WO2020122683A1 - 에어로겔 블랭킷의 제조방법 - Google Patents

에어로겔 블랭킷의 제조방법 Download PDF

Info

Publication number
WO2020122683A1
WO2020122683A1 PCT/KR2019/017744 KR2019017744W WO2020122683A1 WO 2020122683 A1 WO2020122683 A1 WO 2020122683A1 KR 2019017744 W KR2019017744 W KR 2019017744W WO 2020122683 A1 WO2020122683 A1 WO 2020122683A1
Authority
WO
WIPO (PCT)
Prior art keywords
blanket
hydrous
silazane
sol
manufacturing
Prior art date
Application number
PCT/KR2019/017744
Other languages
English (en)
French (fr)
Inventor
오명은
백세원
이규련
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980033602.8A priority Critical patent/CN112135795B/zh
Priority to JP2020564635A priority patent/JP7085647B2/ja
Priority to US17/057,251 priority patent/US11365126B2/en
Priority to EP19896139.3A priority patent/EP3778483A4/en
Publication of WO2020122683A1 publication Critical patent/WO2020122683A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • C01B33/143Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/1095Coating to obtain coated fabrics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor
    • C03C25/16Dipping
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/42Coatings containing inorganic materials

Definitions

  • the present invention relates to a method of manufacturing an airgel blanket.
  • Aerogel is an ultra-porous, high specific surface area (>500 m 2 /g) material with a porosity of 90% to 99.9% and a pore size in the range of 1 nm to 100 nm. It is a new material having. Accordingly, research on airgel materials, as well as transparent insulating materials and environmentally friendly high-temperature insulation materials, ultra-low dielectric thin films for highly integrated devices, catalysts and catalyst carriers, electrodes for supercapacitors, and electrode materials for seawater desalination are being actively conducted.
  • the biggest advantage of the airgel is that it is super-insulation, which has a thermal conductivity of less than 0.300 W/m ⁇ K, which is lower than conventional insulation materials such as styrofoam, and fire vulnerabilities, which are fatal weaknesses of organic insulation materials, and generates harmful gases in case of fire. Is that it can be solved.
  • aerogels are often used by being applied to airgel blankets, and airgel blankets are manufactured through a sol-gel method that undergoes processes such as sol formation, wet gel formation, aging, solvent replacement, surface modification, and drying. have.
  • the sol-gel method requires a multi-step process as described above, a lot of cost and time are required. More specifically, since a large amount of solvent is required in the aging step and the surface modification step, there is a problem that the manufacturing cost increases.
  • Patent Document 0001 Korean Patent Publication No. 10-2016-0100082
  • the present invention is to solve the above problems, by providing a method of manufacturing an airgel blanket that can simplify the manufacturing process than the conventional manufacturing method, reducing the manufacturing cost and manufacturing time to improve the processability of the airgel blanket manufacturing It is to provide a method.
  • the present invention comprises the steps of preparing a sol by mixing a precursor material, an acid catalyst and a hydrous alcohol; After immersing the substrate in the sol, reacting with a gaseous silazane-based compound to form a gel, and at the same time, the aging and surface modification reaction proceeds to form a wet gel blanket; And drying the wet gel blanket to prepare an airgel blanket.
  • the present invention provides a method of manufacturing an airgel blanket.
  • aging may be due to ammonia generated by reacting the gaseous silazane-based compound with the hydrous alcohol contained in the sol.
  • the surface modification may be by one or more compounds in the group consisting of alkoxy silane-based compounds and alkyl silanol-based compounds generated by reacting the gaseous silazane-based compound with the hydrous alcohol contained in the sol.
  • silazane-based compound may be a compound represented by Formula 1 below.
  • R 1 and R 3 may each independently be an alkyl group having 1 to 8 carbon atoms
  • R 2 and R 4 may each independently be a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • n and m are Each independently may be an integer from 1 to 3.
  • gaseous silazane-based compound may be at least one compound selected from the group consisting of hexaalkyldisilazane and tetraalkyldisilazane, and may also include hexamethyldisilazane (HMDS).
  • HMDS hexamethyldisilazane
  • the gaseous silazane-based compound may be supplied in 2.5 parts by weight to 4.2 parts by weight based on 100 parts by weight of the sol.
  • hydrous alcohol, hydrous methanol, hydrous ethanol, hydroisopropanol, hydrous butanol, hydrous glycerol, hydrous ethylene glycol, hydrous propylene glycol, hydrous diethylene glycol, hydrous dipropylene glycol and hydrous sorbitol 1 is selected from the group consisting of It may be more than a species.
  • the acid catalyst may be one or more inorganic acids selected from the group consisting of nitric acid, hydrochloric acid, acetic acid, sulfuric acid, and hydrofluoric acid.
  • the wet gel blanket forming step may not be used by further adding an organic solvent.
  • the hydrous alcohol solvent may be included in 60 parts by weight to 99 parts by weight based on 100 parts by weight of the silica sol.
  • the gelation reaction step may be performed under temperature conditions of 50°C to 75°C.
  • the gelation reaction step may be performed for 2 hours to 5 hours.
  • the manufacturing method of the airgel blanket according to the present invention uses a gaseous silazane-based compound, ammonia generated during reaction, an alkoxy silane-based compound and an alkyl silanol-based compound such as trimethyl ethoxy silane (TMES) and trimethyl silanol (TMS) Since it is not necessary to go through a separate aging step or a surface modification step by the like, the process can be simplified. On the other hand, in general, in the case of undergoing an aging step or a surface modification step, an organic solvent is additionally used, and since the above step is not separately performed, it is not necessary to additionally use a solvent and a surface modifier, thereby lowering the manufacturing cost.
  • TMES trimethyl ethoxy silane
  • TMS trimethyl silanol
  • FIG. 1 shows a flow chart of a method of manufacturing an airgel blanket according to the prior invention.
  • Figure 2 shows a flow chart of a method of manufacturing an airgel blanket according to the present invention.
  • the method of manufacturing the airgel blanket according to the present invention includes: (1) preparing a sol; (2) after depositing the substrate on the sol, reacting with a gaseous silazane-based compound to form a gel, and at the same time, aging and surface modification reactions proceed to form a wet gel blanket; And (3) drying the wet gel blanket to prepare an airgel blanket.
  • each step will be described in order.
  • the sol according to an embodiment of the present invention is not limited as long as it is a material capable of forming a porous gel by a sol-gel reaction, and may specifically include an inorganic sol, an organic sol, or a combination thereof.
  • the inorganic sol may include zirconia, yttrium oxide, hafnia, alumina, titania, ceria, silica, magnesium oxide, calcium oxide, magnesium fluoride, calcium fluoride and combinations thereof
  • the organic sol is polyacrylate, Polyolefin, polystyrene, polyacrylonitrile, polyurethane, polyimide, polyfurfural alcohol, phenol furfuryl alcohol, melamine formaldehyde, resorcinol formaldehyde, cresol formaldehyde, phenol formaldehyde, polyvinyl alcohol dialdehyde, polysi Anurates, polyacrylamides, various epoxies, agar, agarose, and combinations thereof.
  • the silica sol is prepared by mixing a silica precursor, an acid catalyst, and a hydrous alcohol.
  • the silica precursor may be a silicon-containing alkoxide-based compound, for example, tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (tetraethyl orthosilicate; TEOS), methyl triethyl orthosilicate (methyl triethyl orthosilicate), dimethyl diethyl orthosilicate, tetrapropyl orthosilicate, tetraisopropyl orthosilicate, tetrabutyl orthosilicate, tetrabutyl orthosilicate, tetra Tetra secondary butyl orthosilicate, tetra tertiary butyl orthosilicate, tetrahexyl orthosilicate, tetracyclohexyl orthosilicate, tetradodode It may be a tetraalkyl orthosilicate such as tetradodecyl orthosilicate.
  • TMOS
  • the silica precursor may be used so that the content of silica (SiO 2 ) relative to 100 parts by weight of the prepared silica sol is 0.1 parts by weight to 30.0 parts by weight.
  • silica silica relative to 100 parts by weight of the prepared silica sol is 0.1 parts by weight to 30.0 parts by weight.
  • the acid catalyst may be any acid as long as it can cause an oxidation reaction to promote the hydration reaction of the silica precursor.
  • one or more inorganic acids such as nitric acid, hydrochloric acid, acetic acid, sulfuric acid, and hydrofluoric acid can be used. have. However, it is not limited to those listed above.
  • hydrous alcohol is used to promote the surface modification reaction and to control the degree of hydrophobicity of the final produced silica airgel blanket.
  • the hydrous alcohol controls the silica density in the silica sol, and serves to decompose the gaseous silazane-based compound into ammonia, an alkoxy silane-based compound, and an alkyl silanol-based compound.
  • the hydrous alcohol serves to decompose the hexamethyldisilazane into ammonia, trimethyl ethoxy silane (TEMS), and trimethyl silanol (TMS). It may be.
  • the hydrous alcohol is specifically a monohydric hydrous alcohol such as hydrous methanol, hydrous ethanol, hydrous isopropanol, hydrous butanol, etc.; Or it may be a polyhydric alcohol such as hydrous glycerol, hydrous ethylene glycol, hydrous propylene glycol, hydrous diethylene glycol, hydrous dipropylene glycol, and hydrous sorbitol, and any one or a mixture of two or more of them may be used. Among these, when considering miscibility with water and airgel, it may be a monohydric alcohol having 1 to 6 carbon atoms, such as hydrous methanol, hydrous ethanol, hydrous isopropanol, and hydrous butanol.
  • the hydrous alcohol is 60 parts by weight to 99 parts by weight, more preferably 70 parts by weight to 99 parts by weight based on 100 parts by weight of the sol, and reacts sufficiently with the gaseous silazane-based compound in step (2) below.
  • ammonia, trimethyl ethoxy silane (TMES) and trimethyl silanol (TMS) can be formed.
  • the wet gel blanket forming step is performed by depositing the substrate on the sol prepared in the step (1) and then reacting with the gaseous silazane-based compound to form a gel and simultaneously undergo aging and surface modification reactions.
  • the wet gel blanket according to an embodiment of the present invention may represent a substrate on which a gel is formed by gelling the sol impregnated in the substrate, and may specifically represent a composite of the wet gel and the blanket substrate.
  • ammonia (NH 3 ) and alkoxy silane compounds and alkyl silanol compounds such as ammonia, trimethyl ethoxy silane (TMES) and Trimethyl silanol (TMS) and the like. Therefore, when the sol and the gaseous silazane-based compound react, both the aging and the surface modification reaction proceed while forming a gel, so that the wet gel blanket can be formed in one step.
  • TMES trimethyl ethoxy silane
  • TMS Trimethyl silanol
  • the airgel blanket manufacturing method of the present invention can exhibit the same effect as having been subjected to the above steps, without going through the aging step and the surface modification step, unlike the conventional manufacturing method. And simplified manufacturing costs.
  • the substrate is deposited on the sol prepared by the step (1).
  • the deposition may be performed in a reaction container capable of accommodating the substrate, and may be deposited by a method of soaking or impregnating the reaction container with a sol or putting a substrate in the reaction container containing the sol.
  • the form of the substrate may be a film, sheet, net, fiber, porous body, foam, non-woven fabric, or a laminate of two or more of them.
  • the surface roughness may be formed or patterned. More specifically, the substrate may be a fiber that can further improve thermal insulation performance, including spaces or voids in which silica airgel is easily inserted.
  • the material of the substrate is polyamide, polybenzimidazole, polyaramid, acrylic resin, phenol resin, polyester, polyether ether ketone (PEEK), polyolefin (for example, polyethylene, polypropylene or copolymers thereof) Etc.), cellulose, carbon, cotton, wool, hemp, non-woven fabric, glass fiber or ceramic wool.
  • the substrate in the sol After depositing the substrate in the sol, it is reacted with a gaseous silazane-based compound. Specifically, after placing the liquid silazane-based compound in a separate container from the reaction vessel containing the substrate deposited on the sol, the respective containers are sealed together, and the temperature is raised to vaporize the liquid silazane-based compound, thereby A method of reacting with a silazane-based compound can be used. Alternatively, after immersing the base material in the sol, after sealing, the gaseous silazane-based compound may be supplied, and the base material deposited on the silica sol may be introduced into the reaction vessel containing only the gaseous silazane-based compound to react. However, the method of reacting is not limited by a specific method.
  • the silazane-based compound may specifically be a silazane-based compound containing two or more alkyl groups in one molecule, and more specifically, the compound of Formula 1 below:
  • R 1 and R 3 may each independently be an alkyl group having 1 to 8 carbon atoms
  • R 2 and R 4 may each independently be a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • n and m are Each independently may be an integer from 1 to 3.
  • silazane-based compound examples include 1,3-diethyldisilazane (1,3-diethyldisilazane), 1,1,3,3-tetramethyldisilazane (1,1,3,3-tetramethyl disilazane) , 1,1,3,3-tetraethyldisilazane (1,1,3,3-tetraethyl disilazane), 1,1,1,3,3,3-hexamethyldisilazane (1,1,1 ,3,3,3-hexamethyldisilazane; HMDS), 1,1,1,3,3,3-hexaethyldisilazane (1,1,1,3,3,3-hexaethyldisilazane), 1,1,3 ,3-tetraethyldisilazane (1,1,3,3-tetraethyldisilazane) or 1,3-diisopropyldisilazane, and the like
  • the silazane-based surface modifier may further increase the hydrophobicity of the airgel, in the silazane-based compound of Chemical Formula 1, tetraalkyldisilazane comprising two hydrogen atoms and four alkyl groups having 1 to 4 carbon atoms; Or it may be a hexaalkyldisilazane containing 6 alkyl groups having 1 to 4 carbon atoms, and more specifically, it may be hexamethyldisilazane (HMDS) or tetramethyldisilazane.
  • HMDS hexamethyldisilazane
  • the hydrous alcohol contained in the sol specifically silica sol
  • the gaseous silazane-based compound reacts with the gaseous silazane-based compound to generate ammonia (NH 3 ).
  • the gaseous silazane-based compound is aged by the ammonia generated by reacting with the hydrous alcohol contained in the sol, and at the same time as the gelation reaction.
  • one or more compounds may also be generated from the group consisting of alkoxy silane-based compounds and alkyl silanol-based compounds, and specifically, trimethyl ethoxy silane (TMES) when the silazane-based compound is hexamethyldisilazane. And trimethyl silanol (TMS).
  • TMES trimethyl ethoxy silane
  • TMS trimethyl silanol
  • the alkoxy silane-based compound and the alkyl silanol-based compound generated by reacting the gaseous silazane-based compound with the hydrous alcohol contained in the sol, specifically trimethyl ethoxy silane (TMES) and trimethyl silanol (TMS), etc.
  • TMES trimethyl ethoxy silane
  • TMS trimethyl silanol
  • the alkoxy silane-based compound and the alkyl silanol-based compound are materials used as a surface modifier when preparing a conventional airgel blanket.
  • the silazane-based compound of the present invention may be a precursor material of a material used as a surface modifier.
  • the surface of the airgel specifically the silica airgel, may be hydrophobically modified by a compound such as an alkoxy silane-based compound decomposed from a silazane-based compound, even if a separate surface modifier is not added to the surface-modifying step. Can be.
  • the surface is modified as described above, the problem that the thermal conductivity of the airgel blanket increases due to the silanol group (Si-OH) on the silica surface absorbs moisture in the air can be prevented.
  • the gaseous silazane-based compound may be supplied in 2.5 parts by weight to 4.2 parts by weight, preferably 2.9 parts by weight to 4.2 parts by weight, and more preferably 3.4 parts by weight to 4.2 parts by weight based on 100 parts by weight of the silica sol. have.
  • the silazane-based compound is used within the above range, it is possible to provide a method for manufacturing an airgel blanket having a certain level of thermal insulation while reducing manufacturing cost.
  • the surface modification uniformly throughout the wet gel blanket, which effectively distributes the surface modifying active ingredients (hereinafter referred to as surface modifiers) evenly on the surface and inside the wet gel blanket.
  • surface modifiers surface modifying active ingredients
  • dispersion of the surface modifier is well made into the surface and inside of the wet gel blanket formed by gelation due to the gas-intrinsic property having excellent diffusivity.
  • Airgel blanket prepared accordingly may have uniform hydrophobicity as a whole.
  • the surface modifier solution is required in a volume sufficient to hold the entire wet gel blanket formed by gelation in order to uniformly disperse the surface modifier in the wet gel blanket.
  • the required volume is usually met by dilution in a solvent.
  • the type used as a solvent is an organic solvent, which may not be desirable from an environmental point of view.
  • the surface modification efficiency is inevitably reduced compared to the gaseous silazane-based compound due to the presence of the solvent, and when the surface modification proceeds with the same amount of the silazane-based compound, the liquid-phase silazane-based
  • a compound solution diiluent
  • the surface modification time takes longer and the efficiency is greatly reduced.
  • the concentration of the surface modifier solution must be increased by using an excessive amount of a silazane-based compound, which results in wasting a relatively expensive silazane-based compound. That is, it is preferable to apply a gaseous silazane-based compound in order to obtain maximized surface modification reaction efficiency compared to the amount of the silazane-based compound used.
  • the surface modifier may represent an alkoxy silane-based compound and/or an alkyl silanol-based compound produced as a result of the decomposition reaction of a silazane-based compound in the present invention, which may be a substance that acts as an active ingredient in the surface-modifying reaction. have.
  • the gel is formed over the entire volume area of the reaction mixture solution including the sol and the silazane-based diluent, as well as the substrate, it is not possible to stably manufacture the airgel blanket of the desired specification, and the airgel blanket that is the final product only with the substrate specification There is a problem in that it is not easy to control the size of the product, and in order to secure the airgel blanket of the desired size, an additional process such as a separate cutting process must be carried out, so the process efficiency may decrease.
  • the wet gel blanket forming step may be performed under a temperature condition of 50 °C to 75 °C, preferably 55 °C to 75 °C, more preferably 60 °C to 75 °C.
  • the gaseous silazane-based compound is supplied so as not to delay the time during which the gel is formed by controlling the evaporation rate of the hydrous alcohol and the rate at which the liquid-phase silazane-based compound is vaporized. Can be.
  • aging and surface modification reactions may be simultaneously performed.
  • the wet gel blanket forming step may be performed for 2 hours to 5 hours.
  • the wet gel blanket forming step unlike the conventional airgel blanket manufacturing method, it does not undergo a further aging and surface modification step. Therefore, when compared with the sum of the time for each step required when going through three steps, the total process time can also be shortened.
  • wet gel blanket according to an embodiment of the present invention may further perform the step of drying after formation.
  • the drying step according to an embodiment of the present invention may be performed through a process of removing the solvent while maintaining the pore structure of the aged gel, and the drying step may be performed by a supercritical drying or atmospheric pressure drying process. . Alternatively, the drying step may be to perform both supercritical drying and atmospheric drying sequentially.
  • the supercritical drying process may be performed using supercritical carbon dioxide.
  • Carbon dioxide (CO 2 ) is in a gaseous state at normal temperature and pressure, but when it exceeds a certain temperature and high pressure limit called a supercritical point, the evaporation process does not occur and thus becomes a critical state in which gas and liquid cannot be distinguished.
  • Carbon dioxide in a state is called supercritical carbon dioxide.
  • Supercritical carbon dioxide has a molecular density close to that of a liquid, but has a low viscosity, close to gas, high diffusion, high thermal conductivity, high drying efficiency, and shortening of the drying process time.
  • the supercritical drying step into the second wet gel blanket aging threshold in dry reactor and then, filling up the CO 2 in a liquid state and performs the solvent replacement step of replacing the alcohol solvent within the wet gel to CO 2.
  • a constant heating rate specifically, at a rate of 0.1° C./min to 1° C./min, to 40 to 70° C.
  • pressure above the pressure at which carbon dioxide becomes a supercritical state specifically, 100 bar to 150 bar
  • the pressure is maintained to maintain the supercritical state of carbon dioxide for a certain period of time, specifically 20 minutes to 1 hour.
  • carbon dioxide is supercritical at a temperature of 31°C and a pressure of 73.8 bar.
  • Carbon dioxide is maintained at a constant temperature and a pressure at which the carbon dioxide is in a supercritical state for 2 to 12 hours, more specifically 2 to 6 hours, and then the pressure is gradually removed to complete a supercritical drying process to prepare an airgel blanket. You can.
  • a normal pressure drying process it may be performed according to a conventional method such as hot air drying and IR drying under a temperature of 70 to 200° C. and normal pressure (1 ⁇ 0.3 atm).
  • the silica airgel according to an embodiment of the present invention has excellent physical properties, particularly low tap density and high porosity, with high hydrophobicity, and the silica airgel-containing blanket containing it has excellent mechanical flexibility with low thermal conductivity.
  • the thickness control and the pressing process for uniformizing the internal structure and surface shape of the blanket may be further performed.
  • the silica sol was prepared by adding the mixture so that the pH was 1.
  • the gaseous hexamethyldisilazane was introduced into a closed container containing 4.2 parts by weight based on 100 parts by weight of the silica sol to form a wet gel blanket at 70°C for 5 hours.
  • the wet gel blanket was placed in a 7.2 L supercritical extractor and CO 2 was injected.
  • the temperature in the extractor was heated to 60°C over 1 hour, and supercritical dried at 50°C and 100 bar. Thereafter, CO 2 was vented over 2 hours, and then dried under an additional pressure in an oven at 150° C. to prepare an airgel blanket.
  • An airgel blanket was prepared in the same manner as in Example 1, except that the wet gel blanket forming step was performed at 70° C. for 3 hours.
  • An airgel blanket was prepared in the same manner as in Example 1, except that the wet gel blanket forming step was performed at 50°C.
  • An airgel blanket was prepared in the same manner as in Example 1, except that the gaseous hexamethyldisilazane was reduced to 60 parts by weight compared to Example 1 and supplied into the sealed container.
  • An airgel blanket was prepared in the same manner as in Example 1, except that the gaseous hexamethyldisilazane was reduced to 50 parts by weight compared to Example 1 and supplied into the sealed container.
  • the silica sol was prepared by adding the mixture so that the pH was 1.
  • an ammonia catalyst was added to the silica sol in an amount of 0.5% by volume to initiate a gelation reaction and glass fibers were deposited to prepare a silica wet gel composite.
  • the prepared silica wet gel composite was aged in an ethanol solution at a temperature of 70° C. for 1 hour.
  • a surface modifier solution prepared by mixing hexamethyldisilazane and ethanol in a volume ratio of 1:19 was added at 90% by volume relative to the wet gel, and surface modified at 70°C for 4 hours to prepare a hydrophobic silica wet gel composite.
  • the hydrophobic silica wet gel complex was placed in a 7.2 L supercritical extractor and CO 2 was injected. Thereafter, the temperature in the extractor was heated to 60°C over 1 hour, and supercritical dried at 50°C and 100 bar. Thereafter, CO 2 was vented over 2 hours, and then dried under an additional pressure in an oven at 150° C. to prepare an airgel blanket.
  • An airgel blanket was prepared in the same manner as in Comparative Example 1, except that the surface modification was performed at 70° C. for 2 hours.
  • An airgel blanket was prepared in the same manner as in Comparative Example 1, except that a surface modifier solution was prepared using hexamethyldisilazane reduced to 60 parts by weight compared to Comparative Example 1.
  • An airgel blanket was prepared in the same manner as in Comparative Example 1, except that a surface modifier solution was prepared using hexamethyldisilazane reduced to 50 parts by weight compared to Comparative Example 1.
  • liquid hexamethyldisilazane and ethanol were mixed at a volume ratio of 1:19, and the same method as in Example 1 except that glass fibers deposited with silica sol was added to the solution prepared.
  • An airgel blanket was prepared.
  • hexamethyldisilazane is contained 4.2 parts by weight based on 100 parts by weight of the silica sol.
  • the airgel blankets prepared in Examples and Comparative Examples were measured at room temperature thermal conductivity using NETZSCH HFM 436 equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 제조 원가 및 제조 시간을 감축하여 공정성이 개선된 에어로겔 블랭킷의 제조방법을 제공하는 것으로, 구체적으로 전구체, 산 촉매 및 함수 알코올을 혼합하여 졸을 준비하는 단계; 상기 졸에 기재를 침적시킨 후 기체상 실라잔계 화합물과 반응하여, 겔을 형성함과 동시에 숙성 및 표면 개질 반응이 진행되어 습윤겔 블랭킷이 형성되는 단계; 및 습윤겔 블랭킷을 건조하여 에어로겔 블랭킷을 제조하는 단계;를 포함하는 에어로겔 블랭킷의 제조방법에 관한 것이다.

Description

에어로겔 블랭킷의 제조방법
관련 출원과의 상호 인용
본 출원은 2018년 12월 13일자 한국 특허 출원 10-2018-0161090호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 에어로겔 블랭킷의 제조방법에 관한 것이다.
에어로겔(aerogel)은 90% ~ 99.9% 정도의 기공율과 1nm ~ 100nm 범위의 기공크기를 갖는 초다공성의 고비표면적(>500 m2/g) 물질로서, 뛰어난 초경량/초단열/초저유전 등의 특성을 갖는 신소재이다. 이에 따라, 에어로겔 소재 개발연구는 물론 투명단열재 및 환경 친화적 고온형 단열재, 고집적 소자용 극저유전 박막, 촉매 및 촉매 담체, 슈퍼 커패시터용 전극, 해수 담수화용 전극 재료로서의 응용연구도 활발히 진행되고 있다.
에어로겔의 가장 큰 장점은 종래 스티로폼 등의 유기 단열재보다 낮은 0.300 W/m·K 이하의 열전도율을 보이는 슈퍼단열성(super-insulation)인 점과 유기 단열재의 치명적인 약점인 화재 취약성과 화재시 유해가스 발생을 해결할 수 있다는 점이다.
일반적으로, 에어로겔은 에어로겔 블랭킷에 적용되어 사용되는 경우가 많으며, 에어로겔 블랭킷은 졸 형성, 습윤겔 형성, 숙성(aging), 용매치환, 표면개질, 건조라는 공정을 거치는 졸-겔 법을 통해 제조되고 있다.
그러나, 상기 졸-겔법은 상기와 같이 다단 공정을 거쳐야 하므로, 많은 비용 및 시간이 요구된다. 보다 구체적으로, 숙성 단계 및 표면개질 단계에서는 다량의 용매가 필요하므로, 제조 단가가 높아지는 문제점이 존재한다.
따라서, 보다 간단하고 제조 원가를 절감하여 공정성을 향상시킬 수 있는 새로운 에어로겔 블랭킷의 제조방법의 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국 공개특허공보 제10-2016-0100082호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 기존의 제조방법 보다 제조 공정을 단순화할 수 있는 에어로겔 블랭킷의 제조방법을 제공하여, 제조 원가 및 제조 시간을 감축하여 공정성이 개선된 에어로겔 블랭킷의 제조방법을 제공하기 위한 것이다.
일 구현예로서, 본 발명은, 전구체 물질, 산 촉매 및 함수 알코올을 혼합하여 졸을 준비하는 단계; 상기 졸에 기재를 침적시킨 후 기체상 실라잔계 화합물과 반응하여, 겔을 형성함과 동시에 숙성 및 표면 개질 반응이 진행되어 습윤겔 블랭킷이 형성되는 단계; 및 상기 습윤겔 블랭킷을 건조하여 에어로겔 블랭킷을 제조하는 단계;를 포함하는 에어로겔 블랭킷의 제조방법을 제공한다.
한편, 숙성은 상기 기체상 실라잔계 화합물이 상기 졸에 포함된 함수 알코올과 반응하여 발생된 암모니아에 의한 것일 수 있다.
또한, 표면개질은 상기 기체상 실라잔계 화합물이 상기 졸에 포함된 함수 알코올과 반응하여 발생된 알콕시 실란계 화합물 및 알킬 실란올계 화합물로 이루어진 군에서 하나 이상의 화합물에 의한 것일 수 있다.
또한, 실라잔계 화합물은 하기 화학식 1로 표시되는 화합물인 것일 수 있다.
[화학식 1]
Figure PCTKR2019017744-appb-I000001
상기 화학식 1에서, R1 및 R3은 각각 독립적으로 탄소수 1 내지 8의 알킬기일 수 있고, R2 및 R4는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 8의 알킬기일 수 있으며, n 및 m은 각각 독립적으로 1 내지 3의 정수일 수 있다.
또한, 기체상 실라잔계 화합물은 헥사알킬디실라잔 및 테트라알킬디실라잔으로 이루어진 군에서 선택된 하나 이상의 화합물일 수 있으며 이중에서도 헥사메틸디실라잔(HMDS)을 포함하는 것일 수 있다.
이때, 기체상 실라잔계 화합물은 상기 졸 100 중량부에 대하여 2.5 중량부 내지 4.2 중량부로 공급될 수 있다.
예를 들어, 함수 알코올은, 함수메탄올, 함수에탄올, 함수이소프로판올, 함수부탄올, 함수글리세롤, 함수에틸렌글리콜, 함수프로필렌글리콜, 함수디에틸렌글리콜, 함수디프로필렌글리콜 및 함수솔비톨로 이루어진 군에서 선택되는 1 종 이상일 수 있다.
다른 예를 들어, 산 촉매는, 질산, 염산, 아세트산, 황산 및 불산으로 이루어진 군에서 선택되는 1 종 이상의 무기산일 수 있다.
한편, 상기 습윤겔 블랭킷 형성 단계는 유기용매를 더 추가하여 사용하지 않을 수 있다.
예를 들어, 상기 함수 알코올 용매는 상기 실리카 졸 100 중량부에 대하여 60 중량부 내지 99 중량부로 포함될 수 있다.
한편, 겔화 반응 단계는, 50℃ 내지 75℃의 온도 조건 하에 수행될 수 있다.
이때, 겔화 반응 단계는, 2시간 내지 5시간 동안 수행될 수 있다.
본 발명에 따른 에어로겔 블랭킷의 제조방법은 기체상의 실라잔계 화합물을 사용하여, 반응 시 발생되는 암모니아, 알콕시 실란계 화합물 및 알킬 실란올계 화합물, 예컨대 트리메틸 에톡시 실란(TMES) 및 트리메틸 실란올(TMS) 등에 의해 별도의 숙성(aging) 단계나 표면 개질 단계를 더 거치지 않아도 되므로, 공정을 단순화할 수 있다. 한편, 일반적으로 숙성 단계나 표면 개질 단계를 거치는 경우, 유기 용매를 추가로 사용하는데, 상기 단계를 별도로 거치지 않으므로, 용매 및 표면 개질제를 추가적으로 사용할 필요가 없어 제조 단가 또한 낮출 수 있다.
도 1은 종래 발명에 따른 에어로겔 블랭킷의 제조방법의 순서도를 나타낸 것이다.
도 2는 본 발명에 따른 에어로겔 블랭킷의 제조방법의 순서도를 나타낸 것이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에 따른 에어로겔 블랭킷의 제조방법은, (1) 졸을 준비하는 단계; (2) 상기 졸에 기재를 침적시킨 후 기체상 실라잔계 화합물과 반응하여, 겔을 형성함과 동시에 숙성 및 표면 개질 반응이 진행되어 습윤겔 블랭킷이 형성되는 단계; 및 (3) 상기 습윤겔 블랭킷을 건조하여 에어로겔 블랭킷을 제조하는 단계;를 포함한다. 이하, 각 단계를 순서대로 설명한다.
(1) 졸 준비 단계
본 발명의 일 실시예에 따른 졸은 졸-겔 반응으로 다공성의 겔을 형성할 수 있는 물질이라면 제한하지 않으며, 구체적으로 무기 졸, 유기 졸 또는 이들의 조합을 포함할 수 있다. 무기 졸은 지르코니아, 산화이트륨, 하프니아, 알루미나, 티타니아, 세리아, 실리카, 산화 마그네슘, 산화칼슘, 플루오르화 마그네슘, 플루오르화 칼슘 및 이들의 조합물을 포함할 수 있고, 유기 졸은 폴리아크릴레이트, 폴리올레핀, 폴리스틸렌, 폴리아크릴로니트릴, 폴리우레탄, 폴리이미드, 폴리푸르푸랄 알콜, 페놀 푸르푸릴 알콜, 멜라민 포름알데히드, 레조르시놀 포름알데히드, 크레졸 포름알데히드, 페놀 포름알데히드, 폴리비닐 알콜 디알데히드, 폴리시아누레이트, 폴리아크릴아미드, 다양한 에폭시, 한천, 아가로스 및 이들의 조합물을 포함할 수 있다. 또한, 블랭킷용 기재와의 우수한 혼화성을 확보하고, 겔로 형성 시 다공성을 더욱 개선할 수 있으며, 낮은 열전도도를 가지는 에어로겔 블랭킷을 제조하는 측면에서 바람직하게는 상기 졸이 실리카 졸인 것일 수 있다.
본 발명의 일 실시예에 따른 촉매화된 졸이 촉매화된 실리카 졸인 경우, 상기 실리카 졸은 실리카 전구체, 산 촉매 및 함수 알코올을 혼합하여 준비한다.
구체적으로, 상기 실리카 전구체는 실리콘 함유 알콕사이드계 화합물일 수 있으며, 예를 들어, 테트라메틸 오르소실리케이트(tetramethyl orthosilicate; TMOS), 테트라에틸 오르소실리케이트(tetraethyl orthosilicate; TEOS), 메틸트리에틸 오르소실리케이트(methyl triethyl orthosilicate), 디메틸디에틸 오르소실리케이트(dimethyl diethyl orthosilicate), 테트라프로필 오르소실리케이트(tetrapropyl orthosilicate), 테트라이소프로필 오르소실리케이트(tetraisopropyl orthosilicate), 테트라부틸 오르소실리케이트 (tetrabutyl orthosilicate), 테트라세컨드리부틸 오르소실리케이트(tetra secondary butyl orthosilicate), 테트라터셔리부틸 오르소실리케이트 (tetra tertiary butyl orthosilicate), 테트라헥실 오르소실리케이트(tetrahexyl orthosilicate), 테트라시클로헥실 오르소실리케이트(tetracyclohexyl orthosilicate), 테트라도데실 오르소실리케이트(tetradodecyl orthosilicate) 등과 같은 테트라알킬 오르소실리케이트일 수 있다.
상기 실리카 전구체는 준비되는 상기 실리카 졸 100 중량부에 대하여 실리카(SiO2)의 함량이 0.1 중량부 내지 30.0 중량부가 되도록 사용될 수 있다. 상기 실리카의 함량이 상기 범위 내인 경우, 단열성능이 우수하면서도, 기계적 물성 또한 일정 수준 이상을 유지하는 에어로겔 블랭킷을 제조할 수 있다.
한편, 상기 산 촉매는 실리카 전구체의 수화 반응을 촉진시키기 위해 산화 반응을 일으킬 수 있는 것이면, 어떠한 산이든 사용될 수 있으며, 구체적으로 질산, 염산, 아세트산, 황산 및 불산 등과 같은 1 종 이상의 무기산을 사용할 수 있다. 다만, 상기 나열된 것에 한정되는 것은 아니다.
또한, 상기 함수 알코올은 표면개질 반응을 촉진시키는 동시에 최종 제조되는 실리카 에어로겔 블랭킷의 소수화도를 조절하기 위해 사용된다.
또한, 상기 함수 알코올은 실리카 졸 내 실리카 밀도를 조절하고, 기체상 실라잔계 화합물을 암모니아, 알콕시 실란계 화합물 및 알킬 실란올계 화합물로 분해시키는 역할을 한다. 일례로, 상기 기체상 실라잔계 화합물이 기체상 헥사메틸디실라잔인 경우, 상기 함수 알코올은 상기 헥사메틸디실라잔을 암모니아, 트리메틸 에톡시 실란(TEMS), 트리메틸 실란올(TMS)로 분해시키는 역할을 하는 것일 수 있다.
상기 함수 알코올은 구체적으로 함수 메탄올, 함수 에탄올, 함수 이소프로판올, 함수 부탄올 등과 같은 1가 함수 알코올; 또는 함수 글리세롤, 함수 에틸렌글리콜, 함수 프로필렌글리콜, 함수 디에틸렌글리콜, 함수 디프로필렌글리콜, 및 함수 솔비톨 등과 같은 다가 함수 알코올일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 이 중에서도 물 및 에어로겔과의 혼화성을 고려할 때 함수 메탄올, 함수 에탄올, 함수 이소프로판올, 함수 부탄올 등과 같은 탄소수 1 내지 6의 1가 함수 알코올일 수 있다.
이때, 상기 함수 알코올은 상기 졸 100 중량부에 대하여 60 중량부 내지 99 중량부, 보다 바람직하게는 70 중량부 내지 99 중량부로 포함되는 경우, 하기 (2) 단계에서 기체상 실라잔계 화합물과 충분히 반응하여, 암모니아, 트리메틸 에톡시 실란(TMES) 및 트리메틸 실란올(TMS)등을 형성시킬 수 있다.
(2) 습윤겔 블랭킷 형성 단계
습윤겔 블랭킷 형성 단계는 상기 (1) 단계에서 준비된 졸에 기재를 침적시킨 후 기체상 실라잔계 화합물과 반응하여, 겔을 형성함과 동시에 숙성 및 표면 개질 반응이 진행되어 수행된다. 본 발명의 일 실시예에 따른 습윤겔 블랭킷은 기재 내 함침된 졸이 겔화하여, 겔이 형성된 기재를 나타내는 것일 수 있으며, 구체적으로 습윤겔과 블랭킷 기재의 복합체를 나타내는 것일 수 있다.
종래의 에어로겔 블랭킷을 제조하는 방법에 의하는 경우, 도 1에 기재된 것과 같이 졸의 겔화 이후, 별도의 숙성 단계, 표면 개질 단계를 추가적으로 더 거친 이후, 마지막으로 초임계 건조 단계를 거쳐야 한다. 따라서, 다단계를 거쳐야만 하므로, 제조공정이 길어 공정 경제성이 떨어진다는 문제점이 있었다. 한편, 숙성 및 표면 개질을 수행하기 위해서는 졸 내 함수 알코올 외에 추가적으로 알코올과 같은 유기용매를 반드시 사용해야 하고, 표면 개질 단계에서는 추가적으로 표면 개질제를 더 사용하여야 하므로, 제조 원가 또한 높아 상용화의 한계가 있었다.
본 발명의 습윤겔 블랭킷 형성 단계의 경우, 기체상의 실라잔계 화합물과 함수 알코올과 반응을 통해 암모니아(NH3) 및 알콕시 실란계 화합물 및 알킬 실란올계 화합물, 예컨대 암모니아, 트리메틸 에톡시 실란(TMES) 및 트리메틸 실란올(TMS) 등이 발생된다. 따라서, 상기 졸과 기체상 실라잔계 화합물이 반응할 때, 겔을 형성함과 동시에 숙성 및 표면 개질 반응이 모두 진행되어 습윤겔 블랭킷이 한 단계에 의하여 형성될 수 있다. 또한, 본 발명에 따르는 경우, 상기 습윤겔 블랭킷 형성 단계에서 유기용매를 더 추가하여 사용하지 않아도 되므로, 제조 원가를 절감하고 있어 공정성을 개선시킬 수 있다.
따라서, 본 발명의 에어로겔 블랭킷 제조방법은 도 2에 도시되어 있는 것과 같이, 종래의 제조방법과는 달리 숙성 단계 및 표면 개질 단계를 별도로 거치지 않아도 상기 단계를 거친 것과 동일한 효과를 나타낼 수 있어, 제조 공정을 단순화하고, 제조 원가 또한 절감할 수 있게 되었다.
먼저, 상기 (1) 단계에 의하여 제조된 졸에 기재를 침적시킨다. 구체적으로 상기 침적은 기재를 수용할 수 있는 반응 용기 내에서 이루어질 수 있으며, 상기 반응 용기에 졸을 붓거나, 졸이 담긴 반응 용기 내에 기재를 넣어 적시거나 함침시키는 방법으로 침적시킬 수 있다.
한편, 상기 기재의 형태는 필름, 시트, 네트, 섬유, 다공질체, 발포체, 부직포체 또는 이들의 2층 이상의 적층체일 수 있다. 또한, 용도에 따라 그 표면에 표면조도가 형성되거나 패턴화된 것일 수도 있다. 보다 구체적으로 상기 기재는 실리카 에어로겔의 삽입이 용이한 공간 또는 공극을 포함하여 단열 성능이 보다 더 향상될 수 있는 섬유일 수 있다.
구체적으로 상기 기재의 소재는 폴리아미드, 폴리벤즈이미다졸, 폴리아라미드, 아크릴수지, 페놀수지, 폴리에스테르, 폴리에테르에테르케톤(PEEK), 폴리올레핀(예를 들면, 폴리에틸렌, 폴리프로필렌 또는 이들의 공중합체 등), 셀룰로오스, 카본, 면, 모, 마, 부직포, 유리섬유 또는 세라믹울 등을 포함할 수 있다.
졸에 기재를 침적시킨 뒤 기체상 실라잔계 화합물과 반응시킨다. 구체적으로 상기 졸에 침적된 기재가 담겨있는 반응용기와 별개의 용기에 액체상의 실라잔계 화합물을 담아둔 후, 각각의 용기를 함께 밀폐시킨 뒤, 온도를 높여 액체상의 실라잔계 화합물을 기화시켜, 기체상 실라잔계 화합물과 반응시키는 방법을 사용할 수 있다. 또는 졸에 기재를 침적시킨 뒤, 밀폐시킨 뒤, 기체상 실라잔계 화합물을 공급할 수도 있고, 상기 기체상 실라잔계 화합물만이 포함된 반응용기 내에 실리카 졸에 침적된 기재를 투입하여 반응시킬 수 있다. 다만, 반응시키는 방식이 특정 방법에 의하여 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 상기 실라잔계 화합물은 구체적으로 1분자 내에 알킬기를 2개 이상 포함하는 실라잔계 화합물일 수 있으며, 보다 구체적으로는 하기 화학식 1의 화합물일 수 있다:
[화학식 1]
Figure PCTKR2019017744-appb-I000002
상기 화학식 1에서, R1 및 R3은 각각 독립적으로 탄소수 1 내지 8의 알킬기일 수 있고, R2 및 R4는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 8의 알킬기일 수 있으며, n 및 m은 각각 독립적으로 1 내지 3의 정수일 수 있다.
상기 실라잔계 화합물의 구체적인 예로는 1,3-디에틸디실라잔(1,3-diethyldisilazane), 1,1,3,3-테트라메틸디실라잔(1,1,3,3-tetramethyl disilazane), 1,1,3,3-테트라에틸디실라잔(1,1,3,3-tetraethyl disilazane), 1,1,1,3,3,3-헥사메틸디실라잔(1,1,1,3,3,3-hexamethyldisilazane; HMDS), 1,1,1,3,3,3-헥사에틸디실라잔(1,1,1,3,3,3- hexaethyldisilazane), 1,1,3,3-테트라에틸디실라잔(1,1,3,3-tetraethyldisilazane) 또는 1,3-디이소프로필디실라잔(1,3-diisopropyldisilazane) 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
이중에서도 상기 실라잔계 표면개질제는 에어로겔의 소수성을 더욱 증가시킬 수 있도록, 상기 화학식 1의 실라잔계 화합물에 있어서 두개의 수소 원자와 함께 탄소수 1 내지 4의 알킬기를 4개 포함하는 테트라알킬디실라잔; 또는 탄소수 1 내지 4의 알킬기를 6개 포함하는 헥사알킬디실라잔일 수 있으며, 보다 구체적으로는 헥사메틸디실라잔(HMDS) 또는 테트라메틸디실라잔일 수 있다.
한편, 상기 기체상 실라잔계 화합물과 졸이 침적된 기재가 반응하는 경우, 졸, 구체적으로 실리카 졸에 포함되어 있는 함수 알코올과 상기 기체상 실라잔계 화합물이 반응하게 되어, 암모니아(NH3)가 발생될 수 있다. 이때, 상기 기체상 실라잔계 화합물이 상기 졸에 포함된 함수 알코올과 반응하여 발생된 암모니아에 의하여 숙성이 겔화 반응과 동시에 이루어 지게 된다.
또한, 상기 반응에 의하여, 알콕시 실란계 화합물 및 알킬 실란올계 화합물로 이루어진 군에서 하나 이상의 화합물도 발생될 수 있으며, 구체적으로, 상기 실라잔계 화합물이 헥사메틸디실라잔인 경우 트리메틸 에톡시 실란(TMES) 및 트리메틸 실란올(TMS)으로 이루어진 군에서 하나 이상의 화합물이 발생할 수 있다.
따라서, 상기 기체상 실라잔계 화합물이 상기 졸에 포함된 함수 알코올과 반응하여 발생된 상기 알콕시 실란계 화합물 및 알킬 실란올계 화합물, 구체적으로 트리메틸 에톡시 실란(TMES) 및 트리메틸 실란올(TMS) 등의 화합물에 의하여 겔화 반응, 숙성 반응과 동시에 표면 개질 또한 이루어지게 된다.
한편, 상기 알콕시 실란계 화합물 및 알킬 실란올계 화합물은 종래의 에어로겔 블랭킷을 제조할 때, 표면개질제로 사용되는 물질이다. 즉, 본 발명의 실라잔계 화합물을 표면개질제로 사용되는 물질의 전구체 물질인 것일 수 있다. 본 발명에 따른 겔화 반응시에는 별도의 표면개질제를 추가하여 표면개질 단계를 거치지 않더라도, 실라잔계 화합물로부터 분해된 알콕시 실란계 화합물 등과 같은 화합물에 의하여 에어로겔, 구체적으로 실리카 에어로겔의 표면이 소수성으로 개질될 수 있다. 상기와 같이 표면이 개질되는 경우, 실리카 표면의 실라놀기(Si-OH)가 공기 중의 수분을 흡수하여 에어로겔 블랭킷의 열 전도성이 높아지는 문제점을 미연에 방지할 수 있다.
이때, 상기 기체상 실라잔계 화합물은 상기 실리카 졸 100 중량부에 대하여 2.5 중량부 내지 4.2 중량부, 바람직하게는 2.9 중량부 내지 4.2 중량부, 보다 바람직하게는 3.4 중량부 내지 4.2 중량부로 공급될 수 있다. 상기 실라잔계 화합물이 상기 범위 내로 사용되는 경우, 제조 원가를 절감하면서도 일정 수준 이상의 단열성을 가지는 에어로겔 블랭킷의 제조방법을 제공할 수 있다.
본 발명의 일 실시예에 따라 기체상 실라잔계 화합물을 사용하는 경우, 용매가 필요하지 않아 원재료 비용을 절감할 수 있고, 또 일반적으로 표면개질 시 사용되는 유기 용매가 사용되지 않으므로 친환경적인 측면에서 효과적이다. 또한, 액체상 실라잔계 화합물을 사용하였을 때에 비해 표면개질 효율이 더욱 개선될 수 있다.
구체적으로, 에어로겔 블랭킷의 우수한 소수성을 위해서는 표면개질이 습윤겔 블랭킷 전체적으로 균일하게 이루어지도록 하는 것이 중요하고, 이는 습윤겔 블랭킷의 표면 및 내부에 표면개질 유효성분(이하, 표면개질제라고 한다)이 골고루 분산됨으로써 실현될 수 있다. 본 발명의 일 실시예와 같이 기체상 실라잔계 화합물을 사용하는 경우에는 확산성(diffusivity)이 우수한 기체 고유의 성질에 의해 겔화로 형성되는 습윤겔 블랭킷의 표면 및 내부로 표면개질제의 분산이 잘 이루어질 수 있고, 이에 따라 제조된 에어로겔 블랭킷은 전체적으로 균일한 소수성을 가질 수 있다. 그러나 액체상 실라잔계 화합물을 사용하는 경우, 습윤겔 블랭킷에 전체적으로 표면개질제가 골고루 분산될 수 있도록 하기 위해서는 표면개질제 용액이, 겔화로 형성되는 습윤겔 블랭킷 전체를 담을 수 있을 만큼의 부피로 필요하고, 이는 통상적으로 용매에 희석시켜 사용함으로써 필요 부피를 충족시킨다. 이와 같이, 액체상 실라잔계 화합물을 사용하는 경우 추가적인 용매의 사용이 필수적이기 때문에 원재료 비용이 높아지며, 일반적으로 용매로 사용되는 종류는 유기 용매이므로 환경적인 측면에서도 바람직하지 않을 수 있다. 또한, 실라잔계 화합물을 용매에 희석시켜 사용하게 되면 용매의 존재로 인해 상대적으로 표면개질 효율이 기체상 실라잔계 화합물에 비해 떨어질 수 밖에 없고, 동일한 양의 실라잔계 화합물로 표면개질 진행 시 액체상 실라잔계 화합물 용액(희석액)을 사용하였을 때 표면개질 시간이 더욱 오래 걸리게 되어 효율성이 크게 떨어진다. 이 때 표면개질 시간 단축을 위해서는 실라잔계 화합물을 과량 사용하여 표면개질제 용액의 농도를 높여야 하는데 이는 상대적으로 고비용인 실라잔계 화합물을 낭비하는 결과를 초래하게 된다. 즉, 실라잔계 화합물의 사용량 대비 극대화된 표면개질 반응 효율을 얻기 위해서는 기체상 실라잔계 화합물의 적용이 바람직하다.
여기에서 상기 표면개질제는 본 발명에서 실라잔계 화합물의 분해반응 결과로 생성되는 알콕시 실란계 화합물 및/또는 알킬 실란올계 화합물을 나타내는 것일 수 있고, 이는 표면개질 반응에서의 유효성분으로 작용하는 물질일 수 있다.
또한, 액체상의 실라잔계 화합물 외 추가적인 희석 용매를 첨가하지 않고 액체상의 실라잔계 화합물을 그대로 사용하는 경우에는, 전술한 것과 같이, 겔화로 형성되는 습윤겔 블랭킷이 잠길 만큼의 과량의 화합물이 필요하게 되고, 이에 따라 상대적으로 고가인 실라잔계 화합물을 과량 사용하게 되어 경제적이지 못하다. 또한, 과량 사용으로 인해 반응 혼합물에서 실라잔계 화합물의 농도가 높아지게 되며, 높은 농도의 실라잔계 화합물은 전구체 물질 간의 축합 반응이 용이하게 이루어질 수 없도록 방해하는 요인이 될 수 있어, 겔화 시간이 오래 걸리거나, 더 악화되는 경우 겔화 자체가 진행되지 않는 문제가 발생할 수 있다.
더욱이, 기재에 침적된 졸을 용매에 희석한 액체상의 실라잔계 화합물과 반응시켜 겔화, 숙성 및 표면개질을 동시에 진행하는 경우에는, 기재 표면 및 내부뿐 아니라 기재 외의 반응 혼합물 용액의 전체에서 겔화가 이루어져 습윤겔 모노리스 형태로 형성된다. 즉, 이 모노리스의 습윤겔 내부에 단순히 기재가 포함되어 있을 뿐이며 기재 내부 또는 표면에만 습윤겔이 형성되는 것이 아니므로 전체 습윤겔 모노리스에서 습윤겔 블랭킷을 회수하였을 때 블랭킷 내 습윤겔의 실리카 농도가 현저하게 적어 열전도도, 소수성 등의 물성이 저하되는 문제가 발생할 수 있고, 또 블랭킷과 접촉하지 않은 대부분의 습윤겔은 폐기되므로 전구체 물질, 실라잔계 화합물 등의 원재료 낭비가 발생하는 문제가 있다.
또한, 기재뿐 아니라 졸 및 실라잔계 화합물 희석액을 포함한 반응 혼합물 용액 전체 부피면적에 대해 겔이 형성되기 때문에 최종적으로 목적하는 규격의 에어로겔 블랭킷을 안정적으로 제조할 수 없고, 기재 규격만으로 최종 생성물인 에어로겔 블랭킷의 규격 제어가 용이하지 않은 문제가 있으며, 목적하는 규격의 에어로겔 블랭킷을 확보하기 위해서는 별도의 재단 공정 등의 추가 공정이 수반되어야 하므로 공정 효율이 떨어질 수 있다.
한편, 상기 습윤겔 블랭킷 형성 단계는, 50℃ 내지 75℃, 바람직하게는 55℃ 내지 75℃, 보다 바람직하게는 60℃ 내지 75℃의 온도 조건 하에 수행될 수 있다. 상기 습윤겔 블랭킷 형성 단계가 상기 온도 범위 내에서 수행되는 경우, 함수 알코올의 기화 속도 및 액체상의 실라잔계 화합물이 기화되는 속도를 조절하여 겔이 형성되는 시간을 지체하지 않도록 기체상 실라잔계 화합물을 공급할 수 있다. 또한, 상기 온도 범위 내에서 상기 습윤겔 블랭킷 형성 단계가 진행되는 경우, 숙성, 표면 개질 반응이 동시에 진행될 수 있다.
이때, 상기 습윤겔 블랭킷 형성 단계는, 2 시간 내지 5 시간 동안 수행될 수 있다. 본 발명의 경우, 기존의 에어로겔 블랭킷 제조방법과는 달리, 별도의 숙성, 표면 개질 단계를 더 거치지 않는다. 따라서, 기존에 3 단계를 거칠 때에 필요한 각 단계 별 시간의 총합과 비교할 때, 전체 공정 시간 또한 단축시킬 수 있다.
또한, 본 발명의 일 실시예에 따른 습윤겔 블랭킷은, 형성 이후 건조하는 단계를 더 수행할 수 있다.
본 발명의 일 실시예에 따른 상기 건조 단계는 숙성된 겔의 기공구조를 그대로 유지하면서 용매를 제거하는 공정을 통해 수행될 수 있으며, 상기 건조 단계는 초임계 건조 또는 상압 건조 공정에 의할 수 있다. 또는, 상기 건조 단계는 초임계 건조 및 상압 건조를 순차적으로 모두 수행하는 것일 수 있다.
상기 초임계 건조 공정은 초임계 이산화탄소를 이용하여 수행될 수 있다. 이산화탄소(CO2)는 상온 및 상압에서는 기체 상태이지만 임계점(supercritical point)이라고 불리는 일정한 온도 및 고압의 한계를 넘으면 증발 과정이 일어나지 않아서 기체와 액체의 구별을 할 수 없는, 임계 상태가 되며, 이 임계 상태에 있는 이산화탄소를 초임계 이산화탄소라고 한다.
초임계 이산화탄소는 분자의 밀도는 액체에 가깝지만, 점성도는 낮아 기체에 가까운 성질을 가지며, 확산이 빠르고 열전도성이 높아 건조 효율이 높고, 건조 공정 시간을 단축시킬 수 있다.
구체적으로, 상기 초임계 건조 공정은 초임계 건조 반응기 안에 숙성된 습윤겔 블랭킷을 넣은 다음, 액체 상태의 CO2를 채우고 습윤겔 내부의 알코올 용매를 CO2로 치환하는 용매치환 공정을 수행한다. 그 후에 일정 승온 속도, 구체적으로는 0.1 ℃/min 내지 1 ℃/min의 속도로, 40 내지 70 ℃로 승온시킨 후, 이산화탄소가 초임계 상태가 되는 압력 이상의 압력, 구체적으로는 100 bar 내지 150 bar의 압력을 유지하여 이산화탄소의 초임계 상태에서 일정 시간, 구체적으로는 20 분 내지 1 시간 동안 유지한다. 일반적으로 이산화탄소는 31℃의 온도, 73.8 bar의 압력에서 초임계 상태가 된다. 이산화탄소가 초임계 상태가 되는 일정 온도 및 일정 압력에서 2 시간 내지 12 시간, 보다 구체적으로는 2 시간 내지 6 시간 동안 유지한 다음, 서서히 압력을 제거하여 초임계 건조 공정을 완료하여 에어로겔 블랭킷을 제조할 수 있다.
또한, 상압 건조 공정의 경우, 70 내지 200 ℃ 온도 및 상압(1±0.3 atm) 하에서 열풍건조, IR drying 등의 통상의 방법에 따라 수행될 수 있다.
상기와 같은 건조 공정의 결과로, 나노 크기의 기공을 갖는 다공성 에어로겔을 포함하는 블랭킷이 제조될 수 있다. 특히, 본 발명의 일 실시예에 따른 실리카 에어로겔은 높은 소수화도와 함께 우수한 물성적 특성, 특히 낮은 탭밀도와 높은 기공율을 가지며, 이를 포함하는 실리카 에어로겔 함유 블랭킷은 낮은 열전도도와 함께 우수한 기계적 유연성을 갖는다.
또한, 상기 건조 공정 전 또는 후에 두께 조절 및 블랭킷의 내부조직과 표면형상을 균일하게 하기 위한 압착 공정, 용도에 따라 적절한 형태 또는 모폴로지를 갖도록 하기 위한 성형 공정, 또는 별도의 기능층을 적층하는 적층 공정 등이 더 수행될 수도 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[실시예]
1. 실시예 1
테트라에틸오르소실리케이트(TEOS)와 함수에탄올을 중량비 3:1로 혼합하여 제조한 혼합 용액(실리카 함량 = 4 wt%)에, 물에 희석한 염산 용액(농도 = 0.15 %)을 상기 혼합 용액의 pH가 1이 되도록 첨가한 후 혼합하여 실리카 졸을 제조하였다. 제조한 실리카 졸에 유리섬유를 침적시킨 후, 기체상 헥사메틸디실라잔이 실리카 졸 100 중량부에 대하여 4.2 중량부로 들어있는 밀폐용기 내에 투입하여 70 ℃ 에서 5 시간 동안 습윤겔 블랭킷을 형성하였다. 상기 습윤겔 블랭킷을 7.2 L 초임계 추출기(extractor)에 넣고 CO2 를 주입하였다. 이후 추출기 내의 온도를 1 시간에 걸쳐 60 ℃로 승온하고, 50 ℃, 100 bar 에서 초임계 건조하였다. 이후 2 시간 동안에 걸쳐 CO2 를 배출(venting) 하고, 150 ℃의 오븐에서 추가로 상압 건조하여 에어로겔 블랭킷을 제조하였다.
2. 실시예 2
습윤겔 블랭킷 형성 단계를 70 ℃ 에서 3 시간 동안 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 에어로겔 블랭킷을 제조하였다.
3. 실시예 3
습윤겔 블랭킷 형성 단계를 50 ℃ 에서 수행한 것을 제외하고는, 실시예 1과 동일한 방법으로 에어로겔 블랭킷을 제조하였다.
4. 실시예 4
기체상 헥사메틸디실라잔을 실시예 1 대비 60 중량부로 감축하여 밀폐용기 내에 공급한 것을 제외하고는, 실시예 1과 동일한 방법으로 에어로겔 블랭킷을 제조하였다.
5. 실시예 5
기체상 헥사메틸디실라잔이 실시예 1 대비 50 중량부로 감축하여 밀폐용기 내에 공급한 것을 제외하고는, 실시예 1과 동일한 방법으로 에어로겔 블랭킷을 제조하였다.
[비교예]
1. 비교예 1
테트라에틸오르소실리케이트(TEOS)와 함수에탄올을 중량비 3:1로 혼합하여 제조한 혼합 용액(실리카 함량 = 4 wt%)에, 물에 희석한 염산 용액(농도 = 0.15 %)을 상기 혼합 용액의 pH가 1이 되도록 첨가한 후 혼합하여 실리카 졸을 제조하였다. 이후 실리카 졸에 암모니아 촉매를 0.5 부피%의 함량으로 첨가하여 겔화 반응을 개시하고 유리섬유를 침적시켜, 실리카 습윤겔 복합체를 제조하였다. 제조된 실리카 습윤겔 복합체를, 에탄올 용액 중에 70 ℃의 온도에서 1 시간 동안 방치하여 숙성시켰다. 이후, 헥사메틸디실라잔과 에탄올을 1:19의 부피비로 혼합하여 제조한 표면개질제 용액을 습윤겔에 대하여 90 부피%로 첨가하고 70 ℃ 에서 4 시간 동안 표면개질시켜 소수성 실리카 습윤겔 복합체를 제조하였다. 상기 소수성 실리카 습윤겔 복합체를 7.2 L 초임계 추출기(extractor)에 넣고 CO2 를 주입하였다. 이후 추출기 내의 온도를 1 시간에 걸쳐 60 ℃로 승온하고, 50 ℃, 100 bar 에서 초임계 건조하였다. 이후 2 시간 동안에 걸쳐 CO2 를 배출(venting) 하고, 150 ℃의 오븐에서 추가로 상압 건조하여 에어로겔 블랭킷을 제조하였다.
2. 비교예 2
표면 개질을 70 ℃ 에서 2 시간 동안 수행한 것을 제외하고는, 비교예 1과 동일한 방법으로 에어로겔 블랭킷을 제조하였다.
3. 비교예 3
비교예 1 대비 60 중량부로 감축된 헥사메틸디실라잔을 사용하여 표면 개질제 용액을 제조한 것을 제외하고는, 비교예 1과 동일한 방법으로 에어로겔 블랭킷을 제조하였다.
4. 비교예 4
비교예 1 대비 50 중량부로 감축된 헥사메틸디실라잔을 사용하여 표면 개질제 용액을 제조한 것을 제외하고는, 비교예 1과 동일한 방법으로 에어로겔 블랭킷을 제조하였다.
5. 비교예 5
기체상 헥사메틸디실라잔 대신, 액체상 헥사메틸디실라잔과 에탄올을 1:19의 부피비로 혼합하여 제조한 용액에 실리카 졸이 침적된 유리 섬유를 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 에어로겔 블랭킷을 제조하였다. 이 때 헥사메틸디실라잔은 실리카 졸 100 중량부에 대하여 4.2 중량부가 포함된 것이다.
실험예
상기 실시예 1 내지 6 및 비교예 1 내지 5의 각 물성을 측정하여 그 결과를 하기 표 1에 나타내었다. 한편, 비교예 5의 경우 졸 및 표면개질 용액을 포함한 반응물 전체 부피에 대해 겔화가 진행되어 에어로겔 모노리스가 제조되었고, 이 중에서 에어로겔 블랭킷만 별도로 회수하여 물성을 측정하였다.
1) 상온 열전도도 (mW/mK, 25℃)
실시예 및 비교예에서 제조한 에어로겔 블랭킷을 NETZSCH社의 HFM 436 장비를 이용하여 상온 열전도도를 측정하였다.
2) 수분 함침률(소수화도)측정 (wt%)
실시예 및 비교예에서 제조된 실리카 에어로겔 블랭킷으로 100㎜X100㎜ 크기의 시편을 준비하고, 21±2℃인 증류수 위에 시편을 띄운 뒤, mesh screen을 수면 아래에 127㎜까지 가라앉힌다(함침). 15분 뒤 상기 mesh screen을 제거하고, 시편이 떠오르면 clamp로 시편을 집어 수직으로 60±5 초 동안 매달아 둔다. 이후, 함침 전/후의 시편의 무게를 각각 측정하여 무게 증가율을 하기 식 1로 계산하였고, 이를 수분 함침률로 정의한다.
[식 1]
무게 증가율(=수분 함침률, wt%) = {(함침 후 시편의 무게-함침 전 시편의 무게)/(함침 전 시편의 무게)} X100wt%
열전도도(mW/mK) 수분 함침률(wt%)
실시예 1 17.3 0.8
실시예 2 17.6 1.3
실시예 3 17.7 1.3
실시예 4 17.6 1.4
실시예 5 18.2 2.8
비교예 1 17.5 1.5
비교예 2 19.2 3.2
비교예 3 19.5 3.4
비교예 4 22.8 6.9
비교예 5 27.4 2.0
상기 표 1에 기재된 바와 같이, 실시예들은 별도의 표면개질단계나 숙성단계를 더 거치지 않았음에도 비교예와 비교할 때, 열전도도가 낮아 단열성능이 우수함을 확인할 수 있다. 또한, 실시예들의 경우, 비교예들과 비교할 때, 수분함침률 또한 더 낮아 발수성이 높은 것을 확인할 수 있다.
이중에서도 비교예 5는 에어로겔 블랭킷이 아닌 기재가 내부에 포함된 에어로겔 모노리스로 제조되어 물성 측정을 위해 에어로겔 모노리스로부터 에어로겔 블랭킷을 별도로 회수하는 공정이 필요하였고, 또 블랭킷의 표면 및 내부에 포함되지 않은 에어로겔은 모두 폐기되었는 바, 에어로겔 블랭킷 내 실리카 에어로겔의 비율이 다른 실시예 및 비교예에 비해 현저하게 낮아 열전도도 및 수분함침률이 크게 저하되는 것을 확인할 수 있다.

Claims (14)

  1. 전구체 물질, 산 촉매 및 함수 알코올을 혼합하여 졸을 준비하는 단계;
    상기 졸에 기재를 침적시킨 후 기체상 실라잔계 화합물과 반응하여, 겔을 형성함과 동시에 숙성 및 표면 개질 반응이 진행되어 습윤겔 블랭킷이 형성되는 단계; 및
    상기 습윤겔 블랭킷을 건조하여 에어로겔 블랭킷을 제조하는 단계;를 포함하는 에어로겔 블랭킷의 제조방법.
  2. 제1항에 있어서,
    상기 숙성은 상기 기체상 실라잔계 화합물이 상기 졸에 포함된 함수 알코올과 반응하여 발생된 암모니아에 의한 것인 에어로겔 블랭킷의 제조방법.
  3. 제1항에 있어서,
    상기 실라잔계 화합물은 하기 화학식 1로 표시되는 화합물인 것인 에어로겔 블랭킷의 제조방법:
    [화학식 1]
    Figure PCTKR2019017744-appb-I000003
    상기 화학식 1에서,
    R1 및 R3은 각각 독립적으로 탄소수 1 내지 8의 알킬기이고,
    R2 및 R4는 각각 독립적으로 수소 원자 또는 탄소수 1 내지 8의 알킬기이며,
    n 및 m은 각각 독립적으로 1 내지 3의 정수이다.
  4. 제1항에 있어서,
    상기 실라잔계 화합물은 테트라알킬디실라잔 및 헥사알킬디실라잔으로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하고, 상기 알킬은 탄소수 1 내지 4의 알킬기인 것인 에어로겔 블랭킷의 제조방법.
  5. 제1항에 있어서,
    상기 실라잔계 화합물은 헥사메틸디실라잔(HMDS)을 포함하는 것인 에어로겔 블랭킷의 제조방법.
  6. 제1항에 있어서,
    상기 표면 개질은 상기 기체상 실라잔계 화합물이 상기 졸에 포함된 함수 알코올과 반응하여 발생된 알콕시 실란계 화합물 및 알킬 실란올계 화합물로 이루어진 군에서 하나 이상의 화합물에 의한 것인 에어로겔 블랭킷의 제조방법.
  7. 제1항에 있어서,
    상기 기체상 실라잔계 화합물은 상기 실리카 졸 100 중량부에 대하여 2.5 중량부 내지 4.2 중량부로 공급되는 것인 에어로겔 블랭킷의 제조방법.
  8. 제1항에 있어서,
    상기 함수 알코올은, 함수메탄올, 함수에탄올, 함수이소프로판올, 함수부탄올, 함수글리세롤, 함수에틸렌글리콜, 함수프로필렌글리콜, 함수디에틸렌글리콜, 함수디프로필렌글리콜 및 함수솔비톨로 이루어진 군에서 선택되는 1 종 이상인 것인 에어로겔 블랭킷의 제조방법.
  9. 제1항에 있어서,
    상기 졸은 실리카 졸인 것인 에어로겔 블랭킷의 제조방법.
  10. 제1항에 있어서,
    상기 산 촉매는, 질산, 염산, 아세트산, 황산 및 불산으로 이루어진 군에서 선택되는 1 종 이상의 무기산인 것인 에어로겔 블랭킷의 제조방법.
  11. 제1항에 있어서,
    상기 습윤겔 블랭킷 형성 단계에서 유기용매를 더 추가하여 사용하지 않는 것인 에어로겔 블랭킷의 제조방법.
  12. 제1항에 있어서,
    상기 함수 알코올은 상기 졸 100 중량부에 대하여 60 중량부 내지 99 중량부로 포함되는 것인 에어로겔 블랭킷의 제조방법.
  13. 제1항에 있어서,
    상기 습윤겔 블랭킷 형성 단계는, 50℃ 내지 75℃의 온도 조건 하에 수행되는 것인 에어로겔 블랭킷의 제조방법.
  14. 제1항에 있어서,
    상기 습윤겔 블랭킷 형성 단계는, 2시간 내지 5시간 동안 수행되는 것인 에어로겔 블랭킷의 제조방법.
PCT/KR2019/017744 2018-12-13 2019-12-13 에어로겔 블랭킷의 제조방법 WO2020122683A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980033602.8A CN112135795B (zh) 2018-12-13 2019-12-13 气凝胶毡的制造方法
JP2020564635A JP7085647B2 (ja) 2018-12-13 2019-12-13 エアロゲルブランケットの製造方法
US17/057,251 US11365126B2 (en) 2018-12-13 2019-12-13 Method for manufacturing aerogel blanket
EP19896139.3A EP3778483A4 (en) 2018-12-13 2019-12-13 AEROGEL CEILING MANUFACTURING PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180161090 2018-12-13
KR10-2018-0161090 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020122683A1 true WO2020122683A1 (ko) 2020-06-18

Family

ID=71076580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017744 WO2020122683A1 (ko) 2018-12-13 2019-12-13 에어로겔 블랭킷의 제조방법

Country Status (6)

Country Link
US (1) US11365126B2 (ko)
EP (1) EP3778483A4 (ko)
JP (1) JP7085647B2 (ko)
KR (1) KR102489175B1 (ko)
CN (1) CN112135795B (ko)
WO (1) WO2020122683A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4011831B1 (en) * 2019-08-09 2024-05-22 Lg Chem, Ltd. Method for drying wet-gel blanket and method for manufacturing aerogel blanket by using same
KR102555087B1 (ko) * 2019-09-03 2023-07-17 주식회사 엘지화학 에어로겔 블랭킷
CN114232335B (zh) * 2021-11-17 2023-04-28 北京理工大学 一种防爆门用隔音毯的制备方法
CN116143102A (zh) * 2022-12-21 2023-05-23 山东大学 一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120017952A (ko) * 2010-08-20 2012-02-29 주식회사 화인텍 소수성 실리카 에어로젤의 제조방법 및 제조장치
KR20160100082A (ko) 2015-02-13 2016-08-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
KR20160122634A (ko) * 2015-04-14 2016-10-24 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
KR20170104956A (ko) * 2016-03-08 2017-09-18 주식회사 엘지화학 에어로겔 블랑켓의 제조방법 및 이로부터 제조된 에어로겔 블랑켓
KR20180029909A (ko) * 2016-09-12 2018-03-21 주식회사 엘지화학 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
KR20180029500A (ko) * 2016-09-12 2018-03-21 주식회사 엘지화학 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL253992A (ko) * 1959-07-20
DE19648798C2 (de) * 1996-11-26 1998-11-19 Hoechst Ag Verfahren zur Herstellung von organisch modifizierten Aerogelen durch Oberflächenmodifikation des wäßrigen Gels (ohne vorherigen Lösungsmitteltausch) und anschließender Trocknung
JP5267758B2 (ja) 2005-07-04 2013-08-21 日産化学工業株式会社 疎水性シリカ粉末の製造法
RU2579844C2 (ru) 2011-07-27 2016-04-10 Эвоник Дегусса Гмбх Способ изготовления гидрофобных теплоизоляционных формованных изделий
JP5644789B2 (ja) * 2012-02-15 2014-12-24 信越化学工業株式会社 粉体組成物
JP5871718B2 (ja) 2012-05-30 2016-03-01 日本アエロジル株式会社 親水性ゾルゲルシリカ粒子の表面処理方法及び疎水性ゾルゲルシリカ粉末の製造方法
KR101789860B1 (ko) 2014-02-06 2017-10-25 주식회사 엘지화학 실리카 에어로겔의 제조방법
CN104787772B (zh) * 2015-03-23 2017-12-12 河北金纳科技有限公司 一种疏水型纳米气凝胶复合材料的制备方法
CN106187069A (zh) * 2016-07-06 2016-12-07 天津大学 一种超疏水轻质高强隔热材料的制备方法
US11279622B2 (en) 2016-09-12 2022-03-22 Lg Chem, Ltd. Method for producing silica aerogel and silica aerogel produced thereby
KR102113324B1 (ko) 2016-09-23 2020-05-20 주식회사 엘지화학 초고온용 실리카 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120017952A (ko) * 2010-08-20 2012-02-29 주식회사 화인텍 소수성 실리카 에어로젤의 제조방법 및 제조장치
KR20160100082A (ko) 2015-02-13 2016-08-23 주식회사 엘지화학 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
KR20160122634A (ko) * 2015-04-14 2016-10-24 주식회사 엘지화학 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
KR20170104956A (ko) * 2016-03-08 2017-09-18 주식회사 엘지화학 에어로겔 블랑켓의 제조방법 및 이로부터 제조된 에어로겔 블랑켓
KR20180029909A (ko) * 2016-09-12 2018-03-21 주식회사 엘지화학 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔
KR20180029500A (ko) * 2016-09-12 2018-03-21 주식회사 엘지화학 실리카 에어로겔의 제조방법 및 이에 의해 제조된 실리카 에어로겔

Also Published As

Publication number Publication date
EP3778483A4 (en) 2021-11-10
US20210198112A1 (en) 2021-07-01
KR20200073168A (ko) 2020-06-23
EP3778483A1 (en) 2021-02-17
KR102489175B1 (ko) 2023-01-18
JP7085647B2 (ja) 2022-06-16
CN112135795A (zh) 2020-12-25
JP2021523088A (ja) 2021-09-02
CN112135795B (zh) 2023-11-03
US11365126B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2020122683A1 (ko) 에어로겔 블랭킷의 제조방법
WO2020111763A1 (ko) 에어로겔 블랭킷의 제조방법
WO2016129874A1 (ko) 실리카 에어로겔 함유 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 함유 블랑켓
WO2018070752A1 (ko) 초고온용 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
WO2018070755A1 (ko) 저분진 고단열 에어로겔 블랭킷 및 이의 제조방법
WO2015119430A1 (ko) 소수성 실리카 에어로겔의 제조방법
WO2016167494A1 (ko) 실리카 에어로겔 포함 블랑켓의 제조방법 및 이에 따라 제조된 실리카 에어로겔 포함 블랑켓
WO2017090912A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2017078293A1 (ko) 소수성의 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 소수성의 산화금속-실리카 복합 에어로겔
WO2018056626A1 (ko) 초고온용 실리카 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
WO2021045483A1 (ko) 에어로겔 블랭킷 제조방법
WO2017105065A1 (ko) 산화금속-실리카 복합 에어로겔의 제조방법 및 이로부터 제조된 산화금속-실리카 복합 에어로겔
WO2021045514A1 (ko) 에어로겔 블랭킷 및 이의 제조방법
WO2019107706A1 (ko) 에어로겔을 포함한 복합 단열 시트
WO2017090911A1 (ko) 소수성의 실리카 에어로겔의 제조방법 및 이로부터 제조된 소수성의 실리카 에어로겔
WO2016163670A1 (ko) 에어로겔 함유 조성물 및 이를 이용하여 제조된 단열 블랑켓
KR20140053975A (ko) 소수성 단열 성형물의 제조 방법
WO2020111765A1 (ko) 전가수분해된 폴리실리케이트의 합성방법
WO2018208005A1 (ko) 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷
WO2021054644A1 (ko) 에어로겔 블랑켓 및 이의 제조방법
WO2017142245A1 (ko) 에어로겔 시트를 포함하는 복합시트 제조방법 및 제조장치
WO2022080721A1 (ko) 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷
WO2017171217A1 (ko) 저분진 고단열 에어로겔 블랭킷의 제조방법
WO2021029624A1 (ko) 습윤겔 블랭킷의 건조방법 및 이를 이용한 에어로겔 블랭킷의 제조방법
WO2017159968A1 (ko) 에어로겔 전구체 및 이를 이용하여 제조한 에어로겔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896139

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019896139

Country of ref document: EP

Effective date: 20201110

ENP Entry into the national phase

Ref document number: 2020564635

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE