WO2013147369A1 - 이산화탄소 분리용 이미다졸륨 이온성 액체 및 그 용도 - Google Patents

이산화탄소 분리용 이미다졸륨 이온성 액체 및 그 용도 Download PDF

Info

Publication number
WO2013147369A1
WO2013147369A1 PCT/KR2012/005750 KR2012005750W WO2013147369A1 WO 2013147369 A1 WO2013147369 A1 WO 2013147369A1 KR 2012005750 W KR2012005750 W KR 2012005750W WO 2013147369 A1 WO2013147369 A1 WO 2013147369A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
ionic liquid
imidazolium
based ionic
tfo
Prior art date
Application number
PCT/KR2012/005750
Other languages
English (en)
French (fr)
Inventor
백일현
남성찬
박정훈
윤여일
정순관
박성열
박기태
박상도
최수현
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2013147369A1 publication Critical patent/WO2013147369A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present application relates to ionic liquids based on imidazolium cations.
  • the most representative method for CO 2 absorption is a mixed liquid solution of alkanolamines, in particular, monoethanolamine (MEA), diethanolamine (DEA) and methyldiethanolamine (MDEA). It is to use.
  • MEA-based technology can recover approximately 75-90% of CO 2 and produce more than 99% of high concentrations of CO 2 gas.
  • Ionic liquids have large organic symmetric cations, such as quaternary ammonium, imidazolium, pyridinium, and phosphonium ions, and relatively small asymmetry [Cl] - , [Br] - , [I] - , [BF 4 ] - , [PF 6 ] - , [Tf 2 N] - Inorganic substances such as [RCO 2 ] - It consists of an anion comprised with organic substances, such as these. It is also called a "designer solvent" because of the ionic liquid's ability to convert into various properties through infinite combinations of cations, anions, and functional groups.
  • 0975897 discloses a carbon dioxide absorbent comprising a trialkoxyhydroxyphosphonium carboxylate-based ionic liquid.
  • Korean Laid-Open Patent Publication No. 2011-0080004 discloses a carbon dioxide absorbent using an imazolium-based ionic liquid containing a fluorine-containing olefin.
  • imazolium-based ionic liquid containing a fluorine-containing olefin a carbon dioxide absorbent using an imazolium-based ionic liquid containing a fluorine-containing olefin.
  • high CO 2 Absorption capacity can be expected, but biodegradation is difficult and environmentally harmful.
  • the present invention has been made to solve the above problems, to provide an imidazolium-based ionic liquid that is thermally stable, long life, and can be repeatedly used at high temperature and reduced pressure conditions.
  • the present application provides an imidazolium-based ionic liquid compound having carbon dioxide absorption ability represented by the following Chemical Formula 1,
  • X - is [BF 4 ] - , [PF 6 ] - , [Tf 2 N] - , [TfO] - , [DCA] - , [Cl] - , [Br] - , [I] - , [ NO 3] -, [SO 4 ] 2 -, [CF 3 COO] -, [CF 3 SO 2] -, [CF 3 SO 2) 2N] -, [SF 6] -, [(C 2 F 5) 3 PF 3 ] - , [N (SO 2 CF 3 ) 2 ] - , [CF 3 SO 3 ] - , [B (CN) 4 ] - , [N (CN) 2 ] - , [C (CN) 3 ] - , [SCN] - , [HSO 4 ] - , [CH 3 SO 4 ] - , [C 2 H 5 SO 4 ] - , [C 4 H 9
  • R 1 , R 2 and R 3 are each a straight or branched chain alkyl or aryl group having 1 to 10 carbon atoms.
  • X - is [BF 4 ] - , [PF 6 ] - , [Tf 2 N] - , [TfO] - , or [DCA] - .
  • the present application also provides the ionic liquid imidazolium compound, wherein the imidazolium-based ionic liquid compound is represented by the following formula (2),
  • X - is [BF 4 ] - , [PF 6 ] - , [Tf 2 N] - , [TfO] - , [DCA] - , [Cl] - , [Br] - , [I] - , [ NO 3] -, [SO 4 ] 2 -, [CF 3 COO] -, [CF 3 SO 2] -, [CF 3 SO 2) 2N] -, [SF 6] -, [(C 2 F 5) 3 PF 3 ] - , [N (SO 2 CF 3 ) 2 ] - , [CF 3 SO 3 ] - , [B (CN) 4 ] - , [N (CN) 2 ] - , [C (CN) 3 ] - , [SCN] - , [HSO 4 ] - , [CH 3 SO 4 ] - , [C 2 H 5 SO 4 ] - , [C 4 H 9
  • the present application also provides a carbon dioxide absorbent comprising an imidazolium-based ionic liquid compound according to the present application.
  • the present invention also provides a method of absorbing carbon dioxide in a gas mixture using a carbon dioxide absorbent or an imidazolium-based ionic liquid compound according to the present disclosure; And degassing the carbon dioxide absorbed by the carbon dioxide absorbent.
  • the present application also provides a method for separating carbon dioxide from a gas mixture, wherein the temperature when absorbing the carbon dioxide is 0 ° C to 80 ° C.
  • the present application also provides a method for separating carbon dioxide from a gas mixture, wherein the pressure when absorbing the carbon dioxide is from atmospheric pressure to 60 atm.
  • the present application also provides a method for separating carbon dioxide from a gas mixture, characterized in that the temperature when degassing the carbon dioxide is from room temperature to 80 °C.
  • the present disclosure also provides a method of separating carbon dioxide from a gas mixture, wherein the method further comprises reusing the degassed carbon dioxide absorbent.
  • the present application also provides a method for separating carbon dioxide from a gas mixture, wherein the gas mixture is a gas mixture generated when burning fossil fuels.
  • the present disclosure also provides a method for separating carbon dioxide from a gas mixture, wherein the carbon dioxide: ionic liquid reacts in a molar ratio of 1: 1 in the carbon dioxide absorption step.
  • Imidazolium-based ionic liquid functionalized by the ether of Formula 1 or Formula 2 of the present application has excellent carbon dioxide absorption ability, the absorbed carbon dioxide can be easily desorbed through heating, etc., as well as selectivity, thermal stability And because of the repeated use and long service life can be usefully used for CO 2 capture.
  • FIG. 1 is a graph showing the mole fraction ⁇ of carbon dioxide at different temperatures of 30 ° C. according to the pressure of different ionic liquids.
  • FIG. 2 is a graph showing the molar fraction ⁇ of carbon dioxide with pressure in different ionic liquids at 50 ° C.
  • FIG. 3 shows [C 2 Omim] [BF 4 ], [C 2 Omim] [PF 6 ], [C 2 Omim] [Tf 2 N], [C 2 Omim] [TfO] and [C 2 ] absorbing carbon dioxide.
  • Omim] [DCA] shows the FTIR spectrum of the ionic liquid.
  • FIG. 4 is 13 C spectra of different ionic liquids absorbing carbon dioxide: (a) [C 2 Omim] [BF 4 ], (b) [C 2 Omim] [PF 6 ], (c) [C 2 Omim ] [Tf 2 N], (d) [C 2 Omim] [TfO] and (e) [C 2 Omim] [DCA]
  • FIG. 6 is a graph showing the molar fraction ( ⁇ ) of carbon dioxide with pressure measured using different ionic liquids regenerated at 30 ° C.
  • the present application relates to an imidazolium-based ionic liquid represented by Formula 1 below.
  • alkyl refers to saturated aliphatic groups, such as straight chain alkyl groups (eg, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl), branched chain alkyl groups (eg, isopropyl).
  • cycloalkyl eg, cycloaliphatic groups (eg, cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl), alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups .
  • straight or branched chain alkyl has up to 6 carbon atoms in the backbone (eg, C 1 -C 6 (straight chain), C 3 -C 6 (branched chain)). In some instances, straight or branched chain alkyl has up to 4 carbon atoms in the backbone.
  • cycloalkyl has 3 to 8 carbon atoms in the ring structure.
  • the alkyl may be substituted and the term "substituted alkyl" as used herein denotes an alkyl moiety in which one or more hydrogen atoms on one or more carbons of the hydrocarbon backbone are replaced by substituents.
  • substituents include, for example, alkyl, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl , Alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (alkylamino, dialkylamino , Arylamino, diarylamino and alkylarylamino), acylamino (including al
  • aryl as used herein includes groups having aromaticity, such as 5 and 6 membered “unconjugated” or single-ring aromatic groups, which may include 0-4 heteroatoms, and one or more aromatic rings. With “junctions” or multicyclic systems. Examples of aryl groups include benzene, phenyl, pyrrole, furan, thiophene, thiazole, isothiazole, imidazole, triazole, tetrazole, pyrazole, oxazole, isoxazole, pyridine, pyrazine, pyridazine and pyrimidine Etc. are included.
  • aryl herein includes multicyclic aryl groups such as tricyclic, bicyclic such as naphthalene, benzoxazole, benzodioxazole, benzothiazole, benzoimidazole, benzothiophene, methylenedioxy Phenyl, quinoline, isoquinoline, naphthyridine, indole, benzofuran, purine, benzofuran, deazapurine or indolizine.
  • Aryl groups having heteroatoms in the ring structure may also be referred to as "aryl heterocycle", “heterocycle”, “heteroaryl” or “heteroaromatic".
  • the aromatic ring may be substituted as described above at one or more ring positions, such as halogen, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl , Alkylaminocarbonyl, aralkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aralkyl carbonyl, alkenylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate , Phosphonato, phosphinato, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino and alkylarylamino), acylamino (alkylcarbonylamino, arylcarbonylamino, carba Moly and ureido), amidino
  • aryl groups may be fused or bridged with alicyclic or heterocyclic rings, which are not aromatic and thus form a multicyclic system (eg, tetralin or methylenedioxyphenyl).
  • lower alkyl includes alkyl groups as defined above having 1 to 10, such as 1 to 6, carbon atoms in the backbone structure.
  • the imidazolium-based ionic liquid of the present application has an ether group and is represented by the following Chemical Formula 2.
  • X - is [BF 4 ] - , [PF 6 ] - , [Tf 2 N] - , [TfO] - , [DCA] - , [Cl] - , [Br] - , [I] - , [ NO 3] -, [SO 4 ] 2 -, [CF 3 COO] -, [CF 3 SO 2] -, [CF 3 SO 2) 2N] -, [SF 6] -, [(C 2 F 5) 3 PF 3 ] - , [N (SO 2 CF 3 ) 2 ] - , [CF 3 SO 3 ] - , [B (CN) 4 ] - , [N (CN) 2 ] - , [C (CN) 3 ] - , [SCN] - , [HSO 4 ] - , [CH 3 SO 4 ] - , [C 2 H 5 SO 4 ] - , [C 4 H 9
  • the ether functionalized imidazolium based ionic liquids herein have a low viscosity while maintaining a liquid phase at room temperature in combination with the anions used herein.
  • Carbon dioxide absorbents of the present disclosure may include one or more ether functionalized imidazolium based ionic liquid compounds according to the present disclosure.
  • the ether functionalized imidazolium-based ionic liquid compound of Formula 1 or Formula 2 absorbs carbon dioxide through a chemical bond with carbon dioxide.
  • Absorbents for absorbing carbon dioxide are classified into chemical and physical absorbents. Since the chemical absorbent is absorbed by the chemical bond between the carbon dioxide and the absorbent, it is possible to absorb the carbon dioxide in a low range. However, since physical absorption is absorbed and regenerated by pressure, the gas to be separated must be accompanied by pressure. Therefore, chemical absorption is generally advantageous for separating carbon dioxide from gas mixtures produced when fueling fossil fuels.
  • the amine reacts with carbon dioxide to form carbamate, which reacts with carbon dioxide: amine in a molar ratio of 1: 2 and when water is added, a carbonide is formed and the carbon dioxide: amine reacts in a 1: 1 molar ratio.
  • the carbon dioxide: ionic liquid since the ether group oxygen atoms react with carbon dioxide and the carbon dioxide: ionic liquid reacts in a 1: 1 molar ratio, the carbon dioxide: ionic liquid, which is an absorption reaction of an ionic liquid with an existing amine group, reacts in a 1: 2 molar ratio. It is advantageous compared to that.
  • the imidazolium-based ionic liquid compound according to the present invention shows a much higher carbon dioxide absorption capacity than the organic solvent absorbent, in one embodiment according to the present invention showed a carbon dioxide absorption amount of more than 0.9 mole fraction.
  • the conventional ionic liquid can separate the carbon dioxide by the physical force by the interaction of the cation and the anion, but in the present invention by adding a function that can separate the carbon dioxide by the chemical bond increases the carbon dioxide absorption capacity than conventional. I was. Therefore, when the imidazolium-based ionic liquid compound according to the present invention is used as an absorbent, the circulation rate of the absorbent can be lowered and the size of the device can be drastically reduced.
  • the imidazolium-based ionic liquid compound according to the present invention when used as a carbon dioxide absorbent, there is almost no loss of the absorbent. Since the imidazolium-based ionic liquid compound according to the present invention is chemically stable, the loss of carbon dioxide absorbent by decomposition is very low. In addition, the imidazolium-based ionic liquid compound according to the present invention in the re-use experiment can be reused because the deterioration of carbon dioxide absorption is not observed even when repeated 10 times the absorption-degassing experiment.
  • the imidazolium-based ionic liquid compound according to the present invention not only has excellent carbon dioxide absorbing ability, but can also perform degassing of the absorbed carbon dioxide at a relatively low temperature. Can be effectively used as.
  • the present invention relates to a carbon dioxide separation method using a carbon dioxide absorbent comprising the ether functionalized imidazolium-based ionic liquid compound of Formula 1 or Formula 2 in a gas mixture.
  • the method includes absorbing carbon dioxide and degassing the carbon dioxide absorbed by the carbon dioxide absorbent.
  • the preferred temperature when absorbing carbon dioxide is in the range from 0 ° C. to 80 ° C., in particular in the range from 20 ° C. to 60 ° C., and the preferred pressure is from atmospheric pressure to 80 atm.
  • the preferred temperature when absorbing carbon dioxide is in the range from 0 ° C. to 80 ° C., in particular in the range from 20 ° C. to 60 ° C.
  • the preferred pressure is from atmospheric pressure to 80 atm.
  • the preferred temperature when degassing the absorbed carbon dioxide is in the range of 60 to 150 ° C., more preferably in the range of 70 to 130 ° C., and the preferred pressure is 20 pascal at atmospheric pressure. (Pa).
  • the gas mixture may be exhaust gases, natural gas, etc. discharged from chemical plants, power plants, large boilers, etc., in particular when the fossil fuel is burned It can be used to separate carbon dioxide from gas mixtures.
  • the method thus further comprises reusing the degassed carbon dioxide absorbent.
  • the carbon dioxide: ionic liquid reacts in a molar ratio of 1: 1, and the features and advantages thereof are as described above.
  • Chloromethylmethylether (CH 3 OCH 2 Cl), 1-methylimidazole, diethylether, acetone, sodium tetrafluoroborate (NaBF 4 ), magnesium sulfate (MgSO 4 ), potassium hexa used in the examples herein Fluorophosphate (KPF 6 ) , lithium bis [(trifluoromethyl) sulfonyl] amide Li (Tf 2 N), sodium trifluoromethylsulfonate Na (TfO), sodium dicyanamide (Na (DCA) was purchased from Sigma-Aldrich and no further purification.
  • KPF 6 lithium bis [(trifluoromethyl) sulfonyl] amide Li
  • TfO sodium trifluoromethylsulfonate Na
  • DCA sodium dicyanamide
  • the water content in the ionic liquid was measured using Karl-Fischer titration (Mitsubishi Chem., Model CA-07). All salts were used after drying for about 24 hours at 70-100 ° C. under vacuum drying. TGA experiments were performed with a thermal analysis system (Mettler Toledo, Model: TGA / SDTA 85 1e). Samples were placed in an average 5 mg platinum pan and heated at a rate of 10 ° C./min from 30 ° C. to 100 ° C. under N 2 flow conditions. The density of each of the liquid salts was measured three times for 1.0 mL samples at 25 ° C. Viscosity measurements were performed using a viscometer (Brookfield, model DV-III +) model.
  • the density of the ionic liquid increases as the length of the cation's 1-alkyl (alkylether) ring decreases.
  • the density of [C m O n mim] + based ionic liquids is slightly higher than similar [C m mim] + based ionic liquids, for example (C 2 O> C 3 ), (C 3 O> C 4 )to be.
  • the density increases in proportion to the size of the anion.
  • the ionic liquids could be transformed into the desired properties through slight modifications of the cations and anions.
  • the viscosity of an ionic liquid is strongly dependent on the type of anion and is basically determined by the tendency to form hydrogen bonds and the van der Waals action (dispersion, repulsion action).
  • the longer the alkyl ring of the cation the higher the van der Waals attraction force, which has a higher viscosity, whereas the charge delocalization of the anion tends to lower the viscosity as it weakens the hydrogen bond of the cation.
  • the viscosity of the ionic liquid is mainly determined by the anion. It was confirmed that the ionic liquid containing the [DCA]-anion had the lowest viscosity, and the ionic liquid containing the [PF6]-anion had the highest viscosity. However, many studies have already been carried out by many research groups to prove that cations in ionic liquids also affect viscosity. It was also confirmed that the alcohol functional group ionic liquids had a lower viscosity as compared to the ether functional ionic liquids. In the case of ether functional ionic liquids, ionic liquids having larger alkyl groups have a higher viscosity than those of smaller alkyl group sizes.
  • Adsorption isotherm measurements of carbon dioxide were measured at 30, 50 ° C. based on isotropic saturation techniques.
  • the main components of the measuring device include a gas reservoir, a thermostat, a pressure gauge, an isochoric cell, a vacuum pump and a magnetic stirrer.
  • the temperature was measured by calibrated platinum resistance thermometers in each cell's heating jacket and the margin of error was ⁇ 0.1 ° C.
  • the error of the experimental measured pressure was ⁇ 0.001 bar.
  • about 2ml of ionic liquid was injected into the isotropic volume cell, the internal air was removed by using a vacuum pump, and CO 2 was injected into the gas reservoir, and the ionic liquid was stirred. The system then reaches equilibrium for about two hours without pressure fluctuations.
  • the weight of the cell was measured with an electronic balance (Sartorius BS224S) with an error range of ⁇ 0.0001 g.
  • the carbon dioxide absorption capacity of the ionic liquid was determined by the shifted quality of this iso volumetric
  • the CO 2 uptake mechanism was investigated via FTIR and 13 C NMR measurements of CO 2 .
  • the same apparatus was also used to characterize each material.
  • NMR spectrum of CO 2 absorbed by the ether functional ionic liquid is shown in FIG. 4.
  • the detailed mechanism is shown in FIG. This confirms that the 1: 1 mechanism in which only one ionic liquid reacts with CO 2 for the formation of one carbamate is dominant, which is another ionic liquid and CO 2 for the formation of one conventional carbamate. Is different from the so-called 1: 2 mechanism in which it reacts further.
  • the maximum CO 2 absorption capacity at 30 ° C. and 1.6 bar pressure reached 0.9 mol CO 2 per mol of the ionic liquid.
  • Absorption capacity is affected by viscosity, and the viscosity of ionic liquid decreases considerably with increasing temperature.
  • Another important phenomenon observed in the absorption reaction is that the viscosity of the liquid phase increases rapidly by the formation of hydrogen bonding networks.
  • the viscosity factor in the absorption reaction can be reliably controlled by reducing the number of hydrogens on the anion capable of hydrogen bonding or by adding a specific organic solvent or water. This can achieve the desired absorbing effect of the ionic liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

본원은 에테르로 관능화된 이미다졸륨 기반 이온성 액체 및 이를 이용한 이산화탄소 분리 방법에 관하여 개시한다. 본원의 에테르로 관능화된 이미다졸륨계 이온성 액체는 우수한 이산화탄소 흡수능을 가지며, 흡수된 이산화탄소는 가열 등을 통해 손쉽게 탈착이 가능하여, 사용의 편리성은 물론, 선택성, 열적 안정성 및 반복적 사용 및 오랜 사용수명으로 인해 CO2 포집에 유용하게 사용될 수 있다.

Description

이산화탄소 분리용 이미다졸륨 이온성 액체 및 그 용도
본원은 이미다졸리움 양이온 기반의 이온성 액체에 관한 것이다.
최근 몇 년간 배가스로부터 CO2를 분리하는 기술은 학술적, 산업적 측면에서 뿐 아니라 환경적으로 유익한 지속 가능 발전을 위해 중요성이 날로 증가하고 있다. 석탄, 석유, 천연가스 등이 주된 연료로 사용되는 상황에서 CO2의 생성은 피할 수 없다. 따라서 경제적인 CO2 분리 및 회수 기술의 개발은 CO2 저감을 위한 핵심 단계라 할 수 있다.
현재 화학적/물리적 이산화탄소 흡수 공정은 CO2 분리를 목적으로 천연가스나 석유, 각종 화학 산업에 널리 적용되고 있다. 물리적 흡수 방법은 주로 가스 흐름 내 산성 가스(H2S, CO2, SO2)들의 농도가 높을 때 주로 선호된다. 물리 흡수제들은 산성 가스들과 높은 친화력을 가진 주로 비반응성의 극성 유기 화합물이 쓰인다. 대표적으로 메탄올, 프로필렌, 카보네이트, 설포네이트, N-포닐필롤리돈 (NMP)등이 물리 흡수에 주로 사용된다. 화학적 흡수의 경우는 일반적으로 잔존 산성 물질들을 제거하는데 사용된다. 일차, 이차, 삼차, 장애 아민, 가공된 아민 등의 액상 용액 등이 가장 널리 사용되고 있다. 장애 아민류는 종종 CO2와 H2S를 포함하는 가스에서 선택적 H2S 제거를 위해 사용되기도 한다.
현재 CO2 흡수를 위한 가장 대표적인 방법은 알카놀아민류 특히 모노에탄올아민 (monoethanolamine, MEA), 디에탄올아민 (diethanolamine, DEA) 및 메틸디에탄올아민( methyldiethanolamine, MDEA) 등의 액상 용액의 혼합 액상용액을 이용하는 것이다. MEA 기반 기술을 통해 약 75-90% 가량의 CO2 회수가 가능하며, 99% 이상의 고농도 CO2 가스 생산이 가능하다.
하지만 아민 기반 기술의 이러한 높은 CO2 분리 효율에도 불구하고, 이 기술에는 장치의 부식 등의 문제로 인한 용액 내 아민 농도의 제약, 회수 가스로부터의 수분 제거, 휘발성으로 인한 흡수제 손실, 배가스 내 황 함유 물질이나 높은 열로 재생할 때 발생할 수 있는 흡수제 열화, 그리고 산소와 결합에 의한 흡수제 산화 등의 문제점을 가지고 있다. 따라서 휘발성 및 부식성이 없고 공정상 경제적일 뿐 아니라 환경적으로 유익한 흡수제의 개발을 필요로 한다.
이의 대안으로 제시된 것이 이온성액체이다. 이온성액체는 4차 암모늄(quaternary ammonium), 이미다졸륨(imidazolium), 피리디늄(pyridinium), 포스포늄 (phosphonium) 이온 등과 같은 의 커다란 유기 대칭 구조의 양이온과, 상대적으로 비대칭 구조의 작은 크기의 [Cl]-, [Br]-, [I]-, [BF4]-, [PF6]-, [Tf2N]- 등과 같은 무기물질 혹은 [RCO2]- 등의 유기 물질 등으로 구성되는 음이온으로 구성된다. 양이온과 음이온, 그리고 기능성 작용기 등의 무한한 조합을 통해 다양한 특성으로의 전환이 가능한 이온성액체의 특징으로 인하여 "디자이너 용매 (designer solvent)"라고도 불리운다. 한국 등록특허 제0975897호는 트리알콕시히드록시포스포늄 카복실레이트계 이온성 액체를포함하는 이산화탄소 흡수제를 개시한다. 한국 공개특허공보2011-0080004는 함불소올레핀을 포함한 이마졸륨계 이온성액체를 이용한 이산화탄소 흡수제에 관하여 개시한다. 하지만 불소가 포함된 이온성액체의 경우 높은 CO2 흡수능을 기대할 수 있지만 생분해가 어려워 환경적으로 유해하다. 또한 이미다졸리움 양이온을 기반으로 이온성 액체와 [Cl]-, [BF4]-, [PF6]-, [CH3SO3]-, [CF3BF3]-, [C2F5BF3]- 음이온을 이용한 합성에 관한 연구가 수행되었으나, 이산화탄소 분리에 최적의 특성을 지닌 친수성의 열적으로도 안정하며, 낮은 용융점, 낮은 점도는 물론 반복적 사용이 가능한 새로운 이온성액체의 개발이 필요하다.
본원은 상술한 문제점을 해결하기 위해 안출된 것으로, 열적으로 안정하면서도, 수명이 길고, 고온 및 감압 조건에서 반복사용이 가능한 이미다졸륨기반 이온성액체를 제공하고자 한다.
한 양태에서 본원은 하기 화학식 1 로 표시되는 이산화탄소 흡수능을 갖는 이미다졸륨계 이온성 액체 화합물을 제공하며,
[화학식 1]
Figure PCTKR2012005750-appb-I000001
상기 식에서 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, [DCA]-, [Cl]-, [Br]-, [I]-, [NO3]-, [SO4]2 -, [CF3COO]-, [CF3SO2]-, [CF3SO2)2N]-, [SF6]-, [(C2F5)3PF3]-, [N(SO2CF3)2]-, [CF3SO3]-, [B(CN)4]-, [N(CN)2]-, [C(CN)3]-, [SCN]-, [HSO4]-, [CH3SO4]-, [C2H5SO4]-, [C4H9SO4]-, [C6H13SO4]-, [B(C2O4)2]-, [CH3SO3]-, [CH3C6H4SO3]-, 또는 [C4F9SO3]- 이고,
R1, R2 및 R3는 각각 탄소수 1 내지 10의 직쇄 또는 측쇄의 알킬기 또는 아릴기이다. 한 구현예에서, 상기 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, 또는 [DCA]- 이다.
본원은 또한 상기 이미다졸륨계 이온성 액체 화합물은 하기 화학식 2로 표시되는, 이온액체성 이미다졸륨 화합물을 제공하며,
[화학식 2]
Figure PCTKR2012005750-appb-I000002
상기 식에서 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, [DCA]-, [Cl]-, [Br]-, [I]-, [NO3]-, [SO4]2 -, [CF3COO]-, [CF3SO2]-, [CF3SO2)2N]-, [SF6]-, [(C2F5)3PF3]-, [N(SO2CF3)2]-, [CF3SO3]-, [B(CN)4]-, [N(CN)2]-, [C(CN)3]-, [SCN]-, [HSO4]-, [CH3SO4]-, [C2H5SO4]-, [C4H9SO4]-, [C6H13SO4]-, [B(C2O4)2]-, [CH3SO3]-, 또는 [CH3C6H4SO3]-, [C4F9SO3]-이다. 한 구현예에서, 상기 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, 또는 [DCA]- 이다.
다른 양태에서 본원은 또한 본원에 따른 이미다졸륨계 이온성 액체 화합물을 포함하는 이산화탄소 흡수제를 제공한다.
또 다른 양태에서 본원은 또한 기체 혼합물에서 본원에 따른 이산화탄소 흡수제 또는 이미다졸륨계 이온성 액체 화합물을 사용하여 이산화탄소를 흡수시키는 단계; 및 상기 이산화탄소 흡수제에 흡수된 이산화탄소를 탈기시키는 단계를 포함하는 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다.
본원은 또한 상기 이산화탄소를 흡수시킬 때의 온도는 0 ℃ 내지 80 ℃인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다.
본원은 또한 상기 이산화탄소를 흡수시킬 때의 압력은 상압 내지 60 기압인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다.
본원은 또한 상기 이산화탄소를 탈기시킬 때의 온도는 상온 내지 80 ℃인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다.
본원은 또한 상기 방법은 상기 탈기된 이산화탄소 흡수제를 재사용하는 단계를 추가로 포함하는 것인, 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제고한다.
본원은 또한 상기 기체 혼합물은 화석연료를 연소할 때 발생되는 기체혼합물인 것을 특징으로 하는, 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다.
본원은 또한 상기 이산화탄소 흡수단계에서 상기 이산화탄소 : 이온성액체가 1:1의 몰비로 반응하는 것이, 기체 혼합물로부터 이산화탄소를 분리하는 방법을 제공한다.
본원의 화학식 1 또는 화학식 2의 에테르로 관능화된 이미다졸륨계 이온성 액체는 우수한 이산화탄소 흡수능을 가지며, 흡수된 이산화탄소는 가열 등을 통해 손쉽게 탈착이 가능하여, 사용의 편리성은 물론, 선택성, 열적 안정성 및 반복적 사용 및 오랜 사용수명으로 인해 CO2 포집에 유용하게 사용될 수 있다.
도 1은 30 ℃에서 상이한 이온성 액체의 압력에 따른 이산화탄소의 몰분획(χ)을 나타내는 그래프이다.
도 2는 50 ℃에서 상이한 이온성 액체에서 압력에 따른 이산화탄소의 몰분획(χ)을 나타내는 그래프이다.
도 3은 이산화탄소를 흡수한 [C2Omim] [BF4], [C2Omim] [PF6], [C2Omim] [Tf2N], [C2Omim] [TfO] 및 [C2Omim] [DCA] 이온성 액체의 FTIR 스펙트럼을 나타낸다.
도 4는 이산화탄소를 흡수한 상이한 이온성 액체의 13C 스펙트럼이다: (a)[C2Omim] [BF4], (b)[C2Omim] [PF6], (c)[C2Omim] [Tf2N], (d)[C2Omim] [TfO] 및 (e)[C2Omim] [DCA]
도 5는 에테르 관능화된 이온성 액체의 이산화탄소 흡수 기전을 나타낸다.
도 6은 30 ℃에서 재생된 상이한 이온성 액체를 사용하여 측정된 압력에 따른 이산화탄소의 몰분획(χ)을 나타내는 그래프이다.
본원은 하기 화학식 1로 표시되는 이미다졸륨기반의 이온성액체에 관한 것이다.
[화학식 1]
Figure PCTKR2012005750-appb-I000003
상기 식에서 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, [DCA]-, [Cl]-, [Br]-, [I]-, [NO3]-, [SO4]2 -, [CF3COO]-, [CF3SO2]-, [CF3SO2)2N]-, [SF6]-, [(C2F5)3PF3]-, [N(SO2CF3)2]-, [CF3SO3]-, [B(CN)4]-, [N(CN)2]-, [C(CN)3]-, [SCN]-, [HSO4]-, [CH3SO4]-, [C2H5SO4]-, [C4H9SO4]-, [C6H13SO4]-, [B(C2O4)2]-, [CH3SO3]-, [CH3C6H4SO3]-, 또는 [C4F9SO3]- 이고, R1, R2 및 R3는 각각 탄소수 1 내지 10 의 직쇄 또는 측쇄 알킬기 또는 아릴기 이다. 한 구현예에서 상기 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, 또는 [DCA]- 이다.
본원에서 사용된 용어 "알킬"은 포화 지방족 기, 예컨대 직쇄 알킬 기 (예컨대, 메틸, 에틸, 프로필, 부틸, 펜틸, 헥실, 헵틸, 옥틸, 노닐, 데실), 분지쇄 알킬 기(예컨대, 이소프로필, tert-부틸, 이소부틸), 시클로알킬(예컨대, 지환족) 기(예컨대, 시클로프로필, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸), 알킬 치환 시클로알킬 기 및 시클로알킬 치환 알킬기가 포함된다. 특정 실시예에서, 직쇄 또는 분지쇄 알킬은 골격 내에 6개 이하의 탄소 원자를 갖는다[예컨대, C1-C6 (직쇄), C3-C6 (분지쇄)]. 일부 예에서, 직쇄 또는 분지쇄 알킬은 골격 내에 4개 이하의 탄소 원자를 갖는다. 또한, 시클로알킬은 고리 구조 내에 3 내지 8개의 탄소 원자를 갖는다.
상기 알킬은 치환될 수 있으며, 본원에서 사용된 용어 "치환 알킬"은, 탄화수소 골격의 1개 이상의 탄소상의 1개 이상의 수소 원자가 치환기로 대체된 알킬 잔기를 나타낸다. 이러한 치환기에는, 예컨대 알킬, 알케닐, 알키닐, 할로겐, 히드록실, 알킬카르보닐옥시, 아릴카르보닐옥시, 알콕시카르보닐옥시, 아릴옥시카르보닐옥시, 카르복실레이트, 알킬카르보닐, 아릴카르보닐, 알콕시카르보닐, 아미노카르보닐, 알킬아미노카르보닐, 디알킬아미노카르보닐, 알킬티오카르보닐, 알콕실, 포스페이트, 포스포네이토, 포스피네이토, 시아노, 아미노(알킬아미노, 디알킬아미노, 아릴아미노, 디아릴아미노 및 알킬아릴아미노 포함), 아실아미노(알킬카르보닐아미노, 아릴카르보닐아미노, 카르바모일 및 우레이도 포함), 아미디노, 이미노, 술프히드릴, 알킬티오, 아릴티오, 티오카르복실레이트, 술페이트, 알킬술피닐, 술포네이토, 술파모일, 술폰아미도, 니트로, 트리플루오로메틸, 시아노, 아지도, 헤테로시클릴, 알킬아릴, 또는 방향족 또는 헤테로방향족 잔기가 포함될 수 있다.
본원에서 사용된 용어 "아릴"에는 방향족성을 가진 기, 예컨대 0 내지 4 개의 헤테로원자를 포함할 수 있는 5 및 6원의 "비접합" 또는 단일-고리 방향족 기, 및 1개 이상의 방향족 고리를 갖는 "접합" 또는 멀티시클릭 계가 포함된다. 아릴기의 예로는 벤젠, 페닐, 피롤, 푸란, 티오펜, 티아졸, 이소티아졸, 이미다졸, 트리아졸, 테트라졸, 피라졸, 옥사졸, 이속사졸, 피리딘, 피라진, 피리다진 및 피리미딘 등이 포함된다. 또한, 본 명세서의 용어 "아릴"에는 멀티시클릭 아릴기, 예컨대 트리시클릭, 비시클릭, 예컨대 나프탈렌, 벤즈옥사졸, 벤조디옥사졸, 벤조티아졸, 벤조이미다졸, 벤조티오펜, 메틸렌디옥시페닐, 퀴놀린, 이소퀴놀린, 나프티리딘, 인돌, 벤조푸란, 퓨린, 벤조푸란, 데아자퓨린 또는 인돌리진이 포함된다. 고리 구조 내에 헤테로원자를 갖는 아릴기는 "아릴 헤테로사이클", "헤테로사이클", "헤테로아릴" 또는 "헤테로방향족"으로도 지칭될 수 있다. 방향족 고리는 하나 이상의 고리 위치에서 상기 기재된 바와 같은 치환기, 예컨대 할로겐, 히드록실, 알콕시, 알킬카르보닐옥시, 아릴카르보닐옥시, 알콕시카르보닐옥시, 아릴옥시카르보닐옥시, 카르복실레이트, 알킬카르보닐, 알킬아미노카르보닐, 아르알킬아미노카르보닐, 알케닐아미노카르보닐, 알킬카르보닐, 아릴카르보닐, 아르알킬 카르보닐, 알케닐카르보닐, 알콕시카르보닐, 아미노카르보닐, 알킬티오카르보닐, 포스페이트, 포스포네이토, 포스피네이토, 시아노, 아미노(알킬아미노, 디알킬아미노, 아릴아미노, 디아릴아미노 및 알킬아릴아미노 포함), 아실아미노(알킬카르보닐아미노, 아릴카르보닐아미노, 카르바모일 및 우레이도 포함), 아미디노, 이미노, 술프히드릴, 알킬티오, 아릴티오, 티오카르복실레이트, 술페이트, 알킬술피닐, 술포네이토, 술파모일, 술폰아미도, 니트로, 트리플루오로메틸, 시아노, 아지도, 헤테로시클릴, 알킬아릴, 또는 방향족 또는 헤테로방향족 잔기로 치환될 수 있다. 또한, 아릴기는 지환족 또는 헤테로시클릭 고리와 융합 또는 가교될 수 있고, 이들은 방향족이 아니므로 멀티시클릭 계(예컨대, 테트랄린 또는 메틸렌디옥시페닐)를 형성한다. 탄소의 개수가 달리 특정되어 있지 않다면, "저급 알킬"에는 골격 구조 내에 1 내지 10개, 예컨대 1 내지 6 개의 탄소 원자를 갖는, 상기 정의된 바와 같은 알킬기가 포함된다.
한 구현예에서 본원의 이미다졸륨기반의 이온성액체는 에테르기를 가지며 다음 화학식 2로 표시된다.
[화학식 2]
Figure PCTKR2012005750-appb-I000004
상기 식에서 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, [DCA]-, [Cl]-, [Br]-, [I]-, [NO3]-, [SO4]2 -, [CF3COO]-, [CF3SO2]-, [CF3SO2)2N]-, [SF6]-, [(C2F5)3PF3]-, [N(SO2CF3)2]-, [CF3SO3]-, [B(CN)4]-, [N(CN)2]-, [C(CN)3]-, [SCN]-, [HSO4]-, [CH3SO4]-, [C2H5SO4]-, [C4H9SO4]-, [C6H13SO4]-, [B(C2O4)2]-, [CH3SO3]-, [CH3C6H4SO3]-, 또는 [C4F9SO3]- 이다. 한 구현예에서 상기 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, 또는 [DCA]- 이다.
본원의 에테르 관능화된 이미다졸륨기반의 이온성액체는 본원에서 사용된 음이온과 조합시 상온에서 액체상을 유지하면서 낮은 점도를 지닌다.
나아가 본원은 상기 화학식 1 또는 화학식 2의 에테르 관능화된 이미다졸륨기반의 이온성액체화합물을 이용한 이산화탄소 흡수제에 관한 것이다. 본원의 이산화탄소 흡수제는 본원에 따른 에테르 관능화된 이미다졸륨기반의 이온성액체 화합물을 1종 이상 포함할 수 있다.
본 발명에 따른 화학식 1 또는 화학식 2의 에테르 관능화된 이미다졸륨계 이온성액체 화합물을 이산화탄소 흡수제는 이산화탄소와 화학적 결합을 통해 이를 흡수한다. 이산화탄소를 흡수하기 위한 흡수제는 화학적 흡수제와 물리적 흡수제로 구분된다. 화학적 흡수제는 이산화탄소와 흡수제간의 화학적 결합에 의하여 흡수되므로 이산화탄소의 압력이 낮은 범위에서 흡수가 가능하다. 그러나 물리적 흡수는 압력에 의하여 흡수와 재생이 되므로 분리하고자 하는 가스에 압력이 수반되어야 한다. 따라서 화학적 흡수는 일반적으로 화석연료를 연료할 때 발생되는 기체혼합물의 이산화탄소를 분리하는데 유리하다.
이는 에테르기 산소 원자의 고립 전자쌍이 친핵적(nucleophilic)으로 CO2의 탄소 원자를 공격하여 카복실산을 형성하기 때문이다 (도 5 참조). 즉 하나의 카바메이트 형성을 위해 하나의 이온성액체만이 CO2와 반응하는 1:1 (몰비) 메커니즘이 지배적이며, 이는 종래의 하나의 카바메이트 형성을 위해 또 다른 이온성액체와 CO2가 추가적으로 반응하는 소위 1:2 메커니즘과 차별되는 장점을 가지고 있다.
보다 구체적으로 아민이 이산화탄소와 반응하여 카바메이트가 형성되며 이는 이산화탄소 : 아민이 1 : 2의 몰비로 반응을 하며 이에 물을 추가하면 카보네이드가 형성되어 이산화탄소 : 아민이 1 : 1 몰비로 반응을 한다. 그러나 에테르기 산소 원자는 이산화탄소 반응하여 이산화탄소 : 이온성액체가 1 : 1 몰비로 반응을 하므로 기존 아민그룹을 부가한 이온성액체의 흡수반응인 이산화탄소:이온성액체가 1 : 2 몰비로 반응을 하는 것과 비교하여 유리하다.
또한, 본 발명에 따른 이미다졸륨계 이온성액체 화합물은 유기용매 흡수제보다 훨씬 높은 이산화탄소 흡수능을 보여주며, 본원에 따른 일 실시예에서 이산화탄소 흡수 실험에서 0.9 몰분율 이상의 이산화탄소 흡수량을 나타냈다. 본 발명에서는 양이온 이미다졸의 측쇄에 에터르기를 치환하여 이산화탄소와 반응을 직접 할 수 있도록 하였다. 따라서 기존의 이온성액체는 양이온과 음이온의 상호작용에 의한 물리적인 힘에 의하여 이산화탄소를 분리할 수 있으나, 본 발명에서는 화학적 결합에 의하여 이산화탄소를 분리할 수 있는 기능을 추가하여 기존보다 이산화탄소 흡수능을 증가시켰다. 따라서 본 발명에 따른 이미다졸륨계 이온성액체 화합물을 흡수제로 사용하는 경우, 흡수제의 순환속도를 낮출 수 있어 장치의 크기를 획기적으로 줄일 수 있다.
또한, 본 발명에 따른 이미다졸륨계 이온성액체 화합물을 이산화탄소 흡수제로 사용하는 경우, 흡수제의 손실이 거의 없다. 본 발명에 따른 이미다졸륨계 이온성액체 화합물은 화학적으로 안정하기 때문에 분해에 의한 이산화탄소 흡수제의 손실 아주 낮다. 또한, 재사용 실험시 본 발명에 따른 이미다졸륨계 이온성액체 화합물은 10회 흡수-탈기 실험을 반복할 때에도 이산화탄소 흡수능의 저하가 관찰되지 않아 재사용이 가능하다.
따라서, 본 발명에 따른 이미다졸륨계 이온성액체 화합물은 우수한 이산화탄소 흡수능을 보유하고 있을 뿐만 아니라, 흡수된 이산화탄소의 탈기도 비교적 낮은 온도에서 수행할 수 있으며, 반복 사용시에도 흡수능의 감소가 거의 없어 이산화탄소 흡수제로서 효과적으로 사용될 수 있다.
다른 양태에서 본원은 기체 혼합물에서 상기 화학식 1 또는 화학식 2의 에테르 관능화된 이미다졸륨계 이온성액체 화합물을 포함하는 이산화탄소 흡수제를 사용한 이산화탄소 분리방법에 관한 것이다. 상기 방법은 이산화탄소를 흡수시키는 단계 및 상기 이산화탄소 흡수제에 흡수된 이산화탄소를 탈기시키는 단계를 포함하다. 본 발명에 따른 기체 혼합물로부터 이산화탄소를 분리하는 방법에 있어서, 이산화탄소를 흡수시킬 때의 바람직한 온도는 0 ℃ 내지 80 ℃ 범위 , 특히 20 ℃ 내지 60 ℃ 범위이고 , 바람직한 압력은 상압 내지 80 기압 범위이다. 이산화탄소를 흡수시킬 때 온도는 낮을수록, 압력은 높을수록 이산화탄소 흡수량이 증가한다.
본 발명에 따른 기체 혼합물로부터 이산화탄소를 분리하는 방법에 있어서, 흡수된 이산화탄소를 탈기시킬 때의 바람직한 온도는 60 내지 150 ℃ 범위, 보다 바람직하게는 70 내지 130 ℃ 범위이고, 바람직한 압력은 상압에서 20 파스칼(Pa)이다.
본 발명에 따른 기체 혼합물로부터 이산화탄소를 분리하는 방법에 있어서, 상기 기체 혼합물로는 화학공장, 발전소, 대형 보일러 등에서 배출되는 배기가스, 천연가스 등이 사용될 수 있으며, 특히 화석연료를 연소할때 발생되는 기체혼합물로부터 이산화탄소 분리에 사용될 수 있다.
아울러 상술한 바와 같이 본 발명에 따른 이미다졸륨계 이온성액체 화합물을 이산화탄소 흡수제로 사용하는 경우, 화학적으로 안정하기 때문에 분해에 의한 이산화탄소 흡수제의 손실 아주 낮고, 재사용이 가능하다. 이에 상기 방법은 탈기된 이산화탄소 흡수제를 재사용하는 단계를 추가로 포함한다.
또한 상술한 바와 같이,상기 이산화탄소 흡수단계에서 상기 이산화탄소 : 이온성액체가 1:1의 몰비로 반응하며, 이의 특징 및 장점에 대하여는 상술한 바와 같다.
이하, 본 발명을 하기의 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시할 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
실시예
실시예 1 이온성 액체의 합성
본원 실시예에 사용된 클로로메틸메틸에테르 (CH3OCH2Cl), 1-메틸이미다졸, 디에틸에테르, 아세톤, 소디움 테트라플루오로보레이트(NaBF4), 마그네슘 설페이트(MgSO4), 포타슘 헥사플루오로포스페이트 (KPF6), 리티움 bis[(트리플루오로메틸)설포닐]아마이드 Li(Tf2N), 소디움 트리플루오로메틸설포네이트 Na(TfO), 소디움 디시아나마이드 (Na(DCA)는 Sigma-Aldrich 사에서 구입하였으며 추가적인 정제는 하지 않았다.
이하 본원의 이온성액체의 합성은 기존 문헌에 보고된 방법을 이용하였다.(L. C. Branco, J. N. Rosa, J. J. M. ramos, C. A. M. Afonso, Preparation and Characterization of New Room Temperature Ionic Liquids, Chem. Eur. J. 8 (2002) 3671-3677). 단, 1.1 당량비(1.1 equiv)의 NaBF4, KPF6, Li(Tf2N), Na(TfO), Na(DCA)와의 할로겐 (Cl 또는 Br) 교환을 통해 잔존 할로겐 양을 줄이기 위해 1-메틸이미다졸과 알킬 할라이드를 알킬화하였다.
실시예 1-1 [C2Omim][Cl]의 합성
클로로메틸메틸에테르 (Chloromethylmethylether) (70 mL, 0.93 mole)와 1-메틸이미다졸 (50 mL, 0.63 mole)을 각각 바닥이 둥근 플라스크에 넣고 환류 컨덴서 (reflux condenser)로 80℃를 유지하며 24시간 교반해주었다. 생성물은 디에틸에테르(4x25ml)로 세정 후 감압 (0.5mmHg), 80℃ 조건에서 2일간 교반해주었다. 그 결과 냉각 후 고체화되며 (82% 수율) 약 3.46μg (H2O) ml-1 가량의 수분량을 함유하는 약한 노란색의 결과물을 수득하였다.
1H NMR (700 MHz), [D6] acetone, 25 ℃: δ= 3.29 (s, 3H), 3.86 (s, 2H), 3.81 (s, 3 H), 7.34 (s, 1 H), 7.40 (s, 1H), 8.64 (s, 1H) 13C NMR (700 MHz), [D6] acetone, 25 ℃): δ= 36.3, 49.1, 69.7, 122.5, 123.3, 137.4 MS-ESI: m/z (%): 126 (100) [C2Omim]+, 35 (100) [Cl]- FTIR (neat): 3414, 3150, 3096, 2970, 2880, 1638, 1574, 1462, 1173, 1083, 1011, 970.3, 835.5, 761.2, 651.2 cm-1 elemental analysis calcd (%)for C6H10N2OCl (161): C 44.7, H 6.2, N 17.3 found: C 44.4, H 6.1, N 17.1
실시예 1-2 [C2Omim][BF4]의 합성
[C2Omim][Cl] (25.00 g, 0.15 mol)을 플라스틱 엘렌마이어 (250ml)에 넣었다. 아세톤(150mL)을 NaBF4 (19.00 g, 0.17 mol)와 함께 섞어준 후 상온에서 24시간 교반해주었다. 그 결과물인 끈적한 고형 침전물은 필터링과 아세톤으로 2회 세척(2x100ml)을 통해 정제하였다. 이 중 유기층을 수집하여 건조 후(MgSO4), 필터링한 후에 진공 조건에서 용매 제거 후 약한 갈색의 액상(89%의 수율) 결과물을 수득하였다(2.66 μg (H2O) ml-1 (RTIL)).
1H NMR (700 MHz), [D6] acetone, 25 ℃): δ= 3.28 (s, 3H), 3.86 (s, 2H), 3.80 (s, 3 H), 7.33 (s, 1 H), 7.42 (s, 1H), 8.66 (s, 1H) 13C NMR (700 MHz), [D6] acetone, 25 ℃): δ= 36.4, 49.2, 69.4, 123.2, 124.1, 136.6 ; MS-ESI: m/z (%):126 (100) [C2Omim]+, 87 (100) [BF4]- FTIR (neat): 3400, 3140, 3090, 2969, 2885, 1642, 1570, 1469, 1169, 1079, 1059, 1010, 970, 835.5, 758.2 cm-1 elemental analysis calcd (%)for C6H10N2OBF4 (213): C 33.8, H 4.69, N 13.1 found: C 33.2, H 4.62, N 12.9
실시예 1-3 [C2Omim][PF6]의 합성
[C2Omim][Cl] (25.00 g, 0.15 mole)를 플라스틱 엘렌마이어 플라스크 (250 mL)에 넣어주었다. 아세톤 (150 mL)을 KPF6 (31.00 g, 0.168 mole)과 섞어준 뒤 혼합물을 상온에서 24시간 가량 교반해주었다. 그 결과물인 끈적한 고형 침전물은 필터링과 아세톤으로의 세척(2x100ml)을 통해 정제하였다. 이 중 유기층을 수집하여 건조 후(MgSO4), 필터링한 후에 진공 조건에서 용매 제거 후 짙은 갈색의 액상 (90%의 수율) 결과물을 수득하였다(1.84 μg (H2O) ml-1 (RTIL)).
1H NMR (700 MHz), [D6] acetone, 25 ℃): δ= 3.28 (s, 3H), 3.80 (s, 2H), 3.83 (s, 3 H), 7.31 (s, 1 H), 7.39 (s, 1H), 8.61 (s, 1H); 13C NMR (700 MHz), [D6] acetone, 25 ℃): δ= 35.3, 49.4, 69.6, 122.2, 123.55, 137.44 MS-ESI: m/z (%):126 (100) [C2Omim]+, 145 (100) [PF6]- FTIR (neat): 3410, 3148, 3101, 2976, 2881, 1641, 1575, 1460, 1170, 1086, 1017, 967, 836, 833,761, 558 cm-1 elemental analysis calcd (%)for C6H10N2OPF6 (271): C 33.8, H 4.69, N 13.14 found: C 33.2, H 4.59, N 13.1
실시예 1-4 [C2Omim][Tf2N]의 합성
[C2Omim][Cl] (25.00 g, 0.15 mole)를 플라스틱 엘렌마이어 플라스크 (250 mL)에 넣어주었다. 아세톤 (150 mL)을 Li(Tf2N) (49.00 g, 0.170 mole)과 섞어준 뒤 혼합물을 상온에서 24시간 가량 교반해주었다. 그 결과물인 끈적한 고형 침전물은 필터링과 아세톤으로의 세척(2x100ml)을 통해 정제하였다. 이 중 유기층을 수집하여 건조 후(MgSO4), 필터링한 후에 진공 조건에서 용매 제거 후 짙은 갈색의 액상(89%의 수율) 결과물을 수득하였다(2.21㎍ (H2O) ml-1 (RTIL)).
1H NMR (700 MHz), [D6] acetone, 25 ℃): δ= 3.27 (s, 3H), 3.81 (s, 2H), 3.82 (s, 3 H), 7.31 (s, 1 H), 7.42 (s, 1H), 8.66 (s, 1H) 13C NMR (700 MHz), [D6] acetone, 25 ℃): δ= 35.9, 49.2, 68.7, 122.1, 123.2, 137.1 ; MS-ESI: m/z (%):126 (100) [C2Omim]+, 280 (100) [Tf2N]- FTIR (neat): 3414, 3150, 3096, 2979, 2970, 2880, 2876, 1638, 1574, 1462, 1348, 1336, 1181, 1173, 1135, 1083, 1055, 1013, 968.3, 833.5, 789, 760.2, 739 cm-1 elemental analysis calcd (%)for C8H10N3O5F6S2 (406): C 23.6, H 2.46, N 10.34, S 15.76 found: C 23.1, H 2.43, N 10.1, S 15.69
실시예 1-5 [C2Omim][TfO]의 합성
[C2Omim][Cl] (25.00 g, 0.15 mole)를 플라스틱 엘렌마이어 플라스크 (250 mL)에 넣어주었다. 아세톤 (150 mL)을 Na(TfO) (29.50 g, 0.171 mole)과 섞어준 뒤 혼합물을 상온에서 24시간 가량 교반해주었다. 그 결과물인 끈적한 고형 침전물은 필터링과 아세톤으로의 세척(2x100ml)을 통해 정제하였다. 이 중 유기층을 수집하여 건조 후(MgSO4), 필터링한 후에 진공 조건에서 용매 제거 후 옅은 갈색의 액상(90%의 수율) 결과물을 수득하였다(2.25㎍ (H2O) ml-1 (RTIL)).
1H NMR (700 MHz), [D6] acetone, 25 ℃): δ= 3.28 (s, 3H), 3.84 (s, 2H), 3.81 (s, 3 H), 7.31 (s, 1 H), 7.42 (s, 1H), 8.68 (s, 1H); 13C NMR (700 MHz), [D6] acetone, 25 ℃): δ= 35.1, 49.2, 69.4, 122.2, 123.6, 137.8; MS-ESI: m/z (%):126 (100) [C2Omim]+, 149 (100) [TfO]- FTIR (neat): 3410, 3155, 3100, 2976, 2879, 1642, 1569, 1458, 1422, 1363, 1253, 1223, 1170, 1089, 1021, 1060, 980, 965.3, 919, 844, 775, 763, 739, 717, 655, 636, 573, 529 cm-1 elemental analysis calcd (%)for C7H10N2O4F3S (275): C 30.5, H 5.2, N 10.18, S 11.6 found: C 30.1, H 4.98, N 10.1, S 11.1.
실시예 1-6 [C2Omim][DCA]의 합성
[C2Omim][Cl] (25.00 g, 0.15 mole)를 플라스틱 엘렌마이어 플라스크 (250 mL)에 넣어주었다. 아세톤 (150 mL)을 Na(DCA) (15.00 g, 0.168 mole)과 섞어준 뒤 혼합물을 상온에서 24시간 가량 교반해주었다. 그 결과물인 끈적한 고형 침전물은 필터링과 아세톤으로의 세척 (2x100ml)을 통해 정제하였다. 이 중 유기층을 수집하여 건조 후(MgSO4), 필터링한 후에 진공 조건에서 용매 제거 후 옅은 노란색의 액상(88%의 수율) 결과물을 수득하였다 (2.52㎍ (H2O) ml-1 (RTIL)).
1H NMR (700 MHz), [D6] acetone, 25 ℃): δ= 3.29 (s, 3H), 3.86 (s, 2H), 3.81 (s, 3 H), 7.34 (s, 1 H), 7.40 (s, 1H), 8.64 (s, 1H) 13C NMR (700 MHz), [D6] acetone, 25 ℃): δ= 35.3, 49.3, 69.1, 121.2, 122.1, 136.9; MS-ESI: m/z (%):126 (100) [C2Omim]+, 66 (100) [DCA]- FTIR (neat): 3400, 3138, 3089, 2971, 2876, 1643, 1575, 1459, 1168, 1077, 1011, 965, 830, 761.cm-1 elemental analysis calcd (%)for C8H10N5O (192): C 50.0, H 5.2, N 36.45 found: C 49.4, H 5.1, N 35.9.
실시예 2 합성된 이온성액체의 특성 규명
Bruker Avance-700 FT NMR 스펙트로포토미터를 이용해 1H 및 13C NMR 스펙트럼을 측정하였으며 용매로는 [D6] 아세톤을 사용하였다. 화학적 전환 수율은 TMS 내부 참조 (ternal reference)에 기반하여 ppm 단위로 표시하였다. 샘플들의 질량은 Hewlett Packard 1100 Series, 매스 스펙트로포토미터, Agilent 1200 Series로 측정되었다. FT-IR spectra는 Thermo, Model: Nicolet 6700로 측정되었다. 성분 원소 분석 (C, H, N)은 Thermo Finnigan Flash EA-2000 Elemental Analyzer (EA)를 이용하였다. 이온성액체 내 수분 함유량은 Karl-Fischer titration (Mitsubishi Chem., model CA-07)을 이용하여 측정하였다. 모든 염은 70-100℃, 진공 건조 하에서 약 24시간 가량 건조 후 사용하였다. TGA 실험은 thermal analysis system (Mettler Toledo, Model: TGA/SDTA 85 1e)로 수행되었다. 샘플들은 평균 5mg 가량 플래티늄 팬에 놓고 N2 흐름 조건에서 30℃에서 100℃까지 10℃/min의 승온 속도로 가열하였다. 각 액상 염들의 밀도는 25℃에서 1.0mL의 샘플들을 각 3번씩 측정하였다. 점도 측정은 viscometer (Brookfield, model DV-III+) 모델을 이용해 측정하였으며 각
0.6ml의 샘플을 10, 20, 30℃에서 각각 측정하였다. 결과는 표 1에 있다.
표 1
번호 이온성 액체 음이온X- 밀도(gmL-1) at 25 ℃ 점도 (cP)
10 ℃ 20 ℃ 30 ℃
1. [C2Omim][Cl] Cl- 1.14 592.2 401.1 201.2
2. [C2Omim][BF4] BF4 - 1.24 370.1 252.7 130.1
3. [C2Omim][ PF6] PF6 - 1.38 598.3 281.1 141.2
4. [C2Omim][Tf2N] NTf2 - 1.46 70.1 44.2 29.5
5. [C2Omim][TfO] TfO- 1.31 117.7 100.2 61.2
6. [C2Omim][DCA] DCA- 1.05 40.4 31.6 22.9
일반적으로 음이온이 동일할 때 이온성액체의 밀도는 양이온의 1-알킬(알킬에테르) 고리의 길이가 감소할수록 증가한다. [CmOnmim]+ 기반 이온성액체의 밀도는 이와 유사한 [Cmmim]+ 기반 이온성액체들보다 약간 더 높으며 예로, (C2O>C3), (C3O>C4)이다. 반면 양이온이 동일할 때, 밀도는 음이온의 크기에 비례하여 증가한다. 이온성액체들은 양이온과 음이온의 약간의 변형을 통해 원하는 특성으로의 변형이 가능함을 확인할 수 있었다.
이온성액체의 점도는 음이온의 종류에 강하게 의존적이며, 수소 결합을 형성하려는 경향과 반데르발스 작용(분산, 반발 작용)에 의해 기본적으로 결정된다. 이미다졸리움 이온성액체의 경우 양이온의 알킬고리가 길수록 반데르발스 인력이 증가하여 높은 점도를 갖는 반면, 음이온의 전하 비편재화는 양이온의 수소 결합을 약화시킴에 따라 점도를 낮추는 경향을 보인다.
또한, 고른 전하 분포를 보이고 평평한 모양을 갖는 음이온의 경우(e.g., [F(HF)2.3]- [53], [N(CN)2]- [47,48] 및 [C(CN)3]-)나 비균일한 모양의 음이온을 갖는 경우(e.g., [Al2Cl7],[46] [(CF3SO2)(CF3CO)N]-,[50] and [(CF3SO2)2N]-) 이온성액체의 밀도가 낮은 경향을 보이는 반면, 높은 대칭 구조(e.g., BF4 -, PF6 -, AsF6 -, SbF6 -, TaF6 -)를 갖는 경우 약한 조직화 능력에도 불구하고 높은 점도 혹은 높은 용융점을 갖는다. 이온성액체의 점도는 음이온에 의해 주로 결정되는 것을 증명한다. [DCA]- 음이온을 가진 이온성액체는 가장 낮은 점도를 보였고, [PF6]- 음이온을 포함한 이온성액체는 가장 높은 점도를 갖는 것을 확인하였다. 그러나 이온성액체의 양이온 또한 점도에 영향을 끼친다는 것을 증명하는 많은 연구가 많은 연구 그룹들에 의해 이미 수행되었다. 또한 에테르 기능성 이온성액체와 비교하여 알콜 기능성 그룹 이온성액체들의 점도가 더 낮은 것이 확인되었다. 에테르 기능기 이온성액체의 경우 보다 큰 알킬 그룹을 가지고 있는 이온성액체가 알킬 그룹 크기가 더 작은 경우보다 더 큰 점도를 갖는다. [CF3BF3] 음이온을 갖는 에테르 기능성 이온성액체의 경우 [C2F5BF3] 음이온을 갖는 경우보다 더 높은 점도를 갖는다. 이것은 이들 이온성액체가 [TfO]- 음이온을 갖는 시리즈보다 점도가 더 낮음을 시사한다. 이러한 결과는 음이온의 조직화 능뿐만이 아니라, 모양(대칭성)과 크기도 점도 결정에 영향을 미침을 나타내는 것이다.
실시예 3 이산화탄소 흡수능 및 기전 규명
등체적 포화 기술을 기반으로 하여 이산화탄소의 흡착 등온 곡선 측정을 30, 50℃에서 측정하였다. 측정 장치의 주요 구성은 가스 저장소, 온도 조절장치, 압력 게이지, 등체적셀(isochoric cell), 진공 펌프, 자석 교반기를 포함한다. 온도는 각 셀의 가열 자켓안에 있는 보정된 플라티늄 저항성 온도계(platinum resistance thermometers)에 의해 측정되었으며 오차 범위는 ±0.1 ℃이었다. 실험 측정 압력의 오차는 ±0.001 bar이었다. 실험시 일반적으로 약 2ml 가량의 이온성액체를 등체적셀에 주입 후 진공 펌프를 이용해 내부 공기를 제거한 후 가스 저장소에 있던 CO2를 주입 후 이온성액체를 교반해주었다. 이 시스템은 이후 약 2시간 가량 압력 변동이 없을 시 평형 상태에 도달한다. 셀의 무게는 ±0.0001 g의 오차 범위를 갖는 전자저울 (Sartorius BS224S)로 측정하였다. 이온성액체의 이산화탄소 흡수능은 이 등체적셀의 변이질 (shifted quality)에 의해 결정되었다.
CO2 흡수 메커니즘은 CO2의 FTIR 및 13C NMR 측정을 통해 조사되었다. 각 물질들의 특성화 분석 또한 같은 장치들이 사용되었다.
결과는 도 1 및 2에 있다. 본원에서 합성된 이온성액체에 대한 CO2 흡착 등온 곡선(isotherm)을 상압, 30, 50℃ 조건에서 측정하였다. 에테르 기능성 이온성액체가 상당히 높은 CO2 흡수능을 보였다. 이온성액체의 CO2 흡수 용량은 압력이 증가할수록, 온도가 감소할수록 증가하였다. 실험 결과 이온성액체의 CO2 흡수 능력은 30℃에서 이온성액체 1 몰당 약 0.9 몰의 CO2 까지 도달하였다. 서로 다른 음이온의 흡수능 실험에서는 BF4< DCA ~ PF6~TfO< Tf2N의 경향을 보였다. 플루오로알킬기를 갖는 음이온의 경우 가장 높은 CO2 흡수능을 보이는 것은 이미 보고된 결과와 일치하며, 플루오로알킬기가 양적으로 증가할 경우 CO2의 흡수능 또한 증가하였다.
여러 종류의 이온성액체와 CO2 간의 상호 작용을 FT-IR을 이용해 조사하였으며 그 결과 에테르 기능성 이온성액체의 CO2 흡수는 화학적 반응임을 확인하였다. 이온성액체에 흡수된 CO2의 FT-IR 스펙트럼(도 3)는 카복실산의 (=C=Ostr)와 (-O-H in plane bend)에 해당하는 1700 cm-1 및 1405 cm-1 두 개의 지점에서 새로운 피크를 보였다.
에테르기능성 이온성액체에 흡수된 CO213C NMR 스펙트럼을 도 4에 나타내었다. 모든 이온성액체의 NMR 스펙트럼은 δ=200-210 ppm 부근에서 새로운 피크를 보여주었다. 이들 피크는 CO2 흡수 이후 형성된 카복실 그룹의 카보닐 카본 원자에 의해 생긴 것이다. 에테르기 산소 원자의 고립 전자쌍이 친핵적(nucleophilic)으로 CO2의 탄소 원자를 공격하여 카복실산을 형성하는 것을 확인하였다. 자세한 메커니즘을 도 5에 나타내었다. 이를 통해 하나의 카바메이트 형성을 위해 하나의 이온성액체만이 CO2와 반응하는 1:1 메커니즘이 지배적임을 확인할 수 있으며, 이는 종래의 하나의 카바메이트 형성을 위해 또 다른 이온성액체와 CO2가 추가적으로 반응하는 소위 1:2 메커니즘과 차별되는 것이다.
또한 30℃, 1.6bar 압력 조건에서의 최대 CO2 흡수능이 이온성액체 1몰당 0.9 mol CO2 에 달하였다. 흡수능은 점도에 영향을 받으며, 온도가 증가할수록 이온성액체의 점도는 상당히 감소한다. 흡수 반응에서 관측된 또 한가지 중요한 현상은 액상의 점도가 수소 결합 네트워크의 형성에 의해 급격히 증가한다는 것이다. 흡수 반응에서의 점도 인자는 수소 결합이 가능한 음이온 상의 수소 수를 줄이거나 특정 유기 용매 또는 물을 추가시킴으로써 확실히 조절 가능하다. 이를 통해 이온성액체의 원하는 흡수능 효과를 달성할 수 있다.
실시예 4 이온성액체의 열적 안정성 및 재사용
에테르 기능성 이온성액체의 열적 안정성을 연구하기 위해 TGA를 이용해 질소 분위기(유량 20ml/min), 승온률 10℃/min 조건에서 테스트하였다. 100℃ 가량 까지의 실험 결과 눈에 띄는 질량 손실은 없었으며 이를 통해 30, 50℃ 가량의 실험 조건에서도 모든 이온성액체가 안정하다는 것을 확인하였다. 또한 CO2가 포화된 이온성액체를 재생시키기 위해 70℃로 가열하거나 20 Pa 이하로 압력 강하시켰으며 각각 10 사이클을 연속적으로 수행하였다. 그 결과를 도 6에 나타내었으며 이후에도 이온성액체의 CO2 흡수능에 특별한 변화가 없음을 확인하였다.
본원에서는 친수성이고 화학적/열적으로 안정한 [C2Omim][X] 시리즈를 합성하고 특성을 분석하였고, 이들의 CO2 흡수능을 측정하였다. CO2 흡수능은 상온 조건에서 1몰의 이온성액체당 0.9 mol CO2 에 달하였다. 가장 큰 CO2 흡수능을 보인 이온성액체는 [Tf2N] 음이온을 가진 것으로 다른 음이온들과 비교했을 때 Tf2N의 음이온의 플루오로알킬화의 크기가 가장 큰 것이 이유였다. 흡수 메커니즘은 FT-IR을 이용해 확인하였으며 그 결과 화학적 반응임을 증명하였다. 이온성액체에 흡수된 CO2는 가열 또는 압력스윙(pressure swing) 방법을 통해 손쉽게 탈착이 가능했으며 반복적인 이용이 가능하였다. 본원의 에테르 관능화된 이온성액체는 높은 이산화탄소 포집 능은 물론, 선택성, 열적 안정적, 오랜 사용 수명을 갖는 것으로, 인해 CO2 포집에 유용하게 사용될 수 있다.

Claims (12)

  1. 하기 화학식 1 로 표시되는 이산화탄소 흡수능을 갖는 이미다졸륨계 이온성 액체 화합물:
    Figure PCTKR2012005750-appb-I000005
    [화학식 1]
    상기 식에서 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, [DCA]-, [Cl]-, [Br]-, [I]-, [NO3]-, [SO4]2 -, [CF3COO]-, [CF3SO2]-, [CF3SO2)2N]-, [SF6]-, [(C2F5)3PF3]-, [N(SO2CF3)2]-, [CF3SO3]-, [B(CN)4]-, [N(CN)2]-, [C(CN)3]-, [SCN]-, [HSO4]-, [CH3SO4]-, [C2H5SO4]-, [C4H9SO4]-, [C6H13SO4]-, [B(C2O4)2]-, [CH3SO3]-, [CH3C6H4SO3]-, 또는 [C4F9SO3]-이고,
    R1, R2 및 R3는 각각 탄소수 1 내지 10의 직쇄 또는 측쇄의 알킬기 또는 아릴기임.
  2. 제 1 항에 있어서, 상기 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, 또는 [DCA]- 이미다졸륨계 이온성 액체 화합물.
  3. 제 1 항에 있어서, 상기 이미다졸륨계 이온성 액체 화합물은 하기 화학식 2로 표시되는, 이미다졸륨계 이온성 액체 화합물:
    Figure PCTKR2012005750-appb-I000006
    [화학식 2]
    상기 식에서 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, [DCA]-, [Cl]-, [Br]-, [I]-, [NO3]-, [SO4]2 -, [CF3COO]-, [CF3SO2]-, [CF3SO2)2N]-, [SF6]-, [(C2F5)3PF3]-, [N(SO2CF3)2]-, [CF3SO3]-, [B(CN)4]-, [N(CN)2]-, [C(CN)3]-, [SCN]-, [HSO4]-, [CH3SO4]-, [C2H5SO4]-, [C4H9SO4]-, [C6H13SO4]-, [B(C2O4)2]-, [CH3SO3]-, [CH3C6H4SO3]-, 또는 [C4F9SO3]- 임.
  4. 제 3 항에 있어서, 상기 X-는 [BF4]-, [PF6]-, [Tf2N]-, [TfO]-, 또는 [DCA]- 이미다졸륨계 이온성 액체 화합물.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 따른 이미다졸륨계 이온성 액체 화합물을 포함하는 이산화탄소 흡수제.
  6. 기체 혼합물에서 제 5 항에 따른 이산화탄소 흡수제를 사용하여 이산화탄소를 흡수시키는 단계; 및
    상기 이산화탄소 흡수제에 흡수된 이산화탄소를 탈기시키는 단계를 포함하는 기체 혼합물로부터 이산화탄소를 분리하는 방법.
  7. 제 6 항에 있어서, 상기 이산화탄소를 흡수시킬 때의 온도는 0 ℃ 내지 80 ℃인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법.
  8. 제 6 항에 있어서, 상기 이산화탄소를 흡수시킬 때의 압력은 상압 내지 60 기압인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법.
  9. 제 6 항에 있어서, 상기 이산화탄소를 탈기시킬 때의 온도는 상온 내지 80 ℃인 것을 특징으로 하는 기체 혼합물로부터 이산화탄소를 분리하는 방법.
  10. 제 6 항에 있어서, 상기 방법은 상기 탈기된 이산화탄소 흡수제를 재사용하는 단계를 추가로 포함하는 것인, 기체 혼합물로부터 이산화탄소를 분리하는 방법.
  11. 제 6 항에 있어서, 상기 기체 혼합물은 화석연료를 연소할 때 발생되는 기체혼합물인 것을 특징으로 하는, 기체 혼합물로부터 이산화탄소를 분리하는 방법.
  12. 제 6 항에 있어서, 상기 이산화탄소 흡수단계에서 상기 이산화탄소 : 이온성액체가 1:1의 몰비로 반응하는 것이, 기체 혼합물로부터 이산화탄소를 분리하는 방법.
PCT/KR2012/005750 2012-03-29 2012-07-19 이산화탄소 분리용 이미다졸륨 이온성 액체 및 그 용도 WO2013147369A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0032247 2012-03-29
KR1020120032247A KR101380758B1 (ko) 2012-03-29 2012-03-29 이산화탄소 분리용 이미다졸륨 이온성 액체 및 그 용도

Publications (1)

Publication Number Publication Date
WO2013147369A1 true WO2013147369A1 (ko) 2013-10-03

Family

ID=49260590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005750 WO2013147369A1 (ko) 2012-03-29 2012-07-19 이산화탄소 분리용 이미다졸륨 이온성 액체 및 그 용도

Country Status (2)

Country Link
KR (1) KR101380758B1 (ko)
WO (1) WO2013147369A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006244A1 (en) * 2015-07-06 2017-01-12 Reliance Industries Limited Ionic liquids for carbon dioxide absorption and preparation thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105149002B (zh) * 2015-10-14 2017-04-19 太原理工大学 Zif‑8封装氨基离子液体型co2吸附‑催化剂及制备方法
CN113816964B (zh) * 2021-10-14 2023-02-10 中国科学院兰州化学物理研究所 一种捕集二氧化碳的可逆离子液体及其合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110080004A (ko) * 2010-01-04 2011-07-12 한국과학기술연구원 함불소올레핀을 포함한 이미다졸륨계 이온성액체 화합물을 이용한 이산화탄소 흡수제
KR20110084717A (ko) * 2010-01-18 2011-07-26 한국에너지기술연구원 알카리염이 포함된 이미다졸륨계 이온성액체의 이산화탄소 흡수제 및 그 제조방법과 그것을 이용한 이산화탄소 흡수방법
US20110223085A1 (en) * 2010-03-12 2011-09-15 E. I. Du Pont De Nemours And Company Carbon dioxide capture with ionic liquid electrospray

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110080004A (ko) * 2010-01-04 2011-07-12 한국과학기술연구원 함불소올레핀을 포함한 이미다졸륨계 이온성액체 화합물을 이용한 이산화탄소 흡수제
KR20110084717A (ko) * 2010-01-18 2011-07-26 한국에너지기술연구원 알카리염이 포함된 이미다졸륨계 이온성액체의 이산화탄소 흡수제 및 그 제조방법과 그것을 이용한 이산화탄소 흡수방법
US20110223085A1 (en) * 2010-03-12 2011-09-15 E. I. Du Pont De Nemours And Company Carbon dioxide capture with ionic liquid electrospray

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHARMA, PANKAJ ET AL.: "Selective chemical separation of carbondioxide by ether functionalized imidazolium cation based ionic liquids", CHEMICAL ENGINEERING JOURNAL, vol. 181, no. 182, 1 February 2012 (2012-02-01), pages 834 - 841 *
YANG, XUE ET AL.: "Suzuki Coupling Reactions in Ether-Functionalized Ionic Liquids: The Importance of Weakly Interacting Cations", ORGANOMETALLICS, vol. 27, no. 15, 2008, pages 3971 - 3977 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006244A1 (en) * 2015-07-06 2017-01-12 Reliance Industries Limited Ionic liquids for carbon dioxide absorption and preparation thereof

Also Published As

Publication number Publication date
KR20130110358A (ko) 2013-10-10
KR101380758B1 (ko) 2014-04-10

Similar Documents

Publication Publication Date Title
CA2831676C (en) N-functionalized imidazole-containing systems and methods of use
WO2013147369A1 (ko) 이산화탄소 분리용 이미다졸륨 이온성 액체 및 그 용도
US9845380B2 (en) Ionic polyimide materials and methods of use
WO2014104792A1 (ko) 폴리알킬렌 글리콜 모노메틸 에테르를 포함하는 알칸올아민계 이산화탄소 흡수제와 이를 이용한 이산화탄소 흡수방법 및 분리방법
US20150125372A1 (en) Compositions and methods for gas capture processes
KR20100047068A (ko) 산성가스 분리용 흡수제
EP2456543A1 (en) Carbon dioxide and hydrogen sulfide absorbents and process for their use
KR101071774B1 (ko) 아마이드로부터 유도된 이온성 액체계 이산화탄소 흡수제
CN102219900A (zh) 一种聚酰亚胺的合成方法
WO2019164081A1 (ko) 이산화탄소 흡수제와 이를 이용한 이산화탄소의 분리방법
CN102268043B (zh) 一种含硫有机膦双笼环酯化合物及其制备方法
WO2013183808A1 (ko) 이산화탄소 분리용 산관능화된 이미다졸륨 이온성 액체 및 그 용도
ITFI20100190A1 (it) Processo di separazione e rimozione di co2 da miscele gassose mediante ammine in soluzione di alcoli
CN101537300B (zh) 一种可循环的二氧化硫气体吸收剂及其制备方法
WO2011002145A2 (ko) 산성가스 분리용 흡수제
WO2014104789A1 (ko) 삼성분계 이산화탄소 흡수제와 이를 이용한 이산화탄소 흡수방법 및 분리방법
KR20140014740A (ko) 이산화탄소 분리용 아민 관능화된 이미다졸륨 이온성 액체 및 그 용도
WO2019212208A1 (ko) 폴리수산화아민계 고분자를 포함하는 이산화탄소 흡수제, 이산화탄소 흡수제 재생용 촉매, 이를 이용하여 이산화탄소를 흡수/분리하는 방법 및 이산화탄소 흡수제를 재생하는 방법
CN113477052B (zh) 一种胺乙基化哌嗪及其制备方法、二氧化碳吸收剂及其应用
WO2023287043A1 (ko) 이온성 액체 및 알콜 용매를 포함하는 이산화탄소 흡수제, 및 이를 이용한 이산화탄소 분리 방법
WO2017052157A1 (ko) 이산화탄소 흡수제
AU2016331718A1 (en) Absorbent liquid for CO2 and/or H2S, and apparatus and method using same
WO2019182254A1 (ko) 산성가스 분리용 흡수제
WO2014104790A1 (ko) 니트릴 관능기를 가진 아민계 이산화탄소 흡수제와 이를 이용한 이산화탄소 흡수방법 및 분리방법
KR20130126359A (ko) 이산화탄소 분리용 에테르 관능화된 이미다졸륨 이온성 액체 및 그 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12873462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12873462

Country of ref document: EP

Kind code of ref document: A1