WO2019064538A1 - リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ - Google Patents

リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ Download PDF

Info

Publication number
WO2019064538A1
WO2019064538A1 PCT/JP2017/035626 JP2017035626W WO2019064538A1 WO 2019064538 A1 WO2019064538 A1 WO 2019064538A1 JP 2017035626 W JP2017035626 W JP 2017035626W WO 2019064538 A1 WO2019064538 A1 WO 2019064538A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
binder
cellulose nanofibers
mass
battery
Prior art date
Application number
PCT/JP2017/035626
Other languages
English (en)
French (fr)
Inventor
向井 孝志
勇太 池内
太地 坂本
直人 山下
亮 石黒
諭 中村
Original Assignee
Attaccato合同会社
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Attaccato合同会社, 株式会社日本製鋼所 filed Critical Attaccato合同会社
Priority to CN202311468486.7A priority Critical patent/CN117986620A/zh
Priority to JP2019544140A priority patent/JP6956194B2/ja
Priority to KR1020207008978A priority patent/KR102344136B1/ko
Priority to EP17927039.2A priority patent/EP3691002A4/en
Priority to CN201780095446.9A priority patent/CN111164807B/zh
Priority to US16/652,035 priority patent/US20200251740A1/en
Priority to KR1020217041313A priority patent/KR102455272B1/ko
Priority to PCT/JP2017/035626 priority patent/WO2019064538A1/ja
Publication of WO2019064538A1 publication Critical patent/WO2019064538A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/12Preparation of cellulose esters of organic acids of polybasic organic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/20Esterification with maintenance of the fibrous structure of the cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/10Esters of organic acids, i.e. acylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/32Cellulose ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a binder used for an electrode or separator of a lithium ion battery, an electrode using the same, and a separator.
  • Secondary batteries are expanding from electronic devices to automobiles, large storage systems, etc., and the market size is expected to grow to an industry of 10 trillion yen or more.
  • information communication devices such as mobile phones, smartphones and tablet-type terminals have achieved remarkable spread, and the penetration rate of the whole world has exceeded 30%.
  • the application range of the secondary battery is extended to the power source of next-generation vehicles such as electric vehicles (EVs), plug-in hybrid vehicles (PHEVs), hybrid vehicles (HEVs) and the like.
  • EVs electric vehicles
  • PHEVs plug-in hybrid vehicles
  • HEVs hybrid vehicles
  • Secondary batteries are being used for household backup power supplies, storage of natural energy, load leveling, etc. after the Great East Japan Earthquake of 2011, and the applications of secondary batteries are expanding.
  • the secondary battery is also essential in the introduction of energy saving technology and new energy technology.
  • a lithium ion battery is comprised from a positive electrode, a negative electrode, a separator, electrolyte solution or electrolyte, and a battery case (battery case).
  • Electrodes such as a positive electrode and a negative electrode, are comprised from an active material, a conductive support agent, a binder, and a collector.
  • an electrode is mixed with an active material, a conductive additive, a binder, and a solvent such as an organic solvent or water to form a slurry, which is formed on a current collector (mainly aluminum for positive electrodes, copper or After coating on nickel) and drying, it is manufactured by rolling with a roll press or the like.
  • a current collector mainly aluminum for positive electrodes, copper or After coating on nickel
  • the positive electrode active material mainly includes lithium cobaltate (LiCoO 2 ), ternary material (Li (Ni, Co, Mn) O 2 ), nickel-cobalt-lithium aluminate (Li (Ni, Co, Al) O) 2 ) etc. have already been widely used as positive electrode materials of practical batteries. Recently, positive electrode materials such as lithium excess solid solution materials (Li 2 MnO 3 -LiMO 2 ) and lithium silicate materials (Li 2 MSiO 4 ) have been actively researched and developed. LiCoO 2 exhibits a discharge voltage of 3.7 V (vs. Li / Li + ) or more, and an effective discharge capacity of about 150 mAh / g provides stable cycle life characteristics, focusing on mobile device applications It is used.
  • LiCoO 2 exhibits a discharge voltage of 3.7 V (vs. Li / Li + ) or more, and an effective discharge capacity of about 150 mAh / g provides stable cycle life characteristics, focusing on mobile device applications It is used.
  • NCM ternary system
  • NCA lithium nickel-cobalt-lithium aluminate
  • NCM can adjust charge / discharge characteristics by changing the molar ratio of three transition metal elements consisting of nickel (Ni), cobalt (Co), and manganese (Mn).
  • NCA is a positive electrode material in which Co is substituted for Ni site of lithium nickel oxide (LiNiO 2 ) and aluminum (Al) is added.
  • the molar ratio of Ni, Co, and Al is 0.65 or more and 0.95 or less for Ni, 0.1 or more and 0.2 or less for Co, and 0.01 or more and 0.20 or less for Al. Ru.
  • the element ratio to be to the NCA, to suppress the movement of Ni cations improves the thermal stability and durability as compared with LiNiO 2, also a large discharge capacity is obtained than LiCoO 2.
  • These nickel-rich NMC positive electrodes and NCA positive electrodes are expected to have higher capacity and lower cost than LiCoO 2 .
  • Negative electrode active materials mainly include graphite (graphite), hard carbon (non-graphitizable carbon), soft carbon (graphitizable carbon), lithium titanate (Li 4 Ti 5 O 12 ), etc. It is widely used as a negative electrode material. Recently, the capacity of the negative electrode has been increased by mixing these materials with a silicon (Si) -based material or a tin (Sn) -based material.
  • Graphite has an effective discharge capacity of 340 to 360 mAh / g, exhibiting a value close to the theoretical capacity of 372 mAh / g, and exhibits excellent cycle life characteristics.
  • Hard carbon and soft carbon which are amorphous carbon materials, have an effective discharge capacity of 150 to 250 mAh / g, and although their discharge capacities are lower than crystalline graphite, they have excellent output characteristics.
  • Li 4 Ti 5 O 12 has an electrical capacity of 160 to 180 mAh / g as the working capacity, and its discharge capacity is lower than that of graphite and amorphous carbon materials, but the potential during charging is approximately from the lithium deposition potential. It is separated by 1.5 V and there is little risk of precipitation of lithium dendrite.
  • Si-based materials and Sn-based materials are classified as alloy-based materials, and the electric capacities of execution show discharge capacities of 3000 to 3600 mAh / g of Si and 700 to 900 mAh / g of Sn.
  • rolling is performed by shrinking the volume of the active material layer of the electrode, that is, the coating layer consisting of the active material, the conductive additive, and the binder. In order to increase the contact area of Thereby, the electron conduction network of the active material layer is firmly constructed, and the electron conductivity is improved.
  • the binder is used to bind the active material and the active material, the active material and the conductive additive, the active material and the collector, and the conductive additive and the collector.
  • the binder is dissolved in a solvent, and a “solution type” using a liquid one, a “dispersion type (emulsion / latex type)” using solid contents dispersed in a solvent, a binder precursor by heat or light
  • the reaction can be roughly classified into "reactive type” to be used.
  • the binder can be divided into aqueous and organic solvent systems according to the solvent type.
  • PVdF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • SBR Styrene butadiene rubber
  • PI polyimide
  • the soluble binder includes polyvinylidene fluoride (PVdF), ethylene-vinyl acetate (EVA) and the like.
  • PVdF polyvinylidene fluoride
  • EVA ethylene-vinyl acetate
  • SBR styrene butadiene rubber
  • PTFE polytetrafluoroethylene
  • PP polypropylene
  • PE polyethylene
  • PVAc polyvinyl acetate
  • Reactive binders include polyimide (PI), polyamide (PA), polyamide imide (PAI), polybenzimidazole (PBI), polybenzoxazole (PBO) and the like.
  • thermoplastic fluorine-based resins have the property that the swelling ratio increases as the temperature rises.
  • PVdF is swelled by an electrolytic solution under high temperature environment of 50 ° C. or more, weakens bonding strength and increases electrode resistance, and lacks high temperature durability.
  • Dispersion type binders have the advantage of being able to use water as a solvent, but their dispersion stability is likely to be impaired by the degree of acid and alkali (pH), water concentration or environmental temperature, and segregation, aggregation and precipitation occur during electrode slurry mixing. It is easy to cause Further, the binder fine particles dispersed in water have a particle size of less than 1 ⁇ m, and when the water is vaporized by drying, the particles fuse to form a film.
  • this film does not have conductivity (electrical conductivity) and ion conductivity, a slight difference in the amount used greatly affects the output characteristics and the life characteristics of the battery.
  • the solvent type is an aqueous binder and an electrode slurry is prepared, the addition of an active material containing Li makes the slurry alkaline (the pH value increases). If the pH value of the slurry is 11 or more, it reacts with the aluminum current collector at the time of coating, which causes a problem that it is difficult to obtain a uniform electrode.
  • grain surface of a positive electrode active material by carbon, ceramics, etc. is proposed.
  • direct contact of the solvent with the active material can be reduced even when using an aqueous binder, and an increase in the pH value of the slurry can be suppressed.
  • Non-Patent Document 1 polyanions such as lithium iron phosphate (LiFePO 4 ), which is a positive electrode active material, have a particle surface carbon-coated, so that even if an aqueous binder is used, the solvent is a positive electrode active material It has been described that direct contact with water can be reduced and increase in pH value can be suppressed.
  • the cycle life characteristics at 60 ° C. of a battery using an acrylic binder and a PVdF binder as the positive electrode are shown, and the capacity of the positive electrode using the PVdF binder as the positive electrode gradually decreases.
  • positive electrodes using acrylic binders have shown excellent high temperature durability.
  • Patent Document 2 As a reason for making it difficult to use an aqueous binder as in the case where the positive electrode is the negative electrode, (1) lithium in the positive electrode active material dissolves out by the contact and reaction of the positive electrode active material and water. (2) oxidative decomposition of the aqueous binder occurs during charging, (3) difficulty in dispersing the slurry, etc. There is a concern about deterioration of cycle characteristics.
  • Li ⁇ M ⁇ O ⁇ (wherein, M is Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ag, Ta, W, 1 or 2 or more metal elements selected from the group consisting of Ir, provided on the particle surface with a compound represented by 0 ⁇ ⁇ ⁇ 6, 1 ⁇ ⁇ ⁇ 5, 0 ⁇ ⁇ 12.
  • the active material Even if the aqueous binder is used, lithium of the positive electrode active material does not dissolve and the capacity of the positive electrode active material does not decrease, and it is possible to prevent the oxidative decomposition of the aqueous binder during charging. It is shown that it can be set as a positive electrode for lithium ion secondary batteries which is excellent in the characteristic.
  • lithium hydroxide may be contained as an impurity in a commercially available active material containing lithium (Li).
  • active material lithium
  • positive electrode active materials such as NCM, NCA, LiNiO 2 , Li 2 MnO 3 -LiMO 2 , Li 2 MSiO 4 have a large content of lithium hydroxide and exhibit strong alkalinity. .
  • the slurry may be gelled. The gelled slurry makes it difficult to produce an electrode and may generate a gas during charging.
  • Patent Document 3 generally describes that lithium hydroxide may react with a binder to rapidly increase the slurry viscosity or cause gelation of the slurry in the positive electrode mixture slurry production process. It is done. Therefore, according to Patent Document 3, the polymer is three-dimensionally cross-linked to the surface of the nickel-based lithium-nickel composite oxide particles, thereby having high elution suppression ability to a solution and having non-ion conductivity.
  • the stability in the air is improved, and the coated nickel-based lithium-nickel composite oxide particles do not adversely affect the battery characteristics. Proposed.
  • Patent Document 4 it is disclosed that a LiFePO 4 / SiO-based lithium ion secondary battery using PI for a positive electrode and a negative electrode can stably charge and discharge even at a high temperature of 120 ° C.
  • the reactive binder is excellent in all of heat resistance, binding property and chemical resistance.
  • the PI-based binder exhibits high heat resistance and binding property, and even if it is an active material having a large volume change, stable life characteristics can be obtained, and the binder hardly swells even in a high temperature electrolyte solution. There is.
  • a cellulose nanofiber is compounded to a binder made of a water-soluble polymer, an active material containing Si as a main component, a conductive auxiliary material, and a binder And an electrode structure for a storage device comprising a current collector.
  • Cellulose nanofibers are hydrophilic, and in most cases are in the state of being dispersed in water.
  • Patent Document 6 cellulose nanofibers dispersed in NMP not containing water in the dispersion medium are shown .
  • Patent Literature 7 and Non-patent Literatures 2 and 3 disclose a technique using an inorganic binder for a secondary battery electrode.
  • lithium ion batteries batteries of various shapes such as cylindrical, square, and laminate (pouch) types are widely used.
  • a relatively small-capacity battery adopts a cylindrical shape in terms of pressure resistance and ease of sealing, and a relatively large-capacity battery adopts a square shape in terms of ease of handling.
  • two types of lamination type and winding type are used roughly.
  • an electrode group in which a positive electrode and a negative electrode are alternately laminated via a separator is housed in a battery case.
  • Many stacked type batteries have a rectangular battery case.
  • the wound type battery is housed in the battery case (battery case) in a state where the positive electrode and the negative electrode are wound in a spiral while sandwiching the separator.
  • the battery case battery case
  • Takashi Mukai et al . Industrial Materials, vol. 63, no. 12, pp. 18-23 (2015) Takashi Mukai et al .: Material Stage, vol. 17, no. 5, pp. 29-33 (2017) Takashi Mukai et al .: "Lithium ion secondary battery-member design approach and evaluation method for higher capacity and improved characteristics", Chapter 4, Section 2, Information Technology Co., Ltd., pp. 210-220 (2017)
  • an electrode using a thermoplastic fluorine-based resin as a binder is poor in high temperature durability.
  • high temperature durability can be improved by using a water based binder or a PI based binder as an electrode binder as in Patent Documents 1 to 5 and Non-patent Documents 1 to 3.
  • the electrode capacity decreases and the cycle life characteristics also deteriorate.
  • the particle surface of the active material containing Li By covering the particle surface of the active material containing Li with carbon, ceramics or the like to suppress direct contact between water and the active material, it is possible to suppress an increase in the pH value of the slurry, but mixing (kneading) the slurry In the process, when the coating formed on the particle surface of the active material is peeled off, the pH value of the slurry rises at once.
  • the solvent type is an organic solvent-based binder
  • a PI-based binder that causes a dehydration reaction by heat treatment water generated at the time of electrode drying contacts the active material containing Li.
  • PI-based binders are so excellent in chemical resistance, they do not dissolve in almost all organic solvents. Therefore, for preparation of the electrode slurry, PI precursor polyamic acid (polyamic acid) or the like is dissolved in NMP and heat treated at 200 ° C. or higher to promote imidization reaction (dehydration / cyclization reaction) to PI Get Then, after the imidization reaction, the cross-linking reaction occurs by heat treatment at a higher temperature to obtain PI with high mechanical strength. From the viewpoint of the electrode life, the heat treatment temperature is preferably a heat treatment at a temperature as high as PI does not carbonize.
  • the PI precursor and the active material containing strongly alkaline Li are mixed, the PI precursor is segregated, it is difficult to produce a uniformly dispersed slurry, and it is also difficult to adjust the viscosity of the slurry. Further, the heat treatment at 200 ° C. or higher also causes an increase in power consumption at the time of electrode production.
  • Patent Document 5 as a reinforcing material of an electrode, by mixing cellulose nanofibers with a binder to form a composite, it is possible to obtain mechanical strength that can withstand stress generated at the time of volumetric expansion and contraction at the time of lithium insertion and release reaction. It is shown.
  • the mechanical strength of the electrode is improved, and it is considered that the destruction of the conductive network due to charge and discharge is suppressed even if an active material with a large volume change is used.
  • the active material containing Li has a small volume change due to charge and discharge. Therefore, destruction of the conductive network due to volume change hardly occurs.
  • the mechanical strength of the electrode is not related to the swelling property with the electrolyte at high temperature. Therefore, even if the mechanical strength of the binder is improved, improvement of the cycle life characteristics at high temperature is not expected.
  • the binder is a water-soluble polymer and is not suitable for an active material containing Li, which is a material that does not like contact with moisture. Many of the aqueous binders (water soluble solvent, dispersion type, reactive type) undergo oxidative decomposition during charging, so even if the strength of the aqueous binder is improved, the characteristics of the electrode at high temperature (durability and Cycle life characteristics, output characteristics, etc.) are not greatly improved.
  • the water-soluble binder contacts with a strongly alkaline Li-containing active material, not only the pH value of the slurry rises, but also the salting out of the binder and the viscosity of the slurry significantly change.
  • Patent Document 6 discloses cellulose nanofibers dispersed in NMP which does not contain water as a dispersion medium.
  • NMP cellulose nanofibers dispersed in NMP
  • the solid content of the cellulose nanofibers dispersed in NMP exceeds 10% by mass, the cellulose nanofibers easily aggregate, so the solid content can not be increased.
  • the electrode slurry naturally becomes a low solid content slurry when low solid content cellulose nanofibers are used.
  • the electrode composed of only cellulose nanofibers as the binder is inferior in output characteristics to the electrode using the thermoplastic fluorine-based resin as the binder, in addition to the above-mentioned problems. That is, it has been shown that many conventional cellulose nanofibers are not suitable as a binder for electrodes.
  • Patent Document 7 shows that an electrode using a silicate-based or phosphate-based inorganic binder has less swelling of the active material layer even when in contact with a high temperature electrolytic solution.
  • the inorganic binder has a larger specific gravity than a conventional binder (resin binder)
  • the electrode energy density per weight tends to be low.
  • the active material sinks to the bottom by gravity as the specific gravity of the active material increases, the electrode tends to become an electrode whose uniformity is lost in the process of producing the electrode.
  • the present inventors first studied the application of a binder using cellulose nanofibers, but when only cellulose nanofibers are applied as an electrode binder, it has many problems at present and is practically useful. It turned out that it did not hold as a good electrode. Therefore, the inventors have repeatedly conducted studies to combine cellulose nanofibers and a binder of a thermoplastic fluorine-based resin in which the solvent type of the binder is classified as non-aqueous (organic solvent type), and have reached the present invention.
  • the present invention can solve the above-mentioned conventional problems and problems newly discovered by the inventors.
  • the binder according to the present invention is a non-aqueous binder in an electrode for a lithium ion battery in which cellulose nanofibers and a thermoplastic fluorine resin are complexed, and the cellulose nanofibers have a fiber diameter (diameter) of 0. It is characterized in that it is cellulose having a diameter of 002 ⁇ m to 1 ⁇ m, a fiber length of 0.5 ⁇ m to 10 mm, and an aspect ratio (fiber length of cellulose nanofiber / fiber diameter of cellulose nanofiber) of 2 to 100,000. According to this configuration, swelling of the electrode active material layer can be suppressed in the electrolyte solution of 60 ° C.
  • the binder for the electrode having improved cycle life characteristics and output characteristics at high temperatures can be obtained.
  • the cellulose nanofibers are contained in the thermoplastic fluorine-based resin, so that gelation of the slurry does not easily occur even if a lithium-containing positive electrode material is used.
  • Cellulose nanofibers are a group of cellulose fibers in which cellulose, which is a constituent material such as wood, is physically or chemically finely divided to a maximum fiber diameter of 1 ⁇ m or less. Cellulose nanofibers obtained from animals, algae, or bacteria may be used.
  • the fiber length is a value measured by a fiber length measuring machine (manufactured by KAJAANI AUTOMATION, FS-200). Also, the fiber diameter can be measured by an equivalent device.
  • the fiber diameter (diameter) is 0.002 ⁇ m or more and 1 ⁇ m or less
  • the fiber length of cellulose nanofiber is 0.05 ⁇ m or more and 1 ⁇ m or less
  • the aspect ratio (fiber length of cellulose nanofiber / fiber diameter of cellulose nanofiber Cellulose nanofibers are preferably 10 or more and 100,000 or less
  • the cellulose nanofibers have a fiber length of 0.2 ⁇ m or more and an aspect ratio (cellulose fiber length / cellulose fiber diameter) of 20 or more and 50,000 or less
  • cellulose nanofibers are used as starting materials: cellulose materials (cellulose nanofiber precursors), that is, chemically treated pulps of wood such as kraft pulp and sulfite pulp, cotton-based pulp such as cotton linters and cotton lint, straw Manufactured using non-wood pulp such as pulp and bagasse pulp, regenerated pulp regenerated from used paper, cellulose isolated from seaweed, artificial cellulose fiber, bacterial cellulose fiber by ace
  • the cellulose nanofibers are not particularly limited as long as they correspond to the above-described fiber diameter, fiber length, and aspect ratio.
  • This cellulose nanofiber passes the cellulose swelling process to the cellulose material (cellulose nanofiber precursor) mentioned above, and the homomixer, homogenizer, ultrasonic dispersion treatment, beater, refiner, screw mixer, paddle mixer, disper mixer, turbine It can manufacture by micro-fibering with apparatuses, such as a mixer, a ball mill, a bead mill, and a grinder.
  • the cellulose swelling step may be mixed using a liquid medium having a hydroxyl (-OH) group which functions as a swelling agent and a dispersion solvent, but it is easily mixed with NMP in step (B) described later, and cellulose nano
  • the liquid medium having —OH is preferably water and / or alcohols because the fiber is less likely to cause aggregation or sedimentation and the concentration of NMP can be effectively increased in step (C) described later.
  • Alcohols include methanol, ethanol, propanol, butanol and the like.
  • the liquid medium having cellulose and -OH is 100% by mass
  • the cellulose is preferably 0.1% by mass or more and 20% by mass or less, more preferably 1% by mass or more and 15% by mass It is below.
  • the cellulose nanofibers obtained in this way contain a large amount of liquid medium having —OH, such as water and / or alcohols. For this reason, when this is mixed with a thermoplastic fluorine resin dissolved in NMP, the thermoplastic fluorine resin will be salted out with water and alcohols, and can not function effectively as a binder for an electrode.
  • a thermoplastic fluororesin dispersed in a liquid medium having -OH such as water and / or alcohols
  • no cellulose nanofibers are contained inside the thermoplastic fluororesin, and the thermoplastic fluororesin and the cellulose nanofibers Since it is a mere mixture of the above, it is difficult to effectively suppress the swelling of the electrode active material layer in a high temperature electrolytic solution.
  • the cellulose nanofibers are preferably complexed with a thermoplastic fluororesin.
  • “composite” is a concept different from “mixing”, and while the mixed binder is a mere aggregate of cellulose nanofibers and thermoplastic fluorine resin, the composite binder constitutes the thermoplastic fluorine resin constituting the binder. It is a binder in which cellulose nanofibers exist in a dispersed state in a matrix.
  • the binder contained in the interior of the thermoplastic resin is a composite binder. That is, in order to obtain a composite binder, a liquid in which cellulose nanofibers are dispersed in NMP is an essential material.
  • a liquid in which cellulose nanofibers are dispersed in NMP can be produced through the following step (B) and step (C).
  • the solid content of the cellulose nanofibers is 0.1% by mass or more when the total of the liquid medium having cellulose nanofibers, -OH, and NMP is 100% by mass.
  • the step (C) water is preferably removed by heating under reduced pressure.
  • the step (C) is preferably a step of heating the temperature to 25 ° C. or more and 150 ° C. or less in a pressure of 10 hPa or more and 900 hPa or less to evaporate the liquid medium to increase the concentration of NMP.
  • the liquid medium can be efficiently removed, and a liquid in which cellulose nanofibers are dispersed in high purity NMP can be obtained.
  • the pressure exceeds 900 hPa, it is difficult to remove the liquid medium unless the heating temperature is increased, and NMP is easily vaporized at the same time as the liquid medium.
  • the pressure is more preferably 50 hPa or more and 800 hPa or less, and preferably 100 hPa or more and 700 hPa or less.
  • the liquid medium can be effectively removed by setting the temperature to 25 ° C. or more and 150 ° C. or less.
  • the reason why the temperature is 150 ° C. or lower is not only to suppress the vaporization of NMP but also to suppress yellowing (change in color) of cellulose nanofibers and to prevent the decrease in flexibility and mechanical strength of cellulose nanofibers. It is for.
  • the reason for setting the temperature to 25 ° C. or higher is to increase the removal rate of the liquid medium.
  • the ultrasonic wave to be irradiated preferably has an oscillation frequency of 15 kHz or more and 100 kHz or less and an amplitude of 10 ⁇ m or more and 100 ⁇ m or less. This is because, under such conditions, the shock wave of cavitation generated by the ultrasonic irradiation causes the cellulose nanofibers to be uniformly disintegrated, and the dispersibility and the storage stability are improved.
  • the irradiation time of the ultrasonic waves is not particularly limited, but is preferably 1 minute or more, more preferably 3 minutes or more and 60 minutes or less.
  • a thermoplastic fluorine resin 100 mass%, 5 mass% or more and 80 mass% or less of cellulose nanofibers are contained, and a thermoplastic fluorine resin is 20 mass. It is preferable that it is% or more and 95 mass% or less. According to this configuration, it further functions as an electrode binder having excellent output characteristics. In addition, aggregation, sedimentation, and the like are less likely to occur in the slurry production process, and the yield at the time of electrode production is improved.
  • the cellulose nanofiber When the total of solid content of the cellulose nanofiber and the thermoplastic fluorine resin is 100 mass%, the cellulose nanofiber is adjusted to 5 mass% or more and the thermoplastic fluorine resin is 95 mass% or less Thus, the electrolyte solution swelling property is improved, and the cycle life characteristics and output characteristics at high temperature are improved.
  • the reason is considered to be that the cellulose nanofibers suppress the swelling of the thermoplastic fluorine resin in the electrolytic solution because the binder has the cellulose nanofibers dispersed in the matrix of the thermoplastic fluorine resin.
