WO2017142245A1 - 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치 - Google Patents
에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치 Download PDFInfo
- Publication number
- WO2017142245A1 WO2017142245A1 PCT/KR2017/001328 KR2017001328W WO2017142245A1 WO 2017142245 A1 WO2017142245 A1 WO 2017142245A1 KR 2017001328 W KR2017001328 W KR 2017001328W WO 2017142245 A1 WO2017142245 A1 WO 2017142245A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sheet
- airgel
- composite
- gel
- manufacturing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B38/00—Ancillary operations in connection with laminating processes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/157—After-treatment of gels
- C01B33/158—Purification; Drying; Dehydrating
Definitions
- the present invention relates to a composite sheet manufacturing method and manufacturing apparatus comprising an airgel sheet, and more particularly, to a composite sheet manufacturing method and manufacturing apparatus comprising an airgel sheet having excellent heat insulation and durability and uniform thickness.
- the airgel sheet is a highly porous material having a high porosity of 90% or more and a maximum of 99% among the known solids.
- the gel is formed by sol-gel polymerization of a silica precursor solution and then under supercritical or atmospheric pressure conditions. Obtained by drying. That is, the airgel sheet has a pore structure filled with air.
- Such airgel sheet has lightness and heat insulation, sound absorption, etc. due to its unique pore structure in which 90-99% of the interior space is empty, and the biggest advantage is 36mW / mk, which is the thermal conductivity of organic insulation materials such as styrofoam. It is a high thermal insulation with a thermal conductivity of less than 30mW / mk significantly lower.
- the airgel sheet according to the prior art has a high raw material cost and manufacturing cost in spite of excellent thermal conductivity, and in particular, there is a limit to increasing the thickness due to the limitation of the manufacturing method.
- an air layer is formed due to incomplete bonding between the airgel sheets, and thus there is a problem in that thermal conductivity and durability are reduced.
- an object of the present invention is to laminate the airgel sheet and fiber sheet to increase the bonding and durability, in particular, a composite sheet manufacturing method comprising an airgel sheet that can significantly reduce the manufacturing cost And to provide a manufacturing apparatus.
- step S20 and the step S30 may be further included a step (S25) for drying the airgel sheet 30.
- step S20 and step S30 may include the step of temporarily fixing the laminated airgel sheet 30 and the fiber sheet 10 by needling (S26).
- step S30 by cutting the composite sheet 40 to a predetermined size may further comprise the step (S40) of manufacturing a composite pad (50).
- the step S20 (a) preparing a silica sol (2); (b) preparing a gel catalyst (3); (c) spraying and impregnating the silica sol (2) prepared in step (a) on the surface of the fiber sheet (1); (d) spraying the gelling catalyst (3) prepared in step (b) on the surface of the fiber sheet (1) impregnated with the silica sol (2) to prepare a gel sheet (20) gelled silica sol ; (e) aging the gel sheet 20 in which the silica sol is gelled; (f) adding a coating solution to the aged gel sheet 20 to modify the surface; (g) drying the gel sheet 20 having the surface modified to prepare an airgel sheet 30.
- the silica sol 2 may be prepared by mixing TEOS (tetraethly orthosilicate) with ethanol.
- TEOS tetraethly orthosilicate
- the gelation catalyst 3 may be prepared by mixing ethanol and aqueous ammonia (NH 4 OH).
- Step (c) and step (d) may be made in the conveyor belt for transporting the fiber sheet 1 from one side to the other side.
- the gelling catalyst 3 may be injected onto the surface of the fiber sheet 1 at a rate of 0.035 to 0.012 L / min, and left for 8 to 12 minutes to gel the silica sol.
- the silica sol gelled gel sheet 20 may be aged at a high temperature of 70 ° C. for 50 minutes.
- the coating solution in step (f) may be prepared by mixing ethanol and ammonia water (NH 4 OH).
- step (f) 1.6 times of the silica sol (2) impregnated with the coating solution on the surface of the fiber sheet (1) is added, and the surface is modified by aging and HMDS (Hexamethyldisilazane) for 1 hour at a high temperature of 70 °C. can do.
- HMDS Hexamethyldisilazane
- the surface-modified gel sheet 20 is dried by injecting carbon dioxide at a rate of 70 L / min for 10 minutes at a temperature of 28 ° C. and 70 bar, and drying by heating up to 50 ° C. for 1 minute 20 minutes.
- the second drying step and then injecting carbon dioxide at a rate of 0.7L / min for 20 minutes in the environment of 50 °C and 150bar
- the third drying step to dry, and injecting carbon dioxide at a rate of 0.7L / min 20 minutes after 20 minutes It may include a fourth drying step of drying.
- the third drying step may recover ethanol generated from the gel sheet 20 as the surface is modified while injecting carbon dioxide.
- the step (g) may further include a discharge step of discharging carbon dioxide for 2 hours after the fourth drying step.
- Steps (e), (f) and (g) can be made in a reaction vessel containing a gel sheet.
- a manufacturing apparatus for performing the method of manufacturing an airgel sheet according to the first embodiment of the present invention includes a gel sheet maker 100 for manufacturing a gel sheet 20; A reaction vessel 200 for aging, surface modifying, and drying the gel sheet 20 manufactured by the gel sheet maker 100 to produce an airgel sheet 30; And a composite sheet maker 300 for manufacturing the composite sheet 40 by bonding the airgel sheet 30 and the fiber sheet 10 manufactured by the reaction vessel 200 to the composite sheet maker 300.
- the composite sheet maker 300 is a drying member 340 for drying the airgel sheet 30 and the fiber sheet 10 supplied from the airgel sheet feed roller 310 and the fiber sheet feed roller 320, and the The fiber sheet 10 may further include a needling member 350 for needlessly bonding the airgel sheet 30 having the fiber sheet 10 interposed therebetween.
- the gel sheet manufacturing machine 100 is a winding roller 110 in which the fiber sheet 1 is wound, a conveyor belt 120 for transferring the fiber sheet 1 wound in the winding roller 110 from one side to the other side, and the Silica sol supply member 130 for impregnating by spraying the silica sol (2) on the surface of the fiber sheet (1) located on the conveyor belt 120, the surface of the fiber sheet (1) located on the conveyor belt 120
- Composite sheet manufacturing method comprises the steps of preparing a fiber sheet (10) (S10); Stacking airgel sheets 30 on both sides of the fiber sheet 10 (S20); And manufacturing the composite sheet 40 laminated with the airgel sheet 30, the fiber sheet 10, and the airgel sheet 30 by bonding the laminated airgel sheet 30 and the fiber sheet 10 with heat and pressure.
- the airgel sheet 30 is made of a composite comprising an airgel matrix and a reinforcing structure, the airgel matrix is continuous (continuous) through the reinforcing structure
- the reinforcing structure is a lofty fibrous batt, wherein the fibers are oriented along all three axes, and the bet is in the form of a sheet such that the composite is a lightweight, insulating product that is resilient and durable, and the lofty fibrous bet is thick Compressible to at least 50% and recover to at least 70% of the original thickness after 5 seconds of compression, the density of the lofty fibrous bets is between 0.001 and 0.26 g / cm3 And, in a cross section of the composite cross-sectional area of the identifiable fibers it can be less than 10% of the total cross-sectional area.
- the lofty fibrous batting may maintain at least 50% of the original thickness after addition of a gel forming liquid to form the airgel matrix.
- the lofty fibrous bets may have elasticity that is compressible to at least 65% of the original thickness and that recovers to at least 75% of the original thickness after compression for 5 seconds.
- the cross sectional area of the fibers of the Lofty fibrous bet identifiable in the cross section of the composite may be less than 8% of the total area of the cross section.
- the present invention has the following effects.
- the composite sheet manufacturing method comprising an airgel sheet according to the present invention can increase the bonding and durability by manufacturing a composite sheet by laminating the airgel sheet and fiber sheet, can significantly reduce the manufacturing cost, in particular to increase the thickness stably You can.
- the present invention can increase the thickness while maintaining the luxury of the outer shell by interposing a fiber sheet between the plurality of airgel sheets.
- the present invention can produce an airgel sheet having excellent heat insulation and durability, in particular, a uniform thickness by using a method for producing an airgel sheet.
- high quality silica sol can be obtained by mixing TEOS (tetraethly orthosilicate) with ethanol.
- a high quality gelling catalyst can be obtained by mixing ethanol and ammonia water (NH 4 OH).
- FIG. 1 is a flow chart showing a manufacturing method of a composite sheet including an airgel sheet according to a first embodiment of the present invention.
- FIG. 2 is a flow chart showing a method of manufacturing an airgel sheet according to a first embodiment of the present invention.
- FIG 3 is a view showing an apparatus for manufacturing an airgel sheet according to a first embodiment of the present invention.
- FIG 4 is a view showing an aging step using a reaction vessel according to a first embodiment of the present invention.
- FIG 5 is a view showing a surface modification step using the reaction vessel according to the first embodiment of the present invention.
- FIG. 6 is a view showing a drying step using a reaction vessel according to the first embodiment of the present invention.
- FIG. 7 is a view showing an apparatus for manufacturing a composite sheet including an airgel sheet according to a first embodiment of the present invention.
- FIG. 8 is a view showing an airgel composite in a composite sheet including an airgel sheet according to a second embodiment of the present invention.
- Composite sheet manufacturing method comprising an airgel sheet according to a first embodiment of the present invention, as shown in Figure 1, a composite sheet laminated with an airgel sheet 30, a fiber sheet 10 and an airgel sheet 30
- Fiber sheet preparation step (S10) as shown in Figure 7, to increase the thickness of the composite sheet in order to increase the adhesion of the airgel sheet, and prepare a fiber sheet 10 such as a blanket (blanket). And the prepared fiber sheet 10 is mounted on the fiber sheet supply roller 320 is prepared to supply the fiber sheet.
- Airgel sheet lamination step (S20) after manufacturing the airgel sheet 30, and laminating the airgel sheet 30 on both sides of the fiber sheet 10, respectively.
- the airgel sheet 30 is excellent in heat insulation and durability, and particularly has a uniform thickness.
- a method of manufacturing an airgel sheet is to produce an airgel sheet having excellent heat insulation and durability, particularly uniform thickness, as shown in Figure 2, (a) preparing a silica sol (2) (b) preparing a gelation catalyst (3), (c) impregnating the surface of the fiber sheet (1) by impregnating the silica sol (2) prepared in the step (a), (d) silica Spraying the gelling catalyst (3) prepared in the step (b) on the surface of the sol-impregnated fiber sheet (1) to produce a gel sol gelled gel sheet 20, (e) the silica sol Aging the gelled gel sheet 20, (f) adding a coating solution to the aged gel sheet 20 to modify the surface, and (g) the gel sheet 20 having the surface modified. Drying to prepare the airgel sheet 30.
- silica sol manufacturing step is to obtain a silica sol
- a silica sol (2) is prepared by mixing TEOS (tetraethly orthosilicate) and ethanol. That is, silica sol 2 is prepared by including 1.2 kg of TEOS and 2.7 kg of ethanol in a reactor (not shown).
- TEOS is a solvent having excellent reactivity with water, using a hydrolyzed, it can further increase the reactivity. That is, by mixing the hydrolyzed TEOS and ethanol can be obtained a silica sol excellent in reactivity.
- the gelation catalyst preparation step is to obtain a gelation catalyst, to prepare a gelation catalyst (3) by mixing ethanol and ammonia water (NH 4 OH). That is, 0.5 kg of ethanol and 30 ml of ammonia water (NH 4 OH) are mixed in a reaction tank (not shown) to prepare a gel catalyst 3.
- the composite sheet manufacturing apparatus is a gel sheet maker 100 for producing a gel sheet 20, a reaction vessel 200 for producing an airgel sheet through the gel sheet 20 and It includes a composite sheet maker 300 for manufacturing a composite sheet 40 through the airgel sheet 30.
- (c) the silica sol injection step and (d) gelling catalyst injection step is performed by the gel sheet maker 100, which will be described in detail for the gel sheet maker 100.
- the gel sheet maker 100 is a winding sheet 110, the fiber sheet 1 is wound in a roll form, as shown in Figure 2, the fiber sheet 1 wound on the winding roller 110 at one side Silica sol supply member 130 for impregnating by spraying the silica sol (2) prepared in step (a) on the surface of the conveyor belt 120, the fiber sheet 1 located on the conveyor belt 120 to the other side, Catalyst supply member 140 for producing a gel sol gelled gel sheet 20 by injecting the gel catalyst (3) prepared in step (b) on the surface of the fiber sheet (1) located on the conveyor belt 120 , And a recovery roller 150 which winds and recovers the gel sheet 20 transferred to the other side by the conveyor belt 120 in a roll form.
- the conveyor belt 120 transfers the fiber sheet 1 wound on the winding roller 110 from one side to the other side.
- the silica sol supply member 130 on the surface of the fiber sheet 1 conveyed by the conveyor belt 120 is impregnated silica sol by spraying the silica sol (2) prepared in step (a), and the catalyst supply
- the member 140 sprays the gelation catalyst 3 on the surface of the fiber sheet 1 impregnated with silica sol to produce a gel sheet 20 in which silica sol is gelled.
- the gel sheet 20 transferred to the other side of the conveyor belt 120 is recovered while being wound again by the recovery roller 150.
- the conveyor belt 120 includes a scraper 160 for uniformly controlling the thickness of the silica sol 2 and the gelling catalyst 3 sprayed on the fiber sheet 1. That is, the scraper 160 includes a first scraper 161 for adjusting the thickness of the silica sol 2 sprayed on the surface of the fiber sheet 1, and a gelation catalyst 3 sprayed on the surface of the fiber sheet 1. And a second scraper 162 for adjusting the thickness of the substrate.
- the first scraper 161 and the second scraper 162 have the same shape and are installed on the upper surface of the conveyor belt 120 so as to be height-adjustable in the vertical direction, such as the silica sol 2 and the catalyst for gelation 3. ) To uniformly adjust the thickness, thereby obtaining a gel sheet 20 of uniform quality.
- the silica sol spraying step is impregnated by spraying the silica sol (2) prepared in step (a) on the surface of the fiber sheet. That is, the silica sol (2) prepared in step (a) is injected into the silica sol supply member 130 and stored. Then, when the fiber sheet 1 is transferred to the lower portion of the silica sol supply member 130 by the conveyor belt 120, the silica sol 2 is sprayed through the silica sol supply member 130 to form the fiber sheet 1. Impregnate the surface.
- the silica sol 2 sprayed on the fiber sheet 1 has a uniform thickness while passing through the first scraper 161 installed on the conveyor belt 120. That is, the first scraper 161 may uniformly control the thickness of the silica sol 2 by blocking the silica sol 2 having a predetermined thickness or more from passing therethrough.
- the gel catalyst catalyst spraying step may inject gelation catalyst 3 onto the surface of the fiber sheet 1 impregnated with silica sol by step (c) to gel the silica sol. That is, the gel catalyst 3 prepared in step (b) is injected into the catalyst supply member 140 and stored. Then, when the fiber sheet 1 impregnated with silica sol is transferred to the lower portion of the catalyst supply member 140 by the conveyor belt 120, the gelling catalyst 3 is transferred to the fiber sheet through the catalyst supply member 140. By spraying on the surface of 1) to gel the silica sol, a gel sheet 20 in which the silica sol is gelled can be obtained.
- the catalyst supply member 140 is sprayed at a set speed of the stored gelling catalyst 3, and left for a set time to stably gel the silica sol. That is, the catalyst supply member 140 sprays the gelling catalyst 3 on the surface of the fiber sheet 1 at a rate of 0.035 to 0.012 L / min, and is allowed to stand for 8 to 12 minutes to gradually gel the silica sol.
- the catalyst supply member 140 may uniformly control the gelling of the silica sol by varying the injection speed of the gelling catalyst 3 in accordance with the density of the silica sol (2) impregnated in the fiber sheet (1).
- the silicasol density is 40 kg / m 3
- the injection speed of the gelling catalyst 3 is adjusted to 0.035 L / min.
- the silica sol 2 impregnated in the fiber sheet 1 has a content of 30wt% and a thermal conductivity of 14.9mW / mK.
- the injection speed of the gelling catalyst (3) is adjusted to 0.017 L / min.
- the silica sol 2 impregnated in the fiber sheet 1 has a content of 38 wt% and a thermal conductivity of 14.1 mW / mK.
- the injection speed of the gelling catalyst (3) is adjusted to 0.014 L / min.
- the silica sol 2 impregnated in the fiber sheet 1 has a content of 38 wt% and a thermal conductivity of 13.6 mW / mK.
- the injection speed of the gelling catalyst (3) is adjusted to 0.012 L / min.
- the silica sol 2 impregnated in the fiber sheet 1 has a content of 55wt% and a thermal conductivity of 13.0mW / mK.
- the injection speed of the gelling catalyst decreases, thereby inducing stable gelation of the silica sol.
- the gel sheet 20 manufactured as described above is recovered while being wound in a roll form by the recovery roller 150, the recovered gel sheet 20 by using the reaction vessel 200 (e) gel sheet aging
- the airgel sheet 30 may be prepared by performing the step, (f) gel sheet surface modification, and (g) gel sheet drying.
- the reaction vessel 200 has an accommodation space 210 for hermetically receiving the gel sheet 20 recovered in the form of a roll, as shown in FIGS. 4 to 6, and is connected to the accommodation space at one end.
- An injection port 220 and an outlet 230 connected to the accommodation space 210 is formed at the other end.
- Step (e) Gel sheet aging step ages the gel sheet 20, as shown in FIG. That is, the gel sheet 20 recovered in step (d) is accommodated in the accommodation space 210 of the reaction vessel 200. Next, the accommodating space 210 of the reaction vessel 200 is heated to 70 ° C. for 50 minutes to uniformize the tissue of the gel sheet 20.
- the (e) gel sheet aging step is left for 10 minutes at room temperature (or 25 °C) before aging in the reaction vessel 200, the aging proceeds. That is, by inducing stable gelation of the silica sol 2 and then aging, the structure of the gel sheet 20 can be made more uniform.
- (F) gel sheet surface modification step is to modify the surface by spraying the coating liquid on the aged gel sheet 20, as shown in FIG. That is, (f) gel sheet surface modification step to prepare a coating solution by mixing ethanol and ammonia water (NH 4 OH). Then, the coating liquid is injected into the accommodation space 210 through the injection port 220 of the reaction vessel 200 into which the gel sheet 20 is inserted to modify the surface of the gel sheet 20. At this time, the coating solution is sprayed 1.6 times the silica sol impregnated on the surface of the fiber sheet in the step (c), the reaction vessel 200 is aged by aging and HMDS (Hxamethyldisilazane) for 1 hour at a high temperature of 70 °C gel sheet (20) Modify the surface of the.
- HMDS Hexamethyldisilazane
- HMDS Hexamethyldisilazane
- (g) Gel sheet drying step as shown in Figure 6, to dry the gel sheet 20, the surface is modified to complete the airgel sheet 30.
- (g) gel sheet drying step is a supercritical drying is carried out in a state in which the gel sheet 20 is accommodated in the reaction vessel (200). That is, (g) gel sheet drying step is the first drying step of drying the surface-modified gel sheet 20 by injecting carbon dioxide at a rate of 70L / min for 10 minutes at 28 °C and 70 bar environment, 50 °C for 1 minute 20 minutes The secondary drying step of heating and drying to a furnace, and the third drying step of drying by injecting carbon dioxide at a rate of 0.7 L / min for 20 minutes at 50 ° C. and 150 bar, and 0.7 L / min for 20 minutes after 20 minutes of rest. And a fourth drying step of drying by injecting at a speed. As the drying step is performed, the drying rate of the gel sheet 20 may be increased.
- the third drying of the gel sheet drying step is ethanol is generated in the reaction vessel 200 by the chemical reaction of carbon dioxide and the gel sheet 20, the ethanol generated in the reaction vessel 200 is discharge port 230 Discharge through and recover.
- the gel sheet drying step includes a discharge step of discharging carbon dioxide for 2 hours after the fourth drying, thereby inducing a gentle environmental change in the gel sheet 20 to uniformize the tissue of the gel sheet 20. do.
- the airgel sheet 30 is manufactured, the airgel sheet 30 is laminated on both sides of the fiber sheet 10 to complete the work. Then, the laminated airgel sheet 30 and the fiber sheet 10 are bonded to each other to prepare a composite sheet 40.
- the laminated airgel sheet 30, the fiber sheet 10, and the airgel sheet 30 are bonded by heat and pressure to produce a composite sheet 40.
- a composite sheet maker is used.
- the composite sheet maker 300 according to the first embodiment of the present invention, as shown in Figure 7, between the plurality of airgel sheet feed roller 310 for supplying the airgel sheet 30, the airgel sheet 30 Heat-compression press for manufacturing the composite sheet 40 by pressing with a heat and pressure in a state in which the fiber sheet 10 is interposed between the fiber sheet supply roller 320 and the airgel sheet 30 to supply the fiber sheet 10 to be interposed Comprising 330, the composite sheet 40 can be obtained while passing through the heat press 330.
- the composite sheet maker 300 further includes a drying member 340 for drying the airgel sheet 30 supplied from the airgel sheet supply roller 310, and the drying member 340. Increases the drying rate of the airgel sheet 30 further improves the bonding to the fiber sheet 10.
- the composite sheet manufacturing apparatus 300 further includes a needling member 350 for needlessly bonding the airgel sheet 30 having the fiber sheet 10 interposed therebetween, and the needle
- the ring member 350 prevents irregular bonding from occurring as a result of temporarily bonding the airgel sheet 30 and the fiber sheet 10.
- the composite sheet maker 300 further includes a cutting member 360 for cutting the composite sheet 40 to a predetermined size to process the composite pad 50, the cutting member ( 360 is processed to the composite pad 50 by cutting the composite sheet 40 to increase the efficiency of use and storage.
- the fiber sheet preparation step (S10) and the airgel sheet stacking step (S20) When the stacking of the airgel sheet 30, the fiber sheet 10 and the airgel sheet 30 is completed by the fiber sheet preparation step (S10) and the airgel sheet stacking step (S20), the laminated airgel sheet 30, the fiber sheet 10 and the airgel sheet 30 are bonded by heat and pressure to produce a composite sheet 40.
- step S20 and S30 are further included a step (S25) for drying the prepared airgel sheet 30.
- the airgel sheet 30 is dried by high temperature heat through the drying member 340 to evaporate moisture, thereby increasing the drying rate of the airgel sheet 30.
- step S20 and step S30 includes the step of temporarily fixing the laminated airgel sheet 30 and the fiber sheet 10 by needling (S26).
- the airgel sheet 30 and the fiber sheet 10 are needled and temporarily fixed to prevent movement when the laminated airgel sheet 30 and the fiber sheet 10 are compressed.
- the composite sheet 40 of uniform quality can be obtained.
- the composite sheet 40 laminated with the airgel sheet 30, the fiber sheet 10, and the airgel sheet 30 has been described as one embodiment.
- a composite sheet 40 in which 30 and one or more fiber sheets 10 are laminated may also be manufactured.
- the composite sheet 40 prepared as described above can be cut to a predetermined size to obtain a composite pad 50. That is, the composite pad 40 may be cut to a predetermined size through the cutting member 360 to obtain the composite pad 50.
- the composite sheet manufacturing method and apparatus including an airgel having such a configuration and method it is possible to obtain a composite sheet and a composite pad having high adhesion and durability, low manufacturing cost, and particularly stable thickness.
- Composite sheet manufacturing method shows another embodiment of manufacturing an airgel sheet in the airgel sheet stacking step (S20) of the composite sheet manufacturing method according to the first embodiment described above.
- each of the airgel sheets 30 on both sides of the fiber sheet 10 is provided.
- Laminating step (S20), and the laminated airgel sheet 30 and the fiber sheet 10 by bonding the heat and pressure composite sheet laminated with the airgel sheet 30, the fiber sheet 10 and the airgel sheet 30 ( 40) to produce a step (S30).
- the airgel sheet 30 is made of a composite 20 including an airgel matrix and the reinforcing structure 21, as shown in FIG.
- the airgel composite 20 is composed of two phases.
- the first phase is a low density airgel matrix and the second phase is a reinforcing phase.
- the reinforcing phase is primarily composed of a lofty fibrous material, preferably a lofty batting and a mixture of one or more fibrous materials of significantly different thickness, length or aspect ratio. Suitable mixtures of the two fibrous material systems are such that when short, high aspect ratio microfibers (one fibrous material) are dispersed throughout a continuous aerogel matrix that penetrates lofty fiber batting (other fibrous materials). Is made.
- the airgel matrix is continuous through the reinforcing structure 21, the reinforcing structure 21 is a ropety fibrous bet, wherein the fibers are oriented along all three axes, and the Lofty fibrous bet is
- the composite 20 is a resilient, durable lightweight insulation product, and the lofty fibrous bet is compressible to at least 50% of the thickness and recovers to at least 70% of the original thickness after 5 seconds of compression, and the lofty
- the density of the fibrous batting is between 0.001 and 0.26 g / cm 3 and the cross sectional area of the discernible fibers in the cross section of the composite 20 may be less than 10% of the total cross sectional area.
- the airgel matrix may be an organic airgel, an inorganic airgel or a mixture thereof.
- the organic airgel is polyacrylate, polystyrene, polyacrylonitrile, polyurethane, polyimide, polyfurfural alcohol, phenyl furfuryl alcohol, melamine formaldehyde, resorcinol formaldehyde, cresol formaldehyde, phenol formaldehyde , Polyvinyl alcohol dialdehyde, polycyanurate, polyacrylamide, various epoxy, agar, agarose, or a mixture of two or more of them (CS Ashley, CJ Brinker and DM Smith, Journal of Non Crystalline Solid, Volume 285, 2001).
- suitable metal alkoxides are those having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms in each alkyl group.
- suitable metal alkoxides include tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetra-n-propoxysilane, aluminum isopropoxide, aluminum sec-butoxide, cerium isopropoxide, Hafnium tert-butoxide, magnesium aluminum isopropoxide, yttrium isopropoxide, titanium isopropoxide, zirconium isopropoxide and the like.
- TEOS tetraethoxysilane
- TMOS tetramethoxysilane
- tetra-n-propoxysilane aluminum isopropoxide, aluminum sec-butoxide, cerium isopropoxide, Hafnium tert-butoxide, magnesium aluminum isopropoxide, yttrium isopropoxide
- silica precursors these materials can be partially hydrolyzed and stabilized at low pH with polymers of polysilic acid esters, for example polydiethoxysiloxanes. These materials are commercially available as alcohol solutions (eg Silbond®40, 40% silica content, Silbond Corporation). Pre-polymerized silica precursors are particularly suitable for the airgel composite 20 of the present invention.
- Suitable materials for producing airgels used at low temperatures are non-refractory metal alkoxides based on oxide-forming metals. Suitable such metals are silicon, magnesium, mixtures thereof. Suitable alkoxides for high temperatures are generally refractory metal alkoxides capable of forming oxides, for example zirconia, yttria, hafnia, alumina, titania, ceria and the like and mixtures thereof such as zirconia and yttria. It is also possible to use non-refractory metals and refractory metals such as silicon and / or mixtures of magnesium and aluminum.
- An advantage of using one or more metal oxide matrix materials in an airgel structure is the enhancement of IR clouding achieved by providing chemical functionalities that absorb radiation at a wide range of wavelengths.
- Finely dispersed dopants such as carbon black, titania, iron oxides, silicon, carbides, molybdenum, silicides, manganese oxides, polydialkylsiloxanes, where the alkyl groups have from 1 to 4 carbon atoms Can be added to improve thermal performance at high temperatures by increasing the opacity of the airgel to IR transmission. Suitable amounts of such dopants are generally from 1 to 20 wt%, preferably from 2 to 10% of the weight of the final composite.
- Lofty fibrous bets are defined as fibrous materials that exhibit bulk properties and significant elasticity (complete bulk recovery zones).
- a suitable form is a soft web.
- the use of Lofty batting reinforcements avoids substantial deterioration of the thermal performance of the airgel while minimizing the volume of the unsupported airgel.
- batting means a layer or sheet of fibrous material that is used as a lining cover, cotton or container, or a blanket for thermal insulation.
- the reinforcing fibrous material used in the second embodiment of the present invention is one or a plurality of lofty fibrous batting layers.
- the use of lofty batting reinforcements avoids substantial deterioration of the thermal performance of the airgel while minimizing the volume of the unsupported airgel.
- batting is a product made from carding or Garnetting fibers that form a smooth web of fibers in the form of a sheet, but in the present invention a "batting” is a non-sheet that is sufficiently open to "rope". Web in the form of, for example, Primaloft® products from Albany International. Generally, batting refers to a layer or sheet of fibrous material used as a lining cover, cotton or container, or a blanket for thermal insulation. Fibers suitable for producing batting are relatively thin and have deniers of 15 or less, preferably 10 or less. The softness of the web is a by-product of the relatively thin and oriented fibers that are used to make the fibrous web.
- the batting retains a small number of individual threads (or fibers) so as not to significantly alter the thermal properties of the reinforced composite 20 compared to non-reinforced aerogels of the same material.
- it is called "lofty”.
- the cross section of the fiber in the cross section of the final airgel composite 20 is less than 10%, preferably less than 8%, most preferably less than 5% of the total cross section of the cross section.
- the lofty bets have a thermal conductivity of 50 mW / m-K or less at room temperature and pressure to promote the formation of low thermal conductivity airgel composite 20.
- the Lofty bet is (i) compressible to at least 50%, preferably at least 65%, most preferably at least 80% of the intrinsic thickness and at least 70%, preferably at least at least after a few seconds of compression 75%, most preferably at least 80%.
- lofty bets can be substantially restored to their original size and shape by removing air (bulk) in the case of compression. For example, a HolofilTM bet can be compressed to a minimum of 0.2 "from the original 1.5" thickness and will return to the original thickness when the load is removed.
- the bet may be considered to have 1.3 "air (bulk) and 0.2" fibers. It is compressible up to 87% and recovers to almost 100% of its original thickness. Glass fiber batting used for home insulation can be recovered to approximately 80% of its original thickness, although compressed and slowed to a similar degree.
- the batting used in the second embodiment of the present invention is substantially different from the fibrous mat.
- a fibrous mat is a "tightly woven or tangle of lumps", that is, a dense and relatively rigid fibrous structure that retains minimal open space between adjacent fibers.
- the mat has a density of 2.5 lbs / ft3 (0.41 g / cc), while the ropet bets used herein have a much smaller density, i.e. 0.1-16 lbs / ft3 (0.001-0.26 g / cc), preferably 2.4 To 6.1 lbs / ft 3 (0.04-0.1 g / cc).
- the mat is compressible to less than 20% and shows little elasticity.
- the cross section of the mat fiber accounts for up to 30-50% of the total cross section.
- the bet maintains at least 50% thickness after the gel forming liquid is poured.
- the fiber composite material traveling in the z-axis acts as a heat conduit to produce the composite
- bets that retain almost straight (non-curly) fibers in the x-y horizontal plane are more rigid than typical lofty bets of equal density where the bent or curly fibers run in all three axes.
- the bet should show less heat flow in the z axis (heat flow direction).
- the fibers in the z axis can be composed of a material different from that in the x and y axes (preferably, a material having a lower thermal conductivity).
- the z-axis fibers may be made more pliable than the fibers in the x-y direction to provide a more twisted path for heat conduction.
- the same fiber materials and methods can be used throughout the batting to minimize thermal conduction on all axes, but using many of these materials and methods will reduce the elasticity of the resulting composites, since in many insulating products the heat flow is treated in a particular direction. Can be.
- An ideal lofty bet has fine, curly fibers evenly distributed throughout the composite 20.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Laminated Bodies (AREA)
Abstract
본 발명은 에어로겔 시트를 포함하는 복합시트 제조방법에 관한 것으로, 섬유시트(10)를 준비하는 단계(S10); 상기 섬유시트(10)의 양면에 에어로겔 시트(30)를 각각 적층하는 단계(S20); 및 상기 적층된 에어로겔 시트(30)와 섬유시트(10)를 열과 압력으로 접합하여 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)로 적층된 복합시트(40)를 제조하는 단계(S30)를 포함하는 에어로겔 시트를 포함할 수 있다.
Description
관련출원과의 상호인용
본 출원은 2016년 02월 17일자 한국특허출원 제10-2016-0018643호 및 2016년 07월 27일자 한국특허출원 제10-2016-0095255호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치에 관한 것으로서, 특히 단열성과 내구성이 우수하고, 두께가 균일한 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치에 관한 것이다.
일반적으로 에어로겔 시트는 현재까지 알려진 고체 중에서 90% 이상, 최대 99% 정도의 높은 기공율을 갖는 고다공성 물질로서, 실리카 전구체 용액을 졸-겔 중합반응시켜 겔을 만든 후, 초임계조건 혹은 상압조건 하에서 건조함에 따라 얻을 수 있다. 즉, 에어로겔 시트는 공기가 가득차 있는 기공 구조를 가지고 있다.
이와 같은 에어로겔 시트는 내부 공간의 90~99%가 비어있는 독특한 기공구조로 인하여 가벼우면서도 단열성, 흡음성 등의 물성을 가지며, 그 중에서도 가장 큰 장점은 종래 스티로폼 등의 유기 단열재의 열전도도인 36mW/m.k보다 현저히 낮은 30mW/m.k 이하의 열전도율을 보이는 고단열성이다.
종래기술에 따른 에어로겔 시트는 우수한 열전도도에도 불구하고 원재료비와 제조원가가 높으며 특히 제조방법의 한계로 두께를 증대시키는데 한계가 있었다. 즉 에어로겔 시트를 여러겹 적층할 경우 에어로겔 시트 사이의 불완전한 접합으로 인해 공기층이 형성되고, 이에 열전도도와 내구성이 저하되는 문제가 있었다.
본 발명은 상기와 같은 문제를 해결하기 위해 발명된 것으로, 본 발명의 목적은 에어로겔 시트와 섬유시트를 적층하여 접합성과 내구성을 높이고, 특히 제조원가를 크게 낮출 수 있는 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치를 제공하는데 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 제1 실시예에 따른 에어로겔 시트를 포함하는 복합시트 제조방법은 섬유시트(10)를 준비하는 단계(S10); 상기 섬유시트(10)의 양면에 에어로겔 시트(30)를 각각 적층하는 단계(S20); 및 상기 적층된 에어로겔 시트(30)와 섬유시트(10)를 열과 압력으로 접합하여 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)로 적층된 복합시트(40)를 제조하는 단계(S30)를 포함하는 에어로겔 시트를 포함할 수 있다.
상기 S20 단계와 상기 S30 단계 사이에는 상기 에어로겔 시트(30)를 건조하는 단계(S25)가 더 포함될 수 있다.
상기 S20 단계와 상기 S30 단계 사이에는 적층된 에어로겔 시트(30)와 섬유시트(10)를 니들링하여 임시 고정하는 단계(S26)를 포함할 수 있다.
상기 S30 단계 후, 상기 복합시트(40)를 일정한 크기로 절단하여 복합패드(50)를 제조하는 단계(S40)를 더 포함할 수 있다.
상기 S20 단계는, (a) 실리카졸(2)을 제조하는 단계; (b) 겔화용 촉매(3)를 제조하는 단계; (c) 섬유시트(1)의 표면에 상기 (a) 단계에서 제조한 실리카졸(2)을 분사하여 함침시키는 단계; (d) 실리카졸(2)이 함침된 섬유시트(1)의 표면에 상기 (b) 단계에서 제조한 겔화용 촉매(3)를 분사하여 실리카졸이 겔화된 겔 시트(20)를 제조하는 단계; (e) 상기 실리카졸이 겔화된 겔 시트(20)를 에이징하는 단계; (f) 상기 에이징된 겔 시트(20)에 코팅액을 투입하여 표면을 개질하는 단계; (g) 상기 표면이 개질된 겔 시트(20)를 건조하여 에어로겔 시트(30)를 제조하는 단계를 포함할 수 있다.
상기 (a) 단계에서 실리카졸(2)은 TEOS(tetraethly orthosilicate)와 에탄올을 혼합하여 제조할 수 있다.
상기 TEOS(tetraethly orthosilicate)는 가수분해된 것을 사용할 수 있다.
상기 (b) 단계에서 겔화용 촉매(3)는 에탄올과 암모니아수(NH4OH)를 혼합하여 제조할 수 있다.
상기 (c) 단계와 상기 (d) 단계는 상기 섬유시트(1)를 일측에서 타측으로 이송하는 컨베이어벨트 내에서 이루어질 수 있다.
상기 (d) 단계는 상기 섬유시트(1)의 표면에 상기 겔화용 촉매(3)를 0.035~0.012L/min 속도로 분사하고, 8~12분 동안 방치하여 실리카졸을 겔화시킬 수 있다.
상기 (e) 단계는 상기 실리카졸이 겔화된 겔 시트(20)를 70℃의 고온에서 50분간 에이징할 수 있다.
상기 (f) 단계에서 코팅액은 에탄올과 암모니아수(NH4OH)을 혼합하여 제조될 수 있다.
상기 (f) 단계는 상기 코팅액을 상기 섬유시트(1)의 표면에 함침된 실리카졸(2)의 1.6배를 투입하고, 70℃의 고온에서 1시간 동안 에이징과 HMDS(Hexamethyldisilazane)하여 표면을 개질할 수 있다.
상기 (g) 단계는 표면 개질된 겔 시트(20)를 28℃ 및 70bar의 환경에서 이산화탄소를 10분간 70L/min속도로 주입하여 건조하는 1차 건조단계, 1분 20분간 50℃까지 승온시켜서 건조하는 2차 건조단계, 다시 50℃ 및 150bar의 환경에서 이산화탄소를 20분간 0.7L/min속도로 주입하여 건조하는 3차 건조단계, 및 20분간 휴식 후 20분간 이산화탄소를 0.7L/min속도로 주입하여 건조하는 4차 건조단계를 포함할 수 있다.
상기 (g) 단계에서 3차 건조단계는 이산화탄소를 주입함과 동시에 표면이 개질됨에 따라 겔 시트(20)로부터 발생한 에탄올을 회수할 수 있다.
상기 (g) 단계는 4차 건조단계 이후, 2시간 동안 이산화탄소를 배출하는 배출단계를 더 포함할 수 있다.
상기 (e), (f) 및 (g) 단계는 겔 시트를 수용하는 반응용기 내에서 이루어질 수 있다.
이와 같이 본 발명의 제1 실시예에 따른 에어로겔 시트의 제조방법을 수행하기 위한 제조장치는 겔 시트(20)를 제조하는 겔 시트 제조기(100); 상기 겔 시트 제조기(100)에 의해 제조된 겔 시트(20)를 에이징, 표면 개질, 및 건조하여 에어로겔 시트(30)를 제조하는 반응용기(200); 및 상기 반응용기(200)에 의해 제조된 에어로겔 시트(30)와 섬유시트(10)를 접합하여 복합시트(40)를 제조하는 복합시트 제조기(300)를 포함하며, 상기 복합시트 제조기(300)는 상기 에어로겔 시트(30)를 공급하는 복수의 에어로겔 시트 공급롤러(310), 상기 에어로겔 시트(30) 사이에 개재되도록 상기 섬유시트(10)를 공급하는 섬유시트 공급롤러(320), 상기 에어로겔 시트(30) 사이에 섬유시트(10)가 개재된 상태로 열과 압력으로 압착하여 복합시트(40)를 제조하는 가열 압착기(330)를 포함할 수 있다.
상기 복합시트 제조기(300)는 상기 에어로겔 시트 공급롤러(310)와 상기 섬유시트 공급롤러(320)로부터 공급되는 에어로겔 시트(30)와 섬유시트(10)를 건조하는 건조부재(340)와, 상기 섬유시트(10)가 개재된 상기 에어로겔 시트(30)를 니들링하여 임시 접합하는 니들링부재(350)를 더 포함할 수 있다.
상기 겔 시트 제조기(100)는 섬유시트(1)가 권취된 권취롤러(110), 상기 권취롤러(110)에 권취된 섬유시트(1)를 일측에서 타측으로 이송하는 컨베이어벨트(120), 상기 컨베이어벨트(120)에 위치한 상기 섬유시트(1)의 표면에 실리카졸(2)을 분사하여 함침시키는 실리카졸 공급부재(130), 상기 컨베이어벨트(120)에 위치한 상기 섬유시트(1)의 표면에 겔화용 촉매(3)를 분사하여 실리카졸이 겔화된 겔 시트(20)를 제조하는 촉매 공급부재(140), 및 상기 컨베이어벨트(120)에 의해 타측까지 이송된 상기 겔 시트(20)를 롤 형태로 권취하여 회수하는 회수롤러(150)를 포함할 수 있다.
본 발명의 제2 실시예에 따른 복합시트 제조방법은 섬유시트(10)를 준비하는 단계(S10); 상기 섬유시트(10)의 양면에 에어로겔 시트(30)를 각각 적층하는 단계(S20); 및 상기 적층된 에어로겔 시트(30)와 섬유시트(10)를 열과 압력으로 접합하여 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)로 적층된 복합시트(40)를 제조하는 단계(S30)를 포함하며, 상기 에어로겔 시트 준비단계(S10)에서 상기 에어로겔 시트(30)는 에어로겔 매트릭스 및 강화 구조물을 포함하는 복합물로 이루어지고, 상기 에어로겔 매트릭스는 상기 강화 구조물을 통하여 연속적(continuous)이며, 상기 강화 구조물은 로프티 섬유성 배팅이고, 여기서 섬유들은 세 개의 모든 축을 따라 배향되어 있으며, 상기 배팅은 쉬트 형태여서, 상기 복합물은 탄력성이고 내구성인 경량의 절연 제품이며, 로프티 섬유성 배팅은 두께의 적어도 50%까지 압축가능하고 5초간의 압축후에 원 두께의 적어도 70%까지 회복되고, 로프티 섬유성 배팅의 밀도는 0.001 내지 0.26 g/cm3이고, 상기 복합물의 횡단면에서 식별가능한 섬유들의 횡단면적은 횡단면적 전체의 10% 미만일 수 있다.
상기 로프티 섬유성 배팅은 상기 에어로겔 매트릭스를 형성하기 위해 겔 형성 액체의 첨가 후 원 두께의 적어도 50%를 유지할 수 있다.
상기 로프티 섬유성 배팅은 원 두께의 적어도 65%까지 압축가능하고 5초 간 압축 후 원 두께의 적어도 75%로 회복되는 탄성을 가질 수 있다.
상기 복합물의 횡단면에서 식별가능한 상기 로프티 섬유성 배팅의 섬유들의 횡단면적은 횡단면의 전체 면적의 8% 미만일 수 있다.
본 발명은 하기와 같은 효과가 있다.
첫째: 본 발명에 따른 에어로겔 시트를 포함하는 복합시트 제조방법은 에어로겔 시트와 섬유시트를 적층하여 복합시트를 제조함으로써 접합성과 내구성을 높일 수 있고, 제조원가를 크게 낮출 수 있으며, 특히 안정적으로 두께를 증대시킬 수 있다.
둘째: 본 발명은 복수의 에어로겔 시트 사이에 섬유시트를 개재함으로써 외각의 고급스러움을 유지하면서 두께를 증대시킬 수 있다.
셋째: 본 발명은 에어로겔 시트의 제조방법을 이용함으로써 단열성과 내구성이 우수하고, 특히 두께가 균일한 에어로겔 시트를 제조할 수 있다.
넷째: 본 발명에 따른 에어로겔 시트의 제조방법에서 TEOS(tetraethly orthosilicate)와 에탄올을 혼합함으로써 고품질의 실리카졸을 얻을 수 있다.
다섯째: 본 발명에 따른 에어로겔 시트의 제조방법에서 에탄올과 암모니아수(NH4OH)를 혼합함으로써 고품질의 겔화용 촉매를 얻을 수 있다.
여섯째: 본 발명에 따른 에어로겔 시트의 제조방법에서 섬유시트를 일측에서 타측으로 이송하는 컨베이어벨트를 사용함으로써 작업의 연속성과 공정의 단순화를 얻을 수 있다.
도 1은 본 발명의 제1 실시예에 따른 에어로겔 시트를 포함하는 복합시트의 제조방법을 나타낸 순서도.
도 2는 본 발명의 제1 실시예에 따른 에어로겔 시트의 제조방법을 나타낸 순서도.
도 3은 본 발명의 제1 실시예에 따른 에어로겔 시트의 제조장치를 도시한 도면.
도 4는 본 발명의 제1 실시예에 따른 반응용기를 이용한 에이징단계를 도시한 도면.
도 5는 본 발명의 제1 실시예에 따른 반응용기를 이용한 표면개질단계를 도시한 도면.
도 6은 본 발명의 제1 실시예에 따른 반응용기를 이용한 건조단계를 도시한 도면.
도 7은 본 발명의 제1 실시예에 따른 에어로겔 시트를 포함하는 복합시트의 제조장치를 도시한 도면.
도 8은 본 발명의 제2 실시예에 따른 에어로겔 시트를 포함하는 복합시트에서 에어로겔 복합물을 도시한 도면.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 발명의 제1 실시예에 따른 에어로겔 시트를 포함하는 복합시트 제조방법은 도 1에 도시되어 있는 것과 같이, 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)로 적층된 복합시트(40)를 제조하기 위한 것으로, 섬유시트 준비단계(S10), 에어로겔 시트 적층단계(S20), 및 복합시트 제조단계(S30)를 포함한다.
[섬유시트 준비단계]
섬유시트 준비단계(S10)는 도 7에 도시되어 있는 것과 같이, 복합시트 제조시 두께 증대와 에어로겔 시트의 접합성을 높이기 위한 것으로, 블랭킷(blanket)과 같은 섬유시트(10)를 준비한다. 그리고 준비된 섬유시트(10)는 섬유시트 공급롤러(320)에 장착하여 섬유시트를 공급할 수 있도록 준비한다.
[에어로겔 시트 적층단계]
에어로겔 시트 적층단계(S20)는 에어로겔 시트(30)를 제조한 후, 섬유시트(10)의 양면에 에어로겔 시트(30)를 각각 적층한다. 여기서 에어로겔 시트(30)는 단열성과 내구성이 우수하고, 특히 균일한 두께를 가진다.
즉, 에어로겔 시트의 제조방법은 도 2에 도시되어 있는 것과 같이, 단열성과 내구성이 우수하고, 특히 균일한 두께를 가지는 에어로겔 시트를 제조하기 위한 것으로, (a) 실리카졸(2)을 제조하는 단계, (b) 겔화용 촉매(3)를 제조하는 단계, (c) 섬유시트(1)의 표면에 상기 (a) 단계에서 제조한 실리카졸(2)을 분사하여 함침시키는 단계, (d) 실리카졸이 함침된 섬유시트(1)의 표면에 상기 (b) 단계에서 제조한 겔화용 촉매(3)를 분사하여 실리카졸이 겔화된 겔 시트(20)를 제조하는 단계, (e) 상기 실리카졸이 겔화된 겔 시트(20)를 에이징하는 단계, (f) 상기 에이징된 겔 시트(20)에 코팅액을 투입하여 표면을 개질하는 단계, 및 (g) 상기 표면이 개질된 겔 시트(20)를 건조하여 에어로겔 시트(30)를 제조하는 단계를 포함한다.
이하, 에어로겔 시트 준비단계(S10)를 보다 상세히 설명한다.
(a) 실리카졸 제조단계
(a) 실리카졸 제조단계는 실리카졸을 얻기 위한 것으로, TEOS(tetraethly orthosilicate)와 에탄올을 혼합하여 실리카졸(2)을 제조한다. 즉, 반응조(미도시)에 TEOS 1.2kg과 에탄올 2.7kg을 포함하여 실리카졸(2)을 제조한다.
한편, TEOS는 물과의 반응성이 뛰어난 용매로, 가수분해된 것을 사용하며, 이에 반응성을 더욱 높일 수 있다. 즉, 가수분해된 TEOS와 에탄올을 혼합함에 따라 반응성이 우수한 실리카졸을 얻을 수 있다.
(b) 겔화용 촉매 제조단계
(b) 겔화용 촉매 제조단계는 겔화용 촉매를 얻기 위한 것으로, 에탄올과 암모니아수(NH4OH)를 혼합하여 겔화용 촉매(3)를 제조한다. 즉, 반응조(미도시)에 에탄올 0.5kg과 암모니아수(NH4OH) 30ml를 혼합하여 겔화용 촉매(3)를 제조한다.
한편, 본 발명의 제1 실시예에 따른 복합시트 제조장치는 겔 시트(20)를 제조하는 겔 시트 제조기(100)와, 겔 시트(20)를 통해 에어로겔 시트를 제조하는 반응용기(200) 및 에어로겔 시트(30)를 통해 복합시트(40)를 제조하는 복합시트 제조기(300)를 포함한다.
겔 시트 제조기
여기서, (c) 실리카졸 분사단계와 (d) 겔화용 촉매 분사단계는 겔 시트 제조기(100)에 의해 수행되며, 이에 겔 시트 제조기(100)에 대해 자세히 설명한다.
즉, 겔 시트 제조기(100)는 도 2에 도시되어 있는 것과 같이 섬유시트(1)가 롤 형태로 권취된 권취롤러(110), 권취롤러(110)에 권취된 섬유시트(1)를 일측에서 타측으로 이송하는 컨베이어벨트(120), 컨베이어벨트(120)에 위치한 섬유시트(1)의 표면에 (a) 단계에서 제조한 실리카졸(2)을 분사하여 함침시키는 실리카졸 공급부재(130), 컨베이어벨트(120)에 위치한 섬유시트(1)의 표면에 (b) 단계에서 제조된 겔화용 촉매(3)를 분사하여 실리카졸이 겔화된 겔 시트(20)를 제조하는 촉매 공급부재(140), 및 컨베이어벨트(120)에 의해 타측까지 이송된 겔 시트(20)를 롤 형태로 권취하여 회수하는 회수롤러(150)를 포함한다.
이와 같은 겔 시트 제조기(100)는 권취롤러(110)에 섬유시트(1)가 준비되면, 컨베이어벨트(120)가 권취롤러(110)에 권취된 섬유시트(1)를 일측에서 타측까지 이송한다. 이때 컨베이어벨트(120)에 의해 이송되는 섬유시트(1)의 표면에 실리카졸 공급부재(130)는 (a) 단계에서 제조된 실리카졸(2)을 분사하여 실리카졸을 함침시키며, 또 촉매 공급부재(140)는 실리카졸이 함침된 섬유시트(1)의 표면에 겔화용 촉매(3)를 분사하여 실리카졸이 겔화된 겔 시트(20)를 제조한다. 그리고 컨베이어벨트(120)의 타측까지 이송된 겔 시트(20)는 회수롤러(150)에 의해 다시 권취되면서 회수한다.
여기서 컨베이어벨트(120)에는 섬유시트(1)에 분사된 실리카졸(2) 및 겔화용 촉매(3)의 두께를 균일하게 조절하는 스크래퍼(160)가 포함된다. 즉, 스크래퍼(160)는 섬유시트(1)의 표면에 분사된 실리카졸(2)의 두께를 조절하는 제1 스크래퍼(161)와, 섬유시트(1)의 표면에 분사된 겔화용 촉매(3)의 두께를 조절하는 제2 스크래퍼(162)를 포함한다.
즉, 제1 스크래퍼(161)와 제2 스크래퍼(162)는 동일한 형태를 가지며, 컨베이어벨트(120)의 상면에 상하방향으로 높이 조절이 가능하게 설치되어 실리카졸(2) 및 겔화용 촉매(3)의 두께를 균일하게 조절하며, 이에 균일한 품질의 겔 시트(20)를 얻을 수 있다.
이하, 에어로겔 제조기(100)를 이용한 (c) 실리카졸 분사단계와 (d) 겔화용 촉매 분사단계를 자세히 설명한다.
(c) 실리카졸 분사단계
(c) 실리카졸 분사단계는 섬유시트의 표면에 (a) 단계에서 제조한 실리카졸(2)을 분사하여 함침시킨다. 즉, (a) 단계에서 제조된 실리카졸(2)을 실리카졸 공급부재(130)에 주입하여 저장한다. 그럼 다음 컨베이어벨트(120)에 의해 실리카졸 공급부재(130)의 하부까지 섬유시트(1)가 이송되면 실리카졸 공급부재(130)를 통해 실리카졸(2)을 분사하여 섬유시트(1)의 표면에 함침시킨다.
이때, 섬유시트(1)에 분사된 실리카졸(2)은 컨베이어벨트(120)에 설치된 제1 스크래퍼(161)를 통과하면서 균일한 두께를 가지게 된다. 즉 제1 스크래퍼(161)는 소정 두께 이상의 실리카졸(2)은 통과하지 않도록 차단함에 따라 실리카졸(2)의 두께를 균일하게 조절할 수 있다.
(d) 겔화용 촉매 분사단계
(d) 겔화용 촉매 분사단계는 (c) 단계에 의해 실리카졸이 함침된 섬유시트(1)의 표면에 겔화용 촉매(3)를 분사하여 실리카졸은 겔화시킨다. 즉, (b) 단계에서 제조한 겔화용 촉매(3)를 촉매 공급부재(140)에 주입하여 저장한다. 그럼 다음, 컨베이어벨트(120)에 의해 촉매 공급부재(140)의 하부까지 실리카졸이 함침된 섬유시트(1)가 이송되면 촉매 공급부재(140)를 통해 겔화용 촉매(3)를 섬유시트(1)의 표면에 분사하여 실리카졸을 겔화시키며, 이에 실리카졸이 겔화된 겔 시트(20)를 얻을 수 있다.
여기서 촉매 공급부재(140)는 저장된 겔화용 촉매(3)의 설정된 속도로 분사하고, 설정된 시간 동안 방치하여 실리카졸을 안정적으로 겔화시킨다. 즉, 촉매 공급부재(140)는 섬유시트(1)의 표면에 겔화용 촉매(3)를 0.035~0.012L/min 속도로 분사하고, 8~12분 동안 방치하여 실리카졸을 점차 겔화시킨다.
특히, 촉매 공급부재(140)는 섬유시트(1)에 함침된 실리카졸(2)의 밀도에 따라 겔화용 촉매(3)의 분사속도를 달리하여 실리카졸의 겔화를 균일하게 조절할 수 있다.
즉, (1)실리카졸의 밀도가 40kg/m3 일 경우 겔화용 촉매(3)의 분사속도는 0.035L/min로 조절한다. 이때 섬유시트(1)에 함침된 실리카졸(2)의 함량은 30wt% 및 열전도도는 14.9mW/mK를 가진다.
(2) 실리카졸의 밀도가 60kg/m3 일 경우 겔화용 촉매(3)의 분사속도는 0.017L/min로 조절한다. 이때 섬유시트(1)에 함침된 실리카졸(2)의 함량은 38wt% 및 열전도도는 14.1mW/mK를 가진다.
(3)실리카졸의 밀도가 80kg/m3 일 경우 겔화용 촉매(3)의 분사속도는 0.014L/min로 조절한다. 이때 섬유시트(1)에 함침된 실리카졸(2)의 함량은 38wt% 및 열전도도는 13.6mW/mK를 가진다.
(4)실리카졸의 밀도가 100kg/m3 일 경우 겔화용 촉매(3)의 분사속도는 0.012L/min로 조절한다. 이때 섬유시트(1)에 함침된 실리카졸(2)의 함량은 55wt% 및 열전도도는 13.0mW/mK를 가진다.
이와 같이 실리카졸의 밀도가 증가할수록 겔화용 촉매의 분사속도를 감소시키며, 이에 실리카졸의 안정된 겔화를 유도할 수 있다.
한편, 상기와 같이 제조된 겔 시트(20)는 회수롤러(150)에 의해 롤 형태로 권취되면서 회수되고, 회수된 겔 시트(20)는 반응용기(200)를 이용하여 (e) 겔 시트 에이징단계, (f) 겔 시트 표면개질단계, 및 (g) 겔 시트 건조단계를 거치면서 에어로겔 시트(30)를 제조할 수 있다.
반응용기
여기서 반응용기(200)는 도 4 내지 도 6에 도시되어 있는 것과 같이, 롤 형태로 회수된 겔 시트(20)를 밀폐되게 수용하는 수용공간(210)을 가지며, 일단에 상기 수용공간과 연결되는 주입구(220)와, 타단에 상기 수용공간(210)와 연결되는 배출구(230)가 형성된다.
이하, 반응용기(200)를 이용하여 (e) 겔 시트 에이징단계, (f) 겔 시트 표면개질단계, 및 (g) 겔 시트 건조단계를 설명한다.
(e) 겔 시트 에이징단계
(e) 겔 시트 에이징단계는 도 4에 도시되어 있는 것과 같이, 겔 시트(20)를 에이징한다. 즉, (d) 단계에서 회수한 겔 시트(20)를 반응용기(200)의 수용공간(210)에 수용한다. 다음으로 반응용기(200)의 수용공간(210)을 70℃까지 가열한 상태로 50분간 에이징하여 겔 시트(20)의 조직을 균일화시킨다.
여기서 (e) 겔 시트 에이징단계는 반응용기(200)에서 에이징 하기 전에 상온(또는 25℃)에서 10분간 방치한 후 에이징을 진행한다. 즉, 실리카졸(2)의 안정된 겔화를 유도한 다음 에이징을 진행함으로써 겔 시트(20)의 조직을 보다 균일화할 수 있다.
(f) 겔 시트 표면개질단계
(f) 겔 시트 표면개질단계는 도 5에 도시되어 있는 것과 같이, 에이징된 겔 시트(20)에 코팅액을 분사하여 표면을 개질한다. 즉, (f) 겔 시트 표면개질단계는 에탄올과 암모니아수(NH4OH)을 혼합하여 코팅액을 제조한다. 그런 다음 겔 시트(20)가 삽입된 반응용기(200)의 주입구(220)를 통해 코팅액을 수용공간(210)에 주입하여 겔 시트(20)의 표면을 개질한다. 이때 코팅액은 (c) 단계에서 섬유시트의 표면에 함침된 실리카졸의 1.6배를 분사하고, 반응용기(200)는 70℃의 고온에서 1시간 동안 에이징과 HMDS(Hexamethyldisilazane)하여 겔 시트(20)의 표면을 개질한다.
한편, HMDS(Hexamethyldisilazane)는 겔 시트(20)의 표면을 소수성으로 바꾸어주기 위해 사용한다.
(g) 겔 시트 건조단계
(g) 겔 시트 건조단계는 도 6에 도시되어 있는 것과 같이, 표면이 개질된 겔 시트(20)를 건조하여 에어로겔 시트(30)를 완성한다. 이때 (g) 겔 시트 건조단계는 반응용기(200)에 겔 시트(20)를 수용된 상태에서 초임계 건조가 이루어진다. 즉, (g) 겔 시트 건조단계는 표면개질된 겔 시트(20)를 28℃ 및 70bar의 환경에서 이산화탄소를 10분간 70L/min속도로 주입하여 건조하는 1차 건조단계, 1분 20분간 50℃로까지 승온시켜서 건조하는 2차 건조단계, 다시 50℃ 및 150bar의 환경에서 이산화탄소를 20분간 0.7L/min속도로 주입하여 건조하는 3차 건조단계, 및 20분간 휴식 후 20분간 이산화탄소를 0.7L/min속도로 주입하여 건조하는 4차 건조단계를 포함한다. 이와 같은 건조단계를 수행함에 따라 겔 시트(20)의 건조률을 높일 수 있다.
한편, (g) 겔 시트 건조단계의 3차 건조는 이산화탄소와 겔 시트(20)의 화학반응에 의해 반응용기(200) 내에 에탄올가 발생되며, 이 반응용기(200)에 발생된 에탄올은 배출구(230)를 통해 배출하여 회수한다.
그리고 (g) 겔 시트 건조단계는 4차 건조 후, 2시간 동안 이산화탄소를 배출하는 배출단계를 포함하며, 이에 겔 시트(20)에 완만한 환경변화를 유도하여 겔 시트(20)의 조직을 균일화한다.
이와 같은 에어로겔 시트(30)가 제조되면, 에어로겔 시트(30)를 섬유시트(10)의 양면에 각각 적층시켜서 작업을 완료한다. 그리고 적층된 에어로겔 시트(30)와 섬유시트(10)를 접합하여 복합시트(40)를 제조하는 단계를 수행한다.
[복합시트 제조방법]
복합시트 제조방법(S30)은 적층된 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)를 열과 압력으로 접합하여 복합시트(40)를 제조한다. 이때 복합시트 제조기를 사용한다.
복합시트 제조기
본 발명의 제1 실시예에 따른 복합시트 제조기(300)는 도 7에 도시되어 있는 것과 같이, 에어로겔 시트(30)를 공급하는 복수의 에어로겔 시트 공급롤러(310), 에어로겔 시트(30) 사이에 개재되도록 섬유시트(10)를 공급하는 섬유시트 공급롤러(320), 에어로겔 시트 (30) 사이에 섬유시트(10)가 개재된 상태로 열과 압력으로 압착하여 복합시트(40)를 제조하는 가열 압착기(330)를 포함하며, 가열 압착기(330)를 통과하면서 복합시트(40)를 얻을 수 있다.
여기서 본 발명의 제1 실시예에 따른 복합시트 제조기(300)는 에어로겔 시트 공급롤러(310)로부터 공급되는 에어로겔 시트(30)를 건조하는 건조부재(340)를 더 포함하며, 건조부재(340)는 에어로겔 시트(30)의 건조률을 더욱 높여서 섬유시트(10)와의 접합성을 높인다.
또한, 본 발명의 제1 실시예에 따른 복합시트 제조기(300)는 섬유시트(10)가 개재된 에어로겔 시트(30)를 니들링하여 임시 접합하는 니들링부재(350)를 더 포함하며, 니들링부재(350)는 에어로겔 시트(30)와 섬유시트(10)를 임시 접합함에 따라 불규칙한 접합이 발생하는 것을 미연에 방지한다.
한편, 본 발명의 제1 실시예에 따른 복합시트 제조기(300)는 복합시트(40)를 소정 크기로 절단하여 복합패드(50)로 가공하는 절단부재(360)를 더 포함하며, 절단부재(360)는 사용과 보관의 효율성을 높이기 위해 복합시트(40)를 절단하여 복합패드(50)로 가공한다.
이와 같은 구성을 가진 본 발명의 제1 실시예에 따른 복합시트 제조기(300)를 이용한 복합시트 제조단계(S30)를 설명한다.
복합시트 제조단계
섬유시트 준비단계(S10)와 에어로겔 시트 적층단계(S20)에 의해 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)의 적층이 완료되면, 적층된 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)를 열과 압력으로 접합하여 복합시트(40)를 제조한다.
이때 S20 단계와 S30 단계 사이에는 준비된 에어로겔 시트(30)를 건조하는 단계(S25)가 더 포함된다.
즉, 건조단계(S25)는 에어로겔 시트(30)를 건조부재(340)를 통해 고온의 열로 건조시켜서 수분을 증발시키며, 이에 에어로겔 시트(30)의 건조율을 높인다.
또한, S20 단계와 S30 단계 사이에는 적층된 에어로겔 시트(30)와 섬유시트(10)를 니들링하여 임시 고정하는 단계(S26)를 포함한다.
즉, 임시고정단계(S26)는 적층된 에어로겔 시트(30)와 섬유시트(10)를 압착할 시 움직이는 것을 방지하기 위해 에어로겔 시트(30)와 섬유시트(10)를 니들링하여 임시고정한다.
이와 같이 건조단계와 임시고정단계를 더 수행함에 따라 균일한 품질의 복합시트(40)를 얻을 수 있다.
여기서 본 발명의 제1 실시예에서는 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)로 적층된 복합시트(40)를 하나의 실시예로 설명하였지만, 적용함에 따라 하나 이상의 에어로겔 시트(30)와 하나 이상의 섬유시트(10)가 적층되는 복합시트(40)도 제조할 수 있다.
한편, 상기와 같이 제조된 복합시트(40)는 소정 크기로 절단하여 복합패드(50)를 얻을 수 있다. 즉, 복합시트(40)를 절단부재(360)를 통해 소정크기로 절단하여 복합패드(50)를 얻을 수 있다.
이와 같은 구성과 방법을 가지는 에어로겔트를 포함하는 복합시트 제조방법 및 장치를 이용함으로써 접합성과 내구성이 높고, 제조원가가 낮으며, 특히 안정적으로 두께를 가진 복합시트 및 복합패드를 얻을 수 있다.
이하, 본 발명에 따른 제2 실시예를 설명함에 있어 전술한 제1 실시예와 동일한 구성에 대해서는 동일한 구성부호를 사용하며, 중복되는 설명은 생략한다.
본 발명의 제2 실시예에 따른 복합시트 제조방법은 전술한 제1 실시예에 따른 복합시트 제조방법의 에어로겔시트 적층단계(S20)에서 에어로겔 시트를 제조하는 다른 실시예를 나타낸 것이다.
즉, 본 발명의 제2 실시예에 따른 복합시트 제조방법은 도 1을 참조하면, 섬유시트(10)를 준비하는 단계(S10), 섬유시트(10)의 양면에 에어로겔 시트(30)를 각각 적층하는 단계(S20), 및 적층된 에어로겔 시트(30)와 섬유시트(10)를 열과 압력으로 접합하여 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)로 적층된 복합시트(40)를 제조하는 단계(S30)를 포함한다.
여기서 에어로겔시트 적층단계(S20)에서 에어로겔 시트(30)는 도 8에 도시되어 있는 것과 같이, 에어로겔 매트릭스와 강화 구조물(21)을 포함하는 복합물(20)로 제조한다.
상기 에어로겔 복합물(20)은 2가지 상으로 구성된다. 첫 번째 상은 저밀도 에어로겔 매트릭스이고, 두 번째 상은 강화상(reinforcing phase)이다. 상기 강화상은 일차적으로 로프티 섬유성 물질, 바람직하게는 로프티 배팅 및 현저하게 상이한 두께, 길이 또는 가로 세로비(aspect ratio)의 한가지이상 섬유성 물질의 혼합물로 구성된다. 상기 2가지 섬유성 물질 시스템의 적합한 혼합물은 로프티 섬유 배팅(다른 섬유성 물질)에 침투하는 연속적인(continuous) 에어로겔 매트릭스 전체에 짧고 높은 가로 세로비의 미세섬유(한가지 섬유성 물질)가 분산될 때 만들어진다.
그리고 상기 에어로겔 매트릭스는 상기 강화 구조물(21)을 통하여 연속적(continuous)이며, 상기 강화 구조물(21)은 로프티 섬유성 배팅이고, 여기서 섬유들은 세 개의 모든 축을 따라 배향되어 있으며, 상기 로프티 섬유성 배팅은 시트 형태여서, 상기 복합물(20)은 탄력성이고 내구성인 경량의 절연 제품이며, 로프티 섬유성 배팅은 두께의 적어도 50%까지 압축가능하고 5초간의 압축후에 원 두께의 적어도 70%까지 회복되고, 로프티 섬유성 배팅의 밀도는 0.001 내지 0.26 g/cm3이고, 상기 복합물(20)의 횡단면에서 식별가능한 섬유들의 횡단면적은 횡단면적 전체의 10% 미만일 수 있다.
즉, 에어로겔 매트릭스는 유기 에어로겔, 무기 에어로겔 또는 이들의 혼합물일 수 있다.
상기 유기 에어로겔은 폴리아크릴레이트, 폴리스티렌, 폴리아크릴로니트릴, 폴리우레탄, 폴리이미드, 폴리푸르퓨랄 알코올, 페닐 푸르퓨릴 알코올, 멜라민 포름알데하이드, 레소르시놀 포름알데하이드, 크레솔 포름알데하이드, 페놀 포름알데하이드, 폴리비닐 알코올 디알데하이드, 폴리시아뉴레이트, 폴리아크릴아마이드, 다양한 에폭시, 아가, 아가로즈 중 하나 또는 둘 이상의 혼합물로 구성된 그룹에서 선택될 수 있다(C. S. Ashley, C. J. Brinker and D. M. Smith, Journal of Non-Crystalline Solid, Volume 285, 2001).
그리고 무기 에어로겔 생산의 주요 합성 루트는 적합한 금속 알콕사이드의 가수분해와 응축이다. 가장 적합한 금속 알콕사이드는 각 알킬기에서 1 내지 6개의 탄소 원자, 바람직하게는 1 내지 4개의 탄소 원자를 보유하는 것들이다. 이런 화합물의 특이적인 구체예는 테트라에톡시실란(TEOS), 테트라메톡시실란(TMOS), 테트라-n-프로폭시실란, 알루미늄 이소프로폭사이드, 알루미늄 sec-부톡사이드, 세륨 이소프로폭사이드, 하프늄 tert-부톡사이드, 마그네슘 알루미늄 이소프로폭사이드, 이트륨 이소프로폭사이드, 티타늄 이소프로폭사이드, 지르코늄 이소프로폭사이드 등이다. 실리카 전구체의 경우에, 이들 물질은 부분적으로 가수분해시키고 낮은 pH에서 폴리실릴산 에스터의 중합체, 예를 들면 폴리디에톡시실록산으로 안정화시킬 수 있다. 이들 물질은 알코올 용액으로 상업적으로 구할 수 있다(예, Silbond®40, 40% 실리카 함량, Silbond Corporation). 선-중합된 실리카 전구체가 본원 발명의 에어로겔 복합물(20)에 특히 적합하다.
저온에서 사용되는 에어로겔을 생산하는데 적합한 물질은 옥사이드-형성 금속에 기초한 비-내화성 금속 알콕사이드이다. 적합한 이런 금속은 실리콘, 마그네슘, 이들의 혼합물이다. 높은 온도에 적합한 알콕사이드는 일반적으로, 산화물을 형성할 수 있는 내화성 금속 알콕사이드, 예를 들면 지르코니아, 이트리아, 하프니아, 알루미나, 티타니아, 세리아 등 및 지르코니아와 이트리아와 같은 이들의 혼합물이다. 비-내화성 금속과 내화성 금속, 예를 들면 실리콘 및/또는 마그네슘과 알루미늄의 혼합물을 사용할 수도 있다. 에어로겔 구조에 한가지 이상의 금속 옥사이드 매트릭스 물질을 사용하는 이점은 광범위한 파장에서 방사를 흡수하는 화학적 기능기를 제공함으로써 달성되는 IR 혼탁화의 강화이다.
미세하게 분산된 도펀트, 예를 들면 카본 블랙, 티타니아, 철 산화물, 실리콘, 카바이드, 몰릴브데눔, 실리사이드, 망간 산화물, 폴리디알킬실록산(여기서, 알킬기는 1 내지 4개의 탄소 원자를 보유한다) 등은 IR 전달(transmission)에 대한 에어로겔의 불투명도(opacity)를 증가시킴으로써 고온에서 열 성능을 향상시키기 위하여 첨가될 수 있다. 이런 도펀트의 적량은 일반적으로, 최종 복합물 중량의 1 내지 20wt%, 바람직하게는 2 내지 10%이다.
로프티 섬유성 배팅은 벌크의 특성 및 상당한 탄성(완전한 벌크 회복 존부)을 보이는 섬유성 물질로 정의된다. 적절한 형태는 부드러운 웹이다. 로프티 배팅 강화물질의 이용은 지지되지 않는 에어로겔의 부피를 최소화시키면서 에어로겔의 열 성능의 실질적인 퇴보를 피한다. 적절하게는, 배팅은 라이닝 덮개, 솜이나 용기, 또는 열 절연용 블랭킷으로 사용되는 섬유성 물질의 층이나 시트를 의미한다.
본 발명의 제2 실시예에 사용되는 강화 섬유성 물질은 하나 또는 복수의 로프티 섬유성 배팅층이다. 로프티 배팅 강화물질의 이용은 지지되지 않은 에어로겔의 부피를 최소화시키면서 에어로겔의 열 성능의 실질적인 퇴보를 피한다.
일반적으로 "배팅"은 시트 형태로 섬유의 부드러운 웹을 형성하는 소면(carding)이나 Garnetting 섬유로부터 만들어지는 산물이긴 하지만, 본원 발명에서 "배팅"에는 "로프티"할 수 있을 만큼 충분히 개방된 비-시트 형태의 웹, 예를 들면 Albany International의 Primaloft®제품이 포함된다. 일반적으로, 배팅은 라이닝 덮개, 솜이나 용기, 또는 열 절연용 블랭킷으로 사용되는 섬유성 물질의 층이나 시트를 의미한다. 배팅을 생산하는데 적합한 섬유는 상대적으로 가늘고 15 이하, 바람직하게는 10 이하의 데니어를 갖는다. 웹의 부드러움은 섬유 웹을 만드는데 사용되는 상대적으로 가늘고 여러 방향으로 배향된 섬유의 부산물이다.
본 발명의 제2 실시예에서는 배팅이 동일 물질의 비-강화된 에어로겔과 비교하여, 강화된 복합물(20)의 열 특성을 현저하게 변화시키지 않을 만큼 적은 수의 개별적인 섬사(또는 섬유)를 보유하는 경우에 "로프티"하다고 한다. 이는 최종 에어로겔 복합물(20)의 횡단면에서 섬유의 횡단 영역이 횡단면의 전체 횡단 영역의 10% 미만, 바람직하게는 8%미만, 가장 바람직하게는 5% 미만임을 의미한다. 적절하게는, 로프티 배팅은 낮은 열 전도도 에어로겔 복합물(20)의 형성을 촉진하는 실온과 압력에서 50 mW/m-K 이하의 열 전도도를 갖는다.
본 발명의 제2 실시예에서 배팅이 충분히 로프티하는 지를 확인하는 다른 방법은 이의 압축성과 탄성을 측정하는 것이다. 이런 경우에, 로프티 배팅은 (i) 고유 두께의 적어도 50%, 바람직하게는 적어도 65%, 가장 바람직하게는 적어도 80%까지 압축가능하고 수초간의 압축후에 원 두께의 적어도 70%, 바람직하게는 적어도 75%, 가장 바람직하게는 적어도 80%까지 회복된다. 이런 정의에 따라, 로프티 배팅은 압축의 경우에 공기(벌크)를 제거하면 실질적으로 원래의 크기와 형태로 회복될 수 있다. 가령, HolofilTM 배팅은 원래 1.5" 두께에서 최소 0.2"로 압축될 수 있고, 부하가 제거되면 원래의 두께로 회복된다. 상기 배팅은 1.3" 공기(벌크)와 0.2" 섬유를 보유하는 것으로 간주할 수 있다. 이는 87%까지 압축가능하고 원래 두께의 거의 100%까지 회복된다. 가정용 절연에 사용되는 유리 섬유 배팅은 유사한 정도로 압축되고 속도가 느리긴 하지만 원래 두께의 대략 80%까지 회복될 수 있다.
본 발명의 제2 실시예에 사용되는 배팅은 섬유성 매트와 실질적으로 상이하다. 섬유성 매트(mat)는 "밀집되게 짜여진 또는 두텁게 얽힌 덩어리", 다시 말하면 인접 섬유간에 최소의 개방된 공간을 보유하는 밀집되고 상대적으로 경직된 섬유성 구조이다. 매트는 2.5 lbs/ft3(0.41 g/cc)의 밀도를 보유하는 반면, 본원에 사용되는 로프티 배팅은 훨씬 작은 밀도, 즉 0.1 내지 16 lbs/ft3(0.001-0.26 g/cc), 바람직하게는 2.4 내지 6.1 lbs/ft3(0.04-0.1g/cc)이다. 일반적으로, 매트는 20% 미만으로 압축가능하고 탄성을 거의 보이지 않는다. 매트 강화물질로 만들어진 에어로겔 복합물(20)에서, 매트 섬유의 횡단 영역은 전체 횡단 영역의 최대 30 내지 50%를 차지한다.
적절하게는, 배팅은 겔 형성 액체가 부어진 이후에 적어도 50%의 두께를 유지한다.
본 발명의 제2 실시예에 사용되는 섬유 강화물질의 개방성에 대한 필요를 이해하는 방법은 도 8을 참조하면, z 축(열 흐름 방향)으로 진행하는 섬유 강화물질이 열 도관으로 작용하여 생성 복합물의 열 전도도를 현저하게 증가시킨다는 것을 인식하는 것이다.
특히 x-y 수평면에서 거의 일직선의(곱슬곱슬하지 않은) 섬유를 보유하는 배팅은 굽거나 곱슬곱슬한 섬유가 3가지 축 모두로 진행하는 동일 밀도의 전형적인 로프티 배팅보다 더 경직된다. z 방향으로 열 흐름을 최소화하기 위하여(대부분의 절연 물질에서 요구됨), 배팅은 z 축(열 흐름 방향)에서 적은 열 흐름을 보여야 한다.
따라서, 적합한 배팅은 절연 복합물의 절연 특성을 약화시키지 않을 만큼 충분한 양의 섬유가 z 축으로 배향된다. z 축의 섬유는 x와 y 축에서와 상이한 물질(바람직하게는, 좀더 낮은 열 전도도를 갖는 물질)로 구성될 수 있다. z 축 섬유는 열 전도에 좀더 꼬인 통로를 제공하기 위하여 x-y 방향의 섬유보다 좀더 완곡하게 만들어 질 수도 있다. 배팅 전체에 동일한 섬유 재료와 방법을 이용하여 모든 축에서 열 전도를 최소화시킬 수 있지만, 많은 절연 제품에서는 열 흐름이 특정 방향으로 처리되기 때문에 이런 재료와 방법을 이용하는 것은 생성된 복합물의 탄력성을 약화시킬 수 있다. 이상적인 로프티 배팅은 복합물(20) 전체에 균일하게 분산된 미세하고 곱슬곱슬한 섬유를 갖는다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 다양한 실시 형태가 가능하다.
Claims (24)
- 섬유시트(10)를 준비하는 단계(S10);상기 섬유시트(10)의 양면에 에어로겔 시트(30)를 각각 적층하는 단계(S20); 및상기 적층된 에어로겔 시트(30)와 섬유시트(10)를 열과 압력으로 접합하여 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)로 적층된 복합시트(40)를 제조하는 단계(S30)를 포함하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 1에 있어서,상기 S20 단계와 상기 S30 단계 사이에는 상기 에어로겔 시트(30)를 건조하는 단계(S25)가 더 포함되는 에어로겔트를 포함하는 복합시트 제조방법.
- 청구항 1에 있어서,상기 S20 단계와 상기 S30 단계 사이에는 적층된 에어로겔 시트(30)와 섬유시트(10)를 니들링하여 임시 고정하는 단계(S26)를 포함하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 1에 있어서,상기 S30 단계 후, 상기 복합시트(40)를 일정한 크기로 절단하여 복합패드(50)를 제조하는 단계(S40)를 더 포함하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 1에 있어서, 상기 S20 단계는,(a) 실리카졸(2)을 제조하는 단계;(b) 겔화용 촉매(3)를 제조하는 단계;(c) 섬유시트(1)의 표면에 상기 (a) 단계에서 제조한 실리카졸(2)을 분사하여 함침시키는 단계;(d) 실리카졸(2)이 함침된 섬유시트(1)의 표면에 상기 (b) 단계에서 제조한 겔화용 촉매(3)를 분사하여 실리카졸이 겔화된 겔 시트(20)를 제조하는 단계;(e) 상기 실리카졸이 겔화된 겔 시트(20)를 에이징하는 단계;(f) 상기 에이징된 겔 시트(20)에 코팅액을 투입하여 표면을 개질하는 단계;(g) 상기 표면이 개질된 겔 시트(20)를 건조하여 에어로겔 시트(30)를 제조하는 단계를 포함하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 5에 있어서,상기 (a) 단계에서 실리카졸(2)은 TEOS(tetraethly orthosilicate)와 에탄올을 혼합하여 제조하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 6에 있어서,상기 TEOS(tetraethly orthosilicate)는 가수분해된 것을 사용하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 5에 있어서,상기 (b) 단계에서 겔화용 촉매(3)는 에탄올과 암모니아수(NH4OH)를 혼합하여 제조하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 5에 있어서,상기 (c) 단계와 상기 (d) 단계는 상기 섬유시트(1)를 일측에서 타측으로 이송하는 컨베이어벨트 내에서 이루어지는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 5에 있어서,상기 (d) 단계는 상기 섬유시트(1)의 표면에 상기 겔화용 촉매(3)를 0.035~0.012L/min 속도로 분사하고, 8~12분 동안 방치하여 실리카졸을 겔화시키는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 5에 있어서,상기 (e) 단계는 상기 실리카졸이 겔화된 겔 시트(20)를 70℃의 고온에서 50분간 에이징하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 5에 있어서,상기 (f) 단계에서 코팅액은 에탄올과 암모니아수(NH4OH)을 혼합하여 제조되는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 12에 있어서,상기 (f) 단계는 상기 코팅액을 상기 섬유시트(1)의 표면에 함침된 실리카졸(2)의 1.6배를 투입하고, 70℃의 고온에서 1시간 동안 에이징과 HMDS(Hexamethyldisilazane)하여 표면을 개질하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 5에 있어서,상기 (g) 단계는 표면 개질된 겔 시트(20)를 28℃ 및 70bar의 환경에서 이산화탄소를 10분간 70L/min속도로 주입하여 건조하는 1차 건조단계, 1분 20분간 50℃까지 승온시켜서 건조하는 2차 건조단계, 다시 50℃ 및 150bar의 환경에서 이산화탄소를 20분간 0.7L/min속도로 주입하여 건조하는 3차 건조단계, 및 20분간 휴식 후 20분간 이산화탄소를 0.7L/min속도로 주입하여 건조하는 4차 건조단계를 포함하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 14에 있어서,상기 (g) 단계에서 3차 건조단계는 이산화탄소를 주입함과 동시에 표면이 개질됨에 따라 겔 시트(20)로부터 발생한 에탄올을 회수하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 14에 있어서,상기 (g) 단계는 4차 건조단계 이후, 2시간 동안 이산화탄소를 배출하는 배출단계를 더 포함하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 15에 있어서,상기 (e), (f) 및 (g) 단계는 겔 시트를 수용하는 반응용기 내에서 이루어지는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 섬유시트(10)를 준비하는 단계(S10);상기 섬유시트(10)의 양면에 에어로겔 시트(30)를 각각 적층하는 단계(S20); 및상기 적층된 에어로겔 시트(30)와 섬유시트(10)를 열과 압력으로 접합하여 에어로겔 시트(30), 섬유시트(10) 및 에어로겔 시트(30)로 적층된 복합시트(40)를 제조하는 단계(S30)를 포함하며,상기 에어로겔 시트 준비단계(S10)에서 상기 에어로겔 시트(30)는 에어로겔 매트릭스 및 강화 구조물을 포함하는 복합물로 이루어지고,상기 에어로겔 매트릭스는 상기 강화 구조물을 통하여 연속적(continuous)이며, 상기 강화 구조물은 로프티 섬유성 배팅이고, 여기서 섬유들은 세 개의 모든 축을 따라 배향되어 있으며, 상기 배팅은 쉬트 형태여서, 상기 복합물은 탄력성이고 내구성인 경량의 절연 제품이며, 로프티 섬유성 배팅은 두께의 적어도 50%까지 압축가능하고 5초간의 압축후에 원 두께의 적어도 70%까지 회복되고, 로프티 섬유성 배팅의 밀도는 0.001 내지 0.26 g/cm3이고, 상기 복합물의 횡단면에서 식별가능한 섬유들의 횡단면적은 횡단면적 전체의 10% 미만인 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 18에 있어서,상기 로프티 섬유성 배팅은 상기 에어로겔 매트릭스를 형성하기 위해 겔 형성 액체의 첨가 후 원 두께의 적어도 50%를 유지하는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 18에 있어서,상기 로프티 섬유성 배팅은 원 두께의 적어도 65%까지 압축가능하고 5초 간 압축 후 원 두께의 적어도 75%로 회복되는 탄성을 가지는 에어로겔 시트를 포함하는 복합시트 제조방법.
- 청구항 18에 있어서,상기 복합물의 횡단면에서 식별가능한 상기 로프티 섬유성 배팅의 섬유들의 횡단면적은 횡단면의 전체 면적의 8% 미만인 에어로겔 시트를 포함하는 복합시트 제조방법.
- 겔 시트(20)를 제조하는 겔 시트 제조기(100);상기 겔 시트 제조기(100)에 의해 제조된 겔 시트(20)를 에이징, 표면 개질, 및 건조하여 에어로겔 시트(30)를 제조하는 반응용기(200);상기 반응용기(200)에 의해 제조된 에어로겔 시트(30)와 섬유시트(10)를 접합하여 복합시트(40)를 제조하는 복합시트 제조기(300)를 포함하며,상기 복합시트 제조기(300)는 상기 에어로겔 시트(30)를 공급하는 복수의 에어로겔 시트 공급롤러(310), 상기 에어로겔 시트(30) 사이에 개재되도록 상기 섬유시트(10)를 공급하는 섬유시트 공급롤러(320), 상기 에어로겔 시트(30) 사이에 섬유시트(10)가 개재된 상태로 열과 압력으로 압착하여 복합시트(40)를 제조하는 가열 압착기(330)를 포함하는 에어로겔 시트를 포함하는 복합시트 제조장치.
- 청구항 22에 있어서,상기 복합시트 제조기(300)는 상기 에어로겔 시트 공급롤러(310)로부터 공급되는 에어로겔 시트(30)를 건조하는 건조부재(340)와, 상기 섬유시트(10)가 개재된 상기 에어로겔 시트(30)를 니들링하여 임시 접합하는 니들링부재(350)를 더 포함하는 에어로겔 시트를 포함하는 복합시트 제조장치.
- 청구항 22에 있어서,상기 겔 시트 제조기(100)는 섬유시트(1)가 권취된 권취롤러(110), 상기 권취롤러(110)에 권취된 섬유시트(1)를 일측에서 타측으로 이송하는 컨베이어벨트(120), 상기 컨베이어벨트(120)에 위치한 상기 섬유시트(1)의 표면에 실리카졸(2)을 분사하여 함침시키는 실리카졸 공급부재(130), 상기 컨베이어벨트(120)에 위치한 상기 섬유시트(1)의 표면에 겔화용 촉매(3)를 분사하여 실리카졸이 겔화된 겔 시트(20)를 제조하는 촉매 공급부재(140), 및 상기 컨베이어벨트(120)에 의해 타측까지 이송된 상기 겔 시트(20)를 롤 형태로 권취하여 회수하는 회수롤러(150)를 포함하는 에어로겔 시트를 포함하는 복합시트 제조장치.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17753406.2A EP3326811B1 (en) | 2016-02-17 | 2017-02-07 | Method and apparatus for manufacturing composite sheet comprising aerogel sheets |
JP2018521037A JP6652639B2 (ja) | 2016-02-17 | 2017-02-07 | エアロゲルシートを含む複合シートの製造方法および製造装置 |
US15/755,487 US10493741B2 (en) | 2016-02-17 | 2017-02-07 | Apparatus and method for manufacturing composite sheet comprising aerogel sheet |
CN201780003219.9A CN108136750B (zh) | 2016-02-17 | 2017-02-07 | 包含气凝胶片的复合片材的制备装置和制备方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160018643 | 2016-02-17 | ||
KR10-2016-0018643 | 2016-02-17 | ||
KR10-2016-0095255 | 2016-07-27 | ||
KR1020160095255A KR101962207B1 (ko) | 2016-02-17 | 2016-07-27 | 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017142245A1 true WO2017142245A1 (ko) | 2017-08-24 |
Family
ID=59625292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/001328 WO2017142245A1 (ko) | 2016-02-17 | 2017-02-07 | 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017142245A1 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108952205A (zh) * | 2018-09-04 | 2018-12-07 | 上海市房地产科学研究院(上海市住宅修缮工程质量检测中心) | 一种适用于屋面改造的保温防水复合卷材及制备方法 |
CN110791900A (zh) * | 2019-12-04 | 2020-02-14 | 天津朗华科技发展有限公司 | 一种气凝胶保温毡生产设备 |
CN112250418A (zh) * | 2020-10-22 | 2021-01-22 | 航天特种材料及工艺技术研究所 | 一种轻质增韧隔热复合材料构件及其制备方法和应用 |
CN113460812A (zh) * | 2021-06-24 | 2021-10-01 | 湖北三江航天红阳机电有限公司 | 一种提高气凝胶隔热材料卷材干燥效率的工艺方法 |
CN113463302A (zh) * | 2021-07-31 | 2021-10-01 | 巩义市泛锐熠辉复合材料有限公司 | 一种离心浸渍制备凝胶毡的设备及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990009158A (ko) * | 1997-07-08 | 1999-02-05 | 최세영 | 실리카 에어로겔의 제조방법 |
KR100909732B1 (ko) * | 2000-12-22 | 2009-07-29 | 아스펜 에어로겔, 인코퍼레이티드 | 섬유성 배팅을 보유하는 에어로겔 복합물 |
US20140287641A1 (en) * | 2013-03-15 | 2014-09-25 | Aerogel Technologies, Llc | Layered aerogel composites, related aerogel materials, and methods of manufacture |
KR101506096B1 (ko) * | 2013-11-08 | 2015-03-25 | 지오스 에어로겔 리미티드 | 적층방식을 이용한 에어로겔이 함침된 단열원단의 제조장치 및 제조방법 |
KR20150093122A (ko) * | 2014-02-06 | 2015-08-17 | 주식회사 엘지화학 | 소수성 실리카 에어로겔의 제조방법 |
-
2017
- 2017-02-07 WO PCT/KR2017/001328 patent/WO2017142245A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990009158A (ko) * | 1997-07-08 | 1999-02-05 | 최세영 | 실리카 에어로겔의 제조방법 |
KR100909732B1 (ko) * | 2000-12-22 | 2009-07-29 | 아스펜 에어로겔, 인코퍼레이티드 | 섬유성 배팅을 보유하는 에어로겔 복합물 |
US20140287641A1 (en) * | 2013-03-15 | 2014-09-25 | Aerogel Technologies, Llc | Layered aerogel composites, related aerogel materials, and methods of manufacture |
KR101506096B1 (ko) * | 2013-11-08 | 2015-03-25 | 지오스 에어로겔 리미티드 | 적층방식을 이용한 에어로겔이 함침된 단열원단의 제조장치 및 제조방법 |
KR20150093122A (ko) * | 2014-02-06 | 2015-08-17 | 주식회사 엘지화학 | 소수성 실리카 에어로겔의 제조방법 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108952205A (zh) * | 2018-09-04 | 2018-12-07 | 上海市房地产科学研究院(上海市住宅修缮工程质量检测中心) | 一种适用于屋面改造的保温防水复合卷材及制备方法 |
CN110791900A (zh) * | 2019-12-04 | 2020-02-14 | 天津朗华科技发展有限公司 | 一种气凝胶保温毡生产设备 |
CN112250418A (zh) * | 2020-10-22 | 2021-01-22 | 航天特种材料及工艺技术研究所 | 一种轻质增韧隔热复合材料构件及其制备方法和应用 |
CN113460812A (zh) * | 2021-06-24 | 2021-10-01 | 湖北三江航天红阳机电有限公司 | 一种提高气凝胶隔热材料卷材干燥效率的工艺方法 |
CN113463302A (zh) * | 2021-07-31 | 2021-10-01 | 巩义市泛锐熠辉复合材料有限公司 | 一种离心浸渍制备凝胶毡的设备及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017142245A1 (ko) | 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치 | |
JP6928131B2 (ja) | エアロゲルシートを含む複合シートの製造方法および製造装置 | |
CN108136749B (zh) | 包含气凝胶片的复合片材的制备方法和制备装置 | |
WO2017126784A1 (ko) | 에어로겔 시트의 제조방법 및 장치 | |
WO2020111763A1 (ko) | 에어로겔 블랭킷의 제조방법 | |
JP6629798B2 (ja) | セグメント化ゲル複合材料およびこの複合材料から製造される剛性パネル | |
KR20220124703A (ko) | 배터리 열 관리 부재 | |
KR20220110803A (ko) | 전기차 배터리에서 열 폭주를 관리하기 위한 구성요소 및 시스템 | |
WO2017142244A1 (ko) | 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치 | |
KR101454233B1 (ko) | 에어로젤 블랑켓의 연속 생산방법과 생산장치 및 생산된 에어로젤 블랑켓 | |
WO2021045483A1 (ko) | 에어로겔 블랭킷 제조방법 | |
NO310885B1 (no) | Fiberstruktur-aerogel-komposittmateriale inneholdende minst et termoplastisk fibermateriale, fremgangsmåte for fremstillingderav og anvendelse av materialet | |
NO311669B1 (no) | Aerogelholdige komposittmaterialer, fremgangsmåte for fremstilling av disse samt deres anvendelse, og fremgangsmåte forfremstilling av aerogelmatter | |
WO2021045514A1 (ko) | 에어로겔 블랭킷 및 이의 제조방법 | |
WO2020122683A1 (ko) | 에어로겔 블랭킷의 제조방법 | |
CN106747540A (zh) | 一种气凝胶纤维复合材料的制备方法 | |
WO2021054644A1 (ko) | 에어로겔 블랑켓 및 이의 제조방법 | |
CN205395314U (zh) | 一种喷压式气凝胶毡 | |
CN102942348A (zh) | 高密度玻璃纤维板及其制备方法 | |
WO2021045533A1 (ko) | 에어로겔 블랭킷 | |
WO2019098519A1 (ko) | 저분진 실리카 에어로겔 블랭킷 및 이의 제조방법 | |
WO2022080721A1 (ko) | 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷 | |
WO2021066492A1 (ko) | 에어로겔 블랭킷 | |
WO2021045356A1 (ko) | 에어로겔 블랭킷 제조장치 및 방법 | |
KR102201090B1 (ko) | 방열 및 단열 기능성을 갖는 복합시트 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17753406 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15755487 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018521037 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |