CN110773120A - 金属盐改性分子筛及其制备方法和应用 - Google Patents

金属盐改性分子筛及其制备方法和应用 Download PDF

Info

Publication number
CN110773120A
CN110773120A CN201911089480.2A CN201911089480A CN110773120A CN 110773120 A CN110773120 A CN 110773120A CN 201911089480 A CN201911089480 A CN 201911089480A CN 110773120 A CN110773120 A CN 110773120A
Authority
CN
China
Prior art keywords
molecular sieve
salt
metal salt
modified molecular
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911089480.2A
Other languages
English (en)
Other versions
CN110773120B (zh
Inventor
王荣
罗仕忠
沈俊
敬方梨
李鑫燚
周一民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201911089480.2A priority Critical patent/CN110773120B/zh
Publication of CN110773120A publication Critical patent/CN110773120A/zh
Priority to PCT/CN2020/099720 priority patent/WO2021088389A1/zh
Application granted granted Critical
Publication of CN110773120B publication Critical patent/CN110773120B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes

Abstract

本发明涉及金属盐改性分子筛及其制备方法和应用,属于吸附剂技术领域。本发明解决的技术问题是提供金属盐改性分子筛的制备方法。该方法采用金属盐溶液对分子筛进行浸渍后,固液分离,固体干燥后焙烧,得到金属盐改性分子筛。本发明通过对分子筛进行浸渍改性,成功制备得到金属盐改性分子筛,其制备方法简单可控,能耗低,成本低,且得到的改性分子筛,可作为N2/CH4、O2/CH4或(N2+O2)/CH4体系的选择性吸附剂,尤其是在分离N2/CH4时,CH4的吸附量低,氮气甲烷的分离比大,可应用在煤层气、油田气或生物气中提纯甲烷。

Description

金属盐改性分子筛及其制备方法和应用
技术领域
本发明涉及金属盐改性分子筛及其制备方法和应用,属于吸附剂技术领域。
背景技术
甲烷(CH4),可作为燃料,如天然气和煤层气,广泛应用于民用和工业中;也可作为化工原料,可以用来生产乙炔、氢气、合成氨、碳黑、硝氯基甲烷、二硫化碳、一氯甲烷、二氯甲烷、三氯甲烷、四氯化碳和氢氰酸等;此外,甲烷是一种温室效应显著的温室气体,CH4为CO2分子温室效应的21倍,对臭氧层破坏能力是二氧化碳的7倍,将CH4排放到大气中,一方面造成了资源的严重浪费,另一方面导致温室效应。因此,对油田气(Oil field gas)、煤层气(Coalbed methane,CBM)和生物气(Biogas)等资源中CH4的利用,具有节能和环保的双重意义。
油田气、煤层气和生物气中通常含有一定浓度的氮气和氧气,导致甲烷的纯度和热值较低,无法达到工业标准,同时氧气的存在增加了其发生爆炸的风险。为了浓缩利用这部分CH4浓度较低的资源,需要对N2、O2和CH4的混合气体进行分离。目前开发和研究的技术主要有膜分离技术、低温深冷分离技术和变压吸附分离技术等。其中,变压吸附技术(PSA)是一种新型气体吸附分离技术,具有设备简单、操作灵活、维护简便、运行能耗低、投资少性能好等优势,被认为是最可能实现充分利用CH4资源的气体分离技术。
PSA的核心在于其中的吸附剂,吸附剂的性能决定了其能否实现混合气体的分离以及分离的效果。理论上,煤层气、天然气油田气等的主要组成是CO2、CH4和N2等,CO2和CH4分子的物理性质差别大,易于分离,但N2和CH4的临界温度都很低,二者物理性质相近,动力学直径相近,不易分离,因此,CH4气体分离的核心技术是在于CH4与N2的有效分离。
碳分子筛(Carbon Molecular Sieves,简记为CMS)是20世纪七十年代发展起来的一种新型吸附剂,是一种优良的非极性碳素材料,它的孔径多在0.3nm~1nm之间,主要用于多种混合气体的分离。目前,它是工程界首选的变压吸附空分富氮吸附剂,但CH4与N2的分离中,传统CMS的分离效率不高,需要对其进行改进。
专利CN101596445A公开了一种碳分子筛吸附剂的制备方法,以高分子聚合物为原料,经过固化、干馏、细粉碎、成型、碳化活化和碳沉积调孔制备工艺,制备了用于低浓度瓦斯气变压吸附分离CH4气的碳分子筛,该碳分子筛对CH4具有高吸附量,选择吸附系数大,强度好,成本低,无污染,其性能已达到或超过日本样品碳分子筛水平。但是,该吸附剂主要是吸附CH4,还需进行解吸,才能达到对CH4有效利用的目的。
专利CN109179369A公开了一种酚醛树脂基吸附分离甲烷与氮气的碳分子筛制备方法。该方法在制备过程中炭化与沉积调孔一体化,减少了能量损失,更加节能,同时减少了在炭化冷却与沉积加热过程中热量对基体孔径变化的影响,孔径较为稳定,得到的基体孔径较小,减少了沉积时间,沉积后样品在25度/1个大气压下,氮气吸附量为6.5~7.5ml/g,甲烷吸附量为7~10ml/g。该方法制备的分子筛虽然能够用于氮气与甲烷的动力学分离,但是,其分离比并不高,无法有效的分离氮气与甲烷。
专利CN101935032A公开了一种碳分子筛的制备方法,采用化学活化剂KOH或物理活化剂CO2为活化剂对常规碳分子筛进行二次活化扩孔,采用二次活化后的炭分子筛作为吸附剂进行变压吸附操作,其表现出氮气吸附的优先选择性,利用此吸附剂进行甲烷-氮气的变压吸附分离,实现直接提纯甲烷的目的。采用该方法,虽然能够分离吸收氮气,但是,甲烷的吸收也会提高,从而造成了甲烷收率不高。此外,采用CO2活化扩孔存在高温能耗以及工艺复杂等缺陷。
综上,现有的对碳分子筛进行改进的方法,大多是通过沉积堵孔或活化扩孔的工艺,在提高N2吸附量的同时,不可避免的也会提高CH4的吸附量,从而使得氮气和甲烷的分离比较低;此外当吸附剂优先吸附甲烷时,需进行甲烷的二次解吸及再压缩才能实现甲烷的富集及利用,分离能耗较高。
发明内容
针对以上缺陷,本发明的目的是通过对分子筛进行改性,从而降低其对甲烷的吸附量,有效地分离氮气与甲烷。
本发明解决的第一个技术问题是提供一种金属盐改性分子筛的制备方法。
本发明金属盐改性分子筛的制备方法,包括如下步骤:采用金属盐溶液对分子筛进行浸渍后,固液分离,固体干燥后焙烧,得到金属盐改性分子筛;其中,所述金属盐为A盐、B盐中的至少一种,所述A盐为锂盐、钠盐、钾盐、铷盐或铯盐;所述B盐为铝盐、铬盐、锌盐、硼盐、钛盐、钒盐、钼盐或钨盐。
优选的,所述A盐为锂盐;所述B盐为铬盐。更优选所述A盐为硝酸锂;所述B盐为硝酸铬。
优选的,所述分子筛为碳分子筛、A型分子筛、X型分子筛、Y型分子筛、ZSM分子筛、SAPO分子筛、硅钛分子筛或活性炭。
作为优选方案,所述分子筛为碳分子筛。
为了充分浸渍,优选的,所述浸渍为等体积浸渍或过量浸渍。
优选的,所述金属盐溶液中,金属离子的浓度为0.001~10wt%;更优选金属离子的浓度为0.01~5wt%。
优选的,所述焙烧为惰性气氛下100~600℃焙烧2~12h。作为优选方案,所述焙烧为氮气气氛下300℃焙烧4h。
具体的,本发明优选采用如下操作:将分子筛与金属盐溶液搅拌混合浸渍后,过滤分离,将过滤后的分子筛于60~200℃干燥,得到金属盐改性分子筛。
本发明解决的第二个技术问题是提供一种金属盐改性分子筛。
本发明金属盐改性分子筛,采用上述的金属盐改性分子筛的制备方法制备得到。该改性分子筛在分离N2/CH4时,与未改性相比,甲烷吸附量急剧降低,从而可有效地分离提纯甲烷,分离比高,甲烷的收率高。
本发明还提供本发明所述的金属盐改性分子筛作为N2/CH4、O2/CH4或(N2+O2)/CH4体系的选择性吸附剂的用途。
本发明的分子筛,可通过工艺参数调节孔径,用作选择性吸附剂。用于分离N2/CH4时,可以选择性吸附N2;而用于分离O2/CH4时,选择性吸附O2;用于分离(N2+O2)/CH4时,选择性吸附N2和O2,从而达到分离混合气体的目的。
本发明还提供本发明所述的金属盐改性分子筛在煤层气、油田气或生物气中提纯甲烷的应用。由于该改性分子筛几乎不吸附甲烷,因此,可作为吸附剂,用于从煤层气、油田气或生物气中提纯甲烷,达到节能环保的目的。
与现有技术相比,本发明具有如下有益效果:
本发明通过对分子筛进行浸渍改性,成功制备得到金属盐改性分子筛,其制备方法简单可控,能耗低,成本低,且得到的金属盐改性分子筛,可作为N2/CH4、O2/CH4或(N2+O2)/CH4的选择性吸附剂,尤其是在分离N2/CH4时,CH4的吸附量极低,氮气甲烷的分离比大,也可应用在煤层气、油田气或生物气中提纯甲烷。
附图说明
图1为本发明试验例1中静态吸附实验装置示意图;图中:1-PLC模块;2-压力传感器;3-参比槽;4-吸附槽;5-恒温水浴锅;6-真空泵;7-CH4气钢瓶;8-N2气钢瓶;9-He气钢瓶。
图2为本发明实施例1~10中所用原料碳分子筛的吸附等温曲线。
图3为本发明实施例1所得的改性碳分子筛吸附等温曲线。
图4为本发明实施例2所得的改性碳分子筛吸附等温曲线。
图5为本发明实施例3所得的改性碳分子筛吸附等温曲线。
图6为本发明实施例4所得的改性碳分子筛吸附等温曲线。
图7为本发明实施例5所得的改性碳分子筛吸附等温曲线。
图8为本发明实施例6所得的改性碳分子筛吸附等温曲线。
图9为本发明实施例7所得的改性碳分子筛吸附等温曲线。
图10为本发明实施例8所得的改性碳分子筛吸附等温曲线。
图11为本发明实施例9所得的改性碳分子筛吸附等温曲线。
图12为本发明实施例10所得的改性碳分子筛吸附等温曲线。
具体实施方式
本发明金属盐改性分子筛的制备方法,包括如下步骤:采用金属盐溶液对分子筛进行浸渍后,固液分离,固体干燥后焙烧,得到金属盐改性分子筛;其中,所述金属盐为A盐、B盐中的至少一种,所述A盐为锂盐、钠盐、钾盐、铷盐或铯盐;所述B盐为铝盐、铬盐、锌盐、硼盐、钛盐、钒盐、钼盐或钨盐。
研究发现,分子筛在金属盐溶液浸渍后焙烧,其中的金属元素会与分子筛中的羟基作用,从而对分子筛的孔径进行调整,达到部分调孔的作用,使其在分离气体时,产生形选的作用,特别是在分离N2/CH4时,CH4的分子动力学直径为0.38nm,N2的分子动力学直径为0.364nm,该分子筛可选择性吸附N2,而对CH4的吸附量低。此外,该金属元素还会N2产生更强的极化作用,从而使N2更容易被吸附。这样,在形选和极化两方面作用下,达到分离混合气体的目的。
本发明所述的金属盐对金属离子有特定的要求,对相应的酸根离子没有限定,可以为硫酸盐、硝酸盐、盐酸盐等。优选的,所述A盐为锂盐;所述B盐为铬盐。更优选所述A盐为硝酸锂;所述B盐为硝酸铬。
本领域常用的分子筛均适用于本发明,优选的,所述分子筛为碳分子筛(CMS)、A型分子筛(比如4A分子筛、5A分子筛)、X型分子筛、Y型分子筛、ZSM分子筛(比如ZSM-5分子筛)、SAPO分子筛(比如SAPO-34分子筛、SAPO-11分子筛)、硅钛分子筛或活性炭等。
作为优选方案,所述分子筛为碳分子筛。通过研究发现,碳分子筛的孔径分布主要有两个区间:0.3-0.4nm和0.42-0.7nm,通过本发明方法进行调孔后,可将0.3-0.4nm的孔缩小,0.42-0.7nm的孔分布发生变化,孔径趋于收缩,从而进一步分离N2/CH4
为了充分浸渍,优选的,所述浸渍为等体积浸渍或过量浸渍。
本发明所述的金属盐溶液的溶剂可以为水,也可以为有机溶剂,仅需能够溶解该金属盐即可。为了节约成本,优选的,金属盐溶液为水溶液。
优选的,所述金属盐溶液中,金属离子的浓度为0.001~10wt%;更优选金属离子的浓度为0.01~5wt%。
优选的,所述焙烧为惰性气氛下100~600℃焙烧2~12h。本发明所述的惰性气氛为不参与反应的气氛,可以为惰性气体或者氮气保护氛围。作为优选方案,所述焙烧为氮气气氛下300℃焙烧4h。
具体的,本发明优选采用如下操作:将分子筛与金属盐溶液搅拌混合浸渍后,过滤分离,将过滤后的分子筛于60~200℃干燥,得到金属盐改性分子筛。
其中,金属盐溶液可采用如下方法配制:在常温下,将一定量的金属盐与去离子水混合,之后对其进行搅拌处理,使金属盐在水中彻底溶解,即得金属盐溶液。
本发明解决的第二个技术问题是提供一种金属盐改性分子筛。
本发明金属盐改性分子筛,采用上述的金属盐改性分子筛的制备方法制备得到。该改性分子筛在分离N2/CH4时,与未改性相比,甲烷吸附量急剧降低,从而可有效地分离提纯甲烷,分离比高,甲烷的收率高。
本发明还提供本发明所述的金属盐改性分子筛作为N2/CH4、O2/CH4或(N2+O2)/CH4体系的选择性吸附剂的用途。
本发明中的“/”为“和”的意思,比如,N2/CH4为氮气和甲烷的混合气体体系,O2/CH4为氧气和甲烷的混合气体体系,(N2+O2)/CH4为氮气、氧气和甲烷的混合气体体系。
CH4的分子动力学直径为0.38nm,N2的分子动力学直径为0.364nm,O2的分子动力学直径为0.346nm。本发明的分子筛,可通过工艺参数调节孔径,用作选择性吸附剂。用于分离N2/CH4时,可以选择性吸附N2;而用于分离O2/CH4时,选择性吸附O2;用于分离(N2+O2)/CH4时,选择性吸附N2和O2,从而达到分离混合气体的目的。
本发明还提供本发明所述的金属盐改性分子筛在煤层气、油田气或生物气中提纯甲烷的应用。由于该改性分子筛几乎不吸附甲烷,因此,可作为吸附剂,用于从煤层气、油田气或生物气中提纯甲烷,达到节能环保的目的。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
实施例1
采用如下方法制备得到硝酸锂改性碳分子筛:
1)配置一定浓度的硝酸锂水溶液:在常温下,将一定量的硝酸锂与去离子水进行混合,之后对其进行搅拌处理,使硝酸锂在水中彻底溶解,得到浓度为1wt%的硝酸锂水溶液,其中,浓度以锂的质量计;
2)将研磨后的碳分子筛(40~60目)与硝酸锂水溶液进行充分的混合搅拌,之后对浸渍有硝酸锂的改性碳分子筛固体进行抽滤分离,在150℃下对滤渣进行过夜烘干,将烘干后的样品置于管式炉中,在300℃氮气气氛下焙烧4h,得到最终的硝酸锂改性碳分子筛样品。
实施例2~3
采用实施例1的方法,仅改变硝酸锂水溶液的浓度,得到一系列不同浓度的硝酸锂水溶液改性的碳分子筛,具体改变的参数见表1。
表1
实施例编号 硝酸锂水溶液的浓度(%)
实施例1 1
实施例2 2
实施例3 3
实施例4
采用如下方法制备得到硝酸铬改性碳分子筛:
1)配置一定浓度的硝酸铬水溶液:在常温下,将一定量的硝酸铬与去离子水进行混合,之后对其进行搅拌处理,使硝酸铬在水中彻底溶解,得到浓度为1wt%的硝酸铬水溶液,其中,浓度以铬的质量计;
2)将研磨后的碳分子筛(40~60目)与硝酸铬水溶液进行充分的混合搅拌,之后对浸渍有硝酸铬的改性碳分子筛固体进行抽滤分离,在150℃下对滤渣进行过夜烘干,将烘干后的样品置于管式炉中,在300℃氮气气氛下焙烧4h,得到最终的硝酸铬改性碳分子筛样品。
实施例5~6
采用实施例4的方法,仅改变硝酸铬水溶液的浓度,得到一系列不同浓度的硝酸铬水溶液改性的碳分子筛,具体改变的参数见表2。
表2
实施例编号 硝酸铬水溶液的浓度(%)
实施例4 1
实施例5 2
实施例6 3
实施例7
采用如下方法制备得到硝酸锂-硝酸铬改性碳分子筛:
1)配置一定浓度的混合水溶液:在常温下,将一定量的硝酸锂和硝酸铬与去离子水进行混合,之后对其进行搅拌处理,使硝酸锂和硝酸铬在水中彻底溶解,得到混合溶液,混合溶液中,锂负载量为0.5wt%,铬负载量为0.5wt%;
2)将研磨后的碳分子筛(40~60目)与混合水溶液进行充分的混合搅拌,之后对浸渍有硝酸锂和硝酸铬的改性碳分子筛固体进行抽滤分离,在150℃下对滤渣进行过夜烘干,将烘干后的样品置于管式炉中,在300℃氮气气氛下焙烧4h,得到最终的硝酸锂-硝酸铬改性碳分子筛样品。
实施例8~10
采用实施例7的方法,仅改变混合溶液中硝酸锂和硝酸铬的浓度,得到一系列改性的碳分子筛,具体改变的参数见表3。
表3
实施例编号 锂的浓度(%) 铬的浓度(%)
实施例7 0.5 0.5
实施例8 0.5 1
实施例9 0.5 2
实施例10 0.5 3
试验例1
采用静态吸附法测定原料碳分子筛以及实施例1~10中所得的改性样品对氮气和甲烷的吸附量。具体的测定方法如下:
如图1所示,静态吸附装置由PLC模块1、压力传感器2、参比槽3、吸附槽4、恒温水浴锅5、真空泵6、电磁阀、针形截止阀、热电偶、电磁继电器等构成。利用恒温水浴锅5保持吸附过程温度恒定,利用参比槽3来计算自由体积,通过吸附槽4、参比槽3、电磁阀、针形截止阀的开闭实现气体吸附过程,通过压力传感器2实现压力的记录和电信号的传输,通过PLC模块1、电磁继电器、电磁阀的联动控制实现气体自动吸附过程。通过不同初始压力下吸附过程后的平衡压力数据,由RK状态方程迭代得到吸附质气体在吸附剂上的吸附容量。利用真空泵抽真空再生吸附剂。
静态吸附装置操作步骤:
称取一定量的样品,放入吸附槽4内,然后将恒温水浴锅5调节至实验温度,待水浴锅温度稳定后开始实验,实验前保证He气钢瓶9、N2气钢瓶8、CH4气钢瓶7的总阀呈开启状态,减压阀开启至略高于实验所需最高压力:
1、仪器检漏
打开控制He气钢瓶的阀门,观测压力是否变化,如果未变化,缓慢打开控制吸附槽的阀门,观测压力是否持续下降,如果下降后稳定为一定压力,则仪器正常,气密性良好。
2、测试过程
打开编程好的PLC程序,仪器自动按预设步骤进行。即,装置抽真空后,各阀门配合开闭,依次进行He气死体积测试,N2吸附测试,CH4气体吸附测试。分别控制He气钢瓶、N2气钢瓶、CH4气体钢瓶开闭,从而实现系统气体压力的升高;控制吸附槽、真空泵开闭,分别实现吸附和脱附过程。PLC模块记录每次升压后的初始压力和平衡压力数据。
3、数据计算
通过以上PLC控制程序得到本实验数据后,先后运用RK状态方程迭代计算得到吸附体系自由体积和乙烷乙烯气体吸附容量,计算过程如下:
由RK状态方程:
Figure BDA0002266439270000081
上式变形为迭代式:
Figure BDA0002266439270000082
其中a,b分别为RK状态方程常数,如下:
Figure BDA0002266439270000083
Figure BDA0002266439270000084
然后利用理想状态方程提供初值V0
Figure BDA0002266439270000085
将初值V0代入式(2)中迭代即可得到氮气、甲烷吸附量。
原料碳分子筛以及实施例1~10中所得的改性样品对氮气和甲烷的等温吸附曲线见图2~12。
从图2~12中可以明显看出,通过本发明的改性方法改性后,得到的碳分子筛,在保留原分子筛N2吸附量的同时,CH4吸附量急剧下降,氮气甲烷分离比高,可应用于氮气甲烷的分离中。

Claims (10)

1.金属盐改性分子筛的制备方法,其特征在于,包括如下步骤:
采用金属盐溶液对分子筛进行浸渍后,固液分离,固体干燥后焙烧,得到金属盐改性分子筛;其中,所述金属盐为A盐、B盐中的至少一种,所述A盐为锂盐、钠盐、钾盐、铷盐或铯盐;所述B盐为铝盐、铬盐、锌盐、硼盐、钛盐、钒盐、钼盐或钨盐。
2.根据权利要求1所述的金属盐改性分子筛的制备方法,其特征在于:所述A盐为锂盐;所述B盐为铬盐;优选所述A盐为硝酸锂;所述B盐为硝酸铬。
3.根据权利要求1或2所述的金属盐改性分子筛的制备方法,其特征在于:所述分子筛为碳分子筛、A型分子筛、X型分子筛、Y型分子筛、ZSM分子筛、SAPO分子筛、硅钛分子筛或活性炭;优选所述分子筛为碳分子筛。
4.根据权利要求1~3任一项所述的金属盐改性分子筛的制备方法,其特征在于:所述浸渍为等体积浸渍或过量浸渍。
5.根据权利要求1~4任一项所述的金属盐改性分子筛的制备方法,其特征在于:所述金属盐溶液中,金属离子的浓度为0.001~10wt%;优选金属离子的浓度为0.01~5wt%。
6.根据权利要求1~5任一项所述的金属盐改性分子筛的制备方法,其特征在于:所述焙烧为惰性气氛下100~600℃焙烧2~12h;优选所述焙烧为氮气气氛下300℃焙烧4h。
7.根据权利要求1~6任一项所述的金属盐改性分子筛的制备方法,其特征在于:将分子筛与金属盐溶液混匀浸渍后,过滤分离,将过滤后的分子筛于60~200℃内干燥,得到金属盐改性分子筛。
8.金属盐改性分子筛,其特征在于:采用权利要求1~7任一项所述的金属盐改性分子筛的制备方法制备得到。
9.权利要求8所述的金属盐改性分子筛作为N2/CH4、O2/CH4或(N2+O2)/CH4体系的选择性吸附剂的用途。
10.权利要求8所述的金属盐改性分子筛在煤层气、油田气或生物气中提纯甲烷的应用。
CN201911089480.2A 2019-11-08 2019-11-08 金属盐改性分子筛及其制备方法和应用 Active CN110773120B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911089480.2A CN110773120B (zh) 2019-11-08 2019-11-08 金属盐改性分子筛及其制备方法和应用
PCT/CN2020/099720 WO2021088389A1 (zh) 2019-11-08 2020-07-01 无机改性分子筛及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911089480.2A CN110773120B (zh) 2019-11-08 2019-11-08 金属盐改性分子筛及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110773120A true CN110773120A (zh) 2020-02-11
CN110773120B CN110773120B (zh) 2021-05-07

Family

ID=69389783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911089480.2A Active CN110773120B (zh) 2019-11-08 2019-11-08 金属盐改性分子筛及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110773120B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111534373A (zh) * 2020-03-24 2020-08-14 吉林省百利生物科技有限公司 一种降低植物油茴香胺值的方法
CN111889074A (zh) * 2020-07-31 2020-11-06 宁夏博实科技有限公司 选择吸附剂及其制备方法和应用
WO2021088389A1 (zh) * 2019-11-08 2021-05-14 四川大学 无机改性分子筛及其制备方法和应用
CN113355143A (zh) * 2021-07-22 2021-09-07 中石化石油工程技术服务有限公司 一种基于可控孔径分子筛的天然气脱氮气和二氧化碳方法和装置
CN113603077A (zh) * 2021-08-23 2021-11-05 绍兴海崐新材料科技有限公司 一种高吸附力球形介孔碳的制备方法
CN113877530A (zh) * 2021-11-03 2022-01-04 西南化工研究设计院有限公司 一种选择性分离甲烷和氮气用的碳分子筛吸附剂及其制备方法
CN114618426A (zh) * 2020-12-11 2022-06-14 中大汇智源创(北京)科技有限公司 金属离子改性分子筛及其制备方法、高炉煤气脱硫方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153388A (ja) * 1985-12-27 1987-07-08 Toho Gas Co Ltd メタン濃縮方法
US5989316A (en) * 1997-12-22 1999-11-23 Engelhard Corporation Separation of nitrogen from mixtures thereof with methane utilizing barium exchanged ETS-4
CN101596445A (zh) * 2009-06-05 2009-12-09 安徽理工大学 一种碳分子筛吸附剂的制备方法
CN101704751A (zh) * 2009-11-24 2010-05-12 吉林大学 碳酸甲乙酯的合成方法
CN101804979A (zh) * 2010-04-07 2010-08-18 煤炭科学研究总院 煤基碳分子筛及其制备方法
CN102626652A (zh) * 2012-03-22 2012-08-08 清华大学 用于天然气车尾气甲烷净化的分子筛催化剂及制备和应用
CN103086354A (zh) * 2013-01-22 2013-05-08 煤炭科学研究总院 一种煤层气浓缩提纯ch4用碳分子筛及其制备方法
CN105363407A (zh) * 2014-08-11 2016-03-02 浙江蓝天环保高科技股份有限公司 一种改性的吸附剂及其在超高纯一氟甲烷制备中的应用
CN107321307A (zh) * 2017-07-12 2017-11-07 贵州益寿农业科技有限公司 一种用油茶壳制作碳分子筛的方法
CN108383100A (zh) * 2018-04-16 2018-08-10 郑州富龙新材料科技有限公司 一种甲烷富集用碳分子筛及其制备方法
CN109179415A (zh) * 2018-09-12 2019-01-11 中国地质科学院郑州矿产综合利用研究所 一种煤基碳分子筛的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62153388A (ja) * 1985-12-27 1987-07-08 Toho Gas Co Ltd メタン濃縮方法
US5989316A (en) * 1997-12-22 1999-11-23 Engelhard Corporation Separation of nitrogen from mixtures thereof with methane utilizing barium exchanged ETS-4
CN101596445A (zh) * 2009-06-05 2009-12-09 安徽理工大学 一种碳分子筛吸附剂的制备方法
CN101704751A (zh) * 2009-11-24 2010-05-12 吉林大学 碳酸甲乙酯的合成方法
CN101804979A (zh) * 2010-04-07 2010-08-18 煤炭科学研究总院 煤基碳分子筛及其制备方法
CN102626652A (zh) * 2012-03-22 2012-08-08 清华大学 用于天然气车尾气甲烷净化的分子筛催化剂及制备和应用
CN103086354A (zh) * 2013-01-22 2013-05-08 煤炭科学研究总院 一种煤层气浓缩提纯ch4用碳分子筛及其制备方法
CN105363407A (zh) * 2014-08-11 2016-03-02 浙江蓝天环保高科技股份有限公司 一种改性的吸附剂及其在超高纯一氟甲烷制备中的应用
CN107321307A (zh) * 2017-07-12 2017-11-07 贵州益寿农业科技有限公司 一种用油茶壳制作碳分子筛的方法
CN108383100A (zh) * 2018-04-16 2018-08-10 郑州富龙新材料科技有限公司 一种甲烷富集用碳分子筛及其制备方法
CN109179415A (zh) * 2018-09-12 2019-01-11 中国地质科学院郑州矿产综合利用研究所 一种煤基碳分子筛的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金淑明等: ""离子交换改性斜发沸石用于N2/CH4分离性能研究"", 《河北工业大学学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021088389A1 (zh) * 2019-11-08 2021-05-14 四川大学 无机改性分子筛及其制备方法和应用
CN111534373A (zh) * 2020-03-24 2020-08-14 吉林省百利生物科技有限公司 一种降低植物油茴香胺值的方法
CN111889074A (zh) * 2020-07-31 2020-11-06 宁夏博实科技有限公司 选择吸附剂及其制备方法和应用
CN114618426A (zh) * 2020-12-11 2022-06-14 中大汇智源创(北京)科技有限公司 金属离子改性分子筛及其制备方法、高炉煤气脱硫方法
CN113355143A (zh) * 2021-07-22 2021-09-07 中石化石油工程技术服务有限公司 一种基于可控孔径分子筛的天然气脱氮气和二氧化碳方法和装置
CN113603077A (zh) * 2021-08-23 2021-11-05 绍兴海崐新材料科技有限公司 一种高吸附力球形介孔碳的制备方法
CN113877530A (zh) * 2021-11-03 2022-01-04 西南化工研究设计院有限公司 一种选择性分离甲烷和氮气用的碳分子筛吸附剂及其制备方法

Also Published As

Publication number Publication date
CN110773120B (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
CN110773120B (zh) 金属盐改性分子筛及其制备方法和应用
CN110773121B (zh) 硼酸改性分子筛及其制备方法和应用
CN110773125B (zh) 有机改性分子筛及其制备方法和应用
Bacsik et al. Selective separation of CO2 and CH4 for biogas upgrading on zeolite NaKA and SAPO-56
Ye et al. Post-combustion CO2 capture with the HKUST-1 and MIL-101 (Cr) metal–organic frameworks: Adsorption, separation and regeneration investigations
Dietzel et al. Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide
Bae et al. Enhancement of CO 2/N 2 selectivity in a metal-organic framework by cavity modification
CA2716323C (en) Separation of carbon dioxide from nitrogen utilizing zeolitic imidazolate framework materials
CN110496604B (zh) 一种钴镍双金属有机框架二氧化碳吸附材料及其制备方法与应用
CN102439123B (zh) 具有rho结构的沸石性质微孔晶体材料在天然气加工过程中的应用
CA2716333C (en) Separation of carbon dioxide from methane utilizing zeolitic imidazolate framework materials
Guo et al. Scalable solvent-free preparation of [Ni3 (HCOO) 6] frameworks for highly efficient separation of CH4 from N2
CN110773122B (zh) 含醚聚合物改性分子筛及其制备方法和应用
Xie et al. Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas
Cheung et al. Highly selective uptake of carbon dioxide on the zeolite| Na 10.2 KCs 0.8|-LTA–a possible sorbent for biogas upgrading
CN110773129B (zh) 二元取代苯改性分子筛及其制备方法和应用
CN114849665B (zh) 可吸附空气中二氧化碳的胺基金属有机骨架吸附剂及其制备和应用
CN111871366B (zh) 基于钛硅分子筛的吸附剂及其制备方法和应用
CN113120903A (zh) 一种活性炭及其制备方法和应用
CN111871373B (zh) 用于分离氮气甲烷的吸附剂及其制备方法和应用
WO2021088390A1 (zh) 有机改性分子筛及其制备方法和应用
WO2021088389A1 (zh) 无机改性分子筛及其制备方法和应用
CN111889074A (zh) 选择吸附剂及其制备方法和应用
CN117065716A (zh) 一种改性13x分子筛及其制备方法和应用
Hu et al. Testing the stability of novel adsorbents for carbon capture applications using the zero length column

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant