CN116143102A - 一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法 - Google Patents

一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法 Download PDF

Info

Publication number
CN116143102A
CN116143102A CN202211647586.1A CN202211647586A CN116143102A CN 116143102 A CN116143102 A CN 116143102A CN 202211647586 A CN202211647586 A CN 202211647586A CN 116143102 A CN116143102 A CN 116143102A
Authority
CN
China
Prior art keywords
carbon
carbon aerogel
aerogel
waste gas
steps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211647586.1A
Other languages
English (en)
Other versions
CN116143102B (zh
Inventor
程星星
程嘉豪
王志强
王学涛
王鹏
王涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN202211647586.1A priority Critical patent/CN116143102B/zh
Publication of CN116143102A publication Critical patent/CN116143102A/zh
Application granted granted Critical
Publication of CN116143102B publication Critical patent/CN116143102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/32Specific surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种利用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,包括如下步骤:将碳气凝胶在KOH溶液中浸泡、干燥、高温碳化,得到活化后的碳气凝胶;将活化后的碳气凝胶填充于反应器中,并置于氢气氛围中,升温至800‑1000℃;依次向反应器中通入不同烃类气体和氮气的混合气,不同烃类气体在碳气凝胶表面形成交叉绒毛状碳纳米管;反应完毕后,在惰性气氛保护下冷却,即得。碳气凝胶表面碳纳米管的可控生长,所制备的材料在室温高压下有良好的储氢和CO2捕集能力,在制备大规模基于碳气凝胶的储能材料领域方面十分具有前景。

Description

一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法
技术领域
本发明属于储能领域,具体涉及一种利用工业废气在碳气凝胶原位生长绒毛碳纳米管的方法,该制备方法是将工业废气在碳气凝胶表面异时原位生长“绒毛”碳纳米管制备而成。
背景技术
这里的陈述仅提供与本发明相关的背景技术,而不必然地构成现有技术。
氢气是较为重要的能源载体,当前的氢气的制备技术日趋成熟,但是氢能的存储和运输限制了氢能的应用,尤其是氢气的存储技术是制约氢能实现规模化应用的关键。
碳基储氢材料是研究较深入的一种多孔吸附储氢材料,属于物理储氢材料,目前该种储氢材料的储氢能力较弱,难以满足实际应用要求。
许多与碳气凝胶(CAs)有关的研究已经证明了其优越的应用前景,但很少涉及氢气相关领域。然而,储氢对于氢气作为一种新能源的工业化和商业化来说是非常重要和迫切的,这也表明应用于储氢领域的碳气凝胶的开发的必要性和重要性。然而,碳材料的储氢性能,尤其是常温下的储氢量集中在0.2-1.0%,如此小的吸附量导致碳材料中绝大部分的孔隙空间未得到充分的利用。
此外,目前VOC工业废气需要经过处理后才能排放,增加了处理成本。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法。
为了实现上述目的,本发明是通过如下的技术方案来实现:
第一方面,本发明提供一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法,包括如下步骤:
将碳气凝胶在KOH溶液中浸泡、干燥、高温活化,得到改性后的碳气凝胶;
采用浸渍法掺杂1.5-2.5%的镍或者铁,得到金属掺杂的碳气凝胶。
将掺杂后的碳气凝胶填充于反应器中,并置于氢气氛围中,升温至800-1000℃,停留0.3-0.7h;
依次向反应器中通入不同烃类气体和氢气的混合气,烃类气体和氢气的体积比为1:3-6不同烃类气体由于沉积时间差异,会在碳气凝胶表面形成交叉绒毛状碳纳米管;
反应完毕后,在惰性气氛保护下冷却,即得。
具体地,将计算量的镍或铁的硝酸盐溶解在150ml乙醇溶液中,充分溶解后加入5g改性后的碳气凝胶,持续搅拌4h以上,干燥,煅烧。得到金属掺杂的碳气凝胶。
第二方面,本发明提供一种碳气凝胶表面生长绒毛碳纳米管复合材料,由所述制备方法制备而成。
上述本发明的一种或多种实施例取得的有益效果如下:
不同烃类气体经分离后依次通入反应器中,在碳气凝胶表面形成碳纳米管的时间不同,实现碳气凝胶表面碳纳米管的交叉生长,在原本的三维孔隙结构表面形成“绒毛状”交叉分支,有助于材料比表面积以及微孔体积的增加并成为有效的官能团位点,为制备高性能多尺度储能复合材料提供基础。碳气凝胶表面碳纳米管的可控生长,所制备的材料在室温高压下有良好的储氢和CO2捕集能力,在制备大规模基于碳气凝胶的储能材料领域方面十分具有前景。
以碳气凝胶为基底,利用VOC废气膜分离后的贫气部分为前置碳源,利用化学沉积方法在碳气凝胶表面原位生长碳纳米管。首先对气源进行脱水脱氧处理,其次通过特制的碳分子筛填充管路,补充氮气为载气,实现废气中主要成分中甲烷,乙烷,乙烯气体分段式通入反应器,在高温管式炉内利用化学气相沉积(CVD)方法在碳气凝胶表面实现多物质异时的原位碳纳米管生长。VOC贫气的再利用,成本低,工艺方法简单。
碳材料的H2表面过量最大值与表面积呈线性关系,碳捕集也极度依赖于材料的多孔结构。因此,增加材料的比表面积及交错的孔径结构可以增加材料的储氢以及碳捕集量。利用烃类气体作为前置碳源,利用CVD方法在材料表面生长碳纳米管的方式,通过控制合适的反应条件,可以在材料表面生长出“绒毛”状的碳纳米管。该结构能增加材料的比表面积,形成交错的孔径结构,提供额外的活性/吸附位点,以提高储氢容量和碳捕集量。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1是本发明实施例1制备的碳气凝胶表面形貌图;
图2是本发明实施例1制备的碳气凝胶在不同氢气压强下的储氢容量曲线;
图3是本发明实施例1制备的碳气凝胶在不同CO2压强下的储CO2容量曲线。
图4是VOC废弃气体组成分布图;
图5是采用气相色谱分析仪对VOC工业废气进行检测时的色谱图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
第一方面,本发明提供一种用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,包括如下步骤:
将碳气凝胶在KOH溶液中浸泡、干燥、高温活化,得到改性后的碳气凝胶;
采用浸渍法掺杂1.5-2.5%的镍或者铁,得到金属掺杂的碳气凝胶。
将掺杂后的碳气凝胶填充于反应器中,并置于氢气氛围中,升温至800-1000℃,停留0.3-0.7h;
依次向反应器中通入不同烃类气体和氢气的混合气,烃类气体和氢气的体积比为1:3-6不同烃类气体由于沉积时间差异,会在碳气凝胶表面形成交叉绒毛状碳纳米管;
反应完毕后,在惰性气氛保护下冷却,即得。
碳材料的H2表面过量最大值与表面积呈线性关系,碳捕集也极度依赖于材料的多孔结构。因此,增加材料的比表面积及交错的孔径结构可以预想地能增加材料的储氢以及碳捕集量。利用烃类气体作为前置碳源,利用CVD方法在材料表面生长碳纳米管的方式,通过控制合适的反应条件,可以在材料表面生长出“绒毛”状的碳纳米管。该结构被希望能增加材料的比表面积,形成交错的孔径结构,提供额外的活性/吸附位点,以同时提高氢气和二氧化碳的吸附容量。
Ni原子催化烃类气体的分解,氧化物催化效果大大减弱。氢气的还原作用能确保掺杂的金属以金属单质的形式存在而不是金属氧化物。
在一些实施例中,所述烃类气体选自甲烷、乙烷、乙烯、辛烷、环己烷。
在一些实施例中,所述碳气凝胶选自生物质基气凝胶,高聚物气凝胶或碳纳米气凝胶中的一种、两种或三种。
在一些实施例中,采用KOH对碳气凝胶进行浸渍活化之前,将碳气凝胶研磨、筛分处理。
优选的,将研磨后的碳气凝胶筛分至40-60目。
优选的,碳气凝胶高温活化的温度为750-800℃,高温活化的时间为1.5-2.5h。
进一步优选的,高温活化是在氮气氛围中进行的。
高温活化完毕后,冷却至室温,采用去离子水反复冲洗数次至pH值为7,干燥后得到高比表面积的活化后碳气凝胶,这有助于压缩碳气凝胶表面,在其表面形成纳米级微孔结构,丰富天然的碳纳米管生长位点。
在一些实施例中,所述不同烃类气体来自于VOC废气,VOC废气的处理方法为:将VOC气体进行膜处理,得到的贫气(干气)进行脱水脱氧处理;
将脱氧后的气体流经碳分子筛柱,对气体中的不同烃类物质进行分离。
膜分离是选用人工合成的或天然的膜材料为隔膜,来分离混合气体或液体的过程。用膜分离法可回收的有机物包括脂肪族和芳香族化合物,由于VOC废气的来源不同,废气的组成不同,通过膜处理,可以得到所需的贫气,以保证最终产品的质量。
优选的,所述碳分子筛柱为填充满碳分子筛的盘管。
优选的,对贫气进行脱水的干燥剂选自氯化钙或蒙脱石。
优选的,对贫气进行脱氧的脱氧剂为Na2S/AC复合脱氧剂。
进一步优选的,所述Na2S/AC复合脱氧剂上负载有过渡金属离子。
所述过渡金属离子为Co2+,Ni2+,Fe3+和Cu2+等,可用于氧气浓度较高时的废气脱氧。
Na2S/AC复合脱氧剂中AC为活性炭(Activated carbon)。
在一些实施例中,将活化后的碳气凝胶填充于反应器中后,先向反应器中充入氮气,在氮气气氛中升温至800-1000℃,然后用氢气置换氮气,维持0.3-0.7。
第二方面,本发明提供一种碳气凝胶表面异时原位生长绒毛碳纳米管复合材料,由所述制备方法制备而成。
脱氧处理包括将废气以恒定速率依次通入装满干燥剂的脱水罐和装满脱氧剂的脱氧罐中。
碳分子筛柱所采用的填充柱管道的尺寸为:内径6.35mm,壁厚0.5mm的不锈钢管,总长3米,以盘管形式存在,内部填充碳分子筛。
下面结合附图和实施例对本发明作进一步说明。
实施例1
本发明中,所述的碳气凝胶材料主要为生物质纤维素碳气凝胶,也可以扩展到其他碳气凝胶材料,如碳纳米材料,高聚物气凝胶等。
首先将纤维素碳气凝胶研磨,筛分处理至40-60目,取5gCA原料,加入质量比为KOH:C=3:1体积的1M KOH溶液,搅拌4h,110℃彻夜干燥处理,转移至管式炉内,流量为300ml/min的N2氛围下以10℃/min升温至780℃,高温活化2h后冷却至室温,用去离子水反复冲洗数次至pH值为7,重新干燥,得到高比表面积的活化后碳气凝胶。
实验以不同时段通入不同浓度的烃类气体,来模拟贫气分离后的组合气。具体地,将0.2g碳气凝胶放置于立式反应管中,气体从反应管底部通入,在氮气气氛中升温至850℃,用氢气置换氮气,在该温度下持续0.5h,然后通入50ml/min的甲烷气体和200ml/min的氮气混合气,持续时间30min后,将混合气体更改为20ml/min的乙烷气体和80ml/min的氮气混合气,同样持续时间为30min后,将混合气体更改为10ml/min的乙烯气体和40ml/min的氮气混合器,持续30min后,其后在氮气的保护下冷却至室温,获得表面原位生长“绒毛状”碳纳米管的碳气凝胶。
所得沉积后碳气凝胶重量为0.2257g,即沉积率为12.85%。
所制备得到的碳气凝胶表面形貌,如图1所示,碳气凝胶表面的“绒毛状”碳纳米管交叉生长,分布均匀,生长数量多,碳纳米管的质量分数约为11%。
所制备的原位生长“绒毛状”碳纳米管碳含量>90%,比表面积≥2500m2/g,微孔孔容达1.0cm3/g以上,微孔孔容率达到70%以上,平均孔径在0.5-2nm之间。
表面生长的绒毛能有效增加碳气凝胶碳含量、比表面积,微孔体积。
在储氢的应用中,在室温,80bar的操作条件下,储氢量可达1.2wt%以上,如图2所示。
在CO2捕集的应用中,在室温,30bar的操作条件下,吸附量可达19mmol/g,如图3所示。
实施例2
将碳气凝胶研磨,筛分处理至40-60目,取5gCA原料,加入质量比为KOH:C=3:1的1M KOH溶液,搅拌5h,110℃彻夜干燥处理,转移至管式炉内,流量为300ml/min的N2氛围下以10℃/min升温至800℃,高温碳化2h后冷却至室温,用去离子水反复冲洗数次至pH值为7,重新干燥,得到高比表面积的活化后碳气凝胶,这有助于压缩碳气凝胶表面,在其表面形成纳米级微孔结构,丰富天然的碳纳米管生长位点。
对VOC废气膜处理后贫气部分进行脱水脱氧处理,具体的:脱氧处理包括将废气以恒定速率依次通入装满干燥剂的脱水罐和装满脱氧剂的脱氧罐中,干燥剂为氯化钙,脱氧剂为Na2S/AC;
脱氧后气体通入碳分子筛柱实现贫气中烃类组分分离,碳分子筛柱所采用的填充柱管道的尺寸为:内径6.35mm,壁厚0.5mm的不锈钢管,总长3米,以盘管形式存在,内部填充碳分子筛,使用前老化2h。
将碳气凝胶放置于立式反应管中,气体从反应管底部通入,在氮气气氛中升温至450℃,用氢气置换氮气,在该温度下持续一段时间,然后升温至1000℃,通入烃类气体与氮气的混合气,烃类气体与氮气的体积比为1:6,反应结束后,在氮气的保护下冷却至室温,制得目标产物。
首先采用炼厂气仪对VOC废弃气体的组成进行分析,由图4可知,气体的主要成分为乙烯,其他组分为甲烷、氢气、二氧化碳及一氧化碳。其中,氢气为还原性气体,亦为所需气体,二氧化碳和一氧化碳易分离,证实了该VOC废弃气体的可用性。
利用GC-7820色谱分析仪(分离柱为5A分子筛柱)对VOC工业废气进行分离。分离色谱图如图5所示,气体出峰顺序明显,气体交叉影响小,气体出峰时间间隔大,可以实现VOC工业废气中不同碳源在碳气凝胶表面依次反应,形成交叉绒毛状碳纳米管。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,其特征在于:包括如下步骤:
将碳气凝胶在KOH溶液中浸泡、干燥、高温活化,得到改性后的碳气凝胶;
采用浸渍法掺杂1.5-2.5%的镍或者铁,得到金属掺杂的碳气凝胶。
将掺杂后的碳气凝胶填充于反应器中,并置于氢气氛围中,升温至800-1000℃,停留0.3-0.7h;
依次向反应器中通入不同烃类气体和氢气的混合气,烃类气体和氢气的体积比为1:3-5;不同烃类气体由于沉积时间差异,会在碳气凝胶表面形成交叉绒毛状碳纳米管;
反应完毕后,在惰性气氛保护下冷却,即得。
2.根据权利要求1所述的利用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,其特征在于:所述烃类气体选自甲烷、乙烷、乙烯、辛烷、环己烷。
3.根据权利要求1所述的利用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,其特征在于:所述碳气凝胶选自生物质基气凝胶,高聚物气凝胶或碳纳米气凝胶中的一种、两种或三种。
4.根据权利要求1所述的利用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,其特征在于:采用KOH对碳气凝胶进行浸渍活化之前,将碳气凝胶研磨、筛分处理;
优选的,将研磨后的碳气凝胶筛分至40-60目;
优选的,碳气凝胶高温活化的温度为750-800℃,高温活化的时间为1.5-2.5h;
进一步优选的,高温活化是在氮气氛围中进行的。
5.根据权利要求1所述的利用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,其特征在于:所述不同烃类气体来自于VOC废气,VOC废气的处理方法为:将VOC气体进行膜处理,得到的贫气进行脱水脱氧处理;
将脱氧后的气体流经碳分子筛柱,对气体中的不同烃类物质进行分离。
6.根据权利要求5所述的利用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,其特征在于:所述碳分子筛柱为填充满碳分子筛的盘管。
7.根据权利要求5所述的利用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,其特征在于:对贫气进行脱水的干燥剂选自氯化钙或蒙脱石;
优选的,对贫气进行脱氧的脱氧剂为Na2S/AC复合脱氧剂。
8.根据权利要求7述的利用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,其特征在于:Na2S/AC复合脱氧剂上负载有过渡金属离子。
9.根据权利要求1所述的利用工业废气在碳气凝胶表面异时原位生长绒毛碳纳米管的方法,其特征在于:将活化后的碳气凝胶填充于反应器中后,先向反应器中充入氮气,在氮气气氛中升温至800-1000℃,然后用氢气置换氮气,维持0.3-0.7。
10.一种碳气凝胶表面异时原位生长绒毛碳纳米管复合材料,其特征在于:由权利要求1-9任一所述制备方法制备而成。
CN202211647586.1A 2022-12-21 2022-12-21 一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法 Active CN116143102B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211647586.1A CN116143102B (zh) 2022-12-21 2022-12-21 一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211647586.1A CN116143102B (zh) 2022-12-21 2022-12-21 一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法

Publications (2)

Publication Number Publication Date
CN116143102A true CN116143102A (zh) 2023-05-23
CN116143102B CN116143102B (zh) 2024-08-06

Family

ID=86357459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211647586.1A Active CN116143102B (zh) 2022-12-21 2022-12-21 一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法

Country Status (1)

Country Link
CN (1) CN116143102B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19938822A1 (de) * 1999-08-19 2001-02-22 Zae Bayern Verfahren zur Herstellung einer offenporigen monolithischen Elektrode aus Kohlenstoff für den Einsatz in einer reversiblen Lithium-Ionen-Batterie
CN1789120A (zh) * 2004-12-14 2006-06-21 中国科学院物理研究所 一种碳绒球材料及其制备方法和用途
CN101661840A (zh) * 2009-07-23 2010-03-03 武汉大学 一种超级电容器的制备方法
US20140272410A1 (en) * 2013-03-14 2014-09-18 Robert J. Miller Energy storing fractal and process therefor
CN107628626A (zh) * 2017-11-10 2018-01-26 东北石油大学 一种在二氧化硅气凝胶颗粒表面直接生长超疏水碳纳米管层的简易方法
CN110117009A (zh) * 2019-05-27 2019-08-13 武汉大学 一种铁氮共掺杂磁性多孔石墨化纳米碳气凝胶的制备方法
CN110642590A (zh) * 2019-11-01 2020-01-03 江苏集萃先进高分子材料研究所有限公司 一种超疏水、高吸收电磁屏蔽效能纤维素基复合碳气凝胶的制备方法
CN112135795A (zh) * 2018-12-13 2020-12-25 株式会社Lg化学 气凝胶毡的制造方法
EP3896035A1 (en) * 2020-04-15 2021-10-20 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Silica aerogels and silica aerogel blankets
CN115394980A (zh) * 2022-08-23 2022-11-25 广东工业大学 一种锂离子电池硅碳纳米线材料及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19938822A1 (de) * 1999-08-19 2001-02-22 Zae Bayern Verfahren zur Herstellung einer offenporigen monolithischen Elektrode aus Kohlenstoff für den Einsatz in einer reversiblen Lithium-Ionen-Batterie
CN1789120A (zh) * 2004-12-14 2006-06-21 中国科学院物理研究所 一种碳绒球材料及其制备方法和用途
CN101661840A (zh) * 2009-07-23 2010-03-03 武汉大学 一种超级电容器的制备方法
US20140272410A1 (en) * 2013-03-14 2014-09-18 Robert J. Miller Energy storing fractal and process therefor
CN107628626A (zh) * 2017-11-10 2018-01-26 东北石油大学 一种在二氧化硅气凝胶颗粒表面直接生长超疏水碳纳米管层的简易方法
CN112135795A (zh) * 2018-12-13 2020-12-25 株式会社Lg化学 气凝胶毡的制造方法
CN110117009A (zh) * 2019-05-27 2019-08-13 武汉大学 一种铁氮共掺杂磁性多孔石墨化纳米碳气凝胶的制备方法
CN110642590A (zh) * 2019-11-01 2020-01-03 江苏集萃先进高分子材料研究所有限公司 一种超疏水、高吸收电磁屏蔽效能纤维素基复合碳气凝胶的制备方法
EP3896035A1 (en) * 2020-04-15 2021-10-20 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Silica aerogels and silica aerogel blankets
CN115394980A (zh) * 2022-08-23 2022-11-25 广东工业大学 一种锂离子电池硅碳纳米线材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOECKER, C: "The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel", 《CHEMICAL ENGINEERING JOURNAL》, vol. 314, 15 April 2017 (2017-04-15), pages 388 - 395 *
和腊梅: "碳纳米材料宏观体的制备与储能应用", 《工程科技I辑》, no. 09, 15 September 2014 (2014-09-15), pages 020 - 104 *

Also Published As

Publication number Publication date
CN116143102B (zh) 2024-08-06

Similar Documents

Publication Publication Date Title
Rashidi et al. Modification of single wall carbon nanotubes (SWNT) for hydrogen storage
Li et al. Highly microporous nitrogen-doped carbons from anthracite for effective CO2 capture and CO2/CH4 separation
CN113070040B (zh) 一种碳材料负载离子液体脱除羰基硫的吸附材料及其应用
Shamsudin et al. Hydrogen purification from binary syngas by PSA with pressure equalization using microporous palm kernel shell activated carbon
CN110523374B (zh) 一种吸附分离ch4/n2、c2h6/ch4的大米基颗粒状碳材料及其制备方法与应用
CN110773120A (zh) 金属盐改性分子筛及其制备方法和应用
Zhang et al. Multicomponent adsorptive separation of CO2, CH4, N2, and H2 over M-MOF-74 and AX-21@ M-MOF-74 composite adsorbents
Wei et al. N-doping porous carbon with rich narrow micropores for highly efficient CO2 selective adsorption: Insight from experimental and theoretical study
Cho et al. Surface functionalization and CO2 uptake on carbon molecular sieves: experimental observation and theoretical study
CN113120903A (zh) 一种活性炭及其制备方法和应用
Rong et al. Directional introduction of pyridine nitrogen functional groups in activated carbon catalysts for the catalytic production of hydrogen: An experimental and DFT calculation
Yuan et al. N, S-co-doping of activated biochar from herb residue for enhanced electrocatalytic performance toward oxygen reduction reaction
Peredo-Mancilla et al. Surface-modified activated carbon with a superior CH4/CO2 adsorption selectivity for the biogas upgrading process
Lei et al. Facile template-free synthesis of 3D cluster-like nitrogen-doped mesoporous carbon as metal-free catalyst for selective oxidation of H2S
Aryal et al. Surface-modified activated carbon for anaerobic digestion to optimize the microbe-material interaction
CN116143102B (zh) 一种利用工业废气在碳气凝胶表面生长绒毛碳纳米管的方法
Jia et al. Study on the adsorption mechanism of polar and non-polar VOCs by the activated carbon with surface oxygen
Tang et al. Enhanced adsorption of organic pollutants using N-doped porous carbon derived from hemp stems: Insights into the mechanism
Wang et al. Wood-structured carbon with reassembled pores showing high propylene adsorption rate for efficient separation of propylene/propane
CN102728320B (zh) 用于分离二氧化碳和甲烷的改性多孔竹炭材料的制备方法
Kim et al. Adsorption behavior and mechanism of ultra-low concentration sulfur compounds in natural gas on Cu-impregnated activated carbon
Mujmule et al. Engineered cellulose-based porous carbon adsorbents for superior gas adsorption and selective separation of CH4/H2 and CH4/N2
Souza-Filho et al. Zeolite A grown on fiberglass: A prominent CO2 adsorbent for CO2/CH4 separation
CN113070039A (zh) 一种脱除焦炉煤气中有机硫的吸附材料及其应用
Gao et al. Preparation of molded biomass carbon from coffee grounds and its CH4/N2 separation performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant