is, in front of the lower connector electrode 72. The second water intrusion suppression unit 94 is disposed behind the outer electrode 64. The second water intrusion suppression unit 94 is arranged behind the plurality of electrodes 64 to 68 included in the detection unit 63 including the outer electrode 64 (see FIG. 3).
  • the second water intrusion suppression unit 94 suppresses the passage of moisture through the second water intrusion suppression unit 94 when the moisture has moved backward in the front end side portion 84a due to capillary action, so that the moisture is on the lower side. It plays a role of suppressing reaching the connector electrode 72.
  • the second water intrusion suppression unit 94 includes a second dense layer 95 and a second gap region 96.
  • the second dense layer 95 is a dense layer having a porosity of less than 10%.
  • the left and right widths of the second dense layer 95 are the same as the left and right widths of the second surface 60b, and the second dense layer 95 covers the second surface 60b from the left end to the right end of the second surface 60b. Yes.
  • the second dense layer 95 is adjacent to the rear end of the front end side portion 84a.
  • the second gap region 96 is a region on the second surface 60b where the porous layer 80 and the second dense layer 95 do not exist.
  • the second gap region 96 is formed as a region between the rear end of the second dense layer 95 and the front end of the rear end side portion 84b.
  • the first water intrusion suppression unit 91 and the second water intrusion suppression unit 94 each have a longitudinal length L (see FIGS. 4 and 5) of 0.5 mm or more.
  • the length L may be 5 mm or more.
  • the length L may be 25 mm or less, or 20 mm or less.
  • invasion suppression part 94 were made into the same value in this embodiment, both may differ.
  • the first dense layer 92 and the second dense layer 95 differ from the porous layer 80 in that the porosity is less than 10%, but ceramics made of the materials exemplified for the porous layer 80 described above can be used.
  • the first dense layer 92 and the second dense layer 95 are both made of alumina ceramics.
  • the thickness of each of the first dense layer 92 and the second dense layer 95 may be, for example, not less than 5 ⁇ m and not more than 40 ⁇ m.
  • the thickness of the first dense layer 92 is preferably equal to or greater than the thickness of the first inner porous layer 83.
  • the thickness of the second dense layer 95 is preferably equal to or greater than the thickness of the second inner porous layer 84.
  • the porosity of each of the first dense layer 92 and the second dense layer 95 is preferably 8% or less, and more preferably 5% or less. As the porosity is smaller, the first dense layer 92 and the second dense layer 95 can further suppress the capillary action of water along the longitudinal direction of the element body 60.
  • the first dense layer 92 and the second dense layer 95 each preferably have a length Le in the longitudinal direction (see FIGS. 4 and 5) of 0.5 mm or more.
  • moisture content suppresses 1st water penetration
  • the length Le may be 5 mm or more.
  • the length Le of the 1st dense layer 92 and the length Le of the 2nd dense layer 95 were made into the same value in this embodiment, both may differ.
  • the first gap region 93 and the second gap region 96 each preferably have a longitudinal length Lg of 1 mm or less. Since the length Lg is relatively small as described above, portions where the side surfaces (here, the first and second surfaces 60a and 60b) of the element body 60 are exposed, that is, the porous layer 80, the first dense layer 92, and the first The portion not covered by any of the two dense layers 95 can be reduced.
  • the outer lead wire 75 is disposed on the first surface 60a, and the outer lead wire 75 is exposed in a portion where the first gap region 93 exists. Therefore, by reducing the length Lg of the first gap region 93, the portion of the outer lead wire 75 that is not protected by the porous layer 80 or the first dense layer 92 can be reduced.
  • FIG. 6 is an explanatory diagram showing the positional relationship between the water intrusion suppression unit 90, the insulators 44a to 44c, and the green compacts 45a and 45b, and is a longitudinal sectional view of the gas sensor 10 in which illustrations of members irrelevant to the description are omitted.
  • the first water intrusion suppression unit 91 includes the existence range of the first water intrusion suppression unit 91 along the longitudinal direction (here, the front-rear direction) of the sensor element 20 and the inner periphery of the insulator 44b along the longitudinal direction of the sensor element 20.
  • the overlapping distance W which is the length of the continuous overlapping portion with the longitudinal range of the surface 44b1, is arranged to be 0.5 mm or more.
  • the inner peripheral surface 44b1 of the insulator 44b is a surface of the insulator 44b that faces the first water intrusion suppressing portion 91, in other words, a surface that is exposed toward the first water intrusion suppressing portion 91, and the insulator 44b. It is a surface located in the upper side among the inner peripheral surfaces of a square cross section.
  • the value of the overlap distance W determined by the positional relationship between the inner peripheral surface 44b1 and the first water intrusion suppressing portion 91 is the continuous portion of the first water intrusion suppressing portion 91 that is not in contact with the green compacts 45a and 45b. Corresponds to the length in the front-rear direction. Moreover, as shown in FIG.
  • invasion suppression part 91 is arrange
  • the overlap distance W length L is established for the first water intrusion suppression unit 91, and the length L is 0.5 mm or more as described above. It is 5 mm or more.
  • the existence range of the inner peripheral surface 44b1 in the front-rear direction and the existence range of the insulator 44b in the front-rear direction are the same. Therefore, the length of the continuous overlapping portion between the existence range of the first water intrusion suppression unit 91 along the longitudinal direction of the sensor element 20 and the existence range of the insulator 44b along the longitudinal direction of the sensor element 20 is as described above. It is the same value as the overlap distance W.
  • the overlapping distance W which is the length of a continuous overlapping portion between the longitudinally existing range of the inner peripheral surface 44b2 of 44b and the overlapping distance W, is 0.5 mm or more.
  • the inner peripheral surface 44b2 of the insulator 44b is a surface of the insulator 44b that faces the second water intrusion suppressing portion 94, in other words, a surface that is exposed toward the second water intrusion suppressing portion 94, and the insulator 44b.
  • the value of the overlap distance W determined by the positional relationship between the inner peripheral surface 44b2 and the second water intrusion suppressing portion 94 is the continuous portion of the second water intrusion suppressing portion 94 that is not in contact with the green compacts 45a and 45b. Corresponds to the length in the front-rear direction. Moreover, as shown in FIG. 6, in this embodiment, the 2nd water penetration
  • the region from the front end to the rear end of the second water intrusion suppression portion 94 is the front end to the rear end of the inner peripheral surface 44b2 of the insulator 44b. It is located so that it may be contained inside the area
  • the overlap distance W length L is established for the second water intrusion suppression unit 94, and the length L is 0.5 mm or more as described above. It is 5 mm or more.
  • the existence range of the inner peripheral surface 44b2 in the front-rear direction and the existence range of the insulator 44b in the front-rear direction are the same. Therefore, the length of the continuous overlapping portion between the existence range of the second water intrusion suppression portion 94 along the longitudinal direction of the sensor element 20 and the existence range of the insulator 44b along the longitudinal direction of the sensor element 20 is as described above. It is the same value as the overlap distance W.
  • invasion suppression part 94 were made into the same value in this embodiment, both may differ.
  • the overlap distance W is good also as 5 mm or more, and the overlap distance W is good also as 20 mm or less.
  • the inner peripheral surface 44b1 and the first dense layer 92 of the first water intrusion suppression unit 91 are in contact with each other, but they may be spaced apart from each other. By separating the two, for example, contact between both when thermal expansion or vibration of the gas sensor 10 occurs is suppressed, and damage to at least one of the insulator 44b and the sensor element 20 can be suppressed. .
  • the separation distance between the inner peripheral surface 44b1 and the first dense layer 92 at normal temperature may be 50 ⁇ m or more. If it carries out like this, it can suppress that a water
  • This separation distance is preferably 100 ⁇ m or more. This separation distance may be 500 ⁇ m or less.
  • the inner peripheral surface 44b2 and the second dense layer 95 of the second water intrusion suppression portion 94 are in contact with each other in FIG. 6, but they may be separated from each other in the vertical direction. Any one or more of these numerical ranges may be satisfied.
  • a method for manufacturing the gas sensor 10 thus configured will be described below.
  • a method for manufacturing the sensor element 20 will be described.
  • a plurality (six in this case) of green ceramic green sheets corresponding to the element body 60 are prepared. Each green sheet is provided with a notch, a through hole, a groove, or the like, if necessary, by stamping or the like, or an electrode or a wiring pattern is screen printed.
  • the unfired porous layer that becomes the first inner porous layer 83 and the second inner porous layer 84 after firing and the unfired dense layer that becomes the first dense layer 92 and the second dense layer 95 after firing, It forms on the surface corresponding to the 1st, 2nd surface 60a, 60b among green sheets by screen printing. Thereafter, a plurality of green sheets are laminated.
  • the plurality of laminated green sheets are unfired element bodies that become element bodies after firing, and include unfired porous layers and unfired dense layers. Then, this unfired element body is fired to obtain an element body 60 including the first inner porous layer 83, the second inner porous layer 84, the first dense layer 92, and the second dense layer 95.
  • the outer porous layer 85 is formed by plasma spraying to obtain the sensor element 20.
  • a gel cast method, a dipping, etc. can also be used other than screen printing and plasma spraying.
  • the gas sensor 10 incorporating the sensor element 20 is manufactured.
  • the sensor element 20 is passed through the through hole of the cylindrical body 41 in the axial direction, and between the inner peripheral surface of the cylindrical body 41 and the sensor element 20, the insulator 44a, the green compact 45a, the insulator 44b, The green compact 45b, the insulator 44c, and the metal ring 46 are arranged in this order.
  • the metal ring 46 is pressed to compress the green compacts 45 a and 45 b, and in this state, the reduced diameter portions 43 c and 43 d are formed to manufacture the element sealing body 40.
  • the space between the peripheral surface and the sensor element 20 is sealed.
  • the protective cover 30 is welded to the element sealing body 40, and the nut 47 is attached to obtain the assembly 15. Then, a lead wire 55 passing through the rubber plug 57 and a connector 50 connected thereto are prepared, and the connector 50 is connected to the rear end side of the sensor element 20. Thereafter, the outer cylinder 48 is fixed by welding to the metal shell 42 to obtain the gas sensor 10.
  • the first The length Le of the dense layer 92 and the second dense layer 95 is preferably 20 mm or less.
  • the unfired element body and the unfired dense layer may have different shrinkage rates during firing. If the length Le is too long, the sensor element 20 may be warped by firing. If length Le is 20 mm or less, the curvature of the sensor element 20 at the time of baking can be suppressed.
  • the first dense layer 92 and the second dense layer 95 preferably have a length Le of 30% or less of the length of the element body 60 in the longitudinal direction. Satisfying this condition can also suppress warping of the sensor element 20 during firing.
  • the gas to be measured flows through the pipe 58 with the gas sensor 10 attached to the pipe 58 as shown in FIG. 1, the gas to be measured flows through the protective cover 30 and flows into the element chamber 33, and the sensor element. The front end side of 20 is exposed to the gas to be measured.
  • the gas to be measured passes through the porous layer 80 and reaches the outer electrode 64 and reaches the sensor element 20 from the gas to be measured inlet 61, as described above, it corresponds to the NOx concentration in the gas to be measured.
  • the detection unit 63 generates an electrical signal. By extracting this electrical signal through the upper and lower connector electrodes 71 and 72, the NOx concentration is detected based on the electrical signal.
  • the gas to be measured may contain moisture, and this moisture may move through the porous layer 80 by capillary action.
  • the moisture reaches the upper and lower connector electrodes 71 and 72 where the moisture is exposed, rust and corrosion of the upper and lower connector electrodes 71 and 72 occur due to components such as water and sulfuric acid dissolved in the water, and the upper and lower sides. A short circuit may occur between adjacent electrodes of the connector electrodes 71 and 72.
  • the moisture in the gas to be measured moves inside the porous layer 80 (especially in the first inner porous layer 83 and the second inner porous layer 84) by the capillary phenomenon on the rear end side of the element body 60.
  • invasion suppression part 91 has the 1st dense layer 92 whose porosity is less than 10%, and the 1st clearance gap area 93 which is the space where a porous layer does not exist, All are element
  • invasion suppression part 91 has the length L of the longitudinal direction of 0.5 mm or more, it can fully suppress that a water
  • FIG. By the above, the 1st water penetration
  • the first water intrusion suppression unit 91 and the insulator 44b are arranged only at the same position as the green compact 45 a in the longitudinal direction of the sensor element 20.
  • the distance W is 0 mm.
  • the first water intrusion suppression unit 91 includes only the first dense layer 92
  • the second water intrusion suppression unit 94 includes only the second dense layer 95.
  • the green compact 45a has water absorption, so that the water can move inside the green compact 45a.
  • the moisture may move around the first water intrusion suppression unit 91 and move to the rear end side from the first water intrusion suppression unit 91 (in FIG. 7). (See thick arrow).
  • the sensor element 20 of this embodiment as shown in FIG.
  • invasion suppression part 91 is arrange
  • the first water intrusion suppressing portion 91 is not in contact with the green compact 45a, and the insulator 44b is dense, so that moisture hardly passes through the insulator 44b.
  • the first water intrusion suppression unit 91 suppresses the moisture that has moved in the porous layer 80 (particularly the front end portion 83a) from passing through the first water intrusion suppression unit 91, and the green compact. It is also suppressed that water moves around the first water intrusion suppression unit 91 via 45a and 45b. Therefore, in the gas sensor 10, it is possible to suppress moisture from moving to the rear end side of the sensor element 20 from the first water intrusion suppression unit 91 and reaching the upper connector electrode 71. Therefore, in the sensor element 20, the occurrence of the above-described problems due to water adhering to the upper connector electrode 71 is suppressed.
  • the second water intrusion suppression portion 94 is made of the porous layer 80 (particularly the front end side portion 84a). It is also possible to suppress the moisture that has moved inside from passing through the second water intrusion suppression unit 94 and to move around the second water intrusion suppression unit 94 via the green compacts 45a and 45b. Suppress. Therefore, in the gas sensor 10, it is possible to suppress moisture from moving to the rear end side of the sensor element 20 from the second water intrusion suppression unit 94 and reaching the lower connector electrode 72. Therefore, in the sensor element 20, the occurrence of the above-described problems due to water adhering to the lower connector electrode 72 is suppressed.
  • the sensor element 20 of the present embodiment corresponds to the sensor element of the present invention
  • the cylindrical body 41 corresponds to the cylindrical body
  • the green compacts 45a and 45b correspond to the green compact
  • the insulators 44a to 44c are dense bodies.
  • the element main body 60 corresponds to the element main body
  • the detection unit 63 corresponds to the detection unit
  • the connector electrodes 71a to 71d, 72a to 72d each correspond to the connector electrode
  • the first surface 60a and the second surface 60b corresponds to the side surface on which the connector electrode is disposed
  • the porous layer 80 corresponds to the porous layer
  • the first water intrusion suppression portion 91 and the second water intrusion suppression portion 94 correspond to the water intrusion suppression portion, respectively.
  • the outer lead wire 75 corresponds to the outer lead portion
  • the outer electrode 64 corresponds to the outer electrode
  • the first surface 60a corresponds to the first side surface
  • the second surface 60b corresponds to the second side surface.
  • the first water intrusion suppressing portion 91 is disposed on one of the one or more side surfaces of the element body 60 (here, the first surface 60a). Further, it is possible to suppress moisture from moving to the rear end side of the sensor element 20 from the first water intrusion suppressing unit 91 and reaching the upper connector electrodes 71a to 71d. Similarly, in the sensor element 20, since the second water intrusion suppression unit 94 is provided on any one or more side surfaces (here, the second surface 60 b) of the element main body 60, moisture is contained in the second water. It is also possible to suppress the movement to the rear end side of the sensor element 20 from the intrusion suppressing unit 94 and reaching the lower connector electrodes 72a to 72d.
  • the length Le of the first and second dense layers 92 and 95 is 0.5 mm or more, the first and second dense layers 92, Only the portion 95 can sufficiently suppress the water from passing through the water intrusion suppression unit 90 along the longitudinal direction. Further, since the length Le of the first and second dense layers 92 and 95 is 20 mm or less, the sensor element 20 is warped due to a difference in shrinkage rate during firing between the unfired element body and the unfired dense layer. Can be suppressed. Further, the warpage of the sensor element 20 can also be suppressed when the length Le of the first and second dense layers 92 and 95 is 30% or less of the length of the element body 60 in the longitudinal direction.
  • the length Lg of the first and second gap regions 93 and 96 is 1 mm or less, the length Lg is relatively small, and therefore the side surface of the element body 60 (here, the first and second surfaces 60a and 60b). ) Exposed portions (portions not covered by the porous layer 80 and the first and second dense layers 92 and 95) can be reduced.
  • the sensor element 20 is disposed on a side surface (here, the first surface 60a) where the upper connector electrode 71 is disposed, and one of the plurality of electrodes (here, the outer electrode 64) of the detection unit 63 and the upper connector.
  • An outer lead wire 75 that conducts to the electrode 71b is provided.
  • the porous layer 80 covers at least a part of the outer lead wire 75. Therefore, at least a part of the outer lead wire 75 can be protected by the porous layer 80.
  • the porous layer here, the first inner porous layer 83
  • the porous layer tends to exist near the lower connector electrode 72b. It is highly significant to suppress the first water intrusion suppression unit 91 from reaching the lower connector electrode 72b through the first inner porous layer 83.
  • the first water intrusion suppression unit 91 includes the first dense layer 92 and the first gap region 93, but the first water intrusion suppression unit 91 includes at least the first dense layer 92. It only has to be. That is, the first water intrusion suppression unit 91 may not include the first gap region 93. In other words, the length Lg in the first water intrusion suppression unit 91 may be 0 mm. By preventing the first water intrusion suppression unit 91 from including the first gap region 93, a portion where the first surface 60a is exposed (portion not covered by the porous layer 80 or the first dense layer 92). Can be further reduced. The same applies to the second water intrusion suppression unit 94.
  • the first water intrusion suppression unit 91 divides the first inner porous layer 83 into the front end side portion 83a and the rear end side portion 83b along the longitudinal direction, but is not limited thereto. Absent.
  • the first water intrusion suppression unit 91 may be located on the rear end side with respect to the porous layer 80.
  • the first inner porous layer 83 may not include the rear end side portion 83b.
  • the portion where the rear end side portion 83 b is disposed in FIG. 4 is also included in a part of the first gap region 93.
  • the second water intrusion suppressing portion 94 may be positioned on the rear end side of the porous layer 80 without dividing the second inner porous layer 84.
  • the first dense layer 92 is disposed adjacent to the front of the first gap region 93, but the first dense layer 92 is disposed adjacent to the rear of the first gap region 93. Also good. The same applies to the second water intrusion suppression unit 94.
  • the gas sensor 10 includes three insulators (insulators 44a to 44c) and two green compacts (green compacts 45a and 45b).
  • the gas sensor 10 is not limited to this and includes one or more of each. Just do it.
  • the insulators 44a to 44c are given as examples of the dense body, but the present invention is not limited to this.
  • a dense body having a porosity of less than 10% can be used. If it is a dense body with a porosity of less than 10%, it is difficult for moisture to pass through the inside, and therefore the movement of moisture due to wrapping around the water intrusion suppression unit 90 can be sufficiently suppressed.
  • the porosity of the dense body may be less than 5%.
  • the porosity of the dense body is a value derived using SEM in the same manner as the porosity of the inner porous layer 81.
  • the first and second water intrusion suppression units 91 and 94 are arranged at positions overlapping with the insulator 44b in the front-rear direction, but are not limited thereto.
  • invasion suppression parts 91 and 94 may be arrange
  • invasion suppression part 91 overlaps with only the insulator (here insulator 44a) of the front end side among several insulators with which the gas sensor 10 is provided, the water
  • the first water intrusion suppression unit 91 passes through the gap between the first water intrusion suppression unit 91 and the insulator 44a and moves to the rear end side of the sensor element 20 from the first water intrusion suppression unit 91.
  • the 1st water intrusion suppression part 91 overlaps with only the insulator (here insulator 44c) of the back end side among several insulators with which the gas sensor 10 is provided, the 1st water intrusion suppression part 91 and an upper side connector are overlapped.
  • the electrode 71 is relatively close.
  • the first water intrusion suppression unit 91 can suppress the movement of liquid moisture to the upper connector electrode 71 due to capillary action, but a part of the liquid moisture is vaporized on the front side of the first water intrusion suppression unit 91. May pass through the gap between the first water intrusion suppression unit 91 and the insulator 44c, move to the rear end side of the sensor element 20 from the first water intrusion suppression unit 91, and reach the upper connector electrode 71. is there. From these things, when the gas sensor 10 has two or more insulators, it is preferable that the first water intrusion suppression unit 91 overlaps with insulators other than the insulator on the most front end side. Moreover, when the gas sensor 10 has three or more insulators, the first water intrusion suppression unit 91 is overlapped with other insulators except the insulator on the most front end side and the insulator on the most rear end side. Is preferred.
  • the sensor element 20 does not include the second inner porous layer 84, and the second surface 60b may not be covered with the porous layer 80. In this case, the sensor element 20 may not include the second water intrusion suppression unit 94.
  • the water intrusion suppression unit is the side surface (in the above-described embodiment, the first surface is provided with the porous protective layer). 1, at least one of the second surfaces 60a and 60b). If it carries out like this, it can suppress that a water
  • the first inner porous layer 83 covers the region from the front end to the rear end of the first surface 60a except for the region where the first water intrusion suppressing portion 91 and the upper connector electrode 71 are present.
  • the first inner porous layer 83 covers the region from the front end of the first surface 60a to the front end side ends of the upper connector electrodes 71a to 71d except for the region where the first water intrusion suppressing portion 91 is present. May be.
  • the first inner porous layer 83 covers at least the region from the front end of the first surface 60a to the rear of the first water intrusion suppression portion 91 except for the region where the first water intrusion suppression portion 91 exists. Also good.
  • the second inner porous layer 84 covers the region from the front end to the rear end of the first surface 60a except for the region where the first water intrusion suppressing portion 91 and the upper connector electrode 71 are present.
  • the first inner porous layer 83 covers the region from the front end of the first surface 60a to the front end side ends of the upper
  • the element body 60 has a rectangular parallelepiped shape, but is not limited thereto.
  • the element body 60 may be cylindrical or columnar. In this case, the element body 60 has one side surface.
  • Example 1 A sensor element similar to the sensor element 20 shown in FIGS. 2 to 5 except that the first water intrusion suppressing part 91, the second water intrusion suppressing part 94, and the outer porous layer 85 are not provided is produced. It was. That is, in Experimental Example 1, the first and second inner porous layers 83 and 84 have the first and second surfaces 60a and 60b except for the regions where the upper and lower connector electrodes 71 and 72 are disposed. All were covered.
  • the sensor element 20 of Experimental Example 1 was manufactured as follows. First, six ceramic green sheets were prepared by mixing zirconia particles to which 4 mol% of the stabilizer yttria was added, an organic binder, and an organic solvent and then molding the mixture by tape molding.
  • Each green sheet was printed with a pattern such as each electrode.
  • an unfired porous layer that becomes the first inner porous layer 83 and the second inner porous layer 84 after firing was formed by screen printing.
  • the unfired porous layer was a slurry prepared by mixing a raw material powder (alumina powder), a binder solution (polyvinyl acetal and butyl carbitol), a solvent (acetone), and a pore former. Thereafter, six green sheets were laminated and fired. In this way, the element body 60 including the first and second inner porous layers 83 and 84 was produced, and the sensor element 20 of Experimental Example 1 was obtained.
  • the dimensions of the element body 60 were 67.5 mm in length, 4.25 mm in width, and 1.45 mm in thickness.
  • the first and second inner porous layers 83 and 84 had a thickness of 20 ⁇ m and a porosity of 30%.
  • the porosity of the first and second dense layers 92 and 95 was adjusted by adjusting the amount of pore-forming material added.
  • the first water intrusion suppression unit 91 does not include the first gap region 93
  • the second water intrusion suppression unit 94 does not include the second gap region 96.
  • the thickness of the first and second dense layers 92 and 95 was 20 ⁇ m.
  • the front ends of the first and second water intrusion suppression portions 91 and 94 were positioned at a distance of 26 mm from the front end of the element body 60.
  • This penetration distance is a value representing how much the red check solution has moved from the immersion position to the rear end side of the element body 60 by capillary action in the first and second inner porous layers 83 and 84.
  • A When the penetration distance after 20 hours is less than 10 mm, it is judged as very good (A), when it is 10 mm or more but less than 20 mm, it is judged as good (B), and when it is 20 mm or more, it is bad.
  • (F) was determined.
  • As a red check solution R-3B (NT) Plus manufactured by Eisin Chemical was used.
  • Red check solution is 40-60 wt% hydrocarbon oil, 10-20 wt% plastic solvent, 1-20 wt% glycol ether, 12-50 wt% nonionic surfactant, 1-azo oil-soluble red dye Includes 5%.
  • the red check solution has a density of 0.86 g / cm 3 at 20 ° C., which is lower than that of water.
  • the length L of the first and second water intrusion suppressing portions 91 and 94 is 0.5 mm or more and the porosity of the first and second dense layers 92 and 95 is less than 10%, it is caused by capillary action. It was confirmed that the movement of moisture can be sufficiently suppressed by the first and second water intrusion suppression units 91 and 94. As can be seen from the results of Experimental Example 5, even if the length Le of the first and second dense layers 92 and 95 is less than 0.5 mm, the length L of the first and second water intrusion suppression portions 91 and 94 is not found. When the thickness is 0.5 mm or more, the movement of moisture due to capillary action is sufficiently suppressed.
  • Example 1A A gas sensor 10 having the positional relationship shown in FIG. 8 was produced by the above-described manufacturing method, and was designated as experimental example 1A.
  • the gas sensor 10 of Experimental Example 1A was manufactured by incorporating the same sensor element 20 as that of Experimental Example 27 except that the positions of the first and second water intrusion suppression units 91 and 94 in the front-rear direction were changed.
  • the insulators 44a to 44c are all ceramic sintered bodies made of alumina, the insulator 44a has an axial length of 8 mm, the insulator 44b has an axial length of 10 mm, and the insulator 44c has an axial direction. The length was 4.5 mm.
  • the porosity of the insulators 44a to 44c was derived using the SEM image, it was less than 1%.
  • the green compacts 45a and 45b were formed by molding talc powder. Further, the amount of talc powder was adjusted so that the sealing load applied to the green compacts 45a and 45b from the front and rear in the cylindrical body 41 was appropriate.
  • the axial length of the green compact 45a after sealing was 6 mm, and the axial length of the green compact 45a was 7 mm.
  • the vertical separation distances between the insulators 44a to 44c, the porous layer 80, and the water intrusion suppressing portion 90 were all 100 ⁇ m. As shown in FIG.
  • the positions of the front ends of the first and second water intrusion suppression portions 91 and 94 are the same as the positions of the front ends of the inner peripheral surfaces 44b1 and 44b2 of the insulator 44b.
  • the front ends of the first and second water intrusion suppression portions 91 and 94 are located at a distance of 29 mm from the front end of the element body 60.
  • the first dense layer 92 and the second dense layer 95 overlap with the insulators 44b and 44c, and the overlapping distance W, which is the length of the continuous overlapping portion, is the same as that of the insulator 44b overlapping over a longer distance. Based on the positional relationship, it was 10 mm.
  • Example 2A A gas sensor 10 having the positional relationship shown in FIG. 9 was produced by the above-described manufacturing method, and designated as Experimental Example 2A.
  • Experimental example 2A is manufactured by incorporating the same sensor element 20 as in experimental example 17 except that the positions of the first and second water intrusion suppression units 91 and 94 in the front-rear direction are changed, and the other points are experimental example 1A. It produced similarly.
  • the front ends of the first and second water intrusion suppression portions 91 and 94 are located at a distance of 31 mm from the front end of the element body 60.
  • Example 3A The gas sensor 10 having the positional relationship shown in FIG. 10 was produced by the above-described manufacturing method, and was designated as Experimental Example 3A.
  • Experimental Example 3A is manufactured by incorporating the same sensor element 20 as Experimental Example 17 except that the positions of the first and second water intrusion suppression units 91 and 94 in the front-rear direction are changed, and the other points are Experimental Example 1A. It produced similarly.
  • the front ends of the first and second water intrusion suppression portions 91 and 94 are located at a distance of 27 mm from the front end of the element body 60.
  • the first dense layer 92 and the second dense layer 95 partially overlap the insulator 44b in the front-rear direction, and the overlap distance W is 3 mm.
  • Example 4A The gas sensor 10 having the positional relationship shown in FIG. 11 was produced by the above-described manufacturing method, and was designated as experimental example 4A.
  • Experimental Example 4A is manufactured by incorporating the same sensor element 20 as Experimental Example 17 except that the front and rear positions of the first and second water intrusion suppression units 91 and 94 are changed, and the other points are Experimental Example 1A. It produced similarly.
  • the front ends of the first and second water intrusion suppression portions 91 and 94 are located at a distance of 24.5 mm from the front end of the element body 60.
  • the first dense layer 92 and the second dense layer 95 partially overlap the insulator 44b in the front-rear direction, and the overlap distance W is 0.5 mm.
  • Example 5A A gas sensor 10 having the positional relationship shown in FIG. 12 was produced by the above-described manufacturing method, and designated as Experimental Example 5A.
  • a sensor element 20 that is the same as the sensor element 20 of Experimental Example 17 was assembled except that the first gap area 93 and the second gap area 96 were provided.
  • Experimental Example 5A was prepared in the same manner as Experimental Example 1A except for the above.
  • the front ends of the first and second water intrusion suppression portions 91 and 94 are located at a distance of 24.5 mm from the front end of the element body 60.
  • a part (length 0.3 mm) of the first and second dense layers 92 and 95 and the first and second gap regions 93 and 96 (length 0.2 mm) in the front-rear direction. It overlapped with the insulator 44b, and the overlap distance W was 0.5 mm.
  • Example 6A A gas sensor 10 having the same positional relationship as that of FIG. 11 was produced by the above-described manufacturing method, and was designated as Experimental Example 6A.
  • Example 7A A gas sensor 10 having the positional relationship shown in FIG. 7 was produced by the above-described manufacturing method, and designated as Experimental Example 7A.
  • the front ends of the first and second water intrusion suppression portions 91 and 94 are located at a distance of 23.5 mm from the front end of the element body 60.
  • Example 8A Except that the first water intrusion suppression unit 91 and the second water intrusion suppression unit 94 are not provided, the gas sensor 10 was produced in the same manner as in Experimental Example 1A, and was set as Experimental Example 8A. Experimental Example 8A was fabricated by incorporating the sensor element of Experimental Example 1. The overlap distance W was 0 mm.
  • Table 2 summarizes the evaluation results of the overlap distance W, the length Le, the porosity of the first and second dense layers 92, 95, the length Lg, the length L, and the liquid penetration test in each of Experimental Examples 1A to 8A. Show.
  • FIG. 13 is a graph showing the time variation of the penetration distance during the liquid penetration test in Experimental Examples 2A and 8A.
  • the present invention can be used for a gas sensor that detects the concentration of a specific gas such as NOx in a gas to be measured such as an automobile exhaust gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

ガスセンサ10は、センサ素子20と、圧粉体45a,45bと、碍子44a~44cとを備えている。センサ素子20は、素子本体60と、上側コネクタ電極71と、多孔質層80と、第1水侵入抑制部91と、を備えている。第1水侵入抑制部91は、多孔質層80を素子本体60の長手方向に沿って分割するか又は多孔質層80よりも後端側に位置するように第1面60aに配設され、上側コネクタ電極71よりも前端側に位置し、前後方向の存在範囲と碍子44bの内周面44b1の前後方向の存在範囲との連続した重複部分の長さである重複距離Wが0.5mm以上である。第1水侵入抑制部91は、気孔率が10%未満の第1緻密層92と多孔質層80が存在しない第1隙間領域93とのうち少なくとも第1緻密層92を有し、長手方向に沿った水の毛細管現象を抑制する。

Description

ガスセンサ
 本発明は、ガスセンサに関する。
 従来、自動車の排気ガスなどの被測定ガスにおけるNOxなどの特定ガスの濃度を検出するセンサ素子を備えたガスセンサが知られている(例えば特許文献1,2)。特許文献1のセンサ素子は、酸素イオン伝導性の固体電解質層を積層した積層体を備えている。また、このセンサ素子は、それぞれ積層体の上面に配設された外側ポンプ電極,外側ポンプ電極用リード線,コネクタ電極,及び多孔質保護層、を備えている。外側ポンプ電極,外側ポンプ電極用リード線,及びコネクタ電極はこの順に接続されて導通しており、コネクタ電極が外部と電気的に接続される。多孔質保護層は、外側ポンプ電極及び外側ポンプ電極用リード線を被覆しており、これらを保護する。特許文献2には、このようなセンサ素子を備えたガスセンサの構造が記載されている。特許文献2のガスセンサは、センサ素子を固定する素子封止体を備えている。素子封止体は、センサ素子が内部を貫通している筒状の主体金具及び内筒と、主体金具及び内筒の内側に配置されると共にセンサ素子が内部を貫通している複数のサポーター及び複数の圧粉体と、を備えている。
特開2016-014659号公報 特開2015-178988号公報
 ところで、特許文献1の多孔質保護層のような多孔質層がセンサ素子の表面に存在する場合、排ガス中の水分が毛細管現象によって多孔質層内を移動することがあった。その結果、水分がコネクタ電極まで到達してしまい、水や水に溶けた硫酸などの成分によってコネクタ電極の錆や腐食が発生したりコネクタ電極間の短絡が生じたりする場合があった。
 本発明はこのような課題を解決するためになされたものであり、水分がコネクタ電極に到達するのを抑制することを主目的とする。
 本発明は、上述した主目的を達成するために以下の手段を採った。
 本発明のガスセンサは、
 センサ素子と、前記センサ素子が内部を軸方向に貫通する貫通孔を有する金属製の筒状体と、前記貫通孔内に配置され該貫通孔の内周面と前記センサ素子との間に充填された1以上の圧粉体と、気孔率が10%未満であり前記貫通孔内に配置されると共に内部を前記センサ素子が貫通し前記圧粉体を前記軸方向に押圧する中空柱状の1以上の緻密体と、
 を備えたガスセンサであって、
 前記センサ素子は、
 長手方向に沿った両端である前端及び後端と、該長手方向に沿った表面である1以上の側面と、を有する長尺な素子本体と、
 前記素子本体の前記前端側に配設された複数の電極を有し、前記被測定ガス中の特定ガス濃度を検出するための検出部と、
 前記1以上の側面のいずれかの前記後端側に1以上配設され、外部と電気的に導通するためのコネクタ電極と、
 前記コネクタ電極が配設された前記側面のうち少なくとも前記前端側を被覆し且つ気孔率が10%以上の多孔質層と、
 前記多孔質層を前記長手方向に沿って分割するか又は前記多孔質層よりも前記後端側に位置するように前記側面に配設され、前記コネクタ電極よりも前記前端側に位置し、前記長手方向の存在範囲と前記1以上の緻密体の内周面の前記長手方向の存在範囲との連続した重複部分の長さである重複距離Wが0.5mm以上であり、前記側面を被覆し且つ気孔率が10%未満の緻密層と該緻密層に隣接し且つ前記多孔質層が存在しない隙間領域とのうち少なくとも前記緻密層を有し、前記長手方向に沿った水の毛細管現象を抑制する水侵入抑制部と、
 を備えている、
 ものである。
 このガスセンサでは、素子本体の1以上の側面のいずれかにおいて、後端側にコネクタ電極が配設され、少なくともその側面の前端側を被覆する多孔質層が配設されている。そして、このセンサ素子は、多孔質層を長手方向に沿って分割するか又は多孔質層よりも後端側に位置するようにその側面に配設され、コネクタ電極よりも前端側に位置する水侵入抑制部を備えている。そのため、検知部の複数の電極が存在する側である素子本体の前端側が被測定ガスに晒された場合に、被測定ガス中の水分が毛細管現象によって多孔質層内を素子本体の後端側に向かって移動したとしても、水分はコネクタ電極に到達する前に水侵入抑制部に到達する。そして、水侵入抑制部は、緻密層と隙間領域とのうち少なくとも緻密層を有しており、多孔質層とは異なり素子本体の長手方向に沿った水の毛細管現象が生じにくいため、水分は水侵入抑制部の内部を通過しにくい。また、本発明のガスセンサでは、センサ素子の長手方向における、水侵入抑制部の存在範囲と1以上の緻密体の内周面の存在範囲との連続した重複部分の長さである重複距離Wが0.5mm以上となっている。ここで、筒状体とセンサ素子との間には圧粉体と緻密体とが存在し、緻密体は気孔率が10%未満であるため水分は緻密体の内部を通過しにくいが、圧粉体は吸水性を有するため水分は多孔質層だけでなく圧粉体の内部も移動可能である。そのため、例えばセンサ素子の長手方向で水侵入抑制部が圧粉体と同じ位置にのみ配置されているなど重複距離Wが0mmであると、水分は圧粉体の内部を通過することで水侵入抑制部を回り込んで後端側に移動してしまう場合がある。しかし、本発明のガスセンサでは、重複距離Wが0.5mm以上であることで、水分が圧粉体の内部を移動して水侵入抑制部を回り込むことを抑制する領域が十分な長さに亘って存在することになるため、回り込みによる水分の移動を十分抑制できる。以上により、水侵入抑制部は、多孔質層内を移動してきた水分が水侵入抑制部内を通過することを抑制し、しかも圧粉体を介して水分が水侵入抑制部を回り込んで移動することも抑制する。したがって、このガスセンサでは、水分が水侵入抑制部よりもセンサ素子の後端側に移動してコネクタ電極に到達するのを抑制できる。ここで、水侵入抑制部の長手方向の長さLは必ず重複距離W以上の値となるため、長さLも0.5mm以上である。この場合において、前記重複距離Wは5mm以上としてもよい。前記重複距離Wは20mm以下としてもよい。前記緻密層は気孔率が8%以下としてもよいし、5%以下としてもよい。
 本発明のガスセンサにおいて、前記緻密層は、前記長手方向の長さLeが0.5mm以上であってもよい。こうすれば、水侵入抑制部のうち緻密層の部分のみで、水分が長手方向に沿って水侵入抑制部を通過することを十分抑制できる。
 本発明のガスセンサにおいて、前記緻密層は、前記長手方向の長さLeが20mm以下であってもよい。こうすれば、例えば未焼成素子本体及び未焼成緻密層を形成してからこれらを焼成して素子本体及び緻密層を作製する場合に、未焼成素子本体と未焼成緻密層との焼成時の収縮率の違いによってセンサ素子に反りが生じるのを抑制できる。
 本発明のガスセンサにおいて、前記緻密層は、前記長手方向の長さLeが前記素子本体の前記長手方向の長さの30%以下であってもよい。こうすれば、例えば未焼成素子本体及び未焼成緻密層を形成してからこれらを焼成して素子本体及び緻密層を作製する場合に、素子本体と緻密層との焼成時の収縮率の違いによってセンサ素子に反りが生じるのを抑制できる。
 本発明のガスセンサにおいて、前記隙間領域は、前記長手方向の長さLgが1mm以下であってもよい。こうすれば、隙間領域の長さLgが比較的小さいため、素子本体の側面が露出する部分(多孔質層にも緻密層にも覆われていない部分)を少なくすることができる。
 本発明のガスセンサにおいて、前記水侵入抑制部は、前記隙間領域を備えなくてもよい。言い換えると、前記水侵入抑制部は、前記隙間領域の長手方向の長さLgが0mmであってもよい。こうすれば、素子本体の側面が露出する部分(多孔質層にも緻密層にも覆われていない部分)をさらに少なくすることができる。
 本発明のガスセンサにおいて、前記センサ素子は、前記コネクタ電極が配設された前記側面に配設され前記複数の電極のいずれかと前記コネクタ電極とを導通する外側リード部を備えており、前記多孔質層は、前記外側リード部の少なくとも一部を被覆していてもよい。こうすれば、外側リード部の少なくとも一部を多孔質層によって保護できる。また、外側リード部を多孔質層によって保護する場合には、コネクタ電極に近い位置に多孔質層が存在しやすいため、本発明を適用する意義が高い。
 この場合において、前記多孔質層は前記外側リード部を全て被覆していてもよいし、前記多孔質層は前記外側リード部のうち前記水侵入抑制部が存在しない部分を全て被覆していてもよい。また、本発明のガスセンサは、前記検出部が有する複数の電極の1つであり、前記外側リード部を介して前記コネクタ電極と導通し、該コネクタ電極が配設された前記側面に配設された外側電極、を備えていてもよい。この場合において、前記多孔質層は、前記外側電極を被覆していてもよい。
 本発明のガスセンサにおいて、前記多孔質層は、前記水侵入抑制部が存在する領域を除いて、前記コネクタ電極が配設された前記側面のうち該側面の前記前端から前記コネクタ電極の前記前端側の端部までの領域を少なくとも覆っており、前記水侵入抑制部は、前記多孔質層を前記長手方向に沿って分割するように前記側面に配設されていてもよい。
 本発明のガスセンサにおいて、前記素子本体は、直方体形状をしており、前記長手方向に沿った表面である4つの前記側面を有しており、前記コネクタ電極は、前記4つの側面のうち互いに対向する第1側面及び第2側面にそれぞれ1以上配設されており、前記多孔質層は、前記第1側面及び前記第2側面をそれぞれ被覆しており、前記水侵入抑制部は、前記第1側面及び前記第2側面にそれぞれ配設されていてもよい。この場合において、前記素子本体は複数の層を積層した積層体であり、前記第1側面及び前記第2側面は、前記積層の方向を上下方向とした場合の前記素子本体の上面及び下面であってもよい。
ガスセンサ10が配管58に取り付けられた様子を示す縦断面図。 センサ素子20の斜視図。 図2のA-A断面図。 センサ素子20の上面図。 センサ素子20の下面図。 碍子44bと水侵入抑制部90との位置関係を示す説明図。 重複距離W=0mmの場合の水侵入抑制部90の配置を示す説明図。 実験例1Aのガスセンサ10の説明図。 実験例2Aのガスセンサ10の説明図。 実験例3Aのガスセンサ10の説明図。 実験例4A,6Aのガスセンサ10の説明図。 実験例5Aのガスセンサ10の説明図。 実験例2A,8Aの液体侵入試験時の侵入距離の時間変化を示すグラフ。
 次に、本発明の実施形態について、図面を用いて説明する。図1は、本発明の一実施形態であるガスセンサ10が配管58に取り付けられた様子を示す縦断面図である。図2は、センサ素子20を右上前方から見た斜視図である。図3は、図2のA-A断面図である。図4は、センサ素子20の上面図である。図5は、センサ素子20の下面図である。本実施形態において、図2,3に示すように、センサ素子20の素子本体60の長手方向を前後方向(長さ方向)とし、素子本体60の積層方向(厚さ方向)を上下方向とし、前後方向及び上下方向に垂直な方向を左右方向(幅方向)とする。
 図1に示すように、ガスセンサ10は、組立体15と、ナット47と、外筒48と、コネクタ50と、リード線55と、ゴム栓57とを備えている。組立体15は、センサ素子20と、保護カバー30と、素子封止体40とを備えている。ガスセンサ10は、例えば車両の排ガス管などの配管58に取り付けられて、被測定ガスとしての排気ガスに含まれるNOxやO2等の特定ガスの濃度(特定ガス濃度)を測定するために用いられる。本実施形態では、ガスセンサ10は特定ガス濃度としてNOx濃度を測定するものとした。センサ素子20の長手方向に沿った両端(前端,後端)のうち、前端側が被測定ガスに晒される側である。
 保護カバー30は、図1に示すように、センサ素子20の前端側を覆う有底筒状の内側保護カバー31と、この内側保護カバー31を覆う有底筒状の外側保護カバー32とを備えている。内側,外側保護カバー31,32の各々には、被測定ガスを流通させるための複数の孔が形成されている。内側保護カバー31で囲まれた空間として素子室33が形成されており、センサ素子20の第5面60e(前端面)はこの素子室33内に配置されている。
 素子封止体40は、センサ素子20を封止固定する部材である。素子封止体40は、主体金具42及び内筒43を備えた筒状体41と、碍子44a~44c(緻密体の一例)と、圧粉体45a,45bと、メタルリング46と、を備えている。センサ素子20は素子封止体40の中心軸上に位置しており、素子封止体40を上下方向に貫通している。
 主体金具42は、筒状の金属製部材である。主体金具42は、前側が後側よりも内径の小さい肉厚部42aとなっている。主体金具42のうちセンサ素子20の前端と同じ側(前側)には、保護カバー30が取り付けられている。主体金具42の後端は内筒43のフランジ部43aと溶接されている。肉厚部42aの内周面の一部は段差面である底面42bとなっている。この底面42bは碍子44aが前方に飛び出さないようにこれを押さえている。主体金具42は、軸方向(ここでは前後方向)に沿って主体金具42を貫通する貫通孔を有しており、この貫通孔の内部をセンサ素子20が貫通している。
 内筒43は、筒状の金属製部材であり、前端にフランジ部43aを有している。内筒43と主体金具42とは同軸に溶接固定されている。また、内筒43には、圧粉体45bを内筒43の中心軸方向に押圧するための縮径部43cと、メタルリング46を介して碍子44a~44c,圧粉体45a,45bを図1の下方向に押圧するための縮径部43dとが形成されている。内筒43は、軸方向(ここでは前後方向)に沿って内筒43を貫通する貫通孔を有しており、この貫通孔の内部をセンサ素子20が貫通している。主体金具42の貫通孔と内筒43の貫通孔とは軸方向に連通しており、これらが筒状体41の貫通孔を構成している。
 碍子44a~44c及び圧粉体45a,45bは、筒状体41の貫通孔の内周面とセンサ素子20との間に配置されている。碍子44a~44cは、圧粉体45a,45bのサポーターとしての役割を果たす。碍子44a~44cの材質としては、例えばアルミナ、ステアタイト、ジルコニア、スピネル、コージェライト、ムライトなどのセラミックス、又はガラスを挙げることができる。碍子44a~44cは緻密な部材であり、気孔率は例えば1%未満である。碍子44a~44cの各々は、軸方向(ここでは前後方向)に沿って自身を貫通する貫通孔を有しており、この貫通孔の内部をセンサ素子20が貫通している。碍子44a~44cの各々の貫通孔は、本実施形態ではセンサ素子20の形状に合わせて軸方向に垂直な断面が四角形状になっている。圧粉体45a,45bは、例えば粉末を成型したものであり、封止材としての役割を果たす。圧粉体45a,45bの材質としては、タルクのほか、アルミナ粉末、ボロンナイトライドなどのセラミックス粉末が挙げられ、圧粉体45a,45bはそれぞれこれらの少なくともいずれかを含んでいてもよい。圧粉体45a,45bを構成する粒子の平均粒径は150~300μmであってもよい。圧粉体45aは碍子44a,44b間に充填され、碍子44a,44bにより軸方向の両側(前後)から挟まれて押圧されている。圧粉体45bは碍子44b,44c間に充填され、碍子44b,44cにより軸方向の両側(前後)から挟まれて押圧されている。碍子44a~44c,圧粉体45a,45bは縮径部43d及びメタルリング46と、主体金具42の肉厚部42aの底面42bと、に挟まれて前後から押圧されている。縮径部43c,43dからの押圧力により、圧粉体45a,45bが筒状体41とセンサ素子20との間で圧縮されることで、圧粉体45a,45bは保護カバー30内の素子室33と外筒48内の空間49との間を封止すると共に、センサ素子20を固定している。
 ナット47は、主体金具42と同軸に主体金具42の外側に固定されている。ナット47の外周面には雄ネジ部が形成されている。この雄ネジ部は、配管58に溶接され内周面に雌ネジ部が設けられた固定用部材59内に挿入されている。これにより、ガスセンサ10のうちセンサ素子20の前端側や保護カバー30の部分が配管58内に突出した状態で、ガスセンサ10が配管58に固定できるようになっている。
 外筒48は、筒状の金属製部材であり、内筒43と、センサ素子20の後端側と、コネクタ50とを覆っている。外筒48の内側には主体金具42の上部が挿入されている。外筒48の下端は主体金具42と溶接されている。外筒48の上端からは、コネクタ50に接続された複数のリード線55が外部に引き出されている。コネクタ50は、センサ素子20の後端側の表面に配設された上側コネクタ電極71及び下側コネクタ電極72に接触して電気的に接続されている。このコネクタ50を介して、リード線55はセンサ素子20の内部の各電極64~68及びヒータ69と電気的に導通している。外筒48とリード線55との隙間はゴム栓57によって封止されている。外筒48内の空間49は基準ガスで満たされている。空間49にはセンサ素子20の第6面60f(後端面)が配置されている。
 センサ素子20は、図2~5に示すように、素子本体60と、検出部63と、ヒータ69と、上側コネクタ電極71と、下側コネクタ電極72と、多孔質層80と、水侵入抑制部90と、を備えている。素子本体60は、ジルコニア(ZrO2)等の酸素イオン伝導性固体電解質層を複数(図3では6個)積層した積層体を有している。素子本体60は、長手方向が前後方向に沿っている長尺な直方体形状をしており、上下左右前後の各々の外表面として第1~第6面60a~60fを有している。第1面~第4面60a~60dは、素子本体60の長手方向に沿った表面であり、素子本体60の側面に相当する。第5面60eは、素子本体60の前端面であり、第6面60fは、素子本体60の後端面である。素子本体60の寸法は、例えば長さが25mm以上100mm以下、幅が2mm以上10mm以下、厚さが0.5mm以上5mm以下としてもよい。素子本体60には、第5面60eに開口して被測定ガスを自身の内部に導入する被測定ガス導入口61と、第6面60fに開口して特定ガス濃度の検出の基準となる基準ガス(ここでは大気)を自身の内部に導入する基準ガス導入口62と、が形成されている。
 検出部63は、被測定ガス中の特定ガス濃度を検出するためのものである。検出部63は、素子本体60の前端側に配設された複数の電極を有している。本実施形態では、検出部63は、第1面60aに配設された外側電極64と、素子本体60の内部に配設された内側主ポンプ電極65,内側補助ポンプ電極66,測定電極67,及び基準電極68とを備えている。内側主ポンプ電極65及び内側補助ポンプ電極66は、素子本体60の内部の空間の内周面に配設されておりトンネル状の構造を有している。
 検出部63が被測定ガス中の特定ガス濃度を検出する原理は周知であるため詳細な説明は省略するが、検出部63は例えば以下のように特定ガス濃度を検出する。検出部63は、外側電極64と内側主ポンプ電極65との間に印加された電圧に基づいて、内側主ポンプ電極65周辺の被測定ガス中の酸素の外部(素子室33)への汲み出し又は汲み入れを行う。また、検出部63は、外側電極64と内側補助ポンプ電極66との間に印加された電圧に基づいて、内側補助ポンプ電極66周辺の被測定ガス中の酸素の外部(素子室33)への汲み出し又は汲み入れを行う。これらにより、酸素濃度が所定値に調整された後の被測定ガスが、測定電極67周辺に到達する。測定電極67は、NOx還元触媒として機能し、到達した被測定ガス中の特定ガス(NOx)を還元する。そして、検出部63は、還元後の酸素濃度に応じて測定電極67と基準電極68との間に発生する起電力又はその起電力に基づいて測定電極67と外側電極64との間に流れる電流を、電気信号として発生させる。このように検出部63が発生させた電気信号は、被測定ガス中の特定ガス濃度に応じた値(特定ガス濃度を導出可能な値)を示す信号であり、検出部63が検出した検出値に相当する。
 ヒータ69は、素子本体60内部に配設された電気抵抗体である。ヒータ69は、外部から給電されることにより発熱して素子本体60を加熱する。ヒータ69は、素子本体60を形成する固体電解質層の加熱及び保温を行って、固体電解質層が活性化する温度(例えば800℃)に調整することが可能となっている。
 上側コネクタ電極71及び下側コネクタ電極72は、それぞれ素子本体60の側面のいずれかの後端側に配設されており、外部と電気的に導通するための電極である。上側,下側コネクタ電極71,72は、いずれも多孔質層80に被覆されず露出している。本実施形態では、上側コネクタ電極71として上側コネクタ電極71a~71dの4個が左右方向に沿って並べられて、第1面60aの後端側に配設されている。下側コネクタ電極72として下側コネクタ電極72a~72dの4個が、左右方向に沿って並べられて、第1面60a(上面)に対向する第2面60b(下面)の後端側に配設されている。コネクタ電極71a~71d,72a~72dは、各々が検出部63の複数の電極64~68及びヒータ69のいずれかと電気的に導通している。本実施形態では、上側コネクタ電極71aが測定電極67と導通し、上側コネクタ電極71bが外側電極64と導通し、上側コネクタ電極71cが内側補助ポンプ電極66と導通し、上側コネクタ電極71dが内側主ポンプ電極65と導通し、下側コネクタ電極72a~72cがそれぞれヒータ69と導通し、下側コネクタ電極72dが基準電極68と導通している。上側コネクタ電極71bと外側電極64とは、第1面60aに配設された外側リード線75を介して導通している(図3,4参照)。それ以外のコネクタ電極は、素子本体60内部に配設されたリード線やスルーホールなどを介して、対応する電極又はヒータ69と導通している。
 多孔質層80は、上側,下側コネクタ電極71,72が配設された素子本体60の側面すなわち第1,第2面60a,60bのうち、少なくとも前端側を被覆する多孔質体である。本実施形態では、多孔質層80は、第1,第2面60a,60bをそれぞれ被覆する内側多孔質層81と、内側多孔質層81の外側に配設された外側多孔質層85と、を備えている。
 内側多孔質層81は、第1面60aを被覆する第1内側多孔質層83と、第2面60bを被覆する第2内側多孔質層84とを備えている。第1内側多孔質層83は、第1水侵入抑制部91及び上側コネクタ電極71が存在する領域を除いて、上側コネクタ電極71a~71dが配設された第1面60aの前端から後端までの領域を全て覆っている(図2~4参照)。第1内側多孔質層83の左右の幅は第1面60aの左右の幅と同じであり、第1内側多孔質層83は第1面60aのうち左端から右端までに亘って第1面60aを被覆している。第1内側多孔質層83は、第1水侵入抑制部91が存在することで、長手方向に沿って第1水侵入抑制部91よりも前端側に位置する前端側部分83aと、第1水侵入抑制部91よりも後端側に位置する後端側部分83bと、に分割されている。第1内側多孔質層83は、外側電極64及び外側リード線75のそれぞれ少なくとも一部を被覆している。本実施形態では、図3,4に示すように、第1内側多孔質層83は外側電極64全体を被覆し、外側リード線75のうち第1水侵入抑制部91が存在しない部分を全て被覆している。第1内側多孔質層83は、例えば被測定ガス中の硫酸などの成分から外側電極64及び外側リード線75を保護して、これらの腐食などを抑制する保護層としての役割を果たす。
 第2内側多孔質層84は、第2水侵入抑制部94及び下側コネクタ電極72が存在する領域を除いて、下側コネクタ電極72a~72dが配設された第2面60bの前端から後端までの領域を全て覆っている(図2,3,5参照)。第2内側多孔質層84の左右の幅は第2面60bの左右の幅と同じであり、第2内側多孔質層84は第2面60bのうち左端から右端までに亘って第2面60bを被覆している。第2内側多孔質層84は、第2水侵入抑制部94が存在することで、長手方向に沿って第2水侵入抑制部94よりも前端側に位置する前端側部分84aと、第2水侵入抑制部94よりも後端側に位置する後端側部分84bと、に分割されている。
 外側多孔質層85は、第1~第5面60a~60eを被覆している。外側多孔質層85は、第1面60a及び第2面60bについては、内側多孔質層81を被覆することでこれらの面を被覆している。外側多孔質層85は、内側多孔質層81と比べて前後方向の長さが短くなっており、内側多孔質層81とは異なり素子本体60の前端及び前端付近の領域だけを被覆している。これにより、外側多孔質層85は、素子本体60のうち検出部63の各電極64~68の周辺部分、言い換えると素子本体60のうち素子室33内に配置されて被測定ガスに晒される部分、を被覆している。これにより、外側多孔質層85は、例えば被測定ガス中の水分等が付着して素子本体60にクラックが生じるのを抑制する保護層としての役割を果たす。
 多孔質層80は、例えばアルミナ多孔質体、ジルコニア多孔質体、スピネル多孔質体、コージェライト多孔質体,チタニア多孔質体、マグネシア多孔質体などのセラミックス多孔質体からなるものである。本実施形態では、多孔質層80はアルミナ多孔質体からなるものとした。第1内側多孔質層83及び第2内側多孔質層84の各々の厚さは、例えば5μm以上40μm以下としてもよい。外側多孔質層85の厚さは、例えば40μm以上800μm以下としてもよい。多孔質層80は、気孔率が10%以上である。多孔質層80は外側電極64や被測定ガス導入口61を覆っているが、気孔率が10%以上であれば、被測定ガスは多孔質層80を通過できる。内側多孔質層81の気孔率は、10%以上50%以下としてもよい。外側多孔質層85の気孔率は、10%以上85%以下としてもよい。外側多孔質層85は、内側多孔質層81よりも気孔率が高くてもよい。
 内側多孔質層81の気孔率は、走査型電子顕微鏡(SEM)を用いて観察して得られた画像(SEM画像)を用いて以下のように導出した値とする。まず、内側多孔質層81の断面を観察面とするように内側多孔質層81の厚さ方向に沿ってセンサ素子20を切断し、切断面の樹脂埋め及び研磨を行って観察用試料とする。続いて、SEMの倍率を1000倍から10000倍に設定して観察用試料の観察面を撮影することで内側多孔質層81のSEM画像を得る。次に、得た画像を画像解析することにより、画像中の画素の輝度データの輝度分布から判別分析法(大津の2値化)で閾値を決定する。その後、決定した閾値に基づいて画像中の各画素を物体部分と気孔部分とに2値化して、物体部分の面積と気孔部分の面積とを算出する。そして、全面積(物体部分と気孔部分の合計面積)に対する気孔部分の面積の割合を、気孔率(単位:%)として導出する。外側多孔質層85の気孔率や、後述する第1緻密層92及び第2緻密層95の気孔率も、同様にして導出した値とする。
 水侵入抑制部90は、素子本体60の長手方向に沿った水の毛細管現象を抑制するものである。本実施形態では、水侵入抑制部90は、第1水侵入抑制部91と第2水侵入抑制部94とを有している。第1水侵入抑制部91は、上側コネクタ電極71及び第1内側多孔質層83が配設された第1面60aに配設されている。第1水侵入抑制部91は、上述したように第1内側多孔質層83を長手方向に沿って前後に分割するように第1面60aに配設されている。第1水侵入抑制部91は、上側コネクタ電極71よりも素子本体60の前端側すなわち上側コネクタ電極71の前方に配設されている。第1水侵入抑制部91は、外側電極64よりも後方に配設されている。第1水侵入抑制部91は、外側電極64も含めた検出部63が有する複数の電極64~68のいずれよりも、後方に配設されている(図3参照)。第1水侵入抑制部91は、水分が前端側部分83a内を毛細管現象によって後方に移動してきた場合に、水分が第1水侵入抑制部91を通過するのを抑制して、水分が上側コネクタ電極71に到達するのを抑制する役割を果たす。第1水侵入抑制部91は、第1緻密層92と第1隙間領域93とを備えている。第1緻密層92は、気孔率が10%未満の緻密な層である。第1緻密層92の左右の幅は第1面60aの左右の幅と同じであり、第1緻密層92は第1面60aのうち左端から右端までに亘って第1面60aを被覆している。第1緻密層92は、前端側部分83aの後端に隣接している。第1緻密層92は、図4に示すように、外側リード線75の一部を被覆している。第1隙間領域93は、第1面60a上の領域であって多孔質層80及び第1緻密層92が存在しない領域である。第1隙間領域93は、第1緻密層92の後端と後端側部分83bの前端との間の領域として形成されている。第1隙間領域93が存在する部分では、外側リード線75が露出している。
 第2水侵入抑制部94は、下側コネクタ電極72及び第2内側多孔質層84が配設された第2面60bに配設されている。第2水侵入抑制部94は、上述したように第2内側多孔質層84を長手方向に沿って前後に分割するように第2面60bに配設されている。第2水侵入抑制部94は、下側コネクタ電極72よりも素子本体60の前端側すなわち下側コネクタ電極72の前方に配設されている。第2水侵入抑制部94は、外側電極64よりも後方に配設されている。第2水侵入抑制部94は、外側電極64も含めた検出部63が有する複数の電極64~68のいずれよりも、後方に配設されている(図3参照)。第2水侵入抑制部94は、水分が前端側部分84a内を毛細管現象によって後方に移動してきた場合に、水分が第2水侵入抑制部94を通過するのを抑制して、水分が下側コネクタ電極72に到達するのを抑制する役割を果たす。第2水侵入抑制部94は、第2緻密層95と第2隙間領域96とを備えている。第2緻密層95は、気孔率が10%未満の緻密な層である。第2緻密層95の左右の幅は第2面60bの左右の幅と同じであり、第2緻密層95は第2面60bのうち左端から右端までに亘って第2面60bを被覆している。第2緻密層95は、前端側部分84aの後端に隣接している。第2隙間領域96は、第2面60b上の領域であって多孔質層80及び第2緻密層95が存在しない領域である。第2隙間領域96は、第2緻密層95の後端と後端側部分84bの前端との間の領域として形成されている。
 第1水侵入抑制部91及び第2水侵入抑制部94は、それぞれ、長手方向の長さL(図4,5参照)が0.5mm以上である。長さLが0.5mm以上であることで、水分が第1水侵入抑制部91及び第2水侵入抑制部94を通過することを十分抑制できる。長さLは5mm以上としてもよい。長さLは25mm以下としてもよく、20mm以下としてもよい。なお、第1水侵入抑制部91の長さLと第2水侵入抑制部94の長さLは本実施形態では同じ値としたが、両者が異なる値でもよい。
 第1緻密層92及び第2緻密層95は、気孔率が10%未満である点で多孔質層80と異なるが、上述した多孔質層80について例示した材料からなるセラミックスを用いることができる。本実施形態では、第1緻密層92及び第2緻密層95は、いずれもアルミナのセラミックスとした。第1緻密層92及び第2緻密層95の各々の厚さは、例えば5μm以上40μm以下としてもよい。第1緻密層92の厚さは、第1内側多孔質層83の厚さ以上であることが好ましい。同様に、第2緻密層95の厚さは、第2内側多孔質層84の厚さ以上であることが好ましい。第1緻密層92及び第2緻密層95の各々の気孔率は、8%以下が好ましく、5%以下がより好ましい。気孔率が小さいほど、第1緻密層92及び第2緻密層95は素子本体60の長手方向に沿った水の毛細管現象をより抑制することができる。
 第1緻密層92及び第2緻密層95は、それぞれ、長手方向の長さLe(図4,5参照)が0.5mm以上であることが好ましい。これにより、第1水侵入抑制部91及び第2水侵入抑制部94の各々について、第1緻密層92及び第2緻密層95の部分のみで、水分が長手方向に沿って第1水侵入抑制部91及び第2水侵入抑制部94を通過することを十分抑制できる。長さLeは5mm以上としてもよい。なお、第1緻密層92の長さLeと第2緻密層95の長さLeとは本実施形態では同じ値としたが、両者が異なる値でもよい。
 第1隙間領域93及び第2隙間領域96は、それぞれ、長手方向の長さLgが1mm以下であることが好ましい。このように長さLgが比較的小さいことで、素子本体60の側面(ここでは第1,第2面60a,60b)が露出する部分、すなわち多孔質層80,第1緻密層92,及び第2緻密層95のいずれにも覆われていない部分を少なくすることができる。特に、本実施形態では、第1面60aに外側リード線75が配設されており、第1隙間領域93が存在する部分では外側リード線75が露出してしまう。そのため、第1隙間領域93の長さLgを小さくすることで、外側リード線75のうち多孔質層80又は第1緻密層92に保護されない部分を少なくすることができる。
 図6は、水侵入抑制部90と碍子44a~44c及び圧粉体45a,45bとの位置関係を示す説明図であり、説明に無関係な部材の図示を省略したガスセンサ10の縦断面図である。第1水侵入抑制部91は、センサ素子20の長手方向(ここでは前後方向)に沿った第1水侵入抑制部91の存在範囲と、センサ素子20の長手方向に沿った碍子44bの内周面44b1の長手方向の存在範囲と、の連続した重複部分の長さである重複距離Wが0.5mm以上となるように配置されている。碍子44bの内周面44b1とは、碍子44bのうち第1水侵入抑制部91に対向している面、言い換えると第1水侵入抑制部91に向けて露出している面であり、碍子44bの断面四角形状の内周面のうち上側に位置する面である。この内周面44b1と第1水侵入抑制部91との位置関係によって定まる重複距離Wの値は、第1水侵入抑制部91のうち圧粉体45a,45bに接触していない連続した部分の前後方向の長さに相当する。また、図6に示すように、本実施形態では、第1水侵入抑制部91は、前後方向で碍子44bの内周面44b1に含まれるように配置されている。より具体的には、第1水侵入抑制部91の前端から後端までの領域(前後方向の第1水侵入抑制部91の存在範囲)が、碍子44bの内周面44b1の前端から後端までの領域(前後方向の内周面44b1の存在範囲)の内側に含まれるように位置している。このような位置関係にあることで第1水侵入抑制部91について重複距離W=長さLが成立し、上記のように長さLは0.5mm以上であるため、重複距離Wも0.5mm以上となっている。また、本実施形態では、前後方向の内周面44b1の存在範囲と、前後方向の碍子44bの存在範囲とは、一致しているものとした。そのため、センサ素子20の長手方向に沿った第1水侵入抑制部91の存在範囲と、センサ素子20の長手方向に沿った碍子44bの存在範囲と、の連続した重複部分の長さは、上述した重複距離Wと同じ値になっている。
 第2水侵入抑制部94についても、同様に、センサ素子20の長手方向(ここでは前後方向)に沿った第2水侵入抑制部94の存在範囲と、センサ素子20の長手方向に沿った碍子44bの内周面44b2の長手方向の存在範囲と、の連続した重複部分の長さである重複距離Wが0.5mm以上となるように配置されている。碍子44bの内周面44b2とは、碍子44bのうち第2水侵入抑制部94に対向している面、言い換えると第2水侵入抑制部94に向けて露出している面であり、碍子44bの断面四角形状の内周面のうち下側に位置する面である。この内周面44b2と第2水侵入抑制部94との位置関係によって定まる重複距離Wの値は、第2水侵入抑制部94のうち圧粉体45a,45bに接触していない連続した部分の前後方向の長さに相当する。また、図6に示すように、本実施形態では、第2水侵入抑制部94は、前後方向で碍子44bの内周面44b2に含まれるように配置されている。より具体的には、第2水侵入抑制部94の前端から後端までの領域(前後方向の第2水侵入抑制部94の存在範囲)が、碍子44bの内周面44b2の前端から後端までの領域(前後方向の内周面44b2の存在範囲)の内側に含まれるように位置している。このような位置関係にあることで第2水侵入抑制部94について重複距離W=長さLが成立し、上記のように長さLは0.5mm以上であるため、重複距離Wも0.5mm以上となっている。また、本実施形態では、前後方向の内周面44b2の存在範囲と、前後方向の碍子44bの存在範囲とは、一致しているものとした。そのため、センサ素子20の長手方向に沿った第2水侵入抑制部94の存在範囲と、センサ素子20の長手方向に沿った碍子44bの存在範囲と、の連続した重複部分の長さは、上述した重複距離Wと同じ値になっている。
 なお、第1水侵入抑制部91の重複距離Wと第2水侵入抑制部94の重複距離Wとは本実施形態では同じ値としたが、両者が異なる値でもよい。また、第1,第2水侵入抑制部91,94の各々について、重複距離Wは5mm以上としてもよいし、重複距離Wは20mm以下としてもよい。
 図6では内周面44b1と第1水侵入抑制部91の第1緻密層92とは接触しているが、両者が上下に離間していてもよい。両者が離間していることで、例えば両者の熱膨張やガスセンサ10の振動などが生じた場合の両者の接触が抑制されて、碍子44bとセンサ素子20との少なくとも一方が破損することを抑制できる。内周面44b1と第1緻密層92との常温(例えば20℃)での離間距離は50μm以上としてもよい。こうすれば、内周面44b1と第1緻密層92との間の隙間を水分が毛細管現象によって移動することを抑制できる。この離間距離は、100μm以上であることが好ましい。この離間距離は、500μm以下としてもよい。内周面44b2と第2水侵入抑制部94の第2緻密層95とについても同様に、図6では両者が接触しているが、両者が上下に離間していてもよく、離間距離が上記の数値範囲のいずれか1以上を満たしてもよい。
 こうして構成されたガスセンサ10の製造方法を以下に説明する。まず、センサ素子20の製造方法について説明する。センサ素子20を製造する際には、まず、素子本体60に対応する複数(ここでは6枚)の未焼成のセラミックスグリーンシートを用意する。各グリーンシートには、必要に応じて切欠や貫通孔や溝などを打ち抜き処理などによって設けたり、電極や配線パターンをスクリーン印刷したりする。また、焼成後に第1内側多孔質層83及び第2内側多孔質層84となる未焼成多孔質層や、焼成後に第1緻密層92及び第2緻密層95となる未焼成緻密層についても、スクリーン印刷によりグリーンシートのうち第1,第2面60a,60bに対応する面に形成する。その後、複数のグリーンシートを積層する。積層された複数のグリーンシートは、焼成後に素子本体となる未焼成素子本体であり、未焼成多孔質層及び未焼成緻密層を備えている。そして、この未焼成素子本体を焼成して、第1内側多孔質層83,第2内側多孔質層84,第1緻密層92及び第2緻密層95を備えた素子本体60を得る。続いて、プラズマ溶射により外側多孔質層85を形成して、センサ素子20を得る。なお、多孔質層80,第1緻密層92及び第2緻密層95の製造方法としては、スクリーン印刷やプラズマ溶射の他に、ゲルキャスト法,ディッピングなどを用いることもできる。
 次に、センサ素子20を組み込んだガスセンサ10を製造する。まず、筒状体41の貫通孔の内部にセンサ素子20を軸方向に貫通させ、且つ筒状体41の内周面とセンサ素子20との間に碍子44a,圧粉体45a,碍子44b,圧粉体45b,碍子44c,メタルリング46をこの順に配置する。次に、メタルリング46を押圧して圧粉体45a,45bを圧縮し、その状態で縮径部43c,43dを形成することで素子封止体40を製造して、筒状体41の内周面とセンサ素子20との間を封止する。その後、素子封止体40に保護カバー30を溶接し、ナット47を取り付けて組立体15を得る。そして、ゴム栓57内を通したリード線55と、これに接続されたコネクタ50とを用意して、コネクタ50をセンサ素子20の後端側に接続する。その後、外筒48を主体金具42に溶接固定して、ガスセンサ10を得る。
 ここで、上述したように未焼成素子本体及び未焼成緻密層を形成してからこれらを焼成して素子本体60,第1緻密層92及び第2緻密層95を作製する場合には、第1緻密層92及び第2緻密層95の長さLeが20mm以下であることが好ましい。未焼成素子本体と未焼成緻密層とは焼成時の収縮率が異なる場合があり、長さLeが長すぎると焼成によってセンサ素子20に反りが生じる場合がある。長さLeが20mm以下であれば、焼成時のセンサ素子20の反りを抑制できる。また、第1緻密層92及び第2緻密層95は、長さLeが素子本体60の長手方向の長さの30%以下であることが好ましい。この条件を満たすことによっても、焼成時のセンサ素子20の反りを抑制できる。
 次に、こうして構成されたガスセンサ10の使用例を以下に説明する。ガスセンサ10が図1のように配管58に取り付けられた状態で、配管58内を被測定ガスが流れると、被測定ガスは保護カバー30内を流通して素子室33内に流入し、センサ素子20の前端側が被測定ガスに晒される。そして、被測定ガスが多孔質層80を通過して外側電極64に到達及び被測定ガス導入口61からセンサ素子20内に到達すると、上述したようにこの被測定ガス中のNOx濃度に応じた電気信号を検出部63が発生させる。この電気信号を上側,下側コネクタ電極71,72を介して取り出すことで、電気信号に基づきNOx濃度が検出される。
 このとき、被測定ガス中には水分が含まれている場合があり、この水分が毛細管現象によって多孔質層80内を移動していく場合がある。この水分が露出した上側,下側コネクタ電極71,72まで到達すると、水や水に溶けた硫酸などの成分によって上側,下側コネクタ電極71,72の錆や腐食が発生したり上側,下側コネクタ電極71,72のうち隣接する電極間の短絡が生じたりする場合がある。しかし、本実施形態では、被測定ガス中の水分が毛細管現象によって多孔質層80内(特に第1内側多孔質層83内及び第2内側多孔質層84内)を素子本体60の後端側に向かって移動したとしても、水分は上側,下側コネクタ電極71,72に到達する前に第1水侵入抑制部91又は第2水侵入抑制部94に到達する。そして、第1水侵入抑制部91は、気孔率が10%未満である第1緻密層92と、多孔質層が存在しない空間である第1隙間領域93とを有しており、いずれも素子本体60の長手方向に沿った水の毛細管現象が生じにくい。また、第1水侵入抑制部91は、長手方向の長さLが0.5mm以上であるため、水分が第1水侵入抑制部91を通過することを十分抑制できる。以上により、第1水侵入抑制部91は、水分が前端側部分83a側から第1水侵入抑制部91内部を通過することを抑制できる。
 また、第1水侵入抑制部91と碍子44bとの重複距離Wが0.5mm以上となっていることで、水分が圧粉体45a,45bの内部を通過することで第1水侵入抑制部91を回り込んでセンサ素子20の後端側に移動することも十分抑制できる。例えば、比較例として、図7に示すように、センサ素子20の長手方向で第1水侵入抑制部91及び第2水侵入抑制部94が圧粉体45aと同じ位置にのみ配置されており重複距離Wが0mmである場合を考える。図7では、第1水侵入抑制部91は第1緻密層92のみを備え第2水侵入抑制部94は第2緻密層95のみを備えている。この場合、水分は第1水侵入抑制部91の内部を通過することはできないものの、圧粉体45aは吸水性を有するため水分は圧粉体45aの内部を移動可能である。そのため、水分が圧粉体45aの内部を通過することで第1水侵入抑制部91を回り込んで第1水侵入抑制部91よりも後端側に移動してしまう場合がある(図7中の太矢印参照)。これに対し、本実施形態のセンサ素子20では、図6に示すように第1水侵入抑制部91が配置されて重複距離Wが0.5mm以上となっている。この重複距離Wの部分(重複部分)では、第1水侵入抑制部91は圧粉体45aには接触しておらず、碍子44bは緻密であるため水分は碍子44bの内部をほとんど通過できないから、図7で示した水分の回り込みは生じにくい。そして、重複距離Wが0.5mm以上であることで、水分が第1水侵入抑制部91を回り込むことを抑制する領域が十分な長さに亘って存在することになるため、回り込みによる水分の移動を十分抑制できる。
 以上により、第1水侵入抑制部91は、多孔質層80(特に前端側部分83a)内を移動してきた水分が第1水侵入抑制部91内を通過することを抑制し、しかも圧粉体45a,45bを介して水分が第1水侵入抑制部91を回り込んで移動することも抑制する。したがって、ガスセンサ10では、水分が第1水侵入抑制部91よりもセンサ素子20の後端側に移動して上側コネクタ電極71に到達するのを抑制できる。そのため、センサ素子20では、上側コネクタ電極71に水が付着することによる上述した不具合の発生が抑制される。
 同様に、第2水侵入抑制部94と碍子44bとの重複距離Wが0.5mm以上となっていることで、第2水侵入抑制部94は、多孔質層80(特に前端側部分84a)内を移動してきた水分が第2水侵入抑制部94内を通過することを抑制し、しかも圧粉体45a,45bを介して水分が第2水侵入抑制部94を回り込んで移動することも抑制する。したがって、ガスセンサ10では、水分が第2水侵入抑制部94よりもセンサ素子20の後端側に移動して下側コネクタ電極72に到達するのを抑制できる。そのため、センサ素子20では、下側コネクタ電極72に水が付着することによる上述した不具合の発生が抑制される。
 ここで、本実施形態の構成要素と本発明の構成要素との対応関係を明らかにする。本実施形態のセンサ素子20が本発明のセンサ素子に相当し、筒状体41が筒状体に相当し、圧粉体45a,45bが圧粉体に相当し、碍子44a~44cが緻密体に相当し、素子本体60が素子本体に相当し、検出部63が検出部に相当し、コネクタ電極71a~71d,72a~72dの各々がコネクタ電極に相当し、第1面60a及び第2面60bがコネクタ電極が配設された側面に相当し、多孔質層80が多孔質層に相当し、第1水侵入抑制部91及び第2水侵入抑制部94がそれぞれ水侵入抑制部に相当する。また、外側リード線75が外側リード部に相当し、外側電極64が外側電極に相当し、第1面60aが第1側面に相当し、第2面60bが第2側面に相当する。
 以上詳述した本実施形態のセンサ素子20によれば、素子本体60の1以上の側面のいずれか(ここでは第1面60a)において、第1水侵入抑制部91が配設されているため、水分が第1水侵入抑制部91よりもセンサ素子20の後端側に移動して上側コネクタ電極71a~71dに到達するのを抑制できる。同様に、センサ素子20では、素子本体60の1以上の側面のいずれか(ここでは第2面60b)においても、第2水侵入抑制部94が配設されているため、水分が第2水侵入抑制部94よりもセンサ素子20の後端側に移動して下側コネクタ電極72a~72dに到達することも抑制できる。
 また、第1,第2緻密層92,95の長さLeが0.5mm以上であることで、第1,第2水侵入抑制部91,94の各々について第1,第2緻密層92,95の部分のみで、水分が長手方向に沿って水侵入抑制部90を通過することを十分抑制できる。さらに、第1,第2緻密層92,95の長さLeが20mm以下であることで、未焼成素子本体と未焼成緻密層との焼成時の収縮率の違いによってセンサ素子20に反りが生じるのを抑制できる。また、第1,第2緻密層92,95の長さLeが素子本体60の長手方向の長さの30%以下であることによっても、センサ素子20に反りが生じるのを抑制できる。
 さらに、第1,第2隙間領域93,96の長さLgが1mm以下であることで、長さLgが比較的小さいため、素子本体60の側面(ここでは第1,第2面60a,60b)が露出する部分(多孔質層80にも第1,第2緻密層92,95にも覆われていない部分)を少なくすることができる。
 そして、センサ素子20は、上側コネクタ電極71が配設された側面(ここでは第1面60a)に配設され、検出部63の複数の電極のいずれか(ここでは外側電極64)と上側コネクタ電極71bとを導通する外側リード線75、を備えている。また、多孔質層80(特に第1内側多孔質層83)は外側リード線75の少なくとも一部を被覆している。そのため、外側リード線75の少なくとも一部を多孔質層80によって保護できる。また、外側リード線75を多孔質層80によって保護する場合には、下側コネクタ電極72bに近い位置に多孔質層(ここでは第1内側多孔質層83)が存在しやすいため、水分が第1内側多孔質層83を介して下側コネクタ電極72bに到達するのを第1水侵入抑制部91によって抑制する意義が高い。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、第1水侵入抑制部91は第1緻密層92と第1隙間領域93とを備えていたが、第1水侵入抑制部91は少なくとも第1緻密層92を備えていればよい。すなわち、第1水侵入抑制部91は第1隙間領域93を備えなくてもよい。言い換えると、第1水侵入抑制部91における長さLgが0mmであってもよい。第1水侵入抑制部91が第1隙間領域93を備えないようにすることで、第1面60aが露出する部分(多孔質層80にも第1緻密層92にも覆われていない部分)をさらに少なくすることができる。第2水侵入抑制部94についても同様である。
 上述した実施形態では、第1水侵入抑制部91は、第1内側多孔質層83を長手方向に沿って前端側部分83aと後端側部分83bとに分割していたが、これに限られない。第1水侵入抑制部91は、多孔質層80よりも後端側に位置していてもよい。例えば、上述した実施形態において、第1内側多孔質層83が後端側部分83bを備えなくてもよい。この場合、図4で後端側部分83bが配設されていた部分も第1隙間領域93の一部に含まれることになる。第2水侵入抑制部94についても同様に、第2内側多孔質層84を分割せず多孔質層80よりも後端側に位置していてもよい。
 上述した実施形態では、第1緻密層92は第1隙間領域93の前方に隣接して配置されていたが、第1緻密層92が第1隙間領域93の後方に隣接して配置されていてもよい。第2水侵入抑制部94についても同様である。
 上述した実施形態では、ガスセンサ10は碍子を3個(碍子44a~44c)及び圧粉体を2個(圧粉体45a,45b)備えていたが、これに限らず各々を1個以上備えていればよい。また、上述した実施形態では緻密体の例として碍子44a~44cを挙げたが、これに限られない。碍子44a~44cの1以上について、気孔率が10%未満の緻密体を用いることができる。気孔率が10%未満の緻密体であれば、内部を水分が通過しにくいため、上述した水侵入抑制部90を回り込むことによる水分の移動を十分抑制できる。緻密体の気孔率は、5%未満であってもよい。緻密体の気孔率は、内側多孔質層81の気孔率と同様にSEMを用いて導出した値とする。
 上述した実施形態では、第1,第2水侵入抑制部91,94は、それぞれ、前後方向で碍子44bと重複する位置に配置されていたが、これに限られない。例えば、第1,第2水侵入抑制部91,94は、前後方向で碍子44a又は碍子44cと重複する位置に配置されていてもよい。ただし、第1水侵入抑制部91が、ガスセンサ10が備える複数の碍子のうち最も前端側の碍子(ここでは碍子44a)のみと重複している場合、被測定ガス中の気体状態の水分が第1水侵入抑制部91と碍子44aとの隙間を通過して第1水侵入抑制部91よりもセンサ素子20の後端側に移動してしまう可能性がある。また、第1水侵入抑制部91が、ガスセンサ10が備える複数の碍子のうち最も後端側の碍子(ここでは碍子44c)のみと重複している場合、第1水侵入抑制部91と上側コネクタ電極71とが比較的近いことになる。この場合、第1水侵入抑制部91は毛細管現象による液体の水分の上側コネクタ電極71への移動を抑制できるが、その液体の水分の一部が第1水侵入抑制部91の前側で気化して第1水侵入抑制部91と碍子44cとの隙間を通過し、第1水侵入抑制部91よりもセンサ素子20の後端側に移動して上側コネクタ電極71に到達してしまう可能性がある。これらのことから、ガスセンサ10が備える碍子が2個以上である場合には、第1水侵入抑制部91は最も前端側の碍子以外の碍子と重複していることが好ましい。また、ガスセンサ10が備える碍子が3個以上である場合には、第1水侵入抑制部91は最も前端側の碍子と最も後端側の碍子とを除いた他の碍子と重複していることが好ましい。
 上述した実施形態において、センサ素子20が第2内側多孔質層84を備えず、第2面60bが多孔質層80で被覆されていなくてもよい。この場合、センサ素子20は第2水侵入抑制部94を備えなくてもよい。水侵入抑制部は、素子本体が有する側面(上述した実施形態では第1~第4面60a~60d)のうち、コネクタ電極及び多孔質保護層が配設された側面(上述した実施形態では第1,第2面60a,60b)の少なくとも1つに配設されていればよい。こうすれば、少なくとも水侵入抑制部が配設された側面においては、水分がコネクタ電極に到達するのを抑制できる。
 上述した実施形態では、第1内側多孔質層83は第1水侵入抑制部91及び上側コネクタ電極71が存在する領域を除いて第1面60aの前端から後端までの領域を被覆していたが、これに限られない。例えば、第1内側多孔質層83は、第1水侵入抑制部91が存在する領域を除いて第1面60aの前端から上側コネクタ電極71a~71dの前端側の端部までの領域を覆っていてもよい。あるいは、第1内側多孔質層83は、第1水侵入抑制部91が存在する領域を除いて第1面60aの前端から第1水侵入抑制部91よりも後方までの領域を少なくとも覆っていてもよい。第2内側多孔質層84についても同様である。
 上述した実施形態では、素子本体60は直方体形状としたが、これに限られない。例えば、素子本体60は円筒又は円柱状であってもよい。この場合、素子本体60は側面を1つ有することになる。
 以下には、センサ素子を具体的に作製した例を実施例として説明する。実験例5~7,9,10,12~14,16~18,20,21,23,24,26,27,29,30,1A~5Aが本発明の実施例に相当し、実験例1~4,8,11,15,19,22,25,28,31,6A~8Aが比較例に相当する。なお、本発明は以下の実施例に限定されるものではない。
[実験例1]
 第1水侵入抑制部91,第2水侵入抑制部94及び外側多孔質層85を備えない点以外は図2~5に示したセンサ素子20と同様のセンサ素子を作製して、実験例1とした。すなわち、実験例1では、第1,第2内側多孔質層83,84が、上側,下側コネクタ電極71,72が配設された領域を除いて、第1,第2面60a,60bを全て被覆するようにした。実験例1のセンサ素子20は以下のように作製した。まず、安定化剤のイットリアを4mol%添加したジルコニア粒子と有機バインダーと有機溶剤とを混合してテープ成形により成形したセラミックスグリーンシートを6枚用意した。各々のグリーンシートには各電極等のパターンを印刷した。また、焼成後に第1内側多孔質層83及び第2内側多孔質層84となる未焼成多孔質層を、スクリーン印刷により形成した。未焼成多孔質層は、原料粉末(アルミナ粉末),バインダー溶液(ポリビニルアセタールとブチルカルビトール),溶媒(アセトン),及び造孔材を混合して調合したスラリーとした。その後、6枚のグリーンシートを積層及び焼成した。これにより、第1,第2内側多孔質層83,84を備えた素子本体60を作製して、実験例1のセンサ素子20とした。素子本体60の寸法は、長さが67.5mm、幅が4.25mm、厚さが1.45mmとした。第1,第2内側多孔質層83,84は、厚さが20μm、気孔率が30%とした。
[実験例2~31]
 第1,第2水侵入抑制部91,94を備える点以外は、実験例1と同様のセンサ素子を種々作製して、実験例2~31とした。実験例2~31では、第1,第2緻密層92,95の長さLe及び気孔率、第1,第2隙間領域93,96の長さLg、第1,第2水侵入抑制部91,94の長さLを表1に示すように種々変更した。なお、焼成後に第1,第2緻密層92,95となる未焼成緻密層は、造孔材の添加量を少なくした点以外は、実験例1の未焼成多孔質層と同じスラリーを用いた。また、実験例2~31では、造孔材の添加量を調整することで、第1,第2緻密層92,95の気孔率を調整した。実験例2~31のうち実験例5以外は、第1水侵入抑制部91が第1隙間領域93を備えず、第2水侵入抑制部94も第2隙間領域96を備えない態様とした。実験例2~31のいずれにおいても、第1,第2緻密層92,95の厚さは20μmであった。実験例2~31のいずれにおいても、第1,第2水侵入抑制部91,94の前端が、素子本体60の前端から26mmの距離に位置するようにした。
[液体侵入試験]
 実験例1~31のセンサ素子20について、素子本体60の前端側を液体に浸した場合に毛細管現象によって素子本体60の後端側にどの程度液体が浸入するかを試験した。まず、センサ素子20の長手方向が鉛直方向に沿うようにした状態で、センサ素子20の素子本体60の前端(第5面60e)から後端側に向かって20mmの位置(以下、浸漬位置)までの部分を、レッドチェック液に浸した。その状態で20時間放置し、レッドチェック液が浸漬位置よりも後端側にどの程度浸入したかを目視にて測定し、侵入距離とした。この侵入距離は、第1,第2内側多孔質層83,84内を毛細管現象によってレッドチェック液が浸漬位置から素子本体60の後端側にどの程度移動したかを表す値である。20時間経過後の侵入距離が10mm未満であった場合に非常に良好(A)と判定し、10mm以上20mm未満であった場合に良好(B)と判定し、20mm以上であった場合に不良(F)と判定した。レッドチェック液は、栄進化学製のR-3B(NT)プラスを用いた。レッドチェック液は、炭化水素油を40~60wt%,可塑性溶剤を10~20wt%,グリコールエーテルを1~20wt%,非イオン界面活性剤を12~50wt%,アゾ系油溶性赤色染料を1~5%含む。レッドチェック液は、20℃での密度が0.86g/cm3であり、水よりも密度が小さい。
[センサ素子の反りの評価]
 実験例1~31のセンサ素子20について、レーザー変位計(キーエンス製,LK-010)を用いてセンサ素子20の厚さ方向(上下方向)の反り量を測定した。実験例1について100本のセンサ素子20を作製して反り量を測定し、反り量が200μm以上であった場合に反りが発生したとみなして、100本のうち反りが発生した本数を数えて反り発生確率を算出した。実験例2~31についても同様に、反り発生確率を算出した。反り発生確率が1%未満(1本も反りが発生しなかった)の場合に非常に良好(A)と判定し、1%以上20%未満の場合に良好(B)と判定し、20%以上の場合に不良(F)と判定した。
 実験例1~31の各々の長さLe、第1,第2緻密層92,95の気孔率、長さLg、長さL、液体侵入試験の評価結果、及びセンサ素子20の反りの評価結果を、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、長さLが0.5mm以上且つ第1,第2緻密層92,95の気孔率が10%未満である実験例5~7,9,10,12~14,16~18,20,21,23,24,26,27,29,30は、いずれも液体侵入試験の結果が非常に良好又は良好であった。これに対し、長さLが0.5mm未満である実験例1~4や、第1,第2緻密層92,95の気孔率が10%である実験例8,11,15,19,22,25,28,31では、液体侵入試験の結果が不良であった。このことから、第1,第2水侵入抑制部91,94の長さLが0.5mm以上且つ第1,第2緻密層92,95の気孔率が10%未満であれば、毛細管現象による水分の移動を第1,第2水侵入抑制部91,94によって十分抑制できることが確認された。実験例5の結果からわかるように、第1,第2緻密層92,95の長さLeが0.5mm未満であっても、第1,第2水侵入抑制部91,94の長さLが0.5mm以上であれば、毛細管現象による水分の移動が十分抑制されていた。また、実験例6,7間や実験例12~14間などの比較から、第1,第2緻密層92,95の気孔率が小さいほど毛細管現象による水分の移動を抑制する効果が高まることが確認できた。第1,第2緻密層92,95の長さLeが長いほど、第2緻密層92,95の気孔率が大きくても液体侵入試験の評価結果がAからBに低下しにくくなる傾向が確認された。
 表1からわかるように、第1,第2緻密層92,95の長さLeが20mmを超えている実験例29~31(=長さLeが素子本体60の長さ67.5mmの40%)では、センサ素子20の反りが発生しやすく評価結果が不良であった。長さLeが20mm以下(長さLeが素子本体60の長さ67.5mmの30%以下)である実験例1~28では、評価結果がA又はBであり、センサ素子20の反りが抑制されていることが確認できた。また、長さLeが小さいほど、センサ素子20の反りが発生しにくくなる傾向が確認された。
[実験例1A]
 図8に示す位置関係を有するガスセンサ10を上述した製造方法により作製して、実験例1Aとした。実験例1Aのガスセンサ10は、第1,第2水侵入抑制部91,94の前後方向の位置を変更した点以外は実験例27と同じセンサ素子20を組み込んで作製した。実験例1Aのガスセンサ10において、碍子44a~44cはいずれもアルミナからなるセラミックスの焼結体とし、碍子44aの軸方向長さを8mm、碍子44bの軸方向長さを10mm、碍子44cの軸方向長さを4.5mmとした。碍子44a~44cの気孔率をSEM画像を用いて導出したところ、1%未満であった。圧粉体45a,45bはタルク粉末を成形したものとした。また、筒状体41内で圧粉体45a,45bに前後から加わる封止荷重が適切となるように、タルク粉末の量を調整した。封止後の圧粉体45aの軸方向長さは6mm、圧粉体45aの軸方向長さは7mmであった。碍子44a~44cと多孔質層80及び水侵入抑制部90との上下方向の離間距離はいずれも100μmであった。図8に示すように、実験例1Aでは、第1,第2水侵入抑制部91,94の前端の位置が、碍子44bの内周面44b1,44b2の前端の位置と同じになっている。第1,第2水侵入抑制部91,94の前端は、素子本体60の前端から29mmの距離に位置している。第1緻密層92及び第2緻密層95は碍子44b,44cと重複しており、連続した重複部分の長さである重複距離Wは、より長い距離に亘って重複している碍子44bとの位置関係に基づいて、10mmとなった。
[実験例2A]
 図9に示す位置関係を有するガスセンサ10を上述した製造方法により作製して、実験例2Aとした。実験例2Aは、第1,第2水侵入抑制部91,94の前後方向の位置を変更した点以外は実験例17と同じセンサ素子20を組み込んで作製し、それ以外の点は実験例1Aと同様に作製した。実験例2Aでは、第1,第2水侵入抑制部91,94の前端は、素子本体60の前端から31mmの距離に位置している。図9に示すように、前後方向で第1緻密層92及び第2緻密層95は碍子44bに含まれており重複距離W=5mm(=L=Le)となった。
[実験例3A]
 図10に示す位置関係を有するガスセンサ10を上述した製造方法により作製して、実験例3Aとした。実験例3Aは、第1,第2水侵入抑制部91,94の前後方向の位置を変更した点以外は実験例17と同じセンサ素子20を組み込んで作製し、それ以外の点は実験例1Aと同様に作製した。実験例3Aでは、第1,第2水侵入抑制部91,94の前端は、素子本体60の前端から27mmの距離に位置している。図10に示すように、前後方向で第1緻密層92及び第2緻密層95は後端側の一部が碍子44bと重複しており、重複距離W=3mmとなった。
[実験例4A]
 図11に示す位置関係を有するガスセンサ10を上述した製造方法により作製して、実験例4Aとした。実験例4Aは、第1,第2水侵入抑制部91,94の前後方向の位置を変更した点以外は実験例17と同じセンサ素子20を組み込んで作製し、それ以外の点は実験例1Aと同様に作製した。実験例4Aでは、第1,第2水侵入抑制部91,94の前端は、素子本体60の前端から24.5mmの距離に位置している。図11に示すように、前後方向で第1緻密層92及び第2緻密層95は後端側の一部が碍子44bと重複しており、重複距離W=0.5mmとなった。
[実験例5A]
 図12に示す位置関係を有するガスセンサ10を上述した製造方法により作製して、実験例5Aとした。実験例5Aは、第1,第2水侵入抑制部91,94の前後方向の位置を変更し、第1緻密層92及び第2緻密層95の後端側に長さLg=0.2mmの第1隙間領域93及び第2隙間領域96を備える点以外は実験例17のセンサ素子20と同じセンサ素子20を組み込んで作製した。実験例5Aは、それ以外の点は実験例1Aと同様に作製した。実験例5Aでは、第1,第2水侵入抑制部91,94の前端は、素子本体60の前端から24.5mmの距離に位置している。図12に示すように、前後方向で第1,第2緻密層92,95の一部(長さ0.3mm)と第1,第2隙間領域93,96(長さ0.2mm)とが碍子44bと重複しており、重複距離W=0.5mmとなった。
[実験例6A]
 図11と同様の位置関係を有するガスセンサ10を上述した製造方法により作製して、実験例6Aとした。実験例6Aは、重複距離W=0.3mmとなるように第1緻密層92及び第2緻密層95の位置を0.2mm前方の位置に変更した点以外は実験例4Aと同様に作製した。すなわち、実験例6Aでは、第1,第2水侵入抑制部91,94の前端は、素子本体60の前端から24.3mmの距離に位置している。
[実験例7A]
 図7に示す位置関係を有するガスセンサ10を上述した製造方法により作製して、実験例7Aとした。実験例7Aは、重複距離W=0mmとなるように第1緻密層92及び第2緻密層95の位置を前方の位置に変更した点以外は実験例4Aと同様に作製した。実験例7Aでは、第1,第2水侵入抑制部91,94の前端は、素子本体60の前端から23.5mmの距離に位置している。
[実験例8A]
 第1水侵入抑制部91及び第2水侵入抑制部94を備えない点以外は実験例1Aと同様にガスセンサ10を作製して、実験例8Aとした。実験例8Aは、実験例1のセンサ素子を組み込んで作製した。重複距離Wは0mmとなった。
[液体侵入試験]
 実験例1A~8Aのガスセンサ10について、実験例1~31と同様に液体侵入試験を行った。レッドチェック液に浸す際には、ガスセンサ10の長手方向が鉛直方向に沿うようにした状態で、ガスセンサ10について、ガスセンサ10の前端からセンサ素子20の実験例1~31の浸漬位置と同じ位置(素子本体60の前端から20mmの位置)までの部分を、レッドチェック液に浸した。また、レッドチェック液に浸して放置する時間は150時間とし、150時間経過後の侵入距離が15mm未満であった場合に非常に良好(A)と判定し、15mm以上であった場合に不良(F)と判定した。
 実験例1A~8Aの各々の重複距離W、長さLe、第1,第2緻密層92,95の気孔率、長さLg、長さL、液体侵入試験の評価結果を、表2にまとめて示す。また、図13は、実験例2A,8Aにおける液体侵入試験時の侵入距離の時間変化を示すグラフである。
Figure JPOXMLDOC01-appb-T000002
 図13から分かるように、第1,第2水侵入抑制部91,94が存在しない実験例8Aでは、時間の経過と共に侵入距離が長くなっており、レッドチェック液が毛細管現象により第1,第2内側多孔質層83,84内をセンサ素子20の後方に移動していくことが確認された。これに対し、第1,第2水侵入抑制部91,94が存在し重複距離Wが0.5mm以上である実験例2Aでは、第1,第2水侵入抑制部91,94の前端側の位置である侵入距離が11mmの位置(=素子本体60の前端から31mmの位置)までしか、レッドチェック液の浸入は見られなかった。そのため、実験例2Aでは第1,第2水侵入抑制部91,94がレッドチェック液の後方への移動を阻止していることが確認できた。
 表2からわかるように、重複距離Wが0.5mm以上である実験例1A~5Aは、いずれも液体侵入試験の結果が非常に良好であった。これに対し、重複距離Wが0.5mm未満である実験例6A~8Aでは、液体侵入試験の結果が不良であった。このことから、重複距離Wが0.5mm以上であれば、水分の移動を第1,第2水侵入抑制部91,94によって十分抑制できることが確認された。また、実験例4A,5Aの比較から、重複距離Wが0.5mm以上であれば、重複部分を構成するのが第1緻密層92のみであるか第1緻密層92及び第1隙間領域93であるかに関わらず、水分の移動を抑制できることが確認できた。また、実験例6A,7Aの結果から、長さLが長くても、重複距離Wが0.5mm未満の場合には水分の移動を十分抑制できないことが確認された。これは、上述したように、圧粉体を介して水分が第1,第2水侵入抑制部91,94を回り込んで後方に移動しているためと考えられる。
  本出願は、2018年2月6日に出願された日本国特許出願第2018-019445号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、自動車の排気ガスなどの被測定ガスにおけるNOxなどの特定ガスの濃度を検出するガスセンサに利用可能である。
 10 ガスセンサ、15 組立体、20 センサ素子、30 保護カバー、31 内側保護カバー、32 外側保護カバー、33 素子室、40 素子封止体、41 筒状体、42 主体金具、42a 肉厚部、42b 底面、43 内筒、43a フランジ部、43c,43d 縮径部、44a~44c 碍子、44b1,44b2 内周面、45a,45b 圧粉体、46 メタルリング、47 ナット、48 外筒、49 空間、50 コネクタ、55 リード線、57 ゴム栓、58 配管、59 固定用部材、60 素子本体、60a~60f 第1面~第6面、61 被測定ガス導入口、62 基準ガス導入口、63 検出部、64 外側電極、65 内側主ポンプ電極、66 内側補助ポンプ電極、67 測定電極、68 基準電極、69 ヒータ、71,71a~71d 上側コネクタ電極、72,72a~72d 下側コネクタ電極、75 外側リード線、80 多孔質層、81 内側多孔質層、83 第1内側多孔質層、83a 前端側部分、83b 後端側部分、84 第2内側多孔質層、84a 前端側部分、84b 後端側部分、85 外側多孔質層、90 水侵入抑制部、91 第1水侵入抑制部、92 第1緻密層、93 第1隙間領域、94 第2水侵入抑制部、95 第2緻密層、96 第2隙間領域。

Claims (8)

  1.  センサ素子と、前記センサ素子が内部を軸方向に貫通する貫通孔を有する金属製の筒状体と、前記貫通孔内に配置され該貫通孔の内周面と前記センサ素子との間に充填された1以上の圧粉体と、気孔率が10%未満であり前記貫通孔内に配置されると共に内部を前記センサ素子が貫通し前記圧粉体を前記軸方向に押圧する中空柱状の1以上の緻密体と、
     を備えたガスセンサであって、
     前記センサ素子は、
     長手方向に沿った両端である前端及び後端と、該長手方向に沿った表面である1以上の側面と、を有する長尺な素子本体と、
     前記素子本体の前記前端側に配設された複数の電極を有し、前記被測定ガス中の特定ガス濃度を検出するための検出部と、
     前記1以上の側面のいずれかの前記後端側に1以上配設され、外部と電気的に導通するためのコネクタ電極と、
     前記コネクタ電極が配設された前記側面のうち少なくとも前記前端側を被覆し且つ気孔率が10%以上の多孔質層と、
     前記多孔質層を前記長手方向に沿って分割するか又は前記多孔質層よりも前記後端側に位置するように前記側面に配設され、前記コネクタ電極よりも前記前端側に位置し、前記長手方向の存在範囲と前記1以上の緻密体の内周面の前記長手方向の存在範囲との連続した重複部分の長さである重複距離Wが0.5mm以上であり、前記側面を被覆し且つ気孔率が10%未満の緻密層と該緻密層に隣接し且つ前記多孔質層が存在しない隙間領域とのうち少なくとも前記緻密層を有し、前記長手方向に沿った水の毛細管現象を抑制する水侵入抑制部と、
     を備えている、
     ガスセンサ。
  2.  前記緻密層は、前記長手方向の長さLeが0.5mm以上である、
     請求項1に記載のガスセンサ。
  3.  前記緻密層は、前記長手方向の長さLeが20mm以下である、
     請求項1又は2に記載のガスセンサ。
  4.  前記隙間領域は、前記長手方向の長さLgが1mm以下である、
     請求項1~3のいずれか1項に記載のガスセンサ。
  5.  前記水侵入抑制部は、前記隙間領域を備えない、
     請求項4に記載のガスセンサ。
  6.  前記センサ素子は、前記コネクタ電極が配設された前記側面に配設され前記複数の電極のいずれかと前記コネクタ電極とを導通する外側リード部を備えており、
     前記多孔質層は、前記外側リード部の少なくとも一部を被覆している、
     請求項1~5のいずれか1項に記載のガスセンサ。
  7.  前記多孔質層は、前記水侵入抑制部が存在する領域を除いて、前記コネクタ電極が配設された前記側面のうち該側面の前記前端から前記コネクタ電極の前記前端側の端部までの領域を少なくとも覆っており、
     前記水侵入抑制部は、前記多孔質層を前記長手方向に沿って分割するように前記側面に配設されている、
     請求項1~6のいずれか1項に記載のガスセンサ。
  8.  前記素子本体は、直方体形状をしており、前記長手方向に沿った表面である4つの前記側面を有しており、
     前記コネクタ電極は、前記4つの側面のうち互いに対向する第1側面及び第2側面にそれぞれ1以上配設されており、
     前記多孔質層は、前記第1側面及び前記第2側面をそれぞれ被覆しており、
     前記水侵入抑制部は、前記第1側面及び前記第2側面にそれぞれ配設されている、
     請求項1~7のいずれか1項に記載のガスセンサ。
PCT/JP2019/001864 2018-02-06 2019-01-22 ガスセンサ WO2019155866A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980002142.2A CN111699383B (zh) 2018-02-06 2019-01-22 气体传感器
DE112019000036.5T DE112019000036T5 (de) 2018-02-06 2019-01-22 Gassensor
JP2019570655A JP6810286B2 (ja) 2018-02-06 2019-01-22 ガスセンサ
US16/669,555 US11391691B2 (en) 2018-02-06 2019-10-31 Gas sensor
US17/838,546 US12007352B2 (en) 2018-02-06 2022-06-13 Gas sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-019445 2018-02-06
JP2018019445 2018-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/669,555 Continuation US11391691B2 (en) 2018-02-06 2019-10-31 Gas sensor

Publications (1)

Publication Number Publication Date
WO2019155866A1 true WO2019155866A1 (ja) 2019-08-15

Family

ID=67549035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001864 WO2019155866A1 (ja) 2018-02-06 2019-01-22 ガスセンサ

Country Status (5)

Country Link
US (2) US11391691B2 (ja)
JP (2) JP6810286B2 (ja)
CN (1) CN111699383B (ja)
DE (1) DE112019000036T5 (ja)
WO (1) WO2019155866A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264581A1 (ja) * 2021-06-17 2022-12-22 日本碍子株式会社 センサ素子及びガスセンサ
DE102023105850A1 (de) 2022-03-24 2023-09-28 Ngk Insulators, Ltd. Gassensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019000036T5 (de) * 2018-02-06 2020-01-02 Ngk Insulators, Ltd. Gassensor
WO2022209529A1 (ja) * 2021-03-30 2022-10-06 日本碍子株式会社 センサ素子及びガスセンサ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236835A (ja) * 2008-03-28 2009-10-15 Ngk Insulators Ltd ガスセンサ
JP2009236833A (ja) * 2008-03-28 2009-10-15 Ngk Insulators Ltd ガスセンサおよびNOxセンサ
JP2012242112A (ja) * 2011-05-16 2012-12-10 Ngk Spark Plug Co Ltd ガスセンサおよびその製造方法
JP2014055859A (ja) * 2012-09-13 2014-03-27 Ngk Spark Plug Co Ltd ガスセンサ素子、及びガスセンサ
JP2016065852A (ja) * 2014-03-28 2016-04-28 日本碍子株式会社 ガスセンサの製造方法
JP2017106874A (ja) * 2015-12-11 2017-06-15 株式会社デンソー ガスセンサ

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342141B1 (en) * 2000-02-23 2002-01-29 Delphi Technologies, Inc. Sealed exhaust sensor utilizing a mat support system
JP2004226310A (ja) 2003-01-24 2004-08-12 Kyocera Corp 酸素センサ
US20060151338A1 (en) 2005-01-12 2006-07-13 Wang Da Y Multi-function sensor system and method of operation
JP4706543B2 (ja) * 2006-04-10 2011-06-22 株式会社デンソー ガスセンサ
JP2007285961A (ja) 2006-04-19 2007-11-01 Denso Corp ガスセンサ素子及びその製造方法
JP2009080099A (ja) 2007-09-07 2009-04-16 Denso Corp ガスセンサ素子及びその製造方法
US8246800B2 (en) 2008-03-28 2012-08-21 Ngk Insulators, Ltd. Gas sensor
JP5171896B2 (ja) 2010-07-15 2013-03-27 日本特殊陶業株式会社 ガスセンサ
JP5275427B2 (ja) 2010-10-26 2013-08-28 日本特殊陶業株式会社 ガスセンサ
PT3373581T (pt) 2010-12-21 2020-01-27 Ntt Docomo Inc Codificação com intra-predição melhorada utilizando representações planares
JP5373835B2 (ja) 2011-02-22 2013-12-18 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
JP5416757B2 (ja) 2011-02-22 2014-02-12 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
JP5373837B2 (ja) * 2011-03-08 2013-12-18 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
JP5218602B2 (ja) * 2011-05-27 2013-06-26 株式会社デンソー ガスセンサ素子及びその製造方法、並びにガスセンサ
JP5348434B2 (ja) * 2011-06-09 2013-11-20 株式会社デンソー ガスセンサ
JP5496983B2 (ja) 2011-10-31 2014-05-21 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
JP5390682B1 (ja) 2012-11-13 2014-01-15 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
JP6359373B2 (ja) 2013-09-05 2018-07-18 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
JP6014000B2 (ja) 2013-09-17 2016-10-25 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
JP6181517B2 (ja) 2013-10-29 2017-08-16 日本特殊陶業株式会社 ガスセンサ素子、ガスセンサおよびガスセンサ素子の製造方法
JP6317145B2 (ja) 2014-03-19 2018-04-25 日本碍子株式会社 ガスセンサ
JP6573783B2 (ja) 2014-06-09 2019-09-11 日本碍子株式会社 センサ素子及びガスセンサ
JP6533426B2 (ja) 2014-08-25 2019-06-19 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
DE102017211499A1 (de) * 2016-07-07 2018-01-11 Ngk Spark Plug Co., Ltd. Metallanschluss für Gassensor, Gassensor und Verfahren zum Herstellen eines Gassensors
JP6772082B2 (ja) 2017-01-27 2020-10-21 日本特殊陶業株式会社 ガスセンサ
JP6761371B2 (ja) 2017-03-30 2020-09-23 日本碍子株式会社 ガスセンサ素子
JP6840873B2 (ja) * 2018-02-06 2021-03-10 日本碍子株式会社 センサ素子及びガスセンサ
DE112019000036T5 (de) * 2018-02-06 2020-01-02 Ngk Insulators, Ltd. Gassensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236835A (ja) * 2008-03-28 2009-10-15 Ngk Insulators Ltd ガスセンサ
JP2009236833A (ja) * 2008-03-28 2009-10-15 Ngk Insulators Ltd ガスセンサおよびNOxセンサ
JP2012242112A (ja) * 2011-05-16 2012-12-10 Ngk Spark Plug Co Ltd ガスセンサおよびその製造方法
JP2014055859A (ja) * 2012-09-13 2014-03-27 Ngk Spark Plug Co Ltd ガスセンサ素子、及びガスセンサ
JP2016065852A (ja) * 2014-03-28 2016-04-28 日本碍子株式会社 ガスセンサの製造方法
JP2017106874A (ja) * 2015-12-11 2017-06-15 株式会社デンソー ガスセンサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264581A1 (ja) * 2021-06-17 2022-12-22 日本碍子株式会社 センサ素子及びガスセンサ
JP7194873B1 (ja) * 2021-06-17 2022-12-22 日本碍子株式会社 センサ素子及びガスセンサ
DE102023105850A1 (de) 2022-03-24 2023-09-28 Ngk Insulators, Ltd. Gassensor

Also Published As

Publication number Publication date
DE112019000036T5 (de) 2020-01-02
JP7166321B2 (ja) 2022-11-07
US11391691B2 (en) 2022-07-19
JP6810286B2 (ja) 2021-01-06
CN111699383B (zh) 2022-08-23
JPWO2019155866A1 (ja) 2020-12-03
JP2021043224A (ja) 2021-03-18
US12007352B2 (en) 2024-06-11
CN111699383A (zh) 2020-09-22
US20200064305A1 (en) 2020-02-27
US20220317086A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP7137651B2 (ja) センサ素子及びガスセンサ
JP7166321B2 (ja) ガスセンサ
WO2019155867A1 (ja) ガスセンサ
CN111751431B (zh) 传感器元件及气体传感器
CN111051870B (zh) 气体传感器元件及气体传感器
JP2019158554A (ja) センサ素子及びガスセンサ
JP7284354B2 (ja) センサ素子及びガスセンサ
US20230304962A1 (en) Gas sensor
WO2022209401A1 (ja) センサ素子及びガスセンサ
WO2022264581A1 (ja) センサ素子及びガスセンサ
US20230168221A1 (en) Gas sensor and sensor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570655

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19751525

Country of ref document: EP

Kind code of ref document: A1