WO2016114503A1 - 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법 - Google Patents

열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법 Download PDF

Info

Publication number
WO2016114503A1
WO2016114503A1 PCT/KR2015/013813 KR2015013813W WO2016114503A1 WO 2016114503 A1 WO2016114503 A1 WO 2016114503A1 KR 2015013813 W KR2015013813 W KR 2015013813W WO 2016114503 A1 WO2016114503 A1 WO 2016114503A1
Authority
WO
WIPO (PCT)
Prior art keywords
melamine foam
layer
density
aerogel
complexed
Prior art date
Application number
PCT/KR2015/013813
Other languages
English (en)
French (fr)
Inventor
민병환
서판석
박영도
곽병윤
장성일
염지현
Original Assignee
주식회사 동성화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동성화학 filed Critical 주식회사 동성화학
Publication of WO2016114503A1 publication Critical patent/WO2016114503A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08G12/30Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with substituted triazines
    • C08G12/32Melamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08J2361/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08J2361/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the present invention relates to an aerogel-complexed melamine foam having excellent thermal conductivity and stability, and more particularly, a foam in which the silica airgel is partially or completely filled in the internal skeleton structure of an open cell melamine foam, thereby providing excellent thermal conductivity and improved heat resistance. And it relates to a manufacturing method that can improve the thermal conductivity and minimize the loss of the airgel from the airgel complexed melamine foam by implementing different density gradient for each layer in the melamine foam.
  • Silica airgel is a silica structure having a three-dimensional network structure, more than 100% of the porous material consisting of nano-sized pores, due to the low density and high porous structure is used as a catalyst, adsorbent, sound absorbing material, heat insulating material and the like excellent performance.
  • the silica airgel Since the silica airgel has a very low mechanical strength due to its porous structure, it cannot be used alone but is filled with a powder and granular airgel in a predetermined mold. When the mold is damaged by external impact, the airgel can be easily lost to the site. In particular, in the case of using a material having a non-combustible property such as metal and glass, the weight and the thermal conductivity are greatly increased.
  • an airgel composite in which an aerogel is impregnated with a fibrous blanket such as inorganic fibers [mineral wool, glass wool, ceramic wool, etc.] or organic fibers [polyester, polyethylene, urethane, carbon material, etc.] Proposed in Korean Patent Publication No. 2011-0126381.
  • a fibrous blanket such as inorganic fibers [mineral wool, glass wool, ceramic wool, etc.] or organic fibers [polyester, polyethylene, urethane, carbon material, etc.] Proposed in Korean Patent Publication No. 2011-0126381.
  • the problem that the airgel is lost during the use or construction of the fibrous blanket is also frequently caused to partially reduce the thermal conductivity.
  • the silica airgel is applied, but there is still a need to develop a foam that can secure thermal conductivity while maintaining stability to prevent loss of the airgel.
  • the present invention is to provide a foam having a good thermal conductivity and improved heat resistance by partially or completely filling the silica airgel in the internal skeleton structure of the open-cell melamine foam, but from the airgel complexed melamine foam
  • An object of the present invention is to provide an airgel-complexed melamine foam and a method for producing the same, which can minimize the loss of airgel.
  • the present inventors introduced a method of improving the problem of the loss of the complexed airgel grown in the melamine foam framework by varying the melamine foam internal density by depth.
  • the foam manufactured by using the melamine resin condensation product is an organic foam having an open cell structure, and has excellent heat insulating and sound absorbing properties at the same time. It is used for various purposes such as sound absorbing materials and interior materials. Indeed, various applications are being developed for various uses due to fire stability and high resistance to heat (related document information: Korean Patent Registration No. 1379479).
  • the deviation between the density measured in each of the layers, the ninth layer and the tenth layer, and the average density of the melamine foam of a) has a positive value, and the density measured in each of the third to eighth layers It provides an aerogel-complexed melamine foam, characterized in that the deviation from the average density of the melamine foam of a) has a negative value.
  • the melamine foam having an average density of 8 to 12 Kg / m 3 was pressed at 200 to 250 ° C. and 5 to 10 MPa for 30 to 100 minutes to obtain a) melamine foam having an average density of 19 to 30 Kg / m 3 .
  • a silica sol solution by mixing tetraalkylorthosilicate having an alkyl group having 1 to 3 carbon atoms, an organic solvent, water and an acidic catalyst;
  • thermogravimetric analysis It provides a method for producing an aerogel-complexed melamine foam, comprising the step of: obtaining a foam having a residual mass of 80 wt% or less at a residual mass of 750 ° C. measured by the test KS M ISO 11358.
  • the silica aerogel is partially or completely filled in the internal skeleton structure of the open cell melamine foam to provide a foam having excellent thermal conductivity and improved heat resistance, and improving the thermal conductivity by implementing a different density gradient for each layer in the melamine foam. It has the effect of minimizing the loss of airgel from the airgel complexed melamine foam.
  • 1 is a photograph confirming the change in density gradient for each layer of the high-density foam used in the embodiment by an optical microscope (300 magnification).
  • Example 2 is an optical micrograph (300 magnification) for comparing the melamine foam heat transfer paths prepared in Comparative Example 1 (a) and Example 1 (b).
  • FIG. 3 is a graph comparing heat resistance of the high density melamine foam and the obtained aerogel complexed melamine foam in Example 1.
  • FIG. 3 is a graph comparing heat resistance of the high density melamine foam and the obtained aerogel complexed melamine foam in Example 1.
  • FIG. 4 is a SEM photograph (500 magnification) for confirming the structure of the high density melamine foam and the obtained airgel-complexed melamine foam in Example 1.
  • FIG. 4 is a SEM photograph (500 magnification) for confirming the structure of the high density melamine foam and the obtained airgel-complexed melamine foam in Example 1.
  • the deviation between the density measured in each of the layers, the ninth layer and the tenth layer, and the average density of the melamine foam of a) has a positive value, and the density measured in each of the third to eighth layers Deviation from the average density of the melamine foam of a) is characterized in that it has a negative value.
  • melamine complexed melamine complex refers to a complex using melamine foam as a mold and including silica airgel in the melamine foam, unless otherwise specified.
  • silica airgel in melamine foam may refer to a structure in which the silica airgel is coated, adhered, or mixed as a mesh structure on the inner skeleton of the melamine foam, unless otherwise specified.
  • the a) melamine foam while implementing a different density gradient for each layer, for example characterized in that the density is reduced in the direction of the center layer in the surface layer including the top layer and the bottom layer of the melamine foam.
  • the deviation between the density measured at the top layer and the lowest layer of the melamine foam and the average density of the melamine foam of a) has a positive value (i.e. layer by layer rather than the average density).
  • An increase in density) and the deviation between the density measured near the center layer except the surface layer of the melamine foam and the average density of the melamine foam of a) has a negative value (ie, the average The density measured by layer rather than the density is reduced).
  • the deviation from the average density of the melamine foam of has a positive value
  • the deviation from the density measured in each of the third to eighth layers and the average density of the melamine foam of the a) is negative. It may be formed to have a value.
  • the percentage value of the deviation between the density measured in each of the first layer, the second layer, the ninth layer, and the tenth layer and the average density of the melamine foam of the a) is, for example, +25 to + 31% (first layer), +3 to + 9% (second layer), +3 to + 9% (ninth layer), and +25 to + 31% (layer 10).
  • the percentage value for the deviation between the density measured in each of the third to eighth layers and the average density of the melamine foam of a) is, for example, -8 to -2% (third layer), respectively. -14 to -8% (the fourth layer), -20 to -14% (the fifth layer), -20 to -14% (the sixth layer), -14 to -8% (the seventh layer), and- It may be in the range of 8 to -2% (eighth layer).
  • the commercially available melamine foam shows a different density gradient for each layer, but the density value becomes larger toward the center layer than the surface layer when it is divided evenly in the thickness direction.
  • the deviation between the density measured in the surface layer and the average density of the melamine foam is negative (ie, the value measured in the surface layer is lower than the average density).
  • the deviation between the density measured near the center layer except the surface layer of the melamine foam and the average density of the melamine foam has a positive value (that is, the density measured in the center layer is increased rather than the average density). Will be displayed.
  • average density refers to the average value of the density measured in each of the topmost to lowest tenth layers, unless otherwise specified. Density herein refers to those measured according to the KS M ISO 845 (foaming plastics and rubber: measurement of apparent density) test method, unless otherwise specified.
  • the average density of the a) melamine foam is preferably, for example, 19 to 30 kg / m 3 , or 20 to 30 kg / m 3 can provide an improved thermal conductivity.
  • the thermal conductivity may be, for example, 0.030 W / mK or less, or 0.0295-0.030 W / mK.