  • the thermoplastic fluorine-based resin in the electrode binder absorbs the electrolytic solution at high temperature, but the electrode active Since the cellulose nanofibers suppress the swelling of the material layer, the conductive network of the active material layer is not easily broken, and the binder can be imparted with ion conductivity, and a binder for an electrode having improved output characteristics can be obtained. Therefore, although the thermoplastic fluorine resin alone can absorb the electrolytic solution at high temperature and can impart ion conductivity to the binder, the swelling of the electrode active material layer can not be suppressed, and the conductive network of the electrode active material layer is broken. Ru.
  • thermoplastic fluorine resin which absorbs electrolyte solution. More preferably, the cellulose nanofibers are contained at 10% by mass to 75% by mass, the thermoplastic fluorine resin is contained at 25% by mass to 90% by mass, and the cellulose nanofibers are contained at 20% by mass to 70% by mass. It is more preferable that the thermoplastic fluorine resin is 30% by mass or more and 80% by mass or less.
  • the said cellulose nanofiber is a polybasic acid half-ester (SA) -ized process, and contains the cellulose nanofiber by which a part of hydroxyl group was substituted by the carboxyl group.
  • SA polybasic acid half-ester
  • the presence of a carboxyl (—COOH) group on the surface of the cellulose nanofibers can induce a repulsive force between the cellulose nanofibers. According to this configuration, swelling of the electrode active material layer can be suppressed in an electrolytic solution of 80 ° C. or higher, and a binder for an electrode having improved cycle life characteristics and output characteristics at high temperatures can be obtained.
  • the polybasic acid semi-esterification treatment is a treatment in which a polybasic acid anhydride is semi-esterified to a part of hydroxyl groups of cellulose to introduce a carboxyl group onto the surface of the cellulose.
  • the step (A) of the polybasic acid semi-esterification treatment is preferably performed before the step (B). That is, it is preferable that the polybasic acid half-esterified cellulose nanofiber pre-treats the cellulose material in polybasic acid half-esterification processing beforehand. Specifically, at a temperature of 80 ° C. or more and 150 ° C. or less, a cellulose material (cellulose nanofiber precursor) which is a starting material and a polybasic acid anhydride are treated with a pressure kneader or an extrusion kneader of one or more axes.
  • cellulose After mixing and semi-esterification of a polybasic acid anhydride to a part of hydroxyl groups present on the surface of cellulose to introduce a carboxyl group, it is preferable to be manufactured by the above-described method of forming cellulose into fibers.
  • the cellulose Prior to the step (B), the cellulose is subjected to polybasic acid semi-esterification treatment in the step (A) to obtain cellulose nanofibers excellent in storage stability.
  • cellulose nanofibers subjected to ethylene oxide addition treatment or propylene oxide addition treatment may be used as secondary treatment.
  • a composite binder dissolves a thermoplastic fluorine-based resin in a liquid in which cellulose nanofibers are dispersed in NMP, whereby a thermoplastic fluorine-based resin is dissolved in NMP, and a liquid in which cellulose nanofibers are dispersed is obtained.
  • a liquid in which cellulose nanofibers are dispersed in NMP may be mixed with a thermoplastic fluorine-based resin dissolved in NMP.
  • the liquid in which the thermoplastic fluorine-based resin is dissolved in NMP and the cellulose nanofibers are dispersed is 5 mass% of cellulose nanofibers, assuming that the total of solid content of the cellulose nanofibers and the thermoplastic fluorine-based resin is 100 mass%.
  • thermoplastic fluorine resin is mixed so as to be 20 mass% or more and 95 mass% or less, and the binder for lithium ion battery is dissolved in NMP in step (E) of dissolving the thermoplastic fluorine resin It can be manufactured.
  • thermoplastic fluorine-based resin examples include polyvinylidene fluoride (PVdF), vinylidene fluoride copolymer, polytetrafluoroethylene (PTFE), polyvinyl fluoride, polytetrafluoroethylene, polytetrafluoroethylene trifluoride, and fluoride.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluoride polyvinyl fluoride
  • polytetrafluoroethylene polytetrafluoroethylene trifluoride
  • fluoride examples include vinylidene / trifluorochlorinated ethylene copolymer, vinylidene fluoride / tetrafluoroethylene copolymer, tetrafluoroethylene / hexafluoropropylene copolymer, and the like, and one or more of these may be used.
  • PVdF polyvinylidene fluoride
  • PVdF preferably has an average molecular weight (number average molecular weight: Mn) of 100,000 or more and 5,000,000 or less from the viewpoint of easy retention of the electrolytic solution and excellent binding to the current collector. If the average molecular weight is less than 100,000, the binding property to the current collector is not sufficient, and the viscosity of the binder is low, so it is difficult to obtain an electrode with high basis weight by increasing the coating amount per unit area become. If it exceeds 5 million, it becomes difficult to dissolve in NMP and the viscosity of the binder increases, so the heat generation becomes intense when mixing the slurry, and the slurry of the electrode can not keep up with the cooling (cannot keep below 80 ° C). Becomes easy to gel.
  • Mn average molecular weight
  • the more preferable average molecular weight of PVdF is 110,000 or more and 3,000,000 or less, and more preferably 120,000 or more and 1.5 million or less.
  • PVdF is usually obtained by suspension polymerization or emulsion polymerization of 1,1-difluoroethylene together with an additive such as a polymerization initiator, a suspending agent, or an emulsifying agent in a suitable reaction medium.
  • the molecular weight of this PVdF can be adjusted using a known polymerization degree regulator, chain transfer agent or the like.
  • the number average molecular weight means the result of measurement by gel permeation chromatography which is widely used as a method of measuring the molecular weight of a polymer.
  • the measurement condition may be a value measured by an ultraviolet detector using NMP in which 0.01 mol / L of lithium bromide is dissolved in an HLC 8020 apparatus manufactured by Tosoh Corporation.
  • the binder is a binder in which a thermoplastic fluorine-based resin is dissolved in NMP and cellulose nanofibers are dispersed in NMP, and the total mass of cellulose nanofibers, thermoplastic fluorine-based resin and NMP in the binder is 100.
  • the sum total of solid content of a cellulose nanofiber and a thermoplastic fluororesin is 3 mass% or more and 30 mass% or less.
  • the content of water be as small as possible.
  • the binder By using the thus-produced binder as a binder for an electrode for a lithium ion battery and depositing it on the current collector, it can be favorably functioned as a positive electrode or a negative electrode for a lithium ion battery.
  • the electrode is constituted of, for example, an active material and a conductive aid in addition to the binder of the present invention.
  • an electrode mixture slurry obtained by adding, as a slurry solvent, NMP or the like as a slurry solvent to a mixture (electrode mixture) containing an active material, a conductive additive, a binder, etc. By applying and drying, it can be formed while controlling to a desired thickness and density.
  • a battery element a counter electrode, a separator, an electrolytic solution, etc.
  • a laminated type or wound type lithium ion It may be assembled into a battery.
  • the conductive aid for electrodes is not particularly limited as long as it has conductivity (electrical conductivity), and metals, carbon materials, conductive polymers, conductive glasses and the like can be used. Among these, carbon materials are preferable because they are expected to improve the conductivity of the electrode active material with a small amount of addition.
  • acetylene black (AB), ketjen black (KB), furnace black (FB), thermal black, lamp black, channel black, roller black, disc black, carbon black (CB), carbon fiber (for example, Vapor-grown carbon fibers with the name of registered trademark VGCF), carbon nanotubes (CNTs), carbon nanohorns, graphite, graphene, glassy carbon, amorphous carbon, etc., and one or more of these may be used .
  • the conductive auxiliary is contained in an amount of 0 to 20% by mass. That is, the conductive aid is contained as needed.
  • the content exceeds 20% by mass the ratio of the active material as the battery is small, so the electrode capacity density tends to be low.
  • the binder for electrodes is not particularly limited as long as it contains the binder of the present invention.
  • the binder which may be contained in addition to the binder of the present invention those generally used as a binder for electrodes, for example, polyimide (PI), polyamide, polyamide imide, aramid, ethylene-vinyl acetate copolymer (EVA ), Styrene-ethylene-butylene-styrene copolymer (SEBS), polyvinyl butyral (PVB), ethylene vinyl alcohol, polyethylene (PE), polypropylene (PP), epoxy resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT) ), Nylon, vinyl chloride, silicone rubber, nitrile rubber, cyanoacrylate, urea resin, melamine resin, phenol resin, polyvinyl pyrrolidone, polyvinyl acetate, vinyl acetate, polystyrene, chloropropylene, resorcinol resin
  • the binder contains inorganic particles such as ceramics and carbon.
  • the particle size of the ceramic or carbon is preferably in the range of 0.01 to 20 ⁇ m, more preferably in the range of 0.05 to 10 ⁇ m.
  • the particle diameter means the volume-based median diameter (D50) in the laser diffraction / scattering particle diameter distribution measuring method, and the same applies to the following.
  • the content of the binder is preferably 0.1% by mass or more and 60% by mass or less, and more preferably 0.5% by mass or more and 30% More preferably, it is 1% by mass or more and 15% by mass or less. If the binder is less than 0.1% by mass, the mechanical strength of the electrode is low, so the active material is likely to come off, and the cycle life characteristics of the battery may be deteriorated. On the other hand, if it exceeds 60% by mass, the ion conductivity is low, the electrical resistance is high, and the ratio of the active material as a battery is low, so the electrode capacity density tends to be low.
  • the current collector used for the electrode is not particularly limited as long as it is a material having conductivity and capable of supplying a current to the held active material.
  • conductive substances such as C, Ti, Cr, Ni, Cu, Mo, Ru, Rh, Ta, W, Os, Ir, Pt, Al, Au, etc., alloys containing two or more of these conductive substances ( For example, stainless steel can be used.
  • a material other than the above-described conductive substance for example, a multilayer structure of different metals such as iron coated with Al, Ni, or C may be used.
  • C Ti, Cr, Au, Fe, Cu, Ni, Al, stainless steel and the like are preferable as the current collector, and from the viewpoint of material cost, C is preferable.
  • Cu, Ni, Al, stainless steel and the like are preferable.
  • iron for a current collection base material, in order to prevent the oxidation of the current collection base material surface, it is preferable that it is what was coat
  • the shape of the current collector there are no particular restrictions on the shape of the current collector, but there may be a foil-like substrate, a three-dimensional substrate, etc., and these may be current collectors having through holes.
  • a three-dimensional substrate is preferable because the packing density of the active material can be increased.
  • Three-dimensional substrates include mesh, woven fabric, non-woven fabric, embossed body, expanded, or foam, and among them, the shape of the current collecting substrate is emboss body or foam because the output characteristics are good. Body is preferred.
  • this electrode is made to penetrate the inorganic skeleton forming agent into the active material layer by applying the inorganic skeleton forming agent to the active material layer, etc. I don't care. Thus, even when using an alloy-based active material which undergoes extensive expansion and contraction of the active material during charge and discharge, expansion and contraction are permitted, and the generation of wrinkles and cracks of the current collector of the electrode is suppressed.
  • the electrode When the inorganic skeleton-forming agent is applied to the active material layer, the electrode may be such that the skeleton-forming agent per unit area of the electrode coated on one side is 0.001 mg / cm 2 or more and 10 mg / cm 2 or less Preferably, it is more preferably 0.01 mg / cm 2 or more and 3 mg / cm 2 or less.
  • the skeleton forming agent per unit area of the electrode is 0.002 mg / cm 2 or more and 20 mg / cm 2 or less preferably, and more preferably 0.02 mg / cm 2 or more 6 mg / cm 2 or less.
  • the inorganic skeleton forming agent may be a silicate type, a phosphate type, a sol type, a cement type or the like.
  • the content of the skeleton forming agent is preferably 0.01% by mass or more and 50% by mass or less. More preferably, it is 0.1 mass% or more and 30 mass% or less, more preferably 0.2 mass% or more and 20 mass% or less.
  • the active material used for the electrode absorbs lithium ions used in lithium ion batteries. It is not particularly limited as long as it is an active material that can be released.
  • a positive electrode active material it is known that it includes alkali metal transition metal oxide type, vanadium type, sulfur type, solid solution type (lithium excess type, sodium excess type, potassium excess type), carbon type, organic type, etc.
  • An electrode is used.
  • known electrodes including graphite, hard carbon, soft carbon, lithium titanate, alloy materials, conversion materials and the like are used.
  • alloy materials include Mg, Al, Si, Ca, Mn, Fe, Co, Zn, Ge, Ag, In, Sn, Sb, Pb, etc., SiO, SnO, SnO 2 , SnSO 4 etc.
  • examples thereof include oxides, chalcogenides such as SnS, SnS 2 , and SnSe, and halides such as SnF 2 , SnCl 2 , SnI 2 , and SnI 4 .
  • the electrode is prepared by applying a slurry obtained by mixing an active material, a binder, and a conductive auxiliary agent added as required to a current collector, applying or filling it into a current collector, temporarily drying, and rolling it at 60 ° C. or more and 280 ° C.
  • An electrode is obtained by performing heat treatment below.
  • the temporary drying is not particularly limited as long as the solvent in the slurry can be volatilized and removed.
  • a method of heat treatment in an atmosphere at a temperature of 50 ° C. or more and 200 ° C. or less can be mentioned.
  • heat treatment after rolling can remove the solvent and water in the slurry as much as possible and prevent carbonization of the binder (in particular, carbonization of cellulose nanofibers) by setting the temperature to 60 ° C. or more and 280 ° C. or less.
  • the temperature is 100 ° C. or more and 250 ° C. or less, more preferably 105 ° C. or more and 200 ° C. or less, and 110 ° C. or more and 180 ° C. or less.
  • the heat treatment can be performed by holding for 0.5 to 100 hours.
  • the atmosphere of the heat treatment may be in the air, but in order to prevent the oxidation of the current collector, it is preferable to perform the treatment in a non-oxidative atmosphere.
  • the non-oxidizing atmosphere means an environment in which the amount of oxygen gas is smaller than that in air.
  • a reduced pressure environment a vacuum environment, a hydrogen gas atmosphere, a nitrogen gas atmosphere, a rare gas atmosphere, or the like may be used.
  • the electrode includes a negative electrode and a positive electrode, the manufacturing method is the same except that the negative electrode and the positive electrode mainly differ from the current collector and the active material.
  • the method of lithium doping is not particularly limited.
  • metal lithium is attached to a portion where there is no active material layer on the electrode current collector, and a liquid is poured to form a local cell, and an electrode active material
  • Method of doping lithium in (ii) metal lithium is stuck on the active material layer on the electrode current collector and forced short circuit is made by pouring, method of doping lithium in electrode active material,
  • metal lithium is deposited on the active material layer by vapor deposition or sputtering, and lithium is doped in the electrode active material by solid phase reaction, (iv) electrochemically in the electrolyte before the battery configuration.
  • the method of doping lithium, the method of doping lithium in an active material, etc. are mentioned by adding and processing metal lithium to the method of (d) active material powder, and mixing processing.
  • the binder according to the present invention can also be coated on the surface of the separator. According to this configuration, a separator having high strength and excellent heat resistance, excellent adhesion to the electrode, and improved cycle life characteristics can be obtained.
  • the binder according to the present invention may be coated on one side or both sides of the separator substrate (raw sheet), or may be filled in the separator substrate.
  • the separator substrate those generally used for lithium ion batteries can be used. That is, the thickness of the separator substrate is not particularly limited as long as it is in the range of 1 to 50 ⁇ m.
  • the thickness in the present invention is a value measured using a micrometer (manufactured by Mitutoyo, high precision Digimatic Micrometer MDH-25M, measuring force 7 to 9 N, measuring surface size ⁇ 3.2 mm).
  • the thickness less than 1 ⁇ m may be a value obtained by cutting the object with a cross cutter and observing the cross section with an SEM.
  • the porosity (porosity) of the separator substrate is not particularly limited as long as it is in the range of 20 to 90%.
  • the porosity is a value calculated by the following equation from the apparent density of the separator and the true density of the solid content of the constituent material.
  • Porosity (%) 100 ⁇ (Apparent density of separator / true density of material solid) ⁇ 100
  • the pore diameter of the separator substrate is not particularly limited as long as it is in the range of 0.001 to 10 ⁇ m.
  • hexane vapor permeation performance is measured using a He gas as a carrier gas with a nanopore diameter distribution measuring apparatus (Nano Perm Porometer manufactured by Seika Sangyo Co., Ltd.), and the 50% permeation flow velocity diameter is means.
  • the material of the separator substrate is not particularly limited as long as it is a material that does not dissolve in the solvent of the electrolytic solution and is excellent in oxidation resistance and reduction resistance.
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • PI polyimide
  • aramid polyamide imide
  • polycarbonate polyacetal
  • polyphenylene ether polyether ketone
  • polysulfone polyester
  • PAN polyacrylonitrile
  • resin materials such as tetrafluoroethylene (PTFE)
  • PTFE tetrafluoroethylene
  • PP, PE, PET, etc. are excellent in water repellency, so with a binder using water as a solvent (aqueous binder), the substrate repels the coating layer, making it difficult to form a uniform surface coating phase.
  • aqueous binder aqueous binder
  • polyolefin resins such as PP and PE have few polar groups for chemical bonding and have low free energy on the surface, so even if they are non-aqueous fluorine resins, their adhesion is weak. Peel easily.
  • the binder according to the present invention is non-aqueous, it does not repel water as described above.
  • the fluorine resin itself contained in the binder according to the present invention can not be expected to have much adhesiveness with the polyolefin resin, the presence of the cellulose nanofibers results in pores and fine irregularities present on the surface of the base material. It can be physically attached as it penetrates and cures. Therefore, the binder according to the present invention improves the adhesive strength with the separator, unlike the conventional water-based binder or a simple fluorocarbon resin.
  • the thickness of the surface coating layer of the binder is preferably 0.01 ⁇ m or more and 3 ⁇ m or less on one side, from the viewpoint of excellent heat resistance and adhesion with the electrode.
  • the coating weight per unit area of the surface coating layer is preferably in the range of 0.001 to 5 g / m 2 on one side. In the case of filling in a double-sided coat, non-woven fabric, etc., the double-sided basis weight of the single-sided coat may be used.
  • the surface coating method of the binder is a method of impregnating the separator base material in a tank storing the binder according to the present invention, a method of dropping or applying the binder according to the present invention on the surface of the separator base material, spray coating, screen printing , Curtain method, spin coat, gravure coat, wire coat, die coat, etc.
  • the binder applied to the surface of the separator substrate penetrates into the inside of the pores of the separator and physically adheres by the anchor effect.
  • the separator body is dried by heating at 60 ° C. to 160 ° C., heating or the like to evaporate the solvent of the binder. Thereby, the binder is formed on the surface of the separator substrate.
  • the shape of the separator substrate is not particularly limited, and examples thereof include a microporous film, a woven fabric, a non-woven fabric, and a green compact.
  • the separator may be a separator in which a ceramic (inorganic filler) layer is coated or filled in the above-mentioned separator substrate so as not to melt down due to local heat generation at the time of short circuit.
  • the ceramic layer is a porous layer comprising at least the binder according to the present invention and the ceramic powder (inorganic filler), and gas or liquid can pass therethrough.
  • the material coated on the surface of the separator substrate has the effect of improving the heat resistance of the separator and improving the retention of the electrolytic solution, even if it does not contain ceramic, but further includes ceramic powder. Thus, not only the heat resistance and the liquid retention of the electrolytic solution are further improved, but also the input / output characteristics of the battery are improved.
  • the ceramic powder is not particularly limited as long as it is a material that does not dissolve in the solvent of the electrolytic solution and is excellent in oxidation resistance and reduction resistance.
  • the particle size of the ceramic powder is preferably in the range of 0.001 to 3 ⁇ m, and more preferably in the range of 0.01 to 1 ⁇ m.
  • the shape of the ceramic powder is not particularly limited, and may be spherical, elliptical, faceted, strip-like, fiber-like, flake-like, donut-like, or hollow.
  • the ceramic layer is not particularly limited as long as the binder according to the present invention is contained in an amount of 0.1% by mass or more, based on 100% by mass of the binder according to the present invention and the ceramic powder.
  • the content of the binder according to the present invention is preferably 90% by mass or less, and more preferably 80% by mass or less.
  • the porosity of the ceramic layer is preferably in the range of 20 to 80%, more preferably in the range of 50 to 70%.
  • the thickness of the ceramic layer is preferably 0.5 ⁇ m or more on one side from the viewpoint of excellent heat resistance and adhesion to the electrode.
  • the coating mass per unit area of the ceramic layer is preferably in the range of 0.1 to 60 g / m 2 , although it varies depending on the material used.
  • the coating or filling method of the ceramic layer can be formed by the same method as the surface coating of the binder described above.
  • the separator has excellent lithium dendrite properties, it is preferable to control the Gurley value of the separator to 5000 sec / 100 mL or less for the coating of the binder or the ceramic layer.
  • the Gurley value in the present invention is an index related to the permeability of the separator, and is determined according to the standard of JIS P8117. In general, the Gurley value can be reduced by increasing the pore diameter of the separator substrate or increasing the number of holes. The thickness can also be reduced by reducing the thickness of the ceramic layer or increasing the particle size of the ceramic.
  • An excellent input / output characteristic can be obtained by using a separator with a small Gurley value, but if the Gurley value exceeds 5000 sec / 100 mL, the possibility of a short circuit due to lithium dendrite generated by overcharging increases.
  • the Gurley value of the separator it is preferable to control the Gurley value of the separator to 50 sec / 100 mL or more from the viewpoint of excellent battery input / output characteristics. Therefore, the preferred Gurley value of the separator is in the range of 50 sec / 100 mL to 5000 sec / 100 mL, more preferably in the range of 70 sec / 100 mL to 2000 sec / 100 mL.
  • the separator base material melts down by local heat generation at the time of short circuit, and the effect of suppressing the short circuit of the battery is expected. Further, when the battery is charged, the binder according to the present invention is present on the separator surface on the positive electrode side, thereby preventing direct contact between the separator substrate and the positive electrode and suppressing oxidation of the separator substrate. Because it can, it suppresses the self-discharge of the battery. In addition, since the heat resistance of the separator is improved, the safety of nailing and overcharging is improved.
  • a battery structure in which a positive electrode and a negative electrode are joined via a separator and sealed in a state of being immersed in an electrolytic solution can be considered.
  • the structure of a battery is not restricted to this, It is applicable to the existing battery form, structure, etc., such as a laminated type battery and a wound type battery.
  • the battery may be a lithium ion battery using an electrode having a binder in which cellulose nanofibers are contained in thermoplastic fluorine resin at least in one of the positive electrode and the negative electrode.
  • the electrolyte used in this battery may be any liquid or solid capable of transferring lithium ions from the positive electrode to the negative electrode, or from the negative electrode to the positive electrode, and the same electrolyte as used in known lithium ion batteries can be used.
  • an electrolytic solution, a gel electrolyte, a solid electrolyte, an ionic liquid, and a molten salt can be mentioned.
  • the electrolytic solution means one in which the electrolyte is dissolved in a solvent.
  • the electrolyte solution is not particularly limited as long as it is used in a lithium ion battery because it needs to contain lithium ions, and is composed of an electrolyte salt and an electrolyte solvent.
  • the electrolyte salt is not particularly limited as long as it is used in a lithium ion battery since it is necessary to contain lithium ions, but a lithium salt is preferable.
  • a lithium salt As this lithium salt, lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 4 ), lithium bistrifluoro A group consisting of methanesulfonyl imide (LiN (SO 2 CF 3 ) 2 ), lithium bispentafluoroethane sulfonylimide (LiN (SO 2 C 2 F 5 ) 2 ), lithium bis oxalate borate (LiBC 4 O 8 ), etc.
  • LiPF 6 is particularly preferable because it has high electronegativity and is easily ionized. If it is the electrolyte solution containing LiPF 6 , it is excellent in charge-and-discharge cycle characteristics, and can improve the charge-and-discharge capacity of a secondary battery.
  • the solvent for the electrolyte is not particularly limited as long as it is used in lithium ion batteries, and for example, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl Carbonate (EMC), diphenyl carbonate, ⁇ -butyrolactone (GBL), ⁇ -valerolactone, methyl formate (MF), 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, dimethoxyethane (DME), 1,2-diethoxyethane, diethyl ether, sulfolane, tetrahydrofuran (THF), methylsulfolane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide, vinylene carbonate ( C), at least one selected from the group consisting of vinyl ethylene carbonate (EVC), fluoro ethylene carbon
  • a mixture of cyclic carbonates such as EC and PC and chain carbonates such as DMC, DEC and EMC is preferable.
  • the mixing ratio of the cyclic carbonate to the linear carbonate can be optionally adjusted in the range of 10 to 90% by volume for both the cyclic carbonate and the linear carbonate.
  • the solvent of the electrolyte containing VC or ECV, FEC, and ES is further preferable.
  • VC or ECV, FEC, ES is preferably contained in an amount of 0.1 to 20% by mass, more preferably 0.2 to 10%, based on 100% by mass of the electrolytic solution (the total amount of the electrolyte and solvent). It is mass%.
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 2.5 mol / L, and more preferably 0.8 to 1.6 mol / L.
  • the electrolytic solution is preferably an electrolytic solution containing at least LiPF 6 as an electrolyte salt, and the electrolyte solvent contains an aprotic cyclic carbonate and an aprotic chain carbonate.
  • the thermoplastic fluorine resin of the binder used for the electrode is not lithium hexafluorophosphate and non-lithium hexafluorophosphate by heating to a temperature of 50.degree. It can absorb a protic carbonate and form a polymer gel excellent in ion conductivity.
  • the polymer gel can also be integrated with the separator in physical contact with the electrode. By integrating them, the adhesion strength between the electrode and the separator can be increased, the positional deviation between the separator and the electrode due to external factors such as vibration or shock can be effectively prevented, which contributes to the improvement of the safety of the battery.
  • the thermoplastic fluorine resin is gelled by raising the temperature, but at the same time the electrode active material layer is also swollen to break the conductive network. Thus, the resistance of the electrode is increased. The thermoplastic fluorine resin once swollen with the electrolytic solution never returns to the original state electrode again.
  • the cellulose nanofiber contained in the binder suppresses the swelling of the electrode and the thermoplastic fluororesin gels, thereby suppressing the increase of the electrode resistance and bonding and joining the electrode and the separator through the binder. It is possible to produce a battery in which the separator and the electrode are integrated.
  • integration means that the battery member, which should originally be separated from the electrode and the separator, adheres to the electrode and the separator due to heat treatment, and is fixed to each other, so that peeling is difficult.
  • the mass fluctuation of the separator means a phenomenon in which a peeled member (electrode active material layer or separator base, separator coated layer) adheres to the opposite side to cause a change in mass.
  • the battery may be a lithium ion battery using an electrode having a binder in which cellulose nanofibers are contained in thermoplastic fluorine resin at least in one of the positive electrode and the negative electrode.
  • an electrode group laminated or wound between a positive electrode and a negative electrode via a separator is enclosed in a battery case and sealed together with an electrolytic solution containing lithium hexafluorophosphate and an aprotic carbonate. After that, the temperature of the battery case is heated to a state of 50 ° C. or more and 120 ° C.
  • thermoplastic fluorine resin It can manufacture by the process (F) which integrates the electrode and separator which comprised the binder in which a nanofiber is contained. More preferably, the temperature of the battery case is 55 ° C. or more and 95 ° C. or less.
  • the binder contained in the electrode absorbs the electrolytic solution to be gelled, thereby improving the ion conductivity of the electrode. If the temperature exceeds 120 ° C., the electrolytic solution is vaporized and the battery is likely to contain gas.
  • the separator contains a polyolefin resin, the polyolefin resin is softened, and the risk of shorting the battery is increased.
  • the pressure is not particularly limited because it varies depending on the battery size, the number of stacked layers of the electrodes, or the number of times of winding, but for example, the pressure of 0.1 Pa or more may be maintained for 10 seconds or more.
  • the battery may be charged or discharged.
  • the lithium ion battery thus obtained suppresses swelling of the electrode active material layer by the electrolyte even in a temperature environment of 60 ° C. or higher, and improves the cycle life characteristics and output characteristics at high temperatures can do. Also, the high temperature storage characteristics and productivity of the battery are good. Therefore, the lithium ion battery of the present invention takes advantage of such characteristics to realize information communication devices such as mobile phones, smart phones, tablet terminals, electric vehicles (EVs), plug-in hybrid vehicles (PHEVs), hybrid vehicles (HEVs) Lithium ion batteries conventionally known are used, including applications such as automotive power supplies such as idling stop cars, backup power supplies for home use, storage of natural energy, and large storage systems such as load leveling. It can be widely applied to the same application as various applications.
  • EVs electric vehicles
  • PHEVs plug-in hybrid vehicles
  • HEVs hybrid vehicles
  • Lithium ion batteries conventionally known are used, including applications such as automotive power supplies such as idling stop cars, backup power supplies for home use,
  • the binder according to the present invention for an electrode of a lithium ion battery, it is difficult to absorb the electrolyte to swell at high temperatures, and the ion conductivity is also excellent. Moreover, even if this binder uses an active material containing Li, gelation of the slurry hardly occurs.
  • a battery equipped with an electrode containing a binder material A as an electrode binder (Example 1, Example 2, Reference Example 1) and a battery equipped with an electrode using only a binder material G as an electrode binder (Comparative Example) It is a graph which compares and shows 1).
  • a battery equipped with an electrode containing binder material B as an electrode binder (Examples 3 to 5 and Reference Example 2) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example 1). Is a graph comparing and showing.
  • a battery equipped with an electrode containing binder material C as an electrode binder (Examples 6 to 8 and Reference Example 3) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example 1) Is a graph comparing and showing. Comparing the batteries (Examples 9 to 11) equipped with the electrode containing the binder material D as an electrode binder and the batteries (Comparative Example 1) equipped with the electrode using only the binder material G as the electrode binder in Examples. FIG. Comparing the batteries (Examples 12 to 14) equipped with the electrode containing the binder material E as an electrode binder and the batteries equipped with the electrode using only the binder material G as the electrode binder (Comparative Example 1) in the examples. FIG.
  • FIG. A battery equipped with an electrode containing a binder material A as an electrode binder (Example 1, Example 2, Reference Example 1) and a battery equipped with an electrode using only a binder material G as an electrode binder (Comparative Example) It is a graph which compares and shows 1).
  • a battery equipped with an electrode containing binder material C as an electrode binder (Examples 6 to 8 and Reference Example 3) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example 1) Is a graph comparing and showing. Comparing the batteries (Examples 9 to 11) equipped with the electrode containing the binder material D as an electrode binder and the batteries (Comparative Example 1) equipped with the electrode using only the binder material G as the electrode binder in Examples. FIG. Graph showing in comparison a battery (Example 14) equipped with an electrode containing binder material E as an electrode binder and a battery (Comparative Example 1) equipped with an electrode using only binder material G as an electrode binder in Examples It is.
  • FIG. A battery equipped with an electrode containing binder material A as an electrode binder (Examples 15, 16 and 7) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example) It is a graph which compares and shows 2).
  • a battery equipped with an electrode containing binder material A as an electrode binder (Examples 15, 16 and 7) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example) It is a graph which compares and shows 2).
  • a battery equipped with an electrode containing binder material A as an electrode binder (Examples 15, 16 and 7) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example) It is a graph which compares and shows 2).
  • FIG. 16 is a graph showing in comparison a battery (Examples 17 to 20) equipped with test separators 1 to 4 and a battery (Comparative Example 3) using an uncoated separator.
  • Table 1 shows the materials (binder materials A to G) used to prepare the composite binder.
  • the binder material A is a liquid in which untreated cellulose nanofibers are dispersed in NMP.
  • the binder material A In the method for producing the binder material A, an equal volume or more of NMP is added to a liquid (solid ratio 5 mass%) in which untreated cellulose nanofibers are dispersed in water, and a rotary evaporator (200 hPa, 70 to 90 ° C., After evaporating the water while stirring using 160 rpm), it was produced by irradiating with ultrasonic waves (frequency 38 kHz, 1 minute).
  • the binder material A has a solid ratio of 4.4% by mass because it tends to cause aggregation and sedimentation when the solid ratio exceeds 7% by mass.
  • the liquid in which cellulose nanofibers are dispersed in water is a commercially available crystalline cellulose powder (manufactured by Asahi Kasei Chemicals Corporation, registered trademark: Theorus, CEOLUS FD-101, average particle diameter 50 ⁇ m, bulk density 0.3 g / cc) It was prepared by adding cellulose so that it becomes 4% by mass with respect to the total amount of the aqueous dispersion, and introducing it into a stone mill-type fibrillation treatment apparatus, and performing processing of passing 10 times between stone mortars. .
  • the binder material B is a liquid in which semi-esterified cellulose nanofibers are dispersed in NMP.
  • the manufacturing method of the binder material B is the same as that of the binder material A, except that a liquid (solid ratio 5 mass%) in which semi-esterified cellulose nanofibers are dispersed in water is used.
  • the binder material B has a solid ratio of 4.1% by mass because it tends to cause aggregation and sedimentation when the solid ratio exceeds 10% by mass.
  • the liquid in which semi-esterified cellulose nanofibers are dispersed in water can be treated with an untreated commercially available crystalline cellulose powder (Asahi Kasei Chemicals Co., Ltd., registered trademark: Theorus, CEOLUS FD-101, average particle diameter 50 ⁇ m, bulk density)
  • an untreated commercially available crystalline cellulose powder (Asahi Kasei Chemicals Co., Ltd., registered trademark: Theorus, CEOLUS FD-101, average particle diameter 50 ⁇ m, bulk density)
  • the reaction is carried out in a container heated at 130 ° C., and then 4 wt% of cellulose based on the total amount of the aqueous dispersion It was prepared by performing addition processing so as to be as described above, and introducing it into a stone mill-type disintegration processing apparatus, and passing 10 times between stone mills.
  • the binder material C is a liquid in which cellulose nanofibers subjected to secondary propylene oxide addition are dispersed in NMP after semi-esterification treatment of cellulose.
  • the method of manufacturing the binder material C is the same as the binder material B, except that a liquid (solid content ratio 5 mass%) in which cellulose nanofibers to which secondary propylene oxide addition is added is dispersed in water after semi-esterification treatment of cellulose is used. It is.
  • the binder material C has a solid ratio of 3.3% by mass because it tends to cause aggregation and sedimentation when the solid ratio exceeds 10%.
  • distributed to water is an untreated commercial crystalline cellulose powder (Asahi Kasei Chemicals Co., Ltd. make, registered trademark: Theorus, CEOLUS FD-101, average particle diameter 50 micrometers, bulk)
  • the reaction is carried out in a container heated at 130 ° C., and then, further propylene oxide is 4.5 wt% based on the weight of cellulose.
  • the reaction is carried out at 140 ° C., and this cellulose is added to 4 wt% with respect to the total amount of the aqueous dispersion, and it is introduced into the mill-type disintegration processing apparatus. It was prepared by charging and passing 10 times between stone mills.
  • the binder material D is a liquid in which cellulose nanofibers containing lignin obtained from hardwood are dispersed in NMP.
  • the manufacturing method of the binder material D is the same as that of the binder material A, except that a liquid in which cellulose nanofibers containing lignin obtained from hardwood is dispersed in water is used.
  • the binder material D had a solid ratio of 1.5% by mass because it tended to cause aggregation and sedimentation when the solid ratio exceeded 2% by mass.
  • the binder material E is a liquid in which cellulose nanofibers containing lignin obtained from softwood are dispersed in NMP.
  • the manufacturing method of the binder material E is the same as that of the binder material A other than using cellulose nanofibers produced from softwood.
  • the binder material E had a solid content ratio of 1.3% by mass because it tended to cause aggregation and sedimentation when the solid content ratio exceeded 2% by mass.
  • the liquid in which cellulose nanofibers containing lignin obtained from softwood are dispersed in water is added so that the amount of cellulose is 4 wt% with respect to the total amount of the aqueous dispersion, and the inside of the stone type disintegration processing device It was prepared by carrying out the process of passing 10 times between stone mills.
  • the binder material F is a liquid in which nanoclay (Smecton SAN, 4% dispersion manufactured by Kunimin Kogyo K.K., 4000 mPa ⁇ s) is dispersed in NMP.
  • the binder material F had a solid ratio of 1.9% by mass because foaming was severe when the solid content ratio exceeded 4% by mass.
  • the binder material F is prepared by adding an equal volume or more of NMP to a liquid (solid ratio: 4% by mass) in which nanoclay is dispersed in water, and using a rotary evaporator (200 hPa, 70 to 90 ° C., 160 rpm) After evaporating the water while stirring, it was produced by irradiating with ultrasonic waves (frequency 38 kHz, 1 minute).
  • the binder material G is a liquid in which PVdF is dissolved in NMP, and is manufactured by mixing NMP and PVdF (mass average molecular weight: 280,000) with a self-revolution mixer (2000 rpm, 30 minutes for Shinky).
  • the binder material G had a solid ratio of 12% by mass.
  • binder As the electrode binder, using binder materials A to G so as to give a predetermined solid composition shown in Table 3 below, NMP and a binder solvent are used with a self-revolution mixer (Shinky, Nerichiro, 2000 rpm, 30 minutes) The composite binder was prepared.
  • NCA electrode slurry contains NCA (LiNi 0.8 CO 0.15 Al 0.05 O 2 ) as an active material, acetylene black as a conductive additive, and a predetermined electrode binder shown in Table 4 in a solid ratio of 94: 2: It mix
  • formula mixer (Shinky make, Nertaro, 2000 rpm, 15 minutes), and was slurried.
  • the cellulose nanofibers contained in the binder are polybasic acid half-ester (SA) -treated or propylene oxide-added as a secondary treatment than the untreated one. It turns out that it is preferable that it is a slurry using a cellulose nanofiber.
  • SA polybasic acid half-ester
  • the cohesion tends to be improved, and it can be seen that the coatability approaches a slurry of only PVdF.
  • the test electrodes 1 to 25 were coated with each slurry (slurry 1 to 25) shown in Table 4 on an aluminum foil with a thickness of 20 ⁇ m using an applicator, temporarily dried at 80 ° C., and rolled by a roll press It was prepared by drying under reduced pressure (160 ° C., 12 hours).
  • the capacity density of each NCA positive electrode was 2.1 mAh / cm 2 .
  • the solid content of the slurry was too low, so that an electrode having a capacity density exceeding 1 mAh / cm 2 could not be produced. From this result, it is understood that the solid content ratio of the binder material is preferably 2% by mass or more.
  • the test electrodes 26 to 29 were each made of NCM (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) as an active material, acetylene black as a conductive additive, and a solid ratio of a predetermined electrode binder shown in Table 5 as an electrode binder.
  • the capacity density of each NCM 523 positive electrode was 2.5 mAh / cm 2 .
  • NCA / Si whole battery The NCA / Si all batteries of Examples 1 to 14, Reference Examples 1 to 6 and Comparative Example 1 are test batteries provided with the test electrodes shown in Table 6.
  • the reason why the aqueous solution of alkali metal silicate is applied to the Si electrode is also for prolonging the life of the Si electrode as described in Patent Document 7 and the test battery is rate-limited by the characteristics of the Si negative electrode. It was used to improve high temperature durability so as not to In the present invention, the whole battery is a battery evaluated without using metallic lithium for the counter electrode, and the half cell means a battery using metallic lithium for the counter electrode.
  • ⁇ Cycle life characteristics at 60 ° C environment The cycle life characteristics of the test batteries of Examples 1 to 14 and Reference Examples 1 to 6 and Comparative Example 1 in a 60 ° C. environment were evaluated.
  • the charge and discharge test is carried out under the conditions of an environmental temperature of 60 ° C and a cutoff potential of 4.25 to 2.7 V, with one cycle of each charge at 0.1C-rate, 0.2C-rate, 0.5C-rate and 1Crate. After discharge, charge and discharge were repeated at 3 C-rate.
  • the charge / discharge rate is an index based on setting a current value that completely discharges in 1 hour to constant current discharge of a cell having a capacity of a nominal capacity value to “1 C-rate”, for example.
  • the current value for complete discharge in 5 hours is denoted as "0.2 C-rate”
  • the current value for complete discharge in 10 hours is represented as "0.1 C-rate".
  • FIG. 1 shows a battery equipped with an electrode containing binder material A as an electrode binder (Examples 1 and 2 and Reference Example 1) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example) It is a graph which compares and shows 1).
  • FIG. 2 shows a battery equipped with an electrode containing binder material B as an electrode binder (Examples 3 to 5 and Reference Example 2) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example 1) Is a graph comparing and showing.
  • FIG. 1 shows a battery equipped with an electrode containing binder material A as an electrode binder (Examples 1 and 2 and Reference Example 1) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example) It is a graph which compares and shows 1).
  • FIG. 2 shows a battery equipped with an electrode containing binder material B as an electrode binder (Examples 3 to 5 and Reference Example 2) and a
  • FIG. 3 shows a battery equipped with an electrode containing binder material C as an electrode binder (Examples 6 to 8 and Reference Example 3), and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example 1) Is a graph comparing and showing.
  • FIG. 4 compares the batteries (Examples 9 to 11) equipped with an electrode containing a binder material D as an electrode binder and the batteries (Comparative Example 1) equipped with an electrode using only a binder material G as an electrode binder.
  • FIG. FIG. 5 compares a battery (Examples 12 to 14) equipped with an electrode containing a binder material E as an electrode binder and a battery (Comparative Example 1) equipped with an electrode using only a binder material G as an electrode binder.
  • FIG. FIG. 6 compares a battery (Reference Examples 4 to 6) equipped with an electrode containing a binder material F as an electrode binder and a battery (Comparative Example 1) equipped with an electrode using only a binder material G as an electrode binder.
  • FIG. 6 compares a battery (Reference Examples 4 to 6) equipped with an electrode containing a binder material F as an electrode binder and a battery (Comparative Example 1) equipped with an electrode using only a binder material G as an electrode binder.
  • the batteries (Examples 1 to 14) including any of the binder materials A to E in the electrode binder are batteries composed of only the binder material G as an electrode binder (Comparative Example) It can be seen that the cycle life characteristics are clearly improved as compared with 1). On the other hand, in batteries in which the binder material F is contained in the electrode binder (Reference Examples 4 to 6), even in the case of particles of the same nano order, the effect of improving the life does not exist, and the performance is rather deteriorated. From these results, it was found that the inclusion of cellulose nanofibers in the electrode binder has the effect of improving the cycle life characteristics at high temperature of the battery.
  • FIG. 7 shows a battery equipped with an electrode containing binder material A as an electrode binder (Examples 1 and 2 and Reference Example 1) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example) It is a graph which compares and shows 1).
  • FIG. 8 shows a battery equipped with an electrode containing a binder material B as an electrode binder (Examples 3 to 5 and Reference Example 2) and a battery equipped with an electrode using only a binder material G as an electrode binder (Comparative Example 1) Is a graph comparing and showing.
  • FIG. 8 shows a battery equipped with an electrode containing binder material A as an electrode binder (Examples 1 and 2 and Reference Example 1) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example) Is a graph comparing and showing.
  • FIG. 8 shows a battery equipped with an electrode containing binder material A as an electrode binder (Examples 1 and 2 and Reference Example 1) and
  • FIG. 9 shows a battery equipped with an electrode containing binder material C as an electrode binder (Examples 6 to 8 and Reference Example 3) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example 1) Is a graph comparing and showing.
  • FIG. 10 compares the battery (Examples 9 to 11) equipped with an electrode containing binder material D as an electrode binder and the battery (Comparative Example 1) equipped with an electrode using only binder material G as an electrode binder.
  • FIG. FIG. 11 is a graph showing in comparison a battery (Example 14) equipped with an electrode containing binder material E as an electrode binder and a battery (Comparative Example 1) equipped with an electrode using only binder material G as an electrode binder It is.
  • FIG. 12 compares a battery (Reference Examples 4 to 6) equipped with an electrode containing a binder material F as an electrode binder and a battery (Comparative Example 1) equipped with an electrode using only a binder material G as an electrode
  • the batteries (Examples 1 to 14) including any of the binder materials A to E in the electrode binder are batteries composed of only the binder material G as an electrode binder (Comparative Example) It can be seen that the cycle life characteristics are clearly improved as compared with 1). On the other hand, even in the case of particles of the same nano order, batteries (Reference Examples 4 to 6) in which the binder material F is contained in the electrode binder do not have the effect of improving the life. From these results, it was found that the inclusion of cellulose nanofibers in the electrode binder has the effect of improving the cycle life characteristics at high temperature of the battery.
  • the batteries containing any of the binder materials A to C in the electrode binder showed particularly remarkable differences.
  • the cycle life characteristics at high temperature tend to be improved, but the output characteristics tend to be lowered.
  • the NCM 523 electrodes of Example 15, Example 16, Reference Example 7 and Comparative Example 2 are test cells provided with the electrode binder shown in Table 7.
  • EC: DEC 50: 50 vol%
  • the SiO electrode was blended with SiO, PVA (polymerization degree 2800), acetylene black, and VGCF in a solid ratio of 94: 10: 4: 1% by mass, and a self-revolution mixer (Sinky, Nerichiro, 2000 rpm, 15)
  • the slurry was kneaded using a minute), coated in a slurry form on a 40 ⁇ m thick copper foil, temporarily dried at 80 ° C., and then dried under reduced pressure (160 ° C., 12 hours).
  • the capacity density of the SiO electrode was 3.2 mAh / cm 2 .
  • As the SiO electrode a half-cell was prepared in advance using metallic lithium as a counter electrode before assembling all the cells, the irreversible capacity was canceled, and then the SiO electrode obtained by disassembling the half-cell was used.
  • FIG. 13 shows a battery equipped with an electrode containing binder material A as an electrode binder (Examples 15, 16 and 7) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example) It is a graph which compares and shows 2). As apparent from FIG. 13, in the 30 ° C. environment, no significant difference is observed in the cycle life characteristics.
  • FIG. 14 shows a battery equipped with an electrode containing binder material A as an electrode binder (Examples 15, 16 and 7) and a battery equipped with an electrode using only binder material G as an electrode binder (Comparative Example) It is a graph which compares and shows 2).
  • the inclusion of the binder material A improves the cycle life characteristics. In particular, as the ratio of the binder material A to the binder material G becomes larger, the effect becomes larger.
  • the gelation resistance test 2 adds 2% by mass of lithium hydroxide (LiOH) to the binder 25 and stirs at 25 ° C. after stirring using a self-revolution type mixer (Shinky, Nerichiro, 2000 rpm, 15 minutes) In the environment, left for 12 hours. The result of having confirmed the gelatinization resistance of the binder in FIG. 15 is shown. As apparent from FIG. 15, in the gelation resistance test 2, the color changes immediately after the addition of LiOH, but in the gelation resistance test 1, no color change is observed even when left for 12 hours. . In addition, in the gelation resistance test 2, PVdF was gelated and changed to a gum-like substance after being left for 12 hours, whereas in the gelation resistance test 1, the fluidity of the binder was not lost.
  • LiOH lithium hydroxide
  • test separators 1 to 4 are self-revolution type mixers (Shinky, Neritsutaro, 2000 rpm, 30 minutes) using the binder 5 and alumina (particle diameter: 200 nm) so as to have a predetermined solid composition shown in Table 8.
  • the resulting slurry was kneaded on one side to a 16 ⁇ m-thick microporous polypropylene (PP) membrane, temporarily dried at 70 ° C., and then dried under reduced pressure (80 ° C., 24 hours).
  • the thickness of the surface coat layer of each of the test separators 1 to 4 was 4 ⁇ m.
  • test separator 5 As a comparative example, an uncoated PP microporous membrane was used as the test separator 5.
  • the test cells of Example 17, Example 18, Example 19, Example 20 and Comparative Example 3 are test cells provided with separators 1 to 5 shown in Table 8.
  • the CR2032 coin cell was assembled and left standing at 80 ° C. for 1 hour for production.
  • the coat layer of the separator was provided on the positive electrode side.
  • the NCM 111 electrode contains NCM 111, PVdF (mass average molecular weight: 280,000), acetylene black in a solid ratio of 91: 5: 4 mass%, and a self-revolution mixer (Sinky, Nerichiro, 2000 rpm, 15 minutes ) was applied to a 15 ⁇ m thick aluminum foil, temporarily dried at 80 ° C., and then dried under reduced pressure (160 ° C., 12 hours).
  • the capacity density of one side of the NCM 111 electrode was 2.5 mAh / cm 2 .
  • the graphite electrode contains graphite, SBR, carboxymethylcellulose (CMC), acetylene black, and VGCF in a solid ratio of 93.5: 2.5: 1.5: 2: 0.5 mass%, and is a self-revolution type.
  • the mixture was kneaded using a mixer (Shinky, Nertaro, 2000 rpm, 15 minutes), and the slurry was applied to a 10 ⁇ m thick copper foil, temporarily dried at 80 ° C., and then dried under reduced pressure (160 ° C., 12 hours) ) To make it.
  • the capacity density of one side of the graphite electrode was 3.0 mAh / cm 2 .
  • the graphite electrode in this test does not cancel irreversible capacity.
  • FIG. 16 is a graph showing in comparison a battery (Examples 17 to 20) provided with test separators 1 to 4 and a battery (Comparative Example 3) using an uncoated separator.
  • the cycle life characteristics are improved by providing the coat layer on the surface of the separator. In particular, the effect is enhanced when Al 2 O 3 is contained.
  • Example 21 A test was conducted on the safety of a battery (Example 21) using a surface-coated separator. Moreover, the battery (comparative example 4) using the uncoated separator as a comparison was produced, and the same test was done.
  • the test method is based on a nail sticking test in which the laminated battery is pierced and the state of smoke and ignition of the laminated battery is examined. In the test, a plurality of graphite negative electrodes (capacity density of 6 mAh / cm 2 ), separators, and NCM 111 positive electrodes (capacitance density of both surfaces 5 mAh / cm 2 ) are laminated in an aluminum laminate casing, and the electrolyte is sealed.
  • Example 21 is the same as Example 20 except that the 1.2 Ah laminated battery was used.
  • Comparative Example 4 is the same as Comparative Example 3.
  • the ratio of the cellulose nanofiber and the thermoplastic fluorine-based resin is not limited to the numerical value of the above-described embodiment.
  • PVdF as the thermoplastic fluorine-based resin may be a polymer, a copolymer, or a copolymer, and the mass average molecular weight is not limited to 280,000.
  • cellulose nanofibers that include anionic groups such as carboxylic acid groups, sulfonic acid groups, phosphoric acid groups, and sulfuric acid groups are also included in the scope of the present invention.
  • the active material is not limited to NCA or NCM523, and may be any material that can occlude and release Li ions reversibly. Accordingly, such is also included within the scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

高温時のサイクル寿命特性に優れたリチウムイオン電池に用いられる非水系の電極またはセパレータ用バインダを提供する。セルロースナノファイバーと熱可塑性フッ素系樹脂とを複合化したリチウムイオン電池用の電極またはセパレータにおける非水系のバインダであって、前記セルロースナノファイバーが、繊維径(直径)が0.002μm以上1μm以下、繊維長が0.5μm以上10mm以下、アスペクト比(セルロースナノファイバーの繊維長/セルロースナノファイバーの繊維径)が、2以上100000以下のセルロースであることを特徴とする。

Description

リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ
 本発明は、リチウムイオン電池の電極またはセパレータに用いるバインダ、これを用いた電極及びセパレータに関する。
 二次電池の利用分野は、電子機器から自動車、大型蓄電システムなどへと展開しており、その市場規模は10兆円以上の産業に成長することが期待される。とりわけ、携帯電話、スマートフォン、タブレット型端末などの情報通信機器が、めざましい普及を遂げ、全世界の普及率は3割を超えた。
 加えて、二次電池は、電気自動車(EV)、プラグインハイブリッド自動車(PHEV)、ハイブリッド自動車(HEV)等をはじめとする次世代自動車の電源へと応用範囲も広がっている。また、二次電池は、2011年の東日本大震災を契機に、家庭用バックアップ電源、自然エネルギーの蓄電、負荷平準化などに用いられるようになり、二次電池の用途は拡大傾向にある。このように、二次電池は、省エネルギー技術や新エネルギー技術の導入においても不可欠な存在であるといえる。
 従来、二次電池は、ニッケル-カドニウム(Ni-Cd)電池やニッケル-水素(Ni-MH)電池などのアルカリ二次電池が主流であったが、小型、軽量、高電圧、メモリー効果なしという特徴から、非水電解質二次電池であるリチウムイオン電池の使用が増大している。リチウムイオン電池は、正極、負極、セパレータ、電解液または電解質、電槽体(電池ケース)から構成される。
 正極や負極などの電極は、活物質、導電助剤、バインダおよび集電体から構成される。一般的に、電極は、活物質、導電助剤、バインダとともに、有機溶媒や水などの溶媒に混合してスラリー状にし、これを集電体上(主に、正極ではアルミニウム、負極では銅やニッケル)に塗工し、乾燥後、ロールプレスなどで圧延することによって製造される。
 正極活物質は、主に、コバルト酸リチウム(LiCoO)、三元系材料(Li(Ni,Co,Mn)O)、ニッケル-コバルト-アルミニウム酸リチウム(Li(Ni,Co,Al)O)などが既に実用電池の正極材料として、広く普及している。最近では、リチウム過剰固溶体系材料(LiMnO-LiMO)やリチウムシリケート系材料(LiMSiO)などの正極材料も活発に研究開発が進められている。
 LiCoOは、3.7V(vs.Li/Li)以上の放電電圧を示し、実効の放電容量は、約150mAh/gで、安定したサイクル寿命特性が得られるため、モバイル機器用途を中心に用いられている。しかしながら、車載用(EV、PHEV、HEV)や電力貯蔵用などの大型電池では、コバルト(Co)の価格相場帯の影響を大きく受けやすい問題があるため、Co量を少なくした三元系(Li(Ni,Co,Mn)O);以降、NCMと記載する)正極やニッケル-コバルト-アルミニウム酸リチウム(Li(Ni,Co,Al)O;以降、NCAと記載する)正極などが採用されている。
 NCMは、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)からなる3つの遷移金属元素のモル比率を変えることで充放電特性を調整することができる。
 西暦2015年以前のNCM正極は、遷移金属のモル比が、Ni:Co:Mn=1:1:1の材料(Li(Ni0.33Co0.33Mn0.33)O;以降、NCM111と記載する)が主流であったが、西暦2016年以降からは、Co量を減らしNi量を増やして、Ni:Co:Mn=5:2:3の材料(Li(Ni0.5Co0.2Mn0.3)O;以降、NCM523と記載する)が普及しつつある。近年では、Ni:Co:Mn=6:2:2の材料(Li(Ni0.6Co0.2Mn0.2)O)や、Ni:Co:Mn=8:1:1の材料(Li(Ni0.8Co0.1Mn0.1)O)などのNCM正極の研究開発が活発化している。
 NCAは、ニッケル酸リチウム(LiNiO)のNiサイトに、Coを置換し、アルミニウム(Al)を添加した正極材料である。一般的なNCAは、Ni、Co、Alのモル比が、Niでは0.65以上0.95以下、Coでは0.1以上0.2以下、Alでは0.01以上0.20以下とされる。この元素比とするNCAとすることで、Niカチオンの移動を抑制し、LiNiOと比べて熱的安定性と耐久性が改善され、またLiCoOよりも大きな放電容量が得られる。
 これらのニッケルリッチのNMC正極やNCA正極は、LiCoOと比べて、高容量化と低コスト化が期待されている。
 負極活物質は、主に、グラファイト(黒鉛)、ハードカーボン(難黒鉛化性炭素)、ソフトカーボン(易黒鉛化性炭素)、チタン酸リチウム(LiTi12)などが既に実用電池の負極材料として、広く普及している。最近では、これらの材料と、シリコン(Si)系材料やスズ(Sn)系材料とを混合して、負極の高容量化が図られている。
 黒鉛は、実効の放電容量としては340~360mAh/gで、ほぼ理論容量372mAh/gに近い値を示し、優れたサイクル寿命特性を示す。
 ハードカーボンとソフトカーボンは、非晶質炭素材料であり、実効の放電容量としては150~250mAh/gで、結晶性のグラファイトと比べると放電容量は低くなるが、出力特性に優れている。
 LiTi12は、実行の電気容量としては、160~180mAh/gで、グラファイトや非晶質炭素材料と比べると放電容量は低くなるが、充電時の電位は、リチウム析出電位から約1.5V離れており、リチウムデンドライトの析出リスクが少ない。
 Si系材料やSn系材料は、合金系材料に分類され、実行の電気容量としては、Siが3000~3600mAh/g、Snが700~900mAh/gの放電容量を示す。
 正極や負極などの電極を乾燥した後に圧延するのは、電極の活物質層、すなわち活物質、導電助剤、バインダからなる塗布層の体積を収縮させることで、導電助剤や集電体との接触面積を増大させるためである。これにより、活物質層の電子伝導ネットワークを強固に構築し、電子伝導性を向上させる。
 バインダは、活物質と活物質、活物質と導電助剤、活物質と集電体、導電助剤と集電体などを結着するために用いられている。バインダは、溶媒に溶かして、液体状のものを用いる「溶液型」と、固形分を溶媒中に分散させて用いる「分散型(エマルジョン・ラテックス型)」と、バインダ前駆体を熱や光で反応させて用いる「反応型」とに大別することができる。
 また、バインダは、溶媒種によって水系と有機溶媒系に分けることができる。例えば、代表的な可塑性フッ素系樹脂であるポリフッ化ビニリデン(PVdF)は、溶解型のバインダであり、電極スラリー作製時には、N-メチル-2-ピロリドン(NMP)などの有機溶媒が使用される。スチレンブタジエンゴム(SBR)は分散型のバインダであり、水中にSBR微粒子を分散して用いられる。ポリイミド(PI)は反応型のバインダであり、PI前駆体をNMPなどの溶媒に溶解又は分散させ、加熱処理することで、イミド化(脱水反応と環化反応)を起こしながら、架橋反応を進めて強靱なPIを得る。
 バインダの分子量や置換基などによっても異なるが、溶解型のバインダには、ポリフッ化ビニリデン(PVdF)、エチレン-酢酸ビニル(EVA)などがある。また、分散型のバインダには、スチレンブタジエンゴム(SBR)、ポリテトラフルオロエチレン(PTFE)、ウレタンゴム、ポリプロピレン(PP)、ポリエチレン(PE)、ポリ酢酸ビニル(PVAc)、ニトロセルロース、セルロースナノファイバーなどがある。反応型のバインダには、ポリイミド(PI)、ポリアミド(PA)、ポリアミドイミド(PAI)、ポリベンズイミダゾール(PBI)、ポリベンゾオキサゾール(PBO)などがある。
 また、NMPをはじめとする有機溶媒系バインダは、高温の電解液中で膨潤し、電極抵抗を増大させるため、高温環境下では使用しにくい。特に、熱可塑性フッ素系樹脂は、温度が上がるに従って膨潤率も大きくなる性質がある。例えば、特許文献1によれば、PVdFは、50℃以上の高温環境下にあると電解液により膨潤し、結合力が弱まると共に電極抵抗を上昇させ、高温耐久性に欠けることが記載されている。
 水系の溶解型バインダは、耐酸化特性又は耐還元特性に劣り、繰り返しの充放電によって徐々に分解されるものが多く、十分な寿命特性が得られない。また、イオン伝導性が低いため、出力特性に欠ける。分散型バインダは、水を溶媒に使用できる長所を有するが、酸やアルカリの度合い(pH)、水分濃度または環境温度によって分散安定性が損なわれやすく、電極スラリーの混合中に偏析、凝集、沈殿などを起こしやすい。また、水中に分散したバインダ微粒子は、1μm未満の粒径で、乾燥により水分を気化させると粒子同士が融着してフィルム化する。このフィルムは、導電性(電気伝導性)とイオン伝導性がないため、わずかな使用量の違いで電池の出力特性や寿命特性に大きな影響を及ぼす。
 溶媒種が水系のバインダで、電極スラリーを作製する場合、Liを含有する活物質を加えると、スラリーがアルカリ性になる(pH値が上昇する)。スラリーのpH値が11以上になると、塗工時にアルミニウム集電体と反応するため、均一な電極が得られにくいという問題がある。
 そこで、正極活物質の粒子表面をカーボンやセラミックスなどで被覆する方法が提案されている。カーボンやセラミックスなどで正極活物質の粒子表面を覆うことで、水系バインダを用いても溶媒が活物質と直接接触することが減り、スラリーのpH値の上昇を抑えることができる。
 例えば、非特許文献1によれば、正極活物質であるリン酸鉄リチウム(LiFePO)などのポリアニオン系は、粒子表面をカーボンコートしているため、水系バインダを用いても溶媒が正極活物質と直接接触することが減り、pH値の上昇を抑えることができることが記載されている。また、正極に、アクリル系バインダとPVdF系バインダをおのおの用いた電池の60℃環境下におけるサイクル寿命特性が示されており、正極にPVdF系バインダを用いた正極は、徐々に容量が低下しているのに対して、アクリル系バインダを用いた正極は優れた高温耐久性が示されている。
 例えば、特許文献2には、正極が負極のように水系バインダを用いることを困難とする理由として、(1)正極活物質と水が接触・反応することで、正極活物質のリチウムが溶け出し、正極容量が低下すること、(2)充電の際、水系バインダの酸化分解が起こること、(3)スラリーを分散させることが困難であること、等が挙げられ、電池特性として、正極容量とサイクル特性の低下が懸念されている。そこで、特許文献2によれば、Liαβγ(式中、Mは、Al、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ag、Ta、W、Irからなる群から選択される一種又は二種以上の金属元素であり、0≦α≦6、1≦β≦5、0<γ≦12である。)で表される化合物を粒子表面に備える活物質を用いることにより、水系バインダを用いても、正極活物質のリチウムが溶け出し正極活物質容量が低下することがなく、充電の際、水系バインダの酸化分解が起こることを防止でき、高温特性に優れるリチウムイオン二次電池用正極とすることができることが示されている。
 ところで、市販のリチウム(Li)を含有する活物質には、水酸化リチウム(LiOH)が不純物として含まれていることがある。この理由は、定かではないが、Liを含有する活物質を合成するため用いられる出発材料が残っていること、あるいは活物質自体が水酸化リチウムを生成することなどが考えられている。
 特に、Liを含有する活物質のうち、NCM、NCA、LiNiO、LiMnO-LiMO、LiMSiOなどの正極活物質は、水酸化リチウムの含有量が多く、強いアルカリ性を示す。このため、スラリーの製造工程で、可塑性フッ素系樹脂系バインダを用いた場合、スラリーをゲル化させることがある。ゲル化したスラリーでは、電極製造が困難であり、充電時にガスを発生させることがある。
 例えば、特許文献3には、一般的に水酸化リチウムは、正極合剤スラリー製造工程において、バインダーと反応しスラリー粘度を急激に上昇させる、またスラリーをゲル化させる原因となることがあると記載されている。そこで、特許文献3によれば、ニッケル系リチウム-ニッケル複合酸化物粒子の表面に、高分子が三次元架橋することで溶液への高い溶出抑制能を有し、且つイオン導電性を併せもつ非電子伝導性高分子と電子伝導性とイオン伝導性を併せもつ電子伝導性高分子を被覆することで大気安定性が向上し、且つ電池特性に悪影響しない被覆ニッケル系リチウム-ニッケル複合酸化物粒子が提案されている。
 特許文献4によれば、正極と負極にPIを用いたLiFePO/SiO系リチウムイオン二次電池が、120℃の高温でも安定に充放電することが可能であることが開示されている。
 反応型バインダは、耐熱性、結着性、耐薬品性の全てにおいて優れている。なかでも、PI系バインダは、高い耐熱性と結着性を示し、体積変化の大きい活物質であっても、安定した寿命特性を得ることができ、高温の電解液中でもバインダが膨潤しにくい特徴がある。
 バインダの補強材として、特許文献5には、水溶性高分子からなるバインダーに、セルロースナノファイバーが複合化されていることを特徴とする、Siを主成分とする活物質と導電補助材、バインダー、集電体から成る蓄電デバイス用電極構造体が開示されている。
 セルロースナノファイバーは、親水性であり、ほとんどの場合、水に分散された状態であるが、特許文献6によれば、分散媒に水を含まないNMPに分散したセルロースナノファイバーが示されている。樹脂中にセルロース分散体を混合することにより、セルロースの軽量、高強度、高弾性率、低線熱膨張係数、高耐熱性を利用した樹脂の高機能化が期待される。
 上記のバインダの他、リチウムイオン電池の分野ではほとんど報告例がないが、特許文献7および非特許文献2、3に、二次電池電極に無機バインダを用いた技術が開示されている。
 かかるリチウムイオン電池は、円筒型、角型、ラミネート(パウチ)型などの種々の形状の電池が広く普及している。そして、比較的小容量の電池には、耐圧性や封口の容易さの点から円筒型が採用され、比較的大容量の電池には、取扱いの容易性から角型が採用されている。
 また、リチウムイオン電池の電極構造に着目すれば、大別して、積層タイプと捲回タイプの2つのタイプが使用されている。すなわち積層タイプの電池は、正極と負極がセパレータを介して交互に積層された電極群が電池ケースに収納されている。積層タイプの電池の多くは、角型の電池ケースを有している。一方、捲回タイプの電池は、正極と負極がセパレータを挟みつつ渦巻状に巻き取られた状態で電槽体(電池ケース)に収納されている。捲回タイプの電池ケースは円筒型や角型のものがある。
日本国再表2014/057627号公報 日本国特許第5999683号公報 日本国特許第6102837号公報 日本国特開2013-084521号公報 日本国特開2016-021332号公報 日本国特開2015-101694号公報 日本国特許第6149147号公報
向井孝志ら:工業材料,vol.63,No.12,pp.18-23(2015) 向井孝志ら:Material Stage,vol.17,No.5,pp.29-33(2017) 向井孝志ら:「リチウムイオン二次電池~高容量化・特性改善に向けた部材設計アプローチと評価手法~」,第4章第2節,株式会社情報機構,pp.210-220(2017)
 上述したように、熱可塑性フッ素系樹脂をバインダとして用いた電極は、高温耐久性が悪い。一方、特許文献1~5や非特許文献1~3のように、電極バインダとして、水系バインダやPI系バインダを用いれば、高温耐久性を改善することはできる。しかし、多くのLiを含有する活物質は、水や水分に触れると、電極容量が低下し、サイクル寿命特性も悪くなる。Liを含有する活物質の粒子表面をカーボンやセラミックスなどで被覆して、水と活物質との直接接触を抑制すれば、スラリーのpH値の上昇を抑制できるが、スラリーの混合(混練)の工程で、活物質の粒子表面に形成した被覆物が剥離するとスラリーのpH値が一気に上昇する。また、溶媒種が有機溶媒系のバインダであっても、加熱処理で脱水反応を起こすPI系バインダでは、電極乾燥時に発生する水分が、Liを含有する活物質と触れることになる。
 また、PI系バインダは、あまりにも耐薬品性に優れているため、ほとんど全ての有機溶媒に溶けない。したがって、電極スラリーの作製には、PI前駆体であるポリアミック酸(ポリアミド酸)などをNMPに溶解して用い、200℃以上で加熱処理し、イミド化反応(脱水環化反応)を進めてPIを得る。そして、イミド化反応後に、更に高い温度で熱処理することで架橋反応を起こし、機械的強度の高いPIが得られる。電極寿命の観点からは、熱処理温度は、PIが炭化しない程度まで高い温度で熱処理することが好ましい。しかし、PI前駆体と強アルカリ性のLiを含む活物質を混合すると、PI前駆体が偏析し、均一に分散したスラリーが製造しにくく、スラリーの粘度調整も困難である。また、200℃以上の熱処理は、電極製造時における消費電力の上昇も招く。
 特許文献5には、電極の補強材として、バインダにセルロースナノファイバーを混合して複合化することで、リチウム挿入放出反応時の体積膨張収縮時に発生する応力に耐えうる機械強度が得らえることが示されている。セルロースナノファイバーを水溶性バインダに複合化することで、電極の機械強度が向上し、体積変化の激しい活物質を用いても、充放電による導電ネットワークの破壊を抑制しているものと思われる。
 しかし、Liを含有する活物質は、充放電による体積変化は少ない。したがって、体積変化による導電ネットワークの破壊はほとんど起こらない。また、電極の機械強度は、高温時における電解液との膨潤性とは関係がない。そのため、バインダの機械強度を改善しても、高温時のサイクル寿命特性の改善は見込まれない。
 また、バインダは水溶性高分子であり、水分と接触を嫌う材料であるLiを含有する活物質には適さない。水系バインダ(水を溶媒とする溶解型、分散型、反応型)の多くは、充電の際、酸化分解が起こるため、水系バインダの強度を向上しても電極の高温時の特性(耐久性やサイクル寿命特性、出力特性など)は大きく改善されない。また、水溶性バインダは、強アルカリ性のLiを含む活物質と接触すると、スラリーのpH値が上昇するだけでなく、バインダの塩析やスラリーの粘度が著しく変化する。
 特許文献6には、分散媒に水を含まないNMPに分散したセルロースナノファイバーが示されている。しかし、NMPに分散したセルロースナノファイバーのみをバインダとして用いた場合、活物質を加えたスラリーを自公転式ミキサー等で混合すると凝集する問題がある。
 また、NMPに分散したセルロースナノファイバーの固形分が10質量%を超えると、セルロースナノファイバーが凝集しやすくなるため、固形分を高めることができない。電極スラリーは、固形分の低いセルロースナノファイバーを用いると、当然、固形分の低いスラリーとなる。このスラリーを集電体に塗工すると、電極の乾燥時にセルロースナノファイバーが凝集して、均一な電極が得られにくくなり、乾燥時間も長くなる。また、スラリーの密度が低いため、単位面積当たりのスラリー塗付量を大きくしなければ、実用的な電極容量が得られない。
 ところが、発明者らが、セルロースナノファイバーをバインダとして用いた電極について検討したところ、上述した問題はあるものの、80℃もの高温環境下であっても、電解液を吸収して膨潤することがなく、高温時における優れたサイクル寿命特性を示す電極として機能することがわかった。また、従来の熱可塑性フッ素系樹脂バインダのみでは、水酸化リチウムを添加すると黒色に変化し、容易にゲル化を起こすが、NMPに分散したセルロースナノファイバーは、水酸化リチウムを添加してもゲル化の現象は確認されなかった。ただ、バインダとして、セルロースナノファイバーのみで構成される電極は、上述した問題の他、熱可塑性フッ素系樹脂をバインダとして用いた電極と比べて、出力特性に劣ることがわかった。すなわち、従来多くのセルロースナノファイバーは、電極用バインダとして適合されていないことが示された。
 特許文献7には、ケイ酸塩系やリン酸塩系の無機系バインダを用いた電極が、高温の電解液と接触しても活物質層の膨潤が少ないことが示されている。ただ、無機系バインダは、従来のバインダ(樹脂系バインダ)と比べて、比重が大きいため、重さ当たりの電極エネルギー密度が低くなる傾向がある。
 ところで、電極スラリーに含まれる活物質や導電助剤などは、例え均一に分散しても、静置すると、時間経過とともに凝集または沈降する。特に、活物質の比重が大きいほど活物質は重力により底に沈むこととなるため、電極作製の工程で均一性が失われた電極とになりやすい。そのため、長期間静置保存しても凝集または沈降し難い電極スラリーが求められる。
 上記の通り、本発明者らは、当初、セルロースナノファイバーを用いたバインダの適用について検討を重ねたが、セルロースナノファイバーのみを電極バインダとして適用した場合、現状では多くの問題を含み、実用的な電極として成立しないことがわかった。そこで、発明者らは、セルロースナノファイバーとバインダの溶媒種が非水系(有機溶媒系)に分類される熱可塑性フッ素系樹脂のバインダとを組み合わせるべく研究を重ね、本発明をするに至った。本発明は、上述した従来の問題点や、発明者らが新たに発見した問題点を解決することができる。
 本発明に係るバインダは、セルロースナノファイバーと熱可塑性フッ素系樹脂とを複合化したリチウムイオン電池用の電極における非水系のバインダであって、前記セルロースナノファイバーが、繊維径(直径)が0.002μm以上1μm以下、繊維長が0.5μm以上10mm以下、アスペクト比(セルロースナノファイバーの繊維長/セルロースナノファイバーの繊維径)が2以上100000以下のセルロースであることを特徴とする。この構成によれば、60℃以上の電解液中で電極活物質層の膨潤を抑制し、高温時においてサイクル寿命特性と出力特性が向上した電極用バインダとできる。また、熱可塑性フッ素系樹脂にセルロースナノファイバーが含まれることで、Liを含有する正極材料を用いても、スラリーのゲル化が起こりにくくなる。
 セルロースナノファイバーは、木材などの構成物質であるセルロースを最大繊維径が1μm以下にまで物理的あるいは化学的に細かくほぐしたセルロース繊維群である。なお、動物、藻類、またはバクテリアから得たセルロースナノファイバーであってもかまわない。
 なお、本発明において、繊維長は、繊維長測定機(KAJAANI AUTOMATION社製、FS-200)により測定される値である。また、繊維径は、これと同等の装置により測定することができる。
 より具体的には、繊維径(直径)が0.002μm以上1μm以下で、セルロースナノファイバーの繊維長が0.05μm以上1μm以下、アスペクト比(セルロースナノファイバーの繊維長/セルロースナノファイバーの繊維径)が10以上100000以下のセルロースナノファイバーであることが好ましく、セルロースナノファイバーの繊維長が0.2μm以上、アスペクト比(セルロース繊維長/セルロース繊維の繊維径)が20以上50000以下のセルロースナノファイバーであることがより好ましい。
 通常、セルロースナノファイバーは、出発材料として、セルロース材料(セルロースナノファイバー前駆体)、すなわち、クラフトパルプ、サルファイトパルプなどの木材の化学処理パルプ、コットンリンターやコットンリントのような綿系パルプ、麦わらパルプやバガスパルプ等の非木材系パルプ、古紙から再生された再生パルプ、海草から単離されるセルロース、人造セルロース繊維、酢酸菌によるバクテリアルセルロース繊維、ホヤ等の動物由来のセルロース繊維などを用いて製造される。
 本発明において、セルロースナノファイバーは、上述した繊維径、繊維長、アスペクト比に該当していれば、特に限定されない。このセルロースナノファイバーは、上述したセルロース材料(セルロースナノファイバー前駆体)を、セルロース膨潤工程を経て、ホモミキサー、ホモジナイザー、超音波分散処理、ビーター、レファイナー、スクリュー型ミキサー、パドルミキサー、ディスパーミキサー、タービンミキサー、ボールミル、ビーズミルおよびグラインダーなどの装置により微細繊維化することで製造することができる。
 セルロース膨潤工程は、膨潤剤および分散溶媒として機能する、ヒドロキシル(-OH)基を有する液状媒体を用いて混合させればよいが、後述する工程(B)でNMPと容易に混ざり、且つセルロースナノファイバーが凝集や沈降を起こしにくいことと、後述する工程(C)でNMPの濃度を効果的に高められることから、-OHを有する液状媒体は、水及び/又はアルコール類であることが好ましい。アルコール類には、メタノール、エタノール、プロパノール、ブタノールなどが挙げられる。ここで、セルロースと-OHを有する液状媒体とを100質量%とした場合、セルロースは、0.1質量%以上20質量%以下とすることが好ましく、より好ましくは、1質量%以上15質量%以下である。
 このようにして得られたセルロースナノファイバーは水及び/又はアルコール類等の-OHを有する液状媒体を多量に含む。このため、これをNMPに溶解している熱可塑性フッ素樹脂と混合すると、熱可塑性フッ素樹脂が、水やアルコール類で塩析し、電極用バインダとして有効に機能できない。
 水及び/又はアルコール類等の-OHを有する液状媒体に分散した熱可塑性フッ素樹脂を用いた場合では、熱可塑性フッ素樹脂内部にセルロースナノファイバーが含有せず、熱可塑性フッ素樹脂とセルロースナノファイバーとの単なる混合体であるので、高温の電解液中に対して、電極活物質層の膨潤を効果的に抑制しにくい。
 すなわち、セルロースナノファイバーは、熱可塑性フッ素樹脂と複合化されていることが好ましい。
 ここで、「複合」は「混合」とは異なる概念であり、混合バインダがセルロースナノファイバーと熱可塑性フッ素樹脂との単なる集合であるのに対し、複合バインダは当該バインダを構成する熱可塑性フッ素樹脂マトリックス中にセルロースナノファイバーが分散した状態で存在しているバインダである。例えば、熱可塑性樹脂の内部にセルロースナノファイバーが含有するバインダは、複合バインダである。
 すなわち、複合バインダを得るには、NMPにセルロースナノファイバーを分散した液体が必須材料となる。
 しかし、セルロースナノファイバーは、水及び/又はアルコール類等の-OHを有する液状媒体に分散した液体の状態であるため、NMPにセルロースナノファイバーを分散した液体を作製しなければならない。セルロースナノファイバーを分散した液体は、一度でも加熱処理や濾過などにより水及び/又はアルコール類等を除去すると、セルロースナノファイバーが不可逆的に凝集することとなり、二度と元の分散状態には戻らない。そのため、溶媒を完全に除去したセルロースナノファイバーに、NMPを加えて混合しても、NMPにセルロースナノファイバーを分散した液体は得られない。
 そこで、水及び/又はアルコール類等の-OHを有する液状媒体に分散したセルロースナノファイバーを、分散した液体状態を維持しつつ、前記液状媒体を、NMPに置換しなければならない。
 NMPにセルロースナノファイバーを分散した液体は、以下の工程(B)と工程(C)とを経ることで、製造可能である。
 すなわち、NMPにセルロースナノファイバーを分散した液体は、セルロースナノファイバーと-OHを有する液状媒体とNMPとの合計を100質量%とした場合、セルロースナノファイバーの固形分が0.1質量%以上20質量%以下となるように、セルロースナノファイバーが分散した前記液状媒体とNMPとを混合し、セルロースナノファイバーと前記液状媒体とNMPとが含まれる液体を得る工程(B)と、セルロースナノファイバーと前記液状媒体とNMPとが含まれる前記の液体を撹拌しながら、前記液状媒体を蒸発させてNMPの濃度を高める工程(C)と、を含む方法により製造できる。
 前記工程(C)は、減圧加熱によって水を除去することが好ましい。具体的には、前記工程(C)は、10hPa以上900hPa以下の圧力中で、25℃以上150℃以下に加熱して、前記液状媒体を蒸発させてNMPの濃度を高める工程であることが好ましい。この方法によれば、効率よく前記液状媒体を除去でき、純度の高いNMPにセルロースナノファイバーを分散した液体が得られる。圧力が、900hPaを超える場合は、加熱温度を高くしなければ、前記液状媒体を除去しにくく、また、前記液状媒体と同時にNMPも気化しやすくなる。10hPa未満では、室温(例えば25℃)でもNMPが気化しやすく、減圧に必要な装置も大がかりになる。圧力は、50hPa以上800hPa以下がより好ましく、100hPa以上700hPa以下が望ましい。この圧力範囲内であれば、温度を25℃以上150℃以下にすることで、前記液状媒体を効果的に除去できる。ここで、温度が150℃以下にする理由は、NMPの気化を抑えるだけでなく、セルロースナノファイバーの黄ばみ(色の変化)を抑制し、セルロースナノファイバーのフレキシブル性や機械強度の低下を防止するためである。25℃以上にする理由は、前記液状媒体の除去速度を高めるためである。
 工程(C)の後に、NMPにセルロースナノファイバーを分散した液体に対して、発振周波数10kHz以上200kHz以下、振幅1μm以上200μm以下の超音波を照射する工程(D)を含むことが好ましい。照射する超音波は、発振周波数15kHz以上100kHz以下、振幅10μm以上100μm以下であることがより好ましい。
 これは、このような条件によれば、超音波照射により生じるキャビテーションの衝撃波によって、セルロースナノファイバーが均一に解繊し、分散性と保存安定性が向上するからである。
 超音波の照射時間は、特に限定されるものではないが、1分以上が好ましく、より好ましくは3分以上60分以下である。
 前記バインダが、セルロースナノファイバーと熱可塑性フッ素系樹脂との固形分の合計を100質量%とした場合、セルロースナノファイバーが5質量%以上80質量%以下含まれ、熱可塑性フッ素系樹脂が20質量%以上95質量%以下であることが好ましい。この構成によれば、さらに、出力特性に優れた電極用バインダとして機能する。また、スラリーの製造工程で凝集や沈降などを起こしにくく、電極製造時の歩留まりが改善される。
 セルロースナノファイバーと熱可塑性フッ素系樹脂との固形分の合計を100質量%とした場合、セルロースナノファイバーが5質量%以上で、熱可塑性フッ素系樹脂が95質量%以下になるように調整することで、耐電解液膨潤性が向上し、高温時におけるサイクル寿命特性と出力特性が向上する。この理由は、バインダが、熱可塑性フッ素系樹脂のマトリックス中にセルロースナノファイバーが分散しているため、電解液で熱可塑性フッ素系樹脂が膨潤するのをセルロースナノファイバーが抑制するためと考えられる。セルロースナノファイバーが80質量%以下で、熱可塑性フッ素系樹脂が20質量%以上になるように調整することで、高温時に電極バインダ中の熱可塑性フッ素系樹脂は電解液を吸収するが、電極活物質層の膨潤をセルロースナノファイバーが抑制するため、活物質層の導電ネットワークが破壊されにくく、且つバインダにイオン伝導性を付与することができ、出力特性が向上した電極用バインダとできる。したがって、熱可塑性フッ素系樹脂のみでは、高温時に電解液を吸収してバインダにイオン導電性を付与できるものの、電極活物質層の膨潤を抑制できず、電極活物質層の導電性ネットワークが破壊される。そこで、セルロースナノファイバーが5質量%以上含まれることで、これを抑制する。セルロースナノファイバーのみでは、高温時に電極活物質層の膨潤を抑制できるものの、イオン伝導性に乏しくなる。そこで、電解液を吸収する熱可塑性フッ素系樹脂を20質量%以上含ませることで、これを改善する。より好ましくは、セルロースナノファイバーが10質量%以上75質量%以下含まれ、熱可塑性フッ素系樹脂が25質量%以上90質量%以下で、セルロースナノファイバーが20質量%以上70質量%以下含まれ、熱可塑性フッ素系樹脂が30質量%以上80質量%以下であることがさらに好ましい。
 前記セルロースナノファイバーは、多塩基酸半エステル(SA)化処理され、ヒドロキシル基の一部がカルボキシル基に置換されたセルロースナノファイバーを含むことが好ましい。セルロースナノファイバーの表面にカルボキシル(-COOH)基を存在させることにより、セルロースナノファイバー同士の間に反発力を誘引することができる。この構成によれば、80℃以上の電解液中であって電極活物質層の膨潤を抑制し、高温時においてサイクル寿命特性と出力特性が向上した電極用バインダとすることができる。また、バインダにおいて、熱可塑性フッ素系樹脂の割合を少なくしても、スラリーの製造工程で、凝集や沈降などを起こし難く、電極製造時の歩留まりがさらに改善される。
 多塩基酸半エステル化処理とは、セルロースのヒドロキシル基の一部に多塩基酸無水物を半エステル化してセルロースの表面にカルボキシル基を導入する処理のことである。
 多塩基酸半エステル化処理の工程(A)は、工程(B)の前に行われていることが好ましい。すなわち、多塩基酸半エステル化セルロースナノファイバーは、予めセルロース材料を多塩基酸半エステル化処理していることが好ましい。具体的には、出発材料であるセルロース材料(セルロースナノファイバー前駆体)と多塩基酸無水物とを、加圧ニーダーや1軸以上の押出混練機にて、80℃以上150℃以下の温度で混合し、セルロースの表面に存在する水酸基の一部に多塩基酸無水物を半エステル化してカルボキシル基を導入した後、上述したセルロースの微細繊維化方法により製造されることが好ましい。工程(B)の前に、工程(A)により、セルロースを多塩基酸半エステル化処理することで、保存安定性に優れたセルロースナノファイバーが得られる。
 なお、多塩基酸半エステル化処理後に、二次処理としてエチレンオキシド付加処理またはプロピレンオキシド付加処理されたセルロースナノファイバーであってもかまわない。
 複合バインダは、NMPにセルロースナノファイバーが分散した液体に、熱可塑性フッ素系樹脂を溶解させることで、NMPに熱可塑性フッ素系樹脂が溶解し、且つセルロースナノファイバーが分散した液体が得られる。あるいは、NMPにセルロースナノファイバーが分散した液体と、NMPに溶解した熱可塑性フッ素系樹脂とを混合してもよい。
 NMPに熱可塑性フッ素系樹脂が溶解し、且つセルロースナノファイバーが分散した液体は、セルロースナノファイバーと熱可塑性フッ素系樹脂との固形分の合計を100質量%とした場合、セルロースナノファイバーが5質量%以上80質量%以下、熱可塑性フッ素系樹脂が20質量%以上95質量%以下となるように混合し、NMPに熱可塑性フッ素系樹脂を溶解させる工程(E)により、リチウムイオン電池用バインダを製造できる。
 前記熱可塑性フッ素系樹脂には、ポリフッ化ビニリデン(PVdF)、フッ化ビニリデン共重合体、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル、ポリ三フッ化エチレン、ポリ三フッ化塩化エチレン、フッ化ビニリデン・三フッ化塩化エチレン共重合体、フッ化ビニリデン・四フッ化エチレン共重合体、四フッ化エチレン・六フッ化プロピレン共重合体等などが挙げられ、これらの一種又は二種以上を用いてもよい。また、これらは、ホモポリマー、コポリマー、ターポリマーであってもよい。このうち、電極のイオン伝導性が高く、耐酸化特性と耐還元特性とに優れる観点から、ポリフッ化ビニリデン(PVdF)を含んでいることが好ましい。
 PVdFは、電解液を保液しやすいことと、集電体との結着性に優れる観点から、平均分子量(数平均分子量:Mn)が10万以上500万以下であることが好ましい。平均分子量が10万未満では、集電体との結着性が十分でなく、またバインダの粘度が低くなるため、単位面積当たりの塗布量を多くして高目付容量の電極を得るのが困難になる。500万を超える場合は、NMPに溶解しにくくなり、またバインダの粘度が上昇するため、スラリーの混合時に発熱が激しくなり、スラリーの冷却が追い付かない(80℃以下に保てない)と電極スラリーがゲル化しやすくなる。PVdFのより好ましい平均分子量は、11万以上300万以下で、12万以上150万以下がさらに好ましい。
 PVdFは、通常、1,1-ジフルオロエチレンを重合開始剤、懸濁剤、または乳化剤等の添加剤と共に適当な反応媒体中で、懸濁重合、または乳化重合して得られる。このPVdFの分子量は、公知の重合度調整剤や連鎖移動剤などを用いて調整することができる。 
 本発明において、数平均分子量とは、ポリマーの分子量測定法として、広く用いられているゲル浸透クロマトグラフィーにより測定した結果を意味する。測定条件としては、東ソー社製HLC8020装置に0.01mol/Lの臭化リチウムを溶解したNMPを用いて、紫外線検出器により測定した値でよい。
 前記バインダは、NMPに熱可塑性フッ素系樹脂が溶解し、且つNMP中にセルロースナノファイバーが分散したバインダであり、前記バインダにおけるセルロースナノファイバーと熱可塑性フッ素系樹脂とNMPとの合計の質量を100質量%とした場合、セルロースナノファイバーと熱可塑性フッ素系樹脂との固形分の合計が、3質量%以上30質量%以下であることが好ましい。ここで、NMPは、Liを含有する活物質とできるだけ水との接触を避けるため、水の含有量ができるだけ少ないことが好ましい。具体的には1000ppm以下、好ましくは500ppm以下、さらに好ましくは100ppm以下であることが望ましい。
 この構成によれば、Liを含有する活物質を加えてスラリーを製造する際にゲル化が起こりにくく、またスラリーの製造工程で凝集体や沈降などを起こしにくく、電極の塗工性にも優れており、電極製造時の歩留まりが改善される。
 このように作製したバインダをリチウムイオン電池用の電極用バインダとして用い、集電体上に被着形成することで、リチウムイオン電池用の正極または負極として良好に機能させることができる。なお、参照電極の電極用バインダとして用いてもかまわない。また、電気二重層キャパシタやイオンキャパシタ、ナトリウムイオン電池、マグネシウムイオン電池、カルシウムイオン電池、アルカリ二次電池、一次電池などの蓄電デバイスに用いられる電極用のバインダとして用いてもかまわない。
 電極は、例えば、本発明のバインダの他に、活物質と、導電助剤とから構成される。
 電極は、例えば、活物質、導電助剤及びバインダ等を含む混合物(電極合剤)に、NMPなどをスラリー溶剤として加えて充分に混練して得られる電極合剤スラリーを、集電体表面に塗布し乾燥することで、所望の厚みと密度に制御しつつ形成することができる。該電極を搭載したリチウムイオン電池を作製する場合には、公知のリチウム二次電池の電池要素(対極、セパレーター、電解液等)を用いて、常法に従って、積層タイプや捲回タイプのリチウムイオン電池に組み立てればよい。
 電極用導電助剤は、導電性(電気伝導性)を有していれば、特に制限はなく、金属、炭素材料、導電性高分子、導電性ガラス等を用いることができる。このうち、少量の添加で、電極活物質に導電性の向上が見込まれる理由から、炭素材料が好ましい。具体的には、アセチレンブラック(AB)、ケッチェンブラック(KB)、ファーネスブラック(FB)、サーマルブラック、ランプブラック、チェンネルブラック、ローラーブラック、ディスクブラック、カーボンブラック(CB)、カーボンファイバー(例えば、登録商標であるVGCFという名称の気相成長炭素繊維)、カーボンナノチューブ(CNT)、カーボンナノホーン、グラファイト、グラフェン、グラッシーカーボン、アモルファスカーボンなどが挙げられ、これらの一種又は二種以上を用いてもよい。
 電極に含有される活物質、バインダ、導電助剤の合計を100質量%とした場合、導電助剤が0~20質量%含有されていることが好ましい。つまり、導電助剤は必要に応じて含有される。20質量%を超える場合は、電池としての活物質の割合が少ないため、電極容量密度が低くなりやすい。
 電極用バインダは、本発明のバインダを含んでいれば特に限定されない。本発明のバインダの他に含まれてもよいバインダとしては、通常電極用バインダとして用いられているもの、例えば、ポリイミド(PI)、ポリアミド、ポリアミドイミド、アラミド、エチレン-酢酸ビニル共重合体(EVA)、スチレン-エチレン-ブチレン-スチレン共重合体(SEBS)、ポリビニルブチラール(PVB)、エチレンビニルアルコール、ポリエチレン(PE)、ポリプロピレン(PP)、エポキシ樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ナイロン、塩化ビニール、シリコーンゴム、ニトリルゴム、シアノアクリレート、ユリア樹脂、メラミン樹脂、フェノール樹脂、ポリビニルピロリドン、酢酸ビニル、ポリスチレン、クロロプロピレン、レゾルシノール樹脂、ポリアロマティック、変性シリコーン、ポリブテン、ブチルゴム、2-プロペン酸等の材料を1種単独で用いてもよく、2種以上を併用して含有してもよい。
 また、バインダには、セラミックスやカーボンなどの無機粒子が含まれていても何ら問題ない。その場合、セラミックスやカーボンの粒径が、0.01~20μmの範囲内であることが好ましく、より好ましくは、0.05~10μmの範囲内である。なお、本発明において、粒径とは、レーザー回折・散乱式粒子径分布測定法における体積基準のメディアン径(D50)を意味し、以降においても同様である。
 電極に含有される活物質、バインダ、導電助剤の合計を100質量%とした場合、バインダが0.1質量%以上60質量%以下含有されていることが好ましく、0.5質量%以上30質量%以下がより好ましく、1質量%以上15質量%以下が望ましい。
 バインダが0.1質量%未満であると電極の機械強度が低いため、活物質が脱落しやすく、電池のサイクル寿命特性が悪くなることがある。一方、60質量%を超える場合は、イオン伝導性が低く、また電気抵抗が高くなり、また、電池としての活物質の割合が少ないため、電極容量密度が低くなりやすい。
 電極に用いられる集電体は、導電性を有し、保持した活物質に通電し得る材料であれば特に限定されない。例えば、C、Ti、Cr、Ni、Cu、Mo、Ru、Rh、Ta、W、Os、Ir、Pt、Al、Au等の導電性物質、これら導電性物質の二種類以上を含有する合金(例えば、ステンレス鋼)を使用し得る。上記の導電性物質以外のものを用いる場合、例えば、鉄にAlやNi、Cを被覆したような異種金属の多層構造体であってもよい。
 導電性が高く、電解液中の安定性がよい観点から、集電体としてはC、Ti、Cr、Au、Fe、Cu、Ni、Al、ステンレス鋼等が好ましく、さらに材料コストの観点からC、Cu、Ni、Al、ステンレス鋼等が好ましい。なお、集電基材に鉄を用いる場合は、集電基材表面の酸化を防ぐため、NiやCu、Al、Cで被覆されたものであることが好ましい。
 集電体の形状には、特に制約はないが、箔状基材、三次元基材などがあり、さらにこれらは、貫通孔を有する集電体であってもよい。これらのうち、活物質の充填密度を高めることができることから、三次元基材であることが好ましい。三次元基材には、メッシュ、織布、不織布、エンボス体、エキスパンド、又は発泡体などが挙げられ、このうち、集電基材の形状は、出力特性が良好なことから、エンボス体または発泡体が好ましい。
 また、この電極は、特許文献(日本国特許第6149147号)にも記載のように、無機骨格形成剤を活物質層に塗布等することによって、活物質層に無機骨格形成剤を浸透させてもかまわない。これにより、充放電時の活物質の膨張収縮の激しい合金系の活物質を用いても、膨張収縮を許容し、電極の集電体のしわや亀裂等の発生を抑制する効果がある。
 無機骨格形成剤を活物質層に塗布する場合は、電極は、片面塗工された電極の単位面積当たりの前記骨格形成剤が、0.001mg/cm以上10mg/cm以下であることが好ましく、0.01mg/cm以上3mg/cm以下であることがより好ましい。両面塗工された電極または三次元基材に活物質層を充填された電極では、電極の単位面積当たりの前記骨格形成剤が、0.002mg/cm以上20mg/cm以下であることが好ましく、0.02mg/cm以上6mg/cm以下であることがより好ましい。
 無機骨格形成剤は、ケイ酸塩系、リン酸塩系、ゾル系、セメント系などでよい。例えば、リチウムケイ酸塩、ナトリウムケイ酸塩、カリウムケイ酸塩、セシウムケイ酸塩、グアニジンケイ酸塩、アンモニウムケイ酸塩、ケイフッ化塩、ホウ酸塩、リチウムアルミン酸塩、ナトリウムアルミン酸塩、カリウムアルミン酸塩、アルミノケイ酸塩、アルミン酸リチウム、アルミン酸ナトリウム、アルミン酸カリウム、ポリ塩化アルミニウム、ポリ硫酸アルミニウム、ポリ硫酸ケイ酸アルミニウム、硫酸アルミニウム、硝酸アルミニウム、アンモニウムミョウバン、リチウムミョウバン、ナトリウムミョウバン、カリウムミョウバン、クロムミョウバン、鉄ミョウバン、マンガンミョウバン、硫酸ニッケルアンモニウム、珪藻土、ポリジルコノキサン、ポリタンタロキサン、ムライト、ホワイトカーボン、シリカゾル、コロイダルシリカ、ヒュームドシリカ、アルミナゾル、コロイダルアルミナ、ヒュームドアルミナ、ジルコニアゾル、コロイダルジルコニア、ヒュームドジルコニア、マグネシアゾル、コロイダルマグネシア、ヒュームドマグネシア、カルシアゾル、コロイダルカルシア、ヒュームドカルシア、チタニアゾル、コロイダルチタニア、ヒュームドチタニア、ゼオライト、シリコアルミノフォスフェートゼオライト、セピオライト、モンモリナイト、カオリン、サポナイト、リン酸アルミニウム塩、リン酸マグネシウム塩、リン酸カルシウム塩、リン酸鉄塩、リン酸銅塩、リン酸亜鉛塩、リン酸チタン塩、リン酸マンガン塩、リン酸バリウム塩、リン酸スズ塩、低融点ガラス、しっくい、せっこう、マグネシウムセメント、リサージセメント、ポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメント、リン酸セメント、コンクリート、固体電解質等の無機材料を1種単独で用いてもよく、2種以上を併用してもよい。
 また、この電極は、活物質、導電助剤、バインダおよび骨格形成剤の固形分合計を100質量%とした場合、骨格形成剤が0.01質量%以上50質量%以下であることが好ましく、より好ましくは、0.1質量%以上30質量%以下、さらに好ましくは、0.2質量%以上20質量%以下である。
 本発明のバインダを用いた電極スラリーは、Liを含有する活物質を用いても、スラリーのゲル化が起こりにくくなるため、電極に用いる活物質は、リチウムイオン電池で用いられるリチウムイオンを吸蔵・放出することができる活物質であれば特に限定されない。
 例えば、正極活物質であれば、アルカリ金属遷移金属酸化物系、バナジウム系、硫黄系、固溶体系(リチウム過剰系、ナトリウム過剰系、カリウム過剰系)、カーボン系、有機物系、等を含む公知の電極が用いられる。例えば、負極活物質であれば、グライファイト、ハードカーボン、ソフトカーボン、チタン酸リチウム、合金系材料、コンバージョン材料などを含む公知の電極が用いられる。
 合金系材料には、例えば、Mg、Al、Si、Ca、Mn、Fe、Co、Zn、Ge、Ag、In、Sn、Sb、Pb等の他、SiO、SnO、SnO、SnSO等の酸化物、SnS、SnS、SnSe等のカルコゲン化物、SnF、SnCl、SnI、SnI等のハロゲン化物等が挙げられる。
 ここで、Liを含有する活物質とは、少なくとも、リチウム(Li)と遷移金属(M)と酸素から構成される化合物であり、例えば、LiCoO、LiNiO、LiMnO、NCM、NCA、LiMn、LiFePO、LiTi12、LiMnO-LiMO(M=Ni、Co、Mn、Ti)、LiMSiO(Fe、Ni、Co、Mn)などが挙げられる。
 電極は、活物質と、バインダと、必要に応じて添加される導電助剤とを混合しスラリー化したものを集電体に塗布または充填し、仮乾燥させ、圧延後、60℃以上280℃以下で熱処理を行うことで電極を得る。仮乾燥は、スラリー内の溶媒が揮発除去できる方法であれば特に限定されないが、例えば、大気中50℃以上200℃以下の温度雰囲気下で熱処理を行う方法を挙げることができる。
 また、圧延後の熱処理は、60℃以上280℃以下にすることで、スラリー内の溶媒と水分をできるかぎり除去し、且つ、バインダの炭素化(特にセルロースナノファイバーの炭素化)を防止できる。好ましくは、100℃以上250℃以下であり、より好ましくは105℃以上200℃以下、110℃以上180℃以下が望ましい。
 また、熱処理の時間は、0.5~100時間保持することによって行うことができる。熱処理の雰囲気は、大気中であってもかまわないが、集電体の酸化を防ぐため、非酸化雰囲気下で処理することが好ましい。非酸化雰囲気下とは、酸素ガスの存在量が空気中よりも少ない環境を意味する。例えば、減圧環境、真空環境、水素ガス雰囲気、チッ素ガス雰囲気、希ガス雰囲気などであってもよい。
 なお、電極には負極と正極があるが、負極と正極は主に集電体及び活物質が異なるのみで製造方法は同様である。
 また、不可逆容量のある材料を用いた電極の場合は、リチウムドープにより、不可逆容量をキャンセルしていることが好ましい。リチウムドープの方法としては、特に限定されないが、例えば、(i)電極集電体上の活物質層がない部分に金属リチウムを貼り付け、注液することでローカルセルを形成し、電極活物質中にリチウムをドープする方法、(ii)電極集電体上の活物質層上に金属リチウムを貼り付け、注液することで強制短絡させ、電極活物質中にリチウムをドープする方法、(iii)活物質層上に蒸着やスパッタにより金属リチウムを成膜し、固相反応で電極活物質中にリチウムをドープする方法、(iv)電池構成前の電極に、電解液中で電気化学的にリチウムをドープする方法、(v)活物質粉末に金属リチウムを加え混合処理することで、活物質中にリチウムをドープする方法等が挙げられる。
 また、本発明に係るバインダは、セパレータの表面に塗工することもできる。この構成によれば、高強度で耐熱性に優れ、電極との密着性に優れ、サイクル寿命特性が向上したセパレータとなる。なお、本発明に係るバインダは、セパレータ基材(原反)の片面または両面に塗工、あるいはセパレータ基材に充填してもよい。ここで、セパレータ基材は、リチウムイオン電池に一般に用いられるものが使用できる。すなわち、セパレータ基材の厚みとしては、1~50μmの範囲内であれば特に限定されない。本発明における厚みとは、マイクロメータ(ミツトヨ製、高精度デジマチックマイクロメータMDH-25M、測定力7~9N、測定面の大きさφ3.2mm)を用いて測定された値である。但し、1μm未満の厚みは、対象物のクロスカッターで切断し、その断面をSEMにより観察して測定した値であってもよい。セパレータ基材の空孔率(空隙率)は、20~90%の範囲内であれば、特に限定されない。ここで、空隙率はセパレータの見掛け密度と構成材料の固形分の真密度から、次式により算出した値である。
 空孔率(%)=100-(セパレータの見掛け密度/材料固形分の真密度)×100
 セパレータ基材の孔径は、0.001~10μmの範囲内であれば特に限定されない。
ここで、孔径とは、ナノ細孔径分布測定装置(西華産業株式会社製、Nano Perm Porometer)により、Heガスをキャリアーガスとして用いて、ヘキサン蒸気透過性能を測定し、50%透過流速径を意味する。
 セパレータ基材の材質としては、電解液の溶媒で溶解しない材質であり、耐酸化性と耐還元性とに優れる材質であれば、特に限定されない。例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、アラミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリフェニレンエーテル、ポリエーテルケトン、ポリスルホン、ポリエステル、ポリアクリロニトリル(PAN)、ポリテトラフルオロエチレン(PTFE)などの樹脂材料が挙げられるが、セパレータのシャットダウン特性の有無の観点からは、PPまたはPEが含まれる樹脂材料であることが好ましい。通常、PPやPE、PETなどは、撥水性に優れているため、水を溶媒とするバインダ(水系バインダ)では、基材がコート層を弾くため、均一な表面コート相の形成が困難である。また、PPやPEなどのポリオレフィン系樹脂は、化学的結合を行うための極性基が殆どなく、表面の自由エネルギーが低いため、例え、非水系のフッ素系樹脂であっても接着力は弱く、容易に剥離する。一方、本発明に係るバインダは、非水系であるため、上記した水による弾きがない。また、本発明に係るバインダに含まれるフッ素系樹脂自体には、ポリオレフィン系樹脂との接着性はあまり期待できないが、セルロースナノファイバーが含まれることで、基材表面に存在する孔や微細な凹凸に入り込んで硬化するので、物理的に接着させることができる。したがって、本発明に係るバインダは、従来の水系バインダや単なるフッ素系樹脂とは異なり、セパレータとの接着強度が改善する。
 バインダの表面コート層の厚みは、耐熱性と電極との密着性に優れるという観点から、片面で0.01μm以上3μm以下であることが好ましい。表面コート層の単位面積当たりの塗布質量は、片面で0.001~5g/mの範囲内であることが好ましい。両面コートや不織布などに充填する場合では、片面コートの倍の目付にすればよい。
 バインダの表面コートの方法は、本発明に係るバインダを貯留した槽にセパレータ基材を含浸する方法、セパレータ基材の表面に本発明に係るバインダを滴下や塗布する方法、スプレー塗工、スクリーン印刷、カーテン法、スピンコート、グラビアコート、ワイヤーコート、ダイコートなどにより行う。セパレータ基材の表面に塗工されたバインダは、セパレータの孔の内部に浸透し、アンカー効果により物理的に接着する。そして、セパレータ本体を60℃~160℃の温風、加熱等により乾燥し、バインダの溶媒を気化させる。これにより、バインダがセパレータ基材の表面に形成される。
 なお、セパレータ基材の形状は、微多孔膜、織布、不織布、圧粉体が挙げられ、特に限定されない。
 セパレータは、短絡時の局所的な発熱で、メルトダウンしないように、上記のセパレータ基材に、セラミックス(無機フィラー)層がコートまたは充填されているセパレータであってもよい。この場合、セラミックス層は、少なくとも、本発明に係るバインダとセラミック粉末(無機フィラー)とからなる多孔質の層であり、気体または液体が通過可能となっている。セパレータ基材の表面に塗工される材質は、セラミックを含まなくても、セパレータの耐熱性を向上させ、且つ電解液の保液性が改善される効果があるが、さらにセラミック粉末が含まれることで、耐熱性と電解液の保液性とがさらに向上するだけでなく、電池の入出力特性も向上する。セラミック粉末は、電解液の溶媒で溶解しない材質であり、耐酸化性と耐還元性とに優れる材質であれば、特に限定されない。例えば、シリカ(SiO)、アルミナ(Al)、マグネシア(MgO)、カルシア(CaO)、ジルコニア(ZrO)、イットリア(Y)、チタニア(TiO)、水酸化酸化アルミニウム(AlOOH)、水酸化アルミニウム(Al(OH))、水酸化マグネシウム(Mg(OH))、チタン酸バリウム(BaTiO)、窒化アルミニウム(AlN)、窒化ケイ素(Si)、炭酸カルシウム(CaCO)、炭酸マグネシウム(MgCO)、窒化ホウ素(BN)、炭化ケイ素(SiC)、メタチタン酸リチウム(LiTiO)、チタン酸リチウム(LiTi12)、リン酸三リチウム(LiPO)などの酸化物や水酸化物、窒化物、炭化物などが挙げられる。セラミック粉末の粒径は、小さすぎるとガーレ値が大きくなりやすく、大きすぎるとセラミック層の強度が低下しやすい傾向がある。そのため、セラミック粉末の粒径は、0.001~3μmの範囲内であることが好ましく、より好ましくは、0.01~1μmの範囲内である。セラミック粉末の形状は、特に限定されず、球状、楕円状、切子状、帯状、ファイバー状、フレーク状、ドーナツ状、中空状であってもよい。セラミックス層は、本発明に係るバインダとセラミック粉末とを100質量%とした場合、本発明に係るバインダが0.1質量%以上含まれておれば、特に限定されないが、セパレータ基材との結着性の観点から1質量%以上であることが好ましく、2質量%以上であることがより好ましい。電池の入出力特性の観点からは、本発明に係るバインダが90質量%以下であることが好ましく、80質量%以下であることがより好ましい。セラミック層の空孔率は、20~80%の範囲内であることが好ましく、より好ましくは50~70%の範囲内である。この範囲内に調整することで、電池の充放電時に伴う電極の体積変化が起こっても、セパレータが電極の変化に追従しやすいため、セパレータが摩耗しにくくなり、中長期にわたっての電池の安全性が増す。セラミック層の厚みは、耐熱性と電極との密着性に優れるという観点から、片面で0.5μm以上であることが好ましい。セラミック層の単位面積当たりの塗布質量は、使用する材料によっても異なるが、0.1~60g/mの範囲内であることが好ましい。セラミック層のコートまたは充填方法は、上述したバインダの表面コートと同様の方法で形成できる。
 バインダあるいはセラミック層のコートは、セパレータが耐リチウムデンドライト特性に優れるという観点から、セパレータのガーレ値は5000sec/100mL以下に制御することが好ましい。充填されたセパレータにおいても同様である。本発明におけるガーレ値とは、セパレータの透過度に関する指標であって、JIS P8117の規格に準じて定められる。通常、ガーレ値は、セパレータ基材の孔径を大きくすることや孔数を増やすことで小さくすることができる。また、セラミック層の厚みを薄くすることや、セラミックの粒径を大きくすることでも小さくすることができる。ガーレ値の小さいセパレータとすることで、優れた入出力特性が得られるが、ガーレ値が5000sec/100mLを超えると、過充電により生成されるリチウムデンドライトで短絡する可能性が上昇する。一方、電池の入出力特性に優れるという観点から、セパレータのガーレ値は50sec/100mL以上に制御することが好ましい。したがって、好ましいセパレータのガーレ値は50sec/100mL~5000sec/100mLの範囲内で、より好ましくは、70sec/100mL~2000sec/100mLの範囲内である。
 セパレータに本発明に係るバインダを塗布することで、短絡時の局所的な発熱で、セパレータ基材がメルトダウンして電池の短絡を抑制する効果が期待される。また、電池を充電した際に、正極側のセパレータ面に本発明に係るバインダが存在することで、セパレータ基材と正極との直接的な接触を防ぎ、セパレータ基材の酸化を抑制することができるため、電池の自己放電を抑制する。加えて、セパレータの耐熱性が向上するため、釘刺しや過充電の安全性が改善される。
 例えば、上記の電極を用いた電池であれば、正極と負極とをセパレータを介して接合され、電解液内に浸漬した状態で密閉化された電池構造が考えられる。なお、電池の構造はこれに限られず、積層式電池、捲回式電池などの既存の電池形態や構造等に適用可能である。
 電池は、少なくとも正極と負極のいずれか一方に、熱可塑性フッ素系樹脂にセルロースナノファイバーが含まれるバインダを具備した電極を用いた、リチウムイオン電池であればよい。
 この電池に用いる電解質は、正極から負極、または負極から正極にリチウムイオンを移動させることのできる液体または固体であればよく、公知のリチウムイオン電池に用いられる電解質と同じものが使用可能である。例えば、電解液、ゲル電解質、固体電解質、イオン性液体、溶融塩があげられる。ここで、電解液とは、電解質が溶媒に溶けた状態のものをいう。
 電解液は、リチウムイオンを含有する必要があることから、リチウムイオン電池で用いられるものであれば特に限定されないが、電解質塩と電解質溶媒から構成される。
 電解質塩としては、リチウムイオンを含有する必要があることから、その電解質塩としては、リチウムイオン電池で用いられるものであれば特に限定されないが、リチウム塩が好適である。このリチウム塩としては、ヘキサフルオロリン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)、テトラフルオロホウ酸リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、リチウムビストリフルオロメタンスルホニルイミド(LiN(SOCF)、リチウムビスペンタフルオロエタンスルホニルイミド(LiN(SO)、リチウムビスオキサレートボレート(LiBC)、などからなる群より選択される少なくとも1種以上を用いることができる。上記リチウム塩のうち、特に、電気的陰性度が高く、イオン化しやすいことから、LiPFが好ましい。LiPFを含有した電解液であれば、充放電サイクル特性に優れ、二次電池の充放電容量を向上させることができる。
 上記電解質の溶媒としては、リチウムイオン電池で用いられるものであれば特に限定されないが、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、γ-ブチロラクトン(GBL)、γ-バレロラクトン、メチルフォルメート(MF)、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、ジメトキシエタン(DME)、1,2-ジエトキシエタン、ジエチルエーテル、スルホラン、テトラヒドロフラン(THF)、メチルスルホラン、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(EVC)、フルオロエチレンカーボネート(FEC)、エチレンサルファイト(ES)よりなる群から選択される少なくとも1種を用いることができ、このうち、PC、EC、DMC、DEC、EMCなどの少なくとも1種を用いることが好ましい。特に、上記EC、PCなどの環状カーボネートと、DMC、DEC、EMCなどの鎖状カーボネートとの混合物が好適である。環状カーボネートと鎖状カーボネートとの混合比は、環状カーボネート及び鎖状カーボネートともに10~90体積%の範囲で任意に調整することができる。
 このうち、さらに、VCまたは、ECV、FEC、ESを含有する電解質の溶媒が好ましい。VCまたは、ECV、FEC、ESは、電解液(電解質、溶媒の総量)を100質量%とした場合、0.1~20質量%含まれていることが好ましく、より好ましくは0.2~10質量%である。
 このリチウム塩の電解液中の濃度としては、0.5~2.5mol/Lとすることが好ましく、0.8~1.6mol/Lとすることがより好ましい。
 特に、電解液は、少なくとも、電解質塩としてLiPFを含み、電解質溶媒が非プロトン性環状カーボネートと非プロトン性鎖状カーボネートとを含む電解液であることが好ましい。この組成の電解液と、本発明のバインダを用いた電極を具備する電池は、温度50℃以上に加熱することで、電極に用いたバインダの熱可塑性フッ素樹脂が、ヘキサフルオロリン酸リチウムと非プロトン性カーボネートとを吸収し、イオン伝導性に優れたポリマーゲルを形成することができる。
 また、このポリマーゲルにより、電極と物理的に接触しているセパレータと一体化させることもできる。一体化させることで、電極とセパレータとの密着強度が増し、振動や衝撃などの外的要因によるセパレータと電極との位置ずれを効果的に防止でき、電池の安全性向上に寄与する。ここで、バインダに、セルロースナノファイバーが含まれていない場合は、熱可塑性フッ素樹脂は温度を上げることでゲル化するが、同時に電極活物質層も膨潤して導電性ネットワークが破壊されることになるので、電極の抵抗が増大する。一度、電解液で膨潤した熱可塑性フッ素樹脂は、二度と元の状態の電極には戻らない。すなわち、バインダに含まれるセルロースナノファイバーが電極の膨潤を抑制しつつ、熱可塑性フッ素樹脂がゲル化することで、電極抵抗の増大を抑制しつつ、バインダを介して電極とセパレータとを接着接合させ、セパレータと電極とを一体化した電池を作製することが可能となる。
 本発明において一体化とは、本来は電極とセパレータは分離しているはずの電池部材が、加熱処理のために、電極とセパレータとが癒着し、お互いが固定され、容易に剥離が難しい状態を意味する。より具体的には、JISZ0237の規格に準じて、電極とセパレータとを角度180度で、剥離試験を行った場合、接着力が0.01N/25mm以上のもので、且つ剥離した際に、セパレータに0.1mg/cm以上の単位面積あたりの質量変動がある、あるいは、セパレータが伸びたり切断されて破壊される状態をいう。セパレータの質量変動とは、剥離した部材(電極活物質層またはセパレータ基材、セパレータ塗布層)が対向側に付着し、質量に変化を生じる現象を意味する。
 電池は、少なくとも正極と負極のいずれか一方に、熱可塑性フッ素系樹脂にセルロースナノファイバーが含まれるバインダを具備した電極を用いた、リチウムイオン電池であればよい。
 電池は、正極と負極との間にセパレータを介して積層または捲回された電極群を、ヘキサフルオロリン酸リチウムと非プロトン性カーボネートとを含有する電解液とともに、電槽体に封入して密閉後、電槽体の温度が50℃以上120℃以下の状態になるよう加熱し、電槽体の外側から、電極の延伸方向に対して垂直に圧力を加えて、熱可塑性フッ素系樹脂にセルロースナノファイバーが含まれるバインダを具備した電極とセパレータとを一体化する工程(F)により製造できる。より好ましい、電槽体の温度は、55℃以上95℃以下である。
 電槽体の温度が、50℃以上にすることで、電極に含まれるバインダが、電解液を吸収してゲル化し、電極のイオン伝導性を向上させる。120℃を超える場合は、電解液が気化して、電池の内部にガスを含みやすくい。また、セパレータがポリオレフィン系樹脂を含む場合は、ポリオレフィン系樹脂が軟化し、電池を短絡させるリスクが上昇する。
 電槽体の外側から、電極の延伸方向に対して垂直に圧力を加えることで、電極とセパレータとを接着接合しやすくなる。
 圧力は、電池サイズや電極の積層数、または捲回数によって異なるため、特に制限はないが、例えば、圧力0.1Pa以上を10秒以上維持すればよい。
 上記の工程(F)は、電池を充電状態や放電状態であってもかまわない。
 このようにして得られたリチウムイオン電池は、60℃以上の温度環境であっても、電解液による電極活物質層の膨潤を抑制し、高温時においてサイクル寿命特性と出力特性が向上した電池とすることができる。また、電池の高温貯蔵特性や生産性も良好である。よって、本発明のリチウムイオン電池は、このような特性を生かして、携帯電話、スマートフォン、タブレット型端末などの情報通信機器、電気自動車(EV)、プラグインハイブリッド自動車(PHEV)、ハイブリッド自動車(HEV)、アイドリングストップ自動車などの車載用電源、家庭用バックアップ電源、自然エネルギーの蓄電、負荷平準化などの大型蓄電システム、などの用途を始めとして、従来から知られているリチウムイオン電池が用いられている各種用途と同じ用途に幅広く適用することが可能である。
 本発明に係るバインダは、これをリチウムイオン電池の電極に用いることで、高温時において、電解液を吸収して膨潤し難く、イオン伝導性にも優れる。また、このバインダは、Liを含有する活物質を用いてもスラリーのゲル化が起こり難い。
実施例における、バインダ材料Aを電極バインダとして含む電極を具備した電池(実施例1、実施例2、参考例1)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Bを電極バインダとして含む電極を具備した電池(実施例3~5、参考例2)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Cを電極バインダとして含む電極を具備した電池(実施例6~8、参考例3)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Dを電極バインダとして含む電極を具備した電池(実施例9~11)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Eを電極バインダとして含む電極を具備した電池(実施例12~14)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Fを電極バインダとして含む電極を具備した電池(参考例4~6)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Aを電極バインダとして含む電極を具備した電池(実施例1、実施例2、参考例1)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Bを電極バインダとして含む電極を具備した電池(実施例3~5、参考例2)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Cを電極バインダとして含む電極を具備した電池(実施例6~8、参考例3)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Dを電極バインダとして含む電極を具備した電池(実施例9~11)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Eを電極バインダとして含む電極を具備した電池(実施例14)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Fを電極バインダとして含む電極を具備した電池(参考例4~6)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。 実施例における、バインダ材料Aを電極バインダとして含む電極を具備した電池(実施例15、実施例16、参考例7)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例2)を比較して示すグラフである。 実施例における、バインダ材料Aを電極バインダとして含む電極を具備した電池(実施例15、実施例16、参考例7)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例2)を比較して示すグラフである。 実施例における、バインダのゲル化耐性(ゲル化耐性試験1及び2)を確認した結果を示す。 試験セパレータ1~4を具備した電池(実施例17~20)および、未塗布のセパレータを用いた電池(比較例3)を比較して示すグラフである。
 以下、実施例に基づいて本発明を具体的に説明するが、下記実施例は、本発明を制限するものではない。
[1.複合バインダの材料作製]
 表1に、複合バインダを作製するために使用した材料(バインダ材料A~G)を示す。
 バインダ材料Aは、未処理のセルロースナノファイバーがNMPに分散した液体である。バインダ材料Aの製造方法は、未処理のセルロースナノファイバーが水に分散した液体(固形比率5質量%)に対して、等体積量以上のNMPを加え、ロータリーエバポレータ(200hPa、70~90℃、160rpm)を用いて、撹拌しながら水を蒸発後、超音波(周波数38kHz、1分間)を照射して作製した。バインダ材料Aは、固形比率が7質量%を超えると、凝集や沈降を起こし易いため、固形比率4.4質量%とした。なお、セルロースナノファイバーが水に分散した液体は、市販の結晶セルロース粉末(旭化成ケミカルズ株式会社製、登録商標:セオラス、CEOLUS FD-101、平均粒子径50μm、嵩密度0.3g/cc)を用いて、水分散液の合計量に対してセルロースが4質量%になるように添加して、石臼式の解繊処理装置内へ投入し、石臼間で10回通過させる処理を行うことにより調製した。
 バインダ材料Bは、半エステル化処理されたセルロースナノファイバーがNMPに分散した液体である。バインダ材料Bの製造方法は、半エステル化処理セルロースナノファイバーが水に分散した液体(固形比率5質量%)を用いた他、バインダ材料Aと同様である。バインダ材料Bは、固形比率が10質量%を超えると、凝集や沈降を起こし易いため、固形比率4.1質量%とした。なお、半エステル化処理したセルロースナノファイバーが水に分散した液体は、未処理の市販の結晶セルロース粉末(旭化成ケミカルズ株式会社製、登録商標:セオラス、CEOLUS FD-101、平均粒子径50μm、嵩密度0.3g/cc)と無水コハク酸を86.5:13.5の比率でブレンドした後、130℃で加熱した容器内で反応処理を行い、その後、水分散液の合計量に対してセルロースが4wt%になるように添加して、石臼式の解繊処理装置内へ投入し、石臼間で10回通過させる処理を行うことにより調製した。
 バインダ材料Cは、セルロースを半エステル化処理後、二次的にプロピレンオキシド付加されたセルロースナノファイバーがNMPに分散した液体である。バインダ材料Cの製造方法は、セルロースを半エステル化処理後、二次的にプロピレンオキシド付加したセルロースナノファイバーが水に分散した液体(固形比率5質量%)を用いた他、バインダ材料Bと同様である。バインダ材料Cは、固形比率が10%を超えると、凝集や沈降を起こし易いため、固形比率3.3質量%とした。なお、プロピレンオキシドの付加処理したセルロースナノファイバーが水に分散した液体は、未処理の市販の結晶セルロース粉末(旭化成ケミカルズ株式会社製、登録商標:セオラス、CEOLUS FD-101、平均粒子径50μm、嵩密度0.3g/cc)と無水コハク酸を86.5:13.5の比率でブレンドした後、130℃で加熱した容器内で反応処理を行い、その後、さらにプロピレンオキシドをセルロース重量に対して、4.5wt%になるように添加して、140℃で反応処理を行い、さらに、水分散液の合計量に対して、このセルロースが4wt%になるように添加して、石臼式の解繊処理装置内へ投入し、石臼間で10回通過させる処理を行うことにより調製した。
 バインダ材料Dは、広葉樹から得られたリグニンを含むセルロースナノファイバーがNMPに分散した液体である。バインダ材料Dの製造方法は、広葉樹から得られたリグニンを含むセルロースナノファイバーが水に分散した液体を用いた他、バインダ材料Aと同様である。バインダ材料Dは、固形比率が2質量%を超えると、凝集や沈降を起こしやすかったため、固形比率1.5質量%とした。なお、広葉樹から得られたリグニンを含むセルロースナノファイバーが水に分散した液体は、水分散液の合計量に対してセルロースが4wt%になるように添加して、石臼式の解繊処理装置内へ投入し、石臼間で10回通過させる処理を行うことにより調製した。
 バインダ材料Eは、針葉樹から得られたリグニンを含むセルロースナノファイバーがNMPに分散した液体である。バインダ材料Eの製造方法は、針葉樹から生成されるセルロースナノファイバーを用いた他、バインダ材料Aと同様である。バインダ材料Eは、固形分比率が2質量%を超えると、凝集や沈降を起こしやすかったため、固形比率1.3質量%とした。なお、針葉樹から得られたリグニンを含むセルロースナノファイバーが水に分散した液体は、水分散液の合計量に対してセルロースが4wt%になるように添加して、石臼式の解繊処理装置内へ投入し、石臼間で10回通過させる処理を行うことにより調製した。
 バインダ材料Fは、NMPにナノクレイ(スメクトンSAN クニミネ工業社製 4%分散液粘度 4000mPa・s)が分散した液体である。バインダ材料Fは、固形分比率が4質量%を超えると、泡立ちが激しかったため、固形比率1.9質量%とした。バインダ材料Fの製造方法は、水にナノクレイが分散した液体(固形比率4質量%)に対して、等体積量以上のNMPを加え、ロータリーエバポレータ(200hPa、70~90℃、160rpm)を用いて、撹拌しながら水を蒸発後、超音波(周波数38kHz、1分間)を照射して作製した。
 バインダ材料Gは、NMPにPVdFを溶解した液体であり、自公転式ミキサー(シンキー製、2000rpm、30分間)により、NMPとPVdF(質量平均分子量:28万)とを混合して作製した。バインダ材料Gは、固形比率12質量%とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [2.バインダの作製]
 電極バインダは、下記表3に示す所定の固形組成となるように、バインダ材料A~Gを用いて、自公転式ミキサー(シンキー製、練太郎、2000rpm、30分間)により、NMPをバインダ溶媒とする複合バインダを作製した。
Figure JPOXMLDOC01-appb-T000003
[3.スラリーと電極の作製]
<スラリーの凝集性と沈降性などに関する検討>
 スラリーの凝集性と沈降性などに関する特性を確認した試験である。
 NCA電極スラリーは、活物質としてNCA(LiNi0.8Co0.15Al0.05)、導電助剤としてアセチレンブラック、表4に示される所定の電極バインダを固形比率で94:2:4質量%となるよう配合し、自公転式ミキサー(シンキー製、練太郎、2000rpm、15分間)を用いて混練しスラリー化した。
 表4に示すように、スラリーの凝集状態と沈降状態、発泡状態を観察後、厚み20μmのアルミニウム集電体にドクターブレードを用いて塗工し、スラリーの塗工性を観察した。
 表4から明らかなように、バインダに含まれるセルロースナノファイバーが、未処理のものよりも、多塩基酸半エステル(SA)化処理のもの、またはさらに二次処理としてプロピレンオキシド付加処理されているセルロースナノファイバーを用いたスラリーであることが好ましいことがわかる。また、全体的な傾向として、PVdFの含有量が増えるに従って、凝集性が改善される傾向にあり、塗工性については、PVdFのみのスラリーに近づくことがわかる。
Figure JPOXMLDOC01-appb-T000004
<NCA電極の作製>
 試験電極1~25は、表4に示される各スラリー(スラリー1~25)を厚み20μmのアルミニウム箔上にアプリケーターを用いて塗工し、80℃で仮乾燥した後、ロールプレスにより圧延し、減圧乾燥(160℃、12時間)することで作製した。各NCA正極の容量密度は、2.1mAh/cmとした。ただし、試験電極13、試験電極17、試験電極21については、スラリーの固形分が低くなりすぎるため、容量密度が1mAh/cmを超える電極を作製できなかった。この結果から、バインダ材料の固形比率は、2質量%以上が好ましいことがわかる。
<NCM523電極の作製>
 試験電極26~29は、活物質としてNCM(LiNi0.5Co0.2Mn0.3)、導電助剤としてアセチレンブラック、電極バインダとして表5に示される所定の電極バインダを固形比率で94:2:4質量%となるよう配合し、自公転式ミキサー(シンキー製、練太郎、2000rpm、15分間)を用いて混練しスラリー化したものを厚み20μmのアルミニウム箔上にアプリケーターを用いて塗工し、80℃で仮乾燥した後、ロールプレスにより圧延し、減圧乾燥(160℃、12時間)することで作製した。各NCM523正極の容量密度は、2.5mAh/cmとした。
Figure JPOXMLDOC01-appb-T000005
[4.NCA/Si全電池の作製]
 実施例1~14、参考例1~6および比較例1のNCA/Si全電池は、表6に示される試験電極を具備した試験電池である。試験電池は、正極としてNCA電極(試験電極)、負極としてSi電極、セパレータとしてガラス不織布(GA-100)、電解液として1mol/L  LiPF(EC:DEC=50:50vol%,+VC1質量%)を用いて、CR2032型コインセルを作製した。
 Si電極は、Si、PVdF(質量平均分子量:28万)、アセチレンブラックを固形比率で94:2:4質量%となるよう配合し、自公転式ミキサー(シンキー製、練太郎、2000rpm、15分間)を用いて混練し、スラリー化したものを厚み8μmのステンレス鋼箔に塗工し、100℃で仮乾燥した後、グラビアコーターを用いて、アルカリ金属ケイ酸塩水溶液(AO・nSiO;n=3.2、A=Li,Na,K)を塗布し、減圧乾燥(160℃、12時間)することで作製した。Si電極の容量密度は、4.5mAh/cmとした。ここで、Si電極にアルカリ金属ケイ酸塩水溶液を塗布した理由は、特許文献7にも記載されているように、Si電極の長寿命化のためで、試験電池が、Si負極の特性で律速されないよう高温耐久性を改善するために用いた。
 本発明において、全電池とは、対極に金属リチウムを用いらず、評価した電池であり、半電池とは、対極に金属リチウムを用いた電池を意味している。
Figure JPOXMLDOC01-appb-T000006
<60℃環境でのサイクル寿命特性>
 実施例1~14、参考例1~6および比較例1の試験電池の60℃環境でのサイクル寿命特性を評価した試験である。
 充放電試験は、環境温度60℃、カットオフ電位4.25~2.7Vの条件で、0.1C-rate、0.2C-rate、0.5C-rate、1Crateの各レートで1サイクル充放電した後、3C-rateで充放電を繰り返した。
 なお、充放電レートとは、公称容量値の容量を有するセルを定電流放電して、1時間で完全放電となる電流値を「1C-rate」とすることを基準とした指標であり、例えば、5時間で完全放電となる電流値は「0.2C-rate」、10時間で完全放電となる電流値は「0.1C-rate」と表記される。
 図1は、バインダ材料Aを電極バインダとして含む電極を具備した電池(実施例1、実施例2、参考例1)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図2は、バインダ材料Bを電極バインダとして含む電極を具備した電池(実施例3~5、参考例2)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図3は、バインダ材料Cを電極バインダとして含む電極を具備した電池(実施例6~8、参考例3)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図4は、バインダ材料Dを電極バインダとして含む電極を具備した電池(実施例9~11)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図5は、バインダ材料Eを電極バインダとして含む電極を具備した電池(実施例12~14)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図6は、バインダ材料Fを電極バインダとして含む電極を具備した電池(参考例4~6)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図1~図6から明らかなように、電極バインダ中にバインダ材料A~Eのいずれかを含む電池(実施例1~14)は、電極バインダとしてバインダ材料Gのみから構成される電池(比較例1)と比較して、明らかにサイクル寿命特性が改善していることがわかる。一方、同じナノオーダーの粒子であっても、電極バインダ中にバインダ材料Fが含まれる電池(参考例4~6)は、寿命改善効果はなく、むしろ性能が悪化する結果となった。これらの結果から、電極バインダ中にセルロースナノファイバーが含まれることで、電池の高温時におけるサイクル寿命特性を改善する効果があることがわかった。
<80℃環境でのサイクル寿命特性>
 実施例1~14、参考例1~6および比較例1の試験電池の80℃環境でのサイクル寿命特性を評価した試験である。
 充放電試験は、環境温度80℃、カットオフ電位4.25~2.7Vの条件で、0.1C-rate、0.2C-rate、0.5C-rate、1Crateの各レートで1サイクル充放電した後、3C-rateで充放電を繰り返した。
 図7は、バインダ材料Aを電極バインダとして含む電極を具備した電池(実施例1、実施例2、参考例1)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図8は、バインダ材料Bを電極バインダとして含む電極を具備した電池(実施例3~5、参考例2)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図9は、バインダ材料Cを電極バインダとして含む電極を具備した電池(実施例6~8、参考例3)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図10は、バインダ材料Dを電極バインダとして含む電極を具備した電池(実施例9~11)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図11は、バインダ材料Eを電極バインダとして含む電極を具備した電池(実施例14)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図12は、バインダ材料Fを電極バインダとして含む電極を具備した電池(参考例4~6)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例1)を比較して示すグラフである。
 図7~図12から明らかなように、電極バインダ中にバインダ材料A~Eのいずれかを含む電池(実施例1~14)は、電極バインダとしてバインダ材料Gのみから構成される電池(比較例1)と比較して、明らかにサイクル寿命特性が改善していることがわかる。一方、同じナノオーダーの粒子であっても、電極バインダ中にバインダ材料Fが含まれる電池(参考例4~6)は、寿命改善効果はない。これらの結果から、電極バインダ中にセルロースナノファイバーが含まれることで、電池の高温時におけるサイクル寿命特性を改善する効果があることがわかった。特に、電極バインダ中にバインダ材料A~Cのいずれかを含む電池(実施例1~8、参考例1~3)は、特に顕著な差が示された。
 80℃環境において、試験電極のバインダ中含まれるセルロースナノファイバーが多くなるに従い、高温時におけるサイクル寿命特性は改善される傾向にあるが、出力特性は低下する傾向にある。
[5.NCM523/SiO全電池の作製]
 実施例15、実施例16、参考例7および比較例2のNCM523電極は、表7に示される電極バインダを具備した試験電池である。試験電池は、正極としてNCM523電極(試験電極)、負極としてSiO電極、セパレータとして、ポリオレフィン微多孔膜(PP/PE/PP)、電解液として1mol/L  LiPF(EC:DEC=50:50vol%)を用いて、CR2032型コインセルを作製した。
 SiO電極は、SiO、PVA(重合度2800)、アセチレンブラック、VGCFを固形比率で94:10:4:1質量%となるよう配合し、自公転式ミキサー(シンキー製、練太郎、2000rpm、15分間)を用いて混練し、スラリー化したものを厚み40μmの銅箔に塗工し、80℃で仮乾燥した後、減圧乾燥(160℃、12時間)することで作製した。SiO電極の容量密度は、3.2mAh/cmとした。なお、SiO電極は、全電池を組み立てる前に、予め対極として金属リチウムを用いた半電池作製し、不可逆容量をキャンセルした後、半電池を解体して得られたSiO電極を用いた。
Figure JPOXMLDOC01-appb-T000007
<30℃環境でのサイクル寿命特性>
 実施例15、実施例16、参考例7および比較例2の試験電池の30℃環境でのサイクル寿命特性を評価した試験である。
 充放電試験は、環境温度30℃、カットオフ電位4.3~2.5Vの条件で、0.2C-rateで充放電を繰り返した。
 図13は、バインダ材料Aを電極バインダとして含む電極を具備した電池(実施例15、実施例16、参考例7)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例2)を比較して示すグラフである。
 図13から明らかなように、30℃環境では、サイクル寿命特性に大きな差は見られない。
<60℃環境でのサイクル寿命特性>
 実施例15、実施例16、参考例7および比較例2の試験電池の60℃環境でのサイクル寿命特性を評価した試験である。
 充放電試験は、環境温度60℃、カットオフ電位4.3~2.5Vの条件で、0.2C-rateで充放電を繰り返した。
 図14は、バインダ材料Aを電極バインダとして含む電極を具備した電池(実施例15、実施例16、参考例7)および、バインダ材料Gのみを電極バインダとして用いた電極を具備した電池(比較例2)を比較して示すグラフである。
 図14から明らかなように、60℃環境では、バインダ材料Aが含まれることで、サイクル寿命特性が改善される。特に、バインダ材料Aとバインダ材料Gとの割合は、バインダ材料Aが大きくなるほどその効果は大きくなる。
[6.ゲル化耐性の確認]
 バインダが強アルカリ性でゲル化するかを確認した試験である。
(ゲル化耐性試験1)
 ゲル化耐性試験1は、バインダ4に対して、水酸化リチウム(LiOH)を2質量%添加し、自公転式ミキサー(シンキー製、練太郎、2000rpm、15分間)を用いて撹拌後、25℃環境で、12時間放置した。
(ゲル化耐性試験2)
 ゲル化耐性試験2は、バインダ25に対して、水酸化リチウム(LiOH)を2質量%添加し、自公転式ミキサー(シンキー製、練太郎、2000rpm、15分間)を用いて撹拌後、25℃環境で、12時間放置した。
 図15に、バインダのゲル化耐性を確認した結果を示す。図15から明らかなように、ゲル化耐性試験2ではLiOH添加後、直ちに色に変化が生じたのに対して、ゲル化耐性試験1は、12時間放置しても色の変化はみられない。また、ゲル化耐性試験2は、12時間放置後は、PVdFがゲル化してガム状の物質に変化していたのに対して、ゲル化耐性試験1は、バインダの流動性を失っていない。
[7.表面コートセパレータの作製]
 試験セパレータ1~4は、表8に示される所定の固形組成となるように、バインダ5とアルミナ(粒径200nm)とを用いて、自公転式ミキサー(シンキー製、練太郎、2000rpm、30分間)により混練し、スラリー化したものを厚み16μmのポリプロピレン(PP)微多孔膜に片面塗工し、70℃で仮乾燥した後、減圧乾燥(80℃、24時間)することで作製した。試験セパレータ1~4の表面コート層の厚みは、各々4μmとした。また比較例として、未塗布のPP微多孔膜を試験セパレータ5として用いた。
 実施例17、実施例18、実施例19、実施例20および比較例3の試験電池は、表8に示されるセパレータ1~5を具備した試験電池である。試験電池(NCM111/黒鉛全電池)は、正極としてNCM111電極、負極としてグラファイト電極、セパレータとして試験セパレータ1~5、電解液として1mol/L  LiPF(EC:DEC=50:50vol%)を用いて、CR2032型コインセルを組み立て、80℃環境で1時間放置して作製した。なお、セパレータのコート層は正極側に設けた。
 NCM111電極は、NCM111、PVdF(質量平均分子量:28万)、アセチレンブラックを固形比率で91:5:4質量%となるよう配合し、自公転式ミキサー(シンキー製、練太郎、2000rpm、15分間)を用いて混練し、スラリー化したものを厚み15μmのアルミニウム箔に塗工し、80℃で仮乾燥した後、減圧乾燥(160℃、12時間)することで作製した。NCM111電極の片面の容量密度は、2.5mAh/cmとした。
 グラファイト電極は、グラファイト、SBR、カルボキシメチルセルロース(CMC)、アセチレンブラック、VGCFを固形比率で93.5:2.5:1.5:2:0.5質量%となるよう配合し、自公転式ミキサー(シンキー製、練太郎、2000rpm、15分間)を用いて混練し、スラリー化したものを厚み10μmの銅箔に塗工し、80℃で仮乾燥した後、減圧乾燥(160℃、12時間)することで作製した。グラファイト電極の片面の容量密度は、3.0mAh/cmとした。なお、本試験においての黒鉛電極は、不可逆容量をキャンセルしていない。
Figure JPOXMLDOC01-appb-T000008
<60℃環境でのサイクル寿命特性>
 実施例17~20および比較例3の試験電池の60℃環境でのサイクル寿命特性を評価した試験である。
 充放電試験は、環境温度60℃、カットオフ電位4.3~2.5Vの条件で、0.1C-rateで2サイクル充放電した後、0.2C-rateで3サイクル充放電した後、1C-rateで充放電を繰り返した。
 図16は、試験セパレータ1~4を具備した電池(実施例17~20)および、未塗布のセパレータを用いた電池(比較例3)を比較して示すグラフである。
 図16から明らかなように、セパレータの表面にコート層を設けることで、サイクル寿命特性が改善される。特に、Alが含まれるとその効果は大きくなる。
<釘刺し安全性>
 表面コートしたセパレータを用いた電池(実施例21)の安全性について試験を行った。また、比較として未塗布のセパレータを用いた電池(比較例4)を作製し同様の試験を行った。
 試験方法は、ラミネート電池に釘を刺して、ラミネート電池の発煙や発火の状態について検討する釘刺し試験による。試験には、アルミラミネートケーシングに、黒鉛負極(両面の容量密度は、6mAh/cm)、セパレータ、NCM111正極(両面の容量密度は、5mAh/cm)を複数積層して、電解液を封入した1.2Ahのラミネート電池を用いた他、実施例21は実施例20と同様である。比較例4は比較例3と同様である。
 釘刺試験は、この電池を0.1C-rateで4.2Vまで充電した後、25℃環境で電池の中央に鉄釘(φ3mm、丸型)を速度1mm/secで貫通するまで突き刺し、電池電圧と釘温度、ケーシングの温度を測定した。
 未塗布のセパレータを用いた電池(比較例4)は、釘刺しを行った時、電池電圧が0Vまで低下し、大量の煙が発生した。これは、電池の内部で短絡が起こった際の発熱で、セパレータがメルトダウンし、全面短絡に至ったためである。
 一方、セパレータの表面にバインダ5とAlとからなるセラミック層を形成したセパレータを用いた電池(実施例21)は、釘刺しを行った時も、3V以上の電圧を維持し、煙の発生はなく、ケーシングや釘の温度も50℃以下で、短絡による発熱がほとんど生じなかった。これは、電池の内部で短絡が起こった際の発熱でも、セパレータがメルトダウンせず、全面短絡に至らなかったためだと思われる。
 以上のとおり、図面を参照しながら本発明の好適な実施例を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。例えば、セルロースナノファイバーと熱可塑性フッ素系樹脂との割合は、上記した実施形態の数値に限られない。また、上記した実施例は、熱可塑性フッ素系樹脂としてPVdFは、ポリマーやコポリマー、共重合体であってもよく、また質量平均分子量は28万に限られない。また、セルロースナノファイバーは、カルボン酸基、スルホン酸基、リン酸基、硫酸基などのアニオン性基が含まれたものも本発明の範囲内に含まれる。また、活物質はNCAやNCM523に限られず、Liイオンを可逆的に吸蔵および放出することが可能な材料であればよい。したがって、そのようなものも本発明の範囲内として含む。
 

