WO2019098519A1 - 저분진 실리카 에어로겔 블랭킷 및 이의 제조방법 - Google Patents

저분진 실리카 에어로겔 블랭킷 및 이의 제조방법 Download PDF

Info

Publication number
WO2019098519A1
WO2019098519A1 PCT/KR2018/011078 KR2018011078W WO2019098519A1 WO 2019098519 A1 WO2019098519 A1 WO 2019098519A1 KR 2018011078 W KR2018011078 W KR 2018011078W WO 2019098519 A1 WO2019098519 A1 WO 2019098519A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica sol
silica
airgel
blanket
layer
Prior art date
Application number
PCT/KR2018/011078
Other languages
English (en)
French (fr)
Inventor
오명은
이규련
이제균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP18877432.7A priority Critical patent/EP3712111A4/en
Priority to US16/762,675 priority patent/US11760646B2/en
Priority to JP2020523458A priority patent/JP7083022B2/ja
Priority to CN201880069619.4A priority patent/CN111278772B/zh
Publication of WO2019098519A1 publication Critical patent/WO2019098519A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/159Coating or hydrophobisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • C04B14/064Silica aerogel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00568Multiple coating with same or similar material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values

Definitions

  • the present invention relates to a low-dust silica airgel blanket and a method of making the same.
  • Aerogels are high-porosity materials composed of nanoparticles and have high porosity, specific surface area, and low thermal conductivity, and are attracting attention as high-efficiency heat insulating materials and soundproofing materials.
  • the aerogel blanket is flexible and can bend, fold or cut in any size or shape, and is easy to handle. It can be used as an insulation panel for LNG carriers, industrial insulation materials and space suits, industrial applications such as transportation and vehicles, But also in household goods such as jackets and athletic shoes.
  • the silica gel sol preparation step In order to improve the heat insulating performance and the fire prevention property of the airgel blanket, the silica gel sol preparation step, the gelation step, the aging step, the surface modification step and the drying step, In order to improve the flame retardant performance, additives such as metal hydroxides flame retardants were used.
  • the addition of the additive weakens the SiO 2 bond, thereby reducing the adhesion between the blanket substrate and the airgel, thereby increasing the generation of dust.
  • the aerogel blanket is applied to a pipe or the like, the airgel or the additive The problem of dust generation was further exacerbated.
  • the aerogel blanket has a problem in that a large amount of dust is generated at the time of construction, which causes a health problem of the operator and inconvenience in construction, and it is necessary to improve the ease of installation of the aerogel blanket by reducing the amount of dust generated.
  • Patent Document 1 US 8,021,583 B2 (September 20, 2011)
  • the present invention has been made to solve the problems of the prior art, and it is an object of the present invention to provide a silica airgel blanket capable of reducing dust generation and preventing deterioration of heat insulating performance and a manufacturing method thereof .
  • a method for producing a silica airgel blanket capable of producing a low-dust silica airgel blanket by separating and injecting silica sol so that the surface of the silica airgel blanket is not exposed to the opacifying agent.
  • the present invention relates to a method for preparing a blanket, comprising: 1) adding a base catalyst to a first silica sol to impregnate and gelate the blanket substrate; 2) adding a base catalyst to the second silica sol to spray and gel onto the blanket substrate impregnated with the first silica sol; And 3) spraying and gelling the third silica sol onto a blanket substrate onto which the second silica sol has been injected by adding a base catalyst to the third silica sol, wherein the second silica sol further comprises an opacifying agent And a manufacturing method thereof.
  • the second airgel layer is disposed between the first airgel layer and the third airgel layer, and the second airgel layer is opaque.
  • the second airgel layer is disposed between the first airgel layer and the third airgel layer.
  • the silica airgel blanket further comprises a topping agent.
  • a silica airgel blanket capable of reducing dust generation and preventing deterioration of heat insulating performance.
  • silica airgel blanket of the present invention When the silica airgel blanket of the present invention is used, there is an effect that ease of construction is improved by reducing the health problem and work inconvenience caused by dust generation.
  • the present invention generally relates to a silica airgel blanket capable of reducing dust generation and preventing deterioration of heat insulating performance by manufacturing an opacifying agent for shielding radiant heat which induces generation of a large amount of dust in such a manner that the opacifying agent is not exposed on the surface of the airgel blanket And a method for producing the same.
  • silica airgel blanket of the present invention and its production method will be described in detail.
  • an opacifying agent is used as an additive for shielding radiant conductivity, and since the opacifying agent is mixed with silica sol to gel, the additive is directly exposed on the surface of the airgel blanket, Therefore, a large amount of dust can not be generated when the blanket is applied.
  • Most of the dust generated in the airgel blanket is derived from an additive which is put into use for the opacifying agent rather than the crushed monolith. If the opacifying agent is not used or the amount of use is reduced to reduce the dust generation amount, it is difficult to shield the radiant heat, so that the thermal conductivity at high temperature increases, so that the thermal insulation performance of the silica airgel blanket may be poor.
  • the present invention seeks to reduce the amount of dust generated in the blanket by reducing the amount of opacifying agent exposed on the surface of the aerogel blanket while maintaining the amount of opacifying agent used.
  • the opacifying agent is mixed with silica sol and gelled, the opacifying agent is directly exposed on the surface of the blanket, resulting in a problem that the amount of dust generation is large.
  • the present invention is characterized in that the opacifying agent is separately added to the silica sol to prevent the opacifying agent from being exposed on the surface of the blanket.
  • the method for producing a silica airgel blanket of the present invention comprises the steps of: 1) adding a base catalyst to a first silica sol to impregnate and gel the blanket substrate; 2) adding a base catalyst to the second silica sol to spray and gel onto the blanket substrate impregnated with the first silica sol; And 3) spraying and gelling the third silica sol onto a blanket substrate onto which the second silica sol is injected by adding a base catalyst to the third silica sol, wherein the second silica sol further comprises an opacifying agent, Wherein the first silica sol and the third silica sol do not further comprise an opacifying agent.
  • the fact that the first silica sol and the third silica sol do not further contain an opacifying agent means that the first silica sol and the third silica sol are composed only of the silica precursor and ethanol without the opacifying agent.
  • the first silica sol and the third silica sol means silica sol which is impregnated or sprayed on both surfaces or surfaces of a silica airgel blanket to be exposed on the surface of the blanket and the second silica sol is impregnated into the intermediate layer of the silica airgel blanket, Means a silica sol which is not exposed to the surface.
  • the opacifying agent is not contained on both surfaces or the surface of the silica airgel blanket, and the opaqueizing agent is contained only in the middle layer so that the silica airgel blanket Can be prepared.
  • the second silica sol can be sprayed after the first silica sol is impregnated and gelled.
  • the first silica sol is injected after being gelled, it is more effective to prevent the opacifying agent contained in the second silica sol from penetrating into the bottom of the blanket substrate and being exposed to the surface.
  • the third silica sol may be sprayed before the second silica sol is gelled. If the third silica sol is jetted after the second silica sol has been gelled, the third silica sol can not be impregnated into the blanket substrate and can be gelled without a blanket substrate on the blanket surface, in which case the third silica sol is gelled The durability of the part is lowered, and dust generation may increase somewhat.
  • the opacifier used in the present invention may be at least one selected from the group consisting of TiO 2 , alumina, zirconia (ZrO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), iron oxide and carbon black.
  • the opacifying agent may be added in an amount of 1 to 30 wt%, more specifically 2.5 to 7.5 wt%, based on the weight of silica contained in the entire silica sol.
  • the total silica sol means the sum of the first silica sol, the second silica sol and the third silica sol. This is because, when added in the above range, the radiation heat shielding effect is excellent.
  • the thermal insulation performance of the silica airgel blanket at a high temperature may not be excellent. If the amount exceeds the above range, the room temperature thermal conductivity may increase.
  • the volume ratio of the first silica sol, the second silica sol, and the third silica sol is 10 to 40 vol%: 20 to 80 vol%: 10 to 20 vol% relative to the total silica sol containing the first to third silica sols 40 vol%.
  • the second silica sol containing the opacifying agent tends to be exposed on the surface of the blanket, so that it is difficult to expect a dust reduction effect.
  • the amount of the second silica sol dispersed therein is relatively insufficient and the opacifying agent may not be uniformly dispersed in the glass fiber.
  • the present invention can provide a silica airgel blanket produced by the above-described method for producing a silica airgel blanket.
  • the silica airgel blanket of the present invention comprises a first airgel layer, a second airgel layer and a third airgel layer, and the second airgel layer is interposed between the first airgel layer and the third airgel layer, 2 airgel layer further comprises an opacifying agent, but the first aerogel layer and the third aerogel layer may not further comprise an opacifying agent.
  • the first aerogel layer and the third aerogel layer are manufactured from a silica precursor and ethanol alone, without the opacifying agent, in the production of the first aerogel layer and the third aerogel layer.
  • the weight ratio of silica contained in the first airgel layer, the second airgel layer and the third airgel layer is preferably 10 to 40 wt.% Based on the weight of silica contained in the entire airgel layer including the first airgel layer to the third airgel layer %: 20 to 80% by weight: 10 to 40% by weight.
  • the second airgel layer containing the opacifying agent tends to be exposed on the surface of the blanket, so that it is difficult to expect a dust reduction effect.
  • the amount of silica in the second aerogel layer in which the opacifying agent is dispersed is relatively insufficient, so that the opacifying agent may not be uniformly dispersed in the glass fiber.
  • the opacifying agent of the present invention may be from 1 to 30 wt%, more specifically from 2.5 to 7.5 wt%, based on the weight of silica contained in the total aerogel layer. This is because, when added in the above range, the radiation heat shielding effect is excellent.
  • the thicknesses of the first airgel layer, the second airgel layer and the third airgel layer may be 1 to 4 mm: 2 to 8 mm: 1 to 4 mm.
  • the opacifying agent may be located near the surface of the blanket so that the dust reduction effect may not be excellent.
  • the thickness is thicker than the above range, There is a problem that the airgel layer is not uniformly dispersed.
  • the silica airgel blanket of the present invention can have a weight reduction rate of 0.5% or less, more specifically 0.4% or less at a vibration condition of 18 Hz / 6 hrs. As a result, dust generation is reduced and health problems and work inconvenience The ease of construction can be improved.
  • the present invention also provides an insulating material comprising the silica airgel blanket, wherein the surface of the silica airgel blanket further comprises a layer impermeable to water and permeable to water vapor. If the additional layer formed on the surface of the silica airgel blanket is impermeable to water, it is possible to prevent water from penetrating into the equipment or equipment to which the insulating material is applied, thereby preventing corrosion due to water. In case of permeability to water vapor, It is possible to prevent water vapor from condensing in the inside of the apparatus or apparatus, thereby preventing corrosion due to water vapor.
  • the layer that is impermeable to water and permeable to water vapor may be a cellulosic material.
  • the pre-hydrated TEOS and ethanol were mixed at a weight ratio of 3: 1 to prepare 2040 ml of silica sol (silica content in silica sol of 4 wt%).
  • Ammonia catalyst 0.5 vol% was added to 30 vol% of the silica sol, and the glass fiber thus prepared was impregnated and gelled with glass fibers prepared after the start of the gelling reaction.
  • the silica wet gel composite was allowed to stand in an ethanol solution at a temperature of 50 DEG C for 1 hour to aged, and a surface modifier solution (HMDS 7 vol%) prepared by mixing hexamethyldisilazane (HMDS) and ethanol was added to a wet gel Was added at 90 vol% and the surface was modified at 70 ⁇ for 4 hours to prepare a hydrophobic silica wet gel composite.
  • HMDS 7 vol% prepared by mixing hexamethyldisilazane (HMDS) and ethanol was added to a wet gel Was added at 90 vol% and the surface was modified at 70 ⁇ for 4 hours to prepare a hydrophobic silica wet gel composite.
  • the hydrophobic silica wet gel composite was placed in a 7.2 L supercritical water extractor and CO 2 was injected. The temperature in the extractor was then raised to 60 DEG C over 1 hour and supercritical drying was performed at 50 DEG C and 100 bar to produce a silica airgel blanket.
  • a silica airgel blanket was produced in the same manner as in Example 1 except that the proportion of silica sol impregnated or sprayed into the glass fiber in 1), 2) and 3) of Example 1 was changed as shown in Table 1 below Respectively.
  • the pre-hydrated TEOS and ethanol were mixed in a weight ratio of 3: 1 to prepare 2040 ml of silica sol (silica content in silica sol of 4 wt%), to which was added an opacifying agent TiO 2 4 g was dispersed.
  • the aging, surface modification and supercritical drying process of the silica wet gel composite were carried out in the same manner as in Example 1 to prepare a silica airgel blanket.
  • Weight Reduction Rate [(Initial Silica Aerogel Blanket Weight - Silica Aerogel Blanket Weight After Vibration Test) / (Initial Silica Aerogel Blanket Weight)] x 100
  • silica airgel blanks prepared in the above Examples and Comparative Examples were measured for room temperature thermal conductivity using HFM 436 equipment of NETZSCH Co. The results are shown in Table 1 below.
  • the room temperature thermal conductivity of the silica airgel blanket of the Example was equivalent to that of Comparative Example. It was thus found that the silica airgel blanket of the present invention can secure low dust characteristics without deteriorating the heat insulating performance at room temperature.
  • the addition of the opacifying agent shields the radiant heat so as to improve the heat insulation performance at the time of high temperature exposure. Therefore, in this experiment on the method of injecting the opacifying agent, it is necessary to confirm whether the heat insulation performance at a high temperature is maintained. To this end, the back surface temperature of the sample adhered to the hot plate was measured (all sides of the plate / . On the other hand, the better the insulation performance, the lower the backside temperature.
  • the temperature of the silica airgel blanket of the example was the same as that of the comparative example.
  • the silica airgel blanket of the present invention can ensure low dust characteristics without deteriorating the heat insulating performance at high temperatures. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Civil Engineering (AREA)
  • Silicon Compounds (AREA)
  • Thermal Insulation (AREA)