  • the a) melamine foam may be a total thickness in the range of 5 to 500mm.
  • the density measured in the said 1st layer-10th layer is an example, The density value of a 1st layer and a 10th layer, The density value of a 2nd layer and a 9th layer, The density value of a 3rd layer and an 8th layer, The density values of the fourth layer and the seventh layer may each have the same value within a certain error range. Specifically, the density values of the first layer and the tenth layer have a maximum value, and the fifth layer and the sixth layer Having a minimum density value may be desirable to prevent loss of silica airgel and to provide improved thermal conductivity.
  • the b) tetraalkyl ortho silicate-based airgel for example, having an average density of 50 to 250 kg / m 3 , specific surface area 600 to 1500 m 2 / g, pore volume 3 to 5 cc / g, and pore size 3 to 30 nm, It is possible to form a network structure inside the melamine foam having different density gradients for each layer, and then give the best stability, thermal conductivity, heat resistance and the like.
  • the average density of the aerogel-complexed melamine foam may be, for example, 100 to 120 Kg / m 3 , or 102 to 120 Kg / m 3 , and a thermal conductivity of 0.0170 W / mK or less, or 0.0162 to 0.0170 W / mK.
  • the residual mass of 750 ° C. of the aerogel complexed melamine foam may be 80 wt% or less, or 73.7 to 80 wt%, as measured by thermogravimetric analysis KS M ISO 11358.
  • the airgel complexed melamine foam of the present invention may be prepared by the following method, for example.
  • the melamine resin mixture is microwaved to form a melamine foam having an average density of 8 to 12 Kg / m 3 (hereinafter referred to as step i)).
  • Melamine foam having an average density of 8 to 12 Kg / m 3 was pressed at 200 to 250 ° C. and 5 to 10 MPa for 30 to 100 minutes to obtain a) melamine foam having an average density of 19 to 30 Kg / m 3 (hereinafter, ii) called step).
  • a tetraalkyl orthosilicate having an alkyl group having 1 to 3 carbon atoms, an organic solvent, water and an acidic catalyst are mixed to prepare a silica sol solution (hereinafter referred to as step iii).
  • step iv Neutralizing the silica sol solution and a) impregnating the melamine foam to gel and mature the silica sol, and b) obtaining an aerogel complexed melamine foam in which the tetraalkyl orthosilicate airgel is contained in the a) melamine foam.
  • step v) A foam having a residual mass of 750 ° C and a mass of 80 wt% or less, as determined by thermogravimetric analysis KS M ISO 11358, is obtained (hereinafter, referred to as step v)).
  • the a) melamine foam having the average density of 19 to 30 Kg / m 3 is, for example, the first layer of the highest first layer to the lowest tenth layer evenly divided into a total of ten layers in the thickness direction, ,
  • the deviation between the density measured in each of the second layer, the ninth layer, and the tenth layer and the average density of the melamine foam of a) has a positive value, and is measured in each of the third to eighth layers.
  • a deviation between the density and the average density of the melamine foam of a) may be formed to have a negative value.
  • the a) melamine foam is close to the outside from the inside, such as the average density of the foam outside (surface layer) is 20 ⁇ 25Kg / m 3 and the average density of the foam inside (including the center layer) is 15 ⁇ 17Kg / m 3 It may correspond to a form of denser form as it gets higher.
  • the acid catalyst for example, hydrofluoric acid, hydrochloric acid, sulfuric acid, nitric acid Etc.
  • the organic solvent may be acetone, methanol, isopropanol, ethanol, butanol, normal hexane, normal heptane, xylene or the like.
  • the neutralization of the silica sol solution may be controlled by adding basic catalysts such as sodium hydroxide, ammonia water, pyridine, hydrazine, piperidine and the like.
  • the ammonia catalyst is then impregnated with a silica sol inside the melamine foam in the following step v) and also serves to change the hydrophilic wet gel after about 1 hour through a condensation reaction.
  • the amount of the a) melamine foam and b) tetraalkyl ortho-silicate airgel may be in a weight ratio range of 1:50 to 1: 150, for example.
  • the washing is using an organic solvent, such as methanol, isopropanol, ethanol, butanol, normal hexane, normal heptane, xylene
  • drying is a high temperature and high pressure drying using a supercritical equipment, CO using a supercritical equipment 2 It can select from low temperature, high pressure drying, and normal pressure drying drying in air
  • Step i 100 g of melamine resin and 240 g of formalin were stirred for 2 hours at 90 ° C. under sodium hydroxide catalyst to synthesize a condensation product, followed by dispersing for some time by adding 1.7 g of sodium formate and 7 g of sodium dodecylbenzene sulfonate, followed by microwave generator (LG). Melamine foam was formed by irradiating a microwave with a power of 20 W per 1g in the former, MM-344L).
  • the specimen 100x100x20mm of Comparative Example 1 was evenly divided into ten layers in the thickness direction, and the density of each layer was measured, and then summarized in Table 1 below.
  • the uppermost layer in the thickness direction is referred to as the first layer
  • the lowermost layer is referred to as the tenth layer.
  • Step II Melamine foam of the melamine foam average density of 9.7Kg / m 3 of Comparative Example 1 was pressed for 50 minutes at 220 °C, 7MPa to prepare a high-density melamine foam (a) having an average density of 19.6Kg / m 3 .
  • the specimen of high density melamine foam 100x100x20mm was evenly divided into a total of 10 layers in the thickness direction and the density of each layer was measured and summarized together in Table 1 below.
  • the high density melamine foam shows a decrease in density gradient from the first layer, the lowest layer in the thickness direction, to the fifth layer, the tenth layer in the lowermost layer, and in fact, the first, second, and ninth layers.
  • the deviation between the density of each layer and the melamine foam average density shows a positive value
  • the deviation between the density of each layer and the melamine foam average density is negative (-). It can be seen that the value of).
  • the low density melamine foam shows an increase in density gradient from the first layer, the lowest layer in the thickness direction, the tenth layer, the lowest layer, to the fifth, sixth, and sixth layers.
  • the deviation between the density of each layer and the melamine foam average density shows a negative value
  • the density of each layer and the melamine foam average density are different. It was confirmed that the deviation showed a positive value.
  • TEOS Tetraethylorthosilicate
  • TEOS Tetraethylorthosilicate
  • Silica sol impregnated into the high density melamine foam is condensed by the ammonia catalyst after 1 hour to change to silica gel.
  • V stage The airgel complexed melamine foam was placed in a supercritical dry pressure vessel. The aerogel complexed melamine foam was then washed with an organic solvent (ethanol).
  • liquid carbon dioxide was poured into a pressure vessel, heated and pressurized at 5 bar per minute until temperature and pressure conditions of 60 ° C. and 150 bar were met, followed by flowing carbon dioxide at a flow rate of 3 L / min for 3 hours. Temperature and pressure were maintained. During the process, carbon dioxide was extracted by pressing a solvent inside the silica gel for 3 hours under pressure and moving to a separation tank for recovering ethanol to separate ethanol.
  • the ethanol contained in the silica gel was removed, and the airgel was combined to form melamine foam by separating carbon dioxide from the dried silica gel while distilling under reduced pressure by 3 bar at a pressure of 150 bar until atmospheric pressure was reached. It was.
  • the airgel-complexed melamine foam had an average density of 102 Kg / m 3 , a thermal conductivity of 0.0162 W / mK, and a residual mass of 750 ° C. as measured by thermogravimetric analysis KS M ISO 11358, 73.7 wt%.
  • Example 2 The same process as in Example 1 was repeated except that the first density of melamine foam having a mean density of 25 Kg / m 3 was used to obtain an aerogel-complexed melamine foam.
  • Example 2 The same process as in Example 1 was repeated except that the average density of 30 Kg / m 3 was replaced with melamine foam to obtain an aerogel-complexed melamine foam.
  • Example 2 The same process as in Example 1 was repeated except that the average density of 9.7 Kg / m 3 was replaced with melamine foam to obtain an aerogel-complexed melamine foam.
  • Example 2 The same process as in Example 1 was repeated except that the average density of 15 Kg / m 3 was replaced with melamine foam to obtain an aerogel-complexed melamine foam.
  • Example 2 The same process as in Example 1 was repeated except that the average density was replaced with melamine foam having an average density of 35 Kg / m 3 to obtain an aerogel-complexed melamine foam.
  • Example 2 The same process as in Example 1 was repeated except that the average density was replaced with melamine foam having an average density of 40 Kg / m 3 to obtain an aerogel-complexed melamine foam.
  • thermal conductivity was calculated based on the theory of heat transfer in the porous material given by the following equation.
  • K total Ks + Kg + Kr + Kc
  • K total total thermal conductivity of porous material
  • Ks thermal conductivity by solid skeleton
  • Kg thermal conductivity by gas molecular collision
  • Kr thermal conductivity by infrared radiation
  • Kc thermal conductivity by convection.
  • Example 1 For the high density melamine foam used in Example 1 and the aerogel complexed melamine foam obtained in Example 1, the residual mass was measured under 750 ° C. as a thermogravimetric test KS M ISO 11358 and the results are shown in Table 4 and FIG. 1. Shown.
  • Example 1 As shown in Table 4, in the case of Example 1, the residual mass of the aerogel-complexed melamine foam was present in much excess compared to the high-density melamine foam, and as shown in FIG. On the contrary, in this case, the temperature gradient continues to be gentle up to 800 ° C. From this, according to the present invention, it can be confirmed that the airgel is prevented from being lost even at a high temperature and improved heat resistance is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법에 관한 것으로, 본 발명에 따르면 개방 셀 멜라민 폼의 내부 골격 구조내에 실리카 에어로겔을 일부 또는 완전히 충진시켜 열전도율이 우수하고 내열성이 향상되는 발포체를 제공하되, 에어로겔 복합화된 멜라민 발포체로부터 에어로겔의 유실을 최소화할 수 있는 에어로겔 복합화된 멜라민 발포체 및 그 제조방법을 제공하는 효과가 있다.

Description

열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법
본 발명은 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법에 관한 것으로, 보다 구체적으로는 개방 셀 멜라민 폼의 내부 골격 구조내에 실리카 에어로겔을 일부 또는 완전히 충진시켜 열전도율이 우수하고 내열성이 향상되는 발포체, 및 상기 멜라민 폼에 층별 상이한 밀도 구배를 구현함으로써 열전도율을 개선하고 에어로겔 복합화된 멜라민 발포체로부터 에어로겔의 유실을 최소화할 수 있는 제조방법에 관한 것이다.
실리카 에어로겔은 3차원 망목구조를 가지는 실리카 구조체로서 100% 이상이 나노 크기의 기공으로 이루어진 다공성 물질이고, 낮은 밀도와 높은 다공성 구조로 인해 우수한 성능의 촉매, 흡착제, 흡음재, 단열재 등으로 사용되고 있다.
상기 실리카 에어로겔은 다공성 구조로 인해 매우 낮은 기계적 강도를 갖기 때문에 단독 사용하지 못하고 일정한 몰드안에 분말 및 과립상의 에어로겔을 충진하여 사용하는데, 상기 몰드가 외부 충격에 의해 훼손되면 그 부위로 에어로겔이 쉽게 유실될 수 있으며, 특히 금속 및 유리 등의 불연성질을 가지는 재료를 사용하는 경우 무게 및 열전도율이 크게 상승하게 된다.
이를 해결하도록 종래 단열섬유인 무기섬유 [미네랄울, 글라스울, 세라믹울 등] 또는 유기섬유 [폴리에스터, 폴리에틸렌, 우레탄, 카본 재질 등] 등의 섬유상 블랑켓에 에어로겔을 함침하여 결합시킨 에어로겔 복합체가 한국특허공개 제2011-0126381호에서 제안되었다. 그러나 섬유상 블랑켓도 사용 또는 시공 도중 에어로겔이 유실되는 문제가 빈번히 발생하여 열전도율이 부분적으로 저감되는 문제가 빈번히 발생되고 있다.
이에 실리카 에어로겔을 적용하되, 에어로겔의 유실을 방지할 수 있도록 안정성을 갖추면서 열전도율 또한 확보할 수 있는 발포체 개발이 여전히 요구되고 있다.
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 개방 셀 멜라민 폼의 내부 골격 구조내에 실리카 에어로겔을 일부 또는 완전히 충진시켜 열전도율이 우수하고 내열성이 향상되는 발포체를 제공하되, 에어로겔 복합화된 멜라민 발포체로부터 에어로겔의 유실을 최소화할 수 있는 에어로겔 복합화 멜라민 발포체와 그의 제조방법을 제공하는 것을 목적으로 한다.
즉, 본 발명자들은 멜라민폼 내부 밀도를 깊이별로 다르게 하여 멜라민폼 골격구조내에 성장시킨 복합화된 에어로겔의 유실 문제를 개선시키는 방법을 도입하였다. 참고로, 멜라민 수지 축합생성물을 이용하여 제조한 발포체는 개방 셀(Open Cell) 구조를 가지고 있는 유기계 발포체로서 우수한 단열 특성과 흡음 특성을 동시에 지니고 있어 각종 건물 및 차량에서 단열 및 흡음 용도로서 단열재, 방음재, 흡음재, 내장재 등 다양한 용도로 사용되고 있다. 실제로 화재 안정성 및 열에 대한 높은 저항성으로 각종 용도에 대해 다양한 적용 개발이 진행되고 있다(관련문헌 정보: 한국특허등록 제1379479호).
상기의 목적을 달성하기 위하여, 본 발명은
a)멜라민 폼; 및 b)테트라알킬오로소실리케이트계 에어로겔;의 망상 구조를 포함하되, 상기 멜라민 폼은 두께 방향으로 총 10개 층으로 균등 분할한 최상위 제1층 내지 최하위 제10층 중, 제1층, 제2층, 제9층 및 제10층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 양(+)의 값을 갖고, 제3층 내지 제8층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 음(-)의 값을 갖는 것을 특징으로 하는 에어로겔 복합화 멜라민 발포체를 제공한다.
또한, 본 발명은
i)멜라민수지 혼합물을 마이크로웨이브 조사하여 평균 밀도가 8 내지 12Kg/m3인 멜라민 폼을 성형하는 단계;
ii)상기 평균 밀도가 8 내지 12 Kg/m3인 멜라민 폼을 200 내지 250℃, 5 내지 10MPa 하에 30 내지 100분 동안 압압하여 평균 밀도가 19 내지 30 Kg/m3인 a)멜라민 폼을 수득하는 단계;
iii) 탄소수 1 내지 3의 알킬기를 갖는 테트라알킬오로소실리케이트, 유기용매, 물 및 산성 촉매를 혼합하여 실리카졸 용액을 제조하는 단계;
iv)상기 실리카졸 용액을 중화하고 a)멜라민 폼에 함침시켜 실리카졸의 겔화 및 숙성을 수행하고, b)테트라알킬오로소실리케이트계 에어로겔이 상기 a)멜라민 폼에 포함된 에어로겔 복합화 멜라민 발포체를 수득하는 단계; 및
v)상기 에어로겔 복합화 멜라민 발포체를 초임계 건조 혹은 상압 건조시켜 미반응 물질을 세척한 유기용매를 제거하고, 평균 밀도가 100 내지 120Kg/m3이고, 열전도율이 0.0170W/mK 이하이고, 열중량 분석시험 KS M ISO 11358로 측정된 750℃ 잔존 질량이 80wt% 이하인 발포체를 수득하는 단계;를 포함하는 것을 특징으로 하는 에어로겔 복합화 멜라민 발포체의 제조방법을 제공한다.
본 발명에 따르면, 개방 셀 멜라민 폼의 내부 골격 구조내에 실리카 에어로겔을 일부 또는 완전히 충진시켜 열전도율이 우수하고 내열성이 향상되는 발포체를 제공하되, 상기 멜라민 폼에 층별 상이한 밀도 구배를 구현함으로써 열전도율을 개선하고 에어로겔 복합화된 멜라민 발포체로부터 에어로겔의 유실을 최소화하는 효과를 갖는다.
도 1은 실시예에서 사용한 고밀도 폼에 대하여 층별 밀도 구배 변화를 광학현미경 사진(300 배율)으로 확인한 사진이다.
도 2는 비교예 1(a)과 실시예 1(b)에서 제조된 멜라민 폼간 열 전달 경로를 대비하기 위한 광학현미경 사진(300 배율)이다.
도 3은 실시예 1에서의 고밀도 멜라민폼과 수득된 에어로겔 복합화 멜라민 발포체에 대한 내열성을 대비한 그래프이다.
도 4는 실시예 1에서의 고밀도 멜라민폼과 수득된 에어로겔 복합화 멜라민 발포체의 구조를 확인하기 위한 SEM 사진(500배율)이다.
이하 본 발명을 상세하게 설명한다.
본 발명의 에어로겔 복합화 멜라민 복합체는,
a)멜라민 폼; 및 b)테트라알킬오로소실리케이트계 에어로겔;의 망상 구조를 포함하되, 상기 멜라민 폼은 두께 방향으로 총 10개 층으로 균등 분할한 최상위 제1층 내지 최하위 제10층 중, 제1층, 제2층, 제9층 및 제10층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 양(+)의 값을 갖고, 제3층 내지 제8층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 음(-)의 값을 갖는 것을 특징으로 한다.
상기 용어 "에어로겔 복합화 멜라민 복합체"는 달리 특정하지 않는 한, 몰드로서 멜라민 폼을 사용하고 멜라민 폼 내에 실리카 에어로겔이 포함된 복합체를 지칭한다.
상기 용어 "멜라민 폼 내에 실리카 에어로겔이 포함된"이란 달리 특정하지 않는 한, 멜라민 폼의 내부 골격에 실리카 에어로겔이 망목 구조로서 코팅 혹은 부착, 혼합되어 있는 구조를 지칭할 수 있다.
상기 a)멜라민 폼은, 층별 상이한 밀도 구배를 구현하되, 일례로 멜라민 폼의 최상위 층과 최하위 층을 포함한 표면 층에서 중심층 방향으로 밀도가 저감된 것을 특징으로 한다.
다른 예로, 상기 멜라민 폼의 최상위 층과 최하위 층을 포함한 표면 층에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 양(+)의 값을 갖고(즉, 평균 밀도보다 층별 측정한 밀도가 증가된 값을 보이고), 상기 멜라민 폼의 표면층을 제외한 중심층 부근에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 음(-)의 값을 갖고(즉, 평균 밀도보다 층별 측정한 밀도가 저감된 값을 보이는) 것을 특징으로 한다.
또다른 예로, 두께 방향으로 총 10개 층으로 균등 분할한 최상위 제1층 내지 최하위 제10층 중, 제1층, 제2층, 제9층 및 제10층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 양(+)의 값을 갖고, 제3층 내지 제8층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 음(-)의 값을 갖도록 형성된 것일 수 있다.
구체적으로, 상기 제1층, 제2층, 제9층 및 제10층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차에 대한 백분율 값은 일례로, 각각 +25 내지 +31%(제1층), +3 내지 +9%(제2층), +3 내지 +9%(제9층), 그리고 +25 내지 +31%(제10층) 범위 내일 수 있다.
구체적으로, 상기 제3층 내지 제8층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차에 대한 백분율 값은 일례로, 각각 -8 내지 -2%(제3층), -14 내지 -8%(제4층), -20 내지 -14%(제5층), -20 내지 -14%(제6층), -14 내지 -8%(제7층), 그리고 -8 내지 -2%(제8층) 범위 내인 것일 수 있다.
참고로, 상업적으로 입수가능한 멜라민 폼을 살펴보면, 층별 상이한 밀도 구배를 보이긴 하나, 두께 방향으로 균등 분할시 표면층보다 중심층으로 갈수록 밀도값이 커지게 되는 것으로, 구체적인 예로서 멜라민 폼의 평균 밀도와의 편차를 살펴보면, 본건과는 역으로 표면 층에서 측정한 밀도와 멜라민 폼의 평균 밀도와의 편차가 음(-)의 값을 갖고(즉, 평균 밀도보다 표면 층에서 측정한 밀도가 저감된 값을 보이고), 상기 멜라민 폼의 표면층을 제외한 중심층 부근에서 측정한 밀도와 멜라민 폼의 평균 밀도와의 편차가 양(+)의 값을 갖고(즉, 평균 밀도보다 중심층에서 측정한 밀도가 증가된 값을 보이는) 것이다.
상기 용어 "평균 밀도"는 달리 특정하지 않는 한, 최상위 제1층 내지 최하위 제10층 각각에서 측정된 밀도의 평균 값을 지칭한다. 여기서 밀도는 달리 특정하지 않는 한, KS M ISO 845 (발포플라스틱 및 고무: 겉보기 밀도의 측정) 시험방식에 따라 측정한 것을 지칭한다.
상기 a)멜라민 폼의 평균 밀도는 일례로, 19 내지 30kg/m3, 혹은 20 내지 30kg/m3 인 것이 개선된 열 전도율을 제공할 수 있어 바람직하다.
상기 열 전도율은, 일례로, 0.030W/mK 이하, 혹은 0.0295-0.030W/mK 범위 내일 수 있다.
상기 a)멜라민 폼은 두께 방향 총 두께가 5 내지 500mm 범위 내인 것일 수 있다.
상기 제1층 내지 제10층에서 측정한 밀도는, 일례로, 제1층과 제10층의 밀도값, 제2층과 제9층의 밀도값, 제3층과 제8층의 밀도값, 제4층과 제7층의 밀도값이 각각 일정 오차 범위에서 같은 값을 갖는 것일 수 있고, 구체적으로는 제1층과 제10층의 밀도값이 최대치를 갖고, 제5층과 제6층의 밀도값이 최소치를 갖는 것이 실리카 에어로겔의 유실을 방지하고 개선된 열 전도율을 제공하기에 바람직할 수 있다.
상기 b)테트라알킬오로소실리케이트계 에어로겔은 일례로, 평균밀도 50 내지 250kg/m3, 비표면적 600 내지 1500m2/g, 기공 부피 3 내지 5cc/g, 그리고 기공크기 3 내지 30nm를 갖는 것이, 상기 층별 상이한 밀도 구배를 갖는 멜라민 폼 내부에 망목 구조를 형성한 다음 최상의 안정성 및 열 전도율, 내열성 등의 효과를 부여할 수 있다.
상기 에어로겔 복합화 멜라민 발포체의 평균 밀도는 일례로, 100 내지 120Kg/m3, 혹은 102 내지 120Kg/m3이고, 열전도율은 0.0170W/mK 이하, 혹은 0.0162 내지 0.0170W/mK 범위 내일 수 있다.
상기 에어로겔 복합화 멜라민 발포체의 750 ℃ 잔존 질량은 열중량 분석시험 KS M ISO 11358로 측정시 80wt% 이하, 혹은 73.7 내지 80wt% 범위 내일 수 있다.
본 발명의 에어로겔 복합화 멜라민 발포체는 일례로 다음과 같은 방법으로 제조될 수 있다.
우선, 멜라민수지 혼합물을 마이크로웨이브 조사하여 평균 밀도가 8 내지 12Kg/m3인 멜라민 폼을 성형한다(이하 i)단계라 칭함).
상기 평균 밀도가 8 내지 12Kg/m3인 멜라민 폼을 200 내지 250℃, 5 내지 10MPa 하에 30 내지 100분동안 압압하여 평균 밀도가 19 내지 30Kg/m3인 a)멜라민 폼을 수득한다(이하, ii)단계라 칭함).
이와 동시에 혹은 순차적으로, 탄소수 1 내지 3의 알킬기를 갖는 테트라알킬오로소실리케이트, 유기용매, 물 및 산성 촉매를 혼합하여 실리카졸 용액을 제조한다(이하, iii)단계라 칭함).
상기 실리카졸 용액을 중화하고 a)멜라민 폼에 함침시켜 실리카졸의 겔화 및 숙성을 수행하고, b)테트라알킬오로소실리케이트계 에어로겔이 상기 a)멜라민 폼에 포함된 에어로겔 복합화 멜라민 발포체를 수득하는 단계(이하, iv)단계라 칭함).
그런 다음 상기 에어로겔 복합화 멜라민 발포체를 유기용매로 세척하고, 초임계 건조 혹은 상압 건조시켜 미반응 물질을 세척한 유기용매를 제거하고, 평균 밀도가 100 내지 120Kg/m3이고, 열전도율이 0.0170W/mK 이하이고, 열중량 분석시험 KS M ISO 11358로 측정된 750℃ 잔존 질량이 80wt% 이하인 발포체를 수득한다(이하, v)단계라 칭함).
상기 ii)단계에서, 상기 평균 밀도가 19 내지 30Kg/m3인 a)멜라민 폼은 일례로, 두께 방향으로 총 10개 층으로 균등 분할한 최상위 제1층 내지 최하위 제10층 중, 제1층, 제2층, 제9층 및 제10층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 양(+)의 값을 갖고, 제3층 내지 제8층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 음(-)의 값을 갖도록 형성된 것일 수 있다.
일례로, 상기 a)멜라민 폼은 폼 외부(표면층)의 평균 밀도가 20~25Kg/m3이고 폼 내부(중심층 포함)의 평균 밀도가 15~17Kg/m3와 같이, 내부에서 외부에 가까워질수록 밀도가 올라가는 형태의 폼에 해당할 수 있다.
상기 iii) 단계에서, 상기 산성 촉매는 일례로, 불산, 염산, 황산, 질산 등이 사용될 수 있고, 상기 유기 용매는 아세톤, 메탄올, 이소프로판올, 에탄올, 부탄올, 노르말 헥산, 노르말 헵탄, 자일렌 등을 사용할 수 있다.
상기 iv)단계에서, 상기 실리카졸 용액의 중화는 일례로 수산화나트륨, 암모니아수, 피리딘[pyridine], 하이드라진[hydrazine], 피페리진[piperidine] 등의 염기성 촉매를 투입하여 조절할 수 있다. 상기 암모니아 촉매는 이후 이하 v)단계에서 멜라민 폼 내부에 실리카 졸을 함침한 다음 축합 반응을 통해 대략 1시간 정도 경과시 친수성 습윤겔로 변화시키는 역할을 또한 수행하게 된다.
상기 iv)단계에서, 상기 a)멜라민 폼과, b)테트라알킬오로소실리케이트계 에어로겔의 사용량은 일례로, 1 :50 내지 1 : 150의 중량비 범위 내일 수 있다.
상기 v)단계에서, 상기 세척은 메탄올, 이소프로판올, 에탄올, 부탄올, 노르말 헥산, 노르말 헵탄, 자일렌 등의 유기 용매를 사용하며, 건조는 초임계 장비를 이용한 고온고압 건조, 초임계 장비를 이용한 CO2 저온고압 건조, 및 대기중에서 건조하는 상압 건조 중에서 선택할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
제조예 1
멜라민 폼 성형( i단계 ): 멜라민 수지 100g 및 포르말린 240g을 수산화나트륨 촉매 하에 90℃에서 2시간 교반하여 축합생성물을 합성한 다음 소디움 포메이트 1.7g, 소디움 도데실벤젠 설포네이트 7g을 첨가하여 일정시간 분산시킨 후 마이크로웨이브 발생기(LG전자, MM-344L)에서 1g당 20W 출력의 마이크로웨이브를 조사하여 멜라민 폼을 성형하였다.
수득된 멜라민 폼을 KS M ISO 845 시험방법으로 평균 밀도를 측정한 결과, 9.7Kg/m3인 것을 확인하고, 이를 비교예 1의 시편으로 사용하였다(편의상 저밀도 폼이라 칭함).
상기 비교예 1의 시편 100x100x20mm을 두께 방향으로 총 10개 층으로 균등 분할하고 층별 밀도를 측정한 다음 하기 표 1에 정리하였다. 참고로, 두께 방향의 최상위 층을 제1층으로, 그리고 최하위 층을 제10층으로 표기한다.
고밀도 멜라민폼 제조( ii단계 ): 상기 비교예 1의 멜라민 폼 평균밀도 9.7Kg/m3의 멜라민 폼을 220℃, 7MPa 하에 50분간 압압하여 평균밀도가 19.6Kg/m3인 고밀도 멜라민 폼(a)을 제조하였다.
고밀도 멜라민폼의 시편 100x100x20mm을 두께 방향으로 총 10개 층으로 균등 분할하고 층별 밀도를 측정한 다음 하기 표 1에 함께 정리하였다.
 구분 멜라민폼 평균밀도(Kg/m3) 제1층 & 제10층 밀도(Kg/m3) 제2층 & 제9층 밀도(Kg/m3) 제3층 &제8층 밀도(Kg/m3) 제4층 &제7층 밀도(Kg/m3) 제5층 &제6층 밀도(Kg/m3)
고밀도 19.6 25.0 20.8 18.7 17.4 16.2
저밀도 9.7 9.0 9.4 9.9 10.1 10.3
상기 표 1에서 보듯이, 고밀도 멜라민 폼(본건에 해당, a))과 저밀도 멜라민 폼(종래 몰드에 해당)간 층별 밀도 구배가 상이한 것을 확인할 수 있다.
구체적으로 고밀도 멜라민 폼은 두께 방향 최상위층인 제1층, 최하위층인 제10층에서 중심층인 제5층으로 갈수록 밀도 구배가 저감된 양상을 보이는 것으로, 실제로 제1층, 제2층, 제9층, 제10층에서는 각 층별 밀도와 멜라민폼 평균 밀도와의 편차가 양(+)의 값을 보이는데 반해, 제3층 내지 제8층에서는 각 층별 밀도와 멜라민 폼 평균 밀도와의 편차가 음(-)의 값을 보이는 것을 확인할 수 있었다.
또한, 상기 고밀도 폼에 대하여 층별 밀도 구배 변화를 광학현미경 사진으로 확인한 도 1에서도 동일한 구조 변화를 확인할 수 있었다.
역으로, 저밀도 멜라민 폼은 두께 방향 최상위층인 제1층, 최하위층인 제10층에서 중심층인 제5층 및 제6층으로 갈수록 밀도 구배가 증가된 양상을 보이는 것으로, 실제로 제1층, 제2층, 제9층, 제10층에서는 각 층별 밀도와 멜라민폼 평균 밀도와의 편차가 음(-)의 값을 보이는데 반해, 제3층 내지 제8층에서는 각 층별 밀도와 멜라민 폼 평균 밀도와의 편차가 양(+)의 값을 보이는 것을 확인할 수 있었다.
실시예 1 :
실리카 졸 용액 제조( iii단계 ): TEOS [Tetraethylorthosilicate] 417g을 증류수 180g과 에탄올 2300g 혼합액에 투입하여 25℃에서 10분간 교반한 후 염산을 0.3g 투입하고 추가 10분간 교반하고 60분 동안 가수분해 반응을 진행하여 TEOS, 에탄올, 물, 산성촉매 혼합용액인 실리카 졸 용액을 제조하였다.
실리카 겔화 ( iv 단계): 상기 실리카 졸 용액에 1M 암모니아 촉매를 혼합하고 pH를 중성으로 조절한 다음 상기 제조예에서 제조한 고밀도 멜라민 폼 (사이즈 100㎜X100㎜X20㎜, 평균밀도 20Kg/m3)의 내부에 균일하게 함침시켰다.
상기 고밀도 멜라민 폼 내부에 함침된 실리카 졸은 1시간 이후 상기 암모니아 촉매에 의해 축합 반응을 일으켜 실리카 겔로 변화하게 된다.
상기 실리카 겔 내부가 완전한 망목구조를 형성하기 위해서 25℃의 온도에서 24시간 숙성을 진행하고, 멜라민 폼에 포함된 에어로겔 복합화 멜라민 발포체를 수득하였다.
초임계 건조 (v 단계): 상기 에어로겔 복합화 멜라민폼을 초임계 건조 압력 용기에 투입하였다. 그런 다음 상기 에어로겔 복합화 멜라민 발포체를 유기용매(에탄올)로 세척하였다.
이후 초임계 장비를 사용하여 액체 이산화탄소를 압력 용기에 흘려넣고 60℃, 150bar의 온도와 압력 조건을 만족할 때가지 가열 및 분당 5bar씩 가압한 후 3시간 동안 이산화탄소를 3L/min의 유량으로 흘러주면서 상기 온도와 압력을 유지하였다. 상기 공정 진행 중 이산화탄소가 가압 3시간 동안 실리카겔 내부의 용매를 추출하여 에탄올을 회수하는 분리조로 이동시켜 에탄올을 분리하였다.
3시간 동안의 가압공정이 마무리되면 실리카겔에 함유되어 있던 에탄올이 제거되며, 150bar의 압력이 대기압이 될 때까지 분단 3bar씩 감압을 하면서 건조된 실리카겔에서 이산화탄소를 분리시킴으로써 에어로겔이 복합화된 멜라민 발포체를 제조하였다.
상기 에어로겔 복합화 멜라민 발포체는 평균 밀도가 102Kg/m3이고, 열전도율이 0.0162W/mK이고, 열중량 분석시험 KS M ISO 11358로 측정된 750℃ 잔존 질량이 73.7wt%이었다.
실시예 2
상기 실시예 1에서 평균 밀도가 25Kg/m3인 멜라민폼으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하고 에어로겔 복합화 멜라민 발포체를 수득하였다.
실시예 3
상기 실시예 1에서 평균 밀도가 30Kg/m3인 멜라민폼으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하고 에어로겔 복합화 멜라민 발포체를 수득하였다.
비교예 1:
상기 실시예 1에서 평균 밀도가 9.7Kg/m3인 멜라민폼으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하고 에어로겔 복합화 멜라민 발포체를 수득하였다.
비교예 2
상기 실시예 1에서 평균 밀도가 15Kg/m3인 멜라민폼으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하고 에어로겔 복합화 멜라민 발포체를 수득하였다.
비교예 3
상기 실시예 1에서 평균 밀도가 35Kg/m3인 멜라민폼으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하고 에어로겔 복합화 멜라민 발포체를 수득하였다.
비교예 4
상기 실시예 1에서 평균 밀도가 40Kg/m3인 멜라민폼으로 대체한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하고 에어로겔 복합화 멜라민 발포체를 수득하였다.
시험예 1
상기 실시예 1 내지 3, 비교예 1 내지 4에서 수득된 멜라민 폼에 대하여 평균 밀도(3회 평균낸 전체 밀도)와 열 전도율을 하기표 2에 정리하였다.
참고로, 열 전도율은 다음 식으로 제시된 다공성 물질에서의 열전달 이론에 기초하여 계산되었다.
Ktotal = Ks + Kg + Kr + Kc
(Ktotal: 다공성 물질의 전체 열전도도, Ks: 고체 골격에 의한 열전도도, Kg: 기체 분자 충돌에 의한 열전도도, Kr: 적외선 복사에 의한 열전도도, Kc: 대류에 의한 열전도도이다.)
상기 Ks(고체 골격에 의한 열전도도)의 계산식은 다음과 같다:
Ks = Cpβ
(C,β : 물질상수, p : 겉보기 밀도(㎏/m3), 밀도↑ = 열전도도↑)
구분 실시예1 실시예2 실시예3 비교예1 비교예2 비교예3 비교예4
평균 밀도 [Kg/m3] 19.6 25 30 9.7 15 35 40
열전도율 [W/mK] 0.0298 0.0295 0.0298 0.0332 0.0308 0.0301 0.0303
상기 표 2에서 보듯이, 실시예 1 내지 3과 비교예 1 내지 4의 열전도율을 비교한 결과, 멜라민 폼의 열전도율이 0.030W/mK 이하로 열전도율이 향상되는 결과를 확인할 수 있었다. 이는 내부 골격에 의해 전달되는 열전도의 열 전달 경로(Heat pass route)가 길어져 열전도율이 낮아지는 효과를 가져오는 것으로 판단된다(도 2 참조).
다만, 멜라민 폼의 평균 밀도가 어느 정도 이상을 초과할 경우 열전도율은 다시 저감되게 되는데, 실제로 비교예 4에 따르면, 상기 Heat pass route의 효과에 비해 공기보다 열전도율이 높은 멜라민 골격의 함량이 높아지기 때문에 오히려 열전도율이 저감되는 것으로 확인되었다.
시험예 2
상기 실시예 1,3, 비교예 1,4에서 각각 제조한 에어로겔 복합화 멜라민 발포체의 평균밀도와 열전도율을 측정하고 그 결과를 상기표 1 내지 2에서 제시한 멜라민폼 밀도와 열 전도율과 함께 하기 표 3에 정리하였다.
 구분 실시예1 실시예3 비교예1 비교예4
멜라민폼 평균밀도 [Kg/m3] 20 30 10 40
멜라민폼 열전도율 [W/mK] 0.0298 0.0298 0.0332 0.0303
에어로겔 복합화 멜라민폼 평균밀도 [Kg/m3] 102 117 87 132
에어로겔 복합화 멜라민폼 열전도율 [W/mK] 0.0162 0.0166 0.0191 0.0182
상기 표 3에서 보듯이, 에어로겔 복합화 멜라민 발포체의 열전도율을 비교한 결과 실시예 1 및 3에서 비교예 1,4 대비 개선된 값을 확인할 수 있었고, 특히 실시예 3보다 실시예 1에서 가장 우수한 0.0162W/mK 값을 나타내는 것을 확인할 수 있었다.
시험예 3
실시예 1에서 사용된 고밀도 멜라민폼과 실시예 1에서 수득된 에어로겔 복합화 멜라민 발포체에 대하여, 열중량 분석시험 KS M ISO 11358로서 750℃하에 잔존 질량을 측정하고 그 결과를 하기 표 4 및 도 1에 도시하였다.
  비교예 1 실시예 1
750℃ 잔존질량 14.4wt% 73.7wt%
상기 표 4에서 보듯이, 실시예 1의 경우 에어로겔 복합화 멜라민 발포체의 잔존 질량은 고밀도 멜라민폼 대비 훨씬 과량 존재하였으며, 또한 도 3으로서 제시된 바와 같이, 비교예 1에서는 400℃ 부근에서 급격한 온도 저하를 보이는데 반해, 본건에서는 800℃까지 계속 완만한 온도 구배를 보이는 것으로, 이로부터 본건 발명에 따르면 고온 하에서도 에어로겔의 유실을 막고 개선된 내열성을 제공하는 것을 확인할 수 있다.
나아가, 상기 실시예 1에서 사용된 고밀도 멜라민폼과 실시예 1에서 수득된 에어로겔 복합화 멜라민 발포체에 대한 SEM 사진을 대비한 결과, 도 4에서 보듯이, (a)의 고밀도 멜라민폼 내부에 비해 (b)의 실시예 1에서 수득된 에어로겔 복합화 멜라민 발포체에서 에어로겔이 훨씬 개선된 망목 구조로 유실 없이 멜라민 폼 몰드 내에 잘 형성되어 있는 것을 또한 확인하였다.

Claims (15)

  1. a)멜라민 폼; 및 b)테트라알킬오로소실리케이트계 에어로겔;의 망상 구조를 포함하되, 상기 멜라민 폼은 두께 방향으로 총 10개 층으로 균등 분할한 최상위 제1층 내지 최하위 제10층 중, 제1층, 제2층, 제9층 및 제10층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 양(+)의 값을 갖고, 제3층 내지 제8층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 음(-)의 값을 갖는 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체.
  2. 제1항에 있어서,
    상기 제1층, 제2층, 제9층 및 제10층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차에 대한 백분율 값이 각각 +25 내지 +31%, +3 내지 +9%, +3 내지 +9%, 그리고 +25 내지 +31% 범위 내인 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체.
  3. 제1항에 있어서,
    상기 제3층 내지 제8층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차에 대한 백분율 값이 각각 -8 내지 -2%, -14 내지 -8%, -20 내지 -14%, -20 내지 -14%, -14 내지 -8%, 그리고 -8 내지 -2% 범위 내인 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체.
  4. 제1항에 있어서,
    상기 a)멜라민 폼은 평균 밀도가 19 내지 30kg/m3이고, 열 전도율이 0.030W/mK 이하인 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체.
  5. 제1항에 있어서,
    상기 a)멜라민 폼은 두께 방향 총 두께가 5 내지 500mm 범위 내인 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체.
  6. 제1항에 있어서,
    상기 제1층 내지 제10층에서 측정한 밀도는, 제1층의 밀도값과 제10층의 밀도값, 제2층의 밀도값과 제9층의 밀도값, 제3층의 밀도값과 제8층의 밀도값, 제4층의 밀도값과 제7층의 밀도값이 각각 일정 오차 범위에서 같은 값을 갖는 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체.
  7. 제6항에 있어서,
    상기 제1층 내지 제10층에서 측정한 밀도는, 제1층의 밀도값과 제10층의 밀도값이 최대치를 갖고, 제5층의 밀도값과 제6층의 밀도값이 최소치를 갖는 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체.
  8. 제1항에 있어서,
    상기 b)테트라알킬오로소실리케이트계 에어로겔은 평균 밀도 50 내지 250kg/m3, 비표면적 600 내지 1500m2/g, 기공 부피 3 내지 5cc/g, 그리고 기공크기 3 내지 30nm를 갖는 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체.
  9. 제1항에 있어서,
    상기 에어로겔 복합화 멜라민 발포체의 평균 밀도는 100 내지 120Kg/m3이고, 열전도율은 0.0170W/mK 이하인 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체.
  10. 제1항에 있어서,
    상기 에어로겔 복합화 멜라민 발포체는 열중량 분석시험 KS M ISO 11358로 측정된 750 ℃ 잔존 질량이 80wt% 이하인 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체.
  11. i)멜라민수지 혼합물을 마이크로웨이브 조사하여 평균 밀도가 8 내지 12Kg/m3인 멜라민 폼을 성형하는 단계;
    ii)상기 평균 밀도가 8 내지 12Kg/m3인 멜라민 폼을 200 내지 250℃, 5 내지 10MPa 하에 30 내지 100분동안 압압하여 평균 밀도가 19 내지 30Kg/m3인 a)멜라민 폼을 수득하는 단계;
    iii) 탄소수 1 내지 3의 알킬기를 갖는 테트라알킬오로소실리케이트, 유기용매, 물 및 산성 촉매를 혼합하여 실리카졸 용액을 제조하는 단계;
    iv)상기 실리카졸 용액을 중화하고 a)멜라민 폼에 함침시켜 실리카졸의 겔화 및 숙성을 수행하고, b)테트라알킬오로소실리케이트계 에어로겔이 상기 a)멜라민 폼에 포함된 에어로겔 복합화 멜라민 발포체를 수득하는 단계; 및
    v)상기 에어로겔 복합화 멜라민 발포체를 초임계 건조 혹은 상압 건조시켜 미반응 물질을 세척한 유기용매를 제거하고, 평균 밀도가 100 내지 120Kg/m3이고, 열전도율이 0.0170W/mK 이하이고, 열중량 분석시험 KS M ISO 11358로 측정된 750℃ 잔존 질량이 80wt% 이하인 발포체를 수득하는 단계;를 포함하는 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체의 제조방법.
  12. 제11항에 있어서,
    상기 ii)단계에서, 평균 밀도가 19 내지 30Kg/m3인 a)멜라민 폼은 두께 방향으로 총 10개 층으로 균등 분할한 최상위 제1층 내지 최하위 제10층 중, 제1층, 제2층, 제9층 및 제10층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 양(+)의 값을 갖고, 제3층 내지 제8층 각각에서 측정한 밀도와 상기 a)의 멜라민 폼의 평균 밀도와의 편차가 음(-)의 값을 갖는 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체의 제조방법.
  13. 제11항에 있어서,
    상기 iv)단계에서, 상기 실리카졸 용액의 중화는 염기성 촉매를 투입하여 조절하는 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체의 제조방법.
  14. 제11항에 있어서,
    상기 iv)단계에서, 상기 a)멜라민 폼과, b)테트라알킬오로소실리케이트계 에어로겔의 사용량은 1 : 50 내지 1 : 150의 중량비인 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체의 제조방법.
  15. 제11항에 있어서,
    상기 v)단계에서, 상기 초임계 건조 혹은 상압 건조는 초임계 고온고압 건조, 초임계 CO2 저온고압 건조 및 상온상압 건조 중에서 선택된 것을 특징으로 하는
    에어로겔 복합화 멜라민 발포체의 제조방법.
PCT/KR2015/013813 2015-01-15 2015-12-16 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법 WO2016114503A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0007640 2015-01-15
KR1020150007640A KR101674789B1 (ko) 2015-01-15 2015-01-15 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법

Publications (1)

Publication Number Publication Date
WO2016114503A1 true WO2016114503A1 (ko) 2016-07-21

Family

ID=56406015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013813 WO2016114503A1 (ko) 2015-01-15 2015-12-16 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법

Country Status (2)

Country Link
KR (1) KR101674789B1 (ko)
WO (1) WO2016114503A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940451A (zh) * 2021-02-03 2021-06-11 孚莱孚(上海)新材料有限公司 一种密胺泡沫架构的气凝胶
CN115784765A (zh) * 2022-12-13 2023-03-14 中化学华陆新材料有限公司 一种柔性气凝胶/碳泡沫多孔复合材料

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190127171A (ko) 2018-05-03 2019-11-13 주식회사 에슬린 에어로겔 기반의 유연 단열재 및 제조 방법
KR20200129925A (ko) 2019-05-10 2020-11-18 주식회사 에슬린 에어로겔 기반의 유연 단열재 및 제조 방법
KR20200131031A (ko) 2019-05-13 2020-11-23 주식회사 에슬린 에어로겔-페놀수지 복합 단열재 및 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059443A (ja) * 2000-06-06 2002-02-26 Inoac Corp メラミンフォーム成形体及びその製造方法並びに洗浄用具
JP2003053850A (ja) * 2001-08-10 2003-02-26 Inoac Corp メラミンフォーム成形体及びその製造方法並びに洗浄用具
JP2010047710A (ja) * 2008-08-22 2010-03-04 National Institute Of Advanced Industrial Science & Technology 柔軟性、成形性を有する発泡ポリマー−シリカ複合体およびそれを用いた断熱材料
KR20130102145A (ko) * 2012-03-07 2013-09-17 (주)동성화인텍 소수성을 갖는 고난연성 유무기 복합체의 제조방법
KR101379479B1 (ko) * 2013-01-07 2014-04-01 주식회사 동성화학 개방 셀 발포체용 조성물 및 이를 이용한 소수성 개방 셀 발포체와 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059443A (ja) * 2000-06-06 2002-02-26 Inoac Corp メラミンフォーム成形体及びその製造方法並びに洗浄用具
JP2003053850A (ja) * 2001-08-10 2003-02-26 Inoac Corp メラミンフォーム成形体及びその製造方法並びに洗浄用具
JP2010047710A (ja) * 2008-08-22 2010-03-04 National Institute Of Advanced Industrial Science & Technology 柔軟性、成形性を有する発泡ポリマー−シリカ複合体およびそれを用いた断熱材料
KR20130102145A (ko) * 2012-03-07 2013-09-17 (주)동성화인텍 소수성을 갖는 고난연성 유무기 복합체의 제조방법
KR101379479B1 (ko) * 2013-01-07 2014-04-01 주식회사 동성화학 개방 셀 발포체용 조성물 및 이를 이용한 소수성 개방 셀 발포체와 그 제조 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112940451A (zh) * 2021-02-03 2021-06-11 孚莱孚(上海)新材料有限公司 一种密胺泡沫架构的气凝胶
CN112940451B (zh) * 2021-02-03 2023-01-31 孚莱孚(上海)新材料有限公司 一种密胺泡沫架构的气凝胶
CN115784765A (zh) * 2022-12-13 2023-03-14 中化学华陆新材料有限公司 一种柔性气凝胶/碳泡沫多孔复合材料
CN115784765B (zh) * 2022-12-13 2023-11-10 中化学华陆新材料有限公司 一种柔性气凝胶/碳泡沫多孔复合材料

Also Published As

Publication number Publication date
KR101674789B1 (ko) 2016-11-09
KR20160088187A (ko) 2016-07-25

Similar Documents

Publication Publication Date Title
WO2016114503A1 (ko) 열전도율과 안정성이 우수한 에어로겔 복합화 멜라민 발포체 및 제조 방법
WO2018070755A1 (ko) 저분진 고단열 에어로겔 블랭킷 및 이의 제조방법
WO2018070752A1 (ko) 초고온용 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
WO2016129874A1 (ko) 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
US9233986B2 (en) Method for producing hydrophobic, heat-insulating mouldings
WO2020111763A1 (ko) 에어로겔 블랭킷의 제조방법
US20140322122A1 (en) Porous nanostructured polyimide networks and methods of manufacture
WO2016105159A1 (ko) 팽창흑연 및 팽윤성 점토를 이용한 경량화된 흡음내화 단열재 및 그 제조방법
WO2016163670A1 (ko) 에어로겔 함유 조성물 및 이를 이용하여 제조된 단열 블랑켓
WO2018048197A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2016167494A1 (ko) 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
WO2018048289A1 (ko) 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
WO2016056717A1 (ko) 발포 폴리스티렌용 난연성 코팅제 조성물
CN111517708A (zh) 一种石墨改性聚苯乙烯无机保温板及其制备方法
WO2017142245A1 (ko) 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
KR100705587B1 (ko) 규산나트륨을 이용한 에어로젤의 제조방법 및 그 방법에의하여 제조된 에어로젤 타일
CN112175231B (zh) 一种酚醛增韧改性多孔杂化硅树脂、制备方法及应用
WO2017171217A1 (ko) 저분진 고단열 에어로겔 블랭킷의 제조방법
CN116532058B (zh) 一种无机硅杂化改性酚醛气凝胶及其制备方法
WO2015122548A1 (ko) 개방 셀 발포체용 조성물 및 이를 이용한 소수성 개방 셀 발포체와 그 제조 방법
WO2019098519A1 (ko) 저분진 실리카 에어로겔 블랭킷 및 이의 제조방법
WO2017142244A1 (ko) 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
KR100588421B1 (ko) 단열성이 우수한 다공질의 세라믹 성형체 제조방법
WO2019212080A1 (ko) 에어로겔 기반의 유연 단열재 및 제조 방법
WO2022211353A1 (ko) 에어로겔 복합체 제조방법 및 에어로겔 복합체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878147

Country of ref document: EP

Kind code of ref document: A1