WO2012043942A1 - 아민계 물질이 함침된 입상형 이산화탄소 흡착제 및 이의 제조방법 - Google Patents

아민계 물질이 함침된 입상형 이산화탄소 흡착제 및 이의 제조방법 Download PDF

Info

Publication number
WO2012043942A1
WO2012043942A1 PCT/KR2011/000305 KR2011000305W WO2012043942A1 WO 2012043942 A1 WO2012043942 A1 WO 2012043942A1 KR 2011000305 W KR2011000305 W KR 2011000305W WO 2012043942 A1 WO2012043942 A1 WO 2012043942A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
weight
granular
dioxide adsorbent
amine
Prior art date
Application number
PCT/KR2011/000305
Other languages
English (en)
French (fr)
Inventor
백일현
남성찬
박정훈
윤여일
박상도
최수현
성준경
정윤호
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2012043942A1 publication Critical patent/WO2012043942A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • B01J20/3255Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such comprising a cyclic structure containing at least one of the heteroatoms nitrogen, oxygen or sulfur, e.g. heterocyclic or heteroaromatic structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a granular carbon dioxide adsorbent having an amine-based material impregnated into a granular material prepared by including a mesoporous material, an inorganic binder, an organic binder, and a substrate conversion additive, and a method for preparing the same.
  • Carbon dioxide is produced by the burning of fossil fuels, and methods for reducing the atmospheric concentration of carbon dioxide have been proposed.
  • Representative techniques for reducing carbon dioxide include absorption, adsorption, membrane separation, and deep cooling.
  • Absorption method is advantageous for treating large-capacity gas by selectively separating carbon dioxide in exhaust gas by using absorbent, and adsorption method uses a solid adsorbent which is easy to adsorb carbon dioxide, and separating it by change of adsorption amount according to pressure difference.
  • separation is performed by using a gas permeation rate difference by the membrane.
  • Absorption method is easy to process a large-capacity gas, but the amount of the absorbent is used a lot, there is a problem in the corrosion of the separation equipment by the absorbent, the membrane separation method is simple, but the membrane is very expensive and difficult to large-capacity.
  • the adsorption method consumes more energy than the absorption method and is not suitable for treating large-capacity carbon dioxide, but it is relatively simple and has a low impact on the surrounding environment. Can be.
  • Adsorbents and processes using the same must be developed when carbon dioxide is separated by adsorption.
  • the efficiency of the carbon dioxide separation process is highly dependent on the performance of the adsorbent.
  • adsorbents having micropores having a diameter of 2 nm or less such as activated alumina, silica gel, activated carbon, zeolite and the like, have been used.
  • adsorbents have difficulty in regenerating due to complex pores, and in particular, molecular sieves, such as zeolites, have a very small pore and cannot be separated from a relatively large pore gas. Therefore, in order to compensate for the disadvantages of the existing adsorbent, mesoporous material having a pore diameter of 2 to 50 nm has been proposed.
  • Mesoporous material is a porous material having pores of a uniform mesoporous region and has a regularity in which the pore arrangement is hexagonal arrangement or honeycomb. In addition, it has a large surface area and a uniform pore of the mesopore region has the advantage that it can be used as a separating adsorbent in various fields.
  • the mesoporous material made of pure silica skeleton has no ion exchange characteristic, acid point, catalytic activity point, etc., there is a problem in using it as a carbon dioxide separation medium.
  • the powdered mesoporous material should be prepared in the form of granular particles such as spherical and cylindrical in order to facilitate contact between the adsorbent and the separation gas in the reactor in order to use as an adsorbent in a commercial process.
  • An object of the present invention is to provide a granular carbon dioxide adsorbent impregnated with an amine-based material in a granular material prepared by including a mesoporous material, an inorganic binder, an organic binder, and a substrate conversion additive.
  • Granular carbon dioxide adsorbent in which granular material prepared by including mesoporous material, inorganic binder, organic binder and substrate conversion additive is impregnated with amine-based material.
  • the granular material is 55 to 75% by weight mesoporous material, 15 to 25% by weight inorganic binder, 1 to 10% by weight organic binder and 1 to 10% by weight of the substrate conversion additive Type carbon dioxide adsorbent.
  • the amine-based material is a granular carbon dioxide adsorbent is any one selected from 25 to 35% by weight, 45 to 55% by weight and 65 to 75% by weight of the impregnation represented by the following [Equation 1];
  • Impregnation amount (% by weight) M 2 / (M 1 + M 2 ) X 100
  • M 1 is the content of granular material and M 2 is the content of amine-based material).
  • the mesoporous material is MCM-41 (Mobil Composition of Mater-41), MCM-48 (Mobil Composition of Mater-48), MCM-50 (Mobil Composition of Mater-50 ), SBA-1 (Santa Barbara-1), SBA-3 (Santa Barbara-3), SBA-6 (Santa Barbara-6), SBA-16 (Santa Barbara-16), and SBA-15 (Santa Barbara-15) Granular carbon dioxide adsorbent.
  • the mesoporous material MCM-48 (Mobil Composition of Mater-48) is a granular carbon dioxide adsorbent.
  • the inorganic binder is for granulating the mesoporous material by the sintering (sintering) between the powder particles, the group consisting of bentonite, clay, mica, kaolin, zeolite, diatomaceous earth and silica At least one granular carbon dioxide adsorbent selected from.
  • the organic binder according to any one of the above 1 to 4 to maintain the granular form and increase the strength of the adsorbent before the mesoporous material and the inorganic binder is granulated through sintering, methylcellulose, starch, gelatin at least one granular carbon dioxide adsorbent selected from the group consisting of (gelatin), polyvinyl alcohol, polyethylene oxide and polyethylene glycol.
  • the substrate conversion additive is to improve the porosity, sinterability of the mesoporous material and the adhesion between the particles of the mesoporous material, activated carbon, calcium sulfite (CaSO 3 ), graphite, pearlite At least one granular carbon dioxide adsorbent selected from the group consisting of vermiculite and calcium titanate (CaTiO 3 ).
  • amine-based material is at least one selected from the group consisting of alkanolamines, polyamines, piperazineamines, and benzene-containing amines.
  • the alkanolamine is monoethanolamine (MEA, Monoethanolamine), diethanolamine (DEA, Diethanolamine), triethanolamine (TEA, Triethanolamine), methyldiethanolamine (MDEA, Methyldiethanolamine), diglycolamine (DGA, Diglycolamine), 2-amino-2-methylpropanol (AMP, 2-Amino-2-methyl-propanol), hexamethylenediamine (HMDA, Hexamethylenediamine), Propylamine, Dipropylamine, Butylamine, Isobutylamine, Hexylamine, 2-Ethylhexylamine, Allylamine, Methyldiallylamine, Pentylamine, Isoamylamin, N-Methylethylamine, 2-Octylamine, 4-Aminobutanol, 3-Methoxypropylamine, 3-Isobutoxypropylamine, Dimethylaminoethylamine, 2-Hyde
  • the polyamine is polyethyleneimine (PEI, Polyethyleneimine), iminobispropylamine (Imino-bis-propylamine), methylimino-bis-propylamine, Lauriliminobispropylamine (Laurylimino -bis-propylamine), pentamethyldiethylenetriamine, pentamethyldipropylenediamine, aminopropyl-1,3-propylenediamine, aminopropyl-1,4 At least one granular carbon dioxide adsorbent selected from among butylenediamine (Aminopropyl-1,4-butylenediamine).
  • PEI Polyethyleneimine
  • iminobispropylamine Imino-bis-propylamine
  • methylimino-bis-propylamine methylimino-bis-propylamine
  • Lauriliminobispropylamine Laurylimino -bis-propylamine
  • pentamethyldiethylenetriamine pent
  • the piperazine amine is piperazine (Piperazine), 2-methylpiperazine (2-Methylpiperazine), 2,5-dimethylpiperazine (2,5-Dimethylpiperazine), 2-methylpiperazine (2 -Methylpiperazine, N-Ethylpiperazine, Pipecolinic acid, Isonipecotic acid, Methylisonipecotate, N-alkyl-3-pipecoline (N-Alkyl-3-pipecoline), N-Alkylpiperizine, N-Alkyl-3-piperizine, N-Alkyl-3-piperizine, 2-Aminomethylpiperidine ), Isonipecotamide, N-Methyl-4-piperidinol, N-benzyl-4-piperidinol, N- A granular carbon dioxide adsorbent which is at least one selected from methyl-4-piperidone, N-benzyl-4-piperidone, and dipiperidinomethan
  • the benzene-containing amine is bebzylamine, Dibenzylamine, Dibenzylamine, N-Methylbenzylamine, dimethylbenzylamine, 4-benzylpiperidine (4 Benzylpiperidine, Dibenzylethanolamine, Tribenzylamine, Phenylethylamine, Phenethylamine, Methoxyphenethylamine, Aminopropylaniline, Ethylpropylaniline A granular carbon dioxide adsorbent at least one selected from cyclohexylamine.
  • MCM-41 Mobil Composition of Mater-41
  • MCM-48 Mobil Composition of Mater-48
  • MCM-50 Mobil Composition of Mater-50
  • SBA-1 Spenta Barbara-1
  • Mixing the mesoporous material, inorganic binder, organic binder and substrate conversion additive of the powder Kneading by adding 30 to 50 parts by weight of a 5% polyvinyl alcohol solution based on 100 parts by weight of the mixed adsorbent composition; Preparing a kneaded adsorbent composition into a granular form; Determining the prepared granular material in a heating furnace; And impregnating the calcined granular material with an amine-based material.
  • the mesoporous material is 55 to 75% by weight
  • the inorganic binder is 15 to 25% by weight
  • the organic binder is mixed with 1 to 10% by weight
  • the substrate conversion additive 1 to 10% by weight granular carbon dioxide Process for preparing adsorbent.
  • Impregnation amount (% by weight) M 2 / (M 1 + M 2 ) X 100
  • M 1 is the content of granular material and M 2 is the content of amine-based material).
  • amine-based material is at least one selected from the group consisting of alkanolamines, polyamines, piperazineamines, and benzene-containing amines.
  • the alkanolamine is monoethanolamine (MEA, Monoethanolamine), diethanolamine (DEA, Diethanolamine), triethanolamine (TEA, Triethanolamine), methyldiethanolamine (MDEA, Methyldiethanolamine), diglycolamine (DGA, Diglycolamine), 2-amino-2-methylpropanol (AMP, 2-Amino-2-methyl-propanol), hexamethylenediamine (HMDA, Hexamethylenediamine), Propylamine, Dipropylamine, Butylamine, Isobutylamine, Hexylamine, 2-Ethylhexylamine, Allylamine, Methyldiallylamine, Pentylamine, Isoamylamin, N-Methylethylamine, 2-Octylamine, 4-Aminobutanol, 3-Methoxypropylamine, 3-Isobutoxypropylamine, Dimethylaminoethylamine, 2-Hyde
  • the polyamine is polyethyleneimine (PEI, Polyethyleneimine), iminobispropylamine (Imino-bis-propylamine), methylimino-bis-propylamine, Lauriliminobispropylamine (Laurylimino -bis-propylamine), pentamethyl diethylenetriamine, pentamethyldipropylenediamine, aminopropyl-1,3-propylenediamine, aminopropyl-1, A method for producing a granular carbon dioxide adsorbent, which is at least one selected from 4-butylenediamine (Aminopropyl-1,4-butylenediamine).
  • PEI Polyethyleneimine
  • iminobispropylamine Imino-bis-propylamine
  • methylimino-bis-propylamine methylimino-bis-propylamine
  • Lauriliminobispropylamine Laurylimino -bis-propylamine
  • piperazineamine is piperazine (Piperazine), 2-methylpiperazine (2-Methylpiperazine), 2,5-dimethylpiperazine (2,5-Dimethylpiperazine), 2-methylpiperazine (2 -Methylpiperazine, N-Ethylpiperazine, Pipecolinic acid, Isonipecotic acid, Methylisonipecotate, N-alkyl-3-pipecoline (N-Alkyl-3-pipecoline), N-Alkylpiperizine, N-Alkyl-3-piperizine, N-Alkyl-3-piperizine, 2-Aminomethylpiperidine ), Isonipecotamide, N-Methyl-4-piperidinol, N-benzyl-4-piperidinol, N- N-Methyl-4-piperidone, N-benzyl-4-piperidone, or dipiperidinomethan Manufacturing method.
  • the benzene-containing amine is bebzylamine, Dibenzylamine, N-Methylbenzylamine, dimethylbenzylamine, 4-benzylpiperidine (4 Benzylpiperidine, Dibenzylethanolamine, Tribenzylamine, Phenylethylamine, Phenethylamine, Methoxyphenethylamine, Aminopropylaniline, Ethylpropylaniline Method for producing a granular carbon dioxide adsorbent is at least one selected from cyclohexylamine (Ethylcyclohexylamine).
  • the inorganic binder is at least one selected from the group consisting of bentonite, clay, mica, kaolin, zeolite, diatomaceous earth and silica.
  • organic binder is at least one selected from the group consisting of methyl cellulose, starch, gelatin, polyvinyl alcohol, polyethylene oxide and polyethylene glycol.
  • the carbon dioxide adsorbent of the present invention is prepared in a granular form including a mesoporous material, an inorganic binder, an organic binder, and a substrate conversion additive.
  • the carbon dioxide adsorbent increases the adsorption amount of carbon dioxide by impregnating an amine-based material in the granular material mixed with the materials. .
  • the adsorbent of the present invention since the adsorbent of the present invention is manufactured in a granular form, it may be used as a gas separation adsorbent in a commercial process.
  • the granular carbon dioxide adsorbent of the present invention removes carbon dioxide which causes global warming, and thus, if used as a low-cost carbon dioxide separation process, its utilization is very high as a carbon dioxide separation technology with improved economics in preparation for the climate Change Convention.
  • 1 is a view showing a separation mechanism of the amine group and carbon dioxide imparted inside the pores of the mesoporous material
  • FIG. 2 is a view showing a particulate carbon dioxide adsorbent of the present invention
  • FIG. 3 is a view showing the impregnation amount and carbon dioxide adsorption amount of polyethyleneimine contained in the granular carbon dioxide adsorbent prepared according to the comparative example,
  • FIG. 6 is a view showing the impregnation amount and carbon dioxide adsorption amount of polyethyleneimine contained in the carbon dioxide adsorbent prepared according to the embodiment of the present invention
  • FIG. 7 is a SEM measurement of a granular carbon dioxide adsorbent not impregnated with polyethyleneimine and a granular carbon dioxide adsorbent impregnated with polyethyleneimine according to an embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a granular carbon dioxide adsorbent not impregnated with polyethyleneimine and a granular carbon dioxide adsorbent impregnated with polyethyleneimine according to an embodiment of the present invention by FT-IR,
  • thermogravimetric analyzer 9 is a diagram measuring the amount of carbon dioxide adsorption according to the temperature of the granular carbon dioxide adsorbent prepared according to the embodiment of the present invention using a thermogravimetric analyzer
  • FIG. 10 is a view showing a comparison of the carbon dioxide adsorption curve of the granular carbon dioxide adsorbent prepared according to the embodiment of the present invention.
  • the present invention is impregnated with an amine-based material in the granular material prepared, including 55 to 75% by weight of mesoporous material, 15 to 25% by weight of inorganic binder, 1 to 10% by weight of organic binder and 1 to 10% by weight of substrate conversion additive.
  • the present invention relates to a granular carbon dioxide adsorbent capable of removing carbon dioxide generated by fossil fuels and causing global warming, and a method of manufacturing the same.
  • the carbon dioxide adsorbent may provide a functional group capable of chemically adsorbing the gas to be separated into the pores of the mesoporous material to increase the amount of adsorption of the gas.
  • the carbon dioxide adsorbent exhibits an excellent amount of carbon dioxide adsorption because the surface adsorption of the amine-based material into the pores of the mesoporous material proceeds simultaneously with the physical adsorption by the pores and the chemical adsorption by the amine-based material imparted to the pores.
  • the carbon dioxide adsorbent surface-modified by impregnating the amine-based material in the granular material is provided with an amine group while the silica group of the mesoporous material combines with the amine group, and the amine group imparted in the pores of the mesoporous material is various as shown in FIG. 1.
  • the gaseous components it is chemisorbed with carbon dioxide and the carbon dioxide can be easily separated and adsorbed.
  • the carbon dioxide adsorbent can be easily regenerated by applying certain heat.
  • the carbon dioxide adsorbent of the present invention is impregnated with an amine-based material in a granular material prepared by including a mesoporous material, an inorganic binder, an organic binder, and a substrate conversion additive, and is shown in FIG. 2 for easy application in a commercial process.
  • a granular material prepared by including a mesoporous material, an inorganic binder, an organic binder, and a substrate conversion additive, and is shown in FIG. 2 for easy application in a commercial process.
  • the figurine It is preferred to be prepared in the form of).
  • the mesoporous material is in powder form and the content is 55 to 75% by weight, preferably 60 to 70% by weight, more preferably 70% by weight. If the content of mesoporous material is less than 55% by weight, the adsorption amount of carbon dioxide is reduced because the pore size of the adsorbent is low, and if the content is more than 75% by weight, the particle sinterability between mesoporous materials is lowered, thereby decreasing the strength of the adsorbent and simultaneously The formation of macropores in the liver is lowered, thereby reducing the amount of carbon dioxide adsorption.
  • the mesoporous material used in the present invention may be prepared by Mobil Composition of Mater-41 (MCM-41), Mobil Composition of Mater-48 (MCM-48), Mobil Composition of Mater-50 (MCM-50), SBA- 1 selected from 1 (Santa Barbara-1), SBA-3 (Santa Barbara-3), SBA-6 (Santa Barbara-6), SBA-16 (Santa Barbara-16) and SBA-15 (Santa Barbara-15) It's a species.
  • the inorganic binder reacts with the powdery mesoporous material to cause sintering between the powder particles and thus powder form. It is used not only to granulate mesoporous material but also to control the strength of the adsorbent.
  • the inorganic binders include one or two or more selected from the group consisting of bentonite, clay, mica, kaolin, zeolite, diatomaceous earth, and silica.
  • the inorganic binder has a content of 15 to 25% by weight, preferably 20 to 25% by weight, more preferably 20% by weight. When the content of the inorganic binder is less than 15% by weight, the strength of the adsorbent is lowered, and when the content is more than 25% by weight, the amount of carbon dioxide adsorbed per unit adsorbent is reduced.
  • the organic binder is used to maintain the granular form and increase the strength of the adsorbent before the powdered mesoporous material and the inorganic binder are granulated through sintering properties.
  • the organic binder has a content of 1 to 10% by weight, preferably 3 to 7% by weight, more preferably 5% by weight. If the content of the organic binder is less than 1% by weight, the adsorbent cannot be manufactured in a granular form, and the strength of the adsorbent is decreased, so that the amount of carbon dioxide adsorption is reduced. When the content is more than 10% by weight, the amount of carbon dioxide adsorption is reduced. .
  • the substrate conversion additive is to change the pore properties of the mesoporous material, to improve the sintering properties and adhesion between the particles of the mesoporous material, such as to maintain and expand the pores of the adsorbent, for example, activated carbon,
  • adsorbent for example, activated carbon
  • One or more selected from the group consisting of calcium sulfite (CaSO 3 ), graphite, pearlite, vermiculite and calcium titanate (CaTiO 3 ) is used.
  • the substrate conversion additive has a content of 1 to 10% by weight, preferably 3 to 7% by weight, more preferably 5% by weight.
  • content of the substrate conversion additive is less than 1% by weight, the adsorption amount of carbon dioxide is insignificant, and when the content is more than 10% by weight, the amount of carbon dioxide adsorption is reduced by over mixing.
  • amine-based material impregnated into the granular material prepared by including the above-described materials one or two or more selected from the group consisting of alkanolamine, polyamine, piperazineamine, and benzene-containing amine are used.
  • alkanolamine is monoethanolamine (MEA, Monoethanolamine), diethanolamine (DEA, Diethanolamine), triethanolamine (TEA, Triethanolamine), methyldiethanolamine (MDEA, Methyldiethanolamine), diglycolamine (DGA, Diglycolamine), 2-amino-2-methylpropanol (AMP, 2-Amino-2-methyl-propanol), hexamethylenediamine (HMDA, Hexamethylenediamine), Propylamine, Dipropylamine, Butylamine ( Butylamine, Isobutylamine, Hexylamine, 2-Ethylhexylamine, Allylamine, Methyldiallylamine, Pentylamine, Isoamylamine (Isoamylamin), N-Methylethylamine, 2-Octylamine, 4-Aminobutanol, 3-Methoxypropylamine, 3-Isobu 3-isobutoxypropylamine, 4-Amin
  • Laurilimino-bis-propylamine Pentamethyldiethylenetriamine, Pentamethyldipropylenediamine, Aminopropyl-1,3-propylenediamine (Aminopropyl-1,3 -propylenediamine), aminopropyl-1,4-butylenediamine and the like, and piperazineamines include piperazine and 2-methylpiperazine.
  • Benzenyl-containing amines are benzylamine (Bebzylamine), Dibenzylamine (N-Methylbenzylamine), dimethylbenzylamine (Dimethylbenzylamine), 4- Benzylpiperidine, 4-benzylpiperidine, dibenzylethanolamine, tribenzylamine, phenylethylamine, phenethylamine, methoxyethylamine, methoxyphenethylamine, aminopropyl aniline (Aminopropylaniline), ethylcyclohexylamine and the like.
  • the amine-based material impregnated into the granular material is impregnated with an impregnation amount of 25 to 35% by weight, 45 to 55% by weight or 65 to 75% by weight, preferably 30%, 50% or 70% by weight.
  • the impregnation amount is represented by the following [Equation 1].
  • Impregnation amount (% by weight) M 2 / (M 1 + M 2 ) X 100
  • M 1 is the content of granular material and M 2 is the content of amine-based material).
  • the granular carbon dioxide adsorbent of the present invention has excellent adsorption amount of carbon dioxide at 40 to 80 ° C.
  • the adsorption amount of carbon dioxide is the best when using an adsorbent impregnated with 45 to 55% by weight of amine material at 70 to 80 °C.
  • the amount of adsorption can be regarded as the same meaning as the amount of carbon dioxide removed.
  • the present invention also provides a method for producing a granular carbon dioxide adsorbent.
  • any one of the mesoporous materials selected from the prepared mesoporous materials is powdered to have an average particle diameter of 5 to 60 ⁇ m. If the powdered mesoporous material is less than 5 ⁇ m, it may be difficult to impregnate the amine-based material. If the powdered mesoporous material is more than 60 ⁇ m, a large amount of large voids between the particles may be generated during the granulation process when the adsorbent is granular, resulting in a decrease in strength. Can be.
  • the inorganic binder 15 to 25% by weight of the inorganic binder, 1 to 10% by weight of the organic binder and 1 to 10% by weight of the substrate conversion additive are mixed with 55 to 75% by weight of the mesoporous material of the powder, and the mixed adsorbent composition
  • 30 to 50 parts by weight of a 5% polyvinyl alcohol solution is added to 100 parts by weight of the adsorbent composition and kneaded.
  • the kneaded adsorbent composition is placed in an extrusion molding machine, prepared in the form of a cylinder, and cut into about 5 mm to produce a granular form.
  • the prepared granular material was heated to 900 to 1,200 ° C. at a rate of 10 ° C./min at room temperature with a heating furnace, and then calcined by maintaining for 5 to 10 hours. Impregnated to produce a granular carbon dioxide adsorbent.
  • FT-IR Fourier Transform Infrared Spectroscopy
  • M / N NICOLET 6700
  • SEM Scanning Electron Microscope
  • Ionized water was injected into two Teflon sample bottles, 18.77 g of colloidal silica (Ludox-40) and 9.65 g of sodium hydroxide were added to sample bottle 1, and 2.4 g of cationic surfactant (CTABr, cetyltrimethyl ammonium bromide) was added to sample bottle 2. After putting ml, the mixture was stirred at 80 ° C. for 30 minutes, and hydrothermally synthesized at 100 ° C. for 24 hours. In order to promote hydrothermal synthesis, the mixed solution was titrated with 1 M hydrochloric acid or sodium hydroxide to pH 11 and hydrothermally synthesized at 100 ° C for 24 hours.
  • CABr cetyltrimethyl ammonium bromide
  • the solution thus prepared is filtered, washed with deionized water, aged at 60 ° C., and then dried to raise the temperature to 550 ° C. at a rate of 10 ° C./min at room temperature, and then calcined at 550 ° C. for 8 hours to obtain pores.
  • MCM-41 having an average particle diameter of 2 to 50 nm was prepared.
  • Ion water is injected into two Teflon sample bottles, 18.77 g of colloidal silica (Ludox-40) and 9.65 g of sodium hydroxide are added to sample bottle 1, and 7.74 g of cationic surfactant (CTABr) and polyoxyethylene loryl ether are added to sample bottle 2. 1.34 g of (LE-4, polyoxyethylene laury ether) was added thereto, followed by stirring at 40 ° C. for 20 minutes. Sample bottles 1 and 2 were mixed and then hydrothermally synthesized at 100 ° C. for 78 hours. The white precipitate produced after hydrothermal synthesis was recovered by suction filtration and aged at 60 ° C., and the dried sample was then heated to 600 ° C. at room temperature at a rate of 10 ° C./min and then calcined at 600 ° C. for 10 hours to obtain pores. MCM-48 having an average particle diameter of 2 to 50 nm was prepared.
  • MCM-41 prepared in Preparation Example 1 was powdered so as to have an average particle diameter of 30 ⁇ m with a mortar, and then 70% by weight of MCM-41, 20% by weight of bentonite, and 5% by weight of methyl cellulose using a ball mill. And 5% by weight of activated carbon is added and mixed. 40 parts by weight of a 5% polyvinyl alcohol solution is added to 100 parts by weight of the mixed adsorbent composition, followed by kneading. The kneaded composition is extracted in a cylindrical shape in an extrusion machine and cut at intervals of about 5 mm to prepare a granular form. The granular material was heated to 550 ° C.
  • Example 2 The same procedure as in Example 1 was carried out except that the mesoporous material of Preparation Example 2 was used instead of the mesoporous material of Preparation Example 1.
  • Example 1 The same procedure as in Example 1 was carried out except that the mesoporous material of Preparation Example 3 was used instead of the mesoporous material of Preparation Example 1.
  • MCM-41 was mixed with 25% by weight of bentonite and 5% by weight of calcium titanate in 70% by weight of MCM-41, which was cut in the form of a cylinder and cut at intervals of about 5 mm to effect the sintering effect of bentonite. It was calcined at 1200 ° C. for 8 hours to enhance.
  • Example 2 In the same manner as in Example 1, 20% by weight of bentonite, 5% by weight of calcium sulfite and 5% by weight of calcium titanate were mixed in 70% by weight of MCM-41, which was cut into cylinders and cut at intervals of about 5 mm at 1200 ° C. It baked at 8 hours.
  • Example 2 In the same manner as in Example 1, 25 wt% of bentonite and 5 wt% of methyl cellulose were mixed with 70 wt% of MCM-41.
  • FIG 3 is a view showing the impregnation amount and carbon dioxide adsorption amount of polyethyleneimine contained in the particulate carbon dioxide adsorbent of Comparative Example 1.
  • Figure 3a shows the result of measuring the impregnated amount of polyethyleneimine contained in the adsorbent, although the impregnated amount of polyethyleneimine 40% by weight as shown in Figure 3b carbon dioxide adsorption (W / W 0 ) value is 1.010 Insignificant adsorption amounts are shown below.
  • Comparative Example 2 the impregnation amount of polyethyleneimine was similar to that of Comparative Example 1 (FIG. 4A), and the adsorption amount of carbon dioxide was insignificant as in Comparative Example 1 (FIG. 4B).
  • Comparative Examples 1 and 2 used only bentonite as an inorganic binder as a material to help prepare the adsorbent in a granular form and impart proper strength. However, Comparative Examples 1 and 2 not only did not maintain proper strength, but also had a small amount of carbon dioxide adsorption. Thus, Comparative Example 3 was prepared by adding an organic binder material.
  • Figure 5a shows the result of measuring the impregnated amount of polyethyleneimine contained in the adsorbent, the impregnated amount of polyethyleneimine is 18% by weight, but as shown in Figure 5b carbon dioxide adsorption amount is 2 times compared to Comparative Examples 1 and 2 Increased over. However, the carbon dioxide adsorption amount was lower than that of the powdery mesoporous material impregnated with polyethyleneimine.
  • FIG. 6 is a view showing the impregnation amount and carbon dioxide adsorption amount of polyethyleneimine contained in the carbon dioxide adsorbent of Example 1.
  • Figure 6a shows the result of measuring the impregnated amount of polyethyleneimine contained in the adsorbent, the impregnated amount of polyethyleneimine is 50% by weight and the carbon dioxide adsorption amount (W / W 0 ) value is about as shown in Figure 6b 1.075.
  • the carbon dioxide adsorption amount was better than that of the impregnated amount of 30% by weight and 70% by weight.
  • the carbon dioxide adsorption amount of the granular carbon dioxide adsorbent of Example 1 was improved than that of the powdery MCM-41 under the same conditions.
  • the granular carbon dioxide adsorbent of Example 1 had a surface area of 665.5 m 2 / g, which is lower than the 1419 m 2 / g of MCM-41 itself, but showed improved pore characteristics compared to Comparative Examples 1 to 3 and included in the adsorbent.
  • FIG. 6A As a result of measuring the impregnated amount of polyethyleneimine (FIG. 6A), it can be seen that the porosity characteristic of the carbon dioxide adsorption performance is easily improved by impregnation of the amine-based material.
  • Activated carbon used in Example 1 can be said to play a role of maintaining and expanding the pores of the shaped granular carbon dioxide adsorbent, thereby improving the impregnation efficiency of polyethyleneimine and the like and increase the amount of carbon dioxide adsorption.
  • FIG. 7 is a SEM measured granular carbon dioxide adsorbent not impregnated with polyethyleneimine and granular carbon dioxide adsorbent impregnated.
  • FIG. 7A shows the surface of the adsorbent (left) based on MCM-41 and not impregnated with polyethyleneimine, and the surface (right) of the adsorbent based on MCM-41 and impregnated with 50% by weight of polyethyleneimine (Example 1).
  • Figure 7b is based on MCM-48 and the surface of the adsorbent without polyethyleneimine impregnation (left), and based on MCM-48, adsorbent impregnated with 50% by weight of polyethyleneimine ( It is the result of observing the surface (right) of Example 2) magnified 200,000 times.
  • 7C also shows the surface of the adsorbent (left) based on SBA-15 and not impregnated with polyethyleneimine, and the surface of the adsorbent (Example 3) impregnated with 50% by weight of polyethyleneimine based on SBA-15. This is the result of magnification of 200,000 times.
  • Granular carbon dioxide adsorbents based on MCM-41, MCM-48, and SBA-15 were found to have changed the surface roughened before the impregnation due to polyethyleneimine impregnation. This can be said that the surface of the mesoporous material is modified by the addition of the amine material, and is similar to the case where the mesoporous material in powder form is impregnated with the amine material.
  • FIG. 8 is a graph illustrating granular carbon dioxide adsorbent not impregnated with polyethyleneimine and granular carbon dioxide adsorbent impregnated with FT-IR.
  • 8A, 8B and 8C are FT-IR measurements of the carbon dioxide adsorbent not impregnated with polyethyleneimine and the granular carbon dioxide adsorbents of Examples 1, 2 and 3 impregnated with 50% by weight of polyethyleneimine.
  • imine peaks were observed around 1690 ⁇ 1640 cm -1 , indicating that polyethyleneimine was impregnated on the granular carbon dioxide adsorbent based on mesoporous material.
  • the CH peaks in the 2831 cm -1 and 2970 cm -1 regions showed a tendency to decrease mainly after polyethylene impregnation, and the OH peak in the 2348 cm -1 region was also reduced.
  • thermogravimetric analyzer 9 is a diagram measuring the carbon dioxide adsorption amount by thermogravimetric analyzer according to the temperature of the granular carbon dioxide adsorbent.
  • FIG. 10 is a graph showing the adsorption curve for the result of measuring the carbon dioxide adsorption amount of the particulate carbon dioxide adsorbent by thermogravimetric analysis.
  • the graph labeled MCM-41 corresponds to Example 1
  • the graph labeled MCM-48 corresponds to Example 2
  • the graph labeled SBA-15 corresponds to Example 3.
  • the particulate carbon dioxide adsorbent of Example 2 exhibited the highest carbon dioxide adsorption amount (W / W 0 ).
  • polyethyleneimine as the amine-based material was described, but a monoethanolamine or the like instead of polyethyleneimine showed a similar aspect to the test example using polyethyleneimine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

