WO2019107254A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2019107254A1
WO2019107254A1 PCT/JP2018/043081 JP2018043081W WO2019107254A1 WO 2019107254 A1 WO2019107254 A1 WO 2019107254A1 JP 2018043081 W JP2018043081 W JP 2018043081W WO 2019107254 A1 WO2019107254 A1 WO 2019107254A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
bead
rim
layer
wire
Prior art date
Application number
PCT/JP2018/043081
Other languages
English (en)
French (fr)
Inventor
丹野 篤
啓 甲田
松田 淳
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to DE112018006148.5T priority Critical patent/DE112018006148T5/de
Priority to US16/768,865 priority patent/US11660914B2/en
Priority to CN201880087897.2A priority patent/CN111655517B/zh
Publication of WO2019107254A1 publication Critical patent/WO2019107254A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C15/0027Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with low ply turn-up, i.e. folded around the bead core and terminating at the bead core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C15/0054Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with ply turn-up portion parallel and adjacent to carcass main portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C15/0072Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion with ply reverse folding, i.e. carcass layer folded around the bead core from the outside to the inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • B60C15/024Bead contour, e.g. lips, grooves, or ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • B60C2015/009Height of the carcass terminal portion defined in terms of a numerical value or ratio in proportion to section height
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/02Seating or securing beads on rims
    • B60C15/024Bead contour, e.g. lips, grooves, or ribs
    • B60C2015/0245Bead lips at the bead toe portion, i.e. the axially and radially inner end of the bead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/04Bead cores
    • B60C2015/048Polygonal cores characterised by the winding sequence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C2015/0614Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the chafer or clinch portion, i.e. the part of the bead contacting the rim
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C2015/0617Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead comprising a cushion rubber other than the chafer or clinch rubber
    • B60C2015/0621Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead comprising a cushion rubber other than the chafer or clinch rubber adjacent to the carcass turnup portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/06Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
    • B60C2015/0617Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead comprising a cushion rubber other than the chafer or clinch rubber
    • B60C2015/0625Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead comprising a cushion rubber other than the chafer or clinch rubber provided at the terminal edge portion of a carcass or reinforcing layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/12Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim
    • B60C5/14Inflatable pneumatic tyres or inner tubes without separate inflatable inserts, e.g. tubeless tyres with transverse section open to the rim with impervious liner or coating on the inner wall of the tyre

Definitions

  • the present invention relates to a pneumatic tire, and more particularly to a pneumatic tire capable of securing the rim fitting property of the tire while reducing the weight of the tire.
  • the omission of the bead filler may cause deterioration in the rim fitting property of the tire.
  • An object of the present invention is to provide a pneumatic tire capable of securing the rim fitting property of the tire while reducing the weight of the tire.
  • a pneumatic tire according to the present invention comprises a bead core formed by winding one or a plurality of bead wires annularly and in multiple layers, and a single layer or a plurality of carcass plies and wraps the bead core.
  • a pneumatic tire comprising: a carcass layer which is rolled back and bridged over the bead core; and a rim cushion rubber which is disposed along a turn-back portion of the carcass layer and which constitutes a rim fitting surface of the bead portion
  • the bead core has a predetermined wire array structure in which wire cross sections of the bead wire are arranged in a cross-sectional view in the tire meridian direction, and the innermost layer in the tire radial direction and the maximum in the tire width direction in the wire array structure
  • a tangent L1 tangent to the inner and outermost wire cross sections from the rim fitting surface side, and a contact point of the tangent L1 1 and C2, the center Cm of the contacts C1 and C2, the gauges G1, G2 and Gm in the tire radial direction from the contacts C1 and C2 and the center Cm to the rim fitting surface are defined, and a rim assembly It is characterized in that the change rates ⁇ G1, ⁇ G
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a bead portion of the pneumatic tire described in FIG.
  • FIG. 3 is an enlarged view showing a rim fitting portion of the bead portion described in FIG.
  • FIG. 4 is an explanatory view showing a wire array structure of the bead core described in FIG.
  • FIG. 5 is an explanatory view showing a rim fitting portion of a bead portion in a tire rim assembled state.
  • FIG. 6 is an explanatory view showing the rim fitting portion described in FIG.
  • FIG. 7 is an explanatory view showing the rim fitting portion described in FIG. FIG.
  • FIG. 8 is an explanatory view showing a modification of the bead core shown in FIG.
  • FIG. 9 is an explanatory view showing a modified example of the bead core described in FIG.
  • FIG. 10 is an explanatory view showing a modified example of the bead core shown in FIG.
  • FIG. 11 is an explanatory view showing a modification of the bead core shown in FIG.
  • FIG. 12 is an explanatory view showing a modification of the bead core shown in FIG.
  • FIG. 13 is an explanatory view showing a modified example of the bead portion described in FIG.
  • FIG. 14 is an explanatory view showing a wire array structure of the bead core described in FIG.
  • FIG. 15 is an explanatory view showing a modified example of the bead core shown in FIG. FIG.
  • FIG. 16 is an enlarged view showing a tire side portion of the pneumatic tire shown in FIG.
  • FIG. 17 is a cross-sectional view showing a modification of the bead portion described in FIG.
  • FIG. 18 is a chart showing the results of performance tests of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 19 is an explanatory view showing a bead core of a conventional test tire.
  • FIG. 1 is a sectional view in the tire meridian direction showing a pneumatic tire according to an embodiment of the present invention.
  • the figure shows a cross-sectional view of one side region in the tire radial direction.
  • the same figure has shown the radial tire for passenger cars as an example of a pneumatic tire.
  • the pneumatic tire 1 has an annular structure centered on the tire rotation axis, and includes a pair of bead cores 11 and 11, a carcass layer 13, a belt layer 14, a tread rubber 15, and a pair of sidewall rubbers 16 and 16. And a pair of rim cushion rubbers 17, 17 and an inner liner 18 (see FIG. 1).
  • the pair of bead cores 11, 11 is formed by annularly and multiply winding one or a plurality of bead wires made of steel, and is embedded in the bead portion to form a core of the left and right bead portions.
  • the carcass layer 13 has a single layer structure of one carcass ply or a multilayer structure of laminating a plurality of carcass plies, and is toroidally bridged between the left and right bead cores 11 to form a tire skeleton. Configure Further, both end portions of the carcass layer 13 are wound and locked outward in the tire width direction so as to wrap around the bead core 11.
  • the carcass ply of the carcass layer 13 is formed by coating a plurality of carcass cords made of steel or an organic fiber material (for example, aramid, nylon, polyester, rayon, etc.) with a coated rubber and rolling it.
  • the carcass layer 13 has a single-layer structure consisting of a single carcass ply, but not limited to this, it has a multilayer structure in which the carcass layer 13 is formed by laminating a plurality of carcass plies. Also good.
  • the belt layer 14 is formed by laminating a pair of cross belts 141 and 142, a belt cover 143 and a pair of belt edge covers 144, and is disposed so as to be wound around the outer periphery of the carcass layer 13.
  • the pair of cross belts 141 and 142 is formed by coating a plurality of belt cords made of steel or organic fiber material with a coating rubber and rolling it, and the belt angle of 20 [deg] or more and 55 [deg] or less in absolute value Have.
  • the pair of cross belts 141 and 142 have mutually opposite belt angles (defined as inclination angles in the longitudinal direction of the belt cord with respect to the tire circumferential direction), and cross the longitudinal directions of the belt cords Laminated (so-called cross-ply structure).
  • the belt cover 143 and the pair of belt edge covers 144 are formed by coating a belt cover cord made of steel or organic fiber material with a coat rubber, and have a belt angle of 0 [deg] or more and 10 [deg] or less in absolute value.
  • the belt cover 143 and the pair of belt edge covers 144 are, for example, strip materials formed by coating one or a plurality of belt cover cords with a coat rubber, and the strip materials are applied to the outer peripheral surfaces of the cross belts 141 and 142. In contrast, it is configured to be spirally wound multiple times in the circumferential direction of the tire.
  • the tread rubber 15 is disposed on the outer periphery of the carcass layer 13 and the belt layer 14 in the tire radial direction to form a tread portion of the tire.
  • the pair of sidewall rubbers 16, 16 are respectively disposed on the outer side in the tire width direction of the carcass layer 13 to constitute left and right sidewall portions.
  • the pair of rim cushion rubbers 17, 17 are disposed on the inner side in the tire radial direction of the left and right bead cores 11, 11 and the wound portion of the carcass layer 13, respectively, to form a rim fitting surface of the bead portion.
  • the inner liner 18 is an air permeation prevention layer which is disposed on the tire inner cavity surface and covers the carcass layer 13, suppresses oxidation due to the exposure of the carcass layer 13, and prevents leakage of air filled in the tire.
  • the inner liner 18 is made of, for example, a rubber composition containing butyl rubber as a main component, a thermoplastic resin, or a thermoplastic elastomer composition obtained by blending an elastomer component in a thermoplastic resin. Further, the inner liner 18 is bonded to the carcass layer 13 through tie rubber (not shown).
  • FIG. 2 is a cross-sectional view showing a bead portion of the pneumatic tire described in FIG. The figure shows a cross-sectional view of the bead portion in the tire meridian direction before the rim assembly of the tire.
  • the carcass layer 13 is wound and locked outward in the tire width direction so as to wrap around the bead core 11.
  • the wound area 132 of the carcass layer 13 comes in contact with the main body portion 131 to form a closed region X surrounding the bead core 11.
  • the closed region X is continuous over the entire tire circumference, thereby forming an annular closed space surrounding the bead core 11.
  • the closed area X is defined as an area surrounded by the carcass ply of the carcass layer 13 in a sectional view in the tire meridian direction. Specifically, an area surrounded by the surface of the coated rubber of the carcass ply is defined as a closed area X.
  • the carcass layer 13 is formed of a single-layer carcass ply, and the closed region X is formed by the self-contact of the carcass ply.
  • the closed region X can be formed by mutual contact of different carcass plies.
  • the carcass layer 13 has a two-layer structure in which the first and second carcass plies are laminated, and the radial height H1 of the bead core 11 is obtained without the wound portion of the first carcass ply contacting the main body.
  • a configuration (not shown) is assumed that ends in the middle (see FIG. 2) and the wound back portion of the second carcass ply extends to the radial outer side of the bead core 11 and contacts the main portion of the first carcass ply Ru.
  • the rubber occupancy rate in the closed region X is preferably in the range of 15% or less, more preferably in the range of 10% or less, and in the range of 5% or less More preferable. Therefore, the rubber occupancy in the closed region X surrounded by the main body portion 131 of the carcass layer 13 and the wraparound portion 132, that is, the rubber volume around the bead core 11 is set very low. Thereby, the object of weight reduction of a tire by omitting a bead filler is achieved.
  • the lower limit of the rubber occupancy rate is not particularly limited, but is preferably 0.1% or more. Thereby, the quantity of the insulation rubber of bead core 11 is secured appropriately.
  • the rubber occupancy rate is calculated as a ratio [%] of the cross-sectional area of the rubber material in the closed area X to the entire cross-sectional area of the closed area X in a cross-sectional view in the tire meridian direction.
  • the wound portion 132 of the carcass layer 13 is wound in the closed region X without including the bead filler and is in contact with the main portion 131. Further, the carcass ply of the carcass layer 13 is wound up along the outer peripheral surface of the bead core 11. For this reason, only the components of the bead core 11 are present in the closed area X.
  • Components of the bead core 11 include a bead wire 111, an insulation rubber, a bead cover and a wrapping yarn.
  • the bead filler is a reinforcing rubber which is disposed to fill the triangular gap between the bead core and the main body and the wound portion of the carcass layer, and is disposed to increase the rigidity of the bead portion.
  • the bead filler generally has a triangular cross section and has a rubber hardness of 65 or more and 99 or less.
  • the radial height H2 of the contact portion between the main body portion 131 of the carcass layer 13 and the rewind portion 132 is 0.80 ⁇ H2 / H1 ⁇ 3.00 with respect to the radial height H1 of the bead core 11 It is preferable to have the relationship of 1.20 ⁇ H2 / H1 ⁇ 2.50. Thus, the radial height H2 of the self-contacting portion of the carcass layer 13 is optimized.
  • the unwinding portion 132 stably contacts the main body portion 131, and the durability of the bead portion is improved. Moreover, the increase in the tire weight resulting from the winding part 132 becoming excessive is suppressed by the said upper limit.
  • the radial height H1 of the bead core is the outermost layer in the tire radial direction and the tire width direction from the innermost layer in the tire radial direction and the inner end of the outermost wire cross section in the tire width direction in the bead core wire array structure. It is measured as the maximum height in the tire radial direction to the tire radial outer end of the outermost wire cross section.
  • the radial height H2 of the self-contacting portion of the carcass layer is measured as the maximum length in the tire radial direction of the contact portion between the main body portion of the carcass layer and the winding-back portion.
  • the end (the reference numeral in the figure is omitted) of the wound portion 132 of the carcass layer 13 contact the main body 131 of the carcass layer 13.
  • stress concentration at the end of the unwinding portion 132 is alleviated as compared with a configuration (not shown) in which the end of the unwinding portion 132 is separated from the main body portion 131.
  • separation of the peripheral rubber starting from the end of the unwinding portion 132 is suppressed.
  • the circumferential length La1 of the closed region X is measured as the periferri length of the surface of the carcass ply constituting the boundary of the closed region X in a cross-sectional view in the tire meridian direction.
  • the actual length La2 of the contact portion is measured as the peripherial length at the self-contact portion between the main portion of the carcass layer and the rewind portion in a cross-sectional view in the tire meridian direction.
  • the pneumatic tire 1 has a structure which abbreviate
  • the present invention is not limited to this, and the pneumatic tire 1 may be provided with bead fillers and other reinforcing rubbers between the main body portion of the carcass layer and the wraparound portion (see FIG. 17 described later).
  • the pneumatic tire 1 includes an outer reinforcing rubber 19 in addition to the sidewall rubber 16 and the rim cushion rubber 17 described above.
  • the breaking elongation is measured in accordance with JIS K6251.
  • the outer reinforcing rubber 19 is disposed so as to be sandwiched between the wound portion 132 of the carcass layer 13 and the rim cushion rubber 17 (see FIG. 2).
  • the spring characteristics of the bead portion are reinforced by the outer reinforcing rubber 19 in a configuration in which the above-described bead filler is omitted, steering stability on a dry road surface is ensured, and the durability of the bead portion Improve.
  • the rubber hardness of the outer reinforcing rubber 19 is higher than the rubber hardness of the sidewall rubber 16 and the rim cushion rubber 17.
  • the difference ⁇ Hs_SW between the rubber hardness of the sidewall rubber 16 and the rubber hardness of the outer reinforcing rubber 19 is preferably 7 or more, and more preferably 12 or more.
  • the difference ⁇ Hs_RC between the rubber hardness of the rim cushion rubber 17 and the rubber hardness of the outer reinforcing rubber 19 is preferably 3 or more, and more preferably 7 or more. Thereby, the reinforcing action of the spring characteristic of the bead portion by the outer reinforcing rubber 19 is properly exhibited.
  • the lower limit of the rubber hardness difference ⁇ Hs_SW is restricted by the lower limit of the rubber hardness of the outer reinforcing rubber 19 described above.
  • the breaking elongation of the outer reinforcing rubber 19 is preferably in the range of 50% or more and 400% or less, and more preferably in the range of 70% or more and 350% or less.
  • the rim cushion rubber 17 extends from the bead toe Bt to the entire area of the bead base Bb to form a rim fitting surface for the bead sheet 101 of the rim 10. Further, the rim cushion rubber 17 extends outward in the tire radial direction from the bead base Bb along the turnback portion 132 of the carcass layer 13 to form a fitting surface with respect to the flange 102 of the rim 10.
  • the tire radial direction end of the rim cushion rubber 17 is inserted between the carcass layer 13 and the sidewall rubber 16, and from the end of the wound portion 132 of the carcass layer 13 and the flange 102 of the rim 10 Also extends to the outer side in the tire radial direction.
  • the bead portion may be provided with a chafer (not shown).
  • the rim cushion rubber 17 preferably extends at least in the region from the bead / heel Bh to the central portion (midpoint Cm described later) of the innermost layer in the tire radial direction of the bead core 11. Thereby, the durability of the rim fitting portion of the bead portion is properly secured.
  • the outer reinforcing rubber 19 covers the end of the wound portion 132 of the carcass layer 13 from the outer side in the tire width direction.
  • the outer reinforcing rubber 19 is adjacent to the winding portion 132 of the carcass layer 13 over the entire area of the contact portion between the main body portion 131 of the carcass layer 13 and the winding portion 132.
  • the tire inner diameter RD is equal to the rim diameter of the specified rim.
  • the radial height H3 is measured as a no-load state while mounting the tire on a prescribed rim to apply a prescribed internal pressure. Specifically, it is calculated as the difference between the diameter of the end of the outer reinforcing rubber 19 on the outer side in the tire radial direction and the tire inner diameter RD.
  • the tire cross-sectional height SH is a half of the difference between the tire outer diameter and the rim diameter, and is measured as an unloaded state while attaching the tire to a prescribed rim to apply a prescribed internal pressure.
  • the prescribed rim means the “application rim” defined in JATMA, the “Design Rim” defined in TRA, or the “Measuring Rim” defined in ETRTO.
  • the specified internal pressure means the “maximum air pressure” defined in JATMA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFlation PRESSURES” defined in TRA, or “INFLATION PRESSURES” defined in ETRTO.
  • the specified load means the "maximum load capacity" defined in JATMA, the maximum value of "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" defined in TRA, or "LOAD CAPACITY" defined in ETRTO.
  • the prescribed internal pressure is the air pressure of 180 [kPa]
  • the prescribed load is 88 [%] of the maximum load capacity.
  • the radial height H4 from the end of the wound portion 132 of the carcass layer 13 to the end of the outer reinforcing rubber 19 on the outer side in the tire radial direction is the contact portion between the main portion 131 of the carcass layer 13 and the wound portion 132.
  • the radial height H2 preferably has a relationship of 0.10 ⁇ H4 / H2, and more preferably 0.30 ⁇ H4 / H2. As a result, the steering stability on a dry road surface is improved, and the durability of the bead portion is improved.
  • the upper limit of the ratio H4 / H2 is restricted by the upper limit of the ratio H3 / SH.
  • the overlapping amount H5 of the outer reinforcing rubber 19 and the bead core 11 in the tire radial direction has a relationship of 0.05 ⁇ H5 / H1 ⁇ 1.00 with respect to the radial height H1 of the bead core 11 It is more preferable to have a relation of 0.10 ⁇ H5 / H1 ⁇ 1.00.
  • the overlap amount H5 is in the range of 5.0 [mm] ⁇ H5.
  • the outer reinforcing rubber 19 may be disposed outside the bead core 11 in the tire radial direction (not shown).
  • a length T1 of a perpendicular drawn from the end of the wound portion 132 of the carcass layer 13 to the outer surface of the tire side portion and a thickness T2 of the outer reinforcing rubber 19 on the perpendicular are 0.10 ⁇ T2 /. It is preferable to have the relationship of T1 ⁇ 0.90, and it is more preferable to have the relationship of 0.20 ⁇ T2 / T1 ⁇ 0.80.
  • thickness T2 of outside reinforcement rubber 19 is rationalized. That is, by the above lower limit, the spring characteristics of the bead portion are appropriately reinforced by the outer reinforcing rubber 19, the steering stability on a dry road surface is improved, and the durability of the bead portion is improved. Moreover, the increase in the weight of the tire caused by the outside reinforcing rubber 19 becoming excessive is suppressed by the above upper limit.
  • the numerical value K defined by the following formula (1) is preferably 0.17 ⁇ K, 0.20 ⁇ K It is more preferable that Thus, the function of the outer reinforcing rubber 19 is properly secured.
  • W is the tire nominal width [mm]
  • I is the tire nominal inner diameter [inch]
  • B is the total cross-sectional area [mm 2 ] of the bead wire in the bead core.
  • the bead core 11 has the following structures.
  • FIG. 3 is an enlarged view showing a rim fitting portion of the bead portion described in FIG.
  • FIG. 4 is an explanatory view showing a wire array structure of the bead core described in FIG.
  • FIG. 5 is an explanatory view showing a rim fitting portion of a bead portion in a tire rim assembled state.
  • FIG. 3 shows the rim fitting portion in the state before rim assembly
  • FIG. 5 shows the rim fitting portion in the state after rim assembly.
  • FIG. 4 has shown sectional drawing of the radial direction of the uncured bead core 11 at the time of components single-piece
  • the rim fitting surface of the bead portion includes a bead base Bb, a bead toe Bt, and a bead heel Bh, and has a uniform contour in the tire circumferential direction.
  • the bead base Bb is a flat area formed on the inner side in the tire radial direction of the bead portion, and constitutes a contact surface of the rim against the bead sheet 101.
  • the bead toe Bt is a tip end of a bead portion having an L shape or a V shape in a sectional view in the tire meridian direction, and is positioned on the innermost side in the tire width direction of the rim fitting surface.
  • the bead heel Bh is a bent portion connecting the wall surface of the tire side portion and the bead base Bb.
  • the position of the left and right bead portions is the measurement of the rim width and rim diameter of the rim, with the tire rotation axis being horizontal and the tire unit standing upright. It is defined as the state when fixed to match the point.
  • Such a tire shape is closest to the tire shape in the tire vulcanizing mold, that is, the natural tire shape before inflation.
  • the state after the rim assembly of the tire (see FIG. 5) is defined as a state in which the tire is mounted on a prescribed rim to apply a prescribed internal pressure and no load.
  • the rim fitting surface of the bead portion is fitted to the wheel rim 10 to hold the tire.
  • the bead base Bb of the rim fitting surface is pressed against the bead sheet 101 of the rim 10 to make surface contact, whereby the fitting portion between the bead portion and the rim 10 is sealed, and the inside of the tire is airtight. Is secured.
  • the bead heel Bh is located at the connecting portion between the bead seat 101 and the flange 102, and the area outside the bead heel Bh of the rim fitting surface abuts against the flange 102 of the rim 10, and the bead portion has a tire width. The direction is held from the outside.
  • the bead core 11 has a predetermined wire arrangement structure in which the wire cross sections of the bead wire 111 are arranged in a cross-sectional view in the tire meridian direction.
  • the wire arrangement structure will be described later.
  • the innermost layer and the outermost wire in the tire radial direction in the tire radial direction in the wire arrangement structure of the bead core 11 in a cross-sectional view in the tire meridian direction in a state before the rim assembly of the tire (see FIG. 3)
  • the tangent line L1 which touches from a rim fitting side side to a section is defined.
  • the contacts C1 and C2 of the tangent L1 with respect to each wire cross section, and the middle point Cm of the contacts C1 and C2 are respectively defined.
  • gauges G1, G2 and Gm in the tire radial direction from the contact points C1 and C2 and the midpoint Cm to the rim fitting surface are defined.
  • the points P1, P2 and Pm of the straight line perpendicular to the tire axial direction passing through the contacts C1 and C2 and the midpoint Cm and the bead base Bb are drawn respectively.
  • the distances between C1, C2 and midpoint Cm and points of intersection P1, P2 and Pm are measured as gauges G1, G2 and Gm.
  • gauges G1 ', G2' and Gm 'of the rim fitting portion in the tire rim assembled state are defined.
  • the change rates ⁇ G1, ⁇ G2 and ⁇ Gm of the gauges G1, G2 and Gm of the rim fitting portion before and after the rim assembly be in the range of 10% to 60%, respectively. It is more preferably in the range of [%] to 50 [%], still more preferably in the range of 20 [%] to 45 [%], and in the range of 25 [%] to 40 [%] Most preferably.
  • a general tire structure (particularly, a bead filler having a cross-sectional area equal to or greater than that of a bead core) is provided, in which the change rates ⁇ G1, ⁇ G2, ⁇ Gm of the gauges G1, G2, Gm have a large rubber occupancy in the closed region Compared with tire structure, it is set larger.
  • the change rates ⁇ G1, ⁇ G2 and ⁇ Gm of the rim fitting portion are optimized. That is, according to the above lower limit, the rim fitting pressure is secured, and the rim fitting property of the tire is secured. Moreover, the deterioration of the rim assembly workability of the tire due to the rim fitting pressure becoming excessive is suppressed by the above-mentioned upper limit.
  • the rates of change .DELTA.G1, .DELTA.G2 and .DELTA.Gm of the rim fitting portion described above are realized, for example, by the configuration of the cushion rubber layer 20 described later (see FIG. 6) and the configuration of the taper angle of the bead base Bb (see FIG. 7). .
  • the change rates ⁇ G 1, ⁇ G 2 and ⁇ Gm of the rim fitting portion satisfy the condition of
  • the change rates ⁇ G1, ⁇ G2 and ⁇ Gm satisfy the condition of 20 [%] ⁇
  • the relationship between the change rates ⁇ G1, ⁇ G2 and ⁇ Gm of the rim fitting portion is made appropriate. That is, the rim fitting property of the tire is improved by the above lower limit. Moreover, the rim assembly workability of the tire is improved by the above upper limit.
  • the rates of change ⁇ G1, ⁇ G2, and ⁇ Gm of the gauges G1, G2 and Gm of the rim fitting portion have a relationship of ⁇ G2 ⁇ Gm ⁇ G1. That is, the change rates ⁇ G1, ⁇ G2, and ⁇ Gm increase toward the bead to Bt side. Thereby, the rim fitting property of the tire is improved.
  • the gauges G1, G2 and Gm of the rim fitting portion in the state before the rim assembly of the tire have a relationship of G2 ⁇ Gm ⁇ G1. That is, the gauges G1, G2 and Gm of the rim fitting portion increase toward the bead to Bt side. As a result, the mutual relationship between the change rates ⁇ G1, ⁇ G2, and ⁇ Gm is optimized.
  • the gauge G1 is preferably in the range of G1 ⁇ 8.0 [mm], and more preferably in the range of G1 ⁇ 6.0 [mm].
  • the gauge G2 is preferably in the range of 1.0 mm ⁇ G2, and more preferably in the range of 2.0 mm ⁇ G2.
  • the width Wc2 of the innermost layer of the wire array structure is measured as the maximum width including the innermost and outermost wire cross sections in the tire width direction, as shown in FIG.
  • the bead core 11 is formed by winding the bead wire 111 annularly and multiply, and has a predetermined wire arrangement structure in a cross-sectional view in the tire meridian direction.
  • the wire array structure is defined by the array of wire cross sections of the bead wire 111.
  • the wire array structure is composed of a plurality of layers stacked in the tire radial direction, and the layers are composed of a plurality of wire cross sections arranged in a row in the tire width direction.
  • the innermost layer of the wire arrangement structure is substantially parallel to the rim fitting surface of the bead portion, and faces the bead sheet 101 of the rim 10 when the tire is fitted in the rim (see FIG. 3).
  • a core forming jig (not shown) is used, and one or a plurality of bead wires 111 are wound around the core forming jig in a predetermined wire arrangement structure, and the unvulcanized bead core 11 is It is molded. Then, the molded bead core 11 is pre-vulcanized prior to the vulcanisation molding process of the green tire. Not limited to this, the pre-vulcanization of the bead core 11 may be omitted, and the unvulcanized bead core 11 may be incorporated into the green tire, and the step of vulcanization molding of the green tire may be performed.
  • the bead wire 111 consists of a strand and the insulation rubber which covers a strand (illustration omitted).
  • a wire consists of steel.
  • the insulation rubber comprises a rubber composition having a Mooney viscosity of 70 [M] or more. The Mooney viscosity is calculated in accordance with JIS K6300-1: 2013.
  • the wound portion 132 of the carcass layer 13 contacts the main body portion 131 of the carcass layer 13 to form a closed region X surrounding the bead core 11. Further, the rubber occupancy rate in the closed region X is set small, and weight reduction of the bead portion is achieved. At this time, in order to improve the durability of the bead portion, it is preferable to suppress the generation of the hollow portion in the closed region X.
  • the wire array structure of the bead core 11 has a wedge shape that is convex toward the outer side in the tire radial direction.
  • a layer having the largest number of wire cross sections in the wire array structure (the second layer from the innermost layer in FIG. 4) is defined as the maximum array layer.
  • the number of layers of the wire cross section (three layers in FIG. 4) outside the maximum alignment layer in the tire radial direction is the number of layers of the wire cross section inside the tire radial direction than the maximum alignment layer (FIG. 4, More than one layer).
  • the number of wire cross sections in each layer radially outward of the maximum alignment layer monotonously decreases from the maximum alignment layer outward in the tire radial direction.
  • the number of layers of a wire cross section exists in the range of four or more and six or less.
  • the number of wire cross sections in the maximum alignment layer of the wire array structure is 4 or 5, and the number of wire cross sections in the outermost layer in the tire radial direction is 1 or 2.
  • the main body portion 131 and the wound portion 132 of the carcass layer 13 abut on the left and right side surfaces of the bead core 11 in the tire width direction, and along the ridge shape of the wire arrangement structure. It extends outward, merges in Y-shape, and contacts each other.
  • the gap between the joining portion of the main body portion 131 and the wound portion 132 of the carcass layer 13 and the apex (the so-called bead top) on the outer side in the tire radial direction of the bead core 11 is reduced, and the durability of the bead is improved.
  • the rewinding portion 132 can be bent at an obtuse angle at the joining position with the main body portion 131, the amount of bending of the rewinding portion 132 becomes small, and the durability of the bead portion is improved.
  • the number of wire cross sections in the innermost layer in the tire radial direction of the wire layout structure is preferably 3 or 4, and is preferably the same as or less than the number of wire cross sections of the maximum array layer.
  • the arrangement angles ⁇ 1 and ⁇ 2 of the wire cross sections at the corners in the tire radial direction inner side and tire width direction inner side and outer side of the wire array structure are respectively defined.
  • the arrangement angles ⁇ 1 and ⁇ 2 are in the range of 80 [deg] ⁇ ⁇ 1 and 80 [deg] ⁇ ⁇ 2. That is, the arrangement angles ⁇ 1 and ⁇ 2 of the wire cross sections become substantially right angles or obtuse angles.
  • the disturbance of the wire arrangement structure at the time of tire vulcanization is suppressed, the rim fitting property of the tire is improved, and the durability of the bead portion is improved.
  • the arrangement angles ⁇ 1 and ⁇ 2 of the wire cross sections are obtuse angles, the carcass ply can be rewound along the inner corner of the bead core 11 in the tire radial direction, so the rubber occupancy in the closed region X is reduced.
  • the bead portion can be further reduced in weight.
  • the arrangement angles ⁇ 1 and ⁇ 2 are measured as the angles formed by the lines connecting the centers of the three wire cross sections that form the corners of the wire arrangement structure.
  • the maximum width Wc1 and the maximum height Hc1 of the bead core 11 and the total cross-sectional area S of the bead wire 111 in the bead core 11 have a relationship of 1.20 ⁇ Wc1 ⁇ Hc1 / S ⁇ 5.00. It is more preferable to have the relationship of 1.50 ⁇ Wc1 ⁇ Hc1 / S ⁇ 4.50, and it is more preferable to have the relationship of 1.80 ⁇ Wc1 ⁇ Hc1 / S ⁇ 4.00.
  • the wire array structure of the bead core 11 is optimized. That is, by the above-mentioned lower limit, the number of arrangements of the wire cross sections is secured, and the rim fitting property of the tire is secured. Moreover, the bead core 11 is reduced in weight by the above-mentioned upper limit.
  • the total cross-sectional area S of the bead wire does not include the cross-sectional area of the insulation rubber.
  • the total cross-sectional area S of the bead wire 111 is optimized. That is, the total cross-sectional area S of the bead wire 111 is ensured by the said minimum, and the rim fitting property of a tire is ensured. Moreover, the bead core 11 is reduced in weight by the above-mentioned upper limit.
  • the outer diameter ⁇ (see FIG. 4) of the bead wire 111 is preferably in the range of 0.8 mm ⁇ ⁇ ⁇ 1.5 mm, and 0.9 mm ⁇ ⁇ ⁇ 1.4. It is more preferably in the range of [mm], and still more preferably in the range of 1.0 [mm] ⁇ ⁇ ⁇ 1.3 [mm].
  • the outer diameter ⁇ of the bead wire 111 is optimized. That is, by the above lower limit, the outer diameter ⁇ of the bead wire 111 is secured, and the rim fitting property of the tire is secured.
  • the bead core 11 is reduced in weight by the above-mentioned upper limit.
  • the height Hc2 of the maximum width position of the bead core is measured as the distance between the tangent L1 and an imaginary line connecting the centers of the wire cross sections constituting the maximum alignment layer. Further, in the configuration in which the wire array structure includes a plurality of maximum array layers, the maximum array layer located at the outermost side in the tire radial direction is used to measure the height Hc2 of the maximum width position.
  • the number of layers in the wire cross section is five, and the number of arrays of wire cross sections is set to 3-4-3-2-1 in order from the innermost layer in the tire radial direction. Therefore, the number of wire cross sections in the maximum alignment layer is four.
  • the number of layers of the wire cross-section which is outside the maximum alignment layer in the tire radial direction is three, and the number of layers of the wire cross-section which is inside the tire radial direction with respect to the maximum alignment layer is one. Therefore, the largest alignment layer is asymmetrical in the tire radial direction, and is disposed inward in the tire radial direction with respect to the center position of the wire arrangement structure in the tire radial direction.
  • the wire array structure has an elongated structure in the tire radial direction outer side from the maximum array layer.
  • the number of wire cross sections in each layer decreases one by one from the maximum alignment layer toward the outer side in the tire radial direction.
  • all wire cross sections are arranged in a close-packed configuration.
  • the arrangement angles ⁇ 1 and ⁇ 2 of the wire cross sections at the left and right corners in the tire radial direction of the wire arrangement structure are each approximately 135 [deg] (specifically, in the range of 130 [deg] to 140 [deg]) It is.
  • the largest alignment layer of the wire cross section is not the innermost layer in the tire radial direction.
  • the number of wire cross sections in each layer increases one by one from the innermost layer to the maximum alignment layer. This optimizes the wire array structure.
  • the distance Hg in the tire radial direction from the end of the bead core 11 on the outer side in the tire radial direction to the contact portion between the main portion 131 of the carcass layer 13 and the wound portion 132 is the outer diameter ⁇ of the bead wire 111. It is preferable to have a relationship of Hg / ⁇ ⁇ 7.0, and more preferable to have a relationship of Hg / ⁇ ⁇ 3.0. Thereby, the rigidity around the bead core 11 is improved.
  • FIG. 6 is an explanatory view showing the rim fitting portion described in FIG. The figure shows the rim fitting portion in a state before the rim is assembled.
  • the same components as those shown in FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the gauge G2 in the tire radial direction from the contact point C2 between the tangent L1 of the innermost layer of the wire array structure and the outermost wire cross section in the tire width direction is defined.
  • the gauge G2 and the outer diameter ⁇ (see FIG. 4) of the bead wire 111 have a relationship of 1.3 ⁇ G2 / ⁇ ⁇ 9.5, and 1.8 ⁇ G2 / ⁇ ⁇ 5.5. It is more preferable to have the following relationship.
  • the gauge G2 of the rim fitting portion is made appropriate. That is, by the above lower limit, the gauge G2 of the rim fitting portion is secured, and the rim fitting property of the tire is secured. Moreover, the deterioration of the rim assembly workability of the tire due to the gauge G2 of the rim fitting portion becoming excessive is suppressed by the above upper limit.
  • an intersection point Q of a straight line passing through the contact point C2 of the bead core 11 and parallel to the tire width direction and the wall surface of the rim fitting portion on the tire width direction outer side is defined.
  • a gauge Wh in the tire width direction from the contact point C2 of the bead core 11 to the point Q of the rim fitting surface is defined.
  • the gauge Wh and the outer diameter ⁇ (see FIG. 4) of the bead wire 111 have a relationship of 2.0 ⁇ Wh / ⁇ ⁇ 15.0, and 2.5 ⁇ Wh / ⁇ ⁇ 10.0. It is more preferable to have the following relationship. Thereby, the gauge Wh of the rim fitting portion is optimized.
  • the gauge Wh of the rim fitting portion is secured, the rim fitting property of the tire is secured, and the durability of the rim fitting portion is secured. Moreover, the deterioration of the rim assembly workability of the tire due to the gauge Wh of the rim fitting portion becoming excessive is suppressed by the above upper limit.
  • the cushion rubber layer 20 is inserted between the innermost layer of the bead core 11 and the rim cushion rubber 17.
  • the cushion rubber layer 20 is a member having a rubber hardness lower than that of the rim cushion rubber 17, and includes, for example, an inner liner 18, a tie rubber (not shown) bonding the inner liner 18 and the carcass layer 13, etc. Does not contain Further, the cushion rubber layer 20 may have an integral structure with respect to the inner liner 18 and the tie rubber, or may have a separate structure (not shown).
  • the cushion rubber layer 20 may be made of the same rubber material as the inner liner 18 and the tie rubber described above, or may be made of a different rubber material (not shown).
  • the rubber hardness of the cushion rubber layer 20 is preferably 5 or more lower than the rubber hardness of the rim cushion rubber 17 and more preferably 8 or more lower.
  • the action of increasing the change rates ⁇ G1, ⁇ G2 and ⁇ Gm of the rim fitting portion can be properly obtained.
  • the cushion rubber layer 20 extends outward in the tire width direction along the wound portion 132 of the carcass layer 13 from the tire inner cavity surface in a cross-sectional view in the tire meridian direction. And the rim cushion rubber 17.
  • the cushion rubber layer 20 extends beyond the middle point Cm of the innermost layer of the bead core 11 to the outermost contact C2.
  • the end of the cushion rubber layer 20 on the outer side in the tire width direction is terminated on the inner side in the tire radial direction with respect to the tangent L1 of the bead core 11. Therefore, the end of the cushion rubber layer 20 does not extend to the lateral side of the bead core 11 in the tire width direction.
  • the change rates ⁇ G1, ⁇ G2 and ⁇ Gm between the bead core 11 and the rim fitting surface (especially the bead base Bb) are effectively enhanced, while the bead core 11 and the flange 102 of the rim 10 (see FIG. 2)
  • the rigidity between and) is secured appropriately.
  • the present invention is not limited to this, and the end of the cushion rubber layer 20 on the outer side in the tire width direction may extend to the outer side in the tire radial direction than the tangent L1 of the bead core 11.
  • the thicknesses Tc1 and Tc2 of the cushion rubber layer 20 between the measurement points C1 and P1 of the gauges G1 and G2 of the rim fitting portion and C2 and P2 have a relationship of Tc2 ⁇ Tc1. That is, the thickness Tc1 of the cushion rubber layer 20 on the bead-to-Bt side is preferably thicker than the thickness Tc2 of the cushion rubber layer 20 on the bead-heel Bh side.
  • the rate of change ⁇ G1 of the rim fitting portion on the bead toe Bt side is larger than the rate of change ⁇ G2 of the rim fitting portion on the bead heel Bh side ( ⁇ G2 ⁇ G1), and the rim fit of the tire is improves.
  • the rim by adjusting the relationship of the thickness of the cushion rubber layer 20 among the measurement points C1, P1; C2, P2; Cm, Pm of the gauges G1, G2, Gm of the rim fitting portion, the rim The relationship between the change rates ⁇ G1, ⁇ G2 and ⁇ Gm of the fitting portion can be adjusted.
  • region of the tire width direction from the contact C1 to the contact C2 exists in the range of 0.3 [mm] or more and 3.0 [mm] or less.
  • the average thickness of the cushion rubber layer 20 is optimized. That is, by the above lower limit, the action of the cushion rubber layer 20 for increasing the change rates ⁇ G1, ⁇ G2, and ⁇ Gm of the rim fitting portion can be appropriately obtained. Moreover, the fall of the rigidity of the rim fitting part resulting from the cushion rubber layer 20 becoming excessive is suppressed by the said upper limit.
  • the cushion rubber layer 20 is directed 5 mm outward from the measurement point on the tire radial direction outer side of the height H 1 (see FIG. 2) of the bead core 11. It is preferable to extend as above.
  • FIG. 7 is an explanatory view showing the rim fitting portion described in FIG. The figure shows the rim fitting portion in a state before the rim is assembled.
  • the same components as those shown in FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted.
  • the tangent of the rim fitting surface at the intersection point P2 is defined as the extended line L2 of the bead base Bb in a cross-sectional view in the tire meridian direction before the rim is assembled.
  • the inclination angle ⁇ of the extension line L2 of the bead base Bb with respect to the tangent L1 of the bead core 11 is preferably in the range of 3 [deg] ⁇ ⁇ ⁇ 15 [deg], 6 [deg] ⁇ ⁇ ⁇ 12. It is more preferable to be in the range of [deg].
  • the rim fitting property of the tire tends to be lowered. Further, as the inclination angle ⁇ of the bead base Bb and the rate of change ⁇ Gm of the rim fitting portion are larger, the fitting pressure to the rim is increased, and the rim fitting property of the tire is improved. Accordingly, by the above lower limit, the ratio ⁇ Gm ⁇ ⁇ / WA becomes large, and the rim fitting property of the tire is improved. Moreover, the deterioration of the rim assembly workability of the tire caused by the fitting pressure to the rim becoming excessive is suppressed by the above upper limit.
  • ⁇ Gm ⁇ ⁇ / WA 0.
  • an intersection point R of the two types of linear portions of the bead base Bb is defined.
  • the distance Lr in the tire width direction from the bead to Bt to the intersection point R and the distance Lm from the bead to Bt to the middle point Cm in the tire width direction satisfy 0.50 ⁇ Lr / Lm ⁇ 4.0. It is preferable to have the relationship of 0.70 ⁇ Lr / Lm ⁇ 3.3. Thereby, the position of the intersection point R is made appropriate, and the improvement effect of the rim fitting property of the tire by the two-step taper shape can be appropriately obtained.
  • the arrangement angle ⁇ 1 (see FIG. 4) of the wire cross section at the inner corner in the tire radial direction and the tire width direction of the wire array structure of the bead core 11 is 130 [deg] or more 140 [140] deg] is in the following range.
  • the two types of linear portions of the bead base Bb are connected by a smooth arc that is convex outward in the tire radial direction.
  • the intersection point R is located between the contact point C1 of the bead core 11 and the midpoint Cm.
  • the distance Dt in the tire radial direction from the contact point C1 of the bead core 11 to the bead to Bt and the distance Wt in the tire width direction are respectively defined.
  • the distances Dt and Wt and the gauge G1 in the tire radial direction from the contact point C1 to the rim fitting surface have a relationship of 7 [deg] arc arctan ⁇ (Dt-G1) / Wt ⁇ ⁇ 30 [deg]. It is preferable to have, and it is more preferable to have a relationship of 9 [deg] arc arctan ⁇ (Dt-G1) / Wt ⁇ 25 25 [deg].
  • the distances Dt and Wt from the contact point C1 to the bead to Bt are measured in a state before the rim assembly of the tire.
  • [Modification] 8 to 12 are explanatory views showing modifications of the bead core shown in FIG. These figures show radial cross-sectional views of the uncured bead core 11 when the component is single.
  • the bead core 11 may be inclined with respect to the tire width direction. Specifically, the bead core 11 may be inclined inward in the tire radial direction on the bead to Bt side (see FIG. 3). In such a configuration, the tangent L1 of the innermost layer of the bead core 11 approaches parallel to the bead base Bb of the rim fitting surface. At this time, it is preferable that the inclination angle X of the tangent L1 with respect to the tire width direction be in the range of ⁇ 10 [deg] ⁇ X ⁇ 30 [deg].
  • the range of the relative inclination angle ⁇ of the extension line L2 of the bead base Bb with respect to the tangent line L1 of the bead core 11 is as described above.
  • the number of arrayed wire cross sections is set to 3-4-3-2-1 in order from the innermost layer in the tire radial direction. Therefore, the number of layers of the wire cross section is five, and the number of arrangements of the wire cross section of the outermost layer in the tire radial direction is one.
  • the number of layers in the wire cross section is four, and the number of arrays of wire cross sections is set to 3-4-3-2 in order from the innermost layer in the tire radial direction.
  • the number of layers in the wire cross section is six, and the number of arrays of the wire cross section is set to 3-4-5-4-3-2 in order from the innermost layer in the tire radial direction.
  • the number of layers in the wire cross section may be four or six.
  • the number of arrangements of the wire cross sections of the outermost layer in the tire radial direction may be two. Even in such a case, the number of layers of the wire cross section (two layers in FIG. 9 and three layers in FIG.
  • the number of wire cross sections in the innermost layer in the tire radial direction is smaller than the number of wire cross sections in the maximum alignment layer (the second to the innermost layer).
  • all wire cross sections constituting the wire array structure are arrayed by the close-packed structure. For this reason, the arrangement angles ⁇ 1 and ⁇ 2 of the wire cross sections at the corner portions on the inner side and the outer side in the tire radial direction of the wire array structure are in the range of 130 [deg] to 140 [deg].
  • the number of layers in the wire cross section is five, and the number of arrayed wire cross sections is set to 4-4-3-2-1 sequentially from the innermost layer in the tire radial direction. ing.
  • the arrangement number of the wire cross sections in the innermost layer is the same as the arrangement number of the wire cross sections in the maximum alignment layer.
  • the arrangement angle ⁇ 1 of the wire cross section at the corner in the tire radial direction inner side and the tire width direction inner side of the wire array structure is an acute angle, and within a range of 55 [deg] to 65 [deg]. is there.
  • the arrangement angle ⁇ 2 of the wire cross section at the corner on the outer side in the tire width direction is an obtuse angle, and is in the range of 130 [deg] to 140 [deg].
  • the array angles ⁇ 1 and ⁇ 2 of the wire cross sections at the left and right corner portions on the inner side in the tire radial direction of the wire array structure are both substantially perpendicular, and are 85 [deg] or more and 95 [deg] or less In the range.
  • the arrangement angle ⁇ 2 of the wire cross section at least at the outer corner in the tire width direction is approximately right angle or obtuse angle. Further, in the configuration of FIG.
  • the wire cross sections are arranged in a lattice from the maximum alignment layer to the inner side in the tire radial direction. As described above, the wire cross sections may be arranged in a close-packed structure at least in each layer from the largest alignment layer to the outer side in the tire radial direction.
  • FIG. 13 is an explanatory view showing a modified example of the bead portion described in FIG. The figure shows a cross-sectional view of the bead portion in the tire meridian direction before the rim assembly of the tire.
  • FIG. 14 is an explanatory view showing a wire array structure of the bead core 11 described in FIG.
  • FIG. 15 is an explanatory view showing a modified example of the bead core shown in FIG. In these figures, FIG. 14 and FIG. 15 show radial sectional views of the uncured bead core 11 when the component is single.
  • the number of arrayed wire cross sections is set to 3-4-3-2-1 in order from the innermost layer in the tire radial direction (see FIG. 4). For this reason, the array structure of the wire cross section has a wedge-like shape that narrows toward the outer side in the tire radial direction.
  • the number of layers in the wire cross section is five, and the number of wire cross sections is arranged in order from the innermost layer in the tire radial direction 3-4-4-4. It is set to 3.
  • the array structure of the wire cross sections may have a hexagonal shape, or may have a symmetrical structure in the height direction with the largest alignment layer as a center.
  • the number of layers in the wire cross section is three, and the number of arrays of the wire cross section is set to 5-5-5 sequentially from the innermost layer in the tire radial direction.
  • the array structure of the wire cross sections may have a square shape.
  • FIG. 16 is an enlarged view showing a tire side portion of the pneumatic tire shown in FIG. This figure shows an enlarged sectional view in the tire meridian direction at the tire maximum width position A.
  • the total thickness K1 of the tire side portion at the tire maximum width position A is preferably in the range of 2.5 [mm] ⁇ K1 ⁇ 6.5 [mm], and 3.0 [mm] ⁇ It is more preferable to be in the range of K1 ⁇ 6.0 [mm].
  • the total thickness K1 of the tire side portion is optimized. That is, by the above lower limit, the total thickness K1 of the tire side portion is secured, and the rolling resistance of the tire is secured. Moreover, weight reduction of a tire is ensured by the said upper limit.
  • the total thickness K1 of the tire side portion is measured as a distance between the inner surface of the tire and the outer surface of the tire at the tire maximum width position A in a sectional view in the tire meridian direction.
  • the thickness K2 of the sidewall rubber 16 at the tire maximum width position A is preferably in the range of 0.3 mm ⁇ K2 ⁇ 3.0 mm, and 0.5 mm ⁇ K2 ⁇ More preferably, it is in the range of 2.5 mm.
  • the thickness K2 of the sidewall rubber 16 is optimized. That is, the thickness K2 of the sidewall rubber 16 is secured by the above lower limit, and the cut resistance of the tire side portion is secured. Moreover, weight reduction of a tire is ensured by the said upper limit.
  • FIG. 17 is a cross-sectional view showing a modification of the bead portion described in FIG. The figure shows a cross-sectional view of the bead portion in the tire meridian direction before the rim assembly of the tire.
  • the pneumatic tire 1 has a structure in which the bead filler is omitted. Specifically, the rubber occupancy rate in the closed region X surrounded by the main body portion 131 of the carcass layer 13 and the wraparound portion 132 is set small, and the weight reduction of the tire is achieved.
  • the outer reinforcing rubber 19 is disposed between the wound portion 132 of the carcass layer 13 and the rim cushion rubber 17 so that the spring property of the bead is reinforced by the outer reinforcing rubber 19.
  • the wraparound portion 132 of the carcass layer 13 is self-contacted and locked to the main body portion 131, and the radial height H2 of the self-contacting portion is set within a predetermined range, and the durability of the bead portion is improved. It is being enhanced.
  • the pneumatic tire 1 includes the bead filler 12. Further, the bead filler 12 is disposed between the main body portion 131 of the carcass layer 13 and the rewind portion 132. In addition, the wraparound portion 132 of the carcass layer 13 is self-contacted and locked to the main body portion 131 to form the closed region X. For this reason, the rubber occupancy in the closed region X is set to be very large as compared with the configuration of FIG. Further, since the spring characteristics of the bead portion are secured by the bead filler 12, the outer reinforcing rubber 19 in FIG. 2 is omitted.
  • the pneumatic tire 1 includes the bead core 11 formed by winding one or a plurality of bead wires 111 in an annular manner and in multiple layers, and a single layer or a plurality of carcass plies, and wraps the bead core 11. And a rim cushion rubber 17 disposed along a turnback portion 132 of the carcass layer 13 to form a rim fitting surface of the bead portion (FIG. 1 and FIG. See Figure 2).
  • the bead core 11 has a predetermined wire arrangement structure in which the wire cross sections of the bead wire 111 are arranged in a cross-sectional view in the tire meridian direction (see FIG. 4).
  • a tangent L1 of the innermost layer in the tire radial direction and the innermost and outermost wire cross sections in the tire width direction contact from the rim fitting surface side
  • a tangent to the innermost and outermost wire cross sections Define the contacts C1 and C2 of L1, the midpoint Cm of the contacts C1 and C2, and the gauges G1, G2 and Gm in the tire radial direction from the contacts C1 and C2 and the midpoint Cm to the rim fitting surface (FIG. 3) reference).
  • the change rates ⁇ G1, ⁇ G2 and ⁇ Gm of the gauges G1, G2 and Gm before and after the rim assembly are each in the range of 10% to 60%.
  • the wound portion 132 of the carcass layer 13 contacts the body portion 131 of the carcass layer 13 to form a closed region X surrounding the bead core 11 (see FIG. 2).
  • the rubber occupancy in the closed region X is in the range of 15% or less in a cross-sectional view in the tire meridian direction.
  • the rubber occupancy rate in the closed region X surrounded by the main body portion 131 of the carcass layer 13 and the rewind portion 132, that is, the rubber volume around the bead core 11 is set very low. Since a bead filler can be omitted by this, a tire can be reduced in weight.
  • the distance Dt in the tire radial direction from the contact C1 to the bead to Bt, the distance Wt in the tire width direction, and the gauge G1 in the tire radial direction from the contact C1 to the rim fitting surface are 7 [deg] ⁇ arctan ⁇ (Dt ⁇ G1) / Wt ⁇ ⁇ 30 [deg] (see FIG. 7).
  • a gauge Wh in the tire width direction from the contact point C2 to the rim fitting surface and an outer diameter ⁇ (see FIG. 4) of the bead wire 111 satisfy 2.0 ⁇ Wh. It has a relationship of / ⁇ 15.0.
  • the gauge Wh of the rim fitting portion is optimized. That is, by the above lower limit, the gauge Wh of the rim fitting portion is secured, and the rim fitting property of the tire is secured. Moreover, the deterioration of the rim assembly workability of the tire due to the gauge Wh of the rim fitting portion becoming excessive is suppressed by the above upper limit.
  • the change rates ⁇ G1, ⁇ G2, and ⁇ Gm satisfy the condition of
  • the cushion rubber layer 20 extends in the tire width direction at least from the contact point C1 of the bead core 11 to the middle point Cm (see FIG. 3). As a result, there is an advantage that the cushion rubber layer 20 effectively improves the rim fitting property.
  • the thicknesses Tc1 and Tc2 of the cushion rubber layer 20 between the measurement points C1 and P1 of the gauges G1 and G2 of the rim fitting portion; C2 and P2 have a relationship of Tc2 ⁇ Tc1 See Figure 6).
  • the rate of change ⁇ G1 of the rim fitting portion on the bead toe Bt side is larger than the rate of change ⁇ G2 of the rim fitting portion on the bead heel Bh side ( ⁇ G2 ⁇ G1), and the rim fit of the tire is There is an advantage to improve.
  • the relationship between the gauge G1 of the rim fitting portion and the thickness Tc1 of the cushion rubber layer 20 between the measurement points of the gauge G1 is 0.03 ⁇ Tc1 / G1 ⁇ 0.95.
  • the average thickness of the cushion rubber layer 20 is optimized. That is, by the above lower limit, the action of the cushion rubber layer 20 is properly secured, and the rate of change ⁇ G1 of the rim fitting portion increases. Further, the gauge G1 of the rim cushion rubber 17 is secured by the upper limit, and the rim fitting property of the tire is appropriately secured.
  • the height Hc2 from the tangent L1 to the maximum width position of the bead core 11 and the maximum height Hc1 of the bead core 11 satisfy 1.10 ⁇ (Hc1-Hc2) /Hc2 ⁇ 2.80. (See FIG. 4). Thereby, there is an advantage that the wire arrangement structure of bead core 11 is rationalized.
  • the arrangement angle ⁇ 2 of the wire cross section at the corner in the tire radial direction inner side and the tire width direction outer side of the wire arrangement structure is in the range of 80 [deg] ⁇ ⁇ 2 (see FIG. 4).
  • the pneumatic tire 1 further includes an outer reinforcing rubber 19 disposed between the wound portion 132 of the carcass layer 13 and the rim cushion rubber 17 (see FIG. 2).
  • the spring characteristics of the bead portion are reinforced by the outer reinforcing rubber 19 in a configuration in which the above-described bead filler is omitted, and there is an advantage that steering stability on a dry road surface is ensured. There is an advantage that the durability of the part is secured.
  • a layer having the largest number of wire cross sections in the wire array structure (the second to the innermost layer in FIG. 4) is defined as the largest layer.
  • the number of layers of the wire cross section (three layers in FIG. 4) outside the maximum alignment layer in the tire radial direction is the number of layers of the wire cross section inside the tire radial direction than the maximum alignment layer (FIG. 4, More than one layer).
  • the number of wire cross sections in each layer radially outward of the maximum alignment layer monotonously decreases from the maximum alignment layer toward the outer side in the tire radial direction (see FIG. 4).
  • the gap between the joining portion of the main body portion 131 and the wound portion 132 of the carcass layer 13 and the apex (so-called bead top) on the outer side in the tire radial direction of the bead core 11 becomes smaller, and the durability of the bead is improved.
  • bead top the gap between the joining portion of the main body portion 131 and the wound portion 132 of the carcass layer 13 and the apex (so-called bead top) on the outer side in the tire radial direction of the bead core 11 becomes smaller, and the durability of the bead is improved.
  • the rewinding portion 132 can be bent at an obtuse angle at the joining position with the main body portion 131, the amount of bending of the rewinding portion 132 becomes small, and there is an advantage that the durability of the bead portion is improved.
  • FIG. 18 is a chart showing the results of performance tests of the pneumatic tire according to the embodiment of the present invention.
  • FIG. 19 is an explanatory view showing a bead core of a conventional test tire.
  • the tire mass is calculated as an average value of the mass of five test tires having the same structure. Then, based on the measurement result, index evaluation is performed using the conventional example as a reference (100). The smaller the numerical value of this evaluation, the lighter the test tire, and the index is preferably 99 or less.
  • a test tire is assembled to a rim of rim size 16 ⁇ 6.5 J, and the test tire is applied with an air pressure of 230 [kPa] and a prescribed load of JATMA. Moreover, a test tire is mounted
  • SUV Sport Utility Vehicl
  • weight reduction of the tire is achieved by providing a structure (see FIGS. 1 and 2) in which the bead filler is omitted. Further, the gauges G1, Gm and G2 of the rim fitting portion in the state before the rim assembly have a relationship of G2 ⁇ Gm ⁇ G1.
  • the bead core 11 has the wire array structure described in FIG. 18, and the outer reinforcing rubber 19 is made of the same material as the rim cushion rubber 17, and the rim cushion It is integrated with the rubber 17.
  • the insulation rubber of the bead core 11 is increased, and the rubber occupancy of the closed region X is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

この空気入りタイヤでは、ビードコア11が、タイヤ子午線方向の断面視にて、ビードワイヤ111のワイヤ断面を配列して成る所定のワイヤ配列構造を有する。また、ワイヤ配列構造におけるタイヤ径方向の最内層かつタイヤ幅方向の最内側および最外側のワイヤ断面に対してリム嵌合面側から接する接線L1と、前記最内側および最外側のワイヤ断面に対する接線L1の接点C1、C2と、接点C1、C2の中点Cmと、接点C1、C2および中点Cmから前記リム嵌合面までのタイヤ径方向のゲージG1、G2、Gmとを定義する。このとき、リム組み前後におけるゲージG1、G2、Gmの変化率ΔG1、ΔG2、ΔGmが、それぞれ10[%]以上60[%]以下の範囲にある。

Description

空気入りタイヤ
 この発明は、空気入りタイヤに関し、さらに詳しくは、タイヤを軽量化しつつタイヤのリム嵌合性を確保できる空気入りタイヤに関する。
 近年では、タイヤの軽量化を目的として、ビード部の軽量化が進められている。かかる課題に関する従来の空気入りタイヤとして、特許文献1に記載される技術が知られている。特許文献1では、ビードフィラーの省略により、タイヤの軽量化が図られている。
特開2008-149778号公報
 しかしながら、上記した従来の空気入りタイヤでは、ビードフィラーの省略により、タイヤのリム嵌合性の悪化が懸念される。
 この発明は、タイヤを軽量化しつつタイヤのリム嵌合性を確保できる空気入りタイヤを提供することを目的とする。
 上記目的を達成するため、この発明にかかる空気入りタイヤは、1本あるいは複数本のビードワイヤを環状かつ多重に巻き廻して成るビードコアと、単層あるいは複数層のカーカスプライから成ると共に前記ビードコアを包み込むように巻き返されて前記ビードコアに架け渡されるカーカス層と、前記カーカス層の巻き返し部に沿って配置されてビード部のリム嵌合面を構成するリムクッションゴムとを備える空気入りタイヤであって、前記ビードコアが、タイヤ子午線方向の断面視にて、前記ビードワイヤのワイヤ断面を配列して成る所定のワイヤ配列構造を有し、前記ワイヤ配列構造におけるタイヤ径方向の最内層かつタイヤ幅方向の最内側および最外側のワイヤ断面に対して前記リム嵌合面側から接する接線L1と、接線L1の接点C1、C2と、接点C1、C2の中点Cmと、接点C1、C2および中点Cmから前記リム嵌合面までのタイヤ径方向のゲージG1、G2、Gmとを定義し、且つ、リム組み前後におけるゲージG1、G2、Gmの変化率ΔG1、ΔG2、ΔGmが、それぞれ10[%]以上60[%]以下の範囲にあることを特徴とする。
 この発明にかかる空気入りタイヤでは、ビード部のリム嵌合部の変化率ΔG1、ΔG2、ΔGmが適正化される利点がある。すなわち、上記下限により、リム嵌合圧が確保されて、タイヤのリム嵌合性が確保される。また、上記上限により、リム嵌合圧が過大となることに起因するタイヤのリム組み作業性の悪化が抑制される。
図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。 図2は、図1に記載した空気入りタイヤのビード部を示す断面図である。 図3は、図2に記載したビード部のリム嵌合部を示す拡大図である。 図4は、図3に記載したビードコアのワイヤ配列構造を示す説明図である。 図5は、タイヤのリム組み状態におけるビード部のリム嵌合部を示す説明図である。 図6は、図3に記載したリム嵌合部を示す説明図である。 図7は、図3に記載したリム嵌合部を示す説明図である。 図8は、図4に記載したビードコアの変形例を示す説明図である。 図9は、図4に記載したビードコアの変形例を示す説明図である。 図10は、図4に記載したビードコアの変形例を示す説明図である。 図11は、図4に記載したビードコアの変形例を示す説明図である。 図12は、図4に記載したビードコアの変形例を示す説明図である。 図13は、図2に記載したビード部の変形例を示す説明図である。 図14は、図13に記載したビードコアのワイヤ配列構造を示す説明図である。 図15は、図14に記載したビードコアの変形例を示す説明図である。 図16は、図1に記載した空気入りタイヤのタイヤサイド部を示す拡大図である。 図17は、図2に記載したビード部の変形例を示す断面図である。 図18は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。 図19は、従来例の試験タイヤのビードコアを示す説明図である。
 以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、この実施の形態の構成要素には、発明の同一性を維持しつつ置換可能かつ置換自明なものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
[空気入りタイヤ]
 図1は、この発明の実施の形態にかかる空気入りタイヤを示すタイヤ子午線方向の断面図である。同図は、タイヤ径方向の片側領域の断面図を示している。また、同図は、空気入りタイヤの一例として、乗用車用ラジアルタイヤを示している。
 同図において、タイヤ子午線方向の断面とは、タイヤ回転軸(図示省略)を含む平面でタイヤを切断したときの断面をいう。また、符号CLは、タイヤ赤道面であり、タイヤ回転軸方向にかかるタイヤの中心点を通りタイヤ回転軸に垂直な平面をいう。また、タイヤ幅方向とは、タイヤ回転軸に平行な方向をいい、タイヤ径方向とは、タイヤ回転軸に垂直な方向をいう。
 空気入りタイヤ1は、タイヤ回転軸を中心とする環状構造を有し、一対のビードコア11、11と、カーカス層13と、ベルト層14と、トレッドゴム15と、一対のサイドウォールゴム16、16と、一対のリムクッションゴム17、17と、インナーライナ18とを備える(図1参照)。
 一対のビードコア11、11は、スチールから成る1本あるいは複数本のビードワイヤを環状かつ多重に巻き廻して成り、ビード部に埋設されて左右のビード部のコアを構成する。
 カーカス層13は、1枚のカーカスプライから成る単層構造あるいは複数枚のカーカスプライを積層して成る多層構造を有し、左右のビードコア11、11間にトロイダル状に架け渡されてタイヤの骨格を構成する。また、カーカス層13の両端部は、ビードコア11を包み込むようにタイヤ幅方向外側に巻き返されて係止される。また、カーカス層13のカーカスプライは、スチールあるいは有機繊維材(例えば、アラミド、ナイロン、ポリエステル、レーヨンなど)から成る複数のカーカスコードをコートゴムで被覆して圧延加工して構成され、絶対値で80[deg]以上90[deg]以下のカーカス角度(タイヤ周方向に対するカーカスコードの長手方向の傾斜角として定義される)を有する。なお、図1の構成では、カーカス層13が単一のカーカスプライから成る単層構造を有するが、これに限らず、カーカス層13が複数のカーカスプライを積層して成る多層構造を有しても良い。
 ベルト層14は、一対の交差ベルト141、142と、ベルトカバー143および一対のベルトエッジカバー144とを積層して成り、カーカス層13の外周に掛け廻されて配置される。一対の交差ベルト141、142は、スチールあるいは有機繊維材から成る複数のベルトコードをコートゴムで被覆して圧延加工して構成され、絶対値で20[deg]以上55[deg]以下のベルト角度を有する。また、一対の交差ベルト141、142は、相互に異符号のベルト角度(タイヤ周方向に対するベルトコードの長手方向の傾斜角として定義される)を有し、ベルトコードの長手方向を相互に交差させて積層される(いわゆるクロスプライ構造)。ベルトカバー143および一対のベルトエッジカバー144は、スチールあるいは有機繊維材から成るベルトカバーコードをコートゴムで被覆して構成され、絶対値で0[deg]以上10[deg]以下のベルト角度を有する。また、ベルトカバー143および一対のベルトエッジカバー144は、例えば、1本あるいは複数本のベルトカバーコードをコートゴムで被覆して成るストリップ材であり、このストリップ材を交差ベルト141、142の外周面に対してタイヤ周方向に複数回かつ螺旋状に巻き付けて構成される。
 トレッドゴム15は、カーカス層13およびベルト層14のタイヤ径方向外周に配置されてタイヤのトレッド部を構成する。一対のサイドウォールゴム16、16は、カーカス層13のタイヤ幅方向外側にそれぞれ配置されて左右のサイドウォール部を構成する。一対のリムクッションゴム17、17は、左右のビードコア11、11およびカーカス層13の巻き返し部のタイヤ径方向内側にそれぞれ配置されて、ビード部のリム嵌合面を構成する。
 インナーライナ18は、タイヤ内腔面に配置されてカーカス層13を覆う空気透過防止層であり、カーカス層13の露出による酸化を抑制し、また、タイヤに充填された空気の洩れを防止する。また、インナーライナ18は、例えば、ブチルゴムを主成分とするゴム組成物、熱可塑性樹脂、熱可塑性樹脂中にエラストマー成分をブレンドした熱可塑性エラストマー組成物などから構成される。また、インナーライナ18は、タイゴム(図示省略)を介してカーカス層13に接着される。
[ビードフィラーレス構造]
 図2は、図1に記載した空気入りタイヤのビード部を示す断面図である。同図は、タイヤのリム組み前の状態におけるビード部のタイヤ子午線方向の断面図を示している。
 図2に示すように、カーカス層13は、ビードコア11を包み込むようにタイヤ幅方向外側に巻き返されて係止される。このとき、カーカス層13の巻き返し部132が本体部131に接触することにより、ビードコア11を囲む閉鎖領域Xが形成される。また、閉鎖領域Xがタイヤ全周に渡って連続することにより、ビードコア11を囲む環状の閉鎖空間が形成される。
 閉鎖領域Xは、タイヤ子午線方向の断面視にて、カーカス層13のカーカスプライにより囲まれた領域として定義される。具体的には、カーカスプライのコートゴムの表面により囲まれた領域が、閉鎖領域Xとして定義される。
 また、図2の構成では、カーカス層13が単層のカーカスプライから成り、このカーカスプライの自己接触により、閉鎖領域Xが形成されている。一方、カーカス層13が積層された複数のカーカスプライから成る構成(図示省略)では、異なるカーカスプライの相互接触により、閉鎖領域Xが形成され得る。例えば、カーカス層13が第一および第二のカーカスプライを積層して成る二層構造を有し、第一のカーカスプライの巻き返し部が本体部に接触することなくビードコア11の径方向高さH1(図2参照)の途中で終端し、第二のカーカスプライの巻き返し部がビードコア11の径方向外側まで延在して第一のカーカスプライの本体部に接触する構成(図示省略)が想定される。
 このとき、閉鎖領域Xにおけるゴム占有率が、15[%]以下の範囲にあることが好ましく、10[%]以下の範囲にあることがより好ましく、5[%]以下の範囲にあることがさらに好ましい。したがって、カーカス層13の本体部131および巻き返し部132に囲まれた閉鎖領域Xにおけるゴム占有率、すなわちビードコア11の周囲のゴムボリュームが、非常に低く設定される。これにより、ビードフィラーを省略したことによるタイヤの軽量化の目的が達成される。なお、ゴム占有率の下限は、特に限定がないが、0.1[%]以上であることが好ましい。これにより、ビードコア11のインシュレーションゴムの量が適正に確保される。
 ゴム占有率は、タイヤ子午線方向の断面視にて、閉鎖領域Xの全体の断面積に対する閉鎖領域X内のゴム材料の断面積の比率[%]として算出される。
 例えば、図2の構成では、カーカス層13の巻き返し部132が、閉鎖領域Xにビードフィラーを含まずに巻き返されて本体部131に接触している。また、カーカス層13のカーカスプライが、ビードコア11の外周面に沿って巻き上げられている。このため、ビードコア11の構成部材のみが、閉鎖領域Xに存在している。ビードコア11の構成部材は、ビードワイヤ111、インシュレーションゴム、ビードカバーおよびラッピング糸を含む。
 なお、ビードフィラーは、ビードコアとカーカス層の本体部および巻き返し部との間の三角形の隙間を埋めて配置される補強ゴムであり、ビード部の剛性を高めるために配置される。また、ビードフィラーは、一般に、三角形断面を有し、65以上99以下のゴム硬さを有する。
 ゴム硬さは、JIS K6253に準拠して測定される。
 また、上記したビードフィラーを省略した構成では、図2に示すように、カーカス層13の巻き返し部132が、カーカス層13の本体部131に面接触して係止されることが好ましい。また、カーカス層13の本体部131と巻き返し部132との接触部の径方向高さH2が、ビードコア11の径方向高さH1に対して、0.80≦H2/H1≦3.00の関係を有することが好ましく、1.20≦H2/H1≦2.50の関係を有することがより好ましい。これにより、カーカス層13の自己接触部の径方向高さH2が適正化される。すなわち、上記下限により、巻き返し部132が本体部131に安定的に接触して、ビード部の耐久性が向上する。また、上記上限により、巻き返し部132が過大となることに起因するタイヤ重量の増加が抑制される。
 ビードコアの径方向高さH1は、ビードコアのワイヤ配列構造におけるタイヤ径方向の最内層かつタイヤ幅方向の最外側のワイヤ断面のタイヤ径方向の内側端から、タイヤ径方向の最外層かつタイヤ幅方向の最外側のワイヤ断面のタイヤ径方向の外側端までのタイヤ径方向の最大高さとして測定される。
 カーカス層の自己接触部の径方向高さH2は、カーカス層の本体部と巻き返し部との接触部のタイヤ径方向の最大長さとして測定される。
 また、上記の構成では、図2に示すように、カーカス層13の巻き返し部132の端部(図中の符号省略)が、カーカス層13の本体部131に接触することが好ましい。かかる構成では、巻き返し部132の端部が本体部131から離間する構成(図示省略)と比較して、巻き返し部132の端部における応力集中が緩和される。これにより、巻き返し部132の端部を起点とする周辺ゴムのセパレーションが抑制される。
 また、カーカス層13の本体部131と巻き返し部132との接触部の実長さLa2(図中の寸法記号省略)が、閉鎖領域Xの周長La1(図中の寸法記号省略)に対して、0.30≦La2/La1≦2.00の関係を有することが好ましく、0.37≦La2/La1≦1.80の関係を有することがより好ましい。これにより、カーカス層13の自己接触部の実長さLa2が適正化される。すなわち、上記下限により、カーカス層13のバネ特性が適正に確保されて、ドライ路面での操縦安定性が確保され、また、ビード部の耐久性が確保される。また、上記上限により、巻き返し部132が過大となることに起因するタイヤ重量の増加が抑制される。
 閉鎖領域Xの周長La1は、タイヤ子午線方向の断面視にて、閉鎖領域Xの境界線を構成するカーカスプライの表面のペリフェリ長さとして測定される。
 接触部の実長さLa2は、タイヤ子午線方向の断面視にて、カーカス層の本体部と巻き返し部との自己接触部におけるペリフェリ長さとして測定される。
 なお、図2の構成では、上記のように、空気入りタイヤ1がビードフィラーを省略した構造を有している。しかし、これに限らず、空気入りタイヤ1が、ビードフィラー、その他の補強ゴムをカーカス層の本体部と巻き返し部との間に備えても良い(後述する図17を参照)。
[外側補強ゴム]
 図2に示すように、空気入りタイヤ1は、上記したサイドウォールゴム16およびリムクッションゴム17に加えて、外側補強ゴム19を備える。
 サイドウォールゴム16は、上記のように、カーカス層13のタイヤ幅方向外側にそれぞれ配置されてタイヤのサイドウォール部を構成する。また、サイドウォールゴム16のゴム硬さが、40以上70以下の範囲にある。また、サイドウォールゴム16の破断伸びが、400[%]以上650[%]以下の範囲にある。
 破断伸びは、JIS K6251規定に準拠して測定される。
 リムクッションゴム17は、上記のように、ビードコア11およびカーカス層13の巻き返し部132のタイヤ径方向内側に配置されてビード部のリム嵌合面を構成する。また、リムクッションゴム17のゴム硬さが、50以上80以下の範囲にある。また、リムクッションゴム17の破断伸びが、150[%]以上450[%]以下の範囲にある。
 外側補強ゴム19は、カーカス層13の巻き返し部132とリムクッションゴム17との間に挟み込まれて配置される(図2参照)。かかる構成では、特に、上記したビードフィラーを省略した構成にて、ビード部のバネ特性が外側補強ゴム19により補強されて、ドライ路面での操縦安定性が確保され、また、ビード部の耐久性が向上する。
 また、外側補強ゴム19のゴム硬さが、65以上105以下の範囲にあることが好ましく、70以上100以下の範囲にあることがより好ましい。これにより、外側補強ゴム19の上記作用が適正に確保される。
 また、外側補強ゴム19のゴム硬さが、サイドウォールゴム16およびリムクッションゴム17のゴム硬さよりも高い。具体的には、サイドウォールゴム16のゴム硬さと外側補強ゴム19のゴム硬さとの差ΔHs_SWが7以上であることが好ましく、12以上であることがより好ましい。また、リムクッションゴム17のゴム硬さと外側補強ゴム19のゴム硬さとの差ΔHs_RCが3以上であることが好ましく、7以上であることがより好ましい。これにより、外側補強ゴム19によるビード部のバネ特性の補強作用が適正に発揮される。なお、上記ゴム硬さの差ΔHs_SWの下限は、上記した外側補強ゴム19のゴム硬さの下限により制約を受ける。
 また、外側補強ゴム19の破断伸びが、50[%]以上400[%]以下の範囲にあることが好ましく、70[%]以上350[%]以下の範囲にあることがより好ましい。
 例えば、図2の構成では、リムクッションゴム17が、ビード・トゥBtからビード・ベースBbの全域に渡って延在してリム10のビードシート101に対するリム嵌合面を形成している。また、リムクッションゴム17が、ビード・ベースBbからカーカス層13の巻き返し部132に沿ってタイヤ径方向外側に延在して、リム10のフランジ102に対する嵌合面を形成している。また、リムクッションゴム17のタイヤ径方向外側の端部が、カーカス層13とサイドウォールゴム16との間に挿入され、また、カーカス層13の巻き返し部132の端部およびリム10のフランジ102よりもタイヤ径方向外側まで延在している。また、ビード部が、チェーファー(図示省略)を備えても良い。
 なお、リムクッションゴム17は、少なくとも、ビード・ヒールBhからビードコア11のタイヤ径方向の最内層の中央部(後述する中点Cm)までの領域に延在することが好ましい。これにより、ビード部のリム嵌合部の耐久性が適正に確保される。
 また、図2の構成では、外側補強ゴム19が、タイヤ径方向に長尺な形状を有し、カーカス層13の巻き返し部132とリムクッションゴム17との間に挟み込まれている。また、外側補強ゴム19のタイヤ径方向内側の端部が、ビードコア11に対してタイヤ径方向にオーバーラップしている。また、外側補強ゴム19が、カーカス層13の巻き返し部132の端部よりもタイヤ径方向外側まで延在して、カーカス層13の本体部131とサイドウォールゴム16との間に挟み込まれている。また、外側補強ゴム19が、カーカス層13の巻き返し部132の端部をタイヤ幅方向外側から覆っている。また、外側補強ゴム19が、カーカス層13の本体部131と巻き返し部132との接触部の全域に渡って、カーカス層13の巻き返し部132に隣接している。これにより、ビード部のバネ特性が外側補強ゴム19により適正に補強されて、ドライ路面での操縦安定性が向上し、また、ビード部の耐久性が向上する。また、外側補強ゴム19のゴム硬さがサイドウォールゴム16およびリムクッションゴム17のゴム硬さよりも高いので、カーカス層13の巻き返し部132の端部付近におけるゴム硬さの分布が、カーカス層13の端部からタイヤサイド部の表面に向かって減少する。これにより、カーカス層13の端部付近に発生する応力が緩和されて、周辺ゴムのセパレーションが抑制される。
 また、タイヤ内径RDの測定点から外側補強ゴム19のタイヤ径方向外側の端部までの径方向高さH3と、タイヤ断面高さSH(図1参照)とが、0.10≦H3/SH≦0.60の関係を有することが好ましく、0.15≦H3/SH≦0.50の関係を有することがより好ましい。これにより、外側補強ゴム19の径方向高さH3が適正化される。すなわち、上記下限により、ビード部のバネ特性が外側補強ゴム19により適正に補強されて、ドライ路面での操縦安定性が向上し、また、ビード部の耐久性が向上する。また、上記上限により、外側補強ゴム19が過大となることに起因するタイヤ重量の増加が抑制される。
 タイヤ内径RDは、規定リムのリム径に等しい。
 径方向高さH3は、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。具体的には、外側補強ゴム19のタイヤ径方向外側の端部の直径と、タイヤ内径RDとの差として算出される。
 タイヤ断面高さSHは、タイヤ外径とリム径との差の1/2の距離であり、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。
 規定リムとは、JATMAに規定される「適用リム」、TRAに規定される「Design Rim」、あるいはETRTOに規定される「Measuring Rim」をいう。また、規定内圧とは、JATMAに規定される「最高空気圧」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「INFLATION PRESSURES」をいう。また、規定荷重とは、JATMAに規定される「最大負荷能力」、TRAに規定される「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」の最大値、あるいはETRTOに規定される「LOAD CAPACITY」をいう。ただし、JATMAにおいて、乗用車用タイヤの場合には、規定内圧が空気圧180[kPa]であり、規定荷重が最大負荷能力の88[%]である。
 また、カーカス層13の巻き返し部132の端部から外側補強ゴム19のタイヤ径方向外側の端部までの径方向高さH4が、カーカス層13の本体部131と巻き返し部132との接触部の径方向高さH2に対して、0.10≦H4/H2の関係を有することが好ましく、0.30≦H4/H2の関係を有することがより好ましい。これにより、ドライ路面での操縦安定性が向上し、また、ビード部の耐久性が向上する。なお、比H4/H2の上限は、上記した比H3/SHの上限により制約を受ける。
 また、外側補強ゴム19とビードコア11とのタイヤ径方向のオーバーラップ量H5が、ビードコア11の径方向高さH1に対して、0.05≦H5/H1≦1.00の関係を有することが好ましく、0.10≦H5/H1≦1.00の関係を有することがより好ましい。また、オーバーラップ量H5が、5.0[mm]≦H5の範囲にあることが好ましい。これにより、外側補強ゴム19とビードコア11とのオーバーラップ量H5が適正化される。特に、上記下限により、オーバーラップ量H5が確保されて、外側補強ゴム19のタイヤ径方向の内側端部におけるゴムのセパレーションが抑制される。
 オーバーラップ量H5は、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態として測定される。
 なお、上記に限らず、外側補強ゴム19が、ビードコア11よりもタイヤ径方向外側に配置されても良い(図示省略)。
 また、カーカス層13の巻き返し部132の端部からタイヤサイド部の外表面に引いた垂線の長さT1と、前記垂線上における外側補強ゴム19の厚さT2とが、0.10≦T2/T1≦0.90の関係を有することが好ましく、0.20≦T2/T1≦0.80の関係を有することがより好ましい。これにより、外側補強ゴム19の厚さT2が適正化される。すなわち、上記下限により、ビード部のバネ特性が外側補強ゴム19により適正に補強されて、ドライ路面での操縦安定性が向上し、また、ビード部の耐久性が向上する。また、上記上限により、外側補強ゴム19が過大となることに起因するタイヤ重量の増加が抑制される。
 また、上記のようなビードフィラーに代えて外側補強ゴム19を備える構成では、下記の数式(1)により定義される数値Kが、0.17≦Kであることが好ましく、0.20≦Kであることがより好ましい。これにより、外側補強ゴム19の機能が適正に確保される。数式(1)において、Wはタイヤ呼び幅[mm]であり、Iはタイヤ呼び内径[inch]であり、Bはビードコアにおけるビードワイヤの総断面積[mm]である。
Figure JPOXMLDOC01-appb-M000001
[リム嵌合部の変化率]
 上記したような、ビードフィラーを省略した構成では、ビード部の剛性が低下して、ビード部のリム嵌合圧が低下する傾向にある。そこで、図2の構成では、タイヤのリム嵌合性を確保するために、ビードコア11が以下の構成を有している。
 図3は、図2に記載したビード部のリム嵌合部を示す拡大図である。図4は、図3に記載したビードコアのワイヤ配列構造を示す説明図である。図5は、タイヤのリム組み状態におけるビード部のリム嵌合部を示す説明図である。これらの図において、図3は、リム組み前の状態におけるリム嵌合部を示し、図5は、リム組み後の状態におけるリム嵌合部を示している。また、図4は、部品単体時における未加硫のビードコア11の径方向の断面図を示している。
 図2において、ビード部のリム嵌合面は、ビード・ベースBbと、ビード・トゥBtと、ビード・ヒールBhとを含み、タイヤ周方向に一様な輪郭形状を有する。ビード・ベースBbは、ビード部のタイヤ径方向内側に形成されたフラットな領域であり、リムのビードシート101に対する接触面を構成する。ビード・トゥBtは、タイヤ子午線方向の断面視にてL字形状ないしはV字形状を有するビード部の先端であり、リム嵌合面のタイヤ幅方向の最も内側に位置する。ビード・ヒールBhは、タイヤサイド部の壁面とビード・ベースBbとを接続する屈曲部である。
 タイヤのリム組み前の状態(図2および図3参照)は、タイヤ回転軸を水平にしてタイヤ単体を直立させた状態で、左右のビード部の位置が規定リムのリム幅およびリム径の測定点に一致するように固定したときの状態として定義される。かかるタイヤ形状は、タイヤ加硫成形金型内におけるタイヤ形状、すなわちインフレート前の自然なタイヤ形状に最も近い。
 タイヤのリム組み後の状態(図5参照)は、タイヤを規定リムに装着して規定内圧を付与すると共に無負荷状態としたときの状態として定義される。タイヤのリム組み状態では、ビード部のリム嵌合面がホイールのリム10に嵌合して、タイヤが保持される。このとき、リム嵌合面のビード・ベースBbがリム10のビードシート101に押圧されて面接触することにより、ビード部とリム10との嵌合部が封止されて、タイヤ内部の気密性が確保される。また、ビード・ヒールBhがビードシート101とフランジ102との接続部に位置し、リム嵌合面のビード・ヒールBhから外側の領域がリム10のフランジ102に当接して、ビード部がタイヤ幅方向外側から保持される。
 図4に示すように、ビードコア11は、タイヤ子午線方向の断面視にて、ビードワイヤ111のワイヤ断面を配列して成る所定のワイヤ配列構造を有する。このワイヤ配列構造については、後述する。
 ここで、タイヤのリム組み前の状態(図3参照)におけるタイヤ子午線方向の断面視にて、ビードコア11のワイヤ配列構造におけるタイヤ径方向の最内層かつタイヤ幅方向の最内側および最外側のワイヤ断面に対してリム嵌合面側から接する接線L1を定義する。また、各ワイヤ断面に対する接線L1の接点C1およびC2と、これらの接点C1、C2の中点Cmとをそれぞれ定義する。また、接点C1、C2および中点Cmからリム嵌合面までのタイヤ径方向のゲージG1、G2およびGmを定義する。具体的には、タイヤ子午線方向の断面視にて、接点C1、C2および中点Cmを通りタイヤ軸方向に垂直な直線とビード・ベースBbとの交点P1、P2およびPmをそれぞれ作図し、接点C1、C2および中点Cmと交点P1、P2およびPmとの距離が、ゲージG1、G2およびGmとして測定される。
 同様に、タイヤのリム組み後の状態(図5参照)におけるリム嵌合部のゲージG1’、G2’およびGm’を定義する。
 このとき、リム組み前後の状態におけるリム嵌合部のゲージG1、G2、Gmの変化率ΔG1、ΔG2、ΔGmが、それぞれ10[%]以上60[%]以下の範囲にあることが好ましく、15[%]以上50[%]以下の範囲にあることがより好ましく、20[%]以上45[%]以下の範囲にあることがさらに好ましく、25[%]以上40[%]以下の範囲にあることが最も好ましい。したがって、ゲージG1、G2、Gmの変化率ΔG1、ΔG2、ΔGmが、閉鎖領域Xにて大きなゴム占有率をもつ一般的なタイヤ構造(特に、ビードコアと同等以上の断面積をもつビードフィラーを備えるタイヤ構造)と比較して、大きく設定される。これにより、リム嵌合部の変化率ΔG1、ΔG2、ΔGmが適正化される。すなわち、上記下限により、リム嵌合圧が確保されて、タイヤのリム嵌合性が確保される。また、上記上限により、リム嵌合圧が過大となることに起因するタイヤのリム組み作業性の悪化が抑制される。
 変化率ΔGiは、所定の測定点におけるリム組み前後のゲージGi、ゲージGi’を用いて、ΔGi=(Gi-Gi’)/Gi×100として定義される。例えば、変化率ΔG1が、リム組み前のゲージG1(図3参照)およびリム組み後のゲージG1’(図5参照)を用いて、ΔG1=(G1-G1’)/G1×100として算出される。
 上記したリム嵌合部の変化率ΔG1、ΔG2、ΔGmは、例えば、後述するクッションゴム層20の構成(図6参照)やビード・ベースBbのテーパ角の構成(図7参照)により実現される。
 また、リム嵌合部の変化率ΔG1、ΔG2、ΔGmが、|ΔGm-ΔG2|<|ΔG1-ΔGm|の条件を満たすことが好ましい。したがって、ビード・トゥBt側の変化率差|ΔG1-ΔGm|が、ビード・ヒールBh側の変化率差|ΔGm-ΔG2|よりも大きく設定される。具体的には、変化率ΔG1、ΔG2、ΔGmが、20[%]≦|(ΔG1-ΔGm)/(ΔGm-ΔG2)|≦450[%]の条件を満たすことが好ましく、30[%]≦|(ΔG1-ΔGm)/(ΔGm-ΔG2)|≦300[%]の条件を満たすことがより好ましい。これにより、リム嵌合部の変化率ΔG1、ΔG2、ΔGmの関係が適正化される。すなわち、上記下限により、タイヤのリム嵌合性が向上する。また、上記上限により、タイヤのリム組み作業性が向上する。
 また、リム嵌合部のゲージG1、G2およびGmの変化率ΔG1、ΔG2、ΔGmが、ΔG2<ΔGm<ΔG1の関係を有することが好ましい。すなわち、変化率ΔG1、ΔG2、ΔGmがビード・トゥBt側に向かって増加する。これにより、タイヤのリム嵌合性が向上する。
 また、図3の構成では、タイヤのリム組み前の状態におけるリム嵌合部のゲージG1、G2およびGmが、G2<Gm<G1の関係を有している。すなわち、リム嵌合部のゲージG1、G2およびGmがビード・トゥBt側に向かって増加している。これにより、変化率ΔG1、ΔG2、ΔGmの相互関係が適正化されている。また、乗用車用タイヤでは、ゲージG1が、G1≦8.0[mm]の範囲にあることが好ましく、G1≦6.0[mm]の範囲にあることがより好ましい。また、ゲージG2が、1.0[mm]≦G2の範囲にあることが好ましく、2.0[mm]≦G2の範囲にあることがより好ましい。これにより、ビードコア11の径方向内側におけるリム嵌合部のゴムボリュームが適正化される。
 また、ビードコア11のワイヤ配列構造の最内層の幅Wc2[mm](図4参照)と、中点Cmにおける変化率ΔGm[%]と、タイヤ内径RD[inch](図2参照)とが、1.0[%・mm/inch]≦Wc2×ΔGm/RD≦50[%・mm/inch]の関係を有することが好ましく、2.0[%・mm/inch]≦Wc2×ΔGm/RD≦40[%・mm/inch]の関係を有することがより好ましく、5.0[%・mm/inch]≦Wc2×ΔGm/RD≦30[%・mm/inch]の関係を有することがより好ましい。これにより、ビードコア11の最内層の幅Wc2と変化率ΔGmとの関係が適正化される。すなわち、上記下限により、タイヤのリム嵌合性が確保される。また、上記上限により、タイヤのリム組み作業性が向上する。
 ワイヤ配列構造の最内層の幅Wc2は、図4に示すように、タイヤ幅方向の最内側および最外側のワイヤ断面を含む最大幅として測定される。
 また、ワイヤ配列構造の最内層の幅Wc2が、3.0[mm]≦Wc2≦10.0[mm]の範囲にあることが好ましく、4.5[mm]≦Wc2≦9.6[mm]の範囲にあることがより好ましい。
[ビードコアのワイヤ配列構造]
 図4に示すように、ビードコア11は、ビードワイヤ111を環状かつ多重に巻き廻して成り、タイヤ子午線方向の断面視にて、所定のワイヤ配列構造を有する。ワイヤ配列構造は、ビードワイヤ111のワイヤ断面の配列により定義される。また、ワイヤ配列構造がタイヤ径方向に積層された複数の層から成り、これらの層がタイヤ幅方向に一列に配置された複数のワイヤ断面から成る。また、ワイヤ配列構造の最内層が、ビード部のリム嵌合面に対して略平行となり、また、タイヤのリム嵌合時にてリム10のビードシート101に対向する(図3参照)。
 ビードコア11の製造工程では、コア成形治具(図示省略)が用いられ、1本あるいは複数本のビードワイヤ111が所定のワイヤ配列構造でコア成形治具に巻き付けられて、未加硫のビードコア11が成形される。そして、成形されたビードコア11がグリーンタイヤの加硫成形工程の前にプレ加硫される。なお、これに限らず、ビードコア11のプレ加硫が省略され、未加硫のビードコア11がグリーンタイヤに組み込まれて、グリーンタイヤの加硫成形工程が行われても良い。
 また、ビードワイヤ111は、素線と、素線を覆うインシュレーションゴムとから成る(図示省略)。また、素線が、スチールから成る。また、インシュレーションゴムが、70[M]以上のムーニー粘度を有するゴム組成物から成ることが好ましい。ムーニー粘度は、JIS K6300-1:2013に準拠して算出される。
 ここで、図2の構成では、上記のように、カーカス層13の巻き返し部132が、カーカス層13の本体部131に接触して、ビードコア11を囲む閉鎖領域Xを形成する。また、閉鎖領域Xにおけるゴム占有率が小さく設定されて、ビード部の軽量化が図られている。このとき、ビード部の耐久性を高めるために、閉鎖領域Xにおける空洞部の発生を抑制することが好ましい。
 そこで、図4に示すように、ビードコア11のワイヤ配列構造が、タイヤ径方向外側に向かって凸となる楔形状を有する。具体的には、ワイヤ配列構造におけるワイヤ断面の配列数が最大である層(図4では、最内層から2番目の層)を最大配列層として定義する。このとき、最大配列層よりもタイヤ径方向外側にあるワイヤ断面の層数(図4では、3層)が、最大配列層よりもタイヤ径方向内側にあるワイヤ断面の層数(図4では、1層)よりも多い。また、最大配列層よりもタイヤ径方向外側の各層におけるワイヤ断面の配列数が、最大配列層からタイヤ径方向外側に向かって単調減少する。また、ワイヤ断面の層数が4以上6以下の範囲にあることが好ましい。また、ワイヤ配列構造の最大配列層におけるワイヤ断面の配列数が4または5であり、タイヤ径方向の最外層のワイヤ断面の配列数が1または2であることが好ましい。
 また、ワイヤ断面が、最大配列層からタイヤ径方向外側の領域にて、最密充填構造で配列されることが好ましい。最密充填構造とは、タイヤ子午線方向の断面視にて、隣り合う3つのワイヤ断面の中心が略正三角形となるように配列された状態をいう。かかる最密充填構造では、ワイヤ断面の列が縦横に直交する格子配列構造と比較して、ビードコア11のワイヤ断面の配置密度が高まり、ビードコア11の耐コア崩れ性が向上する。なお、上記最密状態において、隣り合うワイヤ断面のすべての組が相互に接触する必要はなく、一部の組が微少な隙間を空けて配置されても良い(図示省略)。
 かかる構成では、図3に示すように、カーカス層13の本体部131および巻き返し部132が、ビードコア11のタイヤ幅方向の左右の側面に当接しつつワイヤ配列構造の楔形状に沿ってタイヤ径方向外側に延在し、Y字状に合流して相互に接触する。これにより、カーカス層13の本体部131および巻き返し部132の合流部とビードコア11のタイヤ径方向外側の頂部(いわゆるビードトップ)との間の隙間が小さくなり、ビード部の耐久性が向上する。特に、上記したビードフィラーを省略した構造にて、閉鎖領域Xのゴム占有率を低減できる点で好ましい。また、巻き返し部132が本体部131との合流位置にて鈍角で屈曲できるので、巻き返し部132の屈曲量が小さくなり、ビード部の耐久性が向上する。
 また、ワイヤ配列構造のタイヤ径方向の最内層におけるワイヤ断面の配列数が、3または4であり、また、最大配列層のワイヤ断面の配列数に対して同一あるいは少ないことが好ましい。
 また、図4に示すように、ワイヤ配列構造のタイヤ径方向内側かつタイヤ幅方向内側および外側の角部におけるワイヤ断面の配列角度θ1、θ2をそれぞれ定義する。このとき、配列角度θ1、θ2が、80[deg]≦θ1および80[deg]≦θ2の範囲にある。すなわち、ワイヤ断面の配列角度θ1、θ2が略直角あるいは鈍角となる。また、図4に示すように、ワイヤ断面の配列角度θ1、θ2が100[deg]≦θ1≦150[deg]および100[deg]≦θ2≦150[deg]の範囲にあることが好ましい。これにより、タイヤ加硫時におけるワイヤ配列構造の乱れが抑制されて、タイヤのリム嵌合性が向上し、また、ビード部の耐久性が向上する。また、ワイヤ断面の配列角度θ1、θ2が鈍角である場合には、カーカスプライをビードコア11のタイヤ径方向内側の角部に沿って巻き返し得るので、閉鎖領域Xにおけるゴム占有率を低減して、ビード部をより軽量化できる。
 配列角度θ1、θ2は、ワイヤ配列構造の角部を構成する3つのワイヤ断面の中心を結ぶ線のなす角として測定される。
 また、図4において、ビードコア11の最大幅Wc1および最大高さHc1と、ビードコア11におけるビードワイヤ111の総断面積Sとが、1.20≦Wc1×Hc1/S≦5.00の関係を有することが好ましく、1.50≦Wc1×Hc1/S≦4.50の関係を有することがより好ましく、1.80≦Wc1×Hc1/S≦4.00の関係を有することがより好ましい。これにより、ビードコア11のワイヤ配列構造が適正化される。すなわち、上記下限により、ワイヤ断面の配列数が確保されて、タイヤのリム嵌合性が確保される。また、上記上限により、ビードコア11が軽量化される。
 なお、ビードワイヤの総断面積Sは、インシュレーションゴムの断面積を含まない。
 また、ビードワイヤ111の総断面積Sが、5[mm]≦S≦35[mm]の範囲にあることが好ましく、6[mm]≦S≦32[mm]の範囲にあることがより好ましく、7[mm]≦S≦28[mm]の範囲にあることがさらに好ましい。これにより、ビードワイヤ111の総断面積Sが適正化される。すなわち、上記下限により、ビードワイヤ111の総断面積Sが確保されて、タイヤのリム嵌合性が確保される。また、上記上限により、ビードコア11が軽量化される。
 また、ビードワイヤ111の外径φ(図4参照)が、0.8[mm]≦φ≦1.5[mm]の範囲にあることが好ましく、0.9[mm]≦φ≦1.4[mm]の範囲にあることがより好ましく、1.0[mm]≦φ≦1.3[mm]の範囲にあることがさらに好ましい。これにより、ビードワイヤ111の外径φが適正化される。すなわち、上記下限により、ビードワイヤ111の外径φが確保されて、タイヤのリム嵌合性が確保される。また、上記上限により、ビードコア11が軽量化される。
 また、図4において、ワイヤ配列構造の最内層の接線L1からビードコア11の最大幅位置までの高さHc2と、ビードコア11の最大高さHc1とが、1.10≦(Hc1-Hc2)/Hc2≦2.80の関係を有することが好ましく、1.30≦(Hc1-Hc2)/Hc2≦2.50の関係を有することが好ましく、1.50≦(Hc1-Hc2)/Hc2≦2.30の関係を有することがより好ましい。これにより、ビードコア11のワイヤ配列構造が適正化される。
 ビードコアの最大高さHc1は、接線L1を基準としたビードコアの最大高さとして測定される。
 ビードコアの最大幅位置の高さHc2は、接線L1と、最大配列層を構成するワイヤ断面の中心を結ぶ仮想線との距離として測定される。また、ワイヤ配列構造が複数の最大配列層を備える構成では、最もタイヤ径方向外側にある最大配列層が用いられて、最大幅位置の高さHc2が測定される。
 例えば、図4の構成では、ワイヤ断面の層数が5であり、ワイヤ断面の配列数がタイヤ径方向の最内層から順に3-4-3-2-1に設定されている。したがって、最大配列層におけるワイヤ断面の配列数が4である。また、最大配列層よりもタイヤ径方向外側にあるワイヤ断面の層数が3であり、最大配列層よりもタイヤ径方向内側にあるワイヤ断面の層数が1である。したがって、最大配列層が、タイヤ径方向に非対称であり、ワイヤ配列構造のタイヤ径方向の中心位置よりもタイヤ径方向内側に偏って配置されている。また、ワイヤ配列構造が、最大配列層からタイヤ径方向外側で長尺構造を有している。また、各層におけるワイヤ断面の配列数が、最大配列層からタイヤ径方向外側に向かって1つずつ減少する。また、すべてのワイヤ断面が、最密充填構造で配列されている。このため、ワイヤ配列構造のタイヤ径方向の左右の角部におけるワイヤ断面の配列角度θ1、θ2が、いずれも約135[deg](具体的には130[deg]~140[deg]の範囲)である。また、ワイヤ断面の最大配列層が、タイヤ径方向の最内層ではない。また、各層におけるワイヤ断面の配列数が最内層から最大配列層に向かって1つずつ増加している。これにより、ワイヤ配列構造が最適化されている。
 また、図3において、ビードコア11のタイヤ径方向外側の端部からカーカス層13の本体部131と巻き返し部132との接触部までのタイヤ径方向の距離Hgが、ビードワイヤ111の外径φに対して、Hg/φ≦7.0の関係を有することが好ましく、Hg/φ≦3.0の関係を有することがより好ましい。これにより、ビードコア11の周辺の剛性が向上する。なお、比Hg/φの下限は、Hg=0の場合で、0≦Hg/φである。
[リム嵌合部のゲージ]
 図6は、図3に記載したリム嵌合部を示す説明図である。同図は、リム組み前の状態におけるリム嵌合部を示している。同図において、図3に記載した構成要素と同一の構成要素には同一の符号を付し、その説明を省略する。
 図6において、上記のように、ワイヤ配列構造の最内層の接線L1とタイヤ幅方向の最外側のワイヤ断面との接点C2からリム嵌合面までのタイヤ径方向のゲージG2を定義する。このとき、ゲージG2とビードワイヤ111の外径φ(図4参照)とが、1.3≦G2/φ≦9.5の関係を有することが好ましく、1.8≦G2/φ≦5.5の関係を有することがより好ましい。これにより、リム嵌合部のゲージG2が適正化される。すなわち、上記下限により、リム嵌合部のゲージG2が確保されて、タイヤのリム嵌合性が確保される。また、上記上限により、リム嵌合部のゲージG2が過大となることに起因するタイヤのリム組み作業性の悪化が抑制される。
 また、図6において、ビードコア11の接点C2を通りタイヤ幅方向に平行な直線とリム嵌合部のタイヤ幅方向外側の壁面との交点Qを定義する。また、ビードコア11の接点C2からリム嵌合面の点Qまでのタイヤ幅方向のゲージWhを定義する。このとき、ゲージWhとビードワイヤ111の外径φ(図4参照)とが、2.0≦Wh/φ≦15.0の関係を有することが好ましく、2.5≦Wh/φ≦10.0の関係を有することがより好ましい。これにより、リム嵌合部のゲージWhが適正化される。すなわち、上記下限により、リム嵌合部のゲージWhが確保されて、タイヤのリム嵌合性が確保され、また、リム嵌合部の耐久性が確保される。また、上記上限により、リム嵌合部のゲージWhが過大となることに起因するタイヤのリム組み作業性の悪化が抑制される。
 また、図6に示すように、クッションゴム層20が、ビードコア11の最内層とリムクッションゴム17との間に挿入される。クッションゴム層20は、リムクッションゴム17よりも低いゴム硬さを有する部材であり、例えば、インナーライナ18、インナーライナ18とカーカス層13とを接着するタイゴム(図示省略)などを含み、カーカスプライを含まない。また、クッションゴム層20は、インナーライナ18およびタイゴムに対して一体構造を有しても良いし、分離した構造を有しても良い(図示省略)。また、クッションゴム層20は、上記したインナーライナ18およびタイゴムと同一のゴム材料から構成されても良いし、異なるゴム材料から構成されても良い(図示省略)。また、クッションゴム層20が、ビードコア11の接点C1から中点Cmまでの範囲、好ましくは接点C1から接点C2までの範囲をタイヤ幅方向に横断することが好ましい。かかる構成では、クッションゴム層20がビードコア11の最内層とビード部のリム嵌合面との間に介在することにより、リム嵌合部の変化率ΔG1、ΔG2、ΔGmが高まり、タイヤのリム嵌合性が向上する。また、リム10に対するリム嵌合面の接触圧が均一化される。
 また、クッションゴム層20のゴム硬さが、リムクッションゴム17のゴム硬さよりも5以上低いことが好ましく、8以上低いことがより好ましい。これにより、リム嵌合部の変化率ΔG1、ΔG2、ΔGmを高める作用が適正に得られる。
 例えば、図6の構成では、タイヤ子午線方向の断面視にて、クッションゴム層20が、タイヤ内腔面からカーカス層13の巻き返し部132に沿ってタイヤ幅方向外側に延在して、ビードコア11とリムクッションゴム17との間に介在している。また、クッションゴム層20が、ビードコア11の最内層の中点Cmを越えて最外側の接点C2まで延在している。また、クッションゴム層20のタイヤ幅方向外側の端部が、ビードコア11の接線L1よりもタイヤ径方向内側で終端している。したがって、クッションゴム層20の端部が、ビードコア11のタイヤ幅方向外側の側面まで延在していない。これにより、ビードコア11とリム嵌合面(特にビード・ベースBb)との間の変化率ΔG1、ΔG2、ΔGmが効果的に高められ、一方で、ビードコア11とリム10のフランジ102(図2参照)との間の剛性が適正に確保されている。しかし、これに限らず、クッションゴム層20のタイヤ幅方向外側の端部が、ビードコア11の接線L1よりもタイヤ径方向外側まで延在しても良い。
 また、図6において、リム嵌合部のゲージG1、G2の測定点C1、P1;C2、P2間におけるクッションゴム層20の厚さTc1、Tc2が、Tc2<Tc1の関係を有することが好ましい。すなわち、ビード・トゥBt側におけるクッションゴム層20の厚さTc1が、ビード・ヒールBh側におけるクッションゴム層20の厚さTc2よりも厚いことが好ましい。これにより、ビード・トゥBt側におけるリム嵌合部の変化率ΔG1が、ビード・ヒールBh側におけるリム嵌合部の変化率ΔG2よりも大きく(ΔG2<ΔG1)なり、タイヤのリム嵌合性が向上する。
 また、上記のように、リム嵌合部のゲージG1、G2、Gmの測定点C1、P1;C2、P2;Cm、Pm間におけるクッションゴム層20の厚さの関係を調整することにより、リム嵌合部の変化率ΔG1、ΔG2、ΔGmの関係を調整できる。
 また、接点C1から接点C2までのタイヤ幅方向の領域におけるクッションゴム層20の厚さの平均値が、0.3[mm]以上3.0[mm]以下の範囲にあることが好ましい。これにより、クッションゴム層20の平均厚さが適正化される。すなわち、上記下限により、リム嵌合部の変化率ΔG1、ΔG2、ΔGmを高めるクッションゴム層20の作用が適正に得られる。また、上記上限により、クッションゴム層20が過大となることに起因するリム嵌合部の剛性の低下が抑制される。
 また、図6において、ビード・トゥBt側におけるリム嵌合部のゲージG1とクッションゴム層20の厚さTc1とが、0.03≦Tc1/G1≦0.95の関係を有することが好ましく、0.05≦Tc1/G1≦0.85の関係を有することがより好ましい。これにより、クッションゴム層20の平均厚さが適正化される。すなわち、上記下限により、クッションゴム層20の作用が適正に確保されて、リム嵌合部の変化率ΔG1が増加する。また、上記上限により、リムクッションゴム17のゲージG1が確保されて、タイヤのリム嵌合性が適正に確保される。
 また、タイヤ内腔部側にて、クッションゴム層20が、ビードコア11の高さH1(図2参照)のタイヤ径方向外側の測定点からタイヤ径方向外側に向かって、好ましくは5[mm]以上延在することが好ましい。
[リム嵌合面の形状]
 図7は、図3に記載したリム嵌合部を示す説明図である。同図は、リム組み前の状態におけるリム嵌合部を示している。同図において、図3に記載した構成要素と同一の構成要素には同一の符号を付し、その説明を省略する。
 図7に示すように、リム組み前の状態におけるタイヤ子午線方向の断面視にて、交点P2におけるリム嵌合面の接線を、ビード・ベースBbの延長線L2として定義する。
 このとき、ビードコア11の接線L1に対するビード・ベースBbの延長線L2の傾斜角αが、3[deg]≦α≦15[deg]の範囲にあることが好ましく、6[deg]≦α≦12[deg]の範囲にあることがより好ましい。
 また、ビード・ベースBbの延長線L2の傾斜角α[deg]と、リム嵌合部の変化率ΔGm[%]と、タイヤ呼び幅WA[無次元]とが、0[%・deg]≦ΔGm×α/WA≦7[%・deg]の関係を有することが好ましく、0.5[%・deg]≦ΔGm×α/WA≦5.0[%・deg]の関係を有することがより好ましい。これにより、タイヤのリム嵌合性を示す比ΔGm×α/WAが適正化される。すなわち、一般に、タイヤ呼び幅WAが大きいほど、タイヤのリム嵌合性が低下する傾向にある。また、ビード・ベースBbの傾斜角αおよびリム嵌合部の変化率ΔGmが大きいほど、リムに対する嵌合圧が増加して、タイヤのリム嵌合性が向上する。したがって、上記下限により、比ΔGm×α/WAが大きくなり、タイヤのリム嵌合性が向上する。また、上記上限により、リムに対する嵌合圧が過大となることに起因するタイヤのリム組み作業性の悪化が抑制される。なお、傾斜角α=0[deg]のときに、ΔGm×α/WA=0となる。
 また、図7に示すように、タイヤ子午線方向の断面視にて、ビード・ベースBbが相互に異なる傾斜角をもつ2種類の直線部を接続して成る形状(いわゆる二段テーパ形状)を有する場合に、リム嵌合面のビード・ベースBbのビード・ヒールBh側の直線部の延長線L2とビード・トゥBt側の直線部の延長線L3とを定義する。
 このとき、ビードコア11の接線L1に対するビード・ベースBbの延長線L2およびL3の傾斜角α、βが、0≦β/α≦5.0の関係を有することが好ましく、1.8≦β/α≦4.0の関係を有することがより好ましい。これにより、ビード・ベースBbの二段テーパ形状が適正化される。すなわち、上記下限により、二段テーパ形状によるタイヤのリム嵌合性の向上作用が適正に得られる。また、上記上限により、ビード・ベースBbにおける加硫故障の発生が抑制される。
 また、図7において、ビード・ベースBbの上記2種類の直線部の交点Rを定義する。
 このとき、ビード・トゥBtから交点Rまでのタイヤ幅方向の距離Lrと、ビード・トゥBtから中点Cmまでのタイヤ幅方向の距離Lmとが、0.50≦Lr/Lm≦4.0の関係を有することが好ましく、0.70≦Lr/Lm≦3.3の関係を有することがより好ましい。これにより、交点Rの位置が適正化されて、二段テーパ形状によるタイヤのリム嵌合性の向上作用が適正に得られる。
 例えば、図7の構成では、また、ビードコア11のワイヤ配列構造のタイヤ径方向内側かつタイヤ幅方向内側の角部におけるワイヤ断面の配列角度θ1(図4参照)が、130[deg]以上140[deg]以下の範囲にある。また、ビード・ベースBbの上記2種類の直線部が、タイヤ径方向外側に凸となる滑らかな円弧で接続されている。また、交点Rが、ビードコア11の接点C1と中点Cmとの間に位置している。
 また、図7において、ビードコア11の接点C1からビード・トゥBtまでのタイヤ径方向の距離Dtおよびタイヤ幅方向の距離Wtをそれぞれ定義する。このとき、距離Dt、Wtと、接点C1からリム嵌合面までのタイヤ径方向のゲージG1とが、7[deg]≦arctan{(Dt-G1)/Wt}≦30[deg]の関係を有することが好ましく、9[deg]≦arctan{(Dt-G1)/Wt}≦25[deg]の関係を有することがより好ましい。これにより、ビードコア11からビード・トゥBtまでのタイヤ軸方向に対するリム嵌合面の勾配が適正化される。すなわち、上記下限により、リム嵌合面の勾配が確保されて、タイヤのリム嵌合性が確保される。また、上記上限により、リム嵌合面の勾配が過大となることに起因するタイヤのリム組み作業性の低下が抑制される。
 接点C1からビード・トゥBtまで距離Dt、Wtは、タイヤのリム組み前の状態にて測定される。
[変形例]
 図8~図12は、図4に記載したビードコアの変形例を示す説明図である。これらの図は、部品単体時における未加硫のビードコア11の径方向の断面図を示している。
 図4の構成では、ビードコア11の最内層に対する接線L1が、タイヤ幅方向に対して平行である。このため、タイヤ幅方向に対する接線L1の傾斜角XがX=0[deg]である。
 しかし、これに限らず、図8に示すように、ビードコア11がタイヤ幅方向に対して傾斜しても良い。具体的には、ビードコア11がビード・トゥBt(図3参照)側でタイヤ径方向内側に傾斜しても良い。かかる構成では、ビードコア11の最内層の接線L1がリム嵌合面のビード・ベースBbに対して平行に近づく。このとき、タイヤ幅方向に対する接線L1の傾斜角Xが、-10[deg]≦X≦30[deg]の範囲にあることが好ましい。なお、ビードコア11の接線L1に対するビード・ベースBbの延長線L2の相対的な傾斜角αの範囲は、上記の通りである。
 また、図4の構成では、上記のように、ワイヤ断面の配列数が、タイヤ径方向の最内層から順に3-4-3-2-1に設定されている。したがって、ワイヤ断面の層数が5であり、タイヤ径方向の最外層のワイヤ断面の配列数が1である。
 これに対して、図9の構成では、ワイヤ断面の層数が4であり、ワイヤ断面の配列数がタイヤ径方向の最内層から順に3-4-3-2に設定されている。また、図10の構成では、ワイヤ断面の層数が6であり、ワイヤ断面の配列数がタイヤ径方向の最内層から順に3-4-5-4-3-2に設定されている。このように、ワイヤ断面の層数が4または6であっても良い。また、タイヤ径方向の最外層のワイヤ断面の配列数が2であっても良い。かかる場合においても、最大配列層よりもタイヤ径方向外側にあるワイヤ断面の層数(図9では2層、図10では3層)が、最大配列層よりもタイヤ径方向内側にあるワイヤ断面の層数(図9では1層、図10では2層)よりも多い。また、各層におけるワイヤ断面の配列数が、最大配列層からタイヤ径方向外側に向かって1つずつ減少する。
 また、図4の構成では、タイヤ径方向の最内層におけるワイヤ断面の配列数が、最大配列層(最内層から2番目の層)におけるワイヤ断面の配列数よりも少ない。また、ワイヤ配列構造を構成するすべてのワイヤ断面が、最密充填構造により配列されている。このため、ワイヤ配列構造のタイヤ径方向内側かつタイヤ幅方向内側および外側の角部におけるワイヤ断面の配列角度θ1、θ2が、いずれも130[deg]以上140[deg]以下の範囲にある。
 これに対して、図11および図12の構成では、ワイヤ断面の層数が5であり、ワイヤ断面の配列数がタイヤ径方向の最内層から順に4-4-3-2-1に設定されている。このため、最内層におけるワイヤ断面の配列数が最大配列層におけるワイヤ断面の配列数と同じである。また、図11の構成では、ワイヤ配列構造のタイヤ径方向内側かつタイヤ幅方向内側の角部におけるワイヤ断面の配列角度θ1が、鋭角であり、55[deg]以上65[deg]以下の範囲にある。一方で、タイヤ幅方向外側の角部におけるワイヤ断面の配列角度θ2が、鈍角であり、130[deg]以上140[deg]以下の範囲にある。また、図12の構成では、ワイヤ配列構造のタイヤ径方向内側の左右の角部におけるワイヤ断面の配列角度θ1、θ2が、いずれも略直角であり、85[deg]以上95[deg]以下の範囲にある。このように、少なくとも、タイヤ幅方向外側の角部におけるワイヤ断面の配列角度θ2が約直角あるいは鈍角であることが好ましい。また、図12の構成では、最大配列層からタイヤ径方向内側にて、ワイヤ断面が格子状に配列されている。このように、ワイヤ断面が、少なくとも最大配列層からタイヤ径方向外側の各層にて最密充填構造により配列されていれば良い。
 図13は、図2に記載したビード部の変形例を示す説明図である。同図は、タイヤのリム組み前の状態におけるビード部のタイヤ子午線方向の断面図を示している。図14は、図13に記載したビードコア11のワイヤ配列構造を示す説明図である。図15は、図14に記載したビードコアの変形例を示す説明図である。これらの図において、図14および図15は、部品単体時における未加硫のビードコア11の径方向の断面図を示している。
 図2の構成では、上記のように、ワイヤ断面の配列数が、タイヤ径方向の最内層から順に3-4-3-2-1に設定されている(図4参照)。このため、ワイヤ断面の配列構造が、タイヤ径方向外側に向かって幅狭となる楔形形状を有している。
 これに対して、図13の構成では、図14に示すように、ワイヤ断面の層数が5であり、ワイヤ断面の配列数がタイヤ径方向の最内層から順に3-4-5-4-3に設定されている。このように、ワイヤ断面の配列構造が、六角形状を有しても良く、また、最大配列層を中心として高さ方向に対象な構造を有しても良い。
 また、図15の構成では、ワイヤ断面の層数が3であり、ワイヤ断面の配列数がタイヤ径方向の最内層から順に5-5-5に設定されている。このように、ワイヤ断面の配列構造が、四角形状を有しても良い。
[タイヤサイド部のゲージ]
 図16は、図1に記載した空気入りタイヤのタイヤサイド部を示す拡大図である。同図は、タイヤ最大幅位置Aにおけるタイヤ子午線方向の拡大断面図を示している。
 図13において、タイヤ最大幅位置Aにおけるタイヤサイド部の総厚さK1が、2.5[mm]≦K1≦6.5[mm]の範囲にあることが好ましく、3.0[mm]≦K1≦6.0[mm]の範囲にあることがより好ましい。これにより、タイヤサイド部の総厚さK1が適正化される。すなわち、上記下限により、タイヤサイド部の総厚さK1が確保されて、タイヤの転がり抵抗が確保される。また、上記上限により、タイヤの軽量化が確保される。
 タイヤサイド部の総厚さK1は、タイヤ子午線方向の断面視にて、タイヤ最大幅位置Aにおけるタイヤ内表面とタイヤ外表面との距離として測定される。
 また、タイヤ最大幅位置Aにおけるサイドウォールゴム16の厚さK2が、0.3[mm]≦K2≦3.0[mm]の範囲にあることが好ましく、0.5[mm]≦K2≦2.5[mm]の範囲にあることがより好ましい。これにより、サイドウォールゴム16の厚さK2が適正化される。すなわち、上記下限により、サイドウォールゴム16の厚さK2が確保されて、タイヤサイド部の耐カット性が確保される。また、上記上限により、タイヤの軽量化が確保される。
[ビードフィラーを備える構成]
 図17は、図2に記載したビード部の変形例を示す断面図である。同図は、タイヤのリム組み前の状態におけるビード部のタイヤ子午線方向の断面図を示している。
 図2の構成では、上記のように、空気入りタイヤ1がビードフィラーを省略した構造を有している。具体的には、カーカス層13の本体部131および巻き返し部132に囲まれた閉鎖領域Xにおけるゴム占有率が小さく設定されて、タイヤの軽量化が図られている。また、外側補強ゴム19がカーカス層13の巻き返し部132とリムクッションゴム17との間に配置されて、ビード部のバネ特性が外側補強ゴム19により補強されている。また、カーカス層13の巻き返し部132が本体部131に対して自己接触して係止され、また、自己接触部の径方向高さH2が所定の範囲に設定されて、ビード部の耐久性が高められている。
 これに対して、図17の構成では、空気入りタイヤ1が、ビードフィラー12を備える。また、ビードフィラー12がカーカス層13の本体部131と巻き返し部132との間に挟み込まれて配置される。また、カーカス層13の巻き返し部132が本体部131に対して自己接触して係止されて、閉鎖領域Xが形成される。このため、閉鎖領域Xにおけるゴム占有率が、図2の構成と比較して非常に大きく設定されている。また、ビード部のバネ特性がビードフィラー12により確保されるため、図2における外側補強ゴム19が省略される。
[効果]
 以上説明したように、この空気入りタイヤ1は、1本あるいは複数本のビードワイヤ111を環状かつ多重に巻き廻して成るビードコア11と、単層あるいは複数層のカーカスプライから成ると共にビードコア11を包み込むように巻き返されてビードコア11に架け渡されるカーカス層13と、カーカス層13の巻き返し部132に沿って配置されてビード部のリム嵌合面を構成するリムクッションゴム17とを備える(図1および図2参照)。また、ビードコア11が、タイヤ子午線方向の断面視にて、ビードワイヤ111のワイヤ断面を配列して成る所定のワイヤ配列構造を有する(図4参照)。また、ワイヤ配列構造におけるタイヤ径方向の最内層かつタイヤ幅方向の最内側および最外側のワイヤ断面に対してリム嵌合面側から接する接線L1と、前記最内側および最外側のワイヤ断面に対する接線L1の接点C1、C2と、接点C1、C2の中点Cmと、接点C1、C2および中点Cmからリム嵌合面までのタイヤ径方向のゲージG1、G2、Gmとを定義する(図3参照)。このとき、リム組み前後におけるゲージG1、G2、Gmの変化率ΔG1、ΔG2、ΔGmが、それぞれ10[%]以上60[%]以下の範囲にある。
 かかる構成では、ビード部のリム嵌合部の変化率ΔG1、ΔG2、ΔGmが適正化される利点がある。すなわち、上記下限により、リム嵌合圧が確保されて、タイヤのリム嵌合性が確保される。この効果は、特に、ビードフィラーを省略した構造(図2参照)において、特に有益である。また、上記上限により、リム嵌合圧が過大となることに起因するタイヤのリム組み作業性の悪化が抑制される。
 また、この空気入りタイヤ1では、カーカス層13の巻き返し部132が、カーカス層13の本体部131に接触してビードコア11を囲む閉鎖領域Xを形成する(図2参照)。また、タイヤ子午線方向の断面視にて、閉鎖領域Xにおけるゴム占有率が、15[%]以下の範囲にある。かかる構成では、カーカス層13の本体部131および巻き返し部132に囲まれた閉鎖領域Xにおけるゴム占有率、すなわちビードコア11の周囲のゴムボリュームが、非常に低く設定される。これにより、ビードフィラーを省略できるので、タイヤを軽量化できる。
 また、この空気入りタイヤ1では、接点C1からビード・トゥBtまでのタイヤ径方向の距離Dtおよびタイヤ幅方向の距離Wtと、接点C1からリム嵌合面までのタイヤ径方向のゲージG1とが、7[deg]≦arctan{(Dt-G1)/Wt}≦30[deg]の関係を有する(図7参照)。これにより、ビードコア11からビード・トゥBtまでのタイヤ軸方向に対するリム嵌合面の勾配が適正化される利点がある。すなわち、上記下限により、リム嵌合面の勾配が確保されて、タイヤのリム嵌合性が確保される。また、上記上限により、リム嵌合面の勾配が過大となることに起因するタイヤのリム組み作業性の低下が抑制される。
 また、この空気入りタイヤ1では、接点C2からリム嵌合面までのタイヤ径方向のゲージG2(図3参照)と、ビードワイヤ111の外径φ(図4参照)とが、1.3≦G2/φ≦9.5の関係を有する。これにより、リム嵌合部のゲージG2が適正化される利点がある。すなわち、上記下限により、リム嵌合部のゲージG2が確保されて、タイヤのリム嵌合性が確保される。また、上記上限により、リム嵌合部のゲージG2が過大となることに起因するタイヤのリム組み作業性の悪化が抑制される。
 また、この空気入りタイヤ1では、接点C2からリム嵌合面までのタイヤ幅方向のゲージWh(図6参照)と、ビードワイヤ111の外径φ(図4参照)とが、2.0≦Wh/φ≦15.0の関係を有する。これにより、リム嵌合部のゲージWhが適正化される利点がある。すなわち、上記下限により、リム嵌合部のゲージWhが確保されて、タイヤのリム嵌合性が確保される。また、上記上限により、リム嵌合部のゲージWhが過大となることに起因するタイヤのリム組み作業性の悪化が抑制される。
 また、この空気入りタイヤ1では、変化率ΔG1、ΔG2、ΔGmが、|ΔGm-ΔG2|<|ΔG1-ΔGm|の条件を満たす。これにより、リム嵌合部の変化率ΔG1、ΔG2、ΔGmの関係が適正化されて、タイヤのリム嵌合性が向上する利点がある。
 また、この空気入りタイヤ1では、変化率ΔG1、ΔG2、ΔGmが、ΔG2<ΔGm<ΔG1の関係を有する。かかる構成では、変化率ΔG1、ΔG2、ΔGmがビード・トゥBt側に向かって増加する。これにより、タイヤのリム嵌合性が向上する利点がある。
 また、この空気入りタイヤ1では、リムクッションゴム17よりも低いゴム硬さを有すると共にビードコア11の最内層とリムクッションゴム17との間に挿入されるクッションゴム層20を備える(図2参照)。かかる構成では、クッションゴム層20が、ビードコア11とリム嵌合面との間に介在することにより、リム嵌合部の変化率ΔG1、ΔG2、ΔGmが高まり、また、リム10に対するリム嵌合面の接触圧が均一化されて、タイヤのリム嵌合性が向上する利点がある。
 また、この空気入りタイヤ1では、クッションゴム層20が、少なくともビードコア11の接点C1から中点Cmまでタイヤ幅方向に延在する(図3参照)。これにより、クッションゴム層20によるリム嵌合性の向上作用が効果的に得られる利点がある。
 また、この空気入りタイヤ1では、リム嵌合部のゲージG1、G2の測定点C1、P1;C2、P2間におけるクッションゴム層20の厚さTc1、Tc2が、Tc2<Tc1の関係を有する(図6参照)。これにより、ビード・トゥBt側におけるリム嵌合部の変化率ΔG1が、ビード・ヒールBh側におけるリム嵌合部の変化率ΔG2よりも大きく(ΔG2<ΔG1)なり、タイヤのリム嵌合性が向上する利点がある。
 また、この空気入りタイヤ1では、リム嵌合部のゲージG1と、ゲージG1の測定点間におけるクッションゴム層20の厚さTc1とが、0.03≦Tc1/G1≦0.95の関係を有する(図6参照)。これにより、クッションゴム層20の平均厚さが適正化される。すなわち、上記下限により、クッションゴム層20の作用が適正に確保されて、リム嵌合部の変化率ΔG1が増加する。また、上記上限により、リムクッションゴム17のゲージG1が確保されて、タイヤのリム嵌合性が適正に確保される。
 また、この空気入りタイヤ1では、接線L1からビードコア11の最大幅位置までの高さHc2と、ビードコア11の最大高さHc1とが、1.10≦(Hc1-Hc2)/Hc2≦2.80の関係を有する(図4参照)。これにより、ビードコア11のワイヤ配列構造が適正化される利点がある。
 また、この空気入りタイヤ1では、ワイヤ配列構造のタイヤ径方向内側かつタイヤ幅方向外側の角部におけるワイヤ断面の配列角度θ2が、80[deg]≦θ2の範囲にある(図4参照)。これにより、タイヤ加硫時におけるワイヤ配列構造の乱れが抑制されて、タイヤのリム嵌合性が向上する利点がある。
 また、この空気入りタイヤ1では、カーカス層13の巻き返し部132とリムクッションゴム17との間に配置される外側補強ゴム19を備える(図2参照)。かかる構成では、特に、上記したビードフィラーを省略した構成にて、ビード部のバネ特性が外側補強ゴム19により補強されて、ドライ路面での操縦安定性が確保される利点があり、また、ビード部の耐久性が確保される利点がある。
 また、この空気入りタイヤ1では、ワイヤ配列構造におけるワイヤ断面の配列数が最大である層(図4では、最内層から2番目の層)を最大配列層として定義する。このとき、最大配列層よりもタイヤ径方向外側にあるワイヤ断面の層数(図4では、3層)が、最大配列層よりもタイヤ径方向内側にあるワイヤ断面の層数(図4では、1層)よりも多い。また、最大配列層よりもタイヤ径方向外側の各層におけるワイヤ断面の配列数が、最大配列層からタイヤ径方向外側に向かって単調減少する(図4参照)。これにより、カーカス層13の本体部131および巻き返し部132の合流部とビードコア11のタイヤ径方向外側の頂部(いわゆるビードトップ)との間の隙間が小さくなり、ビード部の耐久性が向上する利点がある。特に、上記したビードフィラーを省略した構造にて、閉鎖領域Xのゴム占有率を低減できる点で好ましい。また、巻き返し部132が本体部131との合流位置にて鈍角で屈曲できるので、巻き返し部132の屈曲量が小さくなり、ビード部の耐久性が向上する利点がある。
 図18は、この発明の実施の形態にかかる空気入りタイヤの性能試験の結果を示す図表である。図19は、従来例の試験タイヤのビードコアを示す説明図である。
 この性能試験では、タイヤサイズ205/55R16である複数種類の試験タイヤについて、(1)タイヤ質量および(2)リム嵌合性に関する評価が行われた。
 (1)タイヤ質量は、同一構造を有する5つの試験タイヤの質量の平均値として算出される。そして、この測定結果に基づいて従来例を基準(100)とした指数評価が行われる。この評価の数値が小さいほど試験タイヤが軽量であり、好ましく、指数が99以下であれば、タイヤの軽量化が図られているといえる。
 (2)リム嵌合性に関する評価では、試験タイヤがリムサイズ16×6.5Jのリムに組み付けられ、この試験タイヤに230[kPa]の空気圧およびJATMAの規定荷重が付与される。また、試験タイヤが、試験車両である排気量2000[cc]のSUV(Sport Utility Vehicl)に装着される。そして、試験車両が、試験タイヤの空気圧を段階的に減少させつつ所定の走行路でJターンし、エア漏れが発生したときの空気圧が測定される。そして、この測定結果に基づいて従来例を基準(100)とした指数評価が行われる。この評価は、数値が大きいほど好ましい。
 実施例1~13の試験タイヤは、ビードフィラーを省略した構造(図1および図2参照)を備えることにより、タイヤの軽量化が図られている。また、リム組み前の状態におけるリム嵌合部のゲージG1、GmおよびG2が、G2<Gm<G1の関係を有している。
 従来例の試験タイヤでは、図1および図2の構成において、ビードコア11が図18に記載したワイヤ配列構造を有し、また、外側補強ゴム19がリムクッションゴム17と同一材料から成り、リムクッションゴム17に一体化されている。比較例1、2の試験タイヤでは、図1および図2の構成において、ビードコア11のインシュレーションゴムが増量されて、閉鎖領域Xのゴム占有率が高められている。
 試験結果が示すように、実施例1~13の試験タイヤでは、タイヤを軽量化しつつタイヤのリム嵌合性を向上できることが分かる。
 1:空気入りタイヤ、11:ビードコア、111:ビードワイヤ、12:ビードフィラー、13:カーカス層、131:本体部、132:巻き返し部、14:ベルト層、141、142:交差ベルト、143:ベルトカバー、144:ベルトエッジカバー、15:トレッドゴム、16:サイドウォールゴム、17:リムクッションゴム、18:インナーライナ、19:外側補強ゴム、10:リム、101:ビードシート、102:フランジ

Claims (15)

  1.  1本あるいは複数本のビードワイヤを環状かつ多重に巻き廻して成るビードコアと、単層あるいは複数層のカーカスプライから成ると共に前記ビードコアを包み込むように巻き返されて前記ビードコアに架け渡されるカーカス層と、前記カーカス層の巻き返し部に沿って配置されてビード部のリム嵌合面を構成するリムクッションゴムとを備える空気入りタイヤであって、
     前記ビードコアが、タイヤ子午線方向の断面視にて、前記ビードワイヤのワイヤ断面を配列して成る所定のワイヤ配列構造を有し、
     前記ワイヤ配列構造におけるタイヤ径方向の最内層かつタイヤ幅方向の最内側および最外側のワイヤ断面に対して前記リム嵌合面側から接する接線L1と、接線L1の接点C1、C2と、接点C1、C2の中点Cmと、接点C1、C2および中点Cmから前記リム嵌合面までのタイヤ径方向のゲージG1、G2、Gmとを定義し、且つ、
     リム組み前後におけるゲージG1、G2、Gmの変化率ΔG1、ΔG2、ΔGmが、それぞれ10[%]以上60[%]以下の範囲にあることを特徴とする空気入りタイヤ。
  2.  前記カーカス層の前記巻き返し部が、タイヤ子午線方向の断面視にて、前記カーカス層の本体部に接触して前記ビードコアを囲む閉鎖領域を形成し、且つ、
     前記閉鎖領域におけるゴム占有率が、15[%]以下の範囲にある請求項1に記載の空気入りタイヤ。
  3.  接点C1からビード・トゥまでのタイヤ径方向の距離Dtおよびタイヤ幅方向の距離Wtと、接点C1から前記リム嵌合面までのタイヤ径方向のゲージG1とが、7[deg]≦arctan{(Dt-G1)/Wt}≦30[deg]の関係を有する請求項1または2に記載の空気入りタイヤ。
  4.  接点C2から前記リム嵌合面までのタイヤ径方向のゲージG2と、前記ビードワイヤの外径φとが、1.3≦G2/φ≦9.5の関係を有する請求項1~3のいずれか一つに記載の空気入りタイヤ。
  5.  接点C2から前記リム嵌合面までのタイヤ幅方向のゲージWhと、前記ビードワイヤの外径φとが、2.0≦Wh/φ≦15.0の関係を有する請求項1~4のいずれか一つに記載の空気入りタイヤ。
  6.  変化率ΔG1、ΔG2、ΔGmが、|ΔGm-ΔG2|<|ΔG1-ΔGm|の条件を満たす請求項1~5のいずれか一つに記載の空気入りタイヤ。
  7.  変化率ΔG1、ΔG2、ΔGmが、ΔG2<ΔGm<ΔG1の関係を有する請求項6に記載の空気入りタイヤ。
  8.  前記リムクッションゴムよりも低いゴム硬さを有すると共に前記ビードコアの前記最内層と前記リムクッションゴムとの間に挿入されるクッションゴム層を備える請求項1~7のいずれか一つに記載の空気入りタイヤ。
  9.  前記クッションゴム層が、少なくとも前記ビードコアの接点C1から中点Cmまでタイヤ幅方向に延在する請求項8に記載の空気入りタイヤ。
  10.  前記リム嵌合部のゲージG1、G2の測定点間における前記クッションゴム層の厚さTc1、Tc2が、Tc2<Tc1の関係を有する請求項8または9に記載の空気入りタイヤ。
  11.  前記リム嵌合部のゲージG1と、ゲージG1の測定点間における前記クッションゴム層の厚さTc1とが、0.03≦Tc1/G1≦0.95の関係を有する請求項8~10のいずれか一つに記載の空気入りタイヤ。
  12.  接線L1から前記ビードコアの最大幅位置までの高さHc2と、前記ビードコアの最大高さHc1とが、1.10≦(Hc1-Hc2)/Hc2≦2.80の関係を有する請求項1~11のいずれか一つに記載の空気入りタイヤ。
  13.  前記ワイヤ配列構造のタイヤ径方向内側かつタイヤ幅方向外側の角部における前記ワイヤ断面の配列角度θ2が、80[deg]≦θ2の範囲にある請求項1~12のいずれか一つに記載の空気入りタイヤ。
  14.  前記リムクッションゴムのゴム硬さよりも高いゴム硬さを有すると共に前記カーカス層の巻き返し部と前記リムクッションゴムとの間に配置される外側補強ゴムを備える請求項1~13のいずれか一つに記載の空気入りタイヤ。
  15.  前記ワイヤ配列構造における前記ワイヤ断面の配列数が最大である層を最大配列層として定義し、
     前記最大配列層よりもタイヤ径方向外側にある前記ワイヤ断面の層数が、前記最大配列層よりもタイヤ径方向内側にある前記ワイヤ断面の層数よりも多く、且つ、
     前記最大配列層よりもタイヤ径方向外側の各層における前記ワイヤ断面の配列数が、前記最大配列層からタイヤ径方向外側に向かって単調減少する請求項1~14のいずれか一つに記載の空気入りタイヤ。
PCT/JP2018/043081 2017-01-12 2018-11-21 空気入りタイヤ WO2019107254A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112018006148.5T DE112018006148T5 (de) 2017-12-01 2018-11-21 Luftreifen
US16/768,865 US11660914B2 (en) 2017-01-12 2018-11-21 Pneumatic tire
CN201880087897.2A CN111655517B (zh) 2017-12-01 2018-11-21 充气轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017232074A JP6662367B2 (ja) 2017-12-01 2017-12-01 空気入りタイヤ
JP2017-232074 2017-12-01

Publications (1)

Publication Number Publication Date
WO2019107254A1 true WO2019107254A1 (ja) 2019-06-06

Family

ID=66665679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043081 WO2019107254A1 (ja) 2017-01-12 2018-11-21 空気入りタイヤ

Country Status (5)

Country Link
US (1) US11660914B2 (ja)
JP (1) JP6662367B2 (ja)
CN (1) CN111655517B (ja)
DE (1) DE112018006148T5 (ja)
WO (1) WO2019107254A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253096A1 (en) * 2022-03-28 2023-10-04 Sumitomo Rubber Industries, Ltd. Motorcycle tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309210A (ja) * 1999-04-26 2000-11-07 Bridgestone Corp 空気入りタイヤ
JP2002301915A (ja) * 2001-04-04 2002-10-15 Sumitomo Rubber Ind Ltd ランフラットタイヤ
JP2009274477A (ja) * 2008-05-12 2009-11-26 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2012162204A (ja) * 2011-02-08 2012-08-30 Bridgestone Corp 空気入りタイヤおよび、ビードコアの製造方法
JP2013052720A (ja) * 2011-09-01 2013-03-21 Bridgestone Corp 空気入りタイヤ
JP2013063679A (ja) * 2011-09-15 2013-04-11 Bridgestone Corp 空気入りタイヤ

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445004A (en) * 1977-09-16 1979-04-10 Bridgestone Corp Pneumatic radial tire that has durability at high speed
JPS63149207A (ja) * 1986-12-12 1988-06-22 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2684202B2 (ja) 1988-11-01 1997-12-03 住友ゴム工業 株式会社 自動車用タイヤ
JPH03125612A (ja) * 1989-10-11 1991-05-29 Yokohama Rubber Co Ltd:The 乗用車用空気入りタイヤ
CA2108328A1 (en) 1993-06-29 1994-12-30 Keith Carl Trares High ending, locked tie-in construction
JP2724291B2 (ja) * 1995-06-29 1998-03-09 住友ゴム工業株式会社 重荷重用タイヤ
US5879482A (en) * 1996-03-15 1999-03-09 Goodyear Tire & Rubber Company Run-flat low-pressure all terrain vehicle (ATV) tire
JPH10181318A (ja) * 1996-12-25 1998-07-07 Bridgestone Corp 乗用車用空気入りラジアル・タイヤ
JP4620862B2 (ja) * 2000-12-28 2011-01-26 住友ゴム工業株式会社 空気入りタイヤ
CN100395125C (zh) * 2001-01-11 2008-06-18 住友橡胶工业株式会社 充气轮胎
CN1386653A (zh) * 2001-05-21 2002-12-25 住友橡胶工业株式会社 充气轮胎
EP1666278B1 (en) 2003-09-12 2009-08-19 Bridgestone Corporation Pneumatic tire
ES2360815T3 (es) 2005-08-02 2011-06-09 Bridgestone Corporation Neumático radial para cargas pesadas.
DE102006011158A1 (de) * 2006-03-10 2007-09-13 Continental Aktiengesellschaft Fahrzeugluftreifen
JP5138913B2 (ja) * 2006-09-15 2013-02-06 東洋ゴム工業株式会社 空気入りタイヤ
JP2008149778A (ja) 2006-12-14 2008-07-03 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP4966687B2 (ja) * 2007-02-15 2012-07-04 株式会社ブリヂストン 空気入りタイヤ
JP5497403B2 (ja) * 2009-10-23 2014-05-21 株式会社ブリヂストン 空気入りタイヤ
JP4915471B1 (ja) * 2010-11-17 2012-04-11 横浜ゴム株式会社 空気入りタイヤ
JP5282794B2 (ja) * 2011-02-09 2013-09-04 横浜ゴム株式会社 ランフラットタイヤ
JP5297488B2 (ja) * 2011-03-10 2013-09-25 住友ゴム工業株式会社 空気入りタイヤ
JP5319736B2 (ja) * 2011-06-15 2013-10-16 東洋ゴム工業株式会社 空気入りラジアルタイヤ
JP6002089B2 (ja) * 2013-06-06 2016-10-05 住友ゴム工業株式会社 重荷重用タイヤ
JP6217168B2 (ja) * 2013-06-21 2017-10-25 横浜ゴム株式会社 空気入りタイヤ
JP6217326B2 (ja) * 2013-11-07 2017-10-25 横浜ゴム株式会社 空気入りタイヤ
JP5858069B2 (ja) * 2014-03-06 2016-02-10 横浜ゴム株式会社 空気入りタイヤ
JP6185451B2 (ja) * 2014-12-01 2017-08-23 住友ゴム工業株式会社 タイヤ
JP6645111B2 (ja) * 2015-10-14 2020-02-12 住友ゴム工業株式会社 空気入りタイヤ
JP6638389B2 (ja) * 2015-12-25 2020-01-29 横浜ゴム株式会社 空気入りタイヤ
JP6760003B2 (ja) * 2016-11-16 2020-09-23 住友ゴム工業株式会社 空気入りタイヤ
CN206327089U (zh) * 2016-12-10 2017-07-14 赛轮金宇集团股份有限公司 一种高负载性能的全钢无内胎子午线轮胎
CN107244193B (zh) 2017-07-05 2023-08-22 正新橡胶(中国)有限公司 一种充气轮胎

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000309210A (ja) * 1999-04-26 2000-11-07 Bridgestone Corp 空気入りタイヤ
JP2002301915A (ja) * 2001-04-04 2002-10-15 Sumitomo Rubber Ind Ltd ランフラットタイヤ
JP2009274477A (ja) * 2008-05-12 2009-11-26 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2012162204A (ja) * 2011-02-08 2012-08-30 Bridgestone Corp 空気入りタイヤおよび、ビードコアの製造方法
JP2013052720A (ja) * 2011-09-01 2013-03-21 Bridgestone Corp 空気入りタイヤ
JP2013063679A (ja) * 2011-09-15 2013-04-11 Bridgestone Corp 空気入りタイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4253096A1 (en) * 2022-03-28 2023-10-04 Sumitomo Rubber Industries, Ltd. Motorcycle tire

Also Published As

Publication number Publication date
CN111655517B (zh) 2022-07-05
JP2019098934A (ja) 2019-06-24
JP6662367B2 (ja) 2020-03-11
CN111655517A (zh) 2020-09-11
US20210221183A1 (en) 2021-07-22
US11660914B2 (en) 2023-05-30
DE112018006148T5 (de) 2020-09-03

Similar Documents

Publication Publication Date Title
JP3643191B2 (ja) トラック及びバス用15°テーパラジアルタイヤ
EP2308694B1 (en) Pneumatic tire
JP2012162204A (ja) 空気入りタイヤおよび、ビードコアの製造方法
CN106994865B (zh) 充气轮胎
WO2019107255A1 (ja) 空気入りタイヤ
WO2019107253A1 (ja) 空気入りタイヤ
US11312190B2 (en) Pneumatic tire
JP2019098976A (ja) 空気入りタイヤ
WO2019107254A1 (ja) 空気入りタイヤ
JP3667018B2 (ja) 空気入りタイヤ及びその製造方法
JP7081126B2 (ja) 空気入りタイヤ
WO2019111719A1 (ja) 空気入りタイヤ
US11364750B2 (en) Pneumatic tire
JPH0115402B2 (ja)
JP7151627B2 (ja) 空気入りタイヤ
JP7115019B2 (ja) 空気入りタイヤ
US20220266636A1 (en) Pneumatic tire
CN115996855A (zh) 轮胎
JP2000264025A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18883117

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18883117

Country of ref document: EP

Kind code of ref document: A1