WO2022202901A1 - 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法 - Google Patents

固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2022202901A1
WO2022202901A1 PCT/JP2022/013526 JP2022013526W WO2022202901A1 WO 2022202901 A1 WO2022202901 A1 WO 2022202901A1 JP 2022013526 W JP2022013526 W JP 2022013526W WO 2022202901 A1 WO2022202901 A1 WO 2022202901A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
porous support
sheet
solid
negative electrode
Prior art date
Application number
PCT/JP2022/013526
Other languages
English (en)
French (fr)
Inventor
秀幸 鈴木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020237025420A priority Critical patent/KR20230125032A/ko
Priority to CN202280013764.7A priority patent/CN116868407A/zh
Priority to JP2023509247A priority patent/JPWO2022202901A1/ja
Publication of WO2022202901A1 publication Critical patent/WO2022202901A1/ja
Priority to US18/361,903 priority patent/US20240006715A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/497Ionic conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte laminate sheet, an all-solid secondary battery, and a method for manufacturing an all-solid secondary battery.
  • a secondary battery such as a lithium ion secondary battery has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and usually contains a metal belonging to Group 1 or Group 2 of the periodic table ( Hereafter, it may be simply referred to as a metal.) is a storage battery that can be charged and discharged by reciprocating ions between both electrodes.
  • Organic electrolytes have been conventionally used as electrolytes in secondary batteries. However, organic electrolytes tend to leak, and there is also a risk of short-circuiting inside the battery due to overcharge or overdischarge, and further improvements in reliability and safety are required.
  • An all-solid secondary battery consists of a negative electrode, an electrolyte, and a positive electrode, all of which are solid, and can greatly improve safety and reliability, which are problems of batteries using organic electrolytes, and also enable longer life. It is said that
  • Patent Document 1 describes "a solid electrolyte layer containing inorganic solid electrolyte particles and having a porosity of 10% or less, and an easily destructible layer containing inorganic solid electrolyte particles and having a porosity of 15% or more. ,” and an all-solid secondary battery containing this solid electrolyte laminate sheet.
  • Patent Document 2 "an electronic ion conductive layer containing a lithium ion conductive inorganic solid electrolyte and electronically conductive particles and adjacent to a negative electrode current collector and having a porosity of 20% or more and a lithium ion conductive and an ion-conducting layer having a porosity of 20% or more on the opposite side of the electron-ion-conducting layer to the negative electrode current collector”.
  • an all-solid secondary battery using this laminated sheet for a negative electrode "containing a lithium ion conductive inorganic solid electrolyte and electronically conductive particles, adjacent to the negative electrode current collector , an electron ion conductive layer having a porosity of 15% or more and a lithium ion conductive inorganic solid electrolyte, wherein the electron ion conductive layer on the side opposite to the negative electrode current collector has a porosity of 10% or less an ion-conducting layer and a positive electrode active material layer adjacent to the ion-conducting layer on the side opposite to the electron-ion-conducting layer;
  • An all-solid lithium ion secondary battery in which the negative electrode active material is metallic lithium” is described.
  • Patent Document 3 a lithium battery having a collecting electrode, a negative electrode active material, a wet sand-like electrolyte layer impregnated with a plurality of particles of a room temperature molten salt electrolyte, and an inorganic solid electrolyte layer in this order A lithium battery using an electrode assembly as a negative electrode is described.
  • JP 2020-107594 A WO2020-196040 JP 2016-058250 A
  • an all-solid secondary battery when an all-solid secondary battery is charged, deposition and dissolution of metal are repeated due to charging and discharging, and the negative electrode active material layer undergoes volumetric fluctuation (expansion and contraction).
  • an all-solid secondary battery in which metal ions generated in the positive electrode active material layer by charging are reduced and deposited on the negative electrode side is used as the negative electrode active material layer.
  • Volume fluctuations are large due to the deposition and dissolution of metal between layers. These volume fluctuations gradually form voids in the layers or between the layers, and when the metal is isolated in these voids without contact with the negative electrode current collector or the solid electrolyte layer (formation of isolated metal), the metal dissolves. (Ionization) becomes impossible.
  • Patent Document 3 does not sufficiently consider preventing the occurrence of such an internal short circuit and suppressing deterioration in cycle characteristics.
  • Patent Literatures 1 and 2 it is expected that the occurrence of internal short circuits and deterioration of cycle characteristics can be suppressed to some extent in all-solid secondary batteries.
  • the development of all-solid-state secondary batteries for practical use is progressing rapidly, and in addition to further improving battery performance such as cycle characteristics, the occurrence of internal short circuits is highly suppressed and high reliability is achieved. (safety) is desired.
  • the present invention further improves the cycle characteristics while suppressing the occurrence of internal short circuit of the all-solid secondary battery even if the all-solid secondary battery incorporated in the all-solid secondary battery is repeatedly charged and discharged.
  • An object of the present invention is to provide a solid electrolyte laminated sheet that realizes the above.
  • Another object of the present invention is to provide an all-solid secondary battery that suppresses the occurrence of internal short circuits and has excellent cycle characteristics, and a method for manufacturing the same.
  • the present inventors have found that the solid electrolyte layer incorporated in the all-solid secondary battery has a multilayer structure, and one of the layers is composed of a layer that allows metal deposition without large volume fluctuations.
  • the other layer by forming the other layer with a dense layer with few voids, it is possible to suppress the occurrence of an internal short circuit, and furthermore, it is possible to suppress the deterioration of the cycle characteristics.
  • a layer that enables metal deposition is simply provided with many voids for accommodating the deposited metal (porosity not only by increasing the porosity by incorporating a support that serves as a basic skeleton, but also by constructing a layer that makes it difficult for defects (cracks, cracks, destruction, etc.) to occur due to precipitation and dissolution of the metal. It was found that the precipitated metal can be accommodated without being isolated during dissolution while suppressing the volume change due to the precipitation and dissolution of the metal.
  • ⁇ 2> The solid electrolyte laminate sheet according to ⁇ 1>, wherein the inorganic solid electrolyte incorporated in the porous support is particles smaller than the opening diameter of the porous support.
  • ⁇ 3> The solid electrolyte laminate sheet according to ⁇ 1> or ⁇ 2>, wherein the inorganic solid electrolyte contained in the solid electrolyte layer contains particles larger and smaller than the opening diameter of the porous support.
  • All-solid secondary battery described. ⁇ 11> A method for producing an all-solid secondary battery using the solid electrolyte laminate sheet according to any one of ⁇ 1> to ⁇ 4> above, An all-solid secondary battery comprising a step of pressing the solid electrolyte laminate sheet until the solid electrolyte layer has a porosity of 10% or less while suppressing the porosity of the porous support of the solid electrolyte laminate sheet to 15% or more. manufacturing method.
  • the method for producing an all-solid secondary battery according to ⁇ 11> including the step of forming a negative electrode active material layer between the negative electrode current collector and the porous support.
  • the step of forming a negative electrode active material layer is a step of forming a negative electrode composition containing a negative electrode active material or a step of laminating a metallic lithium foil.
  • the all-solid secondary battery of the present invention suppresses the occurrence of internal short circuits and has excellent cycle characteristics.
  • the method for producing an all-solid-state secondary battery of the present invention can easily produce an all-solid-state secondary battery that suppresses the occurrence of internal short circuits and has excellent cycle characteristics.
  • the solid electrolyte laminate sheet of the present invention can be used to manufacture an all-solid secondary battery, thereby realizing an all-solid secondary battery having the above-described excellent characteristics.
  • FIG. 1 is a longitudinal sectional view schematically showing a preferred embodiment of the all-solid secondary battery of the present invention.
  • FIG. 2 is a longitudinal sectional view schematically showing a preferred embodiment of the solid electrolyte laminated sheet of the present invention.
  • a numerical range represented using “ ⁇ ” means a range including the numerical values described before and after " ⁇ " as lower and upper limits.
  • the upper limit and lower limit forming the numerical range are not limited to a combination of specific upper and lower limits.
  • a numerical range can be formed by appropriately combining the upper limit and the lower limit of each numerical range.
  • the all-solid secondary battery of the present invention is an all-solid secondary battery manufactured using the solid electrolyte laminate sheet of the present invention, comprising a negative electrode current collector, a porous support for the solid electrolyte laminate sheet, and a solid electrolyte laminate sheet. has a layered structure in which the solid electrolyte layer and the positive electrode active material layer are laminated and pressure-bonded in this order.
  • This layer structure consists of a porous support (hereinafter also referred to as an in-battery porous support) after laminating and press-bonding a porous support of a solid electrolyte laminate sheet on a negative electrode current collector, and a solid electrolyte laminate sheet. (hereinafter also referred to as an in-battery solid electrolyte layer) and a positive electrode active material layer in this order.
  • this layer structure is such that a negative electrode current collector is provided on the surface of the in-battery porous support opposite to the in-battery solid electrolyte layer, and a negative electrode current collector is provided on the surface of the in-battery porous support on the side opposite to the in-battery porous support of the in-battery solid electrolyte layer. It has a positive electrode active material layer on its surface.
  • the all-solid secondary battery has a form having a negative electrode active material layer formed (arranged) in advance (sometimes referred to as a form having a negative electrode active material layer formed in advance), and a form having a negative electrode active material layer formed in advance.
  • a mode in which a layer is not formed in advance, and the metal (layer) obtained by reducing and depositing metal ions generated in the positive electrode active material layer by charging is used as the negative electrode active material layer (the negative electrode active material layer is not formed in advance).
  • An all-solid secondary battery of this form is sometimes referred to as a self-forming negative electrode type all-solid secondary battery.).
  • the metal preferably metallic lithium
  • the metal may be deposited at least within the porous support inside the battery (usually within the voids), and further appropriately on the surface of the negative electrode current collector ( It may be deposited on the interface between the in-battery porous support and the negative electrode current collector), the interface between the in-battery porous support and the in-battery solid electrolyte layer, and further within the battery solid electrolyte layer.
  • metallic lithium is adopted as the metal to be deposited, it has a theoretical capacity of 10 times or more compared to graphite, which is commonly used as a negative electrode active material for ordinary all-solid secondary batteries, and does not form a negative electrode active material layer in advance. Since the battery can be formed as thin as that, the self-assembled negative electrode type all-solid secondary battery can realize a high energy density.
  • the self-assembled negative electrode type all-solid secondary battery has an uncharged mode (a mode in which the metal that constitutes the negative electrode active material layer is not deposited) and a charged mode (the metal that constitutes the negative electrode active material layer is precipitated) and both aspects.
  • the phrase "no metal is deposited” includes an aspect in which a part of the metal remains as long as it does not impair the effects of the present invention. do.
  • "already charged” means a state in which charging is completed as well as a state in which charging is in progress
  • “uncharged” means a state in which discharging is completed.
  • the self-forming negative electrode type all-solid secondary battery means that the negative electrode active material layer is not formed in the layer forming process in battery production, and as described above, the negative electrode active material layer is formed by charging. It is a thing.
  • the in-battery porous support and the in-battery solid electrolyte layer may have a dendrite penetration blocking layer, which will be described later, interposed between them, but are preferably adjacent to each other.
  • the in-battery solid electrolyte layer and the positive electrode active material layer are preferably adjacent to each other.
  • the preferred lamination state of the negative electrode current collector and the in-battery porous support differs depending on the form of the all-solid secondary battery.
  • the negative electrode current collector and the in-battery porous support have three adjacent layers with the negative electrode active material layer interposed between the layers.
  • the negative electrode current collector and the in-battery porous support are preferably adjacent to each other.
  • the adjoining layers means that the surfaces of the layers are arranged (formed) in contact with each other.
  • the porosity of the in-battery porous support is 15% or more, and the porosity of the in-battery solid electrolyte layer is 10% or less.
  • the porosity of each layer is measured by the following method. That is, an SEM photograph obtained by observing an arbitrary cross section of each layer at a magnification of 30,000 times with a scanning electron microscope (SEM) is used to determine the (total) area of the voids in a visual field of 3 ⁇ m ⁇ 2.5 ⁇ m. is calculated as an area ratio (percentage) obtained by dividing by the visual field area (7.5 ⁇ m 2 ).
  • each layer constituting the all-solid secondary battery may have a single layer structure or a multilayer structure as long as it exhibits a specific function.
  • Other configurations of the all-solid secondary battery of the present invention are not particularly limited as long as they have the layer structure described above, and for example, known configurations related to all-solid secondary batteries can be employed.
  • the all-solid secondary battery of the present invention preferably has a metal film capable of forming an alloy with lithium on the surface of the in-battery porous support opposite to the in-battery solid electrolyte layer.
  • a known dendrite penetration blocking layer can be arranged between the in-battery porous support and the in-battery solid electrolyte layer.
  • FIG. 1 is a cross-sectional view schematically showing the lamination state (layer structure) of each constituent layer constituting the battery in one embodiment of the self-assembled negative electrode type all-solid secondary battery (uncharged aspect) of the present invention.
  • the self-forming negative electrode type all-solid secondary battery 10 of the present embodiment includes, viewed from the negative electrode side, a negative electrode current collector 1, an in-battery porous support 2, an in-battery solid electrolyte layer 3, a positive electrode active material layer 4, and a positive electrode collector. It has a layered structure in which the conductors 5 are laminated in this order, and the laminated layers are in direct contact with each other.
  • the self-forming negative electrode type all-solid secondary battery having such a layer structure
  • electrons (e ⁇ ) are supplied to the negative electrode side, and at the same time the alkali metal or alkaline earth metal constituting the positive electrode active material is ionized. Then, it passes (conducts) through the in-battery solid electrolyte layer 3, moves to the in-battery porous support 2, combines with electrons (reduces), and deposits an alkali metal or an alkaline earth metal.
  • lithium ions Li +
  • Li + lithium ions
  • the alkali metal or alkaline earth metal deposited in the in-battery porous support 2 functions as a negative electrode active material layer.
  • the precipitated alkali metal or alkaline earth metal generates metal ions and electrons.
  • the metal ions pass (conduct) through the in-battery solid electrolyte layer 3 and are returned (moved) to the positive electrode active material layer side, and the electrons are supplied to the operating portion 6 and reach the positive electrode current collector 5 .
  • a light bulb is adopted as the operating portion 6, and is designed to be lit by discharging.
  • An all-solid secondary battery in which a negative electrode active material layer is formed in advance has a negative electrode active material layer (not shown in FIG. 1) between the negative electrode current collector 1 and the in-battery porous support 2, as described above. ) is placed.
  • the operation of the all-solid secondary battery of this form is basically the same as that of the self-assembled negative electrode-type all-solid secondary battery 10 except that the negative electrode active material layer does not disappear during discharge.
  • the all-solid secondary battery of the present invention having the layer structure described above is preferably manufactured by the method for manufacturing an all-solid secondary battery of the present invention, which will be described later, using the solid electrolyte laminate sheet of the present invention.
  • INDUSTRIAL APPLICABILITY The all-solid-state secondary battery of the present invention highly suppresses the occurrence of an internal short circuit (over multiple cycles), suppresses the decrease in discharge capacity even after repeating multiple cycles of charging and discharging, and exhibits excellent cycle characteristics.
  • the all-solid secondary battery of the present invention has an intra-battery porous support having a porosity of 15% or more and an intra-battery solid electrolyte layer having a porosity of 10% or less on a negative electrode current collector.
  • this in-battery porous support has an inorganic solid electrolyte built-in (internal) in the porous support (the inorganic solid electrolyte is contained in the pores), and the precipitated alkali metal or alkali It has sufficient voids to accommodate earth metals (sometimes simply called metals).
  • the metal can be deposited and accumulated in the porous support (void) in the battery while suppressing volume fluctuation.
  • the in-battery porous support which is composed of a porous support as a basic skeleton, is less prone to defects (cracks, cracks, breakage, etc.) due to deposition and dissolution of metal (hardly self-destructs).
  • the metal is in contact with the inorganic solid electrolyte embedded in the porous support (inside the pores) or the already deposited metal (the inorganic solid electrolyte is placed in place and the ion conduction path is deposited).
  • the ion conduction path constructed in the porous support in the battery is maintained during dissolution, and the metal is sequentially ionized to convert the undissolved metal. Isolation can be suppressed. It is considered that such deposition and dissolution of the metal will not be damaged even if the all-solid secondary battery is repeatedly charged and discharged.
  • the in-battery solid electrolyte layer has a small porosity and can prevent the growth (penetration) of dendrites toward the positive electrode.
  • the porous support in the battery accommodates the deposited metal and effectively suppresses volumetric fluctuations while effectively suppressing defects.
  • the material forming the negative electrode current collector is not particularly limited, but includes metal materials such as aluminum, copper, copper alloys, stainless steel, nickel and titanium, with nickel, copper, copper alloys and stainless steel being preferred. In addition, the surface of these metal materials may be treated with carbon, nickel, titanium or silver (thin film formed).
  • a film sheet is usually used, but a net, a punched one, a lath, a porous body, a foam, a molded fiber group, and the like can also be used.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. It is also preferable that the surface of the negative electrode current collector is roughened by surface treatment. In the present invention, both the negative electrode current collector and the later-described positive electrode current collector are sometimes collectively referred to as the current collector.
  • the in-battery porous support is composed of a sheet-like porous support as a basic framework (base), and contains an inorganic solid electrolyte having ionic conductivity of a metal belonging to Group 1 or Group 2 of the periodic table. It is internal (usually attached to the pore surface). It is a layer that has a porosity of 15% or more and is capable of accommodating metal deposited inside (ordinary voids). Therefore, the in-battery porous support can accumulate metal in the voids in the pores by charging and discharging while suppressing volume fluctuation and self-destruction.
  • This in-battery porous support differs from the "destructible layer" of Patent Document 1, which actively self-destructs, in that it is difficult to self-destruct due to volume fluctuation and dendrite growth, in terms of its properties and function.
  • the porosity of the intra-battery porous support when the porosity of the intra-battery porous support is 15% or more, the deposited metal can be accommodated while suppressing volume fluctuation, and high cycle characteristics can be achieved.
  • the porosity of the in-battery porous support is preferably 20% or more.
  • the porosity can be set higher, for example, 30% or more, more preferably 35% or more, by taking advantage of the property that the in-battery porous support is less likely to break.
  • the upper limit of the porosity is appropriately determined according to the amount of metal deposition in the all-solid secondary battery. For example, it is preferably 80% or less, more preferably 60% or less, and 50% or less. is more preferred.
  • the porosity of the in-battery porous support is a value calculated as an area ratio by the above method.
  • the thickness of the in-battery porous support is not particularly limited, and can be appropriately determined according to the battery capacity (metal deposition amount), porosity, and the like. For example, it can be 1 to 100 ⁇ m, preferably 3 to 80 ⁇ m.
  • the intra-battery porous support is preferably a pressure-compressed intra-sheet porous support, which will be described later.
  • the in-battery porous support preferably exhibits metal ion conductivity.
  • the metal ion conductivity exhibited by the porous support in the battery is not particularly limited, and is appropriately set within a range that does not impair the conduction (movement) of metal ions generated from the metal (the range that functions as a constituent layer of the secondary battery). be done.
  • the metal ion conductivity can be adjusted by the type and content of the inorganic solid electrolyte contained.
  • the intra-battery porous support does not exhibit electronic conductivity (is electronically insulating) in the discharged state of the all-solid secondary battery.
  • the electronic insulation of the in-battery porous support is not limited to the property of having a conductivity of 0 (S/m). It includes a property that exhibits a degree of conductivity that does not allow electrons to conduct (move) into the battery (electronic insulation that does not short-circuit the all-solid-state secondary battery).
  • the intra-battery porous support incorporates a metal deposited as a negative electrode active material in the charged state of the all-solid-state secondary battery.
  • the metal contained in the in-battery porous support varies depending on the capacity of the positive electrode active material layer and is not uniquely determined.
  • the porous support constituting the in-battery porous support means a support having many micrometer-order pores (holes opening on the surface, through holes, etc.), and is a known sheet-like porous support.
  • Materials can be used without particular restrictions.
  • Examples of the porous material include a sponge-like molded body, a sheet-shaped molded body having many through-holes, and a non-woven fabric.
  • the material forming the porous support is not particularly limited, and examples thereof include various resins, ceramics, fibers, etc. Resins and fibers are preferred.
  • resins include natural fiber/polyethylene terephthalate (PET)/acrylic resin coated composite resins, fluorine-containing resins, hydrocarbon-based thermoplastic resins, acrylic resins, polyurethane resins, polyurea resins, polyamide resins, polyimide resins, Examples include polyester resins, polyether resins, polycarbonate resins, cellulose derivative resins, etc.
  • fibers include natural fibers, composite resin fibers, and the like. Among them, the above-mentioned composite resin and the like are preferable in that they exhibit appropriate strength (to the extent that they are not crushed or greatly compressed) against the pressure applied during the production of the all-solid secondary battery.
  • the porous support the sheet-like molding made of resin or the non-woven fabric is preferable in that the porosity can be adjusted by compressing the porous support by pressurization during production of the all-solid secondary battery.
  • the porosity of the porous support itself is appropriately determined according to the material, the pressure applied during production of the all-solid secondary battery, and the amount of metal deposition in the all-solid secondary battery. be.
  • the porosity can be 50 to 99%, 60 to 97%. It is preferable to set it to 70 to 95%.
  • the opening diameter of the porous support itself is appropriately determined in consideration of the easiness of filling the inorganic solid electrolyte.
  • the opening diameter measured by the following measuring method is preferably 0.1 to 50 ⁇ m, more preferably 1 to 20 ⁇ m.
  • the aperture diameter is obtained by arbitrarily selecting 10 apertures in an area of 1 mm ⁇ 1 mm in an SEM photograph obtained by observing an arbitrary surface of the porous support with an SEM at a magnification of 30,000 times. Equivalent diameters are determined, and the arithmetic mean value of these values is determined.
  • the thickness of the porous support itself is not particularly limited, and is appropriately determined according to the battery capacity (metal deposition amount), porosity, and the like. more preferably 10 to 200 ⁇ m, particularly preferably 20 to 100 ⁇ m.
  • a known method can be employed without particular limitation as the method for producing the porous support. Examples thereof include a method of perforating a sheet-like formed article after it is produced, a photoresist method as described in Examples below, and a general nonwoven fabric production method.
  • the inorganic solid electrolyte may be contained in the form of a film that covers the pore surfaces of the porous support, but is usually contained (adhered) to the pore surfaces as particles.
  • the content (filling amount) of the inorganic solid electrolyte contained in the porous support is not particularly limited, and is appropriately determined in consideration of the porosity of the porous support and the porosity of the porous support itself. be. For example, the content that reduces the porosity of the porous support itself by 5 to 80% is preferable, and the content that reduces it by 10 to 70% is more preferable.
  • the inorganic solid electrolyte contained in the porous support in the form of particles is as described later, and is usually particles smaller than the opening diameter of the porous support.
  • a specific particle diameter (also referred to as a particle diameter) is appropriately determined in consideration of the opening diameter, porosity, content (filling amount), etc., and is preferably 0.01 to 5 ⁇ m, for example. , more preferably 0.05 to 3 ⁇ m, and even more preferably 0.1 to 2 ⁇ m. Also, the difference between the opening diameter and the particle diameter is determined as appropriate. It is more preferably 5 to 8 ⁇ m, even more preferably 0.8 to 5 ⁇ m.
  • the particle size of the inorganic solid electrolyte is the number of particles of the inorganic solid electrolyte present in the voids in a predetermined region (for example, a region of 1 mm ⁇ 1 mm) in a SEM photograph obtained by observing an arbitrary cross section of the porous support with an SEM. 10 are arbitrarily selected, the equivalent circle diameter of each particle is obtained, and the calculated value is taken as the arithmetic mean value of these.
  • the inorganic solid electrolyte contained in the in-battery porous support may be of one type or two or more types.
  • the inorganic solid electrolyte means an inorganic solid electrolyte
  • the solid electrolyte means a solid electrolyte in which ions can move. Since the main ion-conducting materials do not contain organic substances, organic solid electrolytes (polymer electrolytes typified by polyethylene oxide (PEO), etc., organic electrolytes typified by lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), etc.) electrolyte salt). Moreover, since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions.
  • PEO polyethylene oxide
  • LiTFSI lithium bis(trifluoromethanesulfonyl)imide
  • electrolytes or inorganic electrolyte salts that are dissociated or released into cations and anions in polymers (LiPF 6 , LiBF 4 , lithium bis(fluorosulfonyl)imide (LiFSI), LiCl, etc.). be done.
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and generally does not have electronic conductivity.
  • the inorganic solid electrolyte contained in the in-battery porous support solid electrolyte materials normally used in all-solid secondary batteries can be appropriately selected and used.
  • the inorganic solid electrolyte includes (i) a sulfide-based inorganic solid electrolyte, (ii) an oxide-based inorganic solid electrolyte, (iii) a halide-based inorganic solid electrolyte, and (iv) a hydride-based inorganic solid electrolyte.
  • a sulfide-based inorganic solid electrolyte is preferable from the viewpoint of being able to form a better interface between the active material and the inorganic solid electrolyte.
  • the all-solid secondary battery of the present invention is a lithium ion battery
  • the inorganic solid electrolyte preferably has ion conductivity of lithium ions.
  • Sulfide-based inorganic solid electrolyte contains sulfur atoms, has the ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is electronically insulating. It is preferable to use a material having properties.
  • the sulfide-based inorganic solid electrolyte preferably contains at least Li, S and P as elements and has lithium ion conductivity. good.
  • Examples of sulfide-based inorganic solid electrolytes include lithium ion conductive inorganic solid electrolytes that satisfy the composition represented by the following formula (1).
  • L represents an element selected from Li, Na and K, preferably Li.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F;
  • a1 to e1 indicate the composition ratio of each element, and a1:b1:c1:d1:e1 satisfies 1-12:0-5:1:2-12:0-10.
  • a1 is preferably 1 to 9, more preferably 1.5 to 7.5.
  • b1 is preferably 0-3, more preferably 0-1.
  • d1 is preferably 2.5 to 10, more preferably 3.0 to 8.5.
  • e1 is preferably 0 to 5, more preferably 0 to 3.
  • composition ratio of each element can be controlled by adjusting the compounding amount of the raw material compound when producing the sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be amorphous (glass), crystallized (glass-ceramics), or only partially crystallized.
  • glass glass
  • glass-ceramics glass-ceramics
  • Li--P--S type glass containing Li, P and S, or Li--P--S type glass ceramics containing Li, P and S can be used.
  • Sulfide-based inorganic solid electrolytes include, for example, lithium sulfide (Li 2 S), phosphorus sulfide (e.g., diphosphorus pentasulfide (P 2 S 5 )), elemental phosphorus, elemental sulfur, sodium sulfide, hydrogen sulfide, lithium halide (e.g., LiI, LiBr, LiCl) and sulfides of the element represented by M above (eg, SiS 2 , SnS, GeS 2 ) can be produced by reacting at least two raw materials.
  • Li 2 S lithium sulfide
  • phosphorus sulfide e.g., diphosphorus pentasulfide (P 2 S 5 )
  • elemental phosphorus e.g., elemental sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide e.g., lithium halide
  • the ratio of Li 2 S and P 2 S 5 in the Li—P—S type glass and Li—P—S type glass ceramics is Li 2 S:P 2 S 5 molar ratio, preferably 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be increased.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S/cm or higher, more preferably 1 ⁇ 10 ⁇ 3 S/cm or higher. Although there is no particular upper limit, it is practical to be 1 ⁇ 10 ⁇ 1 S/cm or less.
  • Li 2 SP 2 S 5 Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiCl, Li 2 SP 2 S 5 -H 2 S, Li 2 SP 2 S 5 -H 2 S-LiCl, Li 2 S—LiI—P 2 S 5 , Li 2 S—LiI—Li 2 OP 2 S 5 , Li 2 S—LiBr—P 2 S 5 , Li 2 S—Li 2 OP 2 S 5 , Li 2 S—Li 3 PO 4 —P 2 S 5 , Li 2 SP 2 S 5 —P 2 O 5 , Li 2 SP 2 S 5 —SiS 2 , Li 2 SP 2 S 5 —SiS 2 -LiCl, Li2SP2S5 - SnS, Li2SP2S5 - Al2S3 , Li2S - GeS2 , Li2S - GeS2 - ZnS
  • Amorphization method include, for example, a mechanical milling method, a solution method, and a melt quenching method. This is because the process can be performed at room temperature, and the manufacturing process can be simplified.
  • the oxide-based inorganic solid electrolyte contains oxygen atoms, has the ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is electronically insulating. It is preferable to use a material having properties.
  • the ion conductivity of the oxide-based inorganic solid electrolyte is preferably 1 ⁇ 10 ⁇ 6 S/cm or more, more preferably 5 ⁇ 10 ⁇ 6 S/cm or more, and 1 ⁇ 10 ⁇ 5 S/cm or more. /cm or more is particularly preferable. Although the upper limit is not particularly limited, it is practically 1 ⁇ 10 ⁇ 1 S/cm or less.
  • Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate (Li 3 PO 4 ) LiPON in which part of the oxygen element of lithium phosphate is replaced with nitrogen element
  • LiPOD 1 Li is Ti, V, Cr, Mn, Fe, Co, Ni, Cu , Zr, Nb, Mo, Ru, Ag, Ta, W, Pt, Au, etc.
  • LiA 1 ON (A 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.) and the like can also be preferably used.
  • the halide-based inorganic solid electrolyte contains a halogen atom and has ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and electron Compounds having insulating properties are preferred.
  • the halide-based inorganic solid electrolyte include, but are not limited to, compounds such as LiCl, LiBr, LiI, and Li 3 YBr 6 and Li 3 YCl 6 described in ADVANCED MATERIALS, 2018, 30, 1803075. Among them, Li 3 YBr 6 and Li 3 YCl 6 are preferable.
  • the hydride-based inorganic solid electrolyte contains hydrogen atoms, has the ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and is electronically insulating. compounds having the properties are preferred.
  • the hydride-based inorganic solid electrolyte is not particularly limited, but examples thereof include LiBH 4 , Li 4 (BH 4 ) 3 I, 3LiBH 4 --LiCl and the like.
  • the inorganic solid electrolyte incorporated in the in-battery porous support is preferably particles.
  • the particle size (volume average particle size) at this time is not particularly limited, it is preferably in the same range as the particle size of the inorganic solid electrolyte contained in the porous support in the form of particles.
  • the in-battery porous support may preferably contain one or more of the following binders and other components as appropriate.
  • the intra-battery porous support generally does not contain a positive electrode active material or a negative electrode active material (excluding metal composed of ions derived from the positive electrode active material layer), but does contain a metal (negative electrode active material) in a charged state. ing.
  • the binder contained in the in-battery porous support is not particularly limited, and examples thereof include organic polymers, and known organic polymers used in all-solid secondary batteries can be used.
  • organic polymers include fluorine-containing resins, hydrocarbon thermoplastic resins, acrylic resins, polyurethane resins, polyurea resins, polyamide resins, polyimide resins, polyester resins, polyether resins, polycarbonate resins, cellulose derivative resins, and the like. are mentioned.
  • ingredients - Other components include, but are not limited to, various additives. Examples include thickeners, antifoaming agents, leveling agents, dehydrating agents, antioxidants and the like.
  • inorganic solid electrolyte particles having metallic lithium on the surface described in Patent Document 1 conductive particles such as carbon, particles of a metal capable of forming an alloy with lithium, and the like can also be used.
  • the contents described in Patent Document 1 can be referred to as appropriate, and the contents thereof are incorporated as part of the description of this specification.
  • the intra-battery porous support may contain the electron conductive particles described in Patent Document 2.
  • the inclusion of electronically-conductive particles is not essential. Not necessarily contained means that the content in the total mass of the components incorporated in the in-battery porous support is 0% by mass in the total mass, and in addition, it is contained at less than 1% by mass. Aspects are included.
  • the contents of the inorganic solid electrolyte, the binder and other components contained in the porous support in the battery are not particularly limited, but are usually contained in 100% by mass of the solid content of the composition for a porous support described later. same as the quantity.
  • the total mass of each component contained in the in-battery porous support is synonymous with 100% by mass of the solid content of the composition for a porous support.
  • the porosity of the in-battery porous support is adjusted (reduced) to a predetermined range by compressing the in-sheet porous support in the stacking direction (thickness direction) by pressing the solid electrolyte laminate sheet of the present invention.
  • the in-battery solid electrolyte layer is arranged (laminated) on one surface (principal surface) of the in-battery porous support directly or via another layer.
  • the in-battery solid electrolyte layer is composed of an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, usually containing particles thereof.
  • the layer has voids at a porosity of 10% or less between the particles of the inorganic solid electrolyte, and is denser than the in-battery porous support.
  • the porosity of the in-battery solid electrolyte layer is 10% or less, dendrite growing in the in-battery porous support can be prevented from penetrating the positive electrode active material layer, and the occurrence of internal short circuits can be suppressed.
  • the porosity of the in-battery solid electrolyte layer is preferably 8% or less, more preferably 7% or less, in order to effectively suppress the occurrence of an internal short circuit.
  • the lower limit of the porosity is not particularly limited, it is practically 0.1% or more, preferably 1% or more, for example.
  • the difference between the porosity of the in-battery porous support and the porosity of the in-battery solid electrolyte layer is not particularly limited, but can be, for example, 5% or more, preferably 5 to 40%, and more. It is preferably 5 to 30%.
  • the porosity of the in-battery solid electrolyte layer is a value calculated as an area ratio by the above method.
  • the thickness of the in-battery solid electrolyte layer is not particularly limited and can be determined as appropriate. For example, the thickness is preferably from 10 to 1000 ⁇ m, more preferably from 20 to 500 ⁇ m, and even more preferably from 20 to 100 ⁇ m, in terms of being able to effectively prevent dendrite penetration.
  • the in-battery solid electrolyte layer is preferably a press-compressed body of the later-described in-sheet solid electrolyte layer.
  • the solid electrolyte layer in the battery like the porous support in the battery, exhibits metal ion conductivity, does not exhibit electronic conductivity, and functions as a separator for both electrodes.
  • the inorganic solid electrolyte constituting the in-battery solid electrolyte layer is as described above, and may be of the same type or different from the inorganic solid electrolyte contained in the in-battery porous support, but the same type is preferred.
  • the inorganic solid electrolyte that constitutes the in-battery solid electrolyte layer is usually particles. Although the particle size of the inorganic solid electrolyte is not particularly limited, it is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more. The upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the particle size of the inorganic solid electrolyte particles is a value measured by the same method as for the particle size of the inorganic solid electrolyte in the porous support.
  • the particle size (volume average particle size) of the inorganic solid electrolyte particles used in the production of the all-solid secondary battery or the production of the solid electrolyte laminate sheet is not particularly limited, but Depending on the electrolyte layer, each particle size range of the inorganic solid electrolyte in the in-battery porous support or in the in-battery solid electrolyte layer can be set.
  • the particle size of the inorganic solid electrolyte particles used for production is measured by the following procedure.
  • a 1% by mass dispersion of inorganic solid electrolyte particles is prepared by diluting it in a 20 mL sample bottle with water (heptane for water-labile substances).
  • the diluted dispersion sample is irradiated with ultrasonic waves of 1 kHz for 10 minutes and immediately used for the test.
  • a laser diffraction/scattering particle size distribution analyzer LA-920 (trade name, manufactured by HORIBA), data was taken 50 times using a quartz cell for measurement at a temperature of 25 ° C. Obtain the volume average particle size.
  • JIS Japanese Industrial Standard
  • Z 8828 2013 "Particle Size Analysis-Dynamic Light Scattering Method” as necessary. Five samples are prepared for each level and the average value is adopted.
  • the inorganic solid electrolyte contained in the in-battery solid electrolyte layer may be one or two or more, but preferably two or more different in average particle size, one of which is the in-battery porous support. It is preferable that the particles have an average particle diameter larger than the opening diameter, and that the other type is particles having an average particle diameter smaller than the opening diameter of the in-battery porous support.
  • the porosity of the in-battery solid electrolyte layer can be set to a small value within the above range. This can be confirmed by observing when measuring the porosity.
  • the average particle size larger than the opening diameter is appropriately determined from the above range according to the opening diameter of the intra-battery porous support.
  • the thickness is preferably 1 to 20 ⁇ m, more preferably 2 to 15 ⁇ m, and even more preferably 5 to 12 ⁇ m.
  • the average particle diameter smaller than the aperture diameter is appropriately determined according to the aperture diameter of the intra-battery porous support. From the viewpoint of reducing The difference in diameter between the large average particle size and the small average particle size is, in terms of porosity, preferably 0.1 to 15 ⁇ m, more preferably 0.3 to 12 ⁇ m, more preferably 0.5 to 0.5 ⁇ m. It is more preferably 10 ⁇ m.
  • the ratio of the large average particle size to the small average particle size is preferably more than 1 and 20 or less in terms of porosity, for example, 1.5. ⁇ 15 is more preferred, and 2-10 is even more preferred.
  • the total content of the inorganic solid electrolyte in the in-battery solid electrolyte layer is not particularly limited. is preferably the same as
  • the content of each inorganic solid electrolyte is the content in 100% by mass of the solid content in the in-sheet solid electrolyte composition described later. preferably the same.
  • the solid content of 100% by mass of the in-sheet solid electrolyte composition is the total mass of the in-battery solid electrolyte layer, and furthermore, the total mass of the in-battery solid electrolyte layer in an uncharged all-solid secondary battery. Synonymous with total mass.
  • the in-battery solid electrolyte layer contains an inorganic solid electrolyte, preferably the above binder, and optionally one or more of the above other components.
  • the in-battery solid electrolyte layer usually does not contain a positive electrode active material or a negative electrode active material, but metal may precipitate in a charged state.
  • the binder used for the in-battery solid electrolyte layer is appropriately selected from the above-mentioned binders, and the binders contained in the in-battery porous support and the in-battery solid electrolyte layer may be the same or different.
  • the content of the binder and other components in the in-battery solid electrolyte layer is not particularly limited, but is usually the same as the content in 100% by mass solid content of the in-sheet solid electrolyte composition described later.
  • the in-battery solid electrolyte layer includes, as other components, inorganic solid electrolyte particles having metallic lithium on the surface described in Patent Document 1, conductive particles such as carbon, and particles of a metal capable of forming an alloy with lithium. does not contain
  • a solid electrolyte layer can be formed by a normal method using an inorganic solid electrolyte.
  • the in-battery solid electrolyte layer can be produced by pressing the solid electrolyte laminate sheet of the present invention to compress the in-sheet solid electrolyte layer in the lamination direction (thickness direction), thereby reducing the porosity to a predetermined range. .
  • the positive electrode active material layer contains a positive electrode active material, and has the function of generating metal ions upon charging and supplying them to the in-battery porous support.
  • the thickness of the positive electrode active material is appropriately determined according to the amount of lithium ions to be supplied, and is preferably 10 to 1000 ⁇ m, more preferably 20 to 500 ⁇ m.
  • the positive electrode active material layer preferably includes an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, a conductive aid, a binder, and a range that does not impair the effects of the present invention. contains other ingredients.
  • the negative electrode active material precursor described in Patent Document 1 in an uncharged state of the all-solid secondary battery, it is one of preferred embodiments that the negative electrode active material precursor described in Patent Document 1 is contained.
  • the inorganic solid electrolyte, binder and other components contained in the positive electrode active material layer are the same as those described in the porous support in the battery.
  • the contents described in Patent Document 1 can be referred to as appropriate, and the contents thereof are incorporated as part of the description of this specification.
  • the positive electrode active material may be an active material capable of intercalating and releasing ions of metals belonging to Group 1 or Group 2 of the periodic table, preferably capable of reversibly intercalating and releasing lithium ions.
  • the material is not particularly limited as long as it has the above properties, and examples thereof include transition metal oxides, organic substances, sulfur and other elements that can be combined with Li, sulfur-metal composites, and the like.
  • the transition metal oxide may contain an element M b (an element of group 1 (Ia) of the periodic table of metals other than lithium, an element of group 2 (IIa) of the periodic table, Al, Ga, In, Ge, Sn, Pb, elements such as Sb, Bi, Si, P and B) may be mixed.
  • the mixing amount is preferably 0 to 30 mol % with respect to the amount (100 mol %) of the transition metal element Ma. More preferred is one synthesized by mixing so that the Li/M a molar ratio is 0.3 to 2.2.
  • transition metal oxide examples include (MA) a transition metal oxide having a layered rock salt structure, (MB) a transition metal oxide having a spinel structure, (MC) a lithium-containing transition metal phosphate compound, (MD ) lithium-containing transition metal halide phosphate compounds and (ME) lithium-containing transition metal silicate compounds.
  • transition metal oxides having a layered rocksalt structure include LiCoO 2 (lithium cobaltate [LCO]), LiNi 2 O 2 (lithium nickelate), LiNi 0.85 Co 0.10 Al 0.85 . 05O2 ( lithium nickel cobalt aluminum oxide [NCA]), LiNi1 / 3Co1 / 3Mn1 / 3O2 ( lithium nickel manganese cobaltate [NMC]) and LiNi0.5Mn0.5O2 ( lithium manganese nickelate).
  • LiCoO 2 lithium cobaltate [LCO]
  • LiNi 2 O 2 lithium nickelate
  • 05O2 lithium nickel cobalt aluminum oxide [NCA]
  • LiNi1 / 3Co1 / 3Mn1 / 3O2 lithium nickel manganese cobaltate [NMC]
  • LiNi0.5Mn0.5O2 lithium manganese nickelate
  • transition metal oxides having a spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4 , Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2NiMn3O8 .
  • Examples of (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , and LiCoPO 4 . and monoclinic Nasicon-type vanadium phosphates such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • lithium-containing transition metal halogenated phosphate compounds include iron fluorophosphates such as Li 2 FePO 4 F, manganese fluorophosphates such as Li 2 MnPO 4 F, and Li 2 CoPO 4 F. and other cobalt fluoride phosphates.
  • Lithium-containing transition metal silicate compounds include, for example, Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 CoSiO 4 and the like. In the present invention, transition metal oxides having a (MA) layered rocksalt structure are preferred, and LCO or NMC is more preferred.
  • the shape of the positive electrode active material is not particularly limited, it is preferably particulate.
  • the particle size (volume average particle size) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m.
  • a normal pulverizer or classifier may be used to make the positive electrode active material have a predetermined particle size.
  • the positive electrode active material obtained by the calcination method may be washed with water, an acidic aqueous solution, an alkaline aqueous solution, or an organic solvent before use.
  • the average particle size of the positive electrode active material particles can be measured by the same method as the method for measuring the average particle size of the inorganic solid electrolyte described above.
  • the surface of the positive electrode active material may be surface-coated with another metal oxide.
  • surface coating agents include metal oxides containing Ti, Nb, Ta, W, Zr, Al, Si or Li.
  • Specific examples include spinel titanate, tantalum-based oxides, niobium - based oxides, and lithium niobate - based compounds.
  • Specific examples include Li4Ti5O12 , Li2Ti2O5 , and LiTaO3 .
  • the surface of the electrode containing the positive electrode active material may be surface-treated with sulfur or phosphorus.
  • the particle surface of the positive electrode active material may be surface-treated with actinic rays or an active gas (plasma, etc.) before and after the surface coating.
  • the positive electrode active material contained in the positive electrode active material layer may be one kind or two or more kinds.
  • the conductive aid preferably contained in the positive electrode active material layer is not particularly limited, and commonly known conductive aids can be used.
  • electronic conductive materials such as natural graphite and artificial graphite, carbon blacks such as acetylene black, ketjen black and furnace black, amorphous carbon such as needle coke, vapor grown carbon fiber or carbon nanotube.
  • Carbon fibers such as carbon fibers such as graphene or fullerene may be used, metal powders such as copper and nickel, metal fibers may be used, and conductive polymers such as polyaniline, polypyrrole, polythiophene, polyacetylene, and polyphenylene derivatives may be used. may be used.
  • the positive electrode active material and the conductive aid are used in combination, among the above conductive aids, when the battery is charged and discharged, ions of metals belonging to Group 1 or Group 2 of the periodic table (preferably Li ions) are not intercalated and released, and a material that does not function as a positive electrode active material is used as a conductive aid. Therefore, among conductive aids, those that can function as a positive electrode active material in a positive electrode active material layer during charging and discharging of a battery are classified as positive electrode active materials instead of conductive aids. Whether or not it functions as a positive electrode active material when a battery is charged and discharged is not univocally determined by the combination with the conductive aid.
  • the shape of the conductive aid is not particularly limited, but is preferably particulate.
  • the particle size is not particularly limited, it is preferably 0.05 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m.
  • the particle size is a value measured in the same manner as the particle size of the inorganic solid electrolyte described above.
  • the conductive aid may contain one type, or may contain two or more types.
  • each component positive electrode active material, inorganic solid electrolyte, conductive aid, binder, negative electrode active material precursor and other components
  • the content of each component (positive electrode active material, inorganic solid electrolyte, conductive aid, binder, negative electrode active material precursor and other components) in the positive electrode active material layer is not particularly limited, but usually the positive electrode composition described later is the same as the content in 100% by mass of the solid component in The solid content of 100% by mass of the positive electrode composition is synonymous with the total mass of all components constituting the positive electrode active material layer.
  • the all-solid-state secondary battery of the present invention When the all-solid-state secondary battery of the present invention is in a form in which a negative electrode active material layer is formed in advance, it has the negative electrode active material layer between the negative electrode current collector and the in-battery porous support even in an uncharged state.
  • the thickness of the negative electrode active material is appropriately determined, and is preferably 10 to 1000 ⁇ m, more preferably 20 to 500 ⁇ m, for example.
  • the thickness thereof can be, for example, 0.01 to 100 ⁇ m regardless of the above thickness.
  • the thickness of the negative electrode active material layer formed in the form in which the negative electrode active material layer is not formed in advance varies depending on the amount of metal deposited by charging and the amount formed in the porous support inside the battery, so it is uniquely determined. not.
  • the negative electrode active material layer may be a layer containing a negative electrode active material, and examples include a layer made of a negative electrode active material, a layer formed by forming a negative electrode composition described later, and the like.
  • a layer composed of the negative electrode active material a metal thin film is preferable, and a metallic lithium thin film (metallic lithium foil) capable of realizing high capacity of the all-solid secondary battery is more preferable.
  • Metal thin films include, for example, layers formed by depositing or molding metal powder, metal foils, metal deposition films, and the like.
  • the layer formed by depositing the negative electrode composition includes a negative electrode active material, preferably an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, a conductive aid, and a binder. and, further, other components within a range that does not impair the effects of the present invention.
  • the inorganic solid electrolyte, binder and other components contained in the negative electrode active material layer are the same as those described in the porous support in the battery.
  • the conductive aid has the same meaning as that described for the positive electrode active material layer.
  • the negative electrode active material is an active material capable of inserting and releasing metal ions belonging to Group 1 or Group 2 of the periodic table, and preferably capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above properties, and carbonaceous materials, metal oxides, metal composite oxides, elemental lithium, lithium alloys, negative electrode active materials that can be alloyed with lithium (alloyable). substances and the like. Among them, carbonaceous materials, metal composite oxides, and lithium simple substance are preferably used from the viewpoint of reliability.
  • An active material that can be alloyed with lithium is preferable from the viewpoint that the capacity of an all-solid secondary battery can be increased. When a negative electrode active material capable of forming an alloy with lithium is used as the negative electrode active material, it is possible to increase the capacity of the all-solid secondary battery and extend the life of the battery.
  • a carbonaceous material used as a negative electrode active material is a material substantially composed of carbon.
  • petroleum pitch carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor-grown graphite, etc.), and various synthetics such as PAN (polyacrylonitrile)-based resin or furfuryl alcohol resin
  • PAN polyacrylonitrile
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor growth carbon fiber, dehydrated PVA (polyvinyl alcohol)-based carbon fiber, lignin carbon fiber, vitreous carbon fiber and activated carbon fiber.
  • carbonaceous materials can be classified into non-graphitizable carbonaceous materials (also referred to as hard carbon) and graphitic carbonaceous materials according to the degree of graphitization.
  • the carbonaceous material preferably has the interplanar spacing or density and crystallite size described in JP-A-62-22066, JP-A-2-6856 and JP-A-3-45473.
  • the carbonaceous material does not have to be a single material, and a mixture of natural graphite and artificial graphite described in JP-A-5-90844, graphite having a coating layer described in JP-A-6-4516, etc. can be used.
  • hard carbon or graphite is preferably used, and graphite is more preferably used.
  • the oxide of a metal or metalloid element that is applied as a negative electrode active material is not particularly limited as long as it is an oxide that can occlude and release lithium.
  • examples include oxides, composite oxides of metal elements and metalloid elements (collectively referred to as metal composite oxides), and oxides of metalloid elements (semimetal oxides).
  • metal composite oxides composite oxides of metal elements and metalloid elements
  • oxides of metalloid elements oxides of metalloid elements (semimetal oxides).
  • amorphous oxides are preferred, and chalcogenides, which are reaction products of metal elements and Group 16 elements of the periodic table, are also preferred.
  • the metalloid element refers to an element that exhibits intermediate properties between metal elements and non-metalloid elements, and usually includes the six elements boron, silicon, germanium, arsenic, antimony and tellurium, and further selenium.
  • amorphous means one having a broad scattering band with an apex in the region of 20° to 40° in 2 ⁇ value in an X-ray diffraction method using CuK ⁇ rays, and a crystalline diffraction line. may have.
  • the strongest intensity among the crystalline diffraction lines seen at 2 ⁇ values of 40° to 70° is 100 times or less than the diffraction line intensity at the top of the broad scattering band seen at 2 ⁇ values of 20° to 40°. is preferable, more preferably 5 times or less, and it is particularly preferable not to have a crystalline diffraction line.
  • amorphous oxides of metalloid elements or chalcogenides are more preferable, and elements of groups 13 (IIIB) to 15 (VB) of the periodic table (for example, , Al, Ga, Si, Sn, Ge, Pb, Sb and Bi) are particularly preferable.
  • elements of groups 13 (IIIB) to 15 (VB) of the periodic table for example, , Al, Ga, Si, Sn, Ge, Pb, Sb and Bi
  • preferred amorphous oxides and chalcogenides include Ga 2 O 3 , GeO, PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , Sb 2 O 3 and Sb 2 .
  • negative electrode active materials that can be used together with amorphous oxides mainly composed of Sn, Si, and Ge include carbonaceous materials that can occlude and/or release lithium ions or metallic lithium, elemental lithium, lithium alloys, and lithium. and a negative electrode active material that can be alloyed with.
  • the oxides of metals or semimetals especially metal (composite) oxides and chalcogenides, preferably contain at least one of titanium and lithium as a constituent component.
  • lithium-containing metal composite oxides include composite oxides of lithium oxide and the above metal (composite) oxides or chalcogenides, more specifically Li 2 SnO 2 . mentioned.
  • the negative electrode active material for example, a metal oxide, preferably contains a titanium element (titanium oxide).
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • LTO lithium titanate
  • the lithium alloy as the negative electrode active material is not particularly limited as long as it is an alloy normally used as a negative electrode active material for secondary batteries. Lithium-aluminum alloys added by mass % can be mentioned.
  • the negative electrode active material capable of forming an alloy with lithium is not particularly limited as long as it is commonly used as a negative electrode active material for secondary batteries. Such an active material expands and contracts significantly during charging and discharging of an all-solid secondary battery.
  • active materials include (negative electrode) active materials (alloys, etc.) containing silicon element or tin element, metals such as Al and In, and negative electrode active materials containing silicon element that enable higher battery capacity.
  • (Silicon element-containing active material) is preferable, and a silicon element-containing active material having a silicon element content of 50 mol % or more of all constituent elements is more preferable.
  • negative electrodes containing these negative electrode active materials are carbon negative electrodes (graphite, acetylene black, etc. ), more Li ions can be occluded. That is, the amount of Li ions stored per unit mass increases. Therefore, the battery capacity (energy density) can be increased. As a result, there is an advantage that the battery driving time can be lengthened.
  • Silicon element-containing active materials include, for example, silicon materials such as Si and SiOx (0 ⁇ x ⁇ 1), and silicon-containing alloys containing titanium, vanadium, chromium, manganese, nickel, copper, lanthanum, etc.
  • SiOx itself can be used as a negative electrode active material (semimetal oxide), and since Si is generated by the operation of the all-solid secondary battery, the negative electrode active material that can be alloyed with lithium (the can be used as a precursor substance).
  • negative electrode active materials containing tin examples include Sn, SnO, SnO 2 , SnS, SnS 2 , active materials containing silicon and tin, and the like.