Claims (21)

  1.  セルロースナノファイバーと熱可塑性フッ素系樹脂とを複合化したリチウムイオン電池用の電極またはセパレータにおける非水系のバインダであって、
     前記セルロースナノファイバーが、繊維径(直径)が0.002μm以上1μm以下、繊維の長さが0.5μm以上10mm以下、アスペクト比(セルロースナノファイバーの繊維長/セルロースナノファイバーの繊維径)が、2以上100000以下のセルロースであることを特徴とするバインダ。
  2.  セルロースナノファイバーと熱可塑性フッ素系樹脂との固形分の合計を100質量%とした場合、セルロースナノファイバーが5質量%以上80質量%以下含まれ、熱可塑性フッ素系樹脂が20質量%以上95質量%以下含まれていることを特徴とする請求項1に記載のバインダ。
  3.  前記セルロースナノファイバーが、多塩基酸半エステル化処理され、ヒドロキシル基の一部がカルボキシル基に置換されたセルロースナノファイバーを含むことを特徴とする請求項1または請求項2に記載のバインダ。
  4.  前記セルロースナノファイバーが、エチレンオキシド付加処理またはプロピレンオキシド付加処理されたセルロースナノファイバーを含むことを特徴とする請求項1~3のいずれかに記載のバインダ。
  5.  前記熱可塑性フッ素系樹脂が、ポリフッ化ビニリデンまたはフッ化ビニリデン共重合体を含むことを特徴とする請求項1~4いずれかに記載のバインダ。
  6.  N-メチル-2-ピロリドンに熱可塑性フッ素系樹脂が溶解し、且つN-メチル-2-ピロリドン中にセルロースナノファイバーが分散したバインダであり、
     前記バインダにおけるセルロースナノファイバーと熱可塑性フッ素系樹脂とN-メチル-2-ピロリドンとの合計の質量を100質量%とした場合、セルロースナノファイバーと熱可塑性フッ素系樹脂との固形分の合計が、3質量%以上30質量%以下であることを特徴とする請求項1~5のいずれかに記載のバインダ。
  7.  請求項1~6のいずれかに記載のバインダを用いた電極。
  8.  ヘキサフルオロリン酸リチウムと環状カーボネートと鎖状カーボネートとを含有するポリマーゲルを含み、前記ポリマーゲルがセルロ-スナノファイバーを複合化したものであることを特徴とする請求項7に記載の電極。
  9.  Liを含有する活物質を用いた請求項7または請求項8に記載の電極。
  10.  請求項1~6のいずれかに記載のバインダを用いたセパレータ。
  11.  ヘキサフルオロリン酸リチウムと環状カーボネートと鎖状カーボネートとを含有するポリマーゲルを含み、前記ポリマーゲルがセルロ-スナノファイバーを複合化したものであることを特徴とする請求項10に記載のセパレータ。
  12.  請求項7~9のいずれかに記載の電極を用いたリチウムイオン電池であって、
     前記電極が、電極とセパレータとが一体化している電池に使用され、
     前記電極に用いられるバインダを介して電極とセパレータとを接着して一体化されたことを特徴とする電池。
  13.  請求項10または請求項11に記載のセパレータを用いたリチウムイオン電池であって、
     前記セパレータが、電極とセパレータとが一体化している電池に使用され、
     前記セパレータに用いられるバインダを介して電極とセパレータとを接着して一体化されたことを特徴とする電池。
  14.  請求項12に記載の電池及び請求項13に記載の電池の少なくともいずれかを備える、電気機器。
  15.  セルロースナノファイバーとヒドロキシル基を有する液状媒体とN-メチル-2-ピロリドンとの合計を100質量%とした場合、セルロースナノファイバーの固形分が0.1質量%以上20質量%以下となるように、セルロースナノファイバーが分散した前記液状媒体とN-メチル-2-ピロリドンとを混合し、セルロースナノファイバーと前記液状媒体とN-メチル-2-ピロリドンとが含まれる液体を得る工程(B)と、
     セルロースナノファイバーと前記液状媒体とN-メチル-2-ピロリドンとが含まれる前記の液体を撹拌しながら、前記液状媒体を蒸発させてN-メチル-2-ピロリドンの濃度を高める工程(C)と、
     を含むN-メチル-2-ピロリドンにセルロースナノファイバーを分散した液体の製造方法。
  16.  前記工程(C)が、10hPa以上900hPa以下の圧力中で、25℃以上150℃以下で加熱して、前記液状媒体を蒸発させてN-メチル-2-ピロリドンの濃度を高める工程であることを特徴とする、請求項15に記載のN-メチル-2-ピロリドンにセルロースナノファイバーを分散した液体の製造方法。
  17.  工程(B)の前に、セルロースと多塩基酸無水物とを加圧ニーダーまたは1軸以上の押出混練機にて、80℃以上150℃以下で混合し、セルロースの水酸基の一部に多塩基酸無水物を半エステル化してカルボキシル基を導入することにより、多塩基酸半エステル化セルロースを調製する工程(A)、
     を含む請求項15または請求項16に記載のN-メチル-2-ピロリドンにセルロースナノファイバーを分散した液体の製造方法。
  18.  工程(C)の後に、N-メチル-2-ピロリドンにセルロースナノファイバーを分散した液体に対して、周波数10kHz以上200kHz以下、振幅1μm以上200μm以下の超音波を照射する工程(D)、
     を含む請求項15~17のいずれかに記載のセルロースナノファイバーを分散した液体の製造方法。
  19.  N-メチル-2-ピロリドンに熱可塑性フッ素系樹脂が溶解し、且つセルロースナノファイバーが分散した液体であるリチウムイオン電池用バインダの製造方法であって、
     セルロースナノファイバーと熱可塑性フッ素系樹脂との固形分の合計を100質量%とした場合、セルロースナノファイバーが5質量%以上80質量%以下、熱可塑性フッ素系樹脂が20質量%以上95質量%以下となるように混合し、N-メチル-2-ピロリドンに熱可塑性フッ素系樹脂を溶解させる工程(E)、
     を含むリチウムイオン電池用バインダの製造方法。
  20.  少なくとも、正極と負極のいずれか一方に、請求項7~9のいずれかに記載の電極を用いた、リチウムイオン電池の製造方法であって、
     正極と負極との間にセパレータを介して積層または捲回された電極群を、ヘキサフルオロリン酸リチウムと非プロトン性カーボネートとを含有する電解液とともに、電槽体に封入して密閉後、
     電槽体の温度が50℃以上120℃以下の状態になるよう加熱し、
     電槽体の外側から、電極の延伸方向に対して垂直に圧力を加えて、
     熱可塑性フッ素系樹脂とセルロースナノファイバーとが複合化されたバインダを具備した電極とセパレータとを一体化する工程(F)、
     を含むリチウムイオン電池の製造方法。
  21.  少なくとも、請求項10または請求項11に記載のセパレータを用いた、リチウムイオン電池の製造方法であって、
     正極と負極との間にセパレータを介して積層または捲回された電極群を、ヘキサフルオロリン酸リチウムと非プロトン性カーボネートとを含有する電解液とともに、電槽体に封入して密閉後、
     電槽体の温度が50℃以上120℃以下の状態になるよう加熱し、
     電槽体の外側から、電極の延伸方向に対して垂直に圧力を加えて、
     熱可塑性フッ素系樹脂とセルロースナノファイバーとが複合化されたバインダを具備した電極とセパレータとを一体化する工程(F)、
     を含むリチウムイオン電池の製造方法。
     
PCT/JP2017/035626 2017-09-29 2017-09-29 リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ WO2019064538A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202311468486.7A CN117986620A (zh) 2017-09-29 2017-09-29 锂离子电池用粘合剂及使用该粘合剂的电极和隔膜
JP2019544140A JP6956194B2 (ja) 2017-09-29 2017-09-29 リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ
KR1020207008978A KR102344136B1 (ko) 2017-09-29 2017-09-29 리튬 이온 전지용 바인더 및 이것을 사용한 전극 및 세퍼레이터
EP17927039.2A EP3691002A4 (en) 2017-09-29 2017-09-29 BINDING AGENT FOR LITHIUM-ION BATTERIES AND ELECTRODE AND SEPARATOR WITH IT
CN201780095446.9A CN111164807B (zh) 2017-09-29 2017-09-29 锂离子电池用粘合剂及使用该粘合剂的电极和隔膜
US16/652,035 US20200251740A1 (en) 2017-09-29 2017-09-29 Binder for lithium ion batteries, and electrode and separator using same
KR1020217041313A KR102455272B1 (ko) 2017-09-29 2017-09-29 리튬 이온 전지용 바인더 및 이것을 사용한 전극 및 세퍼레이터
PCT/JP2017/035626 WO2019064538A1 (ja) 2017-09-29 2017-09-29 リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035626 WO2019064538A1 (ja) 2017-09-29 2017-09-29 リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ

Publications (1)

Publication Number Publication Date
WO2019064538A1 true WO2019064538A1 (ja) 2019-04-04

Family

ID=65902374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035626 WO2019064538A1 (ja) 2017-09-29 2017-09-29 リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ

Country Status (6)

Country Link
US (1) US20200251740A1 (ja)
EP (1) EP3691002A4 (ja)
JP (1) JP6956194B2 (ja)
KR (2) KR102344136B1 (ja)
CN (2) CN117986620A (ja)
WO (1) WO2019064538A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110690391A (zh) * 2019-10-12 2020-01-14 福建师范大学 高安全隔膜的涂覆方法
JP2020129479A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 リチウムイオン二次電池用の負極
JP2020184438A (ja) * 2019-05-07 2020-11-12 トヨタ自動車株式会社 固体電解質層の製造方法
WO2023100726A1 (ja) * 2021-11-30 2023-06-08 日本ゼオン株式会社 非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池
CN116259923A (zh) * 2023-01-31 2023-06-13 刘勇 一种锂电池隔膜的制备方法及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640588A (zh) * 2020-06-08 2020-09-08 广东黄宝石电子科技有限公司 一种特高压电解电容器用的共溶性电解液制备方法
CN111640945B (zh) * 2020-06-18 2023-01-03 合肥国轩高科动力能源有限公司 一种锂离子电池阳极浆料及其制作方法
CN111933865A (zh) * 2020-06-30 2020-11-13 河北金力新能源科技股份有限公司 一种锂电池复合涂层隔膜浆料的制备方法、浆料、隔膜和高镍体系锂电池
JP2022117834A (ja) 2021-02-01 2022-08-12 本田技研工業株式会社 非水電解質二次電池用負極及びこれを備える非水電解質二次電池
US20220285723A1 (en) * 2021-03-05 2022-09-08 Enevate Corporation Method And System For Safety Of Silicon Dominant Anodes
CN113937419B (zh) * 2021-09-30 2024-03-26 湖北工业大学 一种基于有机-无机复合粘结剂的陶瓷隔膜及其制备方法
WO2023195744A1 (ko) * 2022-04-04 2023-10-12 주식회사 엘지화학 리튬이차전지용 양극 바인더 또는 양극 절연액의 제조방법 및 이에 따라 제조한 양극 바인더 또는 양극 절연액을 포함하는 리튬이차전지
CN115000413B (zh) * 2022-06-07 2024-05-17 南京工程学院 一种动力电池集流体耐热涂碳铝箔及其制备方法
CN115548575B (zh) * 2022-09-22 2024-04-12 吉林大学 一种免烧全无机锂离子电池隔膜及其制备方法
CN115863065A (zh) * 2022-11-15 2023-03-28 韶关东阳光电容器有限公司 一种柔性电极纤维及其制备方法和应用

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612837B2 (ja) 1978-06-16 1986-01-28 Fumio Ootsu
JPS6149147B2 (ja) 1978-09-20 1986-10-28 Jidosha Kiki Co
JP2002260663A (ja) * 2001-02-27 2002-09-13 Toshiba Corp 非水電解質二次電池
JP2009293167A (ja) * 2008-06-09 2009-12-17 Nobuo Shiraishi ナノ繊維の製造方法、ナノ繊維、混合ナノ繊維、複合化方法、複合材料および成形品
JP2013084521A (ja) 2011-10-12 2013-05-09 National Institute Of Advanced Industrial & Technology 耐熱性リチウムイオン二次電池
JP2013185085A (ja) * 2012-03-08 2013-09-19 Kyoto City 変性ミクロフィブリル化植物繊維を含む発泡体
JP2014057627A (ja) 2012-09-14 2014-04-03 Speed Partners:Kk 装身具
WO2014185365A1 (ja) * 2013-05-13 2014-11-20 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
WO2014196551A1 (ja) * 2013-06-04 2014-12-11 株式会社日本製鋼所 セルロースナノファイバー入りポリオレフィン微多孔延伸フィルムの製造方法及びセルロースナノファイバー微多孔複合フィルム及び非水二次電池用セパレータ
JP2015101694A (ja) 2013-11-27 2015-06-04 凸版印刷株式会社 セルロースナノファイバー分散体及びセルロース修飾体、ならびに製造方法
JP2016021332A (ja) 2014-07-15 2016-02-04 川上 総一郎 二次電池用負極材料、電極構造体、二次電池、及びこれらの製造方法
JP2016111001A (ja) * 2014-11-28 2016-06-20 パナソニック株式会社 非水電解質二次電池用セパレータ及び非水電解質二次電池
JP5999683B2 (ja) 2012-03-28 2016-09-28 国立研究開発法人産業技術総合研究所 高温特性に優れたリチウムイオン二次電池用正極、この正極を具備するリチウムイオン二次電池及びこの二次電池を用いた電気機器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612837A (ja) 1984-06-15 1986-01-08 オリンパス光学工業株式会社 硬性内視鏡用シ−ス
KR100354948B1 (ko) * 1999-03-30 2002-10-11 가부시끼가이샤 도시바 이차전지
KR100390099B1 (ko) * 2000-09-28 2003-07-04 가부시끼가이샤 도시바 비수전해질 및 비수전해질 이차전지
JP2011003529A (ja) * 2009-05-21 2011-01-06 Mitsubishi Chemicals Corp 非水系二次電池用バインダー樹脂組成物、非水系二次電池用負極及び非水系二次電池
KR20140057627A (ko) 2011-09-01 2014-05-13 졸 메디컬 코포레이션 착용식 모니터링 및 처치 장치
FR2981206B1 (fr) * 2011-10-06 2013-11-29 Inst Polytechnique Grenoble Procede de preparation d'electrodes flexibles auto-supportees.
CN102522514B (zh) * 2011-12-21 2014-07-16 莱州联友金浩新型材料有限公司 一种耐高温微孔薄膜材料及其应用
WO2014098519A1 (ko) * 2012-12-21 2014-06-26 주식회사 아모그린텍 다공성 분리막, 이를 이용한 이차전지 및 그의 제조방법
CN104919639B (zh) * 2013-01-15 2019-02-01 阿莫绿色技术有限公司 聚合物电解质、利用其的锂二次电池及其制备方法
JP6398995B2 (ja) * 2014-01-16 2018-10-03 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
EP3098880B1 (en) * 2015-05-27 2019-02-27 Samsung Electronics Co., Ltd. Separator including microbial cellulose, method of producing the separator, and use of the separator
EP3345930A4 (en) * 2015-09-30 2019-07-31 The Japan Steel Works, Ltd. DEVICE FOR CONTINUOUS PRODUCTION OF CHEMICALLY MODIFIED CELLULOSE AND METHOD USED IN SAME
CN106920968A (zh) * 2015-12-25 2017-07-04 深圳市比克动力电池有限公司 锂离子电池负极混料、负极和锂离子电池
JP6122941B2 (ja) * 2015-12-25 2017-04-26 株式会社日本製鋼所 セルロースナノファイバー入りポリオレフィン微多孔延伸フィルムの製造に用いるための押出成形体の製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS612837B2 (ja) 1978-06-16 1986-01-28 Fumio Ootsu
JPS6149147B2 (ja) 1978-09-20 1986-10-28 Jidosha Kiki Co
JP2002260663A (ja) * 2001-02-27 2002-09-13 Toshiba Corp 非水電解質二次電池
JP2009293167A (ja) * 2008-06-09 2009-12-17 Nobuo Shiraishi ナノ繊維の製造方法、ナノ繊維、混合ナノ繊維、複合化方法、複合材料および成形品
JP2013084521A (ja) 2011-10-12 2013-05-09 National Institute Of Advanced Industrial & Technology 耐熱性リチウムイオン二次電池
JP2013185085A (ja) * 2012-03-08 2013-09-19 Kyoto City 変性ミクロフィブリル化植物繊維を含む発泡体
JP5999683B2 (ja) 2012-03-28 2016-09-28 国立研究開発法人産業技術総合研究所 高温特性に優れたリチウムイオン二次電池用正極、この正極を具備するリチウムイオン二次電池及びこの二次電池を用いた電気機器
JP2014057627A (ja) 2012-09-14 2014-04-03 Speed Partners:Kk 装身具
WO2014185365A1 (ja) * 2013-05-13 2014-11-20 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
WO2014196551A1 (ja) * 2013-06-04 2014-12-11 株式会社日本製鋼所 セルロースナノファイバー入りポリオレフィン微多孔延伸フィルムの製造方法及びセルロースナノファイバー微多孔複合フィルム及び非水二次電池用セパレータ
JP2015101694A (ja) 2013-11-27 2015-06-04 凸版印刷株式会社 セルロースナノファイバー分散体及びセルロース修飾体、ならびに製造方法
JP2016021332A (ja) 2014-07-15 2016-02-04 川上 総一郎 二次電池用負極材料、電極構造体、二次電池、及びこれらの製造方法
JP2016111001A (ja) * 2014-11-28 2016-06-20 パナソニック株式会社 非水電解質二次電池用セパレータ及び非水電解質二次電池

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
See also references of EP3691002A4
TAKASHI MUKAI ET AL., INDUSTRIAL MATERIALS, vol. 63, no. 12, 2015, pages 18 - 23
TAKASHI MUKAI ET AL., MATERIAL STAGE, vol. 17, no. 5, 2017, pages 29 - 33
TAKASHI MUKAI ET AL.: "Lithium-ion secondary battery-approach to material design and evaluation method for higher capacity and improved characteristics", 2017, INFORMATION TECHNOLOGY CO., LTD., pages: 210 - 220

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129479A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 リチウムイオン二次電池用の負極
JP2020184438A (ja) * 2019-05-07 2020-11-12 トヨタ自動車株式会社 固体電解質層の製造方法
JP7167839B2 (ja) 2019-05-07 2022-11-09 トヨタ自動車株式会社 固体電解質層の製造方法
CN110690391A (zh) * 2019-10-12 2020-01-14 福建师范大学 高安全隔膜的涂覆方法
CN110690391B (zh) * 2019-10-12 2022-04-22 福建师范大学 高安全隔膜的涂覆方法
WO2023100726A1 (ja) * 2021-11-30 2023-06-08 日本ゼオン株式会社 非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池
CN116259923A (zh) * 2023-01-31 2023-06-13 刘勇 一种锂电池隔膜的制备方法及装置
CN116259923B (zh) * 2023-01-31 2024-01-05 南京贝迪新材料科技股份有限公司 一种锂电池隔膜的制备方法

Also Published As

Publication number Publication date
KR20200046077A (ko) 2020-05-06
CN111164807A (zh) 2020-05-15
EP3691002A1 (en) 2020-08-05
KR102344136B1 (ko) 2021-12-29
KR102455272B1 (ko) 2022-10-17
CN111164807B (zh) 2023-12-01
JP6956194B2 (ja) 2021-11-02
CN117986620A (zh) 2024-05-07
JPWO2019064538A1 (ja) 2020-09-10
US20200251740A1 (en) 2020-08-06
KR20210156334A (ko) 2021-12-24
EP3691002A4 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP6956194B2 (ja) リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ
TWI620374B (zh) 骨骼形成劑及使用該骨骼形成劑的負極
US9166251B2 (en) Battery separator and nonaqueous electrolyte battery
EP2555306A1 (en) Lithium-ion secondary battery
TWI780274B (zh) 非水電解質二次電池及非水電解質二次電池的製造方法
JP7128290B2 (ja) リチウム二次電池用の負極活物質及びこれを含むリチウム二次電池
JP7001723B2 (ja) 分離膜及びそれを採用したリチウム電池
KR102256479B1 (ko) 리튬 이차전지용 음극 활물질 및 이의 제조방법
TW202224243A (zh) 二次電池用電極合劑、二次電池用電極合劑片及其製造方法、以及二次電池
JP2009064566A (ja) 電池用セパレータおよび非水電解質電池
WO2020059550A1 (ja) 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
WO2022050252A1 (ja) 全固体二次電池用合剤、全固体二次電池用合剤シート及びその製造方法並びに全固体二次電池
JP2018147769A (ja) 電気化学素子用セパレータおよび非水電解質電池
WO2022138942A1 (ja) 固体二次電池用シートの製造方法及び固体二次電池用結着剤
KR20190060698A (ko) 실리콘계 입자-고분자 복합체, 및 이를 포함하는 음극 활물질
TWI755429B (zh) 鋰離子電池用黏合劑及使用其之電極暨分隔件
TWI804131B (zh) 於n-甲基-2-吡咯啶酮中分散有纖維素奈米纖維的液體之製造方法
JP2016062849A (ja) 電気化学素子用セパレータ及びそれを用いた電気化学素子
WO2022202901A1 (ja) 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法
JP7364973B2 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
TW202410517A (zh) 固體二次電池用片之製造方法、固體二次電池電極用黏結劑、電極製作用組成物、電極合劑、及電極
JP2023098419A (ja) 二次電池及び二次電池システム
TW202347854A (zh) 二次電池用合劑、二次電池用合劑片及其製造方法以及二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544140

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207008978

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017927039

Country of ref document: EP

Effective date: 20200429