Abstract

본 발명은 분진 발생을 저감할 수 있는 동시에 단열 성능의 저하를 방지할 수 있는 실리카 에어로겔 블랭킷 및 이의 제조방법에 관한 것으로서, 구체적으로 실리카 에어로겔 블랭킷의 표면에 불투명화제가 노출되지 않도록 실리카 졸을 분리 투입함으로써, 저분진의 실리카 에어로겔 블랭킷을 제조할 수 있는 실리카 에어로겔 블랭킷 제조방법을 제공한다.

Description

저분진 실리카 에어로겔 블랭킷 및 이의 제조방법
관련출원과의 상호인용
본 출원은 2017년 11월 16일자 한국 특허 출원 제10-2017-0153280호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 저분진 실리카 에어로겔 블랭킷 및 이의 제조방법에 관한 것이다.
에어로겔(aerogel)은 나노입자로 구성된 고다공성 물질로서, 높은 기공률과 비표면적, 그리고 낮은 열전도도를 가져 고효율의 단열재, 방음재 등의 용도로 주목 받고 있다.
한편, 이러한 에어로겔은 다공성 구조로 인해 매우 낮은 기계적 강도를 갖기 때문에 기존의 단열섬유인 무기섬유 또는 유기섬유 등의 섬유상 블랭킷에 에어로겔을 함침하여 결합시킨 에어로겔 복합체가 개발되고 있다.
에어로겔 블랭킷은 유연성(flexibility)을 가지고 있어 임의의 크기나 형태로 굽히거나, 접거나 자를 수 있고, 다루기가 용이하여 LNG 선의 단열패널, 공업용 단열재와 우주복, 교통 및 차량, 전력생산용 단열재 등과 같은 공업용으로의 응용뿐 아니라 재킷이나 운동화류 등과 같은 생활용품에도 이용되고 있다.
에어로겔은 일반적으로 실리카 졸을 제조 단계, 겔화 단계, 숙성(에이징) 단계, 표면개질 단계 및 건조 단계를 통해 제조되는데, 상기 에어로겔 블랭킷의 단열 성능 및 화재 예방 특성을 개선시키기 위해, 상기 실리카 졸 제조 단계에서 복사열 차폐를 위한 불투명화제 또는 난연 성능 개선을 위하여 Metal Hydroxide계열의 난연제 등의 첨가제를 사용하였다.
그러나, 상기 첨가제에 의해 SiO2 결합이 약화되어 블랭킷 기재와 에어로겔 간의 부착력이 감소되어 분진(Dust) 발생이 증가하였으며, 에어로겔 블랭킷이 배관 등에 시공되었을 경우, 배관의 Vibration에 의해 에어로겔 또는 첨가제가 블랭킷 기재에서 지속적으로 분리되어 분진 발생 문제는 더 악화되었다.
이를 개선하기 위하여 US 8,021,583 B2 는 에어로겔 과립 또는 분말을 제조하여 슬러리 형태로 섬유 사이에 충진하여 분진(Dust) 발생을 줄이고자 하였으나, 겔 캐스팅 방법에 비해 바인더 등에 의해 열전도도가 상승하는 문제점이 수반되었다.
상기와 같이 에어로겔 블랭킷은 시공 시 다량의 분진이 발생하여 작업자의 건강 상의 문제 및 시공 상의 불편함을 초래하는 문제점이 있는 바, 분진 발생량을 감축시킴으로써, 에어로겔 블랭킷의 시공 용이성을 개선시킬 필요가 있다.
[선행기술문헌]
(특허문헌 1) US 8,021,583 B2 (2011.09.20)
본 발명은 상기 종래 기술의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 해결하고자 하는 과제는 분진 발생을 저감할 수 있는 동시에 단열 성능의 저하를 방지할 수 있는 실리카 에어로겔 블랭킷 및 이의 제조방법을 제공하는 것이다.
구체적으로 실리카 에어로겔 블랭킷의 표면에 불투명화제가 노출되지 않도록 실리카 졸을 분리 투입함으로써, 저분진의 실리카 에어로겔 블랭킷을 제조할 수 있는 실리카 에어로겔 블랭킷 제조방법을 제공한다.
본 발명은 1) 제1 실리카 졸에 염기 촉매 첨가하여 블랭킷 기재에 함침 및 겔화시키는 단계; 2) 제2 실리카 졸에 염기 촉매 첨가하여 상기 제1 실리카 졸이 함침된 블랭킷 기재 상에 분사 및 겔화시키는 단계; 및 3) 제3 실리카 졸에 염기 촉매 첨가하여 상기 제2 실리카 졸이 분사된 블랭킷 기재 상에 분사 및 겔화시키는 단계를 포함하고, 상기 제2 실리카 졸은 불투명화제를 더 포함하는 것인 실리카 에어로겔 블랭킷 제조방법을 제공한다.
또한, 본 발명은 제1 에어로겔 층, 제2 에어로겔 층 및 제3 에어로겔 층을 포함하고, 상기 제2 에어로겔 층은 제1 에어로겔 층 및 제3 에어로겔 층 사이에 개재되며, 상기 제2 에어로겔 층은 불투명화제를 더 포함하는 것인 실리카 에어로겔 블랭킷을 제공한다.
본 발명에 의하면 분진 발생을 저감할 수 있는 동시에 단열 성능의 저하를 방지할 수 있는 실리카 에어로겔 블랭킷을 제조할 수 있다.
본 발명의 상기 실리카 에어로겔 블랭킷을 사용하는 경우 분진 발생에 의한 작업자의 건강 상의 문제 및 시공 상의 불편함이 줄어 시공 용이성이 개선되는 효과가 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 일반적으로 다량의 분진 발생을 유도하는 복사열 차폐를 위한 불투명화제가 에어로겔 블랭킷의 표면에 드러나지 않도록 제조함으로써, 분진 발생을 저감할 수 있는 동시에 단열 성능의 저하를 방지할 수 있는 실리카 에어로겔 블랭킷 및 이의 제조방법을 제공하는 것을 목적으로 한다.
이하, 상기 본 발명의 실리카 에어로겔 블랭킷 및 이의 제조방법을 상세히 설명하기로 한다.
일반적으로 에어로겔 블랭킷 제조 공정에서는 복사열(Radiative conductivity) 차폐를 위한 첨가제로서 불투명화제를 사용하고, 상기 불투명화제를 실리카 졸에 혼합하여 겔화시키기 때문에, 에어로겔 블랭킷의 표면에 상기 첨가제가 그대로 노출되게 되어, 이로 인해 블랭킷 시공 시 다량의 분진이 발생할 수 밖에 없다.
상기 에어로겔 블랭킷에서 발생하는 분진은 부스러진 모노리스보다는 불투명화제의 용도로 투입되는 첨가제에서 유래하는 것이 대부분이다. 분진 발생량을 줄이고자 상기 불투명화제를 사용하지 않거나 사용량을 감소시키는 경우에는 복사열 차폐가 어려워 고온에서의 열전도도가 증가해 실리카 에어로겔 블랭킷의 단열 성능이 좋지 않은 문제가 생길 수 있다.
그렇기 때문에 본 발명은 불투명화제의 사용량은 유지하면서, 에어로겔 블랭킷 표면에 노출되는 불투명화제의 함량을 줄이면 블랭킷에서 발생하는 분진을 줄이고자 한다.
구체적으로, 종래에는 상기 불투명화제를 실리카 졸에 혼합하여 겔화시켰기 때문에, 블랭킷 표면에 상기 불투명화제가 그대로 노출되어 분진 발생량이 큰 문제가 있었다.
이에 본 발명은 상기 문제를 해결하고자 불투명화제가 블랭킷 표면에 노출되지 않도록 하기 위하여 실리카 졸에 불투명화제를 분리 투입하는 것을 특징으로 한다.
구체적으로 본 발명의 실리카 에어로겔 블랭킷 제조방법은, 1) 제1 실리카 졸에 염기 촉매 첨가하여 블랭킷 기재에 함침 및 겔화시키는 단계; 2) 제2 실리카 졸에 염기 촉매 첨가하여 상기 제1 실리카 졸이 함침된 블랭킷 기재 상에 분사 및 겔화시키는 단계; 및 3) 제3 실리카 졸에 염기 촉매 첨가하여 상기 제2 실리카 졸이 분사된 블랭킷 기재 상에 분사 및 겔화시키는 단계를 포함하고, 상기 제2 실리카 졸은 불투명화제를 더 포함하는 것을 특징으로 하며, 상기 제1 실리카 졸 및 제3 실리카 졸은 불투명화제를 더 포함하지 않는 것을 특징으로 한다.
상기 제1 실리카 졸 및 제3 실리카 졸이 불투명화제를 더 포함하지 않는다는 것은 달리 말하면, 제1 실리카 졸 및 제3 실리카 졸은 불투명화제 없이 실리카 전구체 및 에탄올만으로 구성되어 있다는 것을 의미한다.
상기 제1 실리카 졸 및 제3 실리카 졸은 실리카 에어로겔 블랭킷의 양면 또는 표면에 함침 또는 분사되어 블랭킷 표면에 노출되는 실리카 졸을 의미하며, 상기 제2 실리카 졸은 실리카 에어로겔 블랭킷의 중간층에 함침되어, 블랭킷 표면에 노출되지 않는 실리카 졸을 의미한다.
상기와 같은 본 발명의 제조방법으로 실리카 에어로겔 블랭킷을 제조하는 경우, 실리카 에어로겔 블랭킷의 양면 또는 표면에는 불투명화제가 포함되지 않고, 중간층에만 불투명화제가 포함되어 단열 성능은 유지하면서도 저분진의 실리카 에어로겔 블랭킷을 제조할 수 있다.
한편, 상기 제2 실리카 졸은 제1 실리카 졸이 함침 및 겔화 완료된 후에 분사할 수 있다. 제1 실리카 졸이 겔화 완료된 후 분사하는 경우 제2 실리카 졸에 포함된 불투명화제가 블랭킷 기재 바닥으로 스며들어 표면에 노출되는 것을 방지하는데 더 효과적이다.
또한, 상기 제3 실리카 졸은 제2 실리카 졸이 겔화 완료되기 전에 분사할 수 있다. 제2 실리카 졸이 겔화 완료된 이후 제3 실리카 졸을 분사하는 경우, 제3 실리카 졸이 블랭킷 기재에 함침되지 못하고, 블랭킷 표면 상에서 블랭킷 기재 없이 겔화될 수 있으며, 이 경우 상기 제3 실리카 졸이 겔화된 부분의 내구성이 떨어지고, 분진 발생이 다소 증가할 수 있기 때문이다.
한편, 본 발명에서 사용하는 불투명화제는 TiO2, 알루미나, 지르코니아(ZrO2), 산화아연(ZnO), 산화주석(SnO2), 산화철 및 카본블랙으로 이루어진 군에서 선택되는 1종 이상일 수 있다.
또한, 상기 불투명화제는 전체 실리카 졸에 포함된 실리카 중량 대비 1 내지 30 wt%, 보다 구체적으로는 2.5 내지 7.5 wt% 를 첨가할 수 있다. 전체 실리카 졸이란 제1 실리카 졸, 제2 실리카 졸 및 제3 실리카 졸의 합을 의미한다. 상기 범위만큼 첨가한 경우, 복사열 차폐 효과가 우수하기 때문이다.
상기 범위보다 소량 첨가된 경우에는, 실리카 에어로겔 블랭킷의 고온에서의 단열 성능이 우수하지 않을 수 있으며, 상기 범위보다 과량 첨가된 경우에는, 상온 열전도도가 상승하는 문제가 있을 수 있다.
한편, 상기 제1 실리카 졸, 제2 실리카 졸 및 제3 실리카 졸의 부피비는 제1 실리카 졸 내지 제3 실리카 졸을 포함하는 전체 실리카 졸 대비 10 내지 40 vol% : 20 내지 80 vol% : 10 내지 40 vol% 일 수 있다.
제1 실리카 졸 및 제3 실리카 졸이 상기 범위보다 적은 경우에는, 불투명화제가 포함된 제2 실리카 졸이 블랭킷의 표면에 노출되기 쉬워 분진 감소 효과를 기대하기 어려우며, 상기 범위보다 많은 경우에는 불투명화제가 분산되어 있는 제2 실리카 졸의 양이 상대적으로 충분하지 못해 불투명화제가 유리 섬유에 고르게 분산되지 못하는 문제가 있을 수 있다.
또한, 본 발명은 상기 실리카 에어로겔 블랭킷 제조방법에 의해 제조된 실리카 에어로겔 블랭킷을 제공할 수 있다.
구체적으로, 본 발명의 실리카 에어로겔 블랭킷은 제1 에어로겔 층, 제2 에어로겔 층 및 제3 에어로겔 층을 포함하고, 상기 제2 에어로겔 층은 제1 에어로겔 층 및 제3 에어로겔 층 사이에 개재되며, 상기 제2 에어로겔 층은 불투명화제를 더 포함하지만, 상기 제1 에어로겔 층 및 제3 에어로겔 층은 불투명화제를 더 포함하지 않는 것일 수 있다.
상기 제1 에어로겔 층 및 제3 에어로겔 층이 불투명화제를 더 포함하지 않는다는 것은 달리 말하면, 제1 에어로겔 층 및 제3 에어로겔 층은 그 제조 시 불투명화제 없이 실리카 전구체 및 에탄올만으로 제조된다는 것을 의미한다.
상기 제1 에어로겔 층 및 제3 에어로겔 층은 실리카 에어로겔 블랭킷의 양면 또는 표면에 위치하는 층을 의미하며, 상기 제2 에어로겔 층은 제1 에어로겔 층 및 제3 에어로겔 층 사이에 개재된 층으로서, 블랭킷 표면에 노출되지 않는 실리카 에어로겔 블랭킷의 중간층을 의미할 수 있다.
한편, 상기 제1 에어로겔 층, 제2 에어로겔 층 및 제3 에어로겔 층에 포함된 실리카의 중량비는 제1 에어로겔 층 내지 제3 에어로겔 층을 포함하는 전체 에어로겔 층에 포함된 실리카의 중량 대비 10 내지 40 중량% : 20 내지 80 중량% : 10 내지 40 중량% 일 수 있다.
제1 에어로겔 층 및 제3 에어로겔 층에 포함된 실리카의 함량이 상기 범위보다 적은 경우에는, 불투명화제가 포함된 제2 에어로겔 층이 블랭킷의 표면에 노출되기 쉬워 분진 감소 효과를 기대하기 어려우며, 상기 범위보다 많은 경우에는 불투명화제가 분산되어 있는 제2 에어로겔 층의 실리카의 양이 상대적으로 충분하지 못해 불투명화제가 유리 섬유에 고르게 분산되지 못하는 문제가 있을 수 있다.
본 발명의 상기 불투명화제는 전체 에어로겔 층에 포함된 실리카 중량 대비 1 내지 30 wt%, 보다 구체적으로는 2.5 내지 7.5 wt% 일 수 있다. 상기 범위만큼 첨가한 경우, 복사열 차폐 효과가 우수하기 때문이다.
또한, 본 발명의 실리카 에어로겔 블랭킷은 상기 제1 에어로겔 층, 제2 에어로겔 층 및 제3 에어로겔 층의 두께는 1 내지 4 mm : 2 내지 8 mm : 1 내지 4 mm 일 수 있다.
상기 제1 에어로겔 층 및 제3 에어로겔 층의 두께가 상기 범위보다 얇은 경우에는, 불투명화제가 블랭킷 표면 가까이 위치하게 되어 분진 저감 효과가 우수하지 않을 수 있으며, 상기 범위보다 두꺼운 경우에는 불투명화제가 제2 에어로겔 층에 골고루 분산되지 못하는 문제가 있을 수 있다.
본 발명의 실리카 에어로겔 블랭킷은 18 Hz/6 hrs 의 진동 조건에서 무게 감소율이 0.5 % 이하, 더 구체적으로는 0.4 % 이하일 수 있는 바, 분진 발생이 감소되어 작업자의 건강 상의 문제 및 시공 상의 불편함이 줄어 시공 용이성이 개선될 수 있다.
또한, 본 발명은 상기 실리카 에어로겔 블랭킷을 포함하고, 상기 실리카 에어로겔 블랭킷 표면에 물에 대해 불투과성이고, 수증기에 대해 투과성인 층을 더 포함하는 절연재를 제공할 수 있다. 상기 실리카 에어로겔 블랭킷 표면에 형성된 상기 추가의 층이 물에 대해 불투과성인 경우 절연재가 적용된 설비 또는 기기에 물이 침투하는 것을 방지하여 물로 인한 부식을 방지할 수 있으며, 수증기에 대해 투과성인 경우, 절연재가 적용된 설비 또는 기기에서 수증기를 밖으로 투과시켜 내부에서 수증기가 응결되는 것을 방지하여 수증기로 인한 부식을 방지할 수 있다.
보다 구체적으로, 상기 물에 대해 불투과성이고, 수증기에 대해 투과성인 층은 셀룰로오스 물질일 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예 1
미리 수화시킨 TEOS와 에탄올을 3:1의 중량비로 혼합하여 실리카 졸(실리카 졸 내 실리카 함량 4 중량%) 2040 ml를 제조하였다.
1) 상기 실리카 졸의 30 vol%에 암모니아 촉매 0.5 vol%를 첨가하여 겔화 반응 개시 후 준비된 유리 섬유에 함침 및 겔화시켰다.