  • composite oxides with lithium oxide, such as Li 2 SnO 2 can also be mentioned.
  • the above-described negative electrode active material can be used without any particular limitation.
  • the above silicon materials or silicon-containing alloys are more preferred, and silicon (Si) or silicon-containing alloys are even more preferred.
  • Examples of alloys containing silicon include LaSi 2 , VSi 2 , La--Si, Gd--Si and Ni--Si.
  • the shape of the negative electrode active material is not particularly limited, but is preferably particulate.
  • the average particle size (volume average particle size) of the negative electrode active material is not particularly limited, but is preferably 0.1 to 60 ⁇ m.
  • the average particle size of the negative electrode active material particles can be measured in the same manner as the average particle size of the inorganic solid electrolyte.
  • an ordinary pulverizer or classifier is used as in the case of the positive electrode active material.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a whirling current jet mill, a sieve, and the like are preferably used.
  • wet pulverization can also be performed in which water or an organic solvent such as methanol is allowed to coexist.
  • Classification is preferably carried out in order to obtain a desired particle size.
  • the classification method is not particularly limited, and a sieve, an air classifier, or the like can be used. Both dry and wet classification can be used.
  • the chemical formula of the compound obtained by the calcination method can be calculated by inductively coupled plasma (ICP) emission spectrometry as a measurement method, or from the difference in mass of the powder before and after calcination as a simple method.
  • the surface of the negative electrode active material may be surface-coated with another metal oxide.
  • the number of negative electrode active materials contained in the negative electrode active material layer may be one or two or more.
  • each component (negative electrode active material, inorganic solid electrolyte, conductive aid, binder, and other components) in the negative electrode active material layer is not particularly limited, but is usually 100 mass of solid components in the negative electrode composition described later. It is the same as the content in %.
  • the solid content of 100% by mass of the negative electrode composition is synonymous with the total mass of all components constituting the negative electrode active material layer formed from the negative electrode composition.
  • the all-solid secondary battery of the present invention has each of the layers described above, and preferably or appropriately has the following constituent layers.
  • ⁇ Positive collector> The all-solid secondary battery of the present invention preferably has a positive electrode current collector.
  • An electron conductor can be used for the positive electrode current collector.
  • the material forming the positive electrode current collector is not particularly limited, but aluminum, aluminum alloys, stainless steel, nickel and titanium, as well as aluminum or stainless steel surfaces treated with carbon, nickel, titanium or silver. (Thin film formed) is preferred, and among these, aluminum and aluminum alloys are more preferred.
  • the shape of the positive electrode current collector a film sheet is usually used, but a net, a punch, a lath, a porous body, a foam, a molded fiber group, and the like can also be used.
  • the thickness of the positive electrode current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. It is also preferable that the surface of the current collector is roughened by surface treatment.
  • a functional layer or member is appropriately interposed or disposed between or outside each layer of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer, and the positive electrode current collector.
  • each layer may be composed of a single layer or may be composed of multiple layers.
  • the all-solid secondary battery of the present invention may have a metal film capable of forming an alloy with lithium between the negative electrode current collector and the in-battery porous support.
  • This metal film is usually provided on the surface of the negative electrode current collector (the surface arranged on the side of the porous support in the battery) or on the surface of the porous support in the battery (the surface arranged on the side of the negative electrode current collector). placed.
  • the metal film capable of forming an alloy with lithium is not particularly limited as long as it is formed of a metal capable of forming an alloy with lithium.
  • metals capable of forming an alloy with lithium include Sn, Al, In, and the like described in the negative electrode active material, as well as metals such as Zn, Bi, and Mg. Among them, Zn, Bi and the like are preferable.
  • the thickness of this metal film is not particularly limited, it is preferably 300 nm or less, more preferably 20 to 100 nm, and even more preferably 30 to 50 nm.
  • the all-solid secondary battery of the present invention has a dendrite penetration blocking layer between the intra-battery porous support and the positive electrode active material layer, preferably between the intra-battery porous support and the intra-battery solid electrolyte layer. is also preferred.
  • a known layer (film) can be used as the dendrite penetration blocking layer, and it can also be produced as appropriate.
  • Known layers include a layer formed of an oxide-based inorganic solid electrolyte, such as LiPON, which will be described later, and a layer formed by the method (shear treatment or heat treatment) described in Patent Document 1.
  • the porosity of the dendrite penetration blocking layer produced by the method described in Patent Document 1 is preferably 3% or less, more preferably 1% or less.
  • the dendrite penetration blocking layer is usually formed as a thin layer, and its thickness is not particularly limited, but is preferably 0.001 to 100 ⁇ m, more preferably 0.01 to 10 ⁇ m.
  • the contents described in Patent Document 1 can be referred to as appropriate, and the contents thereof are taken in as part of the description of this specification.
  • the all-solid secondary battery of the present invention may be used as an all-solid secondary battery with the layer structure as described above. It is also preferable to use
  • the housing may be made of metal or resin (plastic). When using a metallic one, for example, an aluminum alloy and a stainless steel one can be used. It is preferable that the metal casing be divided into a positive electrode side casing and a negative electrode side casing and electrically connected to the positive electrode current collector and the negative electrode current collector, respectively. It is preferable that the housing on the positive electrode side and the housing on the negative electrode side are joined and integrated via a gasket for short-circuit prevention.
  • the all-solid secondary battery of the present invention can be applied to various uses. There are no particular restrictions on the mode of application, but for example, when installed in electronic equipment, notebook computers, pen-input computers, mobile computers, e-book players, mobile phones, cordless phone slaves, pagers, handy terminals, mobile faxes, mobile phones, etc. Copiers, portable printers, headphone stereos, video movies, liquid crystal televisions, handy cleaners, portable CDs, minidiscs, electric shavers, transceivers, electronic notebooks, calculators, portable tape recorders, radios, backup power sources, memory cards, etc.
  • Other consumer products include automobiles (electric vehicles, etc.), electric vehicles, motors, lighting equipment, toys, game devices, road conditioners, clocks, strobes, cameras, and medical devices (pacemakers, hearing aids, shoulder massagers, etc.). . Furthermore, it can be used for various military applications and space applications. It can also be combined with a solar cell.
  • the solid electrolyte laminate sheet of the present invention is preferably used in the method for producing the all-solid secondary battery of the present invention, which will be described later, and is used to form the in-battery porous support and the in-battery solid electrolyte layer in the all-solid secondary battery of the present invention. It is a sheet-like molded body that constitutes.
  • the solid electrolyte laminate sheet of the present invention is a sheet-like porous support (hereinafter referred to as intra-sheet porous sheet) containing an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table.
  • a support Also referred to as a support), and a solid containing an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, disposed on one surface of the intra-sheet porous support. and an electrolyte layer (hereinafter also referred to as an in-sheet solid electrolyte layer).
  • the porosity of the in-sheet porous support is 20% or more, and the porosity of the in-sheet solid electrolyte layer is set smaller than the porosity of the in-sheet porous support. The porosity of each layer is measured by the measurement method described above.
  • the above-described other layer may be interposed between the intra-sheet porous support and the intra-sheet solid electrolyte layer, but the intra-sheet porous support and the intra-sheet solid electrolyte layer are adjacent to each other.
  • the in-sheet porous support may have various functional layers on the side opposite to the in-sheet solid electrolyte layer. Different layers are arranged as the functional layer depending on the form of the all-solid secondary battery to be manufactured. For example, when the negative electrode active material layer is formed in advance, the negative electrode active material layer and the base material (preferably the negative electrode current collector) are laminated, and these are preferably adjacent to each other.
  • the base material preferably the negative electrode current collector
  • the functional layer includes a protective layer (release sheet), a coat layer, and the like.
  • the substrate is not particularly limited as long as it can support the solid electrolyte laminated sheet, and examples thereof include the materials described in the negative electrode or positive electrode current collector, sheet bodies (plates) of organic materials and inorganic materials, and the like. be done.
  • organic materials include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, cellulose, and the like.
  • inorganic materials include glass and ceramics.
  • each layer constituting the solid electrolyte laminated sheet may have a single layer structure or a multilayer structure as long as it exhibits a specific function.
  • the solid electrolyte laminate sheet of the present invention has the laminate structure described above, other configurations are not particularly limited, and known configurations relating to solid electrolyte laminate sheets can be employed.
  • the solid electrolyte laminated sheet of the present invention has the above-described metal film capable of forming an alloy with lithium on the surface of the intra-sheet porous support opposite to the intra-sheet solid electrolyte layer. is also preferred.
  • a known dendrite penetration blocking layer may be arranged between the intra-sheet porous support and the intra-sheet solid electrolyte layer.
  • the in-sheet solid electrolyte layer may have a positive electrode active material layer and further a positive electrode current collector on the opposite side of the in-sheet porous support.
  • the solid electrolyte laminate sheet of the present invention is preferably used in the method for producing an all-solid secondary battery of the present invention in combination with a positive electrode sheet described later (as a sheet for press-bonding lamination to a positive electrode sheet), and is used as an all-solid secondary battery. configure.
  • FIG. 2 is a cross-sectional view schematically showing the lamination state of each constituent layer constituting the sheet, regarding one embodiment of the solid electrolyte laminated sheet suitably used for the self-assembled negative electrode type all-solid secondary battery of the present invention.
  • the solid electrolyte laminate sheet 11 has a layer structure in which the negative electrode current collector 1, the in-sheet porous support 8, and the in-sheet solid electrolyte layer 9 are laminated in this order. in direct contact.
  • the negative electrode active material layer Fig. 2 are arranged.
  • the solid electrolyte laminate sheet of the present invention is preferably used in the method for manufacturing an all-solid secondary battery of the present invention, which will be described later. Constituting the solid electrolyte layer in the battery, it contributes to suppressing the occurrence of internal short circuits and improving the cycle characteristics of the all-solid secondary battery.
  • the solid electrolyte laminate sheet of the present invention is usually in the form of a sheet, but includes those cut into a predetermined shape (laminate sheet material) when manufacturing the all-solid secondary battery of the present invention.
  • a predetermined shape laminate sheet material
  • a plate-like or disk-like laminated sheet material may be used depending on the shape of the all-solid secondary battery.
  • the negative electrode current collector that is preferably applied to the solid electrolyte laminate sheet of the present invention is as described for the negative electrode current collector in the above-described all-solid secondary battery (synonymous).
  • the in-sheet porous support provided in the solid electrolyte laminated sheet of the present invention is a sheet-like porous support containing an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table. is the body.
  • This intra-sheet porous support is a layer that is incorporated into an all-solid secondary battery and serves as the intra-battery porous support. Therefore, the intra-sheet porous support is the same as the above-described intra-battery porous support except that it is a porous support before compression and has a porosity of 20% or more.
  • the porosity of the intra-sheet porous support is 20% or more, the porosity of the intra-battery porous support decreases to less than 15% even when pressurized during the production of the all-solid secondary battery (sheet Excessive compression of the inner porous support) can be suppressed, and an inner porous support having a predetermined porosity can be formed by pressurization.
  • the porosity of the in-sheet porous support is uniquely determined because the range in which the above porosity of the in-battery porous support is possible varies depending on the applied pressure, the porosity of the in-sheet solid electrolyte layer described later, and the like. not.
  • the porosity of the in-sheet porous support is preferably 40% or more, more preferably 50% or more, to give an example that enables the porosity of the in-battery porous support.
  • the upper limit of the porosity is appropriately determined. For example, it is preferably 99% or less, more preferably 95% or less, and even more preferably 90% or less.
  • the thickness of the in-sheet porous support is not particularly limited, and since the amount of compression (thickness) varies depending on the applied pressure, it is determined appropriately in consideration of the amount of compression, etc. for forming the in-battery porous support. can do. For example, it can be 1 to 100 ⁇ m, preferably 3 to 80 ⁇ m.
  • the components (compounds) and content contained in the in-sheet porous support are the same as the components and content contained in the in-battery porous support.
  • the standard for the content is the total mass of the components incorporated in the intra-sheet porous support, and this total mass is the solid content of the composition because the inorganic solid electrolyte etc. are incorporated in the intra-sheet porous support. It is synonymous with 100% by mass.
  • the in-sheet solid electrolyte layer is arranged (laminated) on one surface (principal surface) of the in-sheet porous support directly or via another layer.
  • the in-sheet solid electrolyte layer is composed of an inorganic solid electrolyte having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, usually containing particles thereof.
  • This in-sheet solid electrolyte layer is a layer that is incorporated in an all-solid secondary battery and becomes the in-battery solid electrolyte layer.
  • the in-sheet solid electrolyte layer is a solid electrolyte layer before being pressurized and compressed, and is set to have a smaller porosity than the in-sheet porous support, and is not specifically specified. is the same as the in-battery porous support described above. If the porosity of the in-sheet solid electrolyte layer is smaller than the porosity of the in-sheet porous support, the in-sheet porous support has a porous support as a basic skeleton, and both layers are formed once. can form the in-battery porous support and the in-battery solid electrolyte layer having a porosity within the predetermined range.
  • the porosity of the in-sheet solid electrolyte layer should be smaller than that of the in-sheet porous support.
  • the range in which the above-mentioned porosity of the in-battery solid electrolyte layer is possible fluctuates due to factors such as the above, so it is not uniquely determined.
  • the porosity of the in-sheet solid electrolyte layer for example, since it is easy to set the porosity of the in-battery porous support and the in-battery solid electrolyte layer within the above range, the positive electrode active material layer is also pressure-bonded.
  • the difference between the porosity of the in-sheet porous support and the porosity (filling amount) of the in-sheet solid electrolyte layer is not particularly limited, but is, for example, preferably 5 to 90%, preferably 10 to 50%. is more preferable.
  • the thickness of the in-sheet solid electrolyte layer is not particularly limited, and the amount of compression (thickness) varies depending on the applied pressure. can be done. For example, it can be 1 to 150 ⁇ m, preferably 3 to 100 ⁇ m.
  • Each component (compound) and content contained in the in-sheet solid electrolyte layer are the same as each component and content contained in the in-battery solid electrolyte layer.
  • the standard of the content is the total mass of the in-sheet solid electrolyte layer, and this total mass is the total mass of the components constituting the in-sheet solid electrolyte layer, and further the It is synonymous with the solid content of 100% by mass of the composition.
  • the method for producing the solid electrolyte laminated sheet of the present invention is not particularly limited.
  • a composition for incorporating the sheet) is applied and impregnated to form an in-sheet porous support, and then a composition for an in-sheet solid electrolyte layer containing an inorganic solid electrolyte on the in-sheet porous support (sheet composition for forming the inner solid electrolyte layer).
  • sheet composition for forming the inner solid electrolyte layer sheet composition for forming the inner solid electrolyte layer.
  • the in-sheet porous support and the in-sheet solid electrolyte layer may be formed individually, sequentially, or collectively as a laminate.
  • a porous support composition and an in-sheet solid electrolyte composition are prepared.
  • the porous support constituting the intra-sheet porous support is as described above.
  • the composition for the porous support and the composition for the solid electrolyte in the sheet (sometimes referred to as each composition) each contain an inorganic solid electrolyte, preferably a binder, a dispersion medium, and other components as appropriate. may contain.
  • Each component other than the dispersion medium contained in each composition is as described above.
  • the dispersion medium used for preparing each composition may disperse (dissolve) the components contained in each composition.
  • the dispersion medium is preferably a non-aqueous dispersion medium containing no water, and is usually selected from organic solvents.
  • the expression that the dispersion medium does not contain water includes not only the embodiment in which the content of water is 0% by mass, but also the embodiment in which the content is 0.1% by mass or less.
  • the water content in each composition is preferably within the above range (non-aqueous composition).
  • organic solvents include, but are not limited to, alcohol compounds, ether compounds, amide compounds, amine compounds, ketone compounds, aromatic compounds, aliphatic compounds, nitrile compounds, ester compounds, and the like.
  • the dispersion medium contained in each composition may be one or two or more.
  • each composition is preferably a non-aqueous composition.
  • the non-aqueous composition includes not only a form containing no water but also a form having a water content (also referred to as water content) of 200 ppm or less.
  • the moisture content of the composition is preferably 150 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less.
  • the water content indicates the amount of water contained in the composition (mass ratio to the composition).
  • the water content can be obtained by filtering the composition through a 0.45 ⁇ m membrane filter and performing Karl Fischer titration.
  • each composition is not particularly limited, it is preferably 80% by mass or more, more preferably 90% by mass or more, based on the solid content of 100% by mass in terms of binding properties. It is preferably 95% by mass or more, and particularly preferably 95% by mass or more. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
  • the in-sheet solid electrolyte composition contains two or more inorganic solid electrolytes described above, the content of each inorganic solid electrolyte is appropriately determined in consideration of the total content in terms of porosity. be done.
  • the content of large particle diameters is preferably 0.1 to 90% by mass, preferably 0.1 to 80% by mass, and 1 to It can also be 50% by mass.
  • the lower limit of the content of the large particle size may be 60% by mass or 70% by mass.
  • the content of small particle diameters (average particle diameter) is preferably 0.1 to 50% by mass, more preferably 5 to 25% by mass, and may be 5 to 10% by mass.
  • the content difference between the large average particle size and the small average particle size is, for example, preferably 0.1 to 90% by mass, more preferably 10 to 90% by mass, and 50 to 85% by mass. is more preferred.
  • the content ratio of the large average particle size and the small average particle size [content of large average particle size/content of small average particle size] is, for example, more than 1 and preferably 20 or less, and 2 to 10 is more preferred.
  • the content of the binder in each composition is not particularly limited, and in terms of strengthening the binding property of solid particles and further adjusting the porosity, the solid content is 100% by mass, for example, 0.1 to 10% by mass. Preferably, 1 to 10 mass % is more preferable, and 2 to 6 mass % is even more preferable.
  • the content of other components in each composition is not particularly limited and is set as appropriate.
  • the standard for the content in the composition is 100 parts by mass of the solid content of the composition.
  • the solid content (solid component) refers to a component that does not disappear by volatilization or evaporation when the composition is dried at 130° C. for 6 hours under a pressure of 1 mmHg and a nitrogen atmosphere. Typically, it refers to components other than the dispersion medium.
  • the solid content concentration of the composition for a porous support is not particularly limited, but each component in the composition, particularly the inorganic solid electrolyte, can be filled (infiltrated, adhered, arranged) into the pores of the porous support.
  • the concentration should not be excessively high.
  • the concentration is preferably 20 to 70% by mass, more preferably 30 to 65% by mass, and even more preferably 35 to 50% by mass.
  • the solid content concentration of the in-sheet solid electrolyte composition is not particularly limited, but is preferably high in order not to fill the pores of the porous support with each component in the composition. It is preferably 40 to 80% by mass, more preferably 50 to 80% by mass.
  • the in-sheet solid electrolyte composition contains particles larger than the opening diameter of the porous support and particles smaller than the opening diameter of the porous support, even small particles can be suppressed from entering the pores, and a solid electrolyte layer can be formed together with large particles on the intra-sheet porous support.
  • each composition can be prepared, for example, as a solid mixture or slurry by mixing each of the above-described components with, for example, various commonly used mixers.
  • the mixing method is not particularly limited, and can be performed using a known mixer such as a ball mill, bead mill, disc mill, and the like.
  • the mixing conditions are not particularly limited.
  • the mixed atmosphere may be air, dry air (with a dew point of ⁇ 20° C. or less), inert gas (eg, argon gas, helium gas, nitrogen gas), or the like. Since the inorganic solid electrolyte reacts with moisture, mixing is preferably performed under dry air or in an inert gas.
  • the porous support composition and the in-sheet solid electrolyte composition may be applied (impregnated) and dried to form a film to form an in-sheet porous support and to form an in-sheet solid electrolyte layer.
  • Examples of the method for applying the porous support composition and the in-sheet solid electrolyte composition include spray coating, spin coating, dip coating, slit coating, stripe coating, bar coating, and a baker-type applicator.
  • Various coating methods such as coating can be applied without particular limitation.
  • the impregnation time at this time is not particularly limited and can be determined appropriately.
  • the application temperature and impregnation temperature of each composition are not particularly limited, and are preferably unheated, for example, preferably at a temperature of 0 to 50°C.
  • the drying temperature for both compositions is not particularly limited, but the lower limit is preferably 30° C. or higher, more preferably 60° C. or higher, and even more preferably 80° C. or higher.
  • the upper limit of the drying temperature is preferably 300°C or lower, more preferably 250°C or lower, and even more preferably 200°C or lower.
  • the dispersion medium By heating in such a temperature range, the dispersion medium can be removed, and the composition for a porous support can be brought into a solid state (impregnated dry state) and adhered (filled) in the pores of the porous support.
  • the composition for the in-sheet solid electrolyte layer can be in a solid state (coated and dried layer).
  • the drying time is not particularly limited, and is, for example, 0.3 to 5 hours.
  • the applied dry layer formed from the composition for the in-sheet solid electrolyte layer can also be pressurized.
  • the pressurization method is not particularly limited, but pressurization (for example, pressurization using a hydraulic cylinder press) is preferable.
  • the pressure is not particularly limited, but is set to such an extent that the porosity after pressurization does not become smaller than the porosity of the intra-sheet porous support, for example, 10 to 200 MPa. Heating may be performed simultaneously with pressurization of the coated dry layer. Although the temperature at this time is not particularly limited, it is preferably 10 to 100° C., for example.
  • the support forming method and the film forming method are preferably carried out in a mixed atmosphere of the above compositions.
  • the composition for a porous support is applied to the porous support, impregnated, and then dried to form an intra-sheet porous support having a predetermined porosity. can be done. At this time, it is preferable to dispose (place) the porous support on the surface of the substrate.
  • the porosity of the intra-sheet porous support includes the porosity of the porous support itself, the solid content concentration (viscosity) of the composition for the porous support, each component contained in the composition for the porous support, particularly It can be appropriately set depending on the particle size of the inorganic solid electrolyte, the impregnation time, and the applied pressure when applying pressure. For example, when the solid content concentration is decreased, the particle size of each component is decreased, and the impregnation time is increased, the porosity tends to decrease.
  • the composition for the in-sheet solid electrolyte layer is formed on the in-sheet porous support by adopting the above-described method, conditions, etc. to form an in-sheet solid electrolyte. It can form layers.
  • the porosity of the solid electrolyte layer in the sheet depends on the solid content concentration (viscosity) of the composition for porous support, each component contained in the composition for porous support, particularly the particle size of the inorganic solid electrolyte, and the pressure applied. In some cases, it can be appropriately set by the applied pressure or the like.
  • the porosity tends to decrease.
  • the in-sheet solid electrolyte layer when using a composition for the in-sheet solid electrolyte layer containing an inorganic solid electrolyte having a particle diameter smaller than the opening diameter of the in-sheet porous support, The solid content concentration of the composition, the coexistence of an inorganic solid electrolyte with a particle size larger than the opening size, etc., allow the inorganic solid electrolyte with a small particle size to fall into the pores of the porous support, thereby reducing the particle size. Most of the inorganic solid electrolytes having the properties can be used for forming the in-sheet solid electrolyte layer.
  • the composition for the in-sheet solid electrolyte layer is formed on a substrate (coating and drying), or the composition for the in-sheet solid electrolyte layer is pressure-molded to form a solid electrolyte.
  • a method of forming a layer and providing it on the intra-sheet porous support can also be used.
  • the base material to be used is not particularly limited, but may be a sheet body (plate-like body) made of an organic material, an inorganic material, or the like. Examples of organic materials include various polymers, and specific examples include polyethylene terephthalate, polypropylene, polyethylene, cellulose, and the like. Examples of inorganic materials include glass and ceramics.
  • the method and conditions for forming the in-sheet solid electrolyte layer composition into a film are the same as the coating and drying method described above.
  • the conditions for pressure lamination may be any conditions as long as the solid electrolyte layer formed on the intra-sheet porous support can be pressure laminated.
  • the atmosphere in which pressure-bonding lamination is performed is the same as the mixed atmosphere in the preparation of each composition described above.
  • pressure In the production of the solid electrolyte laminate sheet, pressure may be applied after the laminate of the intra-sheet porous support and the intra-sheet solid electrolyte layer is produced as described above.
  • the pressing method and pressure are not particularly limited, but are the same as the pressing method and pressure for the dry coating layer.
  • a solid electrolyte laminated sheet having an intra-sheet porous support and an intra-sheet solid electrolyte layer can be produced.
  • the in-sheet porous support and the in-sheet solid electrolyte layer of the produced solid electrolyte laminated sheet each contained (remained) the dispersion medium used in the preparation of each composition as long as the effects of the present invention were not impaired.
  • the residual amount can be, for example, 3% by mass or less in the layer.
  • the production method of the present invention is a method of producing an all-solid secondary battery using the solid electrolyte laminate sheet of the present invention, wherein the porous support of the solid electrolyte laminate sheet is kept to a porosity of 15% or more and solid There is a step of pressing the solid electrolyte laminate sheet until the electrolyte layer has a porosity of 10% or less.
  • an all-solid-state secondary battery that suppresses the occurrence of an internal short circuit and has excellent cycle characteristics can be manufactured by a simple method of press-bonding lamination.
  • this pressurizing step it is preferable that the solid electrolyte laminate sheet is pressed against the negative electrode current collector or the positive electrode active material layer and crimped (pressure crimped, crimped lamination) instead of the solid electrolyte laminate sheet alone. It is possible to manufacture the layer structure essential for all-solid secondary batteries, and to enable strong adhesion (reduction of interfacial resistance) with the positive electrode active material layer. more preferred.
  • a positive electrode sheet comprising a positive electrode active material layer can be used as the positive electrode active material layer when pressure-bonded to the solid electrolyte laminated sheet of the present invention.
  • a positive electrode sheet having a positive electrode current collector and a positive electrode active material layer is used. is preferred.
  • the positive electrode active material layer and the positive electrode current collector that constitute the positive electrode sheet are the same as those in the all-solid secondary battery described above.
  • the positive electrode active material layer of the positive electrode sheet may be thinned by the above-mentioned compression lamination or the like, the thickness should be adjusted so that even if the layer is thinned, it will still have the thickness required for the positive electrode active material layer of the all-solid secondary battery. is determined.
  • This positive electrode sheet may have other layers and functional layers described in the solid electrolyte laminated sheet.
  • the positive electrode sheet is usually in the form of a sheet like the solid electrolyte laminate sheet, but it can be cut into a predetermined shape (positive electrode sheet material) for use in the manufacturing method of the present invention.
