WO2019098503A1 - 실리카 에어로겔 블랭킷 제조 공정 중 발생하는 초임계 폐액 재생 방법 - Google Patents

실리카 에어로겔 블랭킷 제조 공정 중 발생하는 초임계 폐액 재생 방법 Download PDF

Info

Publication number
WO2019098503A1
WO2019098503A1 PCT/KR2018/009617 KR2018009617W WO2019098503A1 WO 2019098503 A1 WO2019098503 A1 WO 2019098503A1 KR 2018009617 W KR2018009617 W KR 2018009617W WO 2019098503 A1 WO2019098503 A1 WO 2019098503A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste liquid
supercritical
supercritical waste
metal salt
silica
Prior art date
Application number
PCT/KR2018/009617
Other languages
English (en)
French (fr)
Inventor
강태경
이제균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18877578.7A priority Critical patent/EP3677547B1/en
Priority to JP2020506800A priority patent/JP7060675B2/ja
Priority to CN201880063226.2A priority patent/CN111164048B/zh
Priority to US16/754,204 priority patent/US11760645B2/en
Publication of WO2019098503A1 publication Critical patent/WO2019098503A1/ko
Priority to US18/225,626 priority patent/US11981576B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/145Preparation of hydroorganosols, organosols or dispersions in an organic medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/155Preparation of hydroorganogels or organogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Definitions

  • the present invention relates to a method for regenerating a supercritical waste fluid generated during a process for producing a silica airgel blanket and a method for producing a silica airgel blanket for reusing supercritical waste fluid regenerated by the method.
  • Aerogels are high-porosity materials composed of nanoparticles and have high porosity, specific surface area, and low thermal conductivity, and are attracting attention as high-efficiency heat insulating materials and soundproofing materials. Since such an airgel has a very low mechanical strength due to its porous structure, an airgel composite in which an airgel is impregnated and bonded to a fibrous blanket such as inorganic fiber or organic fiber, which is a conventional heat insulating fiber, has been developed. For example, in the case of a silica airgel-containing blanket using a silica airgel, it is produced through the steps of preparing a silica sol, a gelation step, an aging step, a surface modification step and a drying step.
  • the prior art is the NH 3 generated while using a small amount of NH 4 OH in the fermentation step, to use the Hexamethyl disilazane (HMDS) as a surface modifier wherein HMDS is digested with Trimethyl Silanol (TMS) or Trimethyl Ethoxy Silanol (TMES) do. Some of these react with carbon dioxide during supercritical drying to form ammonium carbonate salts, some of which remain in recovered ethanol.
  • HMDS Hexamethyl disilazane
  • TMS Trimethyl Silanol
  • TMES Trimethyl Ethoxy Silanol
  • the reason why the aerogel blanket is not able to grow compared with the existing heat insulating performance compared to the existing insulating material is high cost. This is because product prices are relatively higher than other insulation materials due to expensive raw materials, complicated manufacturing processes, and the cost of processing a large amount of waste liquid generated during the manufacturing process.
  • Patent Document 1 Korean Published Patent Application No. 2002-0062287 (published on July 25, 2002)
  • the present invention has been made to solve the problems of the prior art described above, and it is an object of the present invention to provide a method and apparatus for recovering and reusing supercritical waste fluid generated after a supercritical drying process, which is capable of preventing deterioration in the heat insulating performance of the silica airgel blanket.
  • the present invention can remove ammonia present in the supercritical waste liquid by adding a metal salt to the supercritical waste liquid, and can achieve excellent flame retardancy without addition of a flame retardant by the metal hydroxide formed by reacting the added metal salt with ammonia
  • a method for regenerating a supercritical waste fluid and a method for producing a silica airgel blanket can be used.
  • the present invention provides a supercritical waste solution regeneration method characterized by adding a metal salt to a supercritical waste solution generated in a supercritical drying step in the process of producing a silica airgel blanket.
  • the present invention provides a method for producing a silica airgel blanket, characterized in that the supercritical waste liquid regenerated by the supercritical waste liquid regeneration method is reused.
  • the supercritical waste fluid regeneration method of the present invention can regenerate and reuse the supercritical waste fluid generated during the silica airgel blanket manufacturing process, thereby reducing the manufacturing cost and preventing the deterioration of the heat insulating performance. Can be manufactured.
  • the present invention can remove ammonia present in the supercritical waste liquid by adding a metal salt to the supercritical waste liquid, and can achieve excellent flame retardancy without addition of a flame retardant by the metal hydroxide formed by reacting the added metal salt with ammonia To produce a silica airgel blanket.
  • the supercritical waste solution regeneration method of the present invention does not require any additional equipment as compared with the conventional regeneration method, and is simple, economical, and safe from the viewpoint of process safety.
  • FIG. 1 is a flowchart showing a method for regenerating a supercritical waste liquid of the present invention and a method for producing a silica airgel.
  • the present invention relates to a method for regenerating a supercritical waste fluid and a method for producing a silica airgel blanket capable of reducing manufacturing cost by preventing the degradation of heat insulating performance of a silica airgel blanket by regenerating and reusing supercritical waste fluid generated after a supercritical drying process
  • the purpose is to provide.
  • the method for regenerating the supercritical waste solution is characterized in that a metal salt is added to the supercritical waste liquid generated in the supercritical drying step in the process of manufacturing the silica airgel blanket,
  • the method for producing an airgel blanket is characterized in that the supercritical waste liquid regenerated by the metal salt addition is reused.
  • the method for regenerating a supercritical waste solution is characterized in that a metal salt is added to a supercritical waste solution generated in a supercritical drying step during the production of a silica airgel blanket to regenerate a waste solution.
  • the supercritical waste liquid of the present invention refers to a waste liquid generated after a supercritical drying process, and may include water, an organic solvent, and ammonia, and the organic solvent may be selected from the group consisting of methanol, ethanol, hexane, isopropanol, May be at least one selected, and more specifically may be ethanol.
  • the supercritical waste liquid of the present invention can be obtained by simultaneously applying a plurality of pressure pulses to a solvent and a supercritical fluid contained in the silica gel in a supercritical drying step.
  • Silica aerogels which are widely used as insulation materials in construction or industrial fields, suffer from the disadvantage that the hydrophilic nature of the silanol groups (Si-OH) on the silica surface absorbs water in the air, thereby increasing the thermal conductivity, There is a problem that it is difficult to produce a super insulation product having a meso pore because it is difficult to expect a spring back phenomenon due to deep pore collapse in the process.
  • Si-OH silanol groups
  • silica aerogels are prepared through silica sol preparation, gelling, aging, surface modification and supercritical drying.
  • the surface modifier used in the surface modification step forms ammonia in the hydrophobic process of the silica airgel surface and is reused as a solvent in the silica sol preparation step without removing the ammonia
  • the pH of the silica sol solution is increased, so that it is difficult to control the gelation time.
  • the ammonium carbonate salt is formed by reacting with carbon dioxide to block the supercritical drying equipment , Some of which may remain in the supercritical waste liquid, causing a problem of deteriorating the heat insulating performance such as increasing the thermal conductivity of the final silica airgel or silica airgel blanket.
  • a regeneration step of removing the residual ammonia contained in the supercritical waste liquid before reusing the supercritical waste liquid is essential.
  • the supercritical waste liquid is regenerated by distillation, ion exchange resin or acid addition, but the method using the distillation or ion exchange resin requires investment in additional facilities and equipment operation cost, And the method of neutralization reaction is poor in safety due to intense neutralization reaction and neutralization heat, and corrosion of piping and mechanical devices occurs due to use of acid.
  • the method for regenerating a supercritical waste solution of the present invention can easily and safely remove ammonia contained in a supercritical waste solution by adding a metal salt to a supercritical waste solution to react with ammonia contained in the supercritical waste solution to form a metal hydroxide.
  • At least one metal salt selected from the group consisting of MgCl 2 , MgSO 4 , CaCl 2 , CaSO 4 , AlCl 3 and Al 2 (SO 4 ) 3 can be used. More specifically, 2 or MgSO 4 is preferably used.
  • MgCl 2 , Ammonia contained in the supercritical waste liquid can be removed by forming magnesium hydroxide according to the following reaction formula (1).
  • the metal hydroxide can exhibit the effect of the flame retardant agent, the excellent flame retardancy of the silica airgel blanket can be secured without addition of the flame retardant agent, and the flame retardant agent is already dispersed in the regenerated supercritical waste liquid. And there is an additional advantage that the cost of raw materials needed to purchase flame retardants can also be reduced.
  • the metal salt may be added in an amount such that the molar ratio of the metal salt to the ammonia contained in the supercritical waste liquid is 1: 3 to 1: 1, more specifically, 1: 2 to 1: 1.
  • the addition within the above range is preferable for the ammonia removal efficiency and metal salt cost reduction.
  • the method of the present invention may further include a step of reacting the metal salt by stirring at room temperature for 30 minutes to 2 hours after the addition of the metal salt.
  • the metal salt of the present invention is excellent in reactivity with ammonia and can be reacted at room temperature without further heat treatment.
  • the present invention is characterized in that the addition of a stirring process allows the metal salt to be uniformly dispersed in the supercritical waste solution, Can be shortened.
  • the method for producing a silica airgel blanket according to an embodiment of the present invention is characterized in that the regenerated supercritical waste liquid is reused for producing a silica airgel blanket.
  • the method for producing a silica aerogel blanket according to an embodiment of the present invention can reuse the regenerated supercritical waste liquid in one or more stages selected from the group consisting of a silica sol manufacturing step, an aging step and a surface modification step, more specifically, Can be reused in the silica sol manufacturing step.
  • the method for producing a silica airgel blanket of the present invention may further comprise the step of recovering the aged waste liquid and the surface-modified waste liquid during the silica airgel blanket manufacturing process, and reusing the aged waste liquid and the surface reforming waste liquid in one or more stages of the aging step and the surface modification step.
  • the aged waste solution and the surface-modified waste liquid recovered through the aging step and the surface modification step can also be recovered and reused in the production of silica airgel blanket in the next batch, and specifically reusable in at least one of the aging step and the surface modification step have.
  • the aged waste solution and the surface-modified waste solution that are reused in the aging step and the surface modification step do not cause a deterioration in the heat insulation performance of the silica airgel blanket even when a large amount of ammonium ions are contained, so that the manufacturing cost can be reduced without re- .
  • the regenerated supercritical waste solution to be reused may be 85 wt% or more based on the total weight of the organic solvent used for preparing the silica airgel blanket,
  • the amount of the waste solution may be 50% by weight to 90% by weight, more specifically 55 to 85% by weight based on the total weight of the organic solvent used in the silica sol preparation step, thereby significantly reducing the manufacturing cost.
  • the silica airgel blanket produced by the regeneration and reuse of the supercritical waste liquid of the present invention can achieve an adiabatic performance with a thermal conductivity of less than or equal to 16 mW / mK at room temperature (25 ° C) The same or similar level as the case where it is manufactured.
  • the supercritical waste fluid generated during the production of the silica airgel blanket can be regenerated and reused by using the metal salt, and the production cost can be reduced, and the deterioration of the heat insulating performance of the silica airgel blanket can be prevented.
  • the metal hydroxide formed by the metal hydroxide exhibits the effect of the flame retardant, and thus the silica airgel blanket capable of securing the excellent flame retardancy without addition of the flame retardant can be produced.
  • Tetraethylorthosilicate (TEOS), water and ethanol were mixed at a weight ratio of 1: 2: 21 to prepare silica sol.
  • the silica sol was added with a base catalyst solution prepared by diluting ammonia in an amount of 0 to 1 vol% with respect to silica sol to 12 vol% ethanol relative to silica sol, and then cast into PET fibers to induce gelation. After completion of the gelation, the mixture is allowed to stand for 25 to 100 minutes at a temperature of 25 to 80 ⁇ using an ammonia solution of 1 to 10 vol% based on the silica sol, and aged. Then, 1 to 10 vol% The hydrophobic reaction was carried out for 24 hours.
  • the supercritical waste solution was recovered through the bottom of the separator, and the metal salts described in Table 1 below were added to 100 g of the recovered supercritical waste solution by the amount shown in Table 1, followed by stirring at room temperature for 2 hours to react, The reproduction was completed.
  • a silica airgel blanket was prepared in the same manner as the above method.
  • a silica airgel blanket was prepared in the same manner as in Example 1, except that only the fresh ethanol used for the first time, which was not reused in Example 1, was used.
  • Thickness mm
  • room temperature thermal conductivity mW / mK, 25 °C
  • silica airgel blanks prepared in Examples and Comparative Examples was prepared as a sample of 30 cm x 30 cm size, and the thickness and the room temperature thermal conductivity were measured using a HFM 436 Lambda machine of NETZSCH Co.
  • the wires were brought into contact with the silica airgel blanket samples prepared in Examples and Comparative Examples, and the wire was heated to 1050 ° C to observe smoke and soot generation.
  • Metal salt Metal salt ammonia mole ratio Thickness (mm) Room temperature thermal conductivity (mW / mK)
  • Example 1 MgCl 2 1: 2 10.2 15.2
  • Example 2 MgSO 4 1: 2 9.7 15.4
  • Example 3 MgSO 4 1: 1 10.1 15.8
  • Example 4 CaCl 2 1: 2 9.4 15.3
  • Example 5 AlCl 3 1: 3 10.2 16.0 Comparative Example - (fresh ethanol) - 10.4 15.3
  • the silica airgel blanket of the example produced only soot without flame, and in the comparative example, it was confirmed that smoke and soot were remarkably generated and flame appeared.
  • the airgel blanket of the present example had better flame retardancy than the comparative example, and it could be expected that the metal salt added in the regeneration step was caused by the metal hydroxide formed by reacting with the ammonia contained in the supercritical waste liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

본 발명은 실리카 에어로겔 블랭킷 제조 과정 중 발생하는 초임계 폐액을 재생하는 방법 및 이에 의해 재생된 초임계 폐액을 재사용하는 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법에 관한 것으로서, 보다 상세하게는 상기 재생 방법으로 초임계 폐액에 금속염을 첨가함으로써, 제조원가를 절감할 수 있는 동시에 실리카 에어로겔 블랭킷의 단열 성능 저하를 방지할 수 있는 초임계 폐액 재생방법 및 실리카 에어로겔 블랭킷 제조방법을 제공한다.

Description

실리카 에어로겔 블랭킷 제조 공정 중 발생하는 초임계 폐액 재생 방법
관련출원과의 상호인용
본 출원은 2017년 11월 17일자 한국 특허 출원 제10-2017-0154145호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 실리카 에어로겔 블랭킷 제조 공정 중 발생하는 초임계 폐액 재생 방법 및 상기 방법에 의해 재생된 초임계 폐액을 재사용하는 실리카 에어로겔 블랭킷 제조방법에 관한 것이다.
에어로겔(aerogel)은 나노 입자로 구성된 고다공성 물질로서, 높은 기공률과 비표면적, 그리고 낮은 열전도도를 가져 고효율의 단열재, 방음재 등의 용도로 주목 받고 있다. 이러한 에어로겔은 다공성 구조로 인해 매우 낮은 기계적 강도를 갖기 때문에 기존의 단열섬유인 무기섬유 또는 유기섬유 등의 섬유상 블랭킷에 에어로겔을 함침하여 결합시킨 에어로겔 복합체가 개발되고 있다. 일례로, 실리카 에어로겔을 이용한 실리카 에어로겔 함유 블랭킷의 경우, 실리카 졸의 제조 단계, 겔화 단계, 숙성(Aging) 단계, 표면개질 단계 및 건조 단계를 통해 제조된다. 특히 종래의 기술은 숙성 단계에서 소량의 NH4OH를 사용하고, 표면개질제로 Hexamethyl disilazane(HMDS)를 사용하는데 이때 HMDS가 Trimethyl Silanol(TMS) 또는 Trimethyl Ethoxy Silanol(TMES)로 분해되면서 NH3가 발생한다. 이 중 일부는 초임계 건조 중에 이산화탄소와 반응해 탄산암모늄 염을 형성하며, 일부는 회수 에탄올에 잔류하게 된다.
한편, 상기 에어로겔 블랭킷(Aerogel Blanket)이 기존 단열재 대비 탁월한 단열 성능에 비해 시장이 성장하지 못하는 이유로는 높은 Cost에 있다. 고가의 원료와 복잡한 제조공정 그리고 제조 과정에서 발생하는 다량의 폐액의 처리 비용 등으로 인해 제품 가격이 다른 단열재에 비해 상대적으로 높기 때문이다.
상기 가격 상승 요인들 중 원료를 교체하거나 제조 공정을 변경하여 원가를 절감하는 방법은 제품의 품질에 직접적인 영향을 줄 수 있기 때문에 적용하기가 어려운 바, 가장 손쉽게 원가를 낮추는 방법은 제조과정에서 발생하는 폐액을 재사용하는 방법이다.
하지만 상기 폐액을 재사용하는 경우 첫째는 잔류하는 암모니아에 의해 에어로겔 블랭킷의 물성이 저하(열전도도 증가)되고, 두번째는 전구체 용액의 겔화 시간을 조절하기 어려우며, 세번째로 초임계 건조 단계에서 사용하는 이산화탄소와 반응해 형성한 탄산암모늄 염에 의해 초임계 건조 장비의 배관을 막는 등의 문제를 일으킬 수 있다.
상기 문제를 해결하기 위한 방법으로 증류, 이온교환수지를 이용하는 방법이 있다. 그러나 이 방법들은 추가 설비 및 설비 가동 비용의 투자가 필요한 문제가 있는 바, 추가 설비 없이 폐액을 재생하여 재사용할 수 있는 방안을 제공하고자 한다.
[선행기술문헌]
(특허문헌 1) 한국공개특허공보 제2002-0062287호 (2002.07.25 공개)
본 발명은 상기 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 해결하고자 하는 과제는 초임계 건조 공정 후 발생하는 초임계 폐액을 재생하여 재사용함으로써, 제조원가를 절감할 수 있는 동시에 실리카 에어로겔 블랭킷의 단열 성능 저하를 방지할 수 있는 실리카 에어로겔 블랭킷 제조방법을 제공하는 것이다.
구체적으로 본 발명은 상기 초임계 폐액에 금속염을 첨가함으로써, 초임계 폐액 내 존재하는 암모니아를 제거하고, 상기 첨가된 금속염과 암모니아를 반응시켜 형성된 금속수산화물에 의해 난연제의 첨가 없이도 우수한 난연성을 확보할 수 있는 초임계 폐액 재생방법 및 실리카 에어로겔 블랭킷 제조방법을 제공할 수 있다.
본 발명은 실리카 에어로겔 블랭킷 제조 공정 중 초임계 건조 단계에서 발생하는 초임계 폐액에 금속염을 첨가하는 것을 특징으로 하는 초임계 폐액 재생방법을 제공한다.
또한, 본 발명은 상기 초임계 폐액 재생방법에 의해 재생된 초임계 폐액을 재사용하는 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법을 제공한다.
본 발명에 의하면 본 발명의 초임계 폐액 재생방법에 의해 실리카 에어로겔 블랭킷 제조 공정 중 발생하는 초임계 폐액을 재생하여 재사용함으로써, 제조원가를 절감할 수 있는 동시에 단열 성능 저하를 방지할 수 있는 실리카 에어로겔 블랭킷을 제조할 수 있다.
구체적으로 본 발명은 초임계 폐액에 금속염을 첨가함으로써, 초임계 폐액 내 존재하는 암모니아를 제거하고, 상기 첨가된 금속염과 암모니아를 반응시켜 형성된 금속수산화물에 의해 난연제의 추가 첨가 없이도 우수한 난연성을 확보할 수 있는 실리카 에어로겔 블랭킷을 제조할 수 있다.
또한, 본 발명의 초임계 폐액 재생방법은 종래의 재생방법에 비해 별도의 설비가 필요하지 않아 간단하고, 경제적이며, 공정상 안전한 이점이 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 구체적인 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니된다.
도 1은 본 발명의 초임계 폐액 재생방법 및 실리카 에어로겔 제조방법을 나타내는 순서도이다.
도 2는 본 발명의 실시예 및 비교예에 따른 실리카 에어로겔 블랭킷의 난연성 테스트 결과를 나타내는 사진이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 초임계 건조 공정 후 발생하는 초임계 폐액을 재생하여 재사용함으로써, 제조원가를 절감할 수 있는 동시에 실리카 에어로겔 블랭킷의 단열 성능 저하를 방지할 수 있는 초임계 폐액 재생방법 및 실리카 에어로겔 블랭킷 제조방법을 제공하는 것을 목적으로 한다.
이에 본 발명의 일 실시예에 따른 초임계 폐액 재생방법은 실리카 에어로겔 블랭킷 제조 공정 중 초임계 건조 단계에서 발생하는 초임계 폐액에 금속염을 첨가하는 것을 특징으로 하며, 본 발명의 일 실시예에 따른 실리카 에어로겔 블랭킷 제조방법은 상기 금속염 첨가에 의해 재생된 초임계 폐액을 재사용하는 것을 특징으로 한다.
이하, 상기 본 발명의 초임계 폐액 재생방법 및 실리카 에어로겔 블랭킷 제조방법을 상세히 설명하기로 한다.
초임계 폐액 재생방법
본 발명의 일 실시예에 따른 초임계 폐액 재생 방법은 구체적으로 실리카 에어로겔 블랭킷 제조 공정 중 초임계 건조 단계에서 발생하는 초임계 폐액에 금속염을 첨가하여 폐액을 재생하는 것을 특징으로 한다.
상기 본 발명의 초임계 폐액이란 초임계 건조 공정 후 발생하는 폐액을 의미하며, 이는 물, 유기 용매 및 암모니아를 포함할 수 있으며, 상기 유기 용매는 메탄올, 에탄올, 헥산, 이소프로판올 및 펜탄으로 이루어지는 군에서 선택되는 1종 이상일 수 있고, 보다 구체적으로 에탄올일 수 있다.
한편, 본 발명의 초임계 폐액은 초임계 건조 단계에서 실리카 겔에 포함된 용매 및 초임계 유체에 복수의 압력 펄스를 동시에 인가하여 수득될 수 있다.
상기 복수의 압력 펄스 중 적어도 2 이상은 상이한 주파수 및 상이한 진폭 중 적어도 어느 하나 이상의 특징을 갖는 것을 특징으로 하여, 실리카 겔에 포함된 용매를 신속하게 초임계 유체와 교환하여 초임계 폐액을 신속하게 수득할 수 있고, 이로 인해 실리카 에어로겔 블랭킷 제조시간을 크게 단축시킬 수 있다.
건설 또는 산업 현장에서 단열재로 광범위하게 사용되고 있는 실리카 에어로겔은 그 표면을 소수화시키지 않는 경우 실리카 표면의 실라놀기(Si-OH)의 친수성 때문에 공기 중의 물을 흡수하게 되어 열전도율이 점차 높아지는 단점이 있으며, 건조 공정에서 기공 붕괴가 심화되어 스프링 백(spring back) 현상을 기대하기 어려워 메조 포어(meso pore)를 갖는 초 단열 제품을 제조하기 어려운 문제가 있다.
따라서, 공기 중의 수분 흡수를 억제시켜 낮은 열전도율을 유지하기 위해서는 실리카 에어로겔 표면을 소수성으로 개질하는 단계가 필수적이다. 일반적으로 실리카 에어로겔은 실리카 졸 제조 단계, 겔화 단계, 숙성 단계, 표면개질 단계 및 초임계 건조 단계를 통해 제조된다.
한편, 상기 표면개질 단계에 사용되는 표면개질제는 실리카 에어로겔 표면의 소수화 과정에서 암모니아를 형성하는 바, 상기 암모니아를 제거하지 않고 실리카 졸 제조단계의 용매로 재사용하는 경우, 초임계 폐액 내 포함된 암모니아에 의해 실리카 졸 용액의 pH가 높아져 겔화 시간의 조절이 어려워 원하는 물성의 제품을 제조할 수 없으며, 이후 초임계 건조 단계에서는 이산화탄소와 반응하여 탄산암모늄 염을 형성하여 초임계 건조 장비의 배관을 막을 수 있고, 일부는 초임계 폐액에 잔류하여 최종 실리카 에어로겔 또는 실리카 에어로겔 블랭킷의 열전도도를 증가시키는 등 단열 성능을 저하시키는 문제를 일으킬 수 있다.
이에, 본 발명의 목적인 실리카 에어로겔 블랭킷 제조원가를 절감하면서도 최종 제품의 단열 성능 저하를 방지하기 위해서는 초임계 폐액을 재사용하기 전 상기 초임계 폐액에 포함된 잔류 암모니아를 제거하는 재생 단계가 필수적이다.
종래에는 증류, 이온교환수지 또는 산을 첨가하여 중화시키는 방법에 의해 초임계 폐액을 재생하였으나, 상기 증류 또는 이온 교환수지를 이용하는 방법은 추가 설비 및 설비 가동 비용의 투자가 필요하여 경제성, 공정성이 좋지 못하였고, 중화반응에 의하는 방법은 격렬한 중화반응 및 중화열에 의해 안전성이 떨어지고, 산을 사용함에 따라 배관 및 기계 장치등의 부식 등이 일어나는 단점이 있었다.
본 발명의 초임계 폐액 재생방법은 초임계 폐액에 금속염을 첨가하여 초임계 폐액 내에 포함된 암모니아와 반응시켜 금속수산화물을 형성함으로서, 초임계 폐액 내에 포함된 암모니아를 간단하고 안전하게 제거할 수 있다.
본 발명은 금속염으로 MgCl2, MgSO4, CaCl2, CaSO4, AlCl3 및 Al2(SO4)3 으로 이루어지는 군에서 선택되는 1종 이상을 사용할 수 있으며, 보다 구체적으로 상기 반응성을 고려하여 MgCl2 또는 MgSO4 을 사용하는 것이 바람직하다.
본 발명의 일 실시예로서, 금속염으로 MgCl2 을 첨가한 경우 하기 반응식 1에 의해 수산화마그네슘을 형성함으로써, 초임계 폐액 내 포함된 암모니아를 제거할 수 있다.
[반응식 1]
MgCl2 + 2NH4OH → Mg(OH)2 + 2NH4Cl
상기 금속수산화물은 난연제의 효과를 나타낼 수 있으므로, 난연제의 추가 투입없이 실리카 에어로겔 블랭킷의 우수한 난연성을 확보할 수 있으며, 재생된 초임계 폐액 내에 난연제가 이미 분산되어 있는 바, 난연제의 분산 공정을 생략할 수 있고, 난연제 구입에 필요한 원재료비 역시 절감할 수 있는 추가적인 이점이 있다.
한편, 본 발명은 상기 금속염을 금속염:초임계 폐액 내 포함된 암모니아의 몰비가 1:3 내지 1:1, 보다 구체적으로는 1:2 내지 1:1 의 몰비가 되는 양으로 첨가할 수 있다. 상기 범위 내로 첨가하는 것이 암모니아 제거 효율 및 금속염 원가 절감에 바람직하다.
금속염을 상기 범위 미만으로 첨가하는 경우, 잔류 암모니아가 불완전하게 제거되어 초임계 폐액의 재생 효과가 미흡할 수 있고, 이러한 초임계 폐액을 재사용하는 경우, 겔화 단계에서 겔화 시간을 지나치게 빠르게 하여 공정 시간 및 최종 에어로겔 블랭킷의 물성 조절이 어렵거나 에어로겔 블랭킷의 물성이 저하되는 문제가 있을 수 있으며, 상기 범위를 초과하여 첨가하는 경우, 미반응된 과량의 금속염이 주는 정전기적 효과에 의해 에어로겔 블랭킷 제조 공정 중 겔화가 균일하게 이루어지지 못해 에어로겔 블랭킷의 물성이 저하되는 문제가 있을 수 있다.
한편, 본 발명은 상기 금속염 첨가 이후 상온에서 30 분 내지 2 시간 동안 교반하여 반응시키는 단계를 더 포함할 수 있다. 본 발명의 금속염은 암모니아와 반응성이 우수한 바, 추가 열처리 없이 상온에서 반응할 수 있으며, 다만, 본 발명은 교반 공정을 추가하여 첨가되는 금속염이 초임계 폐액 내에 고루 분산되도록 하여 초임계 폐액 재생 시간을 보다 단축시킬 수 있다.
실리카 에어로겔 블랭킷 제조방법
본 발명의 일 실시예에 따른 실리카 에어로겔 블랭킷 제조방법은 상기 재생된 초임계 폐액을 실리카 에어로겔 블랭킷 제조에 재사용하는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 실리카 에어로겔 블랭킷 제조방법은 상기 재생된 초임계 폐액을 실리카 졸 제조 단계, 숙성 단계 및 표면개질 단계로 이루어진 군에서 선택되는 하나 이상의 단계에서 재사용할 수 있으며, 보다 구체적으로는 실리카 졸 제조 단계에서 재사용할 수 있다.
또한, 본 발명의 실리카 에어로겔 블랭킷 제조방법은 실리카 에어로겔 블랭킷 제조공정 중 숙성 폐액 및 표면개질 폐액을 회수하여 숙성 단계 및 표면개질 단계 중 하나 이상의 단계에 재사용하는 단계를 더 포함할 수 있다.
다시 말해, 숙성 단계 및 표면개질 단계를 통해 회수된 숙성 폐액 및 표면개질 폐액도 회수하여 다음 배치의 실리카 에어로겔 블랭킷 제조에 재사용 가능하며, 구체적으로 숙성 단계 및 표면개질 단계 중 하나 이상의 단계에서 재사용할 수 있다. 상기 숙성 단계 및 표면개질 단계에 재사용되는 숙성 폐액 및 표면개질 폐액은 다량의 암모늄 이온이 포함되어 있어도 실리카 에어로겔 블랭킷의 단열 성능 저하를 가져오지 않는 바, 별도의 처리 없이 재사용하여 제조원가를 절감할 수 있다.
본 발명의 초임계 폐액 재생 방법에 의하는 경우 재사용되는 재생된 초임계 폐액은 실리카 에어로겔 블랭킷 제조에 사용되는 유기 용매 총 중량 대비 85 중량% 이상일 수 있으며, 실리카 졸 제조 단계에서 재사용되는 재생된 초임계 폐액의 양은 실리카 졸 제조 단계에서 사용되는 유기 용매 총 중량 대비 50 중량% 내지 90 중량%, 보다 구체적으로는 55 내지 85 중량% 일 수 있어 제조원가를 현저하게 절감할 수 있다.
상기 범위 미만으로 재사용하는 경우 제조원가 절감 효과가 높지 않을 수 있으며, 상기 범위를 초과하여 재사용하는 경우, 실리카 에어로겔 블랭킷의 물성 저하 방지를 담보할 수 없는 문제가 있을 수 있다.
상기 본 발명의 초임계 폐액 재생 및 재사용에 의해 제조된 실리카 에어로겔 블랭킷은 상온(25 ℃) 열전도도가 16 ㎽/mK 이하인 단열 성능을 구현할 수 있으며, 이는 최초로 사용하는 유기 용매(fresh ethanol)만을 사용하여 제조한 경우와 동등 또는 유사한 수준에 해당하는 것이다.
이와 같이 본 발명은 실리카 에어로겔 블랭킷 제조 과정 중 발생하는 초임계 폐액을 금속염을 이용하여 재생하여 재사용함으로써, 제조원가를 절감할 수 있는 동시에 실리카 에어로겔 블랭킷의 단열 성능 저하를 방지할 수 있으며, 상기 금속염 첨가에 의해 형성된 금속수산화물은 난연제의 효과를 나타내는 바, 난연제의 추가 투입 없이도 우수한 난연성을 확보할 수 있는 실리카 에어로겔 블랭킷을 제조할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1 내지 5
테트라에틸오르소실리케이트(TEOS), 물 및 에탄올을 1:2:21 의 중량비로 혼합하여 실리카 졸을 제조하였다. 상기 실리카 졸에 실리카 졸 대비 0 내지 1 vol%의 암모니아를 실리카 졸 대비 12 vol%의 에탄올에 희석시킨 염기 촉매 용액을 첨가한 후 PET 섬유에 캐스팅하여 겔화를 유도하였다. 겔화 완료 후, 실리카 졸 대비 1 내지 10 vol% 의 암모니아 용액을 이용하여 25 내지 80 ℃의 온도에서 25 내지 100 분간 방치하여 숙성시킨 뒤, 실리카 졸 대비 1 내지 10 vol% 의 HMDS를 첨가하여 1 내지 24 시간 동안 소수화 반응을 진행하였다. 소수화 반응 완료 후, 7.2 L 초임계 추출기(extractor)에 넣고 CO2 를 주입하고, 추출기 내의 온도를 1 시간에 걸쳐 60 ℃로 승온하고, 50 ℃, 100 bar 에서 초임계 건조하여 소수성 실리카 에어로겔 블랭킷을 제조하였다.
이때 분리기 하단을 통해 초임계 폐액을 회수하고, 상기 회수된 초임계 폐액 100 g에 대하여 하기 표 1에 기재된 금속염을 표 1에 기재된 양만큼 첨가하고, 상온에서 2 시간 동안 교반하여 반응시켜 초임계 폐액 재생을 완료하였다.
이후, 다음 배치의 실리카 에어로겔 제조공정의 실리카 졸 제조 단계에서 필요한 에탄올 양의 70 중량% 만큼 상기 재생된 초임계 폐액(recycled ethanol)을 사용하고, 나머지 30 중량% 는 최초로 사용하는 순수 에탄올을 사용하여, 상기 방법과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
비교예
상기 실시예 1에서 재사용하지 않은 최초로 사용하는 순수 에탄올(fresh ethanol)만을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
실험예
상기 실시예 및 비교예에서 제조한 실리카 에어로겔 블랭킷의 각 물성을 측정하여 그 결과를 하기 표 1 및 도 2에 나타내었다.
1) 두께 (mm) 및 상온 열전도도 (mW/mK, 25 ℃)
실시예 및 비교예에서 제조한 각각의 실리카 에어로겔 블랭킷을 30cm X 30 cm 크기의 샘플로 준비하고 NETZSCH社의 HFM 436 Lambda 장비를 이용하여 두께 및 상온 열전도도를 측정하였다.
2) 난연성 (kg/m3)
실시예 및 비교예에서 제조한 실리카 에어로겔 블랭킷 샘플에 wire를 접촉시킨 후 wire를 1050 ℃까지 가열하며 연기 및 그을음 발생 여부를 관찰하였다.
금속염 금속염: 암모니아 몰비 두께(mm) 상온 열전도도 (mW/mK)
실시예 1 MgCl2 1:2 10.2 15.2
실시예 2 MgSO4 1:2 9.7 15.4
실시예 3 MgSO4 1:1 10.1 15.8
실시예 4 CaCl2 1:2 9.4 15.3
실시예 5 AlCl3 1:3 10.2 16.0
비교예 -(fresh ethanol) - 10.4 15.3
상기 표 1에서 보는 바와 같이, 본 발명의 초임계 폐액 재생방법에 따라 재생된 초임계 폐액을 재사용하여 실리카 에어로겔 블랭킷을 제조하는 경우, 최초로 사용되는 순수 에탄올만을 사용한 비교예의 실리카 에어로겔 블랭킷과 동등 또는 유사한 물성을 가지는 것을 확인할 수 있었다.
또한, 난연성 테스트에서 실시예의 실리카 에어로겔 블랭킷은 불꽃이 없이 그을음만 발생하였으며, 비교예는 연기 및 그을음이 현저히 발생하고 불꽃이 나타나는 것을 확인할 수 있었다.
이를 통해 실시예의 에어로겔 블랭킷이 비교예에 비해 난연성이 우수한 것을 알 수 있었으며, 이는 재생 단계에서 첨가된 금속염이 초임계 폐액에 포함된 암모니아와 반응하여 형성된 금속수산화물에 의한 것임을 예상할 수 있었다.
이를 통해 본 발명의 초임계 폐액 재생방법에 의해 폐액을 재생하여 재사용하는 경우 제조원가를 절감할 수 있는 동시에 실리카 에어로겔 블랭킷의 단열 성능 저하를 방지할 수 있고, 나아가 우수한 난연 성능을 확보할 수 있음을 알 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (12)

  1. 실리카 에어로겔 블랭킷 제조 공정 중 초임계 건조 단계에서 발생하는 초임계 폐액에 금속염을 첨가하는 것을 특징으로 하는 초임계 폐액 재생방법.
  2. 제1항에 있어서,
    상기 초임계 폐액은 물, 유기 용매 및 암모니아를 포함하는 것을 특징으로 하는 초임계 폐액 재생방법.
  3. 제2항에 있어서,
    상기 유기 용매는 메탄올, 에탄올, 헥산, 이소프로판올 및 펜탄으로 이루어지는 군에서 선택되는 1종 이상인 것을 특징으로 하는 초임계 폐액 재생방법.
  4. 제1항에 있어서,
    상기 금속염은 MgCl2, MgSO4, CaCl2, CaSO4, AlCl3 및 Al2(SO4)3 으로 이루어지는 군에서 선택되는 1종 이상인 것을 특징으로 하는 초임계 폐액 재생방법.
  5. 제1항에 있어서,
    상기 금속염은 금속염:초임계 폐액 내 포함된 암모니아가 1:3 내지 1:1 의 몰비가 되는 양으로 첨가하는 것을 특징으로 하는 초임계 폐액 재생방법.
  6. 제1항에 있어서,
    상기 금속염은 초임계 폐액 내 포함된 암모니아와 반응하여 금속수산화물을 형성하는 것을 특징으로 하는 초임계 폐액 재생방법.
  7. 제1항에 있어서,
    상기 금속염 첨가 이후 교반하는 단계를 더 포함하는 것을 특징으로 하는 초임계 폐액 재생방법.
  8. 제1항에 있어서,
    상기 초임계 폐액은 초임계 건조 단계에서 실리카 겔에 포함된 용매 및 초임계 유체에 복수의 압력 펄스를 동시에 인가하여 수득되고, 상기 복수의 압력 펄스 중 적어도 2 이상은 상이한 주파수 및 상이한 진폭 중 적어도 어느 하나 이상의 특징을 갖는 것을 특징으로 하는 초임계 폐액 재생 방법.
  9. 제1항 내지 제8항 중 어느 한 항의 초임계 폐액 재생 방법에 의해 재생된 초임계 폐액을 재사용하는 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
  10. 제9항에 있어서,
    상기 재생된 초임계 폐액은 실리카 졸 제조 단계, 숙성 단계 및 표면개질 단계로 이루어진 군에서 선택되는 하나 이상의 단계에서 재사용되는 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
  11. 제9항에 있어서,
    상기 재사용되는 재생된 초임계 폐액은 실리카 에어로겔 블랭킷 제조에 사용되는 유기 용매 총 중량 대비 85 중량% 이상인 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
  12. 제10항에 있어서,
    상기 실리카 졸 제조 단계에서 재사용되는 재생된 초임계 폐액의 양은 실리카 졸 제조 단계에서 사용되는 유기 용매 총 중량 기준 50 중량% 내지 90 중량% 인 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
PCT/KR2018/009617 2017-11-17 2018-08-21 실리카 에어로겔 블랭킷 제조 공정 중 발생하는 초임계 폐액 재생 방법 WO2019098503A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18877578.7A EP3677547B1 (en) 2017-11-17 2018-08-21 Method for recycling supercritical waste liquid generated during process of producing silica aerogel blanket
JP2020506800A JP7060675B2 (ja) 2017-11-17 2018-08-21 シリカエアロゲルブランケットの製造工程中に生じる超臨界廃液の再生方法
CN201880063226.2A CN111164048B (zh) 2017-11-17 2018-08-21 回收在二氧化硅气凝胶毡的制备过程中产生的超临界废液的方法
US16/754,204 US11760645B2 (en) 2017-11-17 2018-08-21 Method for recycling supercritical waste liquid generated during process of producing silica aerogel blanket
US18/225,626 US11981576B2 (en) 2017-11-17 2023-07-24 Method for recycling supercritical waste liquid generated during process of producing silica aerogel blanket

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0154145 2017-11-17
KR1020170154145A KR102183538B1 (ko) 2017-11-17 2017-11-17 실리카 에어로겔 블랭킷 제조 공정 중 발생하는 초임계 폐액 재생 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/754,204 A-371-Of-International US11760645B2 (en) 2017-11-17 2018-08-21 Method for recycling supercritical waste liquid generated during process of producing silica aerogel blanket
US18/225,626 Division US11981576B2 (en) 2017-11-17 2023-07-24 Method for recycling supercritical waste liquid generated during process of producing silica aerogel blanket

Publications (1)

Publication Number Publication Date
WO2019098503A1 true WO2019098503A1 (ko) 2019-05-23

Family

ID=66539756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009617 WO2019098503A1 (ko) 2017-11-17 2018-08-21 실리카 에어로겔 블랭킷 제조 공정 중 발생하는 초임계 폐액 재생 방법

Country Status (6)

Country Link
US (2) US11760645B2 (ko)
EP (1) EP3677547B1 (ko)
JP (1) JP7060675B2 (ko)
KR (1) KR102183538B1 (ko)
CN (1) CN111164048B (ko)
WO (1) WO2019098503A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335115A (ja) * 1998-05-25 1999-12-07 Matsushita Electric Works Ltd 疎水性エアロゲルの製法
KR20020062287A (ko) 1999-10-21 2002-07-25 아스펜 시스템즈 인코포레이티드 신속한 에어로겔 제조방법
JP2011190548A (ja) * 2010-03-12 2011-09-29 Asahi Kagaku Kk 置換洗浄容器およびこの置換洗浄容器を使用した置換洗浄装置
KR101434273B1 (ko) * 2007-03-15 2014-08-27 알이엠텍 주식회사 표면개질된 실리카겔의 제조 방법
KR20160122634A (ko) * 2015-04-14 2016-10-24 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273957B2 (ja) 1991-08-21 2002-04-15 松下電工株式会社 エアロゲルの製造方法
IL112385A (en) * 1994-01-21 1998-08-16 Flamemag International Gie Process for preparing magnesium hydroxide for extinguishing flames
JPH10167733A (ja) 1996-12-06 1998-06-23 Olympus Optical Co Ltd ガラスの製造方法
CN100375778C (zh) 2005-09-23 2008-03-19 清华大学 液氨加压沉淀-水热改性法制备氢氧化镁阻燃剂的方法
JP5026304B2 (ja) 2008-02-22 2012-09-12 大陽日酸株式会社 アンモニア含有ガス中の二酸化炭素の分析方法
CN103432985A (zh) * 2013-08-20 2013-12-11 南京工业大学 一种胺基改性二氧化硅气凝胶及其在重金属离子吸附剂中的应用
CN103708476B (zh) 2014-01-07 2016-06-29 厦门大学 一种柔韧性二氧化硅气凝胶的制备方法
US10160655B2 (en) 2014-05-15 2018-12-25 Tahoe Technologies, Ltd. Apparatus and method for manufacturing and packaging of high performance thermal insulator aerogels
CN104556969B (zh) 2014-12-30 2017-10-13 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料的制备方法
KR101789371B1 (ko) 2015-02-13 2017-10-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
CN104787934B (zh) 2015-05-05 2017-01-11 江苏省环境科学研究院 一种含氮有机废水和酸洗废液联合处理的方法
KR101955307B1 (ko) 2015-11-27 2019-05-30 주식회사 엘지화학 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
CN106592201A (zh) 2016-12-09 2017-04-26 伊科纳诺(北京)科技发展有限公司 一种阻燃型疏水二氧化硅气凝胶复合毡垫的常压制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335115A (ja) * 1998-05-25 1999-12-07 Matsushita Electric Works Ltd 疎水性エアロゲルの製法
KR20020062287A (ko) 1999-10-21 2002-07-25 아스펜 시스템즈 인코포레이티드 신속한 에어로겔 제조방법
KR101434273B1 (ko) * 2007-03-15 2014-08-27 알이엠텍 주식회사 표면개질된 실리카겔의 제조 방법
JP2011190548A (ja) * 2010-03-12 2011-09-29 Asahi Kagaku Kk 置換洗浄容器およびこの置換洗浄容器を使用した置換洗浄装置
KR20160122634A (ko) * 2015-04-14 2016-10-24 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓

Also Published As

Publication number Publication date
US20230365416A1 (en) 2023-11-16
JP7060675B2 (ja) 2022-04-26
EP3677547B1 (en) 2022-01-26
JP2020529960A (ja) 2020-10-15
CN111164048B (zh) 2023-04-28
KR20190056819A (ko) 2019-05-27
US11981576B2 (en) 2024-05-14
US11760645B2 (en) 2023-09-19
US20200270137A1 (en) 2020-08-27
CN111164048A (zh) 2020-05-15
KR102183538B1 (ko) 2020-11-26
EP3677547A4 (en) 2020-10-14
EP3677547A1 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
WO2019098504A1 (ko) 초임계 폐액을 재사용한 실리카 에어로겔 블랭킷 제조방법
WO2020111763A1 (ko) 에어로겔 블랭킷의 제조방법
WO2017078293A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2012043942A1 (ko) 아민계 물질이 함침된 입상형 이산화탄소 흡착제 및 이의 제조방법
WO2016105159A1 (ko) 팽창흑연 및 팽윤성 점토를 이용한 경량화된 흡음내화 단열재 및 그 제조방법
WO2018208005A1 (ko) 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷
WO2021045483A1 (ko) 에어로겔 블랭킷 제조방법
WO2018048198A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2016114503A1 (ko) 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법
WO2018048197A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2017090911A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2020122683A1 (ko) 에어로겔 블랭킷의 제조방법
WO2017126868A1 (ko) 에어로겔 시트의 제조방법 및 장치
WO2018110860A1 (ko) 벤질기를 포함하는 구조유도물질을 이용한 제올라이트 제조방법 및 이로부터 제조된 제올라이트
WO2019098503A1 (ko) 실리카 에어로겔 블랭킷 제조 공정 중 발생하는 초임계 폐액 재생 방법
WO2022080721A1 (ko) 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷
WO2021029624A1 (ko) 습윤겔 블랭킷의 건조방법 및 이를 이용한 에어로겔 블랭킷의 제조방법
WO2012099296A1 (ko) 이중 코팅공정을 통한 주형재료, 주형, 주형재료의 제조방법 및 주형의 제조방법
WO2015122548A1 (ko) 개방 셀 발포체용 조성물 및 이를 이용한 소수성 개방 셀 발포체와 그 제조 방법
WO2019098519A1 (ko) 저분진 실리카 에어로겔 블랭킷 및 이의 제조방법
KR102559049B1 (ko) 실리카 에어로겔 블랭킷의 제조방법
WO2021045356A1 (ko) 에어로겔 블랭킷 제조장치 및 방법
WO2019093868A2 (ko) 실리카 에어로겔 블랭킷 제조 공정 중 발생하는 초임계 폐액 재생 방법
WO2021066492A1 (ko) 에어로겔 블랭킷
WO2022211353A1 (ko) 에어로겔 복합체 제조방법 및 에어로겔 복합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506800

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018877578

Country of ref document: EP

Effective date: 20200331

NENP Non-entry into the national phase

Ref country code: DE