2) 상기 겔화 완료 후, 상기 실리카 졸의 40 vol%에 불투명화제 TiO2 4 g 을 분산시킨 후 암모니아 촉매 0.5 vol% 를 첨가하여 겔화 반응 개시 후 상기 유리 섬유에 분사하여 겔화시켰다.
3) 상기 겔화가 완료되기 전, 남은 상기 실리카 졸의 30 vol%에 암모니아 촉매 0.5 vol%를 첨가하여 겔화 반응 개시 후 상기 유리 섬유에 분사하여 겔화시켜 실리카 습윤겔 복합체를 제조하였다.
상기 실리카 습윤겔 복합체를 에탄올 용액 중에 50 ℃의 온도에서 1 시간 동안 방치하여 숙성시키고, 헥사메틸디실라잔(HMDS)과 에탄올을 혼합하여 제조한 표면개질제 용액(HMDS 7 vol%)을 습윤겔에 대하여 90 vol%로 첨가하고 70 ℃ 에서 4 시간 동안 표면개질시켜 소수성의 실리카 습윤겔 복합체를 제조하였다. 상기 소수성 실리카 습윤겔 복합체를 7.2 L 초임계 추출기(extractor)에 넣고 CO2 를 주입하였다. 이후 추출기 내의 온도를 1 시간에 걸쳐 60 ℃로 승온하고, 50 ℃, 100 bar 에서 초임계 건조시켜 실리카 에어로겔 블랭킷을 제조하였다.
실시예 2 및 3
상기 실시예 1의 1), 2) 및 3)에서 유리 섬유에 함침 또는 분사하는 실리카 졸의 비율을 하기 표 1에 기재된 바와 같게한 것을 제외하고는 실시예 1과 동일한 방법으로 실리카 에어로겔 블랭킷을 제조하였다.
비교예 1
미리 수화시킨 TEOS와 에탄올을 3:1의 중량비로 혼합하여 실리카 졸(실리카 졸 내 실리카 함량 4 중량%) 2040 ml를 제조하고, 여기에 불투명화제 TiO2 4 g 을 분산시켰다.
이후 암모니아 촉매 0.5 vol% 를 첨가하여 겔화 반응 개시 후 유리 섬유 위에 분사하여 실리카 습윤겔 복합체를 제조하였다.
상기 실리카 습윤겔 복합체의 숙성, 표면개질 및 초임계 건조 공정은 실시예 1과 동일한 방법으로 수행하여 실리카 에어로겔 블랭킷을 제조하였다.
1), 2) 및 3)에서 첨가한 실리카 졸의 부피비(vol%) 무게 감소율(%) 상온 열전도도(㎽/mK, 25 ℃) 고온(600 ℃, 6hrs) 이면온도(℃)
실시예 1 30:40:30 0.3 18.79 181.9
실시예 2 10:80:10 0.4 18.80 182.0
실시예 3 40:20:40 0.3 18.69 181.8
비교예 1 - 1.2 18.72 182.4
실험예 1: 분진 발생량 측정
상기 실시예 및 비교예에서 제조한 각 실리카 에어로겔 블랭킷을 12 cm x 12 cm 가 되도록 절단하여 샘플을 제조한 뒤, 진동 조건을 18 Hz/6 hrs 로 하여 진동에 의한 무게 감소율을 측정하여 그 결과를 하기 표 1에 나타내었다.
* 무게 감소율(%) = [(최초 실리카 에어로겔 블랭킷 무게 - 진동 실험 후 실리카 에어로겔 블랭킷 무게)/(최초 실리카 에어로겔 블랭킷 무게)] x 100
표 1에서 보는 바와 같이, 실시예의 무게 감소율이 비교예 대비 현저히 감소된 것을 확인할 수 있었다. 이를 통해 실시예의 실리카 에어로겔 블랭킷의 분진 발생량이 비교예 대비 현저히 적음을 알 수 있고, 이는 실리카 에어로겔 블랭킷 표면에 불투명화제가 노출되지 않은 것에 의한 것임을 예상할 수 있었다.
실험예 2: 열전도도 측정
상기 실시예 및 비교예에서 제조한 각 실리카 에어로겔 블랭킷을 NETZSCH社의 HFM 436장비를 이용하여 상온 열전도도를 측정하여 그 결과를 하기 표 1에 나타내었다.
표 1에서 보는 바와 같이, 실시예의 실리카 에어로겔 블랭킷의 상온 열전도도는 비교예와 동등 수준임을 확인할 수 있었다. 이를 통해 본 발명의 실리카 에어로겔 블랭킷은 상온에서의 단열 성능의 저하 없이 저분진 특성을 확보할 수 있음을 알 수 있었다.
실험예 3: 고온 이면온도 측정
상기 실시예 및 비교예에서 제조한 각 실리카 에어로겔 블랭킷을 12 cm x 12 cm 가 되도록 절단하여 제조한 샘플을 6 시간 동안 600 ℃의 SiC 플레이트와 밀착시킨 후, 이면온도를 측정하여 그 결과를 표 1에 나타내었다.
불투명화제의 투입은 복사열을 차폐하여, 고온 노출 시의 단열 성능을 높이기 위함이다. 따라서, 불투명화제의 투입 방법에 관한 본 실험에서는 고온에서의 단열 성능이 유지되는지 확인해야 하며, 이를 위해 고온 플레이트에 밀착된 샘플의 이면온도를 측정하였다(plate/샘플의 모든 옆면은 단열된 상태). 한편, 단열 성능이 우수할수록 이면 온도는 낮다.
표 1에서 보는 바와 같이, 실시예의 실리카 에어로겔 블랭킷의 고온 이면온도는 비교예와 동등 수준임을 확인할 수 있었는 바, 이를 통해 본 발명의 실리카 에어로겔 블랭킷은 고온에서 단열 성능의 저하 없이 저분진 특성을 확보할 수 있음을 알 수 있었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (13)

1) 제1 실리카 졸에 염기 촉매 첨가하여 블랭킷 기재에 함침 및 겔화시키는 단계;
2) 제2 실리카 졸에 염기 촉매 첨가하여 상기 제1 실리카 졸이 함침된 블랭킷 기재 상에 분사 및 겔화시키는 단계; 및
3) 제3 실리카 졸에 염기 촉매 첨가하여 상기 제2 실리카 졸이 분사된 블랭킷 기재 상에 분사 및 겔화시키는 단계를 포함하고,
상기 제2 실리카 졸은 불투명화제를 더 포함하는 것인 실리카 에어로겔 블랭킷 제조방법.
제1항에 있어서,
상기 제1 실리카 졸 및 제3 실리카 졸은 불투명화제를 더 포함하지 않는 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
제1항에 있어서,
상기 제1 실리카 졸, 제2 실리카 졸 및 제3 실리카 졸의 부피비는 10 내지 40 vol% : 20 내지 80 vol% : 10 내지 40 vol% 인 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
제1항에 있어서,
상기 불투명화제는 전체 실리카 졸에 포함된 실리카 중량 대비 1 내지 30 wt% 인 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
제1항에 있어서,
상기 제2 실리카 졸은 제1 실리카 졸이 겔화 완료된 이후 분사되고,
상기 제3 실리카 졸은 제2 실리카 졸이 겔화 완료되기 전에 분사되는 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
제1항에 있어서,
상기 불투명화제는 TiO2, 알루미나, 지르코니아(ZrO2), 산화아연(ZnO), 산화주석(SnO2), 산화철 및 카본블랙으로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 실리카 에어로겔 블랭킷 제조방법.
제1 에어로겔 층, 제2 에어로겔 층 및 제3 에어로겔 층을 포함하고,
상기 제2 에어로겔 층은 제1 에어로겔 층 및 제3 에어로겔 층 사이에 개재되며,
상기 제2 에어로겔 층은 불투명화제를 더 포함하는 것인 실리카 에어로겔 블랭킷.
제7항에 있어서,
상기 제1 에어로겔 층 및 제3 에어로겔 층은 불투명화제를 더 포함하지 않는 것을 특징으로 하는 실리카 에어로겔 블랭킷.
제7항에 있어서,
상기 제1 에어로겔 층, 제2 에어로겔 층 및 제3 에어로겔 층에 포함된 실리카의 중량비는 10 내지 40 wt% : 20 내지 80 wt% : 10 내지 40 wt% 인 것을 특징으로 하는 실리카 에어로겔 블랭킷.
제7항에 있어서,
상기 불투명화제는 전체 실리카 졸에 포함된 실리카 중량 대비 1 내지 30 wt% 인 것을 특징으로 하는 실리카 에어로겔 블랭킷.
제7항에 있어서,
상기 제1 에어로겔 층, 제2 에어로겔 층 및 제3 에어로겔 층의 두께는 1 내지 4 mm : 2 내지 8 mm : 1 내지 4 mm 인 것을 특징으로 하는 실리카 에어로겔 블랭킷.
제7항에 있어서,
상기 실리카 에어로겔 블랭킷은 18 Hz/6 hrs 의 진동 조건에서 무게 감소율이 0.5 % 이하인 것을 특징으로 하는 실리카 에어로겔 블랭킷.
제7항 내지 제12항 중 어느 한 항의 실리카 에어로겔 블랭킷을 포함하고,
상기 실리카 에어로겔 블랭킷 표면에 물에 대해 불투과성이고, 수증기에 대해 투과성인 층을 더 포함하는 절연재.
PCT/KR2018/011078 2017-11-16 2018-09-19 저분진 실리카 에어로겔 블랭킷 및 이의 제조방법 WO2019098519A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18877432.7A EP3712111A4 (en) 2017-11-16 2018-09-19 LOW-DUST SILICA AERO-DUST CLOTH AND PROCESS FOR ITS MANUFACTURING
US16/762,675 US11760646B2 (en) 2017-11-16 2018-09-19 Low-dust silica aerogel blanket and method for manufacturing same
JP2020523458A JP7083022B2 (ja) 2017-11-16 2018-09-19 低粉塵のシリカエアロゲルブランケット及びその製造方法
CN201880069619.4A CN111278772B (zh) 2017-11-16 2018-09-19 低粉尘二氧化硅气凝胶毡及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0153280 2017-11-16
KR1020170153280A KR102193438B1 (ko) 2017-11-16 2017-11-16 저분진 실리카 에어로겔 블랭킷 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2019098519A1 true WO2019098519A1 (ko) 2019-05-23

Family

ID=66539035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011078 WO2019098519A1 (ko) 2017-11-16 2018-09-19 저분진 실리카 에어로겔 블랭킷 및 이의 제조방법

Country Status (6)

Country Link
US (1) US11760646B2 (ko)
EP (1) EP3712111A4 (ko)
JP (1) JP7083022B2 (ko)
KR (1) KR102193438B1 (ko)
CN (1) CN111278772B (ko)
WO (1) WO2019098519A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026803A4 (en) * 2019-09-03 2022-10-26 LG Chem, Ltd. AIRGEL LAYER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114459305A (zh) * 2022-03-02 2022-05-10 内蒙古工业大学 一种露天煤矿台阶爆破防尘减尘方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090078357A (ko) * 2006-10-25 2009-07-17 한국생산기술연구원 에어로겔 시트 및 그 제조방법
JP2011162902A (ja) * 2010-02-08 2011-08-25 Nichias Corp 断熱材及びその製造方法
US8021583B2 (en) 2004-12-15 2011-09-20 Cabot Corporation Aerogel containing blanket
KR20150122196A (ko) * 2013-03-15 2015-10-30 캐보트 코포레이션 에어로겔 블랭킷 및 그의 제조 방법
KR101599625B1 (ko) * 2014-08-25 2016-03-04 김현철 연속성형 에어로젤판넬 및 그 제조방법과 제조장치 및 에어로젤슬러리조성물
KR20170015288A (ko) * 2015-03-30 2017-02-08 파나소닉 아이피 매니지먼트 가부시키가이샤 단열 시트와 그것을 이용한 전자기기, 및 단열 시트의 제조 방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833916B2 (en) 2004-06-29 2010-11-16 Aspen Aerogels, Inc. Energy efficient and insulated building envelopes
CN100398492C (zh) 2005-08-01 2008-07-02 中国人民解放军国防科学技术大学 一种气凝胶绝热复合材料及其制备方法
JP5431972B2 (ja) 2007-03-23 2014-03-05 バードエアー,インコーポレイティド 建築用膜構造体およびその製造方法
CN101318659A (zh) 2008-07-04 2008-12-10 绍兴纳诺气凝胶新材料研发中心有限公司 一种常压干燥制备二氧化硅气凝胶复合材料的方法
CN102503356B (zh) 2011-11-11 2013-11-27 广州大学 定向纤维气凝胶隔热复合材料制备方法
US20130344279A1 (en) 2012-06-26 2013-12-26 Cabot Corporation Flexible insulating structures and methods of making and using same
US9617069B2 (en) 2013-03-11 2017-04-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thermal insulation system for non-vacuum applications including a multilayer composite
CN104556969B (zh) * 2014-12-30 2017-10-13 纳诺科技有限公司 一种疏水型二氧化硅气凝胶绝热复合材料的制备方法
KR101789371B1 (ko) * 2015-02-13 2017-10-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
CN107849764A (zh) 2015-07-15 2018-03-27 国际粉末冶金与新材料先进技术研究中心 高效隔热的二氧化硅气凝胶产品的改进生产工艺
KR101752091B1 (ko) 2015-09-10 2017-06-28 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓 및 이의 제조방법
CN105198375B (zh) 2015-09-18 2017-04-26 四川鑫炬矿业资源开发股份有限公司 一种绝热二氧化硅气凝胶/羟基化玻璃纤维毡复合材料及其制备方法
KR101748532B1 (ko) 2016-01-19 2017-06-19 주식회사 엘지화학 에어로겔 시트의 제조방법 및 장치
JP6934593B2 (ja) 2016-07-22 2021-09-15 パナソニックIpマネジメント株式会社 断熱材とその製造方法
CN107244882B (zh) * 2017-06-20 2019-08-06 山东大唐节能材料有限公司 一种二氧化硅气凝胶毡及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8021583B2 (en) 2004-12-15 2011-09-20 Cabot Corporation Aerogel containing blanket
KR20090078357A (ko) * 2006-10-25 2009-07-17 한국생산기술연구원 에어로겔 시트 및 그 제조방법
JP2011162902A (ja) * 2010-02-08 2011-08-25 Nichias Corp 断熱材及びその製造方法
KR20150122196A (ko) * 2013-03-15 2015-10-30 캐보트 코포레이션 에어로겔 블랭킷 및 그의 제조 방법
KR101599625B1 (ko) * 2014-08-25 2016-03-04 김현철 연속성형 에어로젤판넬 및 그 제조방법과 제조장치 및 에어로젤슬러리조성물
KR20170015288A (ko) * 2015-03-30 2017-02-08 파나소닉 아이피 매니지먼트 가부시키가이샤 단열 시트와 그것을 이용한 전자기기, 및 단열 시트의 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026803A4 (en) * 2019-09-03 2022-10-26 LG Chem, Ltd. AIRGEL LAYER

Also Published As

Publication number Publication date
JP7083022B2 (ja) 2022-06-09
KR20190056138A (ko) 2019-05-24
EP3712111A4 (en) 2020-12-09
JP2021500304A (ja) 2021-01-07
CN111278772A (zh) 2020-06-12
KR102193438B1 (ko) 2020-12-21
US20210114887A1 (en) 2021-04-22
CN111278772B (zh) 2023-03-28
EP3712111A1 (en) 2020-09-23
US11760646B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2017078293A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2016129874A1 (ko) 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
WO2016105159A1 (ko) 팽창흑연 및 팽윤성 점토를 이용한 경량화된 흡음내화 단열재 및 그 제조방법
WO2018070752A1 (ko) 초고온용 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
WO2017078294A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2019107706A1 (ko) 에어로겔을 포함한 복합 단열 시트
WO2011108856A4 (ko) 닫힌셀의 팽창 퍼라이트를 이용한 보온재
WO2019098519A1 (ko) 저분진 실리카 에어로겔 블랭킷 및 이의 제조방법
WO2016167494A1 (ko) 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
CN105859306A (zh) 一种柔性阻燃结壳的防火耐火陶瓷化混合物
WO2021096165A1 (ko) 고강도 불연성 단열재 및 이의 제조 방법
WO2014112717A1 (ko) 혹한기용 외단열 몰탈 및 이를 이용한 외단열 시스템 시공 방법
CN112210156B (zh) 一种可陶瓷化无卤阻燃高分子复合材料及应用
CN111393040A (zh) 一种高压电缆接头的柔性防火防爆层
WO2015163502A1 (ko) 무기 팽창성 내화 조성물
WO2017142245A1 (ko) 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
WO2016114503A1 (ko) 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법
WO2014163403A1 (ko) 복합 에어로겔이 포함된 도료 조성물 및 그 제조방법
WO2019050089A1 (ko) 준불연 기능을 갖는 단차단열재
WO2022080721A1 (ko) 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷
WO2017171217A1 (ko) 저분진 고단열 에어로겔 블랭킷의 제조방법
WO2018221987A1 (ko) 에어로겔 시트 및 이를 포함하는 단열 재료
WO2017142244A1 (ko) 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
WO2020130353A1 (ko) 실리카 습윤겔 블랭킷의 초임계 건조 방법
CN114605839B (zh) 一种煅烧后具有明显的xrd新结晶峰的可陶瓷化硅橡胶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877432

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020523458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018877432

Country of ref document: EP

Effective date: 20200616