  • a positive electrode sheet is produced by well-known various methods.
  • a positive electrode sheet can be produced by forming a positive electrode active material layer on the surface of a substrate, preferably a positive electrode current collector.
  • a composition (positive electrode composition) for forming a positive electrode active material layer is prepared.
  • the positive electrode composition contains a positive electrode active material, preferably an inorganic solid electrolyte, a conductive aid, a binder, a dispersion medium, and other components as appropriate. Each component contained in the positive electrode composition is as described above.
  • the content of the positive electrode active material in the positive electrode composition is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and even more preferably 50 to 85% by mass based on a solid content of 100% by mass. , 55 to 80% by weight are particularly preferred.
  • the content of the inorganic solid electrolyte in the positive electrode composition is not particularly limited. , preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 50% by mass or more, particularly preferably 70% by mass or more, and 90% by mass or more is most preferred.
  • the upper limit is not particularly limited, and the solid content of 100% by mass is, for example, preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and 99% by mass or less. is more preferred.
  • the content of the conductive aid in the positive electrode composition is not particularly limited, and is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, based on 100% by mass of solid content.
  • the content of the binder in the positive electrode composition is not particularly limited, and in terms of strengthening the binding of solid particles and adjusting the porosity, for example, 0.1 to 10% by mass at a solid content of 100% by mass. is preferred, 1 to 10% by weight is more preferred, and 2 to 6% by weight is even more preferred.
  • the content of the dispersion medium in the positive electrode composition is not particularly limited, and is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
  • the positive electrode composition is preferably a non-aqueous composition.
  • the positive electrode composition can be prepared, for example, as a solid mixture or slurry by mixing each of the components described above, for example, with various commonly used mixers.
  • the mixing method, mixing conditions, and the like are the same as those for preparing the above-described composition for porous support.
  • the positive electrode active material layer is not particularly limited, but a coating drying method in which a positive electrode composition (slurry) is applied on the surface of a substrate, preferably a positive electrode current collector, and then dried, or a positive electrode composition is pressure-molded. It can be produced by a molding method, etc.
  • the atmosphere during preparation is not particularly limited, and examples thereof include a mixed atmosphere of the respective compositions described above.
  • the method for forming the positive electrode active material layer is the same as the method for forming the in-sheet solid electrolyte layer, except that the composition used and the surface to be formed are different. However, it is not necessary to positively adjust the porosity when forming the positive electrode active material layer.
  • the positive electrode sheet can also be produced by forming a positive electrode active material layer using a base material instead of the positive electrode current collector, and providing this on the positive electrode current collector (press-bonded lamination or adhesion).
  • the base material, compression lamination conditions, and the like used in this method are the same as in another method for producing the in-sheet solid electrolyte layer of the solid electrolyte laminate sheet.
  • a positive electrode sheet having a positive electrode active material layer preferably on a positive electrode current collector can be produced.
  • the produced or prepared solid electrolyte laminate sheet and the positive electrode sheet are laminated under pressure by sequentially performing the following steps of stacking and pressurizing. That is, in the production method of the present invention, a solid electrolyte laminated sheet having an in-sheet porous support and an in-sheet solid electrolyte layer is used, and this laminated sheet is integrated with a positive electrode active material layer under pressure to obtain an in-sheet. This is a method of compressing the porous support and the in-sheet solid electrolyte layer to a predetermined porosity to form the in-battery porous support and the in-battery solid electrolyte layer with a reduced porosity.
  • Laminating step Laminating the solid electrolyte laminated sheet and the positive electrode sheet with the in-sheet solid electrolyte layer of the solid electrolyte laminated sheet facing the positive electrode active material layer of the positive electrode sheet Pressing step: Laminated solid electrolyte laminated sheet and a step of pressing the positive electrode sheets in the overlapping direction while keeping the porosity of the porous support at 15% or more until the porosity of the solid electrolyte layer is 10% or less.
  • performing the steps in order means the temporal precedence of performing a certain process and another process, and another process (resting process) is performed between a certain process and another process. including.) is also included.
  • the embodiment in which a certain step and another step are performed in order also includes an embodiment in which the time, place, or performer is appropriately changed.
  • the stacking step can be performed by laminating (stacking) both sheets by a normal method, and by this step, the in-sheet solid electrolyte layer and the positive electrode active material layer are arranged in contact (adjacent).
  • the solid electrolyte laminate sheet and the positive electrode sheet are pressed (compressed) in the overlapping direction.
  • the pressure applied at this time is such that the porosity of the porous support (porous support in the battery) after pressurization is suppressed to 15% or more (maintaining 15% or more, i.e., not lowered to 15% or less). 2), and the pressure is set so that the porosity of the solid electrolyte layer (battery internal solid electrolyte layer) after pressurization becomes 10% or less. That is, in the pressing step, both sheets are pressed to set the porosity of the in-battery porous support to 15% or more and the porosity of the in-battery solid electrolyte layer to less than 10%.
  • the porosity of the in-battery porous support after pressurization should be less than 15%, and is set to the above-described porosity of the in-battery porous support.
  • the amount of reduction in porosity due to pressurization is not particularly limited, but is preferably 5 to 40%, for example, 5 to 30%. % is more preferable.
  • the porosity of the in-battery solid electrolyte layer after pressurization may be less than 10%, and is set to the above-described porosity of the in-battery solid electrolyte layer.
  • the amount of reduction in porosity due to pressurization is not particularly limited, but is preferably 10 to 60%, for example, 20 to 50%. is more preferable.
  • the pressurization method is not particularly limited, but various known pressurization methods can be applied, and a pressurization method (for example, pressurization using a hydraulic cylinder press) is preferred.
  • the pressurizing force in the pressurizing step may be a pressure that makes the porosity of the in-battery porous support and the in-battery solid electrolyte layer within the above range, but the porosity of the in-sheet porous support and the in-sheet solid electrolyte layer may be sufficient. , varies depending on the porosity after pressurization, etc., so it is not uniquely determined.
  • the applied pressure can be, for example, 100 to 1000 MPa, preferably 200 to 800 MPa, more preferably 350 to 800 MPa.
  • the pressurization time can be appropriately set.
  • the pressurizing step may be performed under heating, but is preferably performed without heating. When the pressure is applied while heating, the heating temperature is not particularly limited, but is generally in the range of 30 to 300°C.
  • the in-sheet porous support By pressing (crimping) the above solid electrolyte laminate sheet against the positive electrode active material layer, the in-sheet porous support is not compressed until the porosity is less than 15%, and the in-sheet solid electrolyte layer has no voids. It is compressed until the modulus is 10% or less.
  • the in-sheet solid electrolyte layer (in-battery solid electrolyte layer) after pressurization is compressed until the porosity of the in-sheet solid electrolyte layer becomes 10% or less, thereby densifying the dendrite positive electrode. Growth reaching the active material layer can be prevented.
  • the ionic conductivity of the solid electrolyte layer in the battery is improved, and the contact interface between the solid electrolyte layer in the battery and the positive electrode active material layer can be satisfactorily bonded (strongly adhered (pressed)), and the interfacial resistance can be kept low. can be done.
  • the porosity of the in-sheet porous support after pressurization to at least 15%, voids remain in the in-battery electron-ion-conducting layer, and deposition occurs while suppressing volume fluctuations. It can contain and store metals.
  • the solid electrolyte laminated sheet and the positive electrode sheet are integrated.
  • a layer structure in which at least the in-battery porous support, the in-battery solid electrolyte layer, and the positive electrode active material are laminated in this order preferably the negative electrode current collector, the in-battery porous support, and the in-battery solid electrolyte layer.
  • a self-assembled negative electrode type all-solid secondary battery (discharged state) having a layer structure in which a positive electrode active material and a positive electrode current collector are laminated in this order.
  • the charging step described later is performed, and the inner porous support in the battery, and further, between the negative electrode current collector and the inner porous support.
  • a metal negative electrode active material
  • a metal can be deposited therebetween to form a negative electrode active material layer.
  • an all-solid-state secondary battery in which a negative electrode active material layer is formed in advance performs a step of forming the negative electrode active material layer between the negative electrode current collector and the porous support.
  • the step of forming the negative electrode active material layer is performed by using a solid electrolyte laminate sheet having no negative electrode current collector during the production of the all-solid secondary battery, before or after pressure bonding with the positive electrode sheet, or at the same time.
  • a step of pressure bonding or laminating the sheet, the negative electrode active material layer and the negative electrode current collector may be mentioned.
  • the negative electrode active material layer formed by the following forming method can be pressure-bonded or laminated, but it is preferable to laminate or pressure-bond the layer composed of the negative electrode active material described above, particularly a metallic lithium foil.
  • the step of forming the negative electrode active material layer there is a step of forming the negative electrode active material layer between the negative electrode current collector and the in-sheet porous support during the production of the solid electrolyte laminate sheet.
  • the method for forming the negative electrode active material layer used in this step is not particularly limited, but in the same manner as the positive electrode active material layer, a method of forming a film of the negative electrode composition (slurry) on the surface of the substrate, preferably the negative electrode current collector.
  • the atmosphere for carrying out the step of forming the negative electrode active material layer is not particularly limited, and examples thereof include a mixed atmosphere of the respective compositions described above.
  • the negative electrode composition forming the negative electrode active material layer contains a negative electrode active material, preferably an inorganic solid electrolyte, a conductive aid, a binder, a dispersion medium, and other components as appropriate. Each component contained in the negative electrode composition is as described above.
  • the content of the negative electrode active material in the negative electrode composition is not particularly limited. %, more preferably 30 to 80% by mass, even more preferably 40 to 75% by mass.
  • the negative electrode composition contains an inorganic solid electrolyte
  • the content of the inorganic solid electrolyte in the negative electrode composition is not particularly limited.
  • preferably 10% by mass or more, more preferably 15% by mass or more, still more preferably 50% by mass or more, particularly preferably 70% by mass or more, and 90% by mass or more is most preferred.
  • the upper limit is not particularly limited, and the solid content of 100% by mass is, for example, preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and 99% by mass or less. is more preferred.
  • the content of the conductive aid in the negative electrode composition is not particularly limited, and is preferably 0.1 to 20% by mass, more preferably 0.5 to 10% by mass based on 100% by mass of solid content.
  • the content of the binder in the negative electrode composition is not particularly limited, and in terms of strengthening the binding property of solid particles, further adjusting the porosity, etc., at a solid content of 100% by mass, for example, 0.1 to 10% by mass. is preferred, 1 to 10% by weight is more preferred, and 2 to 6% by weight is even more preferred.
  • the content of the dispersion medium in the negative electrode composition is not particularly limited, and is preferably 20 to 80% by mass, more preferably 30 to 70% by mass, and particularly preferably 40 to 60% by mass.
  • the negative electrode composition is preferably a non-aqueous composition.
  • the negative electrode composition can be prepared, for example, as a solid mixture or slurry by mixing each of the components described above, for example, with various commonly used mixers. The mixing method, mixing conditions, etc. are the same as those for preparing the composition for porous support, etc. described above.
  • the negative electrode active material layer By forming the negative electrode active material layer between the negative electrode current collector and the in-battery porous support as described above, the negative electrode current collector, the negative electrode active material layer, the in-battery porous support, and the in-battery An all-solid secondary battery having a layered structure in which a solid electrolyte layer, a positive electrode active material, and preferably a positive electrode current collector are laminated in this order can be produced.
  • the all-solid-state secondary battery manufactured as described above is preferably pressure-constrained in the stacking direction during initialization or use.
  • the binding force at this time is not particularly limited, but is preferably 0.05 MPa or more, more preferably 1 MPa. As an upper limit, for example, less than 10 MPa is preferable, and 8 MPa or less is more preferable.
  • the manufacturing method of the present invention may have a step of initializing the all-solid secondary battery (discharged state) obtained above, and may have a step of charging. Initialization is usually performed after manufacture of the all-solid secondary battery and before use, and the charging step and the discharging step are each performed at least once.
  • metal ions can be supplied from the positive electrode active material layer at least to the porous support in the battery (usually within the voids), and in particular in the self-assembled negative electrode type all-solid-state secondary battery, the supplied metal ions can be supplied. It can be deposited to form a negative electrode active material layer (an all-solid secondary battery in a charged state).
  • Charging conditions are not particularly limited, but include, for example, the following conditions. Current: 0.05-30mA/ cm2 Voltage: 4.0-4.5V Charging time: 0.1 to 100 hours Temperature: 0 to 80°C
  • the step of charging is preferably performed by pressurizing and constraining the all-solid-state secondary battery (discharged state) in the stacking direction. This makes it possible to suppress expansion of the all-solid secondary battery. The confining pressure at this time is as described above.
  • Discharging process By the discharging step, the metal deposited on the in-battery porous support can be ionized and transferred to the positive electrode active material layer.
  • Discharge conditions are not particularly limited, and include, for example, the following conditions. Current: 0.05-30mA/ cm2 Voltage: 4.0-4.5V Charging time: 0.1 to 100 hours Temperature: 0 to 80°C
  • the step of discharging is preferably performed by pressurizing and constraining the all-solid-state secondary battery (charged state) in the stacking direction.
  • the confining pressure at this time is as described above, and may be the same as or different from the confining pressure in the charging step.
  • the all-solid-state secondary battery of the present invention can be manufactured by performing each step and further initialization as appropriate. As described above, this all-solid secondary battery effectively suppresses the occurrence of an internal short circuit and has excellent cycle characteristics. Furthermore, an increase in interfacial resistance is also suppressed.
  • ⁇ Synthesis Example 1 Synthesis of sulfide-based inorganic solid electrolyte Li—P—S-based glass> Sulfide-based inorganic solid electrolytes are disclosed in T.W. Ohtomo, A.; Hayashi, M.; Tatsumisago, Y.; Tsuchida, S.; Hama, K.; Kawamoto, Journal of Power Sources, 233, (2013), pp231-235; Hayashi, S.; Hama, H.; Morimoto, M.; Tatsumisago, T.; Minami, Chem. Lett. , (2001), pp872-873, a Li-P-S based glass was synthesized.
  • Li 2 S lithium sulfide
  • P 2 S 5 diphosphorus pentasulfide
  • LPS (1) to (3) was obtained by adding a dispersion medium (diisobuketone) to the dispersion liquid obtained in each of the above synthesis examples to obtain a measurement dispersion liquid having a solid content concentration of 1% by mass. It was measured as the volume average particle size by the above-described measuring method, except that it was adjusted and measured.
  • a dispersion medium diisobuketone
  • a porous support 1 was produced as follows. First, a polyimide precursor was synthesized. The inside of the flask equipped with a stirrer and thermometer was replaced with nitrogen gas. After that, 12.86 g of 3,3′-diaminobenzidine and 200 g of N-methyl-2-pyrrolidone were added into the flask. While maintaining the temperature of the mixture in the flask at 10° C. or lower, 18.60 g of isocyanatoethyl methacrylate was further added and stirred at room temperature for 3 hours.
  • the obtained resin composition was applied by a casting method on a smooth glass substrate that had been subjected to mold release treatment so that the dry film (film after drying) had a thickness of 50 ⁇ m, and was heated at a temperature of 180°C. Allow to dry for 2 hours.
  • a negative mask having a pattern in which circular holes with a diameter of 5 ⁇ m are arranged at an arrangement pitch of 1 ⁇ m at a pitch of 1 ⁇ m (in each arrangement direction) is brought into close contact with the surface of the dry film.
  • the ultraviolet rays were irradiated so that the integrated irradiation dose was .
  • the negative mask was peeled off, development was performed using an aqueous sodium hydroxide solution, and the dry film was sufficiently dried with hot air at 80° C. for 30 minutes. Thereafter, the dry film was heated at a temperature of 300° C. for 3 hours to promote the imidization reaction, resulting in a patterned porous support made of polyimide resin (thickness: 50 ⁇ m, porosity: 70% according to the above measurement method). got
  • Porous Support 2 Preparation of Porous Support 2> A nonwoven fabric (natural fiber/polyethylene terephthalate (PET)/acrylic resin coating type, manufactured by Asahi Kasei Chemicals, Silky Fine, WS7R02-14, thickness 50 ⁇ m, porosity 70% by the above measurement method) is prepared as the porous support 2. did.
  • PET polyethylene terephthalate
  • acrylic resin coating type manufactured by Asahi Kasei Chemicals, Silky Fine, WS7R02-14, thickness 50 ⁇ m, porosity 70% by the above measurement method
  • Porous Support 3 Preparation of Porous Support 3> A nonwoven fabric (natural fiber/PET/acrylic resin coated type, manufactured by Asahi Kasei Chemicals Co., Ltd., Silky Fine, WS7R02-06, thickness 30 ⁇ m, porosity 80% by the above measurement method) was prepared as the porous support 3 .
  • Example 1 Preparation of solid electrolyte laminate sheet> (Example 1-1: Preparation of solid electrolyte laminate sheet A-1) - Preparation of solid electrolyte composition 1 - LPS (3) having an average particle size of 1 ⁇ m and the following binder B-1 were mixed at a mass ratio of 98:2 (in terms of solid content), and charged into a zirconia 45 mL container (manufactured by Fritsch). 20 g of zirconia beads with a diameter of 3 mm and diisobutyl ketone as a dispersion medium were added to adjust the solid content concentration to 45% by mass.
  • this container was set in a planetary ball mill P-7 and stirred at a temperature of 25° C. and a rotation speed of 100 rpm for 1 hour to prepare a solid electrolyte composition 1 (slurry) as a composition for a porous support.
  • PVdF-HFP hexafluoropropylene
  • a solid electrolyte composition 2 was prepared as a composition for an in-sheet solid electrolyte layer.
  • the surface of the intra-sheet porous support was coated with the solid electrolyte composition 2 by a baker applicator without heating, and then dried by heating at 100° C. for 1 hour.
  • an in-sheet solid electrolyte layer having a thickness of 100 ⁇ m was formed on the surface of the in-sheet porous support.
  • the thickness of the in-sheet solid electrolyte layer is the thickness of the layer formed on the surface of the in-sheet solid electrolyte layer.
  • a solid electrolyte laminated sheet A-1 was produced on the PPS film, and separated from the PPS film to obtain a solid electrolyte laminated sheet A-1.
  • Example 1-2 Preparation of solid electrolyte laminated sheet A-2
  • LPS (3) was changed to LPS (2) adjusted to have an average particle diameter of 2 ⁇ m
  • a solid electrolyte composition 3 was prepared as a composition.
  • solid electrolyte laminate sheet A-1 was produced in the same manner as solid electrolyte laminate sheet A-1, except that solid electrolyte composition 3 was used instead of solid electrolyte composition 1.
  • a sheet A-2 was produced.
  • Example 1-3 Preparation of solid electrolyte laminate sheet A-3
  • LPS (1) with an average particle size of 10 ⁇ m was changed to LPS (1) with an average particle size of 10 ⁇ m and LPS (3) with an average particle size of 1 ⁇ m at a mass ratio of 9:1.
  • a solid electrolyte composition 4 was prepared as a composition for an in-sheet solid electrolyte layer in the same manner as in the preparation of the solid electrolyte composition 2 except for the above.
  • solid electrolyte laminated sheet A-3 was prepared in the same manner as solid electrolyte laminated sheet 1 except that solid electrolyte composition 4 was used instead of solid electrolyte composition 2. was made.
  • Example 1-4 Preparation of solid electrolyte laminated sheet A-4)
  • LPS (1) with an average particle size of 10 ⁇ m was changed to LPS (1) with an average particle size of 10 ⁇ m and LPS (3) with an average particle size of 1 ⁇ m at a mass ratio of 8:2.
  • a solid electrolyte composition 5 was prepared as a composition for an in-sheet solid electrolyte layer in the same manner as in the preparation of the solid electrolyte composition 2 except for the above.
  • solid electrolyte laminated sheet A-4 was prepared in the same manner as solid electrolyte laminated sheet 1 except that solid electrolyte composition 5 was used instead of solid electrolyte composition 2. was made.
  • Example 1-5 Preparation of solid electrolyte laminated sheet A-5)
  • the porous support 1 was fixed on a stainless steel (SUS) foil having a thickness of 20 ⁇ m, and the solid electrolyte composition 1 was coated on the porous support 1 with a bar coater without heating. After the solid electrolyte composition 1 was thus impregnated (penetrated) into the porous support 1 (inside the pores), it was dried by heating at 100° C. for 1 hour to prepare an in-sheet porous support. Then, the surface of the intra-sheet porous support was coated with the solid electrolyte composition 4 without heating using a Baker applicator, and then dried by heating at 100° C. for 1 hour.
  • SUS stainless steel
  • an in-sheet solid electrolyte layer having a thickness of 100 ⁇ m was formed on the surface of the in-sheet porous support.
  • the thickness of the in-sheet solid electrolyte layer is the thickness of the layer formed on the surface of the in-sheet solid electrolyte layer.
  • Example 1-6 Preparation of solid electrolyte laminate sheet A-6
  • LPS (1) with an average particle size of 10 ⁇ m was changed to LPS (1) with an average particle size of 10 ⁇ m and LPS (3) with an average particle size of 1 ⁇ m at a mass ratio of 9:1.
  • a solid electrolyte composition 6 was prepared as the in-sheet solid electrolyte layer composition in the same manner as the solid electrolyte composition 2.
  • the porous support 2 was fixed on a stainless steel (SUS) foil having a thickness of 20 ⁇ m, and the solid electrolyte composition 1 was coated on the porous support 2 with a bar coater without heating. After the solid electrolyte composition 1 was thus impregnated (penetrated) into the porous support 2 (inside the pores), it was dried by heating at 100° C. for 1 hour to prepare an in-sheet porous support. Then, the surface of the intra-sheet porous support was coated with the solid electrolyte composition 6 by a baker applicator without heating, and then dried by heating at 100° C. for 1 hour. Thus, an in-sheet solid electrolyte layer having a thickness of 100 ⁇ m was formed on the surface of the in-sheet porous support.
  • SUS stainless steel
  • Example 1-7 Production of solid electrolyte laminate sheet A-7)
  • Solid electrolyte laminate sheet A-6 was produced, except that solid electrolyte composition 3 was used instead of solid electrolyte composition 1 and solid electrolyte composition 4 was used instead of solid electrolyte composition 6.
  • a solid electrolyte laminate sheet A-7 was produced in the same manner as the laminate sheet A-6.
  • Example 1-8 Production of solid electrolyte laminate sheet A-8
  • Solid electrolyte laminated sheet A was prepared in the same manner as solid electrolyte laminated sheet A-6, except that porous support 3 was used instead of porous support 2 in producing solid electrolyte laminated sheet A-6. -8 was made.
  • Example 1-9 Preparation of solid electrolyte laminate sheet A-9)
  • a solid electrolyte composition as a composition for a porous support was prepared in the same manner as in the preparation of the solid electrolyte composition 1, except that the solid content concentration was changed from 45% by mass to 40% by mass.
  • Item 7 was prepared.
  • solid electrolyte laminate sheet A-8 was produced in the same manner as solid electrolyte laminate sheet A-8, except that solid electrolyte composition 7 was used instead of solid electrolyte composition 1. Sheet A-9 was produced.
  • Example 1-10 Production of solid electrolyte laminated sheet A-10
  • a solid electrolyte composition as a composition for a porous support was prepared in the same manner as in the preparation of the solid electrolyte composition 1, except that the solid content concentration was changed from 45% by mass to 35% by mass.
  • Item 8 was prepared.
  • solid electrolyte laminate sheet A-8 was produced in the same manner as solid electrolyte laminate sheet A-8, except that solid electrolyte composition 8 was used instead of solid electrolyte composition 1.
  • Sheet A-10 was produced.
  • Solid electrolyte laminated sheet B was prepared in the same manner as solid electrolyte laminated sheet A-3, except that solid electrolyte composition 9 was used instead of solid electrolyte composition 1 in producing solid electrolyte laminated sheet A-3. -2 was produced.
  • Solid electrolyte laminate sheet A-1 was prepared in the same manner as solid electrolyte laminate sheet A-1, except that solid electrolyte composition 2 was used to form the in-sheet solid electrolyte layer.
  • a laminated sheet B-3 was produced.
  • Solid electrolyte laminate sheet B-1 was prepared in the same manner as solid electrolyte laminate sheet B-1, except that solid electrolyte composition 2 was used to form the in-sheet solid electrolyte layer.
  • a laminated sheet B-4 was produced.
  • Solid electrolyte laminated sheet B-6 was prepared in the same manner as solid electrolyte laminated sheet A-6, except that solid electrolyte composition 1 was changed to solid electrolyte composition 9 in the production of solid electrolyte laminated sheet A-6. was made.
  • Solid electrolyte laminate sheet B-6 was prepared in the same manner as solid electrolyte laminate sheet B-6, except that solid electrolyte composition 6 was used to form the in-sheet solid electrolyte layer. A laminated sheet B-8 was produced.
  • Table 1 shows the values (measured by the above-described measuring method). In the measurement of porosity, an arbitrary cross section was taken as a longitudinal cross section (vertical cross section). Table 1 shows the opening diameters of the porous supports 1 to 3 measured by the above-described measuring method.
  • Table 1 shows the thickness of the porous support used, the particle size of the inorganic solid electrolyte, the thickness of the solid electrolyte layer in the sheet, and the filling amount of the inorganic solid electrolyte in porous supports 1 to 3 (porous support The difference in porosity between bodies 1 to 3 and the in-sheet porous support) is shown.
  • the particle size of the inorganic solid electrolyte was measured by taking an arbitrary cross section as a vertical cross section (vertical cross section). Note that the thickness of the intra-sheet porous support in each laminated sheet is the same as the thickness of the porous support used in the production, and thus the description in Table 1 is omitted. If the porosity or the like cannot be measured or if the in-sheet solid electrolyte layer is not provided, the corresponding column is indicated with a sign "-".
  • Table 1 shows the support (negative electrode current collector), the solid electrolyte layer B, and the solid electrolyte layer A of the all-solid secondary battery manufactured in Reference Example 1 described later. ” column and the “in-sheet solid electrolyte layer” column.
  • Supports 1 to 3 Porous supports 1 to 3 prepared or prepared in Support Preparation Examples 1 to 3 above SUS: stainless steel foil LPS (1) to LPS (3): LPS synthesized in Synthesis Examples 1 to 3
  • Example 2 Production of all-solid secondary battery> An all-solid secondary battery was manufactured as follows, and its characteristics were evaluated. In manufacturing the all-solid secondary battery, a positive electrode sheet was produced as follows.
  • a positive electrode composition (slurry).
  • the resulting positive electrode composition was applied to the surface of a carbon-coated aluminum foil (positive electrode current collector) having a thickness of 20 ⁇ m with a Baker applicator (trade name: SA-201), and dried by heating at 100° C. for 1 hour. , a positive electrode sheet having a positive electrode active material layer (coated dry layer) with a thickness of 150 ⁇ m was produced.
  • Examples 2-1 to 2-4 Production of all-solid secondary batteries 1 to 4
  • a disk-shaped positive electrode sheet having a diameter of 1 cm was punched out from the produced positive electrode sheet.
  • the solid electrolyte laminate sheet shown in the "Solid electrolyte laminate sheet No.” column in Table 2 was punched into a disk shape with a diameter of 1.2 cm to obtain a disk-shaped solid electrolyte laminate sheet (laminated sheet material).
  • the positive electrode active material layer of the disk-shaped positive electrode sheet and the in-sheet solid electrolyte layer of the disk-shaped solid electrolyte laminated sheet were faced and superimposed so that the disk-shaped positive electrode sheet did not protrude from the disk-shaped solid electrolyte laminated sheet.
  • a metallic lithium foil with a thickness of 50 ⁇ m is punched into a disk shape with a diameter of 1.1 cm, and is placed on the central portion of the surface of the porous support in the sheet of the pressure-bonded laminate (the metallic lithium foil punched into a disk shape is a disk-shaped solid SUS rods with a diameter of 1.5 cm were used from both sides in the stacking direction at a confining pressure of 5 MPa in the stacking direction. In this way, uncharged all-solid-state secondary batteries 1 to 4 were produced.
  • All-solid-state secondary batteries 1 to 4 include a negative electrode current collector (SUS rod), a negative electrode active material layer (metallic lithium foil), an in-battery porous support, an in-battery solid electrolyte layer, and a positive electrode active material layer. , and a positive electrode current collector (aluminum foil).
  • the thickness of the positive electrode active material layer was 80 ⁇ m.
  • Examples 2-5 to 2-10 Production of all-solid secondary batteries 5 to 10.
  • the solid electrolyte laminate sheet A-1 was changed to the solid electrolyte laminate sheet shown in the "Solid electrolyte laminate sheet No.”
  • Press-bonded laminates of the solid electrolyte laminate sheet and the positive electrode sheet were obtained in the same manner as in the production of the all-solid secondary battery 1 of Example 2-1.
  • the in-battery porous support and the in-battery solid electrolyte layer having the thickness and porosity shown in Table 2 were formed.
  • All-solid secondary batteries 5 to 10 include a negative electrode current collector (SUS rod and SUS foil), an in-battery porous support, an in-battery solid electrolyte layer, a positive electrode active material layer, and a positive electrode current collector (aluminum It has a laminated structure consisting of foil).
  • the thickness of the positive electrode active material layer was 80 ⁇ m.
  • the SUS rod on the side of the solid electrolyte layer A was once removed, 5 mg of LPS (3) adjusted to an average particle size of 1 ⁇ m was put on the solid electrolyte layer A, and a disk-shaped SUS foil with a diameter of 1 cm was punched thereon. was inserted and placed. Next, the removed SUS rod was reinserted into the cylinder, and after applying a pressure of 10 MPa in the axial direction, it was fixed while applying a pressure of 5 MPa. In this way, the solid electrolyte layer B was formed on the solid electrolyte layer A, and an all-solid secondary battery R having the solid electrolyte layers A and B with a two-layer structure was manufactured.
  • the all-solid secondary battery R consists of a negative electrode current collector (SUS rod and SUS foil), a solid electrolyte layer B, a solid electrolyte layer A, a positive electrode active material layer, and a positive electrode current collector (aluminum foil). It has a laminated structure. The thickness of the positive electrode active material layer was 80 ⁇ m.
  • Table 2 shows the porosity of the in-battery porous support, the in-battery solid electrolyte layer, and the solid electrolyte layers A and B (measured by the above-described measuring method) for each of the manufactured all-solid secondary batteries.
  • Table 2 shows the thicknesses of the in-battery porous support, the in-battery solid electrolyte layer, and the solid electrolyte layers A and B.
  • the units of porosity and thickness are "%" and " ⁇ m", respectively, they are omitted in Table 2.
  • Table 2 shows the results of measuring the particle size of the inorganic solid electrolyte contained in the in-battery porous support formed by pressurization and the inorganic solid electrolyte constituting the in-battery solid electrolyte layer by the above-described measurement method. .
  • the unit of particle diameter is " ⁇ m", it is omitted in Table 2.
  • Each of the manufactured all-solid secondary batteries was initialized by charging to 4.25 V at 0.05 mA/cm 2 and then discharging to 2.5 V at 0.05 mA/cm 2 .
  • initialized all-solid secondary batteries 1 to 10, C1 to C10 and R were obtained.
  • metallic lithium is deposited in the pores of the porous support in the battery during charging. It functions as a material layer.
  • Charge-discharge cycle characteristic test> For each all-solid-state secondary battery after initialization, 1 cycle is a charge-discharge cycle of charging to 4.25 V at a current density of 0.5 mA / cm 2 and discharging to 2.5 V at 0.5 mA / cm 2 , and 100 I repeated the cycle.
  • the discharge capacity retention rate and the presence or absence of internal short circuits were evaluated according to the following criteria. Table 2 shows the results. The discharge capacity retention rate was evaluated by obtaining the ratio (percentage) of the discharge capacity after 100 cycles to the discharge capacity at the first cycle.
  • Li foil Metal lithium foil NMC: Lithium nickel manganese cobaltate
  • the results shown in Tables 1 and 2 reveal the following.
  • the all-solid secondary batteries C1 and C2 were manufactured using the solid electrolyte laminate sheets B-1 and B-2 having an intra-sheet porous support with too small porosity. Internal short circuits occur in these all-solid secondary batteries in several cycles. This is probably because the porosity of the in-battery porous support was too small than the range specified in the present invention, so that the volume fluctuation due to charging and discharging was large, and the in-battery solid electrolyte layer was damaged.
  • All-solid secondary batteries C3, C4, C7 and C8 were all manufactured using solid electrolyte laminate sheets B-3, B-4, B-7 and B-8 having only the intra-sheet porous support. It is a thing.
  • All-solid secondary batteries C5 and C6 are self-assembled negative electrode type all-solid secondary batteries manufactured using solid electrolyte laminated sheets B-5 and B-6 having an in-sheet porous support with too small porosity. be. Therefore, an internal short circuit occurs similarly to the all-solid secondary batteries C1 and C2, but the number of charge/discharge cycles at that time is smaller.
  • the pressure applied in the production of the all-solid secondary battery was too weak, and the porosity of the solid electrolyte layer in the battery exceeded 10%. Therefore, the arrival of the dendrite to the positive electrode active material layer cannot be suppressed, and a short circuit occurs in 20 cycles.
  • the all-solid secondary battery C10 even if the solid electrolyte laminate sheet specified in the present invention was used, the pressure in the production of the all-solid secondary battery was too strong, and the porosity of the in-battery porous support was 15. %, the stress due to the volume fluctuation cannot be absorbed (offset), resulting in a short circuit.
  • a solid electrolyte layer with a two-layer structure in which a highly porous solid electrolyte layer B is laminated on the solid electrolyte layer A (corresponding to the solid electrolyte layer in the battery) is adopted.
  • the cycle characteristics of the secondary battery R were evaluated.
  • the solid electrolyte layer B has a porosity of 40% and the solid electrolyte layer A has a porosity of 10%, so short circuits can be prevented up to 100 cycles.
  • the porous support is not incorporated in the solid electrolyte layer B, the discharge capacity retention rate is 20%, which is not sufficient for a recent all-solid secondary battery that requires even higher reliability. .
  • the solid electrolyte laminate sheet defined in the present invention was produced by pressing and laminating the positive electrode sheet so that the in-battery porous support and the in-battery solid electrolyte layer satisfy the porosity defined in the present invention.
  • All of the all-solid secondary batteries 1 to 10 of the present invention can prevent the occurrence of an internal short circuit up to 100 cycles, and exhibit excellent cycle characteristics with a discharge capacity retention rate of 60% or more after 100 cycles.
  • all-solid-state secondary batteries 1 to 4 which employ metallic lithium foil as the negative electrode active material layer, exhibit extremely excellent cycle characteristics with a discharge capacity retention rate of 72% after 100 cycles.
  • the self-forming negative electrode type all-solid secondary batteries 5 to 10 can suppress volume fluctuation and isolation of metallic lithium even if the deposition and dissolution of metallic lithium are repeated, and exhibit excellent cycle characteristics while increasing battery capacity.
  • the all-solid-state secondary battery of the present invention is an all-solid-state secondary battery in which a negative electrode active material layer is formed in advance (especially a high-capacity all-solid-state secondary battery that employs a metallic lithium foil as a negative electrode active material layer). Even if it is a self-forming negative electrode type all-solid secondary battery, it can stably operate (drive) while exhibiting excellent cycle characteristics while preventing the occurrence of an internal short circuit to a high degree. Therefore, a higher level of reliability required for recent all-solid secondary batteries can be achieved.
  • Negative electrode current collector 2 (Inside battery) Porous support 3 (Inside battery) Solid electrolyte layer 4 Positive electrode active material layer 5 Positive electrode current collector 6 Operating part 8 (Inside sheet) Porous support 9 (Inside sheet) Solid Electrolyte layer 10 All-solid secondary battery 11 Laminated sheet for negative electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

無機固体電解質を内蔵したシート状の多孔質支持体と無機固体電解質を含有する固体電解質層とを有する固体電解質積層シートであって、多孔質支持体の空隙率が20%以上であり、固体電解質層の空隙率が多孔質支持体の空隙率よりも小さい固体電解質積層シート、この固体電解質積層シートを用いて多孔質支持体及び固体電解質層の空隙率を調整しながら加圧して製造する全固体二次電池の製造方法及び全固体二次電池を提供する。

Description

固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法
 本発明は、固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法に関する。
 リチウムイオン二次電池等の二次電池は、負極と、正極と、負極と正極との間に挟まれた電解質とを有し、通常、周期律表第1族若しくは第2族に属する金属(以下、単に金属ということがある。)のイオンを両極間に往復移動させることにより充電と放電を可能とした蓄電池である。二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電、過放電により電池内部で短絡が生じるおそれもあり、信頼性と安全性の更なる向上が求められている。
 このような状況下、有機電解液に代えて、不燃性の無機固体電解質を用いた全固体二次電池の開発が進められている。全固体二次電池は負極、電解質及び正極の全てが固体からなり、有機電解液を用いた電池の課題とされる安全性若しくは信頼性を大きく改善することができ、また長寿命化も可能になるとされる。
 二次電池は、充電時には正極から負極へと電子が移動し、同時に正極を構成する活物質から金属イオンが放出され、この金属イオンは電解質を通って負極へと到達して負極に溜め込まれる。こうして負極に溜め込まれた金属イオンの一部は電子を取り込み金属として析出する現象が生じる。この金属の析出物が充放電の繰り返しによりデンドライド状に成長してしまうと、やがて正極へと達し、内部短絡が生じて二次電池として機能しなくなる。特にリチウムイオンを往復移動させるリチウムイオン二次電池は、金属リチウムのデンドライドの発生、成長が著しく、内部短絡を生じやすい。したがって、全固体二次電池においても、金属からなるデンドライド(単に、デンドライドということがある。)の正極への到達を阻止することは、電池を長寿命化する上で重要である。
 デンドライドによる内部短絡の問題に対処すべく、全固体二次電池を構成する、固体電解質層を複層構造にする技術が提案されている。
 例えば、特許文献1には、「無機固体電解質の粒子を含有し、空隙率が10%以下の固体電解質層と、無機固体電解質の粒子を含有し、空隙率が15%以上の易破壊層とを積層した固体電解質積層シート」、及びこの固体電解質積層シートを含む全固体二次電池が記載されている。
 特許文献2には、「リチウムイオン伝導性の無機固体電解質と電子伝導性粒子とを含有し、負極集電体に隣接する、空隙率が20%以上の電子イオン伝導層と、リチウムイオン伝導性の無機固体電解質を含有し、前記電子イオン伝導層の前記負極集電体とは反対側の、空隙率が20%以上のイオン伝導層とを有する負極用積層シート」が記載されている。また、同文献には、この負極用積層シートを用いた全固体二次電池であって、「リチウムイオン伝導性の無機固体電解質と電子伝導性粒子とを含有し、負極集電体に隣接する、空隙率が15%以上の電子イオン伝導層と、リチウムイオン伝導性の無機固体電解質を含有し、前記電子イオン伝導層の前記負極集電体とは反対側の、空隙率が10%以下のイオン伝導層と、前記イオン伝導層の前記電子イオン伝導層とは反対側に隣接する正極活物質層とを有し、充電状態において、少なくとも前記電子イオン伝導層が負極活物質を有し、前記負極活物質が金属リチウムである全固体リチウムイオン二次電池」が記載されている。
 更に、特許文献3には、集電極と、負極活物質と、複数の粒子の常温溶融塩電解質が含浸されている湿砂状電解質層と、無機固体電解質層とをこの順で有するリチウム電池用電極体を、負極として用いたリチウム電池が記載されている。
特開2020-107594号公報 国際公開第2020-196040号 特開2016-058250号公報
 一般に、全固体二次電池を充電すると、充放電によって金属の析出及び溶解が繰り返されて負極活物質層は体積変動(膨張及び収縮)を受ける。特に充電により正極活物質層で発生させた金属イオンを負極側で還元析出させた金属を負極活物質層として利用する形態の全固体二次電池は、隣接配置された負極集電体及び固体電解質層の間で金属の析出及び溶解が起こるため、体積変動は大きくなる。これらの体積変動により次第に層内又は層間に空隙が形成され、この空隙内で金属が負極集電体又は固体電解質層に対して非接触となって孤立すると(孤立金属の形成)、金属は溶解(イオン化)できなくなる。このような孤立金属の発生により、(イオン化しうる金属量が徐々に減少して)放電容量が次第に低下し、サイクル特性が劣化し、ひいては放電不能となると考えられる。
 しかも、上記空隙が形成されると、粒界に沿って進行するデンドライドの成長を促進して、内部短絡の発生を早めることにもなる。
 このような内部短絡の発生防止とともにサイクル特性の低下抑制については、特許文献3では十分に検討されていない。一方、特許文献1及び2に記載の技術によれば、全固体二次電池について、内部短絡の発生とサイクル特性の低下とをある程度抑制できると期待される。しかし、近年、全固体二次電池の実用化に向けた開発が急速に進行しており、サイクル特性等の電池性能の更なる向上に加え、内部短絡の発生を高度に抑制して高い信頼性(安全性)を実現することが望まれている。
 本発明は、全固体二次電池に組み込まれた全固体二次電池を繰り返して充放電しても、全固体二次電池の内部短絡の発生を抑制しながらもサイクル特性の更なる向上をも実現する固体電解質積層シートを提供することを課題とする。また、本発明は、内部短絡の発生が抑制され、サイクル特性にも優れた全固体二次電池、及びその製造方法を提供することを課題とする。
 本発明者は、種々検討したところ、全固体二次電池に組み込まれた固体電解質層を複層構造としたうえで、そのうちの1層を大きな体積変動なく金属の析出を可能にする層で構成し、もう一層を空隙の少ない緻密な層で構成することにより、内部短絡の発生を抑制でき、しかもサイクル特性の低下をも抑制可能になるとの着想を得た。
 この着想に基づいて、本発明者は更に詳細な検討を進めた結果、全固体二次電池において、金属の析出を可能にする層を、析出する金属を収容する空隙を単に多く設ける(空隙率を単に高める)だけでなく、基本骨格となる支持体を組み込んで空隙率を高めながらも金属の析出及び溶解により欠陥(ヒビ、割れ、破壊等)が発生しにくい層で構成することにより、金属の析出及び溶解による体積変動を抑えながらも溶解時に孤立させることなく析出した金属を収容可能となることを見出した。そのうえ、この層と緻密な層とを重ねて配置することにより、金属の析出及び溶解による体積変動に起因する応力を緻密な層に伝播することを阻止して緻密な層の欠陥発生を阻止でき、その結果、デンドライドの正極への貫通を効果的に阻害できることを見出した。
 更に、上述の全固体二次電池を製造するに際して、無機固体電解質を内蔵し、所定の空隙率を有する多孔質支持体と、この多孔質支持体よりも小さな空隙率を有する固体電解質層とを積層したシートを用いて、この積層シートを加圧することにより、上記金属の析出を可能にする層及び緻密な層を形成できることを見出した。
 本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
<1>周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質を内蔵したシート状の多孔質支持体と、この多孔質支持体の一方の表面上の、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質を含有する固体電解質層とを有する固体電解質積層シートであって、
 多孔質支持体の空隙率が20%以上であり、かつ固体電解質層の空隙率が多孔質支持体の空隙率よりも小さい、固体電解質積層シート。
<2>多孔質支持体に内蔵されている無機固体電解質が多孔質支持体の開口径よりも小さな粒子である、<1>に記載の固体電解質積層シート。
<3>固体電解質層に含有されている無機固体電解質が多孔質支持体の開口径よりも大きな粒子と小さな粒子とを含む、<1>又は<2>に記載の固体電解質積層シート。
<4>多孔質支持体の他方の表面に負極集電体を有する、<1>~<3>のいずれか1つに記載の固体電解質積層シート。
<5>上記<1>~<4>のいずれか1つに記載の固体電解質積層シートを用いた全固体二次電池であって、
 負極集電体、固体電解質積層シートの多孔質支持体、固体電解質層及び正極活物質層をこの順で積層圧着した層構造を有し、
 積層圧着後の多孔質支持体の空隙率が15%以上であり、
 積層圧着後の固体電解質層の空隙率が10%以下である、全固体二次電池。
<6>負極集電体及び多孔質支持体の間に負極活物質層を有する、<5>に記載の全固体二次電池。
<7>負極活物質層が金属リチウム箔である、<6>に記載の全固体二次電池。
<8>全固体二次電池の充電状態において、少なくとも多孔質支持体が負極活物質を内蔵している、<5>に記載の全固体二次電池。
<9>積層圧着後の多孔質支持体に内蔵されている無機固体電解質が多孔質支持体の開口径よりも小さな粒子である、<5>~<8>のいずれか1つに記載の全固体二次電池。
<10>積層圧着後の固体電解質層に含有されている無機固体電解質が多孔質支持体の開口径よりも大きな粒子と小さな粒子とを含む、<5>~<9>のいずれか1つに記載の全固体二次電池。
<11>上記<1>~<4>のいずれか1つに記載の固体電解質積層シートを用いて全固体二次電池を製造する方法であって、
 固体電解質積層シートの多孔質支持体を15%以上の空隙率に抑えつつ、固体電解質層を10%以下の空隙率になるまで、固体電解質積層シートを加圧する工程を有する、全固体二次電池の製造方法。
<12>負極集電体及び多孔質支持体の間に負極活物質層を形成する工程を有する、<11>に記載の全固体二次電池の製造方法。
<13>負極活物質層を形成する工程が、負極活物質を含有する負極組成物を製膜する工程又は金属リチウム箔を積層する工程である、<12>に記載の全固体二次電池の製造方法。
<14>負極活物質層を形成する工程が、加圧する工程の後に、全固体二次電池を充電して、少なくとも多孔質支持体内に負極活物質を析出させる工程である、<12>に記載の全固体二次電池の製造方法。
 本発明の全固体二次電池は、内部短絡の発生が抑制され、サイクル特性にも優れる。また、本発明の全固体二次電池の製造方法は、内部短絡の発生が抑制され、サイクル特性に優れた全固体二次電池を簡便に製造できる。更に本発明の固体電解質積層シートは、全固体二次電池の製造に用いられることにより、上記の優れた特性を有する全固体二次電池を実現できる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は本発明の全固体二次電池の好ましい実施形態を模式化して示す縦断面図である。 図2は本発明の固体電解質積層シートの好ましい実施形態を模式化して示す縦断面図である。
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。なお、本発明において、成分の含有量、物性等について数値範囲を複数設定して説明する場合、数値範囲を形成する上限値及び下限値は特定の上限値及び下限値の組み合わせに限定されず、各数値範囲の上限値と下限値とを適宜に組み合わせた数値範囲とすることができる。
[全固体二次電池]
 まず、本発明の全固体二次電池について、図面を参照しつつ、好ましい実施形態を挙げて、説明する。
 本発明の全固体二次電池は、本発明の固体電解質積層シートを用いて製造した全固体二次電池であって、負極集電体、固体電解質積層シートの多孔質支持体、固体電解質積層シートの固体電解質層及び正極活物質層をこの順で積層圧着した層構造を有している。この層構造は、負極集電体上に、固体電解質積層シートの多孔質支持体を積層圧着した後の多孔質支持体(以下、電池内多孔質支持体ともいう。)と、固体電解質積層シートの固体電解質層を積層圧着した後の固体電解質層(以下、電池内固体電解質層ともいう。)、及び正極活物質層をこの順で有している。この層構造を別言すると、電池内多孔質支持体の電池内固体電解質層とは反対側の表面に負極集電体と、電池内固体電解質層の電池内多孔質支持体とは反対側の表面に正極活物質層とを有している。
 本発明において、全固体二次電池は、特に断らない限り、予め形成(配置)した負極活物質層を有する形態(負極活物質層を予め形成する形態ということがある。)と、負極活物質層を予め形成せず、充電により正極活物質層で発生させた金属イオンを負極側で還元析出させた金属(の層)を負極活物質層として利用する形態(負極活物質層を予め形成しない形態ということがある。この形態の全固体二次電池を自己形成負極型全固体二次電池ということがある。)とを包含する。自己形成負極型全固体二次電池において、金属(好ましくは金属リチウム)は、少なくとも電池内多孔質支持体内(通常空隙内)に析出すればよく、更には適宜に、負極集電体の表面(電池内多孔質支持体と負極集電体との界面)、電池内多孔質支持体と電池内固体電解質層との界面、更には電池固体電解質層内に、析出してもよい。
 析出させる金属として金属リチウムを採用すると、通常の全固体二次電池の負極活物質として汎用される黒鉛に比べて10倍以上の理論容量を有しており、また負極活物質層を予め形成しない分だけ電池を薄く形成できるため、自己形成負極型全固体二次電池は高いエネルギー密度を実現することが可能となる。
 このように、自己形成負極型全固体二次電池は、未充電の態様(負極活物質層を構成する金属が析出していない態様)と、既充電の態様(負極活物質層を構成する金属が析出している態様)との両態様を包含する。なお、金属が析出していないとは、金属が完全にイオン化して溶解している態様に加えて、本発明の効果を損なわない程度であれば一部の金属が残存している態様を包含する。
 本発明において、既充電とは充電が完了した状態に加え充電が進行中の状態をも意味し、未充電とは放電が完了した状態を意味する。
 本発明において、自己形成負極型全固体二次電池とは、あくまで電池製造における層形成工程において負極活物質層を形成しないことを意味し、上記の通り、負極活物質層は充電によりに形成されるものである。
 上記層構造において、各層間に後述する他の層を介在していてもよく、各層が隣接していてもよい。電池内多孔質支持体及び電池内固体電解質層は層間に後述するデンドライド貫通阻止層が介在していてもよいが、隣接していることが好ましい。電池内固体電解質層及び正極活物質層は隣接していることが好ましい。一方、負極集電体及び電池内多孔質支持体は、全固体二次電池の形態によって好ましい積層状態が異なる。例えば、負極活物質層を予め形成する形態である場合、負極集電体及び電池内多孔質支持体は層間に負極活物質層が介在し、3層が隣接していることが好ましい。一方、負極活物質層を予め形成しない形態である場合、負極集電体及び電池内多孔質支持体は隣接していることが好ましい。本発明において、層が隣接するとは、各層の表面が互いに接した状態に配置(形成)されることを意味する。
 上述の層構造を有する全固体二次電池において、電池内多孔質支持体の空隙率は15%以上であり、電池内固体電解質層の空隙率は10%以下である。これにより、サイクル特性の改善と短絡の発生防止とを実現できる。
 各層の空隙率は、次の方法で測定する。すなわち、各層の任意の断面を倍率3万倍で走査型電子顕微鏡(SEM)により観察して得られたSEM写真を、視野3μm×2.5μm中の空隙の(合計)面積を求め、この面積を視野面積(7.5μm)で除した面積率(百分率)として算出する。
 本発明において、全固体二次電池を構成する各層は、特定の機能を奏する限り、単層構造であっても複層構造であってもよい。
 本発明の全固体二次電池は、上記層構造を有するものであれば、それ以外の構成は特に限定されず、例えば全固体二次電池に関する公知の構成を採用できる。例えば、本発明の全固体二次電池は、電池内多孔質支持体の、電池内固体電解質層とは反対側の表面に、リチウムと合金形成可能な金属の膜を有している態様も好ましい。また、電池内多孔質支持体と電池内固体電解質層との間に、公知のデンドライド貫通阻止層を配置することもできる。
 図1は、本発明の自己形成負極型全固体二次電池(未充電の態様)における一実施形態について、電池を構成する各構成層の積層状態(層構造)を模式化して示す断面図である。本実施形態の自己形成負極型全固体二次電池10は、負極側からみて、負極集電体1、電池内多孔質支持体2、電池内固体電解質層3、正極活物質層4及び正極集電体5を、この順に積層してなる層構造を有しており、積層された層同士は直接接触している。
 このような層構造を有する自己形成負極型全固体二次電池において、充電時には、負極側に電子(e)が供給され、同時に正極活物質を構成するアルカリ金属又はアルカリ土類金属がイオン化して、電池内固体電解質層3を通過(伝導)して、電池内多孔質支持体2に移動し、電子と結合して(還元されて)アルカリ金属又はアルカリ土類金属が析出する。例えばリチウムイオン二次電池であれば、負極にリチウムイオン(Li)が析出されることになる。こうして少なくとも電池内多孔質支持体2内に析出したアルカリ金属又はアルカリ土類金属を負極活物質層として機能させる。
 一方、放電時には、析出したアルカリ金属又はアルカリ土類金属が金属イオンと電子とを発生させる。金属イオンは電池内固体電解質層3を通過(伝導)して正極活物質層側に戻され(移動し)、電子は作動部位6に供給され、正極集電体5に到達する。図示した自己形成負極型全固体二次電池10の例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
 負極活物質層を予め形成する形態の全固体二次電池は、上述のように、負極集電体1と電池内多孔質支持体2との間に負極活物質層(図1において図示しない。)が配置される。この形態の全固体二次電池の作用は、放電時に負極活物質層が消失しないこと以外は、上記自己形成負極型全固体二次電池10と基本的に同じである。
 上記層構造を有する本発明の全固体二次電池は、好ましくは、本発明の固体電解質積層シートを用いて、後述する本発明の全固体二次電池の製造方法で製造される。
 本発明の全固体二次電池は、内部短絡の発生を高度に(多サイクルに亘って)抑制され、多サイクルの充放電を繰り返しても放電容量の低下を抑えて優れたサイクル特性を示す。
 その理由の詳細は、まだ定かではないが、次のように考えられる。
 本発明の全固体二次電池は、負極集電体上に、空隙率が15%以上の電池内多孔質支持体と、空隙率が10%以下の電池内固体電解質層とを有している。
 この電池内多孔質支持体は、後述するように、多孔質支持体中に無機固体電解質を内蔵(内在)しており(孔内に無機固体電解質を含んでおり)、析出するアルカリ金属又はアルカリ土類金属(単に金属ということがある。)を収容するのに十分な空隙を有している。これにより、電池内多孔質支持体(空隙)内に体積変動を抑えつつも金属を析出させ、蓄積できる。しかも、多孔質支持体を基本骨格として構成されている電池内多孔質支持体は金属の析出及び溶解によって欠陥(ヒビ、割れ、破壊等)が発生しにくい(自己破壊しにくい)。このような電池内多孔質支持体において、金属は多孔質支持体内(孔内部)に内蔵された無機固体電解質又は既に析出した金属に接触した状態(無機固体電解質を適所に配置してイオン伝導パスを構築した状態)で析出する。そのため、特許文献2のように電子導電材を併用しなくても、溶解時に、電池内多孔質支持体中に構築されたイオン伝導パスが維持されて、金属を順次イオン化して非溶解金属の孤立を抑制できる。このような金属の析出及び溶解は、全固体二次電池を繰り返して充放電しても損なわれることがないと考えられる。
 一方、電池内固体電解質層は、小さな空隙率を有しており、デンドライドの正極に向かう成長(貫通)を阻止できる。しかも、全固体二次電池を繰り返し充放電しても、電池内多孔質支持体が析出する金属を収容して体積変動を効果的に抑制しつつも欠陥が発生しにくいから、体積変動、更には欠陥発生(自己破壊)に起因する応力は電池内固体電解質層にまで伝播されない。そのため、空隙率が小さく緻密な固体電解質層は、一般に欠陥が発生しやすいものの、電池内固体電解質層は、全固体二次電池を繰り返し充放電しても欠陥の発生が高度に抑制されて、デンドライドの正極への貫通を効果的に阻害できる。
 上述の、電池内多孔質支持体及び電池内固体電解質層の作用が協働することにより、充放電を繰り返しても、サイクル特性の低下を効果的に抑制(優れた充放電効率を維持)でき、かつ内部短絡の発生も効果的に抑制できると考えられる。
<負極集電体>
 負極集電体1は、電子伝導体を用いることができる。
 負極集電体を形成する材料としては、特に制限されないが、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタン等の金属材料が挙げられ、ニッケル、銅、銅合金又はステンレス鋼が好ましい。また、これらの金属材料の表面に、カーボン、ニッケル、チタン又は銀を処理したもの(薄膜を形成したもの)も用いることができる。
 負極集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体等も用いることができる。
 負極集電体(上記薄膜を含む。)の厚さは、特に限定されないが、1~500μmが好ましい。負極集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体及び後述する正極集電体の両方を合わせて、集電体と称することがある。
<電池内多孔質支持体>
 電池内多孔質支持体は、シート状の多孔質支持体を基本骨格(ベース)として構成され、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質を孔内部に有している(通常孔表面に付着している)。そして、15%以上の空隙率を有し、内部(通常空隙)に析出する金属を収容可能な層である。そのため、この電池内多孔質支持体は、充放電により、体積変動、更には自己破壊も抑えて、金属を孔内の空隙に蓄積できる。この電池内多孔質支持体は、体積変動、デンドライドの成長により自己破壊しにくい点で、積極的に自己破壊させる特許文献1の「易破壊層」とは、その特性及び作用機能が異なる。
 本発明の全固体二次電池において、電池内多孔質支持体の空隙率が15%以上であると、体積変動を抑制しつつ析出する金属を収容でき、高いサイクル特性を実現することができる。サイクル特性の更なる向上の点で、電池内多孔質支持体の空隙率は、20%以上であることが好ましい。空隙率は、電池内多孔質支持体の破損しにくい特性を活かして、更に高く設定することもでき、例えば、30%以上とすることもでき、35%以上とすることがより好ましい。空隙率の上限は、全固体二次電池における金属析出量に応じて適宜に決定され、例えば、80%以下であることが好ましく、60%以下であることがより好ましく、50%以下であることが更に好ましい。
 電池内多孔質支持体の空隙率は上記方法により面積率として算出される値である。
 電池内多孔質支持体の厚さは、特に限定されず、電池容量(金属析出量)、空隙率等に応じて適宜に決定することができる。例えば、1~100μmとすることができ、3~80μmであることが好ましい。
 電池内多孔質支持体は、後述するシート内多孔質支持体の加圧圧縮体であることが好ましい。
 電池内多孔質支持体は、無機固体電解質の充電量にもよるが、金属イオン伝導性を示すことが好ましい。電池内多孔質支持体が示す金属イオン伝導性は、特に制限されず、金属から発生する金属イオンの伝導(移動)を損なわない範囲(二次電池の構成層として機能する範囲)で適宜に設定される。金属イオン伝導性は、含有する無機固体電解質の種類、含有量等により調整できる。一方、電池内多孔質支持体は、全固体二次電池の放電状態において電子導電性を示さない(電子絶縁性である)。電池内多孔質支持体の電子絶縁性は、導電率が0(S/m)である特性に限定されず、電池内多孔質支持体を通過して電池内多孔質支持体に隣接する2層に電子を伝導(移動)させない程度の伝導率を示す特性(全固体二次電池を短絡させない程度の電子絶縁性)を含む。
 全固体二次電池が自己形成負極型全固体二次電池である場合、電池内多孔質支持体は、全固体二次電池の充電状態において、負極活物質として析出した金属を内蔵している。この電池内多孔質支持体が内蔵する金属は、正極活物質層の容量によって変動し、一義的に決定されない。
 電池内多孔質支持体を構成する多孔質支持体は、マイクロメートルオーダーの細孔(表面に開口する孔、貫通孔等)が多く空いている支持体を意味し、公知のシート状の多孔質材料を特に制限されることなく用いることができる。多孔質材料としては、例えば、スポンジ状成形体、貫通孔を多数有するシート状成形体、不織布等が挙げられ、貫通孔を多数有するシート状成形体又は不織布が好ましい。
 多孔質支持体を形成する材質は、特に制限されず、例えば、各種の樹脂、セラミック、繊維等が挙げられ、樹脂、繊維が好ましい。樹脂としては、例えば、天然繊維/ポリエチレンテレフタレート(PET)/アクリル樹脂塗工型の複合樹脂、含フッ素樹脂、炭化水素系熱可塑性樹脂、アクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられ、繊維としては、天然繊維、複合樹脂繊維等が挙げられる。なかでも、全固体二次電池の製造時の加圧力に対して適度な強度(圧潰又は大きく圧縮しない程度)を示す点で、上記複合樹脂等が好ましい。
 全固体二次電池の製造時に加圧により圧縮して空隙率を調整できる点で、多孔質支持体としては、樹脂製の上記シート状成形体、又は不織布が好ましい。
 多孔質支持体自体の空隙率(材料としての空隙率)は、材質、全固体二次電池の製造時の加圧力等、更には全固体二次電池における金属析出量に応じて適宜に決定される。例えば、後述するシート内多孔質支持体及び上記電池内多孔質支持体の空隙率を所定の範囲に設定しやすい点で、空隙率は、50~99%とすることができ、60~97%とすることが好ましく、70~95%とすることがより好ましい。
 多孔質支持体自体の開口径は、無機固体電解質の充填しやすさ等を考慮して適宜に決定される。例えば、下記測定方法で測定された開口径で、0.1~50μmであることが好ましく、1~20μmであることがより好ましい。開口径は、多孔質支持体における任意の表面を倍率3万倍でSEMにより観察して得られたSEM写真において、1mm×1mmの領域における開口を任意に10個選択して、各開口の円相当径を求め、これらの算術平均値として、求める。
 多孔質支持体自体の厚さは、特に制限されず、電池容量(金属析出量)、空隙率等に応じて適宜に決定され、例えば、1μm以上1mm以下であることが好ましく、3~300μmであることがより好ましく、10~200μmであることが更に好ましく、20~100μmであることが特に好ましい。
 多孔質支持体の製造方法は、公知の方法を特に制限されることなく採用することができる。例えば、シート状成形体を作製した後に穿孔する方法、後述実施例のようなフォトレジスト法、通常の不織布作製法等が挙げられる。
 無機固体電解質は、多孔質支持体の孔表面を被覆する膜状で含有されていてもよいが、通常は孔表面に粒子として含有(付着)されている。多孔質支持体に含有される無機固体電解質の含有量(充填量)は、特に制限されず、上記多孔質支持体の空隙率及び多孔質支持体自体の空隙率を考慮して適宜に決定される。例えば、多孔質支持体自体の空隙率を5~80%低下させる含有量が好ましく、10~70%低下させる含有量がより好ましい。
 多孔質支持体に粒子状で含有される無機固体電解質は、後述する通りであり、通常、多孔質支持体の開口径よりも小さな粒子である。このことは空隙率の測定時に観測することにより確認できる。具体的な粒径(粒子径ともいう。)は、開口径、空隙率、含有量(充填量)等を考慮して適宜に決定されるが、例えば、0.01~5μmであることが好ましく、0.05~3μmであることがより好ましく、0.1~2μmであることが更に好ましい。また、開口径と粒径との差は、適宜に決定されるが、多孔質支持体内に無機固体電解質が均一に分布する点で、例えば、0.1~10μmであることが好ましく、0.5~8μmであることがより好ましく、0.8~5μmであることが更に好ましい。
 無機固体電解質の粒径は、多孔質支持体における任意の断面をSEMにより観察して得られたSEM写真において、所定領域(例えば1mm×1mmの領域)における空隙部に存在する無機固体電解質の粒子を任意に10個選択して、各粒子の円相当径を求め、これらの算術平均値として、求めた値とする。
 電池内多孔質支持体に含有される無機固体電解質は、1種でも2種以上でもよい。
 - 無機固体電解質 -
 本発明において、無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液、又は、ポリマー中でカチオン及びアニオンに解離若しくは遊離している無機電解質塩(LiPF、LiBF、リチウムビス(フルオロスルホニル)イミド(LiFSI)、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有するものであれば、特に限定されず、電子伝導性を有さないものが一般的である。
 電池内多孔質支持体に含有される無機固体電解質は、全固体二次電池に通常使用される固体電解質材料を適宜選定して用いることができる。例えば、無機固体電解質としては、(i)硫化物系無機固体電解質、(ii)酸化物系無機固体電解質、(iii)ハロゲン化物系無機固体電解質、及び、(iv)水素化物系無機固体電解質が挙げられ、活物質と無機固体電解質との間により良好な界面を形成することができる観点から、硫化物系無機固体電解質が好ましい。
 本発明の全固体二次電池がリチウムイオン電池の場合、無機固体電解質は、リチウムイオンのイオン伝導性を有することが好ましい。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、適宜に、Li、S及びP以外の他の元素を含んでもよい。
 硫化物系無機固体電解質としては、例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 (1)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。
 酸化物系無機固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。上限は特に制限されないが、1×10-1S/cm以下であることが実際的である。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In、Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In、Snの少なくとも1種以上の元素でありxcは0<xc≦5を満たし、ycは0<yc≦1を満たし、zcは0<zc≦1を満たし、ncは0<nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
 またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素元素の一部を窒素元素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。
 更に、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
(iii)ハロゲン化物系無機固体電解質
 ハロゲン化物系無機固体電解質は、ハロゲン原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 ハロゲン化物系無機固体電解質としては、特に制限されないが、例えば、LiCl、LiBr、LiI、ADVANCED MATERIALS,2018,30,1803075に記載のLiYBr、LiYCl等の化合物が挙げられる。中でも、LiYBr、LiYClが好ましい。
(iv)水素化物系無機固体電解質
 水素化物系無機固体電解質は、水素原子を含有し、かつ、周期律表第1族若しくは第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 水素化物系無機固体電解質としては、特に制限されないが、例えば、LiBH、Li(BHI、3LiBH-LiCl等が挙げられる。
 電池内多孔質支持体に内蔵される無機固体電解質は粒子であることが好ましい。このときの粒子径(体積平均粒子径)は、特に限定されないが、多孔質支持体に粒子状で含有される無機固体電解質の粒径と同じ範囲であることが好ましい。
 電池内多孔質支持体は、無機固体電解質以外にも、好ましくは後述するバインダー、適宜に他の成分をそれぞれ1種又は2種以上含有していてもよい。電池内多孔質支持体は、通常、正極活物質、負極活物質(正極活物質層に由来するイオンからなる金属を除く。)を含有しないが、充電状態において金属(負極活物質)を内蔵している。
 - バインダー -
 電池内多孔質支持体に含有されるバインダーは、特に制限されず、有機ポリマーが挙げられ、全固体二次電池に用いられる公知の有機ポリマーを用いることができる。このような有機ポリマーとしては、例えば、含フッ素樹脂、炭化水素系熱可塑性樹脂、アクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 - 他の成分 -
 他の成分としては、特に制限されないが、各種添加剤等が挙げられる。例えば、増粘剤、消泡剤、レベリング剤、脱水剤、酸化防止剤等が挙げられる。また、特許文献1に記載の表面に金属リチウムを有する無機固体電解質粒子、カーボン等の導電性粒子、リチウムと合金形成可能な金属の粒子等も挙げられる。特許文献1に記載の上記各成分については、特許文献1の記載に記載の内容を適宜参照することができ、その内容はそのまま本明細書の記載の一部として取り込まれる。
 また、電池内多孔質支持体は、特許文献2に記載の電子伝導性粒子を含有していてもよいが、上述のように、本発明の全固体二次電池は、充放電時に電池内多孔質支持体内でイオン伝導パスを構築(維持)しているから、電子伝導性粒子の含有を必須としない。含有を必須としないとは、電池内多孔質支持体に内蔵されている成分の全質量中の含有量が、全質量中、0質量%である態様に加えて、1質量%未満で含有する態様を包含する。
 電池内多孔質支持体中に内蔵される無機固体電解質、バインダー及びその他の成分の含有量は、特に制限されないが、通常、後述する多孔質支持体用組成物の固形分100質量%中における含有量と同じとなる。なお、電池内多孔質支持体中に内蔵されている各成分の全質量は、多孔質支持体用組成物の固形分100質量%と同義である。
 電池内多孔質支持体は、本発明の固体電解質積層シートを加圧してシート内多孔質支持体を積層方向(厚さ方向)に圧縮することにより、空隙率を所定の範囲に調整(低下)して、作製できる。
<電池内固体電解質層>
 電池内固体電解質層は、電池内多孔質支持体の一方の表面(主面)上に直接又は他の層を介して、配置(積層)されている。この電池内固体電解質層は、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質、通常その粒子を含有して、構成されている。そして、無機固体電解質の粒子間に10%以下の空隙率で空隙を有しており、電池内多孔質支持体よりも緻密な層である。
 電池内固体電解質層の空隙率が10%以下であると、電池内多孔質支持体中を成長してくるデンドライドの正極活物質層への貫通を防止でき、内部短絡の発生を抑制できる。内部短絡の発生を効果的に抑制できる点で、電池内固体電解質層の空隙率は、8%以下であることが好ましく、7%以下であることがより好ましい。空隙率の下限は、特に制限されないが、実際的には0.1%以上であり、例えば1%以上が好ましい。電池内多孔質支持体の空隙率と、電池内固体電解質層の空隙率との差は、特に制限されないが、例えば、5%以上とすることができ、好ましくは5~40%であり、より好ましくは5~30%である。
 電池内固体電解質層の空隙率は上記方法により面積率として算出される値である。
 電池内固体電解質層の厚さは、特に限定されず、適宜に決定することができる。例えば、デンドライドの貫通を効果的に阻止できる点で、10~1000μmが好ましく、20~500μmがより好ましく、20~100μmであることが更に好ましい。
 電池内固体電解質層は、後述するシート内固体電解質層の加圧圧縮体であることが好ましい。
 電池内固体電解質層は、電池内多孔質支持体と同様に、金属イオン伝導性を示し、電子導電性を示さず、両極のセパレータとして機能する。
 電池内固体電解質層を構成する無機固体電解質は、上述の通りであり、電池内多孔質支持体に含有される無機固体電解質と同種でも異種でもよいが、同種のものが好ましい。
 電池内固体電解質層を構成する無機固体電解質は、通常、粒子である。無機固体電解質の粒径は、特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。無機固体電解質粒子の粒径は上記多孔質支持体中の無機固体電解質の粒径と同様の方法で測定した値とする。
 なお、全固体二次電池の製造又は固体電解質積層シートの作製に用いる無機固体電解質粒子の粒径(体積平均粒子径)は、特に制限されないが、含有させる電池内多孔質支持体又は電池内固体電解質層に応じて、電池内多孔質支持体又は電池内固体電解質層における無機固体電解質の各粒径の範囲とすることができる。作製に用いる無機固体電解質粒子の粒径は以下の手順で測定する。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mLサンプル瓶中で1質量%の分散液を希釈調製する。希釈後の分散液試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要により日本産業規格(JIS) Z 8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 電池内固体電解質層に含有される無機固体電解質は1種でも2種以上でもよいが、平均粒子径が異なる2種以上であることが好ましく、そのうちの1種は上記電池内多孔質支持体の開口径よりも大きな平均粒子径を持つ粒子であり、別の1種は上記電池内多孔質支持体の開口径よりも小さな平均粒子径を持つ粒子であることが好ましい。これにより、電池内固体電解質層の空隙率を上記範囲内に小さな値に設定できる。このことは空隙率の測定時に観測することにより確認できる。
 開口径よりも大きな平均粒子径は、電池内多孔質支持体の開口径に応じて上記範囲から適宜に決定され、例えば、開口径よりも小さな平均粒子径を持つ固体電解質の多孔質支持体の空隙への落下防止、更にはイオン伝導性の点で、例えば、1~20μmであることが好ましく、2~15μmであることがより好ましく、5~12μmであることが更に好ましい。一方、開口径よりも小さな平均粒子径は、電池内多孔質支持体の開口径に応じて適宜に決定され、例えば、開口径よりも大きな平均粒子径を持つ固体電解質間に侵入して空隙率を低下させる点で、例えば、0.01~10μmであることが好ましく、0.05~5μmであることがより好ましく、1~3μmであることが更に好ましい。大きな平均粒子径と小さな平均粒子径との径差は、空隙率の点で、例えば、0.1~15μmであることが好ましく、0.3~12μmであることがより好ましく、0.5~10μmであることが更に好ましい。また、大きな平均粒子径と小さな平均粒子径との径比[大きな平均粒子径/小さな平均粒子径]は、空隙率の点で、例えば、1を超え20以下であることが好ましく、1.5~15であることがより好ましく、2~10であることが更に好ましい。
 電池内固体電解質層中の、無機固体電解質の総含有量は、特に制限されないが、イオン伝導パスの構築の点で、後述するシート内固体電解質用組成物の固形分100質量%中における含有量と同じであることが好ましい。電池内固体電解質層が上記2種以上の無機固体電解質を含有している場合、各無機固体電解質の含有量は、後述するシート内固体電解質用組成物における固形分100質量%中の含有量と同じであることが好ましい。なお、シート内固体電解質用組成物の固形分100質量%は、電池内固体電解質層の全質量、更には未充電状態の全固体二次電池における電池内固体電解質層を構成している成分の合計質量と、同義である。
 電池内固体電解質層は、無機固体電解質を含有し、好ましくは上記バインダー、更に適宜に上記他の成分をそれぞれ1種又は2種以上含有していてもよい。電池内固体電解質層は、通常、正極活物質、負極活物質を含有しないが、充電状態において金属が析出する場合がある。
 電池内固体電解質層に用いるバインダーは上述の中から適宜に選択されるが、電池内多孔質支持体及び電池内固体電解質層に含有される両バインダーは同種でも異種でもよい。
 電池内固体電解質層中の、バインダー及びその他の成分の含有量は、特に制限されないが、通常、後述するシート内固体電解質用組成物の固形分100質量%中における含有量と同じである。
 なお、電池内固体電解質層は、他の成分として、特許文献1に記載の表面に金属リチウムを有する無機固体電解質粒子、カーボン等の導電性粒子、リチウムと合金形成可能な金属の粒子は、通常含有しない。
 固体電解質層は、無機固体電解質を用いて通常の方法により形成することができる。
 電池内固体電解質層は、本発明の固体電解質積層シートを加圧してシート内固体電解質層を積層方向(厚さ方向)に圧縮することにより、空隙率を所定の範囲まで低下させて、作製できる。
<正極活物質層>
 正極活物質層は、正極活物質を含有し、充電により、金属イオンを発生して電池内多孔質支持体に供給する機能を有する。
 正極活物質の厚さは、供給するリチウムイオン量等に応じて適宜に決定され、例えば、10~1000μmが好ましく、20~500μmがより好ましい。
 正極活物質層は、好ましくは、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、導電助剤と、バインダーと、本発明の効果を損なわない範囲で他の成分とを含有する。また、全固体二次電池の未充電状態においては、特許文献1に記載の負極活物質前駆体を含有していることが好ましい態様の1つである。
 正極活物質層が含有する、無機固体電解質、バインダー及び他の成分については、電池内多孔質支持体で説明したものと同義である。負極活物質前駆体及びその作用については特許文献1の記載に記載の内容を適宜参照することができ、その内容はそのまま本明細書の記載の一部として取り込まれる。
 - 正極活物質 -
 正極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質であればよく、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物、又は、有機物、硫黄等のLiと複合化できる元素や硫黄と金属の複合物等が挙げられる。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P及びBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100モル%)に対して0~30モル%が好ましい。Li/Mのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)、LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類並びにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO、LiCoSiO等が挙げられる。
 本発明では、(MA)層状岩塩型構造を有する遷移金属酸化物が好ましく、LCO又はNMCがより好ましい。
 正極活物質の形状は、特に制限されないが粒子状が、好ましい。正極活物質の粒子径(体積平均粒子径)は特に制限されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機又は分級機が用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の平均粒子径は、上述の無機固体電解質の平均粒子径の測定方法と同様の方法により測定することができる。
 正極活物質の表面は、別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi、Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 更に、正極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていてもよい。
 正極活物質層が含有する正極活物質は、1種でも2種以上でもよい。
 - 導電助剤 -
 正極活物質層が好ましく含有する導電助剤としては、特に制限はなく、一般的な導電助剤として知られているものを用いることができる。例えば、電子伝導性材料である、天然黒鉛、人造黒鉛などの黒鉛類、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック類、ニードルコークスなどの無定形炭素、気相成長炭素繊維若しくはカーボンナノチューブなどの炭素繊維類、グラフェン若しくはフラーレンなどの炭素質材料であってもよいし、銅、ニッケルなどの金属粉、金属繊維でもよく、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリフェニレン誘導体など導電性高分子を用いてもよい。
 本発明において、正極活物質と導電助剤とを併用する場合、上記の導電助剤のうち、電池を充放電した際に周期律表第1族若しくは第2族に属する金属のイオン(好ましくはLiイオン)の挿入と放出が起きず、正極活物質として機能しないものを導電助剤とする。したがって、導電助剤の中でも、電池を充放電した際に正極活物質層中において正極活物質として機能しうるものは、導電助剤ではなく正極活物質に分類する。電池を充放電した際に正極活物質として機能するか否かは、一義的ではなく、導電助剤との組み合わせにより決定される。
 導電助剤の形状は、特に制限されないが、粒子状が好ましい。粒子径は、特に限定されないが、0.05~10μmが好ましく、0.1~5μmであることがより好ましい。粒子径は上述の無機固体電解質の粒子径と同様にして測定した値である。
 導電助剤は、1種を含有していてもよいし、2種以上を含有していてもよい。
 正極活物質層中の各成分(正極活物質、無機固体電解質、導電助剤、バインダー、負極活物質前駆体及び他の成分)の含有量は、特に制限されないが、通常、後述する正極組成物における固形成分100質量%中の含有量と同じである。なお、正極組成物の固形分100質量%は正極活物質層を構成する全成分の合計質量と同義である。
<負極活物質層>
 本発明の全固体二次電池は、負極活物質層を予め形成する形態である場合、未充電状態においても、負極集電体及び電池内多孔質支持体の間に負極活物質層を有する。
 負極活物質の厚さは、適宜に決定され、例えば、10~1000μmが好ましく、20~500μmがより好ましい。負極活物質層として下記の負極活物質からなる層を採用する場合、その厚さは、上記厚さにかかわらず、例えば、0.01~100μmとすることができる。なお、負極活物質層を予め形成しない形態において形成される負極活物質層の厚さは、充電により析出する金属量、電池内多孔質支持体内での形成量により変動するので、一義的に決定されない。
 負極活物質層は、負極活物質を含有する層であればよく、負極活物質からなる層、後述する負極組成物を製膜した層等が挙げられる。
 負極活物質からなる層としては、金属の薄膜が好ましく、全固体二次電池の高容量化を実現可能とする金属リチウムの薄膜(金属リチウム箔)がより好ましい。金属の薄膜は、例えば、金属粉末を堆積又は成形してなる層、金属箔、金属蒸着膜等を包含する。
 負極組成物を製膜した層としては、負極活物質と、好ましくは、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質と、導電助剤と、バインダーと、更には本発明の効果を損なわない範囲で他の成分とを含有する層が挙げられる。
 負極活物質層が含有する、無機固体電解質、バインダー及び他の成分については、電池内多孔質支持体で説明したものと同義である。導電助剤は正極活物質層で説明したものと同義である。
 - 負極活物質 -
 負極活物質は、周期律表第1族若しくは第2族に属する金属のイオンの挿入放出が可能な活物質であり、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、金属酸化物、金属複合酸化物、リチウム単体、リチウム合金、リチウムと合金形成可能(合金化可能)な負極活物質等が挙げられる。中でも、炭素質材料、金属複合酸化物又はリチウム単体が信頼性の点から好ましく用いられる。全固体二次電池の大容量化が可能となる点では、リチウムと合金化可能な活物質が好ましい。負極活物質としてリチウムと合金形成可能な負極活物質を用いると、全固体二次電池の大容量化と電池の長寿命化とが可能となる。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂若しくはフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。更に、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカー並びに平板状の黒鉛等を挙げることもできる。
 これらの炭素質材料は、黒鉛化の程度により難黒鉛化炭素質材料(ハードカーボンともいう。)と黒鉛系炭素質材料に分けることもできる。また炭素質材料は、特開昭62-22066号公報、特開平2-6856号公報、同3-45473号公報に記載される面間隔又は密度、結晶子の大きさを有することが好ましい。炭素質材料は、単一の材料である必要はなく、特開平5-90844号公報記載の天然黒鉛と人造黒鉛の混合物、特開平6-4516号公報記載の被覆層を有する黒鉛等を用いることもできる。
 炭素質材料としては、ハードカーボン又は黒鉛が好ましく用いられ、黒鉛がより好ましく用いられる。
 負極活物質として適用される金属若しくは半金属元素の酸化物としては、リチウムを吸蔵及び放出可能な酸化物であれば特に制限されず、金属元素の酸化物(金属酸化物)、金属元素の複合酸化物若しくは金属元素と半金属元素との複合酸化物(纏めて金属複合酸化物という。)、半金属元素の酸化物(半金属酸化物)が挙げられる。これらの酸化物としては、非晶質酸化物が好ましく、更に金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイドも好ましく挙げられる。本発明において、半金属元素とは、金属元素と非半金属元素との中間の性質を示す元素をいい、通常、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン及びテルルの6元素を含み、更にはセレン、ポロニウム及びアスタチンの3元素を含む。また、非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。2θ値で40°~70°に見られる結晶性の回折線の内最も強い強度が、2θ値で20°~40°に見られるブロードな散乱帯の頂点の回折線強度の100倍以下であるのが好ましく、5倍以下であるのがより好ましく、結晶性の回折線を有さないことが特に好ましい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物又は上記カルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素(例えば、Al、Ga、Si、Sn、Ge、Pb、Sb及びBi)から選択される1種単独若しくはそれらの2種以上の組み合わせからなる(複合)酸化物、又はカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、GeO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Sb、Bi、Bi、GeS、PbS、PbS、Sb又はSbが好ましく挙げられる。
 Sn、Si、Geを中心とする非晶質酸化物に併せて用いることができる負極活物質としては、リチウムイオン又は金属リチウムを吸蔵及び/又は放出できる炭素質材料、リチウム単体、リチウム合金、リチウムと合金化可能な負極活物質が好適に挙げられる。
 金属若しくは半金属元素の酸化物、とりわけ金属(複合)酸化物及び上記カルコゲナイドは、構成成分として、チタン及びリチウムの少なくとも一方を含有していることが、高電流密度充放電特性の観点で好ましい。リチウムを含有する金属複合酸化物(リチウム複合金属酸化物)としては、例えば、酸化リチウムと上記金属(複合)酸化物若しくは上記カルコゲナイドとの複合酸化物、より具体的には、LiSnOが挙げられる。
 負極活物質、例えば金属酸化物は、チタン元素を含有すること(チタン酸化物)も好ましく挙げられる。具体的には、LiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 負極活物質としてのリチウム合金としては、二次電池の負極活物質として通常用いられる合金であれば特に制限されず、例えば、リチウムアルミニウム合金、具体的には、リチウムを基金属とし、アルミニウムを10質量%添加したリチウムアルミニウム合金が挙げられる。
 リチウムと合金形成可能な負極活物質は、二次電池の負極活物質として通常用いられるものであれば特に制限されない。このような活物質は、全固体二次電池の充放電による膨張収縮が大きくなる。このような活物質として、ケイ素元素若しくはスズ元素を有する(負極)活物質(合金等)、Al及びIn等の各金属が挙げられ、より高い電池容量を可能とするケイ素元素を有する負極活物質(ケイ素元素含有活物質)が好ましく、ケイ素元素の含有量が全構成元素の50モル%以上のケイ素元素含有活物質がより好ましい。
 一般的に、これらの負極活物質を含有する負極(例えば、ケイ素元素含有活物質を含有するSi負極、スズ元素を有する活物質を含有するSn負極等)は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量(エネルギー密度)を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 ケイ素元素含有活物質としては、例えば、Si、SiOx(0<x≦1)等のケイ素材料、更には、チタン、バナジウム、クロム、マンガン、ニッケル、銅、ランタン等を含むケイ素含有合金(例えば、LaSi、VSi、La-Si、Gd-Si、Ni-Si)、又は組織化した活物質(例えば、LaSi/Si)、他にも、SnSiO、SnSiS等のケイ素元素及びスズ元素を含有する活物質等が挙げられる。なお、SiOxは、それ自体を負極活物質(半金属酸化物)として用いることができ、また、全固体二次電池の稼働によりSiを生成するため、リチウムと合金化可能な負極活物質(その前駆体物質)として用いることができる。
 スズ元素を有する負極活物質としては、例えば、Sn、SnO、SnO、SnS、SnS、更には上記ケイ素元素及びスズ元素を含有する活物質等が挙げられる。また、酸化リチウムとの複合酸化物、例えば、LiSnOを挙げることもできる。
 本発明においては、上述の負極活物質を特に制限されることなく用いることができるが、電池容量の点では、負極活物質として、リチウムと合金化可能な負極活物質が好ましい態様であり、中でも、上記ケイ素材料又はケイ素含有合金(ケイ素元素を含有する合金)がより好ましく、ケイ素(Si)又はケイ素含有合金を含むことが更に好ましい。ケイ素元素を含有する合金としては、例えば、LaSi、VSi、La-Si、Gd-Si、Ni-Siが挙げられる。
 負極活物質の形状は、特に制限されないが、粒子状が好ましい。負極活物質の平均粒子径(体積平均粒子径)は、特に制限されないが、0.1~60μmが好ましい。負極活物質粒子の平均粒子径は、上記無機固体電解質の平均粒子径と同様にして測定できる。所定の粒子径にするには、正極活物質と同様に、通常の粉砕機若しくは分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル、篩等が好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機等を用いることができる。分級は乾式及び湿式ともに用いることができる。
 本発明において、焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。
 負極活物質層が含有する負極活物質は、1種でも2種以上でもよい。
 負極活物質層中の各成分(負極活物質、無機固体電解質、導電助剤、バインダー、及び他の成分)の含有量は、特に制限されないが、通常、後述する負極組成物における固形成分100質量%中の含有量と同じである。なお、負極組成物の固形分100質量%は負極組成物で形成した負極活物質層を構成する全成分の合計質量と同義である。
 本発明の全固体二次電池は、上記各層を有し、好ましくは、又は適宜に、下記構成層を有する。
<正極集電体>
 本発明の全固体二次電池は、正極集電体を有することが好ましい。
 正極集電体は、電子伝導体を用いることができる。
 正極集電体を形成する材料としては、特に制限されないが、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタン又は銀を処理したもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 正極集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 正極集電体(上記薄膜を含む。)の厚さは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層若しくは部材等を適宜介在若しくは配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
<リチウムと合金形成可能な金属の膜>
 本発明の全固体二次電池は、負極集電体と電池内多孔質支持体との間に、リチウムと合金形成可能な金属の膜を有していてもよい。この金属の膜は、通常、負極集電体の表面(電池内多孔質支持体側に配置される表面)又は電池内多孔質支持体の表面(負極集電体側に配置される表面)に設けて配置される。
 リチウムと合金形成可能な金属の膜は、リチウムと合金形成可能な金属で形成された金属膜であれば特に制限されない。リチウムと合金形成可能な金属としては、上述の負極活物質で説明する、Sn、Al、In等に加えて、Zn、Bi、Mg等の各金属が挙げられる。中でも、Zn、Bi等が好ましい。
 この金属膜の厚さは、特に制限されないが、300nm以下であることが好ましく、20~100nmであることがより好ましく、30~50nmであることが更に好ましい。
 全固体二次電池に上記金属の膜を組み込むと、充電による金属リチウムの析出状態を効果的に制御することができ、短絡発生を更に効果的に抑制できる(短絡が発生するまでの時間を長期化(充放電サイクル数を伸ばすことが)できる。)。
 この金属の膜の詳細及び形成方法は、特許文献1の記載に記載の内容を適宜参照することができ、その内容はそのまま本明細書の記載の一部として取り込まれる。
<デンドライド貫通阻止層>
 本発明の全固体二次電池は、電池内多孔質支持体と正極活物質層との間、好ましくは電池内多孔質支持体と電池内固体電解質層との間に、デンドライド貫通阻止層を有することも好ましい。デンドライド貫通阻止層は、公知の層(膜)を用いることができ、また適宜に作製することもできる。公知の層としては、後述する酸化物系無機固体電解質、例えばLiPON等で形成した層、更には特許文献1に記載の方法(せん断処理又は加熱処理)で形成した層が挙げられる。特許文献1に記載の方法で作製したデンドライド貫通阻止層の空隙率は好ましくは3%以下となり、より好ましくは1%以下となる。
 デンドライド貫通阻止層は、通常、薄層に形成され、その厚さは、特に限定されないが、例えば、0.001~100μmが好ましく、0.01~10μmがより好ましい。
 好ましいデンドライド貫通阻止層の詳細及び作成方法については、特許文献1の記載に記載の内容を適宜参照することができ、その内容はそのまま本明細書の記載の一部として取り込まれる。
<筐体>
 本発明の全固体二次電池は、用途によっては、上記層構造のまま全固体二次電池として使用してもよいが、乾電池等の形態とするためには更に適当な筐体に封入して用いることも好ましい。筐体は、金属性のものであっても、樹脂(プラスチック)製のものであってもよい。金属性のものを用いる場合には、例えば、アルミニウム合金及びステンレス鋼製のものを挙げることができる。金属性の筐体は、正極側の筐体と負極側の筐体に分けて、それぞれ正極集電体及び負極集電体と電気的に接続させることが好ましい。正極側の筐体と負極側の筐体とは、短絡防止用のガスケットを介して接合され、一体化されることが好ましい。
<全固体二次電池の用途>
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
[固体電解質積層シート]
 本発明の固体電解質積層シートは、後述する本発明の全固体二次電池の製造方法に好適に用いられて、本発明の全固体二次電池における電池内多孔質支持体及び電池内固体電解質層を構成するシート状成形体である。
 本発明の固体電解質積層シートは、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質を内蔵した、シート状の多孔質支持体(以下、シート内多孔質支持体ともいう。)と、シート内多孔質支持体の一方の表面上に配置され、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質を含有する固体電解質層(以下、シート内固体電解質層ともいう。)とを有している。シート内多孔質支持体の空隙率は20%以上であり、シート内固体電解質層の空隙率はシート内多孔質支持体の空隙率よりも小さく設定されている。各層の空隙率は上述の測定方法により測定する。
 上記固体電解質積層シートにおいて、シート内多孔質支持体及びシート内固体電解質層の間に上述の他の層を介在していてもよいが、シート内多孔質支持体及びシート内固体電解質層が隣接していることが好ましい。シート内多孔質支持体の、シート内固体電解質層とは反対側には各種の機能層を有していてもよい。この機能層は、製造する全固体二次電池の形態によって異なる層が配置される。例えば、負極活物質層を予め形成する形態である場合、負極活物質層、更には基材(好ましくは負極集電体)が積層され、これらはいずれも隣接していることが好ましい。一方、負極活物質層を予め形成しない形態である場合、基材(好ましくは負極集電体)が積層され、両層は隣接していることが好ましい。機能層としては、上記の各層の他、保護層(剥離シート)、コート層等も挙げられる。
 基材としては、固体電解質積層シートを支持できるものであれば特に限定されず、上記負極若しくは正極集電体で説明した材料、有機材料及び無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン及びセルロース等が挙げられる。無機材料としては、例えば、ガラス及びセラミック等が挙げられる。
 本発明において、固体電解質積層シートを構成する各層は、特定の機能を奏する限り、単層構造であっても複層構造であってもよい。
 本発明の固体電解質積層シートは、上記積層構造を有するものであれば、それ以外の構成は特に限定されず、固体電解質積層シートに関する公知の構成を採用できる。例えば、本発明の固体電解質積層シートは、シート内多孔質支持体の、シート内固体電解質層とは反対側の表面に、上述した、リチウムと合金形成可能な金属の膜を有している態様も好ましい。また、シート内多孔質支持体とシート内固体電解質層との間に公知のデンドライド貫通阻止層を配置することもできる。更に、シート内固体電解質層の、シート内多孔質支持体とは反対側に正極活物質層、更には正極集電体を有していてもよい。
 本発明の固体電解質積層シートは、好ましくは本発明の全固体二次電池の製造方法に、後述する正極シートと組み合わせて(正極シートへの圧着積層用シートとして)用いられ、全固体二次電池を構成する。
 図2は、本発明の自己形成負極型全固体二次電池に好適に用いられる固体電解質積層シートおける一実施形態について、シートを構成する各構成層の積層状態を模式化して示す断面図である。この固体電解質積層シート11は、負極集電体1、シート内多孔質支持体8及びシート内固体電解質層9を、この順に積層してなる層構造を有しており、積層された層同士は直接接触している。
 負極活物質層を予め形成する形態の全固体二次電池の製造に用いる場合は、上述のように、負極集電体1とシート内多孔質支持体8との間に負極活物質層(図2において図示しない。)が配置される。
 本発明の固体電解質積層シートは、後述する本発明の全固体二次電池の製造方法に好適に用いられて、固体電解質積層シートが加圧されることにより、上述の電池内多孔質支持体及び電池内固体電解質層を構成して、全固体二次電池の内部短絡の発生抑制及びサイクル特性の向上に寄与する。
 本発明の固体電解質積層シートは、通常、シート状であるが、本発明の全固体二次電池の製造に際して、所定形状に切り出したもの(積層シート材)を包含する。例えば、全固体二次電池の形状に応じて、板状、円盤状の積層シート材が挙げられる。
<負極集電体>
 本発明の固体電解質積層シートに好ましく適用される負極集電体は、上述の全固体二次電池における負極集電体で説明した通り(同義)である。
<シート内多孔質支持体>
 本発明の固体電解質積層シートが備えるシート内多孔質支持体は、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質を内蔵した、シート状の多孔質支持体である。このシート内多孔質支持体は、全固体二次電池に組み込まれて上記電池内多孔質支持体となる層である。よって、シート内多孔質支持体は、加圧圧縮される前の多孔質支持体であって空隙率が20%以上であること以外は、上述の電池内多孔質支持体と同じである。
 シート内多孔質支持体の空隙率が20%以上であると、全固体二次電池の製造に際して加圧されても、電池内多孔質支持体の空隙率が15%未満に低下すること(シート内多孔質支持体が過度に圧縮されること)を抑えることができ、所定の空隙率を有する電池内多孔質支持体を加圧により形成できる。シート内多孔質支持体の空隙率は、加圧力、後述するシート内固体電解質層の空隙率等により電池内多孔質支持体の上記空隙率を可能とする範囲は変動するので、一義的に決定されない。シート内多孔質支持体の空隙率として、電池内多孔質支持体の上記空隙率を可能とする一例を挙げると、40%以上であることが好ましく、50%以上であることがより好ましい。空隙率の上限は、適宜に決定され、例えば、99%以下であることが好ましく、95%以下であることがより好ましく、90%以下であることが更に好ましい。
 シート内多孔質支持体の厚さは、特に限定されず、加圧力によって圧縮量(厚さ)が変動するため、電池内多孔質支持体とするための圧縮量等を考慮して適宜に決定することができる。例えば、1~100μmとすることができ、3~80μmであることが好ましい。
 シート内多孔質支持体が内蔵している各成分(化合物)及び含有量は、電池内多孔質支持体が内蔵している各成分及び含有量と同じである。ただし、含有量の基準はシート内多孔質支持体に内蔵されている成分の全質量であり、この全質量は、シート内多孔質支持体に無機固体電解質等を内蔵させるため組成物の固形分100質量%と同義である。
<シート内固体電解質層>
 シート内固体電解質層は、シート内多孔質支持体の一方の表面(主面)上に直接又は他の層を介して、配置(積層)されている。このシート内固体電解質層は、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質、通常その粒子を含有して、構成されている。このシート内固体電解質層は、全固体二次電池に組み込まれて上記電池内固体電解質層となる層である。よって、シート内固体電解質層は、加圧圧縮される前の固体電解質層であって、上記シート内多孔質支持体よりも小さな空隙率に設定されており、具体的に特定されていないこと以外は、上述の電池内多孔質支持体と同じである。
 シート内固体電解質層の空隙率がシート内多孔質支持体の空隙率よりも小さければ、シート内多孔質支持体が基本骨格として多孔質支持体を有していることと相まって、両層を一度に加圧することにより、所定の上記範囲の空隙率を有する上記電池内多孔質支持体及び電池内固体電解質層を形成できる。
 このように、シート内固体電解質層の空隙率は、シート内多孔質支持体よりも小さければよいが、シート内固体電解質層の空隙率は、加圧力、上記シート内多孔質支持体の空隙率等により電池内固体電解質層の上記空隙率を可能とする範囲は変動するので、一義的に決定されない。シート内固体電解質層の空隙率の一例を挙げると、例えば、電池内多孔質支持体及び電池内固体電解質層の空隙率を上記範囲に設定しやすい点で、更に正極活物質層とも加圧圧着される場合には正極活物質層との強固な密着性(層間抵抗の低減)を実現できる点で、5%以上であることが好ましく、10%以上であることがより好ましく、20%以上であることが更に好ましい。
 シート内多孔質支持体の空隙率とシート内固体電解質層の空隙率(充填量)との差は、特に制限されないが、例えば、5~90%であることが好ましく、10~50%であることがより好ましい。
 シート内固体電解質層の厚さは、特に限定されず、加圧力によって圧縮量(厚さ)が変動するため、電池内固体電解質層とするための圧縮量等を考慮して適宜に決定することができる。例えば、1~150μmとすることができ、3~100μmであることが好ましい。
 シート内固体電解質層が含有する各成分(化合物)及び含有量は、電池内固体電解質層が含有する各成分及び含有量と同じである。ただし、含有量の基準はシート内固体電解質層の全質量であり、この全質量は、シート内固体電解質層を構成している成分の合計質量、更にはシート内固体電解質層を形成するための組成物の固形分100質量%と同義である。
<固体電解質積層シートの作製方法>
 本発明の固体電解質積層シートシートの作製方法は、特に制限されず、例えば、多孔質支持体に無機固体電解質を含有する多孔質支持体用組成物(シート内多孔質支持体に無機固体電解質等を内蔵させるため組成物)を塗布、含浸させてシート内多孔質支持体を形成し、次いで、このシート内多孔質支持体上で無機固体電解質を含有するシート内固体電解質層用組成物(シート内固体電解質層を形成するための組成物)を製膜する方法によって、作製することができる。
 シート内多孔質支持体及びシート内固体電解質層は、各層を単独で形成してもよく、順次形成してもよく、また積層体として一括して形成してもよい。
 (組成物の調製)
 固体電解質積層シートの作製に際して、多孔質支持体用組成物及びシート内固体電解質組成物をそれぞれ調製する。シート内多孔質支持体を構成する多孔質支持体は上述の通りである。
 多孔質支持体用組成物及びシート内固体電解質用組成物(各組成物ということがある。)は、それぞれ、無機固体電解質を含有し、好ましくはバインダー、分散媒、更に適宜に他の成分を含有していてもよい。各組成物が含有する分散媒以外の各成分は、上述の通りである。
 - 分散媒 -
 各組成物の調製に用いる分散媒は、各組成物に含まれる上記各成分を分散(溶解)させるものであればよい。本発明において、分散媒は、水を含まない非水系分散媒が好ましく、通常、有機溶媒から選択される。本発明において、分散媒が水を含まないとは、水の含有率が0質量%である態様に加えて、0.1質量%以下である態様を包含する。ただし、各組成物中の水含有量は、好ましくは上記範囲内(非水系組成物)とする。
 有機溶媒としては、特に制限されないが、アルコール化合物、エーテル化合物、アミド化合物、アミン化合物、ケトン化合物、芳香族化合物、脂肪族化合物、ニトリル化合物、エステル化合物等の各有機溶媒が挙げられる。
 各組成物に含有される分散媒は、1種であっても、2種以上であってもよい。
 各組成物は、いずれも、非水系組成物であることが好ましい。本発明において、非水系組成物とは、水分を含有しない態様に加えて、含水率(水分含有量ともいう。)が200ppm以下である形態をも包含する。組成物の含水率は、150ppm以下であることが好ましく、100ppm以下であることがより好ましく、50ppm以下であることが更に好ましい。含水量は、組成物中に含有している水の量(組成物に対する質量割合)を示す。含水量は、組成物を0.45μmのメンブレンフィルターでろ過し、カールフィッシャー滴定により求めることができる。
 - 各組成物の含有量 -
 各組成物における無機固体電解質の含有量は、特に制限されないが、結着性の点で、固形分100質量%において、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 シート内固体電解質用組成物が上述の2種以上の無機固体電解質を含有している場合、各無機固体電解質の含有量は、空隙率の点で、上記総含有量を考慮して適宜に決定される。例えば、固形分100質量%において、大きな粒径(平均粒子径)の含有量は、0.1~90質量%であることが好ましく、0.1~80質量%であることが好ましく、1~50質量%とすることもできる。大きな粒径の含有量の下限値は、他にも、60質量%又は70質量%とすることもできる。一方、小さな粒径(平均粒子径)の含有量は、0.1~50質量%であることが好ましく、5~25質量%であることがより好ましく、5~10質量%とすることもできる。大きな平均粒子径と小さな平均粒子径との含有量差は、例えば、0.1~90質量%であることが好ましく、10~90質量%であることがより好ましく、50~85質量%であることが更に好ましい。また、大きな平均粒子径と小さな平均粒子径との含有量比[大きな平均粒子径の含有量/小さな平均粒子径の含有量]は、例えば、1を超え20以下であることが好ましく、2~10であることがより好ましい。
 各組成物におけるバインダーの含有量は、特に制限されず、固体粒子の結着性強化、更に空隙率の調整等の点で、固形分100質量%において、例えば、0.1~10質量%が好ましく、1~10質量%がより好ましく、2~6質量%が更に好ましい。
 各組成物における他の成分の含有量は、特に制限されず、適宜設定される。
 組成物における含有量の基準は組成物の固形分100質量部とする。本発明において、固形分(固形成分)とは、組成物を、1mmHgの気圧及び窒素雰囲気下、130℃で6時間乾燥処理を行ったときに、揮発若しくは蒸発して消失しない成分をいう。典型的には、分散媒以外の成分を指す。
 多孔質支持体用組成物の固形分濃度は、特に制限されないが、組成物中の各成分、特に無機固体電解質を多孔質支持体の孔内に充填(侵入、付着、配置)させることができる点で、過度な高濃度でなければよく、例えば、20~70質量%であることが好ましく、30~65質量%であることがより好ましく、35~50質量%であることが更に好ましい。
 一方、シート内固体電解質用組成物の固形分濃度は、特に制限されないが、組成物中の各成分を多孔質支持体の孔内に充填させない点で、高濃度であることが好ましく、例えば、40~80質量%であることが好ましく、50~80質量%であることがより好ましい。上記固形分濃度であると、シート内固体電解質用組成物が多孔質支持体の開口径よりも大きな粒子と小さな粒子とを含有している場合には、小さな粒子であっても多孔質支持体の孔内への侵入を抑制して、シート内多孔質支持体上に大きな粒子とともに固体電解質層を形成できる。
 - 各組成物の調製方法 -
 各組成物は、上述の各成分を、例えば通常用いる各種の混合機で混合することにより、例えば固体混合物若しくはスラリーとして、調製することができる。
 混合方法は、特に制限されず、ボールミル、ビーズミル、ディスクミル等の公知の混合機を用いて行うことができる。また、混合条件も、特に制限されない。混合雰囲気としては、大気下、乾燥空気下(露点-20℃以下)及び不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)等のいずれでもよい。無機固体電解質は水分と反応するため、混合は、乾燥空気下又は不活性ガス中で行うことが好ましい。
 (支持体形成方法及び製膜方法)
 多孔質支持体用組成物及びシート内固体電解質用組成物を塗布(含浸)、乾燥により製膜して、シート内多孔質支持体を形成し、またシート内固体電解質層を製膜することができる。
 多孔質支持体用組成物及びシート内固体電解質用組成物の塗布方法としては、例えば、スプレー塗布、スピンコート塗布、ディップコート塗布、スリット塗布、ストライプ塗布、バーコート塗布、ベーカー式アプリケーターを用いた塗布等の各種塗布方法を、特に制限されることなく適用することができる。シート内多孔質支持体の形成に際して、多孔質支持体上に塗布された多孔質支持体用組成物を静置して多孔質支持体に含浸(孔内に侵入)させることが好ましい。このときの含浸時間は特に制限されず適宜に決定できる。各組成物の塗布温度及び含浸温度は、特に制限されず、非加熱下であることが好ましく、例えば0~50℃の温度が好ましい。
 両組成物の乾燥温度は、特に限定されないが、下限は、30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。乾燥温度の上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。このような温度範囲で加熱することで、分散媒を除去し、多孔質支持体用組成物を固体状態(含浸乾燥状態)にして多孔質支持体の孔内に付着(充填)することができ、またシート内固体電解質層用組成物を固体状態(塗布乾燥層)にすることができる。乾燥時間は、特に制限されず、例えば、0.3~5時間である。シート内固体電解質層用組成物で形成した塗布乾燥層は加圧することもできる。加圧方法としては、特に制限されないが、プレス加圧(例えば油圧シリンダープレス機を用いたプレス加圧)が好ましい。圧力としては、特に制限されないが、加圧後の空隙率がシート内多孔質支持体の空隙率よりも小さくならない程度の圧力に設定され、例えば、10~200MPaとすることができる。塗布乾燥層の加圧と同時に加熱してもよい。このときの温度としては、特に限定されないが、例えば10~100℃が好ましい。
 支持体形成方法及び製膜方法は、上記各組成物の混合雰囲気で行うことが好ましい。
 - シート内多孔質支持体の形成 -
 上述の方法、条件等を採用して、多孔質支持体に多孔質支持体用組成物を塗布、含浸させた後に乾燥して、所定の空隙率を有するシート内多孔質支持体を形成することができる。このとき、多孔質支持体を基材の表面に配置(載置)して行うことが好ましい。
 シート内多孔質支持体の空隙率は、多孔質支持体自体の空隙率、多孔質支持体用組成物の固形分濃度(粘度)、多孔質支持体用組成物に含有される各成分、特に無機固体電解質の粒子径、含浸時間、更に加圧する場合は加圧力等によって、適宜に設定できる。例えば、上記固形分濃度を低下させると、各成分の粒子径を小さくすると、また含浸時間を長くすると、空隙率は低下する傾向にある。
 - シート内固体電解質層の製膜 -
 また、シート内多孔質支持体を形成した後に、このシート内多孔質支持体上でシート内固体電解質層用組成物を上述の方法、条件等を採用して製膜して、シート内固体電解質層を形成できる。シート内固体電解質層の空隙率は、多孔質支持体用組成物の固形分濃度(粘度)、多孔質支持体用組成物に含有される各成分、特に無機固体電解質の粒子径、更に加圧する場合は加圧力等によって、適宜に設定できる。例えば、上記固形分濃度を低下させると、各成分の粒子径を小さくすると、また粒子径の異なる2種以上の無機固体電解質を用いると、空隙率は低下する傾向にある。
 シート内固体電解質層の製膜において、シート内多孔質支持体の開口径よりも小さな粒子径を持つ無機固体電解質を含有するシート内固体電解質層用組成物を用いる場合、シート内固体電解質層用組成物の固形分濃度、上記開口径よりも大きな粒子径を持つ無機固体電解質の共存等によって、小さな粒子径を持つ無機固体電解質を多孔質支持体の孔内に落下させことなく、小さな粒子径を持つ無機固体電解質の大部分をシート内固体電解質層の構成に利用することができる。
 シート内固体電解質層の別の作製方法として、例えば、基材上にシート内固体電解質層用組成物を製膜(塗布乾燥)又はシート内固体電解質層用組成物を加圧成形して固体電解質層を形成し、これをシート内多孔質支持体上に設ける(圧着積層又は貼付する)方法も挙げられる。用いる基材としては、特に制限されないが、有機材料、無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、セルロース等が挙げられる。無機材料としては、例えば、ガラス及びセラミック等が挙げられる。シート内固体電解質層用組成物を製膜する方法及び条件は上記塗布乾燥法と同じである。圧着積層する条件は、シート内多孔質支持体に形成した固体電解質層を圧着積層可能な条件であればよく、例えば、圧力1~100MPaで、好ましくは例えば10~100℃の条件が挙げられる。圧着積層を行う雰囲気は上記各組成物調製時の混合雰囲気と同じである。
 (加圧工程)
 固体電解質積層シートの作製において、上述のようにして、シート内多孔質支持体及びシート内固体電解質層の積層体を作製した後、加圧することもできる。加圧方法及び圧力としては、特に制限されないが、塗布乾燥層の加圧方法及び圧力と同じである。
 こうして、シート内多孔質支持体とシート内固体電解質層とを有する固体電解質積層シートを作製できる。なお、作製した固体電解質積層シートのシート内多孔質支持体及びシート内固体電解質層は、それぞれ、本発明の効果を損なわない限り、各組成物の調製に用いた分散媒を含有(残存)していてもよい。残存量としては、例えば、層中、3質量%以下とすることができる。
[本発明の全固体二次電池の製造方法]
 次に、本発明の全固体二次電池の製造方法(以下、本発明の製造方法ということがある。)について、説明する。
 本発明の製造方法は、本発明の固体電解質積層シートを用いて全固体二次電池を製造する方法であって、固体電解質積層シートの多孔質支持体を15%以上の空隙率に抑えつつ固体電解質層を10%以下の空隙率になるまで、固体電解質積層シートを加圧する工程を有する。これにより、内部短絡の発生が抑制され、サイクル特性にも優れた全固体二次電池を、圧着積層という簡便な方法で、製造できる。
 この加圧する工程では、固体電解質積層シート単独ではなく、固体電解質積層シートを負極集電体又は正極活物質層に加圧して圧着(加圧圧着、圧着積層)することが好ましく、加圧する工程で全固体二次電池に必須の層構造を製造でき、しかも正極活物質層との強固な密着(界面抵抗の低減)を可能とする点で、正極活物質層に加圧して圧着積層することがより好ましい。
 本発明の固体電解質積層シートとの圧着積層に際して、正極活物質層は、正極活物質層からなる正極シートを用いることもできるが、正極集電体と正極活物質層とを有する正極シートを用いることが好ましい。正極シートを構成する正極活物質層及び正極集電体は上述の全固体二次電池におけるものと同じである。ただし、正極シートの正極活物質層は、上記圧着積層等により薄層化することもあるので、薄層化しても全固体二次電池の正極活物質層として必要な厚さとなるように、厚さが決定される。この正極シートは、固体電解質積層シートで説明した他の層、機能層を有していてもよい。
 正極シートは、固体電解質積積層シートと同様に、通常、シート状であるが、本発明の製造方法に用いるに際して所定形状に切り出したもの(正極シート材)を用いることもできる。
 - 正極シートの作製 -
 正極シートは、公知の種々の方法により作成される。例えば、基材、好ましくは正極集電体の表面上に正極活物質層を成膜することによって正極シートを作製することができる。この作製方法では、まず、正極活物質層を形成する組成物(正極組成物)を調製する。
 正極組成物は、正極活物質と、好ましくは、無機固体電解質、導電助剤、バインダー、分散媒、更には適宜に他の成分とを含有している。正極組成物が含有する各成分は、上述の通りである。
 正極組成物中における正極活物質の含有量は、特に限定されず、固形分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量%が更に好ましく、55~80質量%が特に好ましい。
 正極組成物が無機固体電解質を含有する場合、正極組成物中における無機固体電解質の含有量は、特に限定されないが、正極活物質と無機固体電解質との合計含有量として、固形分100質量%において、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、70質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。上限としては、特に制限されず、固形分100質量%において、例えば、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが更に好ましい。
 正極組成物中における導電助剤の含有量は、特に制限されず、固形分100質量%において、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。
 正極組成物中におけるバインダーの含有量は、特に制限されず、固体粒子の結着性強化、更に空隙率の調整等の点で、固形分100質量%において、例えば、0.1~10質量%が好ましく、1~10質量%がより好ましく、2~6質量%が更に好ましい。
 正極組成物中における分散媒の含有量は、特に限定されず、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
 正極組成物は、非水系組成物であることが好ましい。
 (正極組成物の調製)
 正極組成物は、上述の各成分を、例えば通常用いる各種の混合機で混合することにより、例えば固体混合物若しくはスラリーとして、調製することができる。混合方法及び混合条件等は、上述の多孔質支持体用組成物等の調製条件と同じである。
 (正極活物質層の形成)
 正極活物質層は、特に制限されないが、基材、好ましくは正極集電体の表面で、正極組成物(スラリー)を塗布し、次いで乾燥する塗布乾燥法、又は、正極組成物を加圧成形する成形法に等により、作製できる。
 いずれも方法においても、作製中の雰囲気は、特に限定されず、上述の各組成物の混合雰囲気が挙げられる。
 正極活物質層の形成方法は、用いる組成物及び形成する表面が異なること以外は、シート内固体電解質層の形成方法と同じである。ただし、正極活物質層の形成に際しては空隙率を積極的に調整しなくてもよい。
 正極シートは、正極集電体に代えて基材を用いて正極活物質層を製膜し、これを正極集電体上に設けて(圧着積層又は貼付)、作製することもできる。この方法に用いる基材、圧着積層条件等は、固体電解質積層シートのシート内固体電解質層の別の作製方法と同じである。
 上述のようにして、好ましくは正極集電体上に、正極活物質層を有する正極シートを作製できる。
<圧着積層工程>
 本発明の製造方法においては、作製若しくは準備した、固体電解質積層シート及び正極シートを、下記の重ね合わせる工程と加圧する工程とを順に行って、互いに圧着積層する。すなわち、本発明の製造方法は、シート内多孔質支持体及びシート内固体電解質層を有する固体電解質積層シートを用いて、この積層シートを正極活物質層と加圧一体化することにより、シート内多孔質支持体及びシート内固体電解質層を所定の空隙率に圧縮して、空隙率を低下させた、電池内多孔質支持体及び電池内固体電解質層を形成する方法である。これにより、電池内多孔質支持体内に金属の析出スペースを確保するとともに電池内固体電解質層を緻密化することができる。更に、電池内固体電解質層と正極活物質層との層間密着力を強固なものとすることができる。
重ね合わせる工程:固体電解質積層シートのシート内固体電解質層と正極シートの正極活物質層とを対向させて、固体電解質積層シート及び正極シートを重ね合わせる工程
加圧する工程:重ね合わせた固体電解質積層シート及び正極シートを、多孔質支持体の空隙率を15%以上に抑えつつ、固体電解質層の空隙率が10%以下になるまで、重ね合わせた方向に加圧する工程
 本発明において、「工程を順に行う」とは、ある工程と他の工程とを行う時間的先後を意味するものであって、ある工程と他の工程との間に別の工程(休止工程を含む。)を行う態様も包含する。また、ある工程と他の工程とを順に行う態様には、時間、場所又は実施者を適宜に変更して行う態様も包含する。
 - 重ね合わせる工程 -
 重ね合わせる工程は、通常の方法で両シートを積層させ(積み重ね)ればよく、この工程により、シート内固体電解質層及び正極活物質層が接触(隣接)する配置される。
 - 加圧する工程 -
 次いで、この重ね合わせ状態を維持しつつ、重ね合わせた固体電解質積層シート及び正極シートを重ね合わせた方向に加圧(圧縮)する。
 このときの加圧力は、加圧後の多孔質支持体(電池内多孔質支持体)の空隙率を15%以上に抑えつつ(15%以上を維持しつつ、すなわち15%以下に低下させずに)、しかも加圧後の固体電解質層(電池内固体電解質層)の空隙率を10%以下になる(到達する)圧力に、設定する。すなわち、加圧する工程は、両シートを加圧して、電池内多孔質支持体の空隙率を15%以上に、電池内固体電解質層の空隙率を10%未満に、設定する。
 本発明の製造方法において、加圧後の電池内多孔質支持体の空隙率は、15%未満でなければよく、上述の、電池内多孔質支持体の空隙率に設定される。加圧による空隙率の低減量(シート内多孔質支持体の加圧前空隙率-加圧後空隙率)は、特に制限されないが、例えば、5~40%であることが好ましく、5~30%であることがより好ましい。
 一方、加圧後の電池内固体電解質層の空隙率は、10%未満であればよく、上述の、電池内固体電解質層の空隙率に設定される。加圧による空隙率の低減量(シート内固体電解質層の加圧前空隙率-加圧後空隙率)は、特に制限されないが、例えば、10~60%であることが好ましく、20~50%であることがより好ましい。
 加圧する方法は、特に制限されないが、公知の各種加圧方法を適用することができ、プレス加圧法(例えば油圧シリンダープレス機を用いたプレス加圧)が好ましい。
 加圧する工程における加圧力は、電池内多孔質支持体及び電池内固体電解質層の空隙率が上記範囲となる圧力であればよいが、シート内多孔質支持体及びシート内固体電解質層の空隙率、加圧後の空隙率等によって変動するので一義的に決定されない。加圧力としては、例えば、100~1000MPaとすることができ、好ましくは200~800MPaとすることができ、更に好ましくは350~800MPaとすることができる。加圧時間は適宜に設定できる。上記加圧する工程は、加熱下で行ってもよいが、非加熱下で行うことが好ましく、例えば、0~50℃の環境温度で圧着積層することが好ましい。加熱下で加圧する場合、加熱温度としては、特に制限されないが、一般的には30~300℃の範囲である。
 上述の固体電解質積層シートを正極活物質層に対して加圧(圧着)することにより、シート内多孔質支持体は空隙率が15%未満になるまで圧縮されず、シート内固体電解質層は空隙率が10%以下になるまで圧縮される。
 上述のようにして、加圧後のシート内固体電解質層(電池内固体電解質層)の空隙率が10%以下になるまでシート内固体電解質層を圧縮することにより、緻密化され、デンドライドの正極活物質層に到達する成長を阻止できる。また、電池内固体電解質層のイオン伝導度が向上するとともに、電池内固体電解質層と正極活物質層との接触界面を良好に接合(強固に密着(圧着))でき、界面抵抗を低く抑えることができる。
 加圧後のシート内多孔質支持体(電池内多孔質支持体)の空隙率を少なくとも15%とすることにより、電池内電子イオン伝導層に空隙を残存させて、体積変動を抑えつつ析出する金属を収容、蓄積することができる。
 上述のようにして、シート内多孔質支持体及びシート内固体電解質層を、それぞれ、空隙率が15%以上及び10%以下まで、圧縮することにより、固体電解質積層シートと正極シートとを一体化させる。
 こうして、少なくとも、電池内多孔質支持体、電池内固体電解質層及び正極活物質がこの順で積層された層構造、好ましくは、負極集電体、電池内多孔質支持体、電池内固体電解質層、正極活物質及び正極集電体がこの順で積層された層構造を有する、自己形成負極型全固体二次電池(放電状態)を製造することができる。
 自己形成負極型全固体二次電池においては、上記加圧する工程の後に、後述する充電する工程を行って、電池内多孔質支持体内、更には負極集電体と電池内多孔質支持体との間に金属(負極活物質)を析出させて、負極活物質層を形成することができる。
 一方、負極活物質層を予め形成する形態の全固体二次電池は、負極集電体及び多孔質支持体の間に負極活物質層を形成する工程を行う。
 負極活物質層を形成する工程は、全固体二次電池の製造時に、負極集電体を備えていない固体電解質積層シートを用いて、正極シートとの加圧圧着の前後又は同時に、固体電解質積層シートと負極活物質層及び負極集電体を加圧圧着又は積層する工程が挙げられる。この工程では、下記形成方法で形成した負極活物質層を加圧圧着又は積層することもできるが、上述の負極活物質からなる層、特に金属リチウム箔を積層又は加圧圧着することが好ましい。また、負極活物質層を形成する工程として、固体電解質積層シートの作製時に負極集電体及びシート内多孔質支持体の間に負極活物質層を形成する工程も挙げられる。この工程に用いる負極活物質層の形成方法は、特に制限されないが、正極活物質層と同様に、基材、好ましくは負極集電体の表面で、負極組成物(スラリー)を製膜する方法(塗布し、次いで乾燥する塗布乾燥法)、又は、負極組成物を加圧成形する成形法に等により、作製できる。
 負極活物質層を形成する工程を実施する雰囲気は、特に限定されず、上述の各組成物の混合雰囲気が挙げられる。
 負極活物質層を形成する負極組成物は、負極活物質と、好ましくは、無機固体電解質、導電助剤、バインダー、分散媒、更には適宜に他の成分とを含有している。負極組成物が含有する各成分は、上述の通りである。
 負極組成物中における負極活物質の含有量は、特に限定されず、固形分100質量%において、100質量%以下であることが好ましく、10~90質量%であることが好ましく、20~85質量%がより好ましく、30~80質量%であることがより好ましく、40~75質量%であることが更に好ましい。
 負極組成物が無機固体電解質を含有する場合、負極組成物中における無機固体電解質の含有量は、特に限定されないが、負極活物質と無機固体電解質との合計含有量として、固形分100質量%において、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、50質量%以上であることが更に好ましく、70質量%以上であることが特に好ましく、90質量%以上であることが最も好ましい。上限としては、特に制限されず、固形分100質量%において、例えば、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが更に好ましい。
 負極組成物中における導電助剤の含有量は、特に制限されず、固形分100質量%において、0.1~20質量%が好ましく、0.5~10質量%がより好ましい。
 負極組成物中におけるバインダーの含有量は、特に制限されず、固体粒子の結着性強化、更に空隙率の調整等の点で、固形分100質量%において、例えば、0.1~10質量%が好ましく、1~10質量%がより好ましく、2~6質量%が更に好ましい。
 負極組成物中における分散媒の含有量は、特に限定されず、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
 負極組成物は、非水系組成物であることが好ましい。
 負極組成物は、上述の各成分を、例えば通常用いる各種の混合機で混合することにより、例えば固体混合物若しくはスラリーとして、調製することができる。混合方法及び混合条件等は上述の多孔質支持体用組成物等の調製条件と同じである。
 上述のようにして、負極集電体と電池内多孔質支持体との間に負極活物質層を形成することにより、負極集電体、負極活物質層、電池内多孔質支持体、電池内固体電解質層、正極活物質、好ましくは正極集電体がこの順で積層された層構造を有する全固体二次電池を製造することができる。
<加圧拘束>
 上述のようにして製造した全固体二次電池は、その初期化又は使用に際して、積層方向に加圧拘束することが好ましい。このときの拘束力は、特に限定されないが、0.05MPa以上が好ましく、1MPaがより好ましい。上限としては、例えば、10MPa未満が好ましく、8MPa以下がより好ましい。
<初期化>
 本発明の製造方法においては、上記で得られた全固体二次電池(放電状態)を初期化する工程を有していてもよく、充電する工程を有していてもよい。
 初期化は、通常、全固体二次電池の製造後から使用前に行われ、充電する工程及び放電する工程をそれぞれ少なくとも1回行う。
 - 充電する工程 -
 充電する工程により、正極活物質層から少なくとも電池内多孔質支持体(通常空隙内)に金属イオンを供給することができ、特に自己形成負極型全固体二次電池においては供給された金属イオンを析出されて負極活物質層を形成する(充電状態の全固体二次電池とする)ことができる。
 充電条件は、特に制限されないが、例えば、下記条件が挙げられる。
電流:0.05~30mA/cm
電圧:4.0~4.5V
充電時間:0.1~100時間
温度:0~80℃
 充電する工程は、全固体二次電池(放電状態)を上記重ね合わせ方向に加圧拘束して、行うことが好ましい。これにより、全固体二次電池の膨張を抑えることができる。このときの拘束圧は上述の通りである。
 - 放電する工程 -
 放電する工程により、電池内多孔質支持体に析出した金属をイオン化して、正極活物質層に移動させることができる。
 放電条件は、特に制限されず、例えば、下記条件が挙げられる。
電流:0.05~30mA/cm
電圧:4.0~4.5V
充電時間:0.1~100時間
温度:0~80℃
 放電する工程は、全固体二次電池(充電状態)を積層方向に加圧拘束して行うことが好ましい。このときの拘束圧は上述の通りであり、充電する工程における拘束圧と同じでも異なってもよい。
 このようにして、各工程、更には適宜に初期化を行って、本発明の全固体二次電池を製造することができる。この全固体二次電池は、上述のように、内部短絡の発生が効果的に抑制され、サイクル特性にも優れる。更には、界面抵抗の上昇も抑えられている。
 以下に、実施例に基づき本発明について更に詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。
<合成例1:硫化物系無機固体電解質Li-P-S系ガラスの合成>
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235、及び、A.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして、Li-P-S系ガラスを合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g及び五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳棒を用いて、5分間混合した。LiS及びPの混合比は、モル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66g投入し、上記の硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。遊星ボールミルP-7(商品名、フリッチュ社製)にこの容器をセットし、温度25℃で、回転数450rpmで20時間メカニカルミリングを行うことで、黄色粉体の硫化物系無機固体電解質(1)(Li-P-Sガラス、以下、LPS(1)と表記することがある。)6.20gを得た。上記測定方法による平均粒子径は10μmであった。
<合成例2及び3:LPS(2)及び(3)の合成>
 上記合成例1で合成したLPS(1)を用いて下記条件で湿式分散して、粒子径を調整して、LPS(2)及び(3)を合成した。
 すなわち、ジルコニア製45mL容器(フリッチュ社製)に、直径3mmのジルコニアビーズを300個投入し、合成したLPS(1)4.0g、及び分散媒としてジイソブチルケトン6.0gをそれぞれ添加した後に、遊星ボールミルP-7にこの容器をセットし、下記条件1又は2で60分湿式分散を行った。その結果、下記に示す平均粒子径のLPS(2)及び(3)をそれぞれ得た。
条件1:回転数300rpm、LPS(2):平均粒子径2μm
条件2:回転数400rpm、LPS(3):平均粒子径1μm
 なお、LPS(1)~(3)の平均粒子径は、上記各合成例で得た分散液に分散媒(ジイソブルケトン)を追加して、固形分濃度1質量%の測定用分散液を調整して測定したこと以外は、上述の測定方法により体積平均粒子径として、測定した。
<支持体作製例1:多孔質支持体1の作製>
 ネガ型感光性ポリイミド樹脂を用いて下記のようにして多孔質支持体1を作製した。
 まず、ポリイミド前駆体を合成した。
 撹拌器及び温度計を備えたフラスコ内を窒素ガスで置換した。その後、フラスコ内に、3,3’-ジアミノベンジジン12.86gとN-メチル-2-ピロリドン200gとを加えた。このフラスコ内の混合物の温度を10℃以下に保持しながら、更にイソシアナトエチルメタクリレート18.60gを添加して、3時間室温下で、撹拌した。次いで、フラスコ内に、4,4’-ジアミノジフェニルエーテル6.00gと、1,3-ビス(3-アミノプロピル)-1,1,3,3,-テトラメチルジシロキサン2.49gとを添加した後、更に3,3’-ベンゾフェノンテトラカルボン酸、4,4’-ベンゾフェノンテトラカルボン酸二無水物32.22gをフラスコ内の反応液の温度が40℃を越えないように冷却しながら添加した。添加終了後、室温でフラスコ内の混合物を10時間撹拌して、ポリイミド前駆体を得た。
 合成したポリイミド前駆体100質量部に対して、光増感剤と光重合開始剤を5質量部加え、塗布可能な粘度になるまで有機溶剤(N-メチル-2-ピロリドン)を適宜加えて樹脂組成物を得た。
 次いで、得られた樹脂組成物を、離型処理を施した平滑なガラス基板上に乾膜(乾燥後の膜)の厚さが50μmになるようにキャスト法により塗布し、180℃の温度で2時間乾燥させた。その後、1μmピッチ(各配列方向)で、直径5μmの円形孔を配列ピッチ1μmの間隔で配列させたパターンを有するネガマスクを、乾膜表面に密着させ、高圧水銀ランプを用いて、3000mJ/cmの積算照射量となるように、紫外線を照射した。
 紫外線照射後に、ネガマスクを剥離して、水酸化ナトリウム水溶液を用いて、現像を行い、80℃の温風で30分間、乾膜を十分乾燥させた。その後、乾膜を300℃の温度で3時間加熱することにより、イミド化反応を促進させ、ポリイミド樹脂からなるパターン化された多孔質支持体(厚さ50μm、上記測定方法による空隙率70%)を得た。
<支持体作製例2:多孔質支持体2の準備>
 不織布(天然繊維/ポリエチレンテレフタレート(PET)/アクリル樹脂塗工型、旭化成ケミカルズ社製、シルキーファイン、WS7R02-14、厚み50μm、上記測定方法による空隙率70%)を、多孔質支持体2として準備した。
<支持体作製例3:多孔質支持体3の準備>
 不織布(天然繊維/PET/アクリル樹脂塗工型、旭化成ケミカルズ社製、シルキーファイン、WS7R02-06、厚み30μm、上記測定方法による空隙率80%)を、多孔質支持体3として準備した。
<実施例1:固体電解質積層シートの作製>
(実施例1-1:固体電解質積層シートA-1の作製)
 - 固体電解質組成物1の調製 -
 平均粒子径を1μmに調整したLPS(3)と下記バインダーB-1とを、98:2(固形分換算)の質量比で混合し、ジルコニア製45mL容器(フリッチュ社製)に投入して、直径3mmのジルコニアビーズを20gと分散媒としてジイソブチルケトンを加えて固形分濃度を45質量%に調整した。その後に、この容器を遊星ボールミルP-7にセットし、温度25℃で、回転数100rpmで1時間攪拌して、多孔質支持体用組成物として固体電解質組成物1(スラリー)を調製した。
 バインダーB-1:フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(PVdF-HFP、PVdF:HFP=8:2(質量比)(アルケマ社製))
 
 - 固体電解質組成物2の調製 -
 固体電解質組成物1の調製において、LPS(3)を平均粒子径10μmのLPS(1)に変更し、攪拌時の回転数を50rpmに変更したこと以外は、固体電解質組成物1の調製と同様にして、シート内固体電解質層用組成物として固体電解質組成物2を調製した。
 - 固体電解質積層シートA-1の作製 -
 上記多孔質支持体1をポリフェニレンスルファイド(PPS)フィルム(トレリナ3000、東レ社製)上に固定し、多孔質支持体1上に固体電解質組成物1を非加熱下でバーコーター(SA-201、テスター産業社製)により塗工した。こうして固体電解質組成物1を多孔質支持体1内(孔内)に含侵(侵入)させた後に、100℃で1時間加熱乾燥して、シート内多孔質支持体を作製した。
 次いで、シート内多孔質支持体の表面に固体電解質組成物2を非加熱下でベーカー式アプリケーターにより塗工した後に、100℃で1時間加熱乾燥した。こうして、シート内多孔質支持体の表面に厚さ100μmのシート内固体電解質層を製膜した。シート内固体電解質層の厚さはシート内固体電解質層の表面上に形成された層の厚さである。
 こうして、PPSフィルム上に固体電解質積層シートA-1を作製し、PPSフィルムから剥して固体電解質積層シートA-1とした。
(実施例1-2:固体電解質積層シートA-2の作製)
 固体電解質組成物1の調製において、LPS(3)を2μmの平均粒子径に調整したLPS(2)に変更したこと以外は、固体電解質組成物1の調製と同様にして、多孔質支持体用組成物として固体電解質組成物3を調製した。
 次いで、固体電解質積層シートA-1の作製において、固体電解質組成物1に代えて固体電解質組成物3を用いたこと以外は、固体電解質積層シートA-1の作製と同様にして、固体電解質積層シートA-2を作製した。
(実施例1-3:固体電解質積層シートA-3の作製)
 固体電解質組成物2の調製において、平均粒子径10μmのLPS(1)を、9:1の質量比の、平均粒子径