본 발명은 아민계 물질이 함침된 입상형 이산화탄소 흡착제 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 메조포러스 물질 55 내지 75 중량%, 무기바인더 15 내지 25 중량%, 유기바인더 1 내지 10 중량% 및 기질변환 첨가제 1 내지 10 중량%를 포함하여 제조된 입상형 물질에 아민계 물질을 함침한 것으로써, 화석연료에 의해 발생되어 지구온난화의 원인이 되는 이산화탄소를 제거할 수 있다.

Description

아민계 물질이 함침된 입상형 이산화탄소 흡착제 및 이의 제조방법
본 발명은 메조포러스 물질, 무기바인더, 유기바인더 및 기질변환 첨가제를 포함하여 제조된 입상형 물질에 아민계 물질이 함침된 입상형 이산화탄소 흡착제 및 이의 제조방법에 관한 것이다.
기후변화협약에서 논의되고 있는 지구온난화 문제는 앞으로 인류의 생존과 직결되는 커다란 이슈로서, 이에 대응할 수 있는 연구개발이 필요하다. 이러한 지구온난화는 산업혁명 이후에 대기 중의 이산화탄소 농도가 증가됨으로써 기인된 것이다.
이산화탄소는 화석연료의 연소에 의해 생성되며, 점차 증가되는 이산화탄소의 대기 중 농도를 줄이기 위한 방안들이 제시되고 있다. 이산화탄소를 줄이기 위한 대표적 기술에는 흡수법, 흡착법, 막분리법 및 심냉법 등이 있다.
흡수법은 흡수제를 이용하여 배가스 중 이산화탄소를 선택적으로 분리하는 것으로 대용량 가스를 처리하는데 유리하고, 흡착법은 이산화탄소를 흡착하기 쉬운 고체 흡착제를 사용하여 압력차에 따른 흡착량의 변화를 이용하여 분리하는 기술이며, 막분리법은 막에 의한 가스의 투과속도 차이를 이용하여 분리하는 것이다.
흡수법은 대용량 가스를 처리하기 용이하나 흡수액의 사용량이 많고 흡수액에 의한 분리설비의 부식에 문제가 있고, 막분리법은 장치는 간단하지만 분리막이 대단히 고가이고 대용량화가 어렵다. 한편, 흡착법은 흡수법에 비해 에너지 소모가 크고 대용량의 이산화탄소 처리에 적합하지 않지만 비교적 장치가 간단하고, 건식으로 주변 환경에 미치는 영향이 적어 중소형 보일러로부터 배출되는 연소배가스 중 이산화탄소를 분리하는 기술로써 이용할 수 있다.
흡착법을 이용하여 이산화탄소를 분리 시 흡착제와 이를 이용한 공정을 개발하여야 하는데, 이산화탄소 분리공정의 효율은 흡착제의 성능에 크게 좌우된다. 이산화탄소를 분리하기 위하여 활성 알루미나, 실리카 겔, 활성탄, 제올라이트 등과 같이 지름이 2 nm이하인 마이크로 기공을 가진 흡착제가 이용되어 왔다.
이와 같은 흡착제는 기공이 복잡하여 재생하는데 어려움이 있으며, 특히 제올라이트와 같은 분자체는 기공이 매우 작아 상대적으로 기공이 큰 기체에 대하여 분리할 수 없다는 단점을 가지고 있다. 따라서 기존 흡착제의 단점을 보완하기 위하여 기공의 지름이 2∼50nm 크기를 가진 메조포러스 물질이 제시되고 있다.
메조포러스 물질은 균일한 메조포어 영역의 기공을 갖는 다공성 물질로 기공 배열이 육방 배열 또는 벌집으로 이루어진 규칙성을 지니고 있다. 또한, 넓은 표면적과 균일한 메조포어 영역의 기공을 가지고 있어 다양한 분야에서 분리용 흡착제로 활용할 수 있다는 장점을 가지고 있다. 그러나 순수 실리카 골격으로 이루어진 메조포러스 물질은 이온 교환 특성이나 산점, 촉매 활성점 등이 없기 때문에 이산화탄소 분리매체로 사용하는데 문제점이 있다. 또한, 분말형 메조포러스 물질은 상용공정의 흡착제로 활용하기 위하여 반응기내에서 흡착제와 분리가스의 접촉을 원활히 하기 위하여 구형, 실린더형 등과 같은 입상화 형태로 흡착제를 제조해야 한다.
본 발명은 메조포러스 물질, 무기바인더, 유기바인더 및 기질변환 첨가제를 포함하여 제조된 입상형 물질에 아민계 물질이 함침된 입상형 이산화탄소 흡착제를 제공하는 것을 목적으로 한다.
또한, 본 발명은 입상형의 이산화탄소 흡착제를 제조하기 위한 방법을 제공하는 것을 다른 목적으로 한다.
1. 메조포러스 물질, 무기바인더, 유기바인더 및 기질변환 첨가제를 포함하여 제조된 입상형 물질에 아민계 물질이 함침된 입상형 이산화탄소 흡착제.
2. 위 1에 있어서, 입상형 물질은 메조포러스 물질 55 내지 75 중량%, 무기바인더 15 내지 25 중량%, 유기바인더 1 내지 10 중량% 및 기질변환 첨가제 1 내지 10 중량%가 포함된 것인 입상형 이산화탄소 흡착제.
3. 위 1에 있어서, 아민계 물질은 하기 [수학식 1]로 표현되는 함침량이 25 내지 35 중량%, 45 내지 55 중량% 및 65 내지 75 중량% 중에서 선택된 어느 하나인 입상형 이산화탄소 흡착제;
[수학식 1]
함침량(중량%) = M2 / (M1+M2) X 100
(식 중, M1은 입상형 물질의 함량이며, M2는 아민계 물질의 함량임).
4. 위 3에 있어서, 70 내지 80℃에서 아민계 물질의 함침량이 45 내지 55 중량%일 때 이산화탄소 흡착량이 우수한 입상형 이산화탄소 흡착제.
5. 위 1 내지 4 중 어느 하나에 있어서, 메조포러스 물질은 MCM-41(Mobil Composition of Mater-41), MCM-48(Mobil Composition of Mater-48), MCM-50(Mobil Composition of Mater-50), SBA-1 (Santa Barbara-1), SBA-3 (Santa Barbara-3), SBA-6 (Santa Barbara-6), SBA-16 (Santa Barbara-16) 및 SBA-15(Santa Barbara-15) 중 선택된 어느 하나인 입상형 이산화탄소 흡착제.
6. 위 4에 있어서, 메조포러스 물질로는 MCM-48(Mobil Composition of Mater-48)인 입상형 이산화탄소 흡착제.
7. 위 1 내지 4 중 어느 하나에 있어서, 무기바인더는 분말 입자간의 소결(sintering)성으로 메조포러스 물질을 입상화시키기 위한 것으로서, 벤토나이트, 점토, 운모, 고령토, 제올라이트, 규조토 및 실리카로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
8. 위 1 내지 4 중 어느 하나에 있어서, 유기바인더는 메조포러스 물질과 무기바인더가 소결성을 통하여 입상화되기 전에 입상형태를 유지하고 흡착제의 강도를 증가시키기 위한 것으로서, 메틸셀룰로오스, 전분, 겔라틴(gelatin), 폴리비닐알코올, 폴리에틸렌옥사이드 및 폴리에틸렌글리콜로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
9. 위 1 내지 4 중 어느 하나에 있어서, 기질변환 첨가제는 메조포러스 물질의 기공성, 소결성 및 메조포러스 물질의 입자간의 접착성 향상을 위한 것으로서, 활성탄, 아황산칼슘(CaSO3), 그래파이트, 펄라이트, 버미규라이트 및 티탄산칼슘(CaTiO3)으로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
10. 위 1 내지 4 중 어느 하나에 있어서, 아민계 물질은 알카놀아민, 폴리아민, 피페라진아민, 벤젠 함유 아민으로 이루어진 군 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
11. 위 10에 있어서, 알카놀아민은 모노에탄올아민(MEA, Monoethanolamine), 디에탄올아민(DEA, Diethanolamine), 트리에탄올아민(TEA, Triethanolamine), 메틸디에탄올아민(MDEA, Methyldiethanolamine), 디글리콜아민(DGA, Diglycolamine), 2-아미노-2-메틸프로판올(AMP, 2-Amino-2-methyl-propanol), 헥사메틸렌디아민(HMDA, Hexamethylenediamine), 프로필아민(Propylamine), 디프로필아민(Dipropylamine), 부틸아민(Butylamine), 이소부틸아민(Isobutylamine), 헥실아민(Hexylamine), 2-에틸헥실아민(2-Ethylhexylamine), 알릴아민(Allylamine), 메틸디알릴아민(Methyldiallylamine), 펜틸아민(Pentylamine), 이소아밀아민(Isoamylamin), N-메틸에틸아민(N-Methylethylamine), 2-옥실아민(2-Octylamine), 4-아미노부탄올(4-Aminobutanol), 3-메톡시프로필아민(3-Methoxypropylamine), 3-이소부톡시프로필아민(3-Isobutoxypropylamine), 디메틸아미노에틸아민(Dimethylaminoethylamine), 2-하이드록실에틸아미노프로필아민(2-Hydroxyethylaminopropylamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
12. 위 10에 있어서, 폴리아민은 폴리에틸렌이민(PEI, Polyethyleneimine), 이미노비스프로필아민(Imino-bis-propylamine), 메틸이미노비스프로필아민(Methylimino-bis-propylamine), 라울리이미노비스프로필아민(Laurylimino-bis-propylamine), 펜타메틸디에틸렌트리아민(Pentamethyldiethylenetriamine), 펜타메틸디프로필렌디아민(Pentamethyldipropylenediamine), 아미노프로필-1,3-프로필렌디아민(Aminopropyl-1,3-propylenediamine), 아미노프로필-1,4-부틸렌디아민(Aminopropyl-1,4-butylenediamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
13. 위 10에 있어서, 피페라진아민은 피페라진(Piperazine), 2-메틸피페라진(2-Methylpiperazine), 2,5-디메틸피페라진(2,5-Dimethylpiperazine), 2-메틸피페라진(2-Methylpiperazine), N-에틸피페라진(N-Ethylpiperazine), 피페콜리닉산(Pipecolinic acid), 이소니페코틱산(Isonipecotic acid), 메틸이소니펙티코테이트(Methylisonipecotate), N-알킬-3-피페콜린(N-Alkyl-3-pipecoline), N-알킬피페라진(N-Alkylpiperizine), N-알킬-3-피페라진(N-Alkyl-3-piperizine), 2-아미노메틸피페리딘(2-Aminomethylpiperidine), 이소니페코트아마이드(Isonipecotamide), N-메틸-4-피페리디놀(N-Methyl-4-piperidinol), N-벤질-4-피페리디놀(N-Benzyl-4-piperidinol), N-메틸-4-피페리돈(N-Methyl-4-piperidone), N-벤질-4-피페리돈(N-Benzyl-4-piperidone), 디피페리디노메탄(Dipiperidinomethan) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
14. 위 10에 있어서, 벤젠 함유 아민은 벤질아민(Bebzylamine), 디벤질아민(Dibenzylamine), N-메틸벤질아민(N-Methylbenzylamine), 디메틸벤질아민(Dimethylbenzylamine), 4-벤질피페리딘(4-Benzylpiperidine), 디벤질에탄올아민(Dibenzylethanolamine), 트리벤질아민(Tribenzylamine), 페닐에틸아민(Phenylethylamine), 펜에틸아민(Phenethylamine), 메톡시펜에틸아민(Methoxyphenethylamine), 아미노프로필아닐린(Aminopropylaniline), 에틸사이클로헥실아민(Ethylcyclohexylamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
15. 제조된 MCM-41(Mobil Composition of Mater-41), MCM-48(Mobil Composition of Mater-48), MCM-50(Mobil Composition of Mater-50), SBA-1 (Santa Barbara-1), SBA-3 (Santa Barbara-3), SBA-6 (Santa Barbara-6), SBA-16 (Santa Barbara-16) 및 SBA-15(Santa Barbara-15) 중 선택된 어느 하나의 메조포러스 물질을 분말화하는 단계; 상기 분말의 메조포러스 물질, 무기바인더, 유기바인더 및 기질변환 첨가제를 혼합하는 단계; 상기 혼합된 흡착제용 조성물 100 중량부에 대하여 5% 폴리비닐알코올(polyvinyl alcohol)용액 30 내지 50 중량부를 첨가하여 반죽하는 단계; 반죽된 흡착제용 조성물을 입상형으로 제조하는 단계; 상기 제조된 입상형 물질을 가열로에서 소정하는 단계; 및 상기 소성된 입상형 물질에 아민계 물질을 함침시키는 단계를 포함하는 입상형 이산화탄소 흡착제의 제조방법.
16. 위 15에 있어서, 메조포러스 물질은 55 내지 75 중량%, 무기바인더는 15 내지 25 중량%, 유기바인더는 1 내지 10 중량% 및 기질변환 첨가제는 1 내지 10 중량%로 혼합되는 입상형 이산화탄소 흡착제의 제조방법.
17. 위 15에 있어서, 아민계 물질은 하기 [수학식 1]로 표현되는 함침량이 25 내지 35 중량%, 45 내지 55 중량% 및 65 내지 75 중량% 중에서 선택된 어느 하나로 함침되는 입상형 이산화탄소 흡착제의 제조방법;
[수학식 1]
함침량(중량%) = M2 / (M1+M2) X 100
(식 중, M1은 입상형 물질의 함량이며, M2는 아민계 물질의 함량임).
18. 위 15 내지 17 중 어느 하나에 있어서, 아민계 물질은 알카놀아민, 폴리아민, 피페라진아민, 벤젠 함유 아민으로 이루어진 군 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
19. 위 18에 있어서, 알카놀아민은 모노에탄올아민(MEA, Monoethanolamine), 디에탄올아민(DEA, Diethanolamine), 트리에탄올아민(TEA, Triethanolamine), 메틸디에탄올아민(MDEA, Methyldiethanolamine), 디글리콜아민(DGA, Diglycolamine), 2-아미노-2-메틸프로판올(AMP, 2-Amino-2-methyl-propanol), 헥사메틸렌디아민(HMDA, Hexamethylenediamine), 프로필아민(Propylamine), 디프로필아민(Dipropylamine), 부틸아민(Butylamine), 이소부틸아민(Isobutylamine), 헥실아민(Hexylamine), 2-에틸헥실아민(2-Ethylhexylamine), 알릴아민(Allylamine), 메틸디알릴아민(Methyldiallylamine), 펜틸아민(Pentylamine), 이소아밀아민(Isoamylamin), N-메틸에틸아민(N-Methylethylamine), 2-옥실아민(2-Octylamine), 4-아미노부탄올(4-Aminobutanol), 3-메톡시프로필아민(3-Methoxypropylamine), 3-이소부톡시프로필아민(3-Isobutoxypropylamine), 디메틸아미노에틸아민(Dimethylaminoethylamine), 2-하이드록실에틸아미노프로필아민(2-Hydroxyethylaminopropylamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
20. 위 18에 있어서, 폴리아민은 폴리에틸렌이민(PEI, Polyethyleneimine), 이미노비스프로필아민(Imino-bis-propylamine), 메틸이미노비스프로필아민(Methylimino-bis-propylamine), 라울리이미노비스프로필아민(Laurylimino-bis-propylamine), 펜타메틸디에틸렌트리아민(Pentamethyl diethylenetriamine), 펜타메틸디프로필렌디아민(Pentamethyldipropylenediamine), 아미노프로필-1,3-프로필렌디아민(Aminopropyl-1,3-propylenediamine), 아미노프로필-1,4-부틸렌디아민(Aminopropyl-1,4-butylenediamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
21. 위 18에 있어서, 피페라진아민은 피페라진(Piperazine), 2-메틸피페라진(2-Methylpiperazine), 2,5-디메틸피페라진(2,5-Dimethylpiperazine), 2-메틸피페라진(2-Methylpiperazine), N-에틸피페라진(N-Ethylpiperazine), 피페콜리닉산(Pipecolinic acid), 이소니페코틱산(Isonipecotic acid), 메틸이소니펙티코테이트(Methylisonipecotate), N-알킬-3-피페콜린(N-Alkyl-3-pipecoline), N-알킬피페라진(N-Alkylpiperizine), N-알킬-3-피페라진(N-Alkyl-3-piperizine), 2-아미노메틸피페리딘(2-Aminomethylpiperidine), 이소니페코트아마이드(Isonipecotamide), N-메틸-4-피페리디놀(N-Methyl-4-piperidinol), N-벤질-4-피페리디놀(N-Benzyl-4-piperidinol), N-메틸-4-피페리돈(N-Methyl-4-piperidone), N-벤질-4-피페리돈(N-Benzyl-4-piperidone), 디피페리디노메탄(Dipiperidinomethan) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
22. 위 18에 있어서, 벤젠 함유 아민은 벤질아민(Bebzylamine), 디벤질아민(Dibenzylamine), N-메틸벤질아민(N-Methylbenzylamine), 디메틸벤질아민(Dimethylbenzylamine), 4-벤질피페리딘(4-Benzylpiperidine), 디벤질에탄올아민(Dibenzylethanolamine), 트리벤질아민(Tribenzylamine), 페닐에틸아민(Phenylethylamine), 펜에틸아민(Phenethylamine), 메톡시펜에틸아민(Methoxyphenethylamine), 아미노프로필아닐린(Aminopropylaniline), 에틸사이클로헥실아민(Ethylcyclohexylamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
23. 위 15 내지 17 중 어느 하나에 있어서, 무기바인더는 벤토나이트, 점토, 운모, 고령토, 제올라이트, 규조토 및 실리카로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
24. 위 15 내지 17 중 어느 하나에 있어서, 유기바인더는 메틸셀룰로오스, 전분, 겔라틴(gelatin), 폴리비닐알코올, 폴리에틸렌옥사이드 및 폴리에틸렌글리콜로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
25. 위 15 내지 17 중 어느 하나에 있어서, 기질변환 첨가제는 활성탄, 아황산칼슘(CaSO3), 그래파이트, 펄라이트, 버미규라이트 및 티탄산칼슘(CaTiO3)으로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
본 발명의 이산화탄소 흡착제는 메조포러스 물질, 무기바인더, 유기바인더 및 기질변환 첨가제를 포함하여 입상형으로 제조되며, 상기 물질들이 혼합된 입상형 물질에 아민계 물질을 함침시켜 이산화탄소의 흡착량을 증가시킨다.
또한, 본 발명의 흡착제는 입상형으로 제조하므로 상용공정의 기체분리 흡착제로 활용할 수 있다.
또한, 본 발명의 입상형 이산화탄소 흡착제는 지구온난화의 원인이 되는 이산화탄소를 제거하므로 저비용 이산화탄소 분리공정으로 활용한다면 앞으로 기후변화협약에 대비한 경제성이 제고된 이산화탄소 분리기술로 그 활용성이 매우 높다.
도 1은 메조포러스 물질의 기공내부에 부여된 아민기와 이산화탄소의 분리 메커니즘을 나타낸 도면이며,
도 2는 본 발명의 입상형 이산화탄소 흡착제를 나타낸 도면이고,
도 3은 비교예에 따라 제조된 입상형 이산화탄소 흡착제에 포함된 폴리에틸렌이민의 함침량 및 이산화탄소 흡착량을 나타낸 도면이며,
도 4는 다른 비교예에 따라 제조된 입상형 이산화탄소 흡착제에 포함된 폴리에틸렌이민의 함침량 및 이산화탄소 흡착량을 나타낸 도면이고,
도 5는 또 다른 비교예에 따라 제조된 입상형 이산화탄소 흡착제에 포함된 폴리에틸렌이민의 함침량 및 이산화탄소 흡착량을 나타낸 도면이며,
도 6은 본 발명의 실시예에 따라 제조된 이산화탄소 흡착제에 포함된 폴리에틸렌이민의 함침량 및 이산화탄소 흡착량을 나타낸 도면이고,
도 7은 폴리에틸렌이민이 함침되지 않은 입상형 이산화탄소 흡착제와 본 발명의 실시예에 따라 폴리에틸렌이민이 함침된 입상형 이산화탄소 흡착제를 SEM으로 측정한 도면이며,
도 8은 폴리에틸렌이민이 함침되지 않은 입상형 이산화탄소 흡착제와 본 발명의 실시예에 따라 폴리에틸렌이민이 함침된 입상형 이산화탄소 흡착제를 FT-IR로 측정한 도면이고,
도 9는 본 발명의 실시예에 따라 제조된 입상형 이산화탄소 흡착제의 온도에 따른 이산화탄소 흡착량을 열중량분석기로 측정한 도면이고,
도 10은 본 발명의 실시예에 따라 제조된 입상형 이산화탄소 흡착제의 이산화탄소 흡착곡선을 비교하여 나타낸 도면이다.
본 발명은 메조포러스 물질 55 내지 75 중량%, 무기바인더 15 내지 25 중량%, 유기바인더 1 내지 10 중량% 및 기질변환 첨가제 1 내지 10 중량%를 포함하여 제조된 입상형 물질에 아민계 물질이 함침된 것으로써, 화석연료에 의해 발생되어 지구온난화의 원인이 되는 이산화탄소를 제거할 수 있는 입상형 이산화탄소 흡착제 및 이의 제조방법에 관한 것이다.
이하, 본 발명을 상세하게 설명한다.
이산화탄소 흡착제는 메조포러스 물질의 기공내부에 분리 대상 가스를 화학적으로 흡착할 수 있는 기능기를 부여하여 가스의 흡착량을 증가시킬 수 있다. 그래서 이산화탄소 흡착제는 메조포러스 물질의 기공내부에 아민계 물질을 표면개질함으로써 기공에 의한 물리흡착과 기공내부에 부여된 아민계 물질에 의한 화학흡착이 동시에 진행되므로 우수한 이산화탄소 흡착량을 보인다.
입상형 물질에 아민계 물질이 함침되어 표면 개질된 이산화탄소 흡착제는 메조포러스 물질의 실리카기가 아민기와 결합하면서 아민기가 부여되며, 메조포러스 물질의 기공내부에 부여된 아민기는 도 1에 도시된 바와 같이 여러 가지 가스 성분 중에서 이산화탄소와 화학흡착되어 이산화탄소를 용이하게 분리하여 흡착시킬 수 있다. 또한, 이산화탄소 흡착제는 소정의 열을 가하면 쉽게 재생될 수 있다.
본 발명의 이산화탄소 흡착제는 메조포러스 물질, 무기바인더, 유기바인더 및 기질변환 첨가제를 포함하여 제조된 입상형 물질에 아민계 물질이 함침된 것으로써, 상용공정에 용이하게 적용시키기 위하여 도 2에 도시된 바와 같이 입상(
Figure PCTKR2011000305-appb-I000001
)형으로 제조되는 것이 바람직하다.
상기 메조포러스 물질은 분말형이며, 함량은 55 내지 75 중량%, 바람직하게는 60 내지 70 중량%, 보다 바람직하게는 70 중량%이다. 메조포러스 물질의 함량이 55 중량%미만인 경우에는 흡착제의 기공 확보가 낮아 이산화탄소의 흡착량이 감소되며, 함량이 75 중량% 초과인 경우에는 메조포러스 물질간의 입자 소결성이 낮아져 흡착제의 강도가 저하되는 동시에 입자간의 거대기공 형성이 낮아져 이산화탄소 흡착량이 감소된다.
본 발명에 사용되는 메조포러스 물질은 제조로 얻어진 MCM-41(Mobil Composition of Mater-41), MCM-48(Mobil Composition of Mater-48), MCM-50(Mobil Composition of Mater-50), SBA-1(Santa Barbara-1), SBA-3(Santa Barbara-3), SBA-6(Santa Barbara-6), SBA-16(Santa Barbara-16) 및 SBA-15(Santa Barbara-15) 중에서 선택된 1종인 것이다.
메조포러스 물질, 무기바인더 및 유기바인더를 포함하여 입상형태(정교하지 않은 입상형태)가 유지된 상태에서 상기 무기바인더는 분말형 메조포러스 물질과 반응하여 분말 입자간의 소결(sintering)성을 일으켜 분말형 메조포러스 물질을 입상화 시킬 뿐만 아니라 흡착제의 강도를 조절하기 위하여 사용된다. 무기바인더의 예로는 벤토나이트, 점토, 운모, 고령토, 제올라이트, 규조토 및 실리카로 이루어진 군에서 선택된 1종 또는 2종 이상을 사용한다.
무기바인더는 함량이 15 내지 25 중량%, 바람직하게는 20 내지 25 중량%, 보다 바람직하게는 20 중량%이다. 무기바인더의 함량이 15 중량% 미만인 경우에는 흡착제의 강도가 저하되며, 함량이 25 중량% 초과인 경우에는 단위 흡착제 당 이산화탄소의 흡착량이 감소된다.
상기 유기바인더는 분말형 메조포러스 물질과 무기바인더가 소결성을 통하여 입상화 되기 전에 입상형태를 유지시키고 흡착제의 강도를 증가시키기 위하여 사용하는 것으로서, 메틸셀룰로오스, 전분, 겔라틴(gelatin), 폴리비닐알코올, 폴리에틸렌옥사이드 및 폴리에틸렌글리콜로 이루어진 군에서 선택된 1종 또는 2종 이상을 사용한다.
유기바인더는 함량이 1 내지 10 중량%, 바람직하게는 3 내지 7 중량%, 보다 바람직하게는 5 중량%이다. 유기바인더의 함량이 1 중량% 미만인 경우에는 흡착제를 입상형으로 제조할 수 없고 흡착제의 강도가 저하되어 이산화탄소 흡착량이 감소되며, 함량이 10 중량% 초과인 경우에는 과다 혼합으로 이산화탄소 흡착량이 감소하게 된다.
상기 기질변환 첨가제는 메조포러스 물질의 기공특성의 변화, 소결성 및 메조포러스 물질의 입자간의 접착성을 향상시키는 등의 기질변환을 일으키는 것으로서 흡착제의 기공을 유지 및 확장시킬 수 있으며, 그 예로는 활성탄, 아황산칼슘(CaSO3), 그래파이트, 펄라이트, 버미규라이트 및 티탄산칼슘(CaTiO3)으로 이루어진 군에서 선택된 1종 또는 2종 이상을 사용한다.
기질변환 첨가제는 함량이 1 내지 10 중량%, 바람직하게는 3 내지 7 중량%, 보다 바람직하게는 5 중량%이다. 기질변환 첨가제의 함량이 1 중량% 미만인 경우에는 이산화탄소의 흡착량이 미미하며, 함량이 10 중량% 초과인 경우에는 과다 혼합으로 이산화탄소 흡착량이 감소하게 된다.
상기 설명된 물질들을 포함하여 제조된 입상형 물질에 함침되는 아민계 물질로는 알카놀아민, 폴리아민, 피페라진아민, 벤젠 함유 아민으로 이루어진 군 중에서 선택된 1종 또는 2종 이상을 사용한다. 구체적으로 알카놀아민의 종류로는 모노에탄올아민(MEA, Monoethanolamine), 디에탄올아민(DEA, Diethanolamine), 트리에탄올아민(TEA, Triethanolamine), 메틸디에탄올아민(MDEA, Methyldiethanolamine), 디글리콜아민(DGA, Diglycolamine), 2-아미노-2-메틸프로판올(AMP, 2-Amino-2-methyl-propanol), 헥사메틸렌디아민(HMDA, Hexamethylenediamine), 프로필아민(Propylamine), 디프로필아민(Dipropylamine), 부틸아민(Butylamine), 이소부틸아민(Isobutylamine), 헥실아민(Hexylamine), 2-에틸헥실아민(2-Ethylhexylamine), 알릴아민(Allylamine), 메틸디알릴아민(Methyldiallylamine), 펜틸아민(Pentylamine), 이소아밀아민(Isoamylamin), N-메틸에틸아민(N-Methylethylamine), 2-옥실아민(2-Octylamine), 4-아미노부탄올(4-Aminobutanol), 3-메톡시프로필아민(3-Methoxypropylamine), 3-이소부톡시프로필아민(3-Isobutoxypropylamine), 디메틸아미노에틸아민(Dimethylaminoethylamine), 2-하이드록실에틸아미노프로필아민(2-Hydroxyethylaminopropylamine) 등이 있으며, 폴리아민의 종류로는 폴리에틸렌이민(PEI, Polyethyleneimine), 이미노비스프로필아민(Imino-bis-propylamine), 메틸이미노비스프로필아민(Methylimino-bis-propylamine), 라울리이미노비스프로필아민(Laurylimino-bis-propylamine), 펜타메틸디에틸렌트리아민(Pentamethyldiethylenetriamine), 펜타메틸디프로필렌디아민(Pentamethyldipropylenediamine), 아미노프로필-1,3-프로필렌디아민(Aminopropyl-1,3-propylenediamine), 아미노프로필-1,4-부틸렌디아민(Aminopropyl-1,4-butylenediamine) 등이 있으며, 피페라진아민의 종류로는 피페라진(Piperazine), 2-메틸피페라진(2-Methylpiperazine), 2,5-디메틸피페라진(2,5-Dimethylpiperazine), 2-메틸피페라진(2-Methylpiperazine), N-에틸피페라진(N-Ethylpiperazine), 피페콜리닉산(Pipecolinic acid), 이소니페코틱산(Isonipecotic acid), 메틸이소니펙티코테이트(Methylisonipecotate), N-알킬-3-피페콜린(N-Alkyl-3-pipecoline), N-알킬피페라진(N-Alkylpiperizine), N-알킬-3-피페라진(N-Alkyl-3-piperizine), 2-아미노메틸피페리딘(2-Aminomethylpiperidine), 이소니페코트아마이드(Isonipecotamide), N-메틸-4-피페리디놀(N-Methyl-4-piperidinol), N-벤질-4-피페리디놀(N-Benzyl-4-piperidinol), N-메틸-4-피페리돈(N-Methyl-4-piperidone), N-벤질-4-피페리돈(N-Benzyl-4-piperidone), 디피페리디노메탄(Dipiperidinomethan) 등이 있으며, 벤젠 함유 아민의 종류로는 벤질아민(Bebzylamine), 디벤질아민(Dibenzylamine), N-메틸벤질아민(N-Methylbenzylamine), 디메틸벤질아민(Dimethylbenzylamine), 4-벤질피페리딘(4-Benzylpiperidine), 디벤질에탄올아민(Dibenzylethanolamine), 트리벤질아민(Tribenzylamine), 페닐에틸아민(Phenylethylamine), 펜에틸아민(Phenethylamine), 메톡시펜에틸아민(Methoxyphenethylamine), 아미노프로필아닐린(Aminopropylaniline), 에틸사이클로헥실아민(Ethylcyclohexylamine) 등이 있다.
이때, 입상형 물질에 함침되는 아민계 물질은 25 내지 35 중량%, 45 내지 55 중량% 또는 65 내지 75 중량%, 바람직하게는 30 중량%, 50 중량% 또는 70 중량%의 함침량으로 함침된다. 함침량은 하기 [수학식 1]로 표현된다.
[수학식 1]
함침량(중량%) = M2 / (M1+M2) X 100
(식 중, M1은 입상형 물질의 함량이며, M2는 아민계 물질의 함량임).
본 발명의 입상형 이산화탄소 흡착제는 40 내지 80℃에서 이산화탄소의 흡착량이 우수하다. 특히, 아민계 물질이 45 내지 55 중량%로 함침된 흡착제를 70 내지 80 ℃에서 이용하는 경우에 이산화탄소의 흡착량이 가장 우수하다.
여기서 흡착량은 제거되는 이산화탄소의 양과 동일한 의미로 볼 수 있다.
또한, 본 발명은 입상형 이산화탄소 흡착제의 제조방법을 제공한다.
먼저, 콜로이드 실리카, 양이온계면활성제, 수산화나트륨 또는 플루오릭 폴리머 등을 이용하여 메조포러스 물질로 MCM-41, MCM-48, MCM-50, SBA-1, SBA-3, SBA-6, SBA-16 및 SBA-15를 각각 제조한다.
상기 제조된 메조포러스 물질 중 선택된 어느 하나의 메조포러스 물질을 평균입경이 5 내지 60 ㎛가 되도록 분말화한다. 분말화된 메조포러스 물질이 5 ㎛ 미만인 경우에는 아민계 물질이 함침되기 어려울 수 있으며, 60 ㎛ 초과인 경우에는 흡착제를 입상형으로 제조시 입상화 과정에서 입자간의 거대공극이 다량 발생하여 강도가 저하될 수 있다.
그 후, 분말의 메조포러스 물질 55 내지 75 중량%에 무기바인더 15 내지 25 중량%, 유기바인더 1 내지 10 중량% 및 기질변환 첨가제 1 내지 10 중량%를 첨가하여 혼합하고, 상기 혼합된 흡착제용 조성물을 입상형으로 제조하기 위하여 흡착제용 조성물 100 중량부에 대하여 5% 폴리비닐알코올(polyvinyl alcohol)용액 30 내지 50 중량부를 첨가하여 반죽한다.
상기 반죽된 흡착제용 조성물을 압출 성형기에 넣고 실린더 형태로 제조한 후 약 5mm로 절단하여 입상형으로 제조한다.
다음으로, 상기 제조된 입상형 물질을 가열로로 상온에서 10 ℃/min의 속도로 900 내지 1,200 ℃까지 온도를 상승시킨 다음 5 내지 10시간 유지시켜 소성하고, 소성된 입상형 물질에 아민계 물질을 함침시켜 입상형 이산화탄소 흡착제를 제조한다.
이하, 실시예는 본 발명의 내용을 구체적으로 설명하기 위한 것이며, 이에 의하여 본 발명의 범위가 결코 한정되어 해석될 수 없다.
특히, 본 발명에 속하는 화합물로서 이하의 제조예, 실시예 및 실험예에 기재되지 않은 화합물에 대해서도 본 발명의 개시내용에 기초한다면 본 발명이 속하는 기술분야의 당업자가 당업계의 상식에 기초하면 매우 용이하게 제조하여 수득할 수 있다는 점은 매우 자명하다고 할 것이다.
분광 광도계(FT-IR, Fourier Transform Infrared Spectroscopy)는 Thermo electron Co.(M/N: NICOLET 6700) 것을 이용하여 폴리에틸렌이민이 함침되기 전후의 메조포러스 물질의 특성을 파악하였으며, 분석방법으로는 공기 중 back ground를 측정한 뒤 KBr에 흡착제를 넣은 다음 400∼4000 cm-1 주파수 범위에서 32번 스캔하였다. 또한, 주사 전자 현미경(SEM, Scanning Electron Microscope)은 Hitachi Co.(M/N: S-4700)을 이용하여 흡착제의 구조 특성 및 메조 기공의 형태를 측정하였으며, 이때 사용된 전압은 20 keV이며, 전자발생원(field electron source)은 2 nm의 해상도로 측정하였다. 표면적 분석기(Surface area analyzer)는 Micrometrics Co.(M/N: ASAP 2010)을 이용하여 시료에 대한 표면적 및 기공분포곡선을 측정하였으며, 분석방법으로는 시료에 불순물을 제거하기 위하여 150 ℃, 2시간 동안 전처리를 한 후 질소를 이용한 흡탈착을 수행하였다. 분석 후 시료의 비표면적 계산은 BET(Brunauer-Emmett-Teller)방법을 이용하였으며, 기공분포 곡선은 BJH(Barret, Joyner and Halenda)방법을 이용하였다. 또한, 열중량 분석기(TGA, Thermal Gravimetric Analysis)는 흡착제의 기공특성 분석 및 이산화탄소 흡착성능을 평가하였다.
제조예 1: MCM-41의 제조
2개의 테프론 샘플병에 이온수를 주입하고 샘플병 1에 콜로이드 실리카(Ludox-40) 18.77 g과 수산화나트륨 9.65 g을 넣고, 샘플병 2에 양이온계면활성제(CTABr, cetyltrimethyl ammonium bromide) 2.4 g에 암모니아수 12 ml를 넣은 후 각각 80 ℃에서 30분 동안 교반하고, 100 ℃에서 24시간 수열합성 하였다. 수열합성을 촉진하기 위하여 1 M의 염산 또는 수산화나트륨으로 상기 혼합용액이 pH 11이 되도록 적정하고, 100 ℃에서 24시간 수열합성 하였다. 이렇게 제조된 용액은 여과하여 이온수로 세척하고 60 ℃에서 숙성(ageing)시킨 후 건조된 시료를 상온에서 10 ℃/min의 속도로 550 ℃까지 온도를 상승시킨 다음 550 ℃에서 8시간 소성하여 기공의 평균입경이 2 내지 50 nm인 MCM-41을 제조하였다.
제조예 2: MCM-48의 제조
2개의 테프론 샘플병에 이온수를 주입하고 샘플병 1에 콜로이드 실리카(Ludox-40) 18.77 g과 수산화나트륨 9.65 g을 넣고, 샘플병 2에 양이온계면활성제(CTABr) 7.74 g과 폴리옥시에틸렌로릴에테르(LE-4, polyoxyethylene laury ether) 1.34 g을 첨가한 후 각각 40 ℃에서 20분 동안 교반하였다. 샘플병 1과 2를 혼합한 후 100 ℃에서 78시간 수열합성 하였다. 수열합성 후 생성된 백색 침전물을 흡인여과에 의해 회수하고 60 ℃에서 숙성시킨 후 건조된 시료는 10 ℃/min의 속도로 상온에서 600 ℃까지 온도를 상승시킨 다음 600 ℃에서 10시간 소성하여 기공의 평균입경이 2 내지 50 nm인 MCM-48을 제조하였다.
제조예 3: SBA-15의 제조
2개의 테프론 샘플병에 이온수를 주입하고 샘플병 1에 2M 염산과 플루오릭 폴리머(fluoric polymer, P123) 40 g을 넣고, 샘플병 2에 테트라에틸오소실리케이트(TEOS, Tetraethyl orthosilicate) 1 g을 넣은 후 샘플병 1과 2를 혼합한 후 80 ℃에서 24시간 동안 교반하였다. 교반된 혼합물을 80 ℃에서 건조시킨 후 생성된 침전물을 흡인여과에 의해 회수하고 25℃에서 건조시킨 다음 10 ℃/min의 속도로 상온에서 600 ℃까지 온도를 상승시킨 다음 600 ℃에서 10시간 소성하여 기공의 평균입경이 2 내지 50 nm인 SBA-15를 제조하였다.
실시예 1. MCM-41을 이용한 이산화탄소 흡착제 제조
제조예 1에서 제조된 MCM-41을 막자사발로 평균입경이 30 ㎛가 되도록 분말화한 후 볼 밀(ball mill)을 이용하여 MCM-41 70 중량%, 벤토나이트 20 중량%, 메틸셀룰로오스 5 중량% 및 활성탄 5 중량%를 넣고 혼합한다. 혼합된 흡착제용 조성물 100 중량부에 대하여 5% 폴리비닐알코올 용액 40 중량부를 첨가하여 반죽한 후 반죽된 조성물을 압출 성형기에서 실린더 형태로 뽑고 약 5mm 간격으로 절단하여 입상형으로 제조한다. 제조된 입상형 물질을 가열로로 상온에서 10 ℃/min의 속도로 550 ℃까지 온도를 상승시킨 다음 550 ℃에서 8시간 소성하고, 소성된 입상형 물질에 폴리에틸렌이민을 함침시켜 입상형의 이산화탄소 흡착제를 제조하였다.
실시예 2. MCM-48을 이용한 이산화탄소 흡착제 제조
상기 실시예 1과 동일하게 실시하되, 제조예 1의 메조포러스 물질 대신에 제조예 2의 메조포러스 물질을 사용하였다.
실시예 3. SBA-15를 이용한 이산화탄소 흡착제 제조
상기 실시예 1과 동일하게 실시하되, 제조예 1의 메조포러스 물질 대신에 제조예 3의 메조포러스 물질을 사용하였다.
비교예 1.
상기 실시예 1과 동일하게 실시하되, MCM-41 70 중량%에 벤토나이트 25 중량% 및 티탄산칼슘 5 중량%가 혼합되었으며, 실린더 형태로 뽑아 약 5mm 간격으로 절단한 것을 벤토나이트의 소결(sintering)효과를 증진시키기 위하여 1200 ℃에서 8시간 소성하였다.
비교예 2.
상기 실시예 1과 동일하게 실시하되, MCM-41 70 중량%에 벤토나이트 20 중량%, 아황산칼슘 5 중량% 및 티탄산칼슘 5 중량%이 혼합되었으며, 실린더 형태로 뽑아 약 5mm 간격으로 절단한 것을 1200 ℃에서 8시간 소성하였다.
비교예 3.
상기 실시예 1과 동일하게 실시하되, MCM-41 70 중량%에 벤토나이트 25 중량% 및 메틸셀룰로오스 5 중량%를 혼합하였다.
실험예 1. 입상형 이산화탄소 흡착제의 이산화탄소 흡착량
도 3은 비교예 1의 입상형 이산화탄소 흡착제에 포함된 폴리에틸렌이민의 함침량 및 이산화탄소 흡착량을 나타낸 도면이다.
도 3a는 흡착제에 포함된 폴리에틸렌이민의 함침량을 측정한 결과를 나타낸 것으로서, 폴리에틸렌이민의 함침량이 40 중량%임에도 불구하고 도 3b에 도시된 바와 같이 이산화탄소 흡착량(W/W0) 값은 1.010이하로 미미한 흡착량을 나타내었다.
도 4는 비교예 2의 입상형 이산화탄소 흡착제에 포함된 폴리에틸렌이민의 함침량 및 이산화탄소 흡착량을 나타낸 도면이다.
비교예 2는 폴리에틸렌이민의 함침량이 비교예 1과 유사하며(도 4a), 비교예 1과 마찬가지로 이산화탄소 흡착량이 미미하다(도 4b).
비교예 1 및 2는 흡착제가 입상형으로 제조되도록 도와주며 적절한 강도를 부여해주는 물질로서 무기바인더인 벤토나이트만을 사용하였다. 그러나 비교예 1 및 2는 적절한 강도를 유지하지 못하였을 뿐만 아니라 이산화탄소 흡착량이 미미하였다. 그래서 유기바인더 물질을 첨가하여 비교예 3을 제조하였다.
도 5는 비교예 3의 입상형 이산화탄소 흡착제에 포함된 폴리에틸렌이민의 함침량 및 이산화탄소 흡착량을 나타낸 도면이다.
도 5a는 흡착제에 포함된 폴리에틸렌이민의 함침량을 측정한 결과를 나타낸 것으로서, 폴리에틸렌이민의 함침량은 18 중량%이지만 도 5b에 도시된 바와 같이 이산화탄소 흡착량은 비교예 1 및 2에 비하여 2배 이상 증가하였다. 그러나 상기 이산화탄소 흡착량은 폴리에틸렌이민이 함침된 분말형의 메조포러스 물질에 비하여 낮았다.
이것은 무기바인더 및 유기바인더를 사용함으로써 기존의 메조포러스 물질의 기공이 작아진 것으로 사료된다.
도 6은 실시예 1의 이산화탄소 흡착제에 포함된 폴리에틸렌이민의 함침량 및 이산화탄소 흡착량을 나타낸 도면이다.
도 6a는 흡착제에 포함된 폴리에틸렌이민의 함침량을 측정한 결과를 나타낸 것으로서, 폴리에틸렌이민의 함침량이 50 중량%이며 이에 대한 이산화탄소 흡착량(W/W0) 값은 도 6b에 도시된 바와 같이 약 1.075이다. 폴리에틸렌이민의 함침량이 50 중량%인 경우가 함침량 30 중량% 및 70 중량%인 경우보다 이산화탄소 흡착량이 우수하였다.
또한, 도 6b에 도시된 바와 같이 실시예 1의 입상형 이산화탄소 흡착제의 이산화탄소 흡착량은 같은 조건의 분말형의 MCM-41의 흡착량보다 개선되었다.
또한, 실시예 1의 입상형 이산화탄소 흡착제는 표면적이 665.5 m2/g으로서 MCM-41 자체의 1419 m2/g 보다 감소되었지만, 비교예 1 내지 3에 비하여 개선된 기공특성을 나타냈으며 흡착제에 포함된 폴리에틸렌이민의 함침량을 측정한 결과(도 6a)를 보면 아민계 물질의 함침에 의하여 이산화탄소 흡착능 개선이 용이한 정도의 기공특성을 나타낸다는 것을 알 수 있다.
실시예 1에 사용된 활성탄은 성형된 입상형 이산화탄소 흡착제의 기공을 유지, 확장 시켜주는 역할을 한다고 할 수 있으며, 이로 인하여 폴리에틸렌이민 등의 함침 효율을 개선되고 이산화탄소 흡착량을 증가되었다.
실험예 2. 입상형 이산화탄소 흡착제의 이산화탄소 흡착 특성
도 7은 폴리에틸렌이민이 함침되지 않은 입상형 이산화탄소 흡착제와 함침된 입상형 이산화탄소 흡착제를 SEM으로 측정한 도면이다.
도 7a는 MCM-41을 기반으로 하며 폴리에틸렌이민이 함침되지 않은 흡착제의 표면(좌), 및 MCM-41을 기반으로 하며 폴리에틸렌이민 50 중량%가 함침된 흡착제(실시예 1)의 표면(우)을 20만배 확대 관찰한 결과이며, 도 7b는 MCM-48을 기반으로 하며 폴리에틸렌이민이 함침되지 않은 흡착제의 표면(좌), 및 MCM-48을 기반으로 하며 폴리에틸렌이민 50 중량%가 함침된 흡착제(실시예 2)의 표면(우)을 20만배 확대 관찰한 결과이다.
또한, 도 7c는 SBA-15을 기반으로 하며 폴리에틸렌이민이 함침되지 않은 흡착제의 표면(좌), 및 SBA-15을 기반으로 하며 폴리에틸렌이민 50 중량%가 함침된 흡착제(실시예 3)의 표면(우)을 20만배 확대 관찰한 결과이다.
MCM-41, MCM-48 및 SBA-15를 기반으로 한 입상형 이산화탄소 흡착제는 폴리에틸렌이민의 함침으로 인하여 함침 전 거칠게 이루어진 표면들이 미끈한 형태로 변화되어 있는 것을 확인 할 수 있었다. 이것은 아민계 물질의 첨가에 의하여 메조포러스 물질의 표면이 개질되었다고 할 수 있으며, 분말 형태의 메조포러스 물질에 아민계 물질이 함침되는 경우와 유사한 형태를 보이고 있다.
도 8은 폴리에틸렌이민이 함침되지 않은 입상형 이산화탄소 흡착제와 함침된 입상형 이산화탄소 흡착제를 FT-IR로 측정한 도면이다.
도 8a, 8b 및 8c는 폴리에틸렌이민이 함침되지 않은 이산화탄소 흡착제와 폴리에틸렌이민 50 중량%가 함침된 실시예 1 , 2 및 3의 입상형 이산화탄소 흡착제를 FT-IR로 측정한 도면으로서, 실시예 1 내지 3의 이산화탄소 흡착제 모두 1690~1640 cm-1 부근에서 이민피크가 관찰되어 폴리에틸렌이민이 메조포러스 물질을 기반으로 한 입상형 이산화탄소 흡착제의 표면에 함침되었음을 확인할 수 있었다. 또한, 폴리에틸렌 함침 후 2831 cm-1, 2970 cm-1 영역의 C-H 피크는 주로 감소되는 경향을 보였으며, 이와 함께 2348 cm-1 영역의 O-H 피크도 감소됨이 확인되었다.
따라서 SEM 관찰 및 FT-IR 분석 결과로 인하여 본 발명의 입상형 이산화탄소 흡착제가 폴리에틸렌이민을 함침하고 있는지 여부를 확인 할 수 있었다.
도 9는 입상형 이산화탄소 흡착제의 온도에 따른 이산화탄소 흡착량을 열중량분석기로 측정한 도면이다.
도 9a, 9b, 및 9c는 각각 실시예 1 내지 3의 입상형 이산화탄소 흡착제를 이용한 것으로서, 폴리에틸렌이민의 함침량은 50 중량%이며 40 ℃, 60 ℃ 및 80 ℃의 조건에 이산화탄소 최대 흡착량을 측정하였다. 이때 이산화탄소 흡착량 실험은 15 %(v/v) CO2 (N2 balance) 가스를 이용하였다.
도 9의 결과를 살펴보면, MCM-41, MCM-48 및 SBA-15 등의 메조포러스 물질을 기반으로 한 입상형 이산화탄소 흡착제는 80 ℃에서 최적의 이산화탄소 흡착량을 나타내는 것으로 확인되었다.
도 10은 입상형 이산화탄소 흡착제의 이산화탄소 흡착량을 열중량분석기로 측정한 결과에 대한 흡착곡선을 나타낸 도면이다.
도 10은 80 ℃ 조건에서 실시예 1 내지 3의 입상형 이산화탄소 흡착제의 이산화탄소 흡착곡선을 나타낸 것이다. 예컨대, MCM-41로 표시된 그래프는 실시예 1, MCM-48로 표시된 그래프는 실시예 2 및 SBA-15로 표시된 그래프는 실시예 3에 해당한다.
상기 도 10의 결과, 실시예 2의 입상형 이산화탄소 흡착제가 가장 높은 이산화탄소 흡착량(W/W0) 값을 나타내었다.
상기 실시예에서는 아민계 물질로 폴리에틸렌이민을 사용한 것을 설명하였으나, 폴리에틸렌이민 대신에 모노에탄올아민 등을 사용하여도 폴리에틸렌이민을 사용한 시험예와 유사한 양상을 보였다.

Claims (25)

  1. 메조포러스 물질, 무기바인더, 유기바인더 및 기질변환 첨가제를 포함하여 제조된 입상형 물질에 아민계 물질이 함침된 입상형 이산화탄소 흡착제.
  2. 제1항에 있어서, 입상형 물질은 메조포러스 물질 55 내지 75 중량%, 무기바인더 15 내지 25 중량%, 유기바인더 1 내지 10 중량% 및 기질변환 첨가제 1 내지 10 중량%가 포함된 것인 입상형 이산화탄소 흡착제.
  3. 제1항에 있어서, 아민계 물질은 하기 [수학식 1]로 표현되는 함침량이 25 내지 35 중량%, 45 내지 55 중량% 및 65 내지 75 중량% 중에서 선택된 어느 하나인 입상형 이산화탄소 흡착제;
    [수학식 1]
    함침량(중량%) = M2 / (M1+M2) X 100
    (식 중, M1은 입상형 물질의 함량이며, M2는 아민계 물질의 함량임).
  4. 제3항에 있어서, 70 내지 80℃에서 아민계 물질의 함침량이 45 내지 55 중량%일 때 이산화탄소 흡착량이 우수한 입상형 이산화탄소 흡착제.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 메조포러스 물질은 MCM-41(Mobil Composition of Mater-41), MCM-48(Mobil Composition of Mater-48), MCM-50(Mobil Composition of Mater-50), SBA-1 (Santa Barbara-1), SBA-3 (Santa Barbara-3), SBA-6 (Santa Barbara-6), SBA-16 (Santa Barbara-16) 및 SBA-15(Santa Barbara-15) 중 선택된 어느 하나인 입상형 이산화탄소 흡착제.
  6. 제4항에 있어서, 메조포러스 물질로는 MCM-48(Mobil Composition of Mater-48)인 입상형 이산화탄소 흡착제.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서, 무기바인더는 벤토나이트, 점토, 운모, 고령토, 제올라이트, 규조토 및 실리카로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
  8. 제1항 내지 제4항 중 어느 한 항에 있어서, 유기바인더는 메틸셀룰로오스, 전분, 겔라틴(gelatin), 폴리비닐알코올, 폴리에틸렌옥사이드 및 폴리에틸렌글리콜로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
  9. 제1항 내지 제4항 중 어느 한 항에 있어서, 기질변환 첨가제는 활성탄, 아황산칼슘(CaSO3), 그래파이트, 펄라이트, 버미규라이트 및 티탄산칼슘(CaTiO3)으로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
  10. 제1항 내지 제4항 중 어느 한 항에 있어서, 아민계 물질은 알카놀아민, 폴리아민, 피페라진아민, 벤젠 함유 아민으로 이루어진 군 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
  11. 제10항에 있어서, 알카놀아민은 모노에탄올아민(MEA, Monoethanolamine), 디에탄올아민(DEA, Diethanolamine), 트리에탄올아민(TEA, Triethanolamine), 메틸디에탄올아민(MDEA, Methyldiethanolamine), 디글리콜아민(DGA, Diglycolamine), 2-아미노-2-메틸프로판올(AMP, 2-Amino-2-methyl-propanol), 헥사메틸렌디아민(HMDA, Hexamethylenediamine), 프로필아민(Propylamine), 디프로필아민(Dipropylamine), 부틸아민(Butylamine), 이소부틸아민(Isobutylamine), 헥실아민(Hexylamine), 2-에틸헥실아민(2-Ethylhexylamine), 알릴아민(Allylamine), 메틸디알릴아민(Methyldiallylamine), 펜틸아민(Pentylamine), 이소아밀아민(Isoamylamin), N-메틸에틸아민(N-Methylethylamine), 2-옥실아민(2-Octylamine), 4-아미노부탄올(4-Aminobutanol), 3-메톡시프로필아민(3-Methoxypropylamine), 3-이소부톡시프로필아민(3-Isobutoxypropylamine), 디메틸아미노에틸아민(Dimethylaminoethylamine), 2-하이드록실에틸아미노프로필아민(2-Hydroxyethylaminopropylamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
  12. 제10항에 있어서, 폴리아민은 폴리에틸렌이민(PEI, Polyethyleneimine), 이미노비스프로필아민(Imino-bis-propylamine), 메틸이미노비스프로필아민(Methylimino-bis-propylamine), 라울리이미노비스프로필아민(Laurylimino-bis-propylamine), 펜타메틸디에틸렌트리아민(Pentamethyldiethylenetriamine), 펜타메틸디프로필렌디아민(Pentamethyldipropylenediamine), 아미노프로필-1,3-프로필렌디아민(Aminopropyl-1,3-propylenediamine), 아미노프로필-1,4-부틸렌디아민(Aminopropyl-1,4-butylenediamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
  13. 제10항에 있어서, 피페라진아민은 피페라진(Piperazine), 2-메틸피페라진(2-Methylpiperazine), 2,5-디메틸피페라진(2,5-Dimethylpiperazine), 2-메틸피페라진(2-Methylpiperazine), N-에틸피페라진(N-Ethylpiperazine), 피페콜리닉산(Pipecolinic acid), 이소니페코틱산(Isonipecotic acid), 메틸이소니펙티코테이트(Methylisonipecotate), N-알킬-3-피페콜린(N-Alkyl-3-pipecoline), N-알킬피페라진(N-Alkylpiperizine), N-알킬-3-피페라진(N-Alkyl-3-piperizine), 2-아미노메틸피페리딘(2-Aminomethylpiperidine), 이소니페코트아마이드(Isonipecotamide), N-메틸-4-피페리디놀(N-Methyl-4-piperidinol), N-벤질-4-피페리디놀(N-Benzyl-4-piperidinol), N-메틸-4-피페리돈(N-Methyl-4-piperidone), N-벤질-4-피페리돈(N-Benzyl-4-piperidone), 디피페리디노메탄(Dipiperidinomethan) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
  14. 제10항에 있어서, 벤젠 함유 아민은 벤질아민(Bebzylamine), 디벤질아민(Dibenzylamine), N-메틸벤질아민(N-Methylbenzylamine), 디메틸벤질아민(Dimethylbenzylamine), 4-벤질피페리딘(4-Benzylpiperidine), 디벤질에탄올아민(Dibenzylethanolamine), 트리벤질아민(Tribenzylamine), 페닐에틸아민(Phenylethylamine), 펜에틸아민(Phenethylamine), 메톡시펜에틸아민(Methoxyphenethylamine), 아미노프로필아닐린(Aminopropylaniline), 에틸사이클로헥실아민(Ethylcyclohexylamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제.
  15. 제조된 MCM-41(Mobil Composition of Mater-41), MCM-48(Mobil Composition of Mater-48), MCM-50(Mobil Composition of Mater-50), SBA-1 (Santa Barbara-1), SBA-3 (Santa Barbara-3), SBA-6 (Santa Barbara-6), SBA-16 (Santa Barbara-16) 및 SBA-15(Santa Barbara-15) 중 선택된 어느 하나의 메조포러스 물질을 분말화하는 단계;
    상기 분말의 메조포러스 물질, 무기바인더, 유기바인더 및 기질변환 첨가제를 혼합하는 단계;
    상기 혼합된 흡착제용 조성물 100 중량부에 대하여 5% 폴리비닐알코올(polyvinyl alcohol)용액 30 내지 50 중량부를 첨가하여 반죽하는 단계;
    반죽된 흡착제용 조성물을 입상형으로 제조하는 단계;
    상기 제조된 입상형 물질을 가열로에서 소정하는 단계; 및
    상기 소성된 입상형 물질에 아민계 물질을 함침시키는 단계를 포함하는 입상형 이산화탄소 흡착제의 제조방법.
  16. 제15항에 있어서, 메조포러스 물질은 55 내지 75 중량%, 무기바인더는 15 내지 25 중량%, 유기바인더는 1 내지 10 중량% 및 기질변환 첨가제는 1 내지 10 중량%로 혼합되는 입상형 이산화탄소 흡착제의 제조방법.
  17. 제15항에 있어서, 아민계 물질은 하기 [수학식 1]로 표현되는 함침량이 25 내지 35 중량%, 45 내지 55 중량% 및 65 내지 75 중량% 중에서 선택된 어느 하나로 함침되는 입상형 이산화탄소 흡착제의 제조방법;
    [수학식 1]
    함침량(중량%) = M2 / (M1+M2) X 100
    (식 중, M1은 입상형 물질의 함량이며, M2는 아민계 물질의 함량임).
  18. 제15항 내지 제17항 중 어느 한 항에 있어서, 아민계 물질은 알카놀아민, 폴리아민, 피페라진아민, 벤젠 함유 아민으로 이루어진 군 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
  19. 제18항에 있어서, 알카놀아민은 모노에탄올아민(MEA, Monoethanolamine), 디에탄올아민(DEA, Diethanolamine), 트리에탄올아민(TEA, Triethanolamine), 메틸디에탄올아민(MDEA, Methyldiethanolamine), 디글리콜아민(DGA, Diglycolamine), 2-아미노-2-메틸프로판올(AMP, 2-Amino-2-methyl-propanol), 헥사메틸렌디아민(HMDA, Hexamethylenediamine), 프로필아민(Propylamine), 디프로필아민(Dipropylamine), 부틸아민(Butylamine), 이소부틸아민(Isobutylamine), 헥실아민(Hexylamine), 2-에틸헥실아민(2-Ethylhexylamine), 알릴아민(Allylamine), 메틸디알릴아민(Methyldiallylamine), 펜틸아민(Pentylamine), 이소아밀아민(Isoamylamin), N-메틸에틸아민(N-Methylethylamine), 2-옥실아민(2-Octylamine), 4-아미노부탄올(4-Aminobutanol), 3-메톡시프로필아민(3-Methoxypropylamine), 3-이소부톡시프로필아민(3-Isobutoxypropylamine), 디메틸아미노에틸아민(Dimethylaminoethylamine), 2-하이드록실에틸아미노프로필아민(2-Hydroxyethylaminopropylamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
  20. 제18항에 있어서, 폴리아민은 폴리에틸렌이민(PEI, Polyethyleneimine), 이미노비스프로필아민(Imino-bis-propylamine), 메틸이미노비스프로필아민(Methylimino-bis-propylamine), 라울리이미노비스프로필아민(Laurylimino-bis-propylamine), 펜타메틸디에틸렌트리아민(Pentamethyl diethylenetriamine), 펜타메틸디프로필렌디아민(Pentamethyldipropylenediamine), 아미노프로필-1,3-프로필렌디아민(Aminopropyl-1,3-propylenediamine), 아미노프로필-1,4-부틸렌디아민(Aminopropyl-1,4-butylenediamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
  21. 제18항에 있어서, 피페라진아민은 피페라진(Piperazine), 2-메틸피페라진(2-Methylpiperazine), 2,5-디메틸피페라진(2,5-Dimethylpiperazine), 2-메틸피페라진(2-Methylpiperazine), N-에틸피페라진(N-Ethylpiperazine), 피페콜리닉산(Pipecolinic acid), 이소니페코틱산(Isonipecotic acid), 메틸이소니펙티코테이트(Methylisonipecotate), N-알킬-3-피페콜린(N-Alkyl-3-pipecoline), N-알킬피페라진(N-Alkylpiperizine), N-알킬-3-피페라진(N-Alkyl-3-piperizine), 2-아미노메틸피페리딘(2-Aminomethylpiperidine), 이소니페코트아마이드(Isonipecotamide), N-메틸-4-피페리디놀(N-Methyl-4-piperidinol), N-벤질-4-피페리디놀(N-Benzyl-4-piperidinol), N-메틸-4-피페리돈(N-Methyl-4-piperidone), N-벤질-4-피페리돈(N-Benzyl-4-piperidone), 디피페리디노메탄(Dipiperidinomethan) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
  22. 제18항에 있어서, 벤젠 함유 아민은 벤질아민(Bebzylamine), 디벤질아민(Dibenzylamine), N-메틸벤질아민(N-Methylbenzylamine), 디메틸벤질아민(Dimethylbenzylamine), 4-벤질피페리딘(4-Benzylpiperidine), 디벤질에탄올아민(Dibenzylethanolamine), 트리벤질아민(Tribenzylamine), 페닐에틸아민(Phenylethylamine), 펜에틸아민(Phenethylamine), 메톡시펜에틸아민(Methoxyphenethylamine), 아미노프로필아닐린(Aminopropylaniline), 에틸사이클로헥실아민(Ethylcyclohexylamine) 중에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
  23. 제15항 내지 제17항 중 어느 한 항에 있어서, 무기바인더는 벤토나이트, 점토, 운모, 고령토, 제올라이트, 규조토 및 실리카로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
  24. 제15항 내지 제17항 중 어느 한 항에 있어서, 유기바인더는 메틸셀룰로오스, 전분, 겔라틴(gelatin), 폴리비닐알코올, 폴리에틸렌옥사이드 및 폴리에틸렌글리콜로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
  25. 제15항 내지 제17항 중 어느 한 항에 있어서, 기질변환 첨가제는 활성탄, 아황산칼슘(CaSO3), 그래파이트, 펄라이트, 버미규라이트 및 티탄산칼슘(CaTiO3)으로 이루어진 군에서 선택된 하나 이상인 입상형 이산화탄소 흡착제의 제조방법.
PCT/KR2011/000305 2010-10-01 2011-01-14 아민계 물질이 함침된 입상형 이산화탄소 흡착제 및 이의 제조방법 WO2012043942A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0095908 2010-10-01
KR1020100095908A KR20120034834A (ko) 2010-10-01 2010-10-01 아민계 물질이 함침된 입상형 이산화탄소 흡착제 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2012043942A1 true WO2012043942A1 (ko) 2012-04-05

Family

ID=45893357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000305 WO2012043942A1 (ko) 2010-10-01 2011-01-14 아민계 물질이 함침된 입상형 이산화탄소 흡착제 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR20120034834A (ko)
WO (1) WO2012043942A1 (ko)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104291343A (zh) * 2014-09-25 2015-01-21 太原理工大学 一种介孔sba-3分子筛的合成方法
WO2015077814A1 (en) * 2013-11-26 2015-06-04 Monash University Pelletized form of mcf-pei composite and method of producing same
CN104944442A (zh) * 2014-03-26 2015-09-30 中国石油化工股份有限公司 一种合成b-mcm-68杂原子分子筛的方法
CN106215900A (zh) * 2016-08-28 2016-12-14 桂林新艺制冷设备有限责任公司 一种污水处理材料及其制备方法
CN106379951A (zh) * 2016-11-23 2017-02-08 郑州源冉生物技术有限公司 一种基于膨润土的复合高效污水处理剂及其制备方法
CN107433185A (zh) * 2017-09-05 2017-12-05 霍邱金木鱼农业科技有限公司 一种空气净化材料及其制备方法
CN107537451A (zh) * 2017-09-05 2018-01-05 霍邱金木鱼农业科技有限公司 一种多孔沸石空气净化材料及其制备方法
CN108147423A (zh) * 2016-12-05 2018-06-12 中国石油化工股份有限公司 一种afn结构硅磷铝分子筛及其制备方法和应用
CN108479731A (zh) * 2018-04-23 2018-09-04 杭州鼎好新材料有限公司 一种吸附重金属离子多孔聚乙烯球及其制备方法
CN109467100A (zh) * 2017-09-07 2019-03-15 中国石油化工股份有限公司 Sapo-34分子筛的合成方法及应用
CN110280045A (zh) * 2019-06-19 2019-09-27 沈阳理工大学 催化消解富集分离柱和催化消解富集分离杯及其制备方法
US10906024B2 (en) 2015-03-23 2021-02-02 Basf Corporation Carbon dioxide sorbents for indoor air quality control
US11229897B2 (en) 2016-02-12 2022-01-25 Basf Corporation Carbon dioxide sorbents for air quality control
CN116262180A (zh) * 2022-12-27 2023-06-16 宿州伊维特新材料有限公司 一种6n级氧化亚氮的精馏装置及精馏方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112661A1 (ko) * 2013-01-16 2014-07-24 광주과학기술원 순수 입상화 메조공극 실리카 및 유기 결합제를 이용한 그 제조방법
KR101798976B1 (ko) 2015-09-21 2017-11-17 경희대학교 산학협력단 이산화탄소 흡수제
US20180296961A1 (en) * 2015-10-16 2018-10-18 Corning Incorporated Articles for carbon dioxide capture and methods of making the same
KR102304398B1 (ko) * 2019-11-21 2021-09-24 계명대학교 산학협력단 아민작용기가 도입된 이산화탄소 및 질소산화물 흡착용 이중쉘 메조다공성 중공형 실리카 물질의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0124983B1 (ko) * 1994-07-27 1997-11-27 강박광 입상 복합 분자체 조성물의 제조방법
KR100550209B1 (ko) * 2003-07-26 2006-02-08 한국에너지기술연구원 고온에서 사용 가능한 이산화탄소 흡착제의 제조방법
KR100725266B1 (ko) * 2006-05-03 2007-06-04 한국에너지기술연구원 이산화탄소 흡착종이, 그를 이용한 이산화탄소 흡착소자 및그의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0124983B1 (ko) * 1994-07-27 1997-11-27 강박광 입상 복합 분자체 조성물의 제조방법
KR100550209B1 (ko) * 2003-07-26 2006-02-08 한국에너지기술연구원 고온에서 사용 가능한 이산화탄소 흡착제의 제조방법
KR100725266B1 (ko) * 2006-05-03 2007-06-04 한국에너지기술연구원 이산화탄소 흡착종이, 그를 이용한 이산화탄소 흡착소자 및그의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOREA INSTITUT OF ENERGY RESEARCH: "Development of CO2 capture process using ionic liquid sorbent", pages: 16,62 - 22,71 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015077814A1 (en) * 2013-11-26 2015-06-04 Monash University Pelletized form of mcf-pei composite and method of producing same
CN104944442B (zh) * 2014-03-26 2017-10-03 中国石油化工股份有限公司 一种合成b‑mcm‑68杂原子分子筛的方法
CN104944442A (zh) * 2014-03-26 2015-09-30 中国石油化工股份有限公司 一种合成b-mcm-68杂原子分子筛的方法
CN104291343B (zh) * 2014-09-25 2015-11-11 太原理工大学 一种介孔sba-3分子筛的合成方法
CN104291343A (zh) * 2014-09-25 2015-01-21 太原理工大学 一种介孔sba-3分子筛的合成方法
US10906024B2 (en) 2015-03-23 2021-02-02 Basf Corporation Carbon dioxide sorbents for indoor air quality control
US11229897B2 (en) 2016-02-12 2022-01-25 Basf Corporation Carbon dioxide sorbents for air quality control
CN106215900A (zh) * 2016-08-28 2016-12-14 桂林新艺制冷设备有限责任公司 一种污水处理材料及其制备方法
CN106379951A (zh) * 2016-11-23 2017-02-08 郑州源冉生物技术有限公司 一种基于膨润土的复合高效污水处理剂及其制备方法
CN108147423A (zh) * 2016-12-05 2018-06-12 中国石油化工股份有限公司 一种afn结构硅磷铝分子筛及其制备方法和应用
CN107433185B (zh) * 2017-09-05 2020-04-28 王武成 一种空气净化材料及其制备方法
CN107433185A (zh) * 2017-09-05 2017-12-05 霍邱金木鱼农业科技有限公司 一种空气净化材料及其制备方法
CN107537451A (zh) * 2017-09-05 2018-01-05 霍邱金木鱼农业科技有限公司 一种多孔沸石空气净化材料及其制备方法
CN107537451B (zh) * 2017-09-05 2019-12-13 国投盛世承德科技股份有限公司 一种多孔沸石空气净化材料及其制备方法
CN109467100B (zh) * 2017-09-07 2020-11-13 中国石油化工股份有限公司 Sapo-34分子筛的合成方法及应用
CN109467100A (zh) * 2017-09-07 2019-03-15 中国石油化工股份有限公司 Sapo-34分子筛的合成方法及应用
CN108479731A (zh) * 2018-04-23 2018-09-04 杭州鼎好新材料有限公司 一种吸附重金属离子多孔聚乙烯球及其制备方法
CN110280045A (zh) * 2019-06-19 2019-09-27 沈阳理工大学 催化消解富集分离柱和催化消解富集分离杯及其制备方法
CN110280045B (zh) * 2019-06-19 2021-09-24 沈阳理工大学 催化消解富集分离柱和催化消解富集分离杯及其制备方法
CN116262180A (zh) * 2022-12-27 2023-06-16 宿州伊维特新材料有限公司 一种6n级氧化亚氮的精馏装置及精馏方法
CN116262180B (zh) * 2022-12-27 2023-10-27 宿州伊维特新材料有限公司 一种6n级氧化亚氮的精馏装置及精馏方法

Also Published As

Publication number Publication date
KR20120034834A (ko) 2012-04-13

Similar Documents

Publication Publication Date Title
WO2012043942A1 (ko) 아민계 물질이 함침된 입상형 이산화탄소 흡착제 및 이의 제조방법
WO2013065880A1 (ko) 건식 이산화탄소 포집 공정용 아민 또는 그 화합물을 포함하는 고체 이산화탄소 흡수제 및 그 제조방법
WO2015046715A1 (ko) 고체 이산화탄소 흡수제 조성물 및 이를 함유하는 고체 이산화탄소 흡수제
US10010861B2 (en) Polymeric amine based carbon dioxide adsorbents
Hao et al. Synthesis and CO2 adsorption property of amino-functionalized silica nanospheres with centrosymmetric radial mesopores
WO2013055135A2 (ko) 입상화 탄소 메조 기공 구조체의 제조 방법
WO2011052829A1 (ko) 배가스용 이산화탄소 흡수제 및 그 제조방법
KR101351114B1 (ko) 건식 이산화탄소 포집 공정용 아민 또는 그 화합물을 포함하는 고체 이산화탄소 흡수제 및 그 제조방법
US10065174B1 (en) Pelletized immobilized amine sorbent for CO2 capture
Chen et al. Synthesis of mesoporous silica from bottom ash and its application for CO 2 sorption
WO2016052838A1 (ko) 이산화탄소 중온 활성 고체 흡수제, 슬러리 조성물 및 이의 제조방법
WO2017026619A1 (ko) 마그네슘 금속-유기 골격체(Mg-MOF)의 제조 및 이의 아민 기능화
KR20010006212A (ko) 저밀도 겔 조성물의 제조 방법
WO2016060508A2 (ko) 트리아민을 포함하는 이산화탄소 흡수제
WO2018066751A1 (ko) 이산화탄소 흡수제용 고체원료, 이를 포함하는 이산화탄소 흡수제 조성물, 및 이를 이용하여 제조된 이산화탄소 흡수제
Velikova et al. Synthesis and characterization of sol–gel mesoporous organosilicas functionalized with amine groups
WO2021060929A1 (ko) 기능화된 금속-유기 구조체, 이의 제조방법 및 이를 이용하는 이산화탄소의 선택적 분리방법
US8741251B2 (en) Granular mesoporous silica and preparation method thereof
US20160122186A1 (en) Mesoporous carbon material and related methods
Wahab et al. Synthesis and characterization of novel amorphous hybrid silica materials
KR20150062057A (ko) 트뢰거 염기 기반의 공유결합 유기 중합체 및 이를 함유하는 이산화탄소 흡착제
WO2013147369A1 (ko) 이산화탄소 분리용 이미다졸륨 이온성 액체 및 그 용도
WO2014112661A1 (ko) 순수 입상화 메조공극 실리카 및 유기 결합제를 이용한 그 제조방법
CN111203174B (zh) 一种无模板ZSM-5@SiO2微球分子筛的制备方法及其应用
WO2024101538A1 (en) Carbon dioxide capture composite particles and method of producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829449

Country of ref document: EP

Kind code of ref document: A1