WO2017126868A1 - 에어로겔 시트의 제조방법 및 장치 - Google Patents

에어로겔 시트의 제조방법 및 장치 Download PDF

Info

Publication number
WO2017126868A1
WO2017126868A1 PCT/KR2017/000576 KR2017000576W WO2017126868A1 WO 2017126868 A1 WO2017126868 A1 WO 2017126868A1 KR 2017000576 W KR2017000576 W KR 2017000576W WO 2017126868 A1 WO2017126868 A1 WO 2017126868A1
Authority
WO
WIPO (PCT)
Prior art keywords
blanket
silica sol
producing
airgel sheet
drying
Prior art date
Application number
PCT/KR2017/000576
Other languages
English (en)
French (fr)
Inventor
김예훈
이제균
오경실
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17741634.4A priority Critical patent/EP3287416B1/en
Priority to US15/565,017 priority patent/US10850987B2/en
Priority to CN201780001252.8A priority patent/CN107531497B/zh
Priority to JP2018520153A priority patent/JP6647397B2/ja
Publication of WO2017126868A1 publication Critical patent/WO2017126868A1/ko
Priority to US17/064,148 priority patent/US11697596B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H37/00Article or web delivery apparatus incorporating devices for performing specified auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/159Coating or hydrophobisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/026Mattresses, mats, blankets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum

Definitions

  • the present invention relates to a method and apparatus for manufacturing an airgel sheet, and more particularly, to a method and apparatus for manufacturing an airgel sheet having excellent heat insulation and durability and uniform thickness.
  • aerogel is a highly porous material having a high porosity of 90% or more and a maximum of 99% among solids known to date.
  • the gel is prepared by sol-gel polymerization of a silica precursor solution and then dried under supercritical or atmospheric conditions. Can be obtained. That is, the airgel has a pore structure filled with air.
  • Such aerogels are light and have thermal insulation and sound absorption properties due to the unique pore structure in which 90-99% of the interior space is empty. It is a high thermal insulation with a significantly lower thermal conductivity of less than 30 mW / mk.
  • the airgel according to the prior art has a problem in that the thickness of the sheet is not uniform and the insulation and durability are inferior.
  • an object of the present invention is to provide a method and apparatus for producing an airgel sheet having excellent heat insulation and durability, in particular having a uniform thickness.
  • Method for producing an airgel sheet according to the present invention for achieving the above object (a) preparing a silica sol; (b) preparing a catalyst for gelation; (c) impregnating the surface of the blanket by spraying the silica sol prepared in step (a); And (d) injecting the gelling catalyst prepared in step (b) onto the surface of the blanket impregnated with the silica sol to gelate the silica sol.
  • Step (a) may be prepared by mixing a tetraethly orthosilicate (TEOS) and ethanol.
  • TEOS tetraethly orthosilicate
  • TEOS tetraethly orthosilicate
  • a gelation catalyst may be prepared by mixing ethanol and ammonia water (NH 4 OH).
  • Step (c) and step (d) may be made in the conveyor belt for transferring the blanket from one side to the other side.
  • the conveyor belt may include a scraper provided with a first scraper for adjusting the thickness of the silica sol sprayed on the surface of the blanket and a second scraper for adjusting the thickness of the gelling catalyst sprayed on the surface of the blanket. .
  • the gelling catalyst may be sprayed at a rate of 0.035 to 0.012 L / min on the surface of the blanket and allowed to stand for 8 to 12 minutes to gel the silica sol.
  • step (e) may further comprise the step of aging the blanket gelled silica sol.
  • the silica sol gelled blanket may be aged for 50 minutes at a high temperature of 70 °C.
  • the silica sol gelled blanket may be left at room temperature for 10 minutes before aging.
  • step (f) may further comprise the step of modifying the surface by injecting the coating liquid to the aged blanket.
  • the coating solution in step (f) may be prepared by mixing ethanol and ammonia water (NH 4 OH).
  • step (f) 1.6 times of the silica sol impregnated on the surface of the blanket is added to the blanket, and the surface may be modified by aging and HMDS (Hexamethyldisilazane) for 1 hour at a high temperature of 70 ° C. .
  • HMDS Hexamethyldisilazane
  • step (f) may further comprise the step of drying the blanket is modified surface.
  • the surface-modified blanket is dried by injecting carbon dioxide at a rate of 70 L / min for 10 minutes at a temperature of 28 ° C. and 70 bar, and drying by heating up to 50 ° C. for 1 minute 20 minutes.
  • the third drying step may recover ethanol generated from the blanket as the surface is modified while injecting carbon dioxide.
  • the step (g) may further include a discharge step of discharging carbon dioxide for 2 hours after the fourth drying step.
  • Steps (e), (f) and (g) can be made in a reaction vessel containing a blanket.
  • the blanket in step (g) may be supercritical drying in the state accommodated in the reaction vessel.
  • the manufacturing apparatus for performing the manufacturing method of the airgel sheet having such a method is the supply roller wound blanket in the form of a roll; A conveyor belt for transferring the blanket wound on the feed roller from one side to the other side; A silica sol supply member for impregnating by spraying a silica sol on a surface of the blanket located on the conveyor belt; A catalyst supply member for gelling a silica sol by injecting a gelation catalyst on a surface of the blanket positioned on the conveyor belt; A recovery roller which winds up and recovers the blanket transferred to the other side by the conveyor belt in a roll form; And it may include a reaction container for accommodating the blanket in the form of a roll recovered by the recovery roller, aging the received blanket, the coating liquid is added, surface modification, and dried at a high temperature.
  • the present invention has the following effects.
  • the present invention can produce an airgel sheet having excellent heat insulation and durability, in particular, a uniform thickness by using a method for producing an airgel sheet.
  • high quality silica sol can be obtained by mixing TEOS (tetraethly orthosilicate) with ethanol.
  • high quality silica sol can be obtained by using the hydrolyzed TEOS in the method for producing an airgel sheet according to the present invention.
  • a high quality gelling catalyst can be obtained by mixing ethanol and ammonia water (NH 4 OH).
  • the thickness of the silica sol or the catalyst for gelation can be uniformly controlled.
  • a high-quality airgel sheet can be obtained by aging a blanket in which a silica sol is gelled, surface modified and dried.
  • FIG. 1 is a flow chart showing a method of manufacturing an airgel sheet according to the present invention.
  • FIG. 2 is a view showing an apparatus for producing an airgel sheet according to the present invention.
  • FIG 3 is a view showing a reaction vessel included in the apparatus for producing an airgel sheet according to the present invention.
  • Figure 4 is an enlarged photograph showing a blanket impregnated with an airgel according to the present invention.
  • Figure 5 is an enlarged photograph showing an airgel sheet according to the present invention.
  • FIG. 6 is a table comparing the airgel sheet according to the present invention and the airgel sheet according to the prior art.
  • Figure 7 is a graph comparing the airgel sheet according to the present invention and the airgel sheet according to the prior art.
  • Method for producing an airgel sheet according to the present invention as shown in Figure 1, (a) a silica sol manufacturing step for producing a silica sol, (b) a gelation catalyst production step for producing a gelling catalyst, (c) Silica sol injection step of impregnating by spraying silica sol on the surface of the blanket (d) catalyst injection step of gelling silica sol by spraying a gelation catalyst on the surface of the blanket impregnated with silica sol, (e) ) Blanket aging step of aging the silica sol gelled blanket, (f) Blanket surface modification step of modifying the surface by adding a coating liquid to the aged blanket, and (g) Drying the blanket modified surface It comprises a blanket drying step.
  • the silica sol manufacturing step is to obtain a silica sol
  • a silica sol is prepared by mixing tetraethly orthosilicate (TEOS) and ethanol.
  • TEOS tetraethly orthosilicate
  • silica sol is prepared by including 1.2 kg of TEOS and 2.7 kg of ethanol in a reactor (not shown).
  • TEOS is a solvent having excellent reactivity with water, using a hydrolyzed, it is possible to further increase the reactivity. That is, by mixing the hydrolyzed TEOS and ethanol can be obtained a silica sol excellent in reactivity.
  • the gelation catalyst preparation step is to obtain a gelation catalyst
  • a gelation catalyst is prepared by mixing ethanol and ammonia water (NH 4 OH).
  • ethanol and ammonia water NH 4 OH
  • NH 4 OH ammonia water
  • Figure 2 is a view showing an airgel manufacturing apparatus 100 for performing the (c) silica sol injection step and (d) gelling catalyst injection step of the present invention.
  • the airgel manufacturing apparatus 100 is provided with a blanket 10 wound around a feed roller 110 and a blanket 10 wound around a feed roller 110 on one side.
  • Silica sol supply member 130, the conveyor impregnated by spraying the silica sol 20 prepared in step (a) on the surface of the conveyor belt 120, the blanket 10 located on the conveyor belt 120 to the side
  • the catalyst supply member 140 which gelates the silica sol by spraying the gel catalyst 30 prepared in step (b) on the surface of the blanket 10 located on the belt 120, and the conveyor belt 120
  • a recovery roller 150 for winding up and recovering the blanket 10 transferred to the other side in a roll form.
  • the conveyor belt 120 supplies the blanket 10 supplied by the supply roller 110 from one side to the other side.
  • the transfer roller 150 winds up and recovers the blanket 10 again.
  • the silica sol supply member 130 on the surface of the blanket 10 conveyed by the conveyor belt 120 is impregnated silica sol by spraying the silica sol 20 prepared in step (a), and the catalyst supply
  • the member 140 may gel the silica sol by spraying the gel catalyst 30 on the surface of the blanket 10 impregnated with the silica sol.
  • the conveyor belt 120 includes a scraper 160 for uniformly adjusting the thickness of the silica sol 20 and the gelling catalyst 30 sprayed on the blanket 10. That is, the scraper 160 includes a first scraper 161 for adjusting the thickness of the silica sol 20 sprayed on the surface of the blanket 10, and a gelation catalyst 30 sprayed on the surface of the blanket 10. A second scraper 162 to adjust the thickness of the.
  • first scraper 161 and the second scraper 162 have the same shape and are installed on the upper surface of the conveyor belt 120 so that the height can be adjusted in the vertical direction, such that the silica sol 20 and the gel catalyst 30 are formed. ) To adjust the thickness uniformly.
  • Step (c) Silica sol injection step is impregnated by spraying the silica sol prepared in step (a) on the surface of the blanket (blanket). That is, the silica sol 20 prepared in step (a) is injected into the silica sol supply member 130 and stored. Then, when the blanket 10 is transferred to the lower portion of the silica sol supply member 130 by the conveyor belt 120, the silica sol 20 is sprayed through the silica sol supply member 130 to provide the blanket 10. Immerse the surface.
  • the silica sol 20 sprayed on the blanket 10 has a uniform thickness while passing through the first scraper 161 installed on the conveyor belt 120. That is, the first scraper 161 may uniformly control the thickness of the silica sol 20 by blocking the silica sol 20 having a predetermined thickness or more from passing through.
  • the gel catalyst catalyst spraying step may inject gelation catalyst 30 onto the surface of the blanket 10 impregnated with silica sol by step (c) to gel the silica sol. That is, the gelation catalyst 30 prepared in step (b) is injected into the catalyst supply member 140 and stored. Then, when the blanket 10 impregnated with silica sol is transferred to the lower portion of the catalyst supply member 140 by the conveyor belt 120, the gelation catalyst 30 is blanketed through the catalyst supply member 140. It is possible to gel the silica sol by spraying on the surface of 10).
  • the catalyst supply member 140 is sprayed at a set speed of the stored gelling catalyst 30 and left for a set time to stably gel the silica sol. That is, the catalyst supply member 140 sprays the gelation catalyst 30 at a rate of 0.035 to 0.012 L / min on the surface of the blanket 10 and, for 8 to 12 minutes, gradually gels the silica sol.
  • the catalyst supply member 140 may vary the injection speed of the gelling catalyst 30 according to the density of the silica sol 20 impregnated in the blanket 10, thereby reducing the concentration of the silica sol.
  • the gelation can be controlled uniformly.
  • the injection speed of the gelling catalyst 30 is adjusted to 0.017 L / min.
  • the content of the silica sol 20 impregnated in the blanket 10 is 38wt% and the thermal conductivity is 14.1mW / mK.
  • the injection speed of the gelling catalyst 30 is adjusted to 0.012 L / min.
  • the content of the silica sol 20 impregnated in the blanket 10 is 55wt% and the thermal conductivity is 13.0mW / mK.
  • the injection speed of the gelling catalyst decreases, thereby inducing stable gelation of the silica sol.
  • the blanket sol gelled with silica sol is recovered while being wound in a roll by the recovery roller 150, and the recovered blanket 10 is subjected to an aging step, a surface modification step, and a drying step. Is completed. At this time, the reaction vessel 170 is used.
  • FIG 3 is a view showing a reaction vessel 170 according to the present invention.
  • the reaction vessel 170 has an accommodating space 171 for hermetically receiving the blanket 10 recovered in the form of a roll, an injection hole 172 connected to the accommodating space at one end, and the accommodating space at the other end. An outlet 173 connected to the 171 is formed.
  • the blanket aging step ages the silica sol gelled sheet. That is, a plurality of blankets 10 gelled by the silica sol cut in step (d) are accommodated in the receiving space 171 of the reaction vessel 170, and then the receiving space 171 of the reaction vessel 170 is 70 Aging is carried out for 50 minutes while heated to °C to uniform the structure of the blanket (10).
  • the blanket aging step is left for 10 minutes at room temperature (or 25 °C) before aging in the reaction vessel 170, the aging proceeds. That is, the aging of the blanket 10 can be made more uniform by aging inducing stable gelation of the silica sol.
  • the blanket surface modification step is to modify the surface by spraying the coating liquid on the aged blanket (10). That is, (f) the blanket surface modification step to prepare a coating solution by mixing ethanol and ammonia water (NH 4 OH). Then, the coating solution is injected into the receiving space 181 through the injection hole 172 of the reaction vessel 170 into which the blanket 10 is inserted, thereby modifying the surface of the blanket 10. At this time, the coating solution is sprayed 1.6 times of the silica sol impregnated on the surface of the blanket (blanket) in step (c), the reaction vessel 170 by aging and HMDS (Hexamethyldisilazane) for 1 hour at a high temperature of 70 °C blanket The surface of (10) is modified.
  • HMDS Hexamethyldisilazane
  • HMDS Hexamethyldisilazane
  • Blanket drying step is to dry the blanket (10) surface is modified to complete the airgel sheet.
  • the blanket drying step is a supercritical drying is made in the state in which the blanket 10 is accommodated in the reaction vessel 170. That is, (g) the blanket drying step is the first drying step of drying the surface-modified blanket 10 by injecting carbon dioxide at a rate of 70 L / min for 10 minutes in an environment of 28 ° C. and 70 bar, and 50 ° C. for 1 minute 20 minutes. The secondary drying step of heating and drying to a furnace, and the third drying step of drying by injecting carbon dioxide at a rate of 0.7 L / min for 20 minutes at 50 ° C. and 150 bar, and 0.7 L / min for 20 minutes after 20 minutes of rest. And a fourth drying step of drying by injecting at a speed. As the drying step is performed, the drying rate of the blanket 10 may be increased.
  • the blanket drying step includes a discharge step of discharging carbon dioxide for 2 hours after the fourth drying, thereby inducing a gentle environmental change in the blanket 10 to equalize the tissue of the blanket (10).
  • the airgel sheet By manufacturing the airgel sheet by the method of manufacturing an airgel sheet according to the present invention, it is possible to homogenize the structure, thereby increasing the heat insulation and durability.
  • the airgel sheet (Example 1) of the present invention when the silica sol density is 40kg / m 3 , the injection speed of the gelling catalyst 30 is adjusted to 0.035L / min. At this time, the content of the silica sol 20 impregnated in the blanket 10 is 30wt% and the thermal conductivity is 14.9mW / mK.
  • the injection rate of the gelling catalyst is adjusted to 0.035 L / min.
  • the content of the silica sol impregnated in the blanket 10 is 27wt% and the thermal conductivity is 18mW / mK.
  • the airgel sheet (Example 1) and the conventional airgel sheet (comparative example) of the present invention are different in silica sol content and thermal conductivity.
  • the airgel sheet of the present invention varies the catalyst dosing rate according to the airgel density.
  • the airgel sheets prepared according to the present invention are more uniformly distributed in the pores of the airgel than the conventional airgel sheets (Comparative Examples).

Abstract

본 발명은 에어로겔 시트의 제조방법에 관한 것으로서, (a) 실리카졸을 제조하는 단계; (b) 겔화용 촉매를 제조하는 단계; (c) 블랑켓(blanket)의 표면에 (a) 단계에서 제조한 실리카졸을 분사하여 함침시키는 단계; 및 (d) 실리카졸이 함침된 블랑켓의 표면에 상기 (b) 단계에서 제조한 겔화용 촉매를 분사하여 실리카졸을 겔화시키는 단계를 포함할 수 있다.

Description

에어로겔 시트의 제조방법 및 장치
관련출원과의 상호인용
본 출원은 2016년 01월 19일자 한국특허출원 제10-2016-0006337호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 에어로겔 시트의 제조방법 및 장치에 관한 것으로서, 특히 단열성과 내구성이 우수하고, 두께가 균일한 에어로겔 시트의 제조방법 및 장치에 관한 것이다.
일반적으로 에어로겔은 현재까지 알려진 고체 중에서 90%이상, 최대 99% 정도의 높은 기공률을 갖는 고다공성 물질로서, 실리카 전구체 용액을 졸-겔 중합반응시켜 겔을 만든 후, 초임계조건 혹은 상압조건 하에서 건조함에 따라 얻을 수 있다. 즉, 에어로겔은 공기가 가득차 있는 기공 구조를 가지고 있다.
이와 같은 에어로겔은 내부 공간의 90~99%가 비어있는 독특한 기공구조로 인하여 가벼우면서도 단열성, 흡음성 등의 물성을 가지며, 그 중에서도 가장 큰 장점은 종래 스티로폼 등의 유기 단열재의 열전도도인 36mW/m.k보다 현저히 낮은 30mW/m.k 이하의 열전도율을 보이는 고단열성이다.
그러나 종래기술에 따른 에어로겔은 시트의 두께가 균일하지 못하고, 단열성과 내구성이 떨어지는 문제가 있었다.
본 발명은 상기와 같은 문제를 해결하기 위해 안출된 것으로, 본 발명의 목적은 단열성과 내구성이 우수하고, 특히 균일한 두께를 가지는 에어로겔 시트의 제조방법 및 장치를 제공하는데 있다.
상기와 같은 목적을 달성하기 위한 본 발명에 따른 에어로겔 시트의 제조방법은 (a) 실리카졸을 제조하는 단계; (b) 겔화용 촉매를 제조하는 단계; (c) 블랑켓(blanket)의 표면에 (a) 단계에서 제조한 실리카졸을 분사하여 함침시키는 단계; 및 (d) 실리카졸이 함침된 블랑켓의 표면에 상기 (b) 단계에서 제조한 겔화용 촉매를 분사하여 실리카졸을 겔화시키는 단계를 포함할 수 있다.
상기 (a) 단계는 TEOS(tetraethly orthosilicate)와 에탄올을 혼합하여 실리카졸을 제조할 수 있다.
상기 TEOS(tetraethly orthosilicate)는 가수분해된 것을 사용할 수 있다.
상기 (b) 단계는 에탄올과 암모니아수(NH4OH)를 혼합하여 겔화용 촉매를 제조할 수 있다.
상기 (c) 단계와 상기 (d) 단계는 상기 블랑켓을 일측에서 타측으로 이송하는 컨베이어벨트 내에서 이루어질 수 있다.
상기 컨베이어벨트에는 상기 블랑켓의 표면에 분사된 실리카졸의 두께를 조절하는 제1 스크래퍼와, 상기 블랑켓의 표면에 분사된 겔화용 촉매의 두께를 조절하는 제2 스크래퍼로 마련된 스크래퍼가 포함될 수 있다.
상기 (d) 단계는 상기 블랑켓의 표면에 상기 겔화용 촉매를 0.035~0.012L/min 속도로 분사하고, 8~12분 동안 방치하여 실리카졸을 겔화시킬 수 있다.
상기 (d) 단계 후, (e) 실리카졸이 겔화된 블랑켓을 에이징하는 단계를 더 포함할 수 있다.
상기 (e) 단계는 상기 실리카졸이 겔화된 블랑켓을 70℃의 고온에서 50분간 에이징할 수 있다.
상기 (e) 단계는 상기 실리카졸이 겔화된 블랑켓을 상온에서 10분간 방치한 후 에이징을 진행할 수 있다.
상기 (e) 단계 후, (f) 에이징된 블랑켓에 코팅액을 투입하여 표면을 개질하는 단계를 더 포함할 수 있다.
상기 (f) 단계에서 코팅액은 에탄올과 암모니아수(NH4OH)을 혼합하여 제조될 수 있다.
상기 (f) 단계는 상기 코팅액을 상기 블랑켓(blanket)의 표면에 함침된 실리카졸의 1.6배를 투입하고, 70℃의 고온에서 1시간 동안 에이징과 HMDS(Hexamethyldisilazane)하여 표면을 개질할 수 있다.
상기 (f) 단계 후, (g) 표면이 개질된 블랑켓을 건조하는 단계를 더 포함할 수 있다.
상기 (g) 단계는 표면개질된 블랑켓을 28℃ 및 70bar의 환경에서 이산화탄소를 10분간 70L/min 속도로 주입하여 건조하는 1차 건조단계, 1분 20분간 50℃까지 승온시켜서 건조하는 2차 건조단계, 다시 50℃ 및 150bar의 환경에서 이산화탄소를 20분간 0.7L/min 속도로 주입하여 건조하는 3차 건조단계, 및 20분간 휴식 후 20분간 이산화탄소를 0.7L/min 속도로 주입하여 건조하는 4차 건조단계를 포함할 수 있다.
상기 (g) 단계에서 3차 건조단계는 이산화탄소를 주입함과 동시에 표면이 개질됨에 따라 블랑켓으로부터 발생한 에탄올을 회수할 수 있다.
상기 (g) 단계는 4차 건조단계 이후, 2시간 동안 이산화탄소를 배출하는 배출단계를 더 포함할 수 있다.
상기 (e), (f) 및 (g) 단계는 블랑켓을 수용하는 반응용기 내에서 이루어질 수 있다.
상기 (g) 단계에서 블랑켓은 상기 반응용기에 수용된 상태에서 초임계 건조가 이루어질 수 있다.
한편, 이와 같은 방법을 가지는 에어로겔 시트의 제조방법을 수행하기 위한 제조장치는 블랑켓이 롤 형태로 권취된 공급롤러; 상기 공급롤러에 권취된 블랑켓을 일측에서 타측으로 이송하는 컨베이어벨트; 상기 컨베이어벨트에 위치한 상기 블랑켓의 표면에 실리카졸을 분사하여 함침시키는 실리카졸 공급부재; 상기 컨베이어벨트에 위치한 상기 블랑켓의 표면에 겔화용 촉매를 분사하여 실리카졸을 겔화시키는 촉매 공급부재; 상기 컨베이어벨트에 의해 타측까지 이송된 상기 블랑켓을 롤 형태로 권취하여 회수하는 회수롤러; 및 상기 회수롤러에 의해 회수된 롤 형태의 블랑켓을 수용하고, 수용한 블랑켓을 에이징, 코팅액을 투입하여 표면 개질, 및 고온으로 건조하는 반응용기를 포함할 수 있다.
본 발명은 하기와 같은 효과가 있다.
첫째: 본 발명은 에어로겔 시트의 제조방법을 이용함으로써 단열성과 내구성이 우수하고, 특히 두께가 균일한 에어로겔 시트를 제조할 수 있다.
둘째: 본 발명에 따른 에어로겔 시트의 제조방법에서 TEOS(tetraethly orthosilicate)와 에탄올을 혼합함으로써 고품질의 실리카졸을 얻을 수 있다.
셋째: 본 발명에 따른 에어로겔 시트의 제조방법에서 가수분해된 TEOS를 사용함으로써 고품질의 실리카졸을 얻을 수 있다.
넷째: 본 발명에 따른 에어로겔 시트의 제조방법에서 에탄올과 암모니아수(NH4OH)를 혼합함으로써 고품질의 겔화용 촉매를 얻을 수 있다.
다섯째: 본 발명에 따른 에어로겔 시트의 제조방법에서 블랑켓을 일측에서 타측으로 이송하는 컨베이어벨트를 사용함으로써 작업의 연속성과 공정의 단순화를 얻을 수 있다.
여섯째: 본 발명에 따른 에어로겔 시트의 제조방법에서 컨베이어벨트에 스크래퍼를 포함함으로써 실리카졸 또는 겔화용 촉매의 두께를 균일하게 조절할 수 있다.
일곱째: 본 발명에 따른 에어로겔 시트의 제조방법에서 실리카졸이 겔화된 블랑켓을 에이징하고, 표면 개질한 후 건조함으로써 고품질의 에어로겔 시트를 얻을 수 있다.
도 1은 본 발명에 따른 에어로겔 시트의 제조방법을 나타낸 순서도.
도 2는 본 발명에 따른 에어로겔 시트의 제조장치를 도시한 도면.
도 3은 본 발명에 따른 에어로겔 시트의 제조장치에 포함된 반응용기를 도시한 도면.
도 4는 본 발명에 따른 에어로겔이 함침된 블랑켓을 도시한 확대사진.
도 5는 본 발명에 따른 에어로겔 시트를 도시한 확대사진.
도 6은 본 발명에 따른 에어로겔 시트와 종래기술에 따른 에어로겔 시트를 비교한 표.
도 7은 본 발명에 따른 에어로겔 시트와 종래기술에 따른 에어로겔 시트를 비교한 그래프.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 발명에 따른 에어로겔 시트의 제조방법은 도 1에 도시되어 있는 것과 같이, (a) 실리카졸을 제조하는 실리카졸 제조단계, (b) 겔화용 촉매를 제조하는 겔화용 촉매 제조단계, (c) 블랑켓(blanket)의 표면에 실리카졸을 분사하여 함침시키는 실리카졸 분사단계, (d) 실리카졸이 함침된 블랑켓의 표면에 겔화용 촉매를 분사하여 실리카졸을 겔화시키는 촉매 분사단계, (e) 실리카졸이 겔화된 블랑켓을 에이징하는 블랑켓 에이징단계, (f) 에이징된 블랑켓에 코팅액을 투입하여 표면을 개질하는 블랑켓 표면개질단계, 및 (g) 표면이 개질된 블랑켓을 건조하는 블랑켓 건조단계를 포함한다.
이하, 본 발명에 따른 에어로겔 시트의 제조방법을 보다 상세히 설명한다.
(a) 실리카졸 제조단계
(a) 실리카졸 제조단계는 실리카졸을 얻기 위한 것으로, TEOS(tetraethly orthosilicate)와 에탄올을 혼합하여 실리카졸을 제조한다. 예로, 반응조(미도시)에 TEOS 1.2kg과 에탄올 2.7kg을 포함하여 실리카졸을 제조한다.
한편, TEOS는 물과의 반응성이 뛰어난 용매로, 가수분해된 것을 사용하며, 이에 따라 반응성을 더욱 높일 수 있다. 즉, 가수분해된 TEOS와 에탄올을 혼합함에 따라 반응성이 우수한 실리카졸을 얻을 수 있다.
(b) 겔화용 촉매 제조단계
(b) 겔화용 촉매 제조단계는 겔화용 촉매를 얻기 위한 것으로, 에탄올과 암모니아수(NH4OH)를 혼합하여 겔화용 촉매를 제조한다. 예로, 반응조(미도시)에 에탄올 0.5kg과 암모니아수(NH4OH) 30ml를 혼합하여 겔화용 촉매를 제조한다.
한편, 도 2는 본 발명의 (c) 실리카졸 분사단계와 (d) 겔화용 촉매 분사단계를 수행하는 에어로겔 제조장치(100)를 도시한 도면이다.
상기 에어로겔 제조장치(100)는 도 2에 도시되어 있는 것과 같이 블랑켓(10)이 롤 형태로 권취된 공급롤러(110), 공급롤러(110)에 권취된 블랑켓(10)을 일측에서 타측으로 이송하는 컨베이어벨트(120), 컨베이어벨트(120)에 위치한 블랑켓(10)의 표면에 (a) 단계에서 제조한 실리카졸(20)을 분사하여 함침시키는 실리카졸 공급부재(130), 컨베이어벨트(120)에 위치한 블랑켓(10)의 표면에 (b) 단계에서 제조된 겔화용 촉매(30)를 분사하여 실리카졸을 겔화시키는 촉매 공급부재(140), 및 컨베이어벨트(120)에 의해 타측까지 이송된 블랑켓(10)을 롤 형태로 권취하여 회수하는 회수롤러(150)를 포함한다.
이와 같은 에어로겔 제조장치(100)는 공급롤러(110)가 권취된 블랑켓(10)를 공급하면 컨베이어벨트(120)가 공급롤러(110)에 의해 공급된 블랑켓(10)을 일측에서 타측까지 이송하고, 회수롤러(150)가 다시 블랑켓(10)을 권취하여 회수한다. 이때 컨베이어벨트(120)에 의해 이송되는 블랑켓(10)의 표면에 실리카졸 공급부재(130)는 (a) 단계에서 제조된 실리카졸(20)을 분사하여 실리카졸을 함침시키며, 또 촉매 공급부재(140)는 실리카졸이 함침된 블랑켓(10)의 표면에 겔화용 촉매(30)를 분사하여 실리카졸을 겔화시킬 수 있다.
여기서 컨베이어벨트(120)에는 블랑켓(10)에 분사된 실리카졸(20) 및 겔화용 촉매(30)의 두께를 균일하게 조절하는 스크래퍼(160)가 포함된다. 즉 스크래퍼(160)는 블랑켓(10)의 표면에 분사된 실리카졸(20)의 두께를 조절하는 제1 스크래퍼(161)와, 블랑켓(10)의 표면에 분사된 겔화용 촉매(30)의 두께를 조절하는 제2 스크래퍼(162)를 포함한다.
즉, 제1 스크래퍼(161)와 제2 스크래퍼(162)는 동일한 형태를 가지며, 컨베이어벨트(120)의 상면에 상하방향으로 높이 조절이 가능하게 설치되어 실리카졸(20) 및 겔화용 촉매(30)의 두께를 균일하게 조절한다.
이하, 에어로겔 제조장치(100)이용한 (c) 실리카졸 분사단계와 (d) 겔화용 촉매 분사단계를 자세히 설명한다.
(c) 실리카졸 분사단계
(c) 실리카졸 분사단계는 블랑켓(blanket)의 표면에 (a) 단계에서 제조한 실리카졸을 분사하여 함침시킨다. 즉, (a) 단계에서 제조된 실리카졸(20)을 실리카졸 공급부재(130)에 주입하여 저장한다. 그럼 다음 컨베이어벨트(120)에 의해 실리카졸 공급부재(130)의 하부까지 블랑켓(10)이 이송되면 실리카졸 공급부재(130)를 통해 실리카졸(20)을 분사하여 블랑켓(10)의 표면에 함침시킨다.
이때, 블랑켓(10)에 분사된 실리카졸(20)은 컨베이어벨트(120)에 설치된 제1 스크래퍼(161)를 통과하면서 균일한 두께를 가지게 된다. 즉 제1 스크래퍼(161)는 소정 두께 이상의 실리카졸(20)은 통과하지 않도록 차단함에 따라 실리카졸(20)의 두께를 균일하게 조절할 수 있다.
(d) 겔화용 촉매 분사단계
(d) 겔화용 촉매 분사단계는 (c) 단계에 의해 실리카졸이 함침된 블랑켓(10)의 표면에 겔화용 촉매(30)를 분사하여 실리카졸은 겔화시킨다. 즉, (b) 단계에서 제조한 겔화용 촉매(30)를 촉매 공급부재(140)에 주입하여 저장한다. 그럼 다음, 컨베이어벨트(120)에 의해 촉매 공급부재(140)의 하부까지 실리카졸이 함침된 블랑켓(10)이 이송되면 촉매 공급부재(140)를 통해 겔화용 촉매(30)를 블랑켓(10)의 표면에 분사하여 실리카졸을 겔화시킬 수 있다.
여기서 촉매 공급부재(140)는 저장된 겔화용 촉매(30)의 설정된 속도로 분사하고, 설정된 시간 동안 방치하여 실리카졸을 안정적으로 겔화시킨다. 즉, 촉매 공급부재(140)는 블랑켓(10)의 표면에 겔화용 촉매(30)를 0.035~0.012L/min 속도로 분사하고, 8~12분 동안 방치하여 실리카졸을 점차 겔화시킨다.
특히, 촉매 공급부재(140)는 도 6에 도시되어 있는 것과 같이, 블랑켓(10)에 함침된 실리카졸(20)의 밀도에 따라 겔화용 촉매(30)의 분사속도를 달리하여 실리카졸의 겔화를 균일하게 조절할 수 있다.
즉, 도 6을 참조하면, (1)실리카졸의 밀도가 40kg/m3 일 경우 겔화용 촉매(30)의 분사속도는 0.035L/min로 조절한다. 이때 블랑켓(10)에 함침된 실리카졸(20)의 함량은 30wt% 및 열전도도는 14.9mW/mK를 가진다.
(2) 실리카졸의 밀도가 60kg/m3 일 경우 겔화용 촉매(30)의 분사속도는 0.017L/min로 조절한다. 이때 블랑켓(10)에 함침된 실리카졸(20)의 함량은 38wt% 및 열전도도는 14.1mW/mK를 가진다.
(3)실리카졸의 밀도가 80kg/m3 일 경우 겔화용 촉매(30)의 분사속도는 0.014L/min로 조절한다. 이때 블랑켓(10)에 함침된 실리카졸(20)의 함량은 38wt% 및 열전도도는 13.6mW/mK를 가진다.
(4)실리카졸의 밀도가 100kg/m3 일 경우 겔화용 촉매(30)의 분사속도는 0.012L/min로 조절한다. 이때 블랑켓(10)에 함침된 실리카졸(20)의 함량은 55wt% 및 열전도도는 13.0mW/mK를 가진다.
이와 같이 실리카졸의 밀도가 증가할수록 겔화용 촉매의 분사속도를 감소시키며, 이에 실리카졸의 안정된 겔화를 유도할 수 있다.
한편, 실리카졸이 겔화된 블랑켓(10)은 회수롤러(150)에 의해 롤 형태로 권취되면서 회수되고, 회수된 블랑켓(10)은 에이징 단계, 표면개질 단계 및 건조단계를 거치면서 에어로겔시트가 완성된다. 이때 반응용기(170)를 이용한다.
도 3은 본 발명에 따른 반응용기(170)를 도시한 도면이다.
즉, 반응용기(170)는 롤 형태로 회수된 블랑켓(10)을 밀폐되게 수용하는 수용공간(171)을 가지며, 일단에 상기 수용공간과 연결되는 주입구(172)와, 타단에 상기 수용공간(171)와 연결되는 배출구(173)가 형성된다.
이하, 반응용기(170)를 이용하여 (e) 시트 에이징단계, (f) 시트 표면개질단계, 및 (g) 시트 건조단계를 설명한다.
(e) 블랑켓 에이징단계
(e) 블랑켓 에이징단계는 실리카졸이 겔화된 시트를 에이징한다. 즉, 반응용기(170)의 수용공간(171)에 (d) 단계에서 절단된 실리카졸이 겔화된 블랑켓(10)을 복수개 수용한 다음, 반응용기(170)의 수용공간(171)을 70℃까지 가열한 상태로 50분간 에이징하여 블랑켓(10)의 조직을 균일화시킨다.
여기서 (e) 블랑켓 에이징단계는 반응용기(170)에서 에이징 하기 전에 상온(또는 25℃)에서 10분간 방치한 후 에이징을 진행한다. 즉, 실리카졸의 안정된 겔화를 유도한 에이징을 진행하여 블랑켓(10)의 조직을 보다 균일화할 수 있다.
(f) 블랑켓 표면개질단계
(f) 블랑켓 표면개질단계는 에이징된 블랑켓(10)에 코팅액을 분사하여 표면을 개질한다. 즉, (f) 블랑켓 표면개질단계는 에탄올과 암모니아수(NH4OH)을 혼합하여 코팅액을 제조한다. 그런 다음 블랑켓(10)이 삽입된 반응용기(170)의 주입구(172)를 통해 코팅액을 수용공간(181)에 주입하여 블랑켓(10)의 표면을 개질한다. 이때 코팅액은 (c) 단계에서 블랑켓(blanket)의 표면에 함침된 실리카졸의 1.6배를 분사하고, 반응용기(170)는 70℃의 고온에서 1시간 동안 에이징과 HMDS(Hexamethyldisilazane)하여 블랑켓(10)의 표면을 개질한다.
한편, HMDS(Hexamethyldisilazane)는 블랑켓의 표면을 소수성으로 바꾸어주기 위해 사용한다.
(g) 블랑켓 건조단계
(g) 블랑켓 건조단계는 표면이 개질된 블랑켓(10)을 건조하여 에어로겔 시트를 완성한다. 이때 (g) 블랑켓 건조단계는 반응용기(170)에 블랑켓(10)을 수용된 상태에서 초임계 건조가 이루어진다. 즉, (g) 블랑켓 건조단계는 표면개질된 블랑켓(10)을 28℃ 및 70bar의 환경에서 이산화탄소를 10분간 70L/min속도로 주입하여 건조하는 1차 건조단계, 1분 20분간 50℃로까지 승온시켜서 건조하는 2차 건조단계, 다시 50℃ 및 150bar의 환경에서 이산화탄소를 20분간 0.7L/min속도로 주입하여 건조하는 3차 건조단계, 및 20분간 휴식 후 20분간 이산화탄소를 0.7L/min속도로 주입하여 건조하는 4차 건조단계를 포함한다. 이와 같은 건조단계를 수행함에 따라 블랑켓(10)의 건조률을 높일 수 있다.
한편, (g) 블랑켓 건조단계의 3차 건조는 이산화탄소와 블랑켓(10)의 화학반응에 의해 반응용기(170) 내에 에탄올이 발생되며, 이 반응용기(170)에 발생한 에탄올은 배출구(173)를 통해 배출하여 회수한다.
그리고 (g) 블랑켓 건조단계는 4차 건조 후, 2시간 동안 이산화탄소를 배출하는 배출단계를 포함하며, 이에 블라켓(10)에 완만한 환경변화를 유도하여 블랑켓(10)의 조직을 균일화한다.
이와 같은 본 발명에 따른 에어로겔 시트의 제조방법으로 에어로겔 시트를 제조함으로써 조직을 균일화할 수 있어 단열성과 내구성을 높일 수 있다.
한편, 도 7에 표시된 것과 같이, 본 발명에 의해 제조된 에어로겔 시트(실시예)와 종래의 제조방법으로 제조된 에어로겔 시트(비교예)의 기공 분포도에서 차이가 있다.
즉, 도 6을 참조하면, 본 발명의 에어로겔 시트(실시예1)는 실리카졸의 밀도가 40kg/m3 일 경우 겔화용 촉매(30)의 분사속도는 0.035L/min로 조절한다. 이때 블랑켓(10)에 함침된 실리카졸(20)의 함량은 30wt% 및 열전도도는 14.9mW/mK를 가진다.
종래의 에어로겔 시트(비교예)는 실리카졸의 밀도가 40kg/m3 일 경우 겔화용 촉매의 분사속도는 0.035L/min로 조절한다. 이때 블랑켓(10)에 함침된 실리카졸의 함량은 27wt% 및 열전도도는 18mW/mK를 가진다.
여기서 본 발명의 에어로겔 시트(실시예1)와 종래의 에어로겔 시트(비교예)는 실리카졸 함량과 열전도에서 차이가 있다. 특히 본 발명의 에어로겔 시트는 에어로겔 밀도에 따라 촉매투입속도를 달리하고 있다.
따라서 본 발명에 의해 제조된 에어로겔 시트(실시예)는 종래의 에어로겔 시트(비교예) 보다 에어로겔의 기공이 균일하게 분포되고 있음을 알 수 있다.
그리고 종래의 에어로겔 시트(비교예)는 도 4 및 도 5에 도시되어 있는 것과 같이, 블랑켓에 실리카졸이 균일하게 함침되어 있음을 알 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 가능하다.

Claims (20)

  1. (a) 실리카졸을 제조하는 단계;
    (b) 겔화용 촉매를 제조하는 단계;
    (c) 블랑켓(blanket)의 표면에 (a) 단계에서 제조한 실리카졸을 분사하여 함침시키는 단계; 및
    (d) 실리카졸이 함침된 블랑켓의 표면에 상기 (b) 단계에서 제조한 겔화용 촉매를 분사하여 실리카졸을 겔화시키는 단계를 포함하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  2. 청구항 1에 있어서,
    상기 (a) 단계는 TEOS(tetraethly orthosilicate)와 에탄올을 혼합하여 실리카졸을 제조하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  3. 청구항 2에 있어서,
    상기 TEOS(tetraethly orthosilicate)는 가수분해된 것을 사용하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  4. 청구항 1에 있어서,
    상기 (b) 단계는 에탄올과 암모니아수(NH4OH)를 혼합하여 겔화용 촉매를 제조하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  5. 청구항 1에 있어서,
    상기 (c) 단계와 상기 (d) 단계는 상기 블랑켓을 일측에서 타측으로 이송하는 컨베이어벨트 내에서 이루어지는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  6. 청구항 5에 있어서,
    상기 컨베이어벨트에는 상기 블랑켓의 표면에 분사된 실리카졸의 두께를 조절하는 제1 스크래퍼와, 상기 블랑켓의 표면에 분사된 겔화용 촉매의 두께를 조절하는 제2 스크래퍼로 마련된 스크래퍼가 포함되는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  7. 청구항 1에 있어서,
    상기 (d) 단계는 상기 블랑켓의 표면에 상기 겔화용 촉매를 0.035~0.012L/min 속도로 분사하고, 8~12분 동안 방치하여 실리카졸을 겔화시키는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  8. 청구항 1에 있어서,
    상기 (d) 단계 후, (e) 실리카졸이 겔화된 블랑켓을 에이징하는 단계를 더 포함하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  9. 청구항 8에 있어서,
    상기 (e) 단계는 상기 실리카졸이 겔화된 블랑켓을 70℃의 고온에서 50분간 에이징하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  10. 청구항 8에 있어서,
    상기 (e) 단계는 상기 실리카졸이 겔화된 블랑켓을 상온에서 10분간 방치한 후 에이징을 진행하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  11. 청구항 8에 있어서,
    상기 (e) 단계 후, (f) 에이징된 블랑켓에 코팅액을 투입하여 표면을 개질하는 단계를 더 포함하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  12. 청구항 11에 있어서,
    상기 (f) 단계에서 코팅액은 에탄올과 암모니아수(NH4OH)을 혼합하여 제조되는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  13. 청구항 11에 있어서,
    상기 (f) 단계는 상기 코팅액을 상기 블랑켓(blanket)의 표면에 함침된 실리카졸의 1.6배를 투입하고, 70℃의 고온에서 1시간 동안 에이징과 HMDS(Hexamethyldisilazane)하여 표면을 개질하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  14. 청구항 11에 있어서,
    상기 (f) 단계 후, (g) 표면이 개질된 블랑켓을 건조하는 단계를 더 포함하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  15. 청구항 14에 있어서,
    상기 (g) 단계는 표면개질된 블랑켓을 28℃ 및 70bar의 환경에서 이산화탄소를 10분간 70L/min속도로 주입하여 건조하는 1차 건조단계, 1분 20분간 50℃까지 승온시켜서 건조하는 2차 건조단계, 다시 50℃ 및 150bar의 환경에서 이산화탄소를 20분간 0.7L/min속도로 주입하여 건조하는 3차 건조단계, 및 20분간 휴식 후 20분간 이산화탄소를 0.7L/min속도로 주입하여 건조하는 4차 건조단계를 포함하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  16. 청구항 15에 있어서,
    상기 (g) 단계에서 3차 건조단계는 이산화탄소를 주입함과 동시에 표면이 개질됨에 따라 블랑켓으로부터 발생한 에탄올을 회수하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  17. 청구항 15에 있어서,
    상기 (g) 단계는 4차 건조단계 이후, 2시간 동안 이산화탄소를 배출하는 배출단계를 더 포함하는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  18. 청구항 14에 있어서,
    상기 (e), (f) 및 (g) 단계는 블랑켓을 수용하는 반응용기 내에서 이루어지는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  19. 청구항 18에 있어서,
    상기 (g) 단계에서 블랑켓은 상기 반응용기에 수용된 상태에서 초임계 건조가 이루어지는 것을 특징으로 하는 에어로겔 시트의 제조방법.
  20. 블랑켓이 롤 형태로 권취된 공급롤러;
    상기 공급롤러에 권취된 블랑켓을 일측에서 타측으로 이송하는 컨베이어벨트;
    상기 컨베이어벨트에 위치한 상기 블랑켓의 표면에 실리카졸을 분사하여 함침시키는 실리카졸 공급부재;
    상기 컨베이어벨트에 위치한 상기 블랑켓의 표면에 겔화용 촉매를 분사하여 실리카졸을 겔화시키는 촉매 공급부재;
    상기 컨베이어벨트에 의해 타측까지 이송된 상기 블랑켓을 롤 형태로 권취하여 회수하는 회수롤러; 및
    상기 회수롤러에 의해 회수된 롤 형태의 블랑켓을 수용하고, 수용한 블랑켓을 에이징, 코팅액을 투입하여 표면 개질, 및 고온으로 건조하는 반응용기를 포함하는 것을 특징으로 하는 에어로겔 시트의 제조장치.
PCT/KR2017/000576 2016-01-19 2017-01-17 에어로겔 시트의 제조방법 및 장치 WO2017126868A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17741634.4A EP3287416B1 (en) 2016-01-19 2017-01-17 Method for producing aerogel sheet
US15/565,017 US10850987B2 (en) 2016-01-19 2017-01-17 Method and apparatus for manufacturing aerogel sheet
CN201780001252.8A CN107531497B (zh) 2016-01-19 2017-01-17 气凝胶片的制造方法和制造装置
JP2018520153A JP6647397B2 (ja) 2016-01-19 2017-01-17 エアロゲルシートの製造方法および装置
US17/064,148 US11697596B2 (en) 2016-01-19 2020-10-06 Method and apparatus for manufacturing aerogel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0006337 2016-01-19
KR1020160006337A KR101953371B1 (ko) 2016-01-19 2016-01-19 에어로겔 시트의 제조방법 및 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/565,017 A-371-Of-International US10850987B2 (en) 2016-01-19 2017-01-17 Method and apparatus for manufacturing aerogel sheet
US17/064,148 Division US11697596B2 (en) 2016-01-19 2020-10-06 Method and apparatus for manufacturing aerogel sheet

Publications (1)

Publication Number Publication Date
WO2017126868A1 true WO2017126868A1 (ko) 2017-07-27

Family

ID=59362542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000576 WO2017126868A1 (ko) 2016-01-19 2017-01-17 에어로겔 시트의 제조방법 및 장치

Country Status (6)

Country Link
US (2) US10850987B2 (ko)
EP (1) EP3287416B1 (ko)
JP (2) JP6647397B2 (ko)
KR (1) KR101953371B1 (ko)
CN (1) CN107531497B (ko)
WO (1) WO2017126868A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183537B1 (ko) 2017-11-17 2020-11-26 주식회사 엘지화학 초임계 폐액을 재사용한 실리카 에어로겔 블랭킷 제조방법
US11365125B2 (en) 2018-12-13 2022-06-21 Lg Chem, Ltd. Supercritical drying method for silica wet gel blanket
KR20220062811A (ko) * 2020-11-09 2022-05-17 주식회사 엘지화학 에어로겔 블랭킷 제조방법
CN113584880B (zh) * 2021-07-31 2024-02-27 巩义市泛锐熠辉复合材料有限公司 一种快速制备凝胶毡的设备和方法
CN113829545B (zh) * 2021-09-27 2023-04-07 江西宏柏新材料股份有限公司 一种气凝胶复合材料卷式生产装置及方法
CN114477949B (zh) * 2022-01-29 2023-02-14 巩义市泛锐熠辉复合材料有限公司 一种凝胶毡的制备方法、制备凝胶毡的设备及气凝胶毡
CN115286271B (zh) * 2022-08-03 2023-09-19 川恒生态科技有限公司 一种工业副产磷半水石膏改性制备水泥缓凝剂的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789075A (en) * 1994-08-29 1998-08-04 Hoechst Aktiengesellschaft Aerogel composites, process for producing the same and their use
US6319852B1 (en) * 1995-11-16 2001-11-20 Texas Instruments Incorporated Nanoporous dielectric thin film formation using a post-deposition catalyst
US20070148435A1 (en) * 2003-11-21 2007-06-28 The University Of Queensland Silica films and method of production thereof
US20090029109A1 (en) * 2007-07-23 2009-01-29 3M Innovative Properties Company Aerogel composites
KR20110126381A (ko) * 2010-05-17 2011-11-23 주식회사 화인텍 소수성 실리카 에어로젤 복합체의 제조방법
KR20120012836A (ko) * 2003-06-24 2012-02-10 아스펜 에어로겔, 인코퍼레이티드 겔 시트의 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4204907A (en) * 1978-03-29 1980-05-27 The Carborundum Company Conditioned colloidal silica post impregnant to prevent binder migration
JP3470153B2 (ja) 1992-07-20 2003-11-25 ジャパンゴアテックス株式会社 金属酸化物複合化高分子多孔質体及びその製造方法
JPH07316337A (ja) * 1994-05-27 1995-12-05 Kanebo Ltd 吸水性シート及びその製造方法
JPH1070121A (ja) 1995-11-16 1998-03-10 Texas Instr Inc <Ti> 半導体基板上に薄膜ナノ多孔質アエロゲルを形成するための低揮発性溶剤基の方法
AU2003284689A1 (en) 2003-05-26 2004-12-13 Johannes Gutenberg-Universitaet Mainz NUCLEIC ACID CONSTRUCT CONTAINING HEPATITIS C VIRUS (HCV) OF GENOCYPE 2a GENOME-ORIGIN NUCLEIC ACID AND CELL HAVING THE NUCLEIC ACID CONSTRUCT TRANSFERRED THEREINTO
KR101105436B1 (ko) 2006-10-25 2012-01-17 한국생산기술연구원 에어로겔 시트 및 그 제조방법
KR101047965B1 (ko) 2009-06-11 2011-07-12 한국에너지기술연구원 에어로겔 매트, 이의 제조방법 및 제조장치
JP2011178925A (ja) * 2010-03-02 2011-09-15 Asahi Kagaku Kk エアロゲルシートの製造方法、エアロゲルシート、及び真空断熱材
CN102834355B (zh) 2010-03-04 2015-06-24 地方独立行政法人东京都立产业技术研究中心 多孔二氧化硅的制备方法以及多孔二氧化硅
EP2832690A1 (de) 2013-08-02 2015-02-04 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Verfahren zur Herstellung eines Aerogelmaterials
KR101748532B1 (ko) * 2016-01-19 2017-06-19 주식회사 엘지화학 에어로겔 시트의 제조방법 및 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5789075A (en) * 1994-08-29 1998-08-04 Hoechst Aktiengesellschaft Aerogel composites, process for producing the same and their use
US6319852B1 (en) * 1995-11-16 2001-11-20 Texas Instruments Incorporated Nanoporous dielectric thin film formation using a post-deposition catalyst
KR20120012836A (ko) * 2003-06-24 2012-02-10 아스펜 에어로겔, 인코퍼레이티드 겔 시트의 제조방법
US20070148435A1 (en) * 2003-11-21 2007-06-28 The University Of Queensland Silica films and method of production thereof
US20090029109A1 (en) * 2007-07-23 2009-01-29 3M Innovative Properties Company Aerogel composites
KR20110126381A (ko) * 2010-05-17 2011-11-23 주식회사 화인텍 소수성 실리카 에어로젤 복합체의 제조방법

Also Published As

Publication number Publication date
US20180099873A1 (en) 2018-04-12
CN107531497A (zh) 2018-01-02
EP3287416A1 (en) 2018-02-28
EP3287416A4 (en) 2018-05-02
JP2018538221A (ja) 2018-12-27
JP2020073443A (ja) 2020-05-14
CN107531497B (zh) 2020-11-17
US11697596B2 (en) 2023-07-11
KR101953371B1 (ko) 2019-02-28
KR20170086830A (ko) 2017-07-27
US20210147243A1 (en) 2021-05-20
US10850987B2 (en) 2020-12-01
EP3287416B1 (en) 2019-04-24
JP7022770B2 (ja) 2022-02-18
JP6647397B2 (ja) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2017126868A1 (ko) 에어로겔 시트의 제조방법 및 장치
WO2017126785A1 (ko) 에어로겔 시트의 제조방법 및 장치
WO2017142243A1 (ko) 에어로겔 시트의 제조방법 및 장치
WO2017142238A1 (ko) 에어로겔 시트의 제조방법 및 장치
WO2017126784A1 (ko) 에어로겔 시트의 제조방법 및 장치
WO2018048198A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2020111763A1 (ko) 에어로겔 블랭킷의 제조방법
WO2019098504A1 (ko) 초임계 폐액을 재사용한 실리카 에어로겔 블랭킷 제조방법
WO2017142245A1 (ko) 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
WO2017126870A1 (ko) 에어로겔 시트의 제조방법 및 제조기
CN113683389B (zh) 一种重复利用超临界废液生产二氧化硅气凝胶毡的方法
WO2023249291A1 (ko) 에어로젤 제조 방법
WO2017142244A1 (ko) 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
WO2011136497A2 (ko) 리튬 전이금속 인산염의 제조방법
WO2023219480A1 (ko) 에어로젤 제조 방법
WO2019124582A1 (ko) 메조포러스 실리카의 제조방법
WO2020111768A1 (ko) 실리카 에어로겔의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741634

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2017741634

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15565017

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018520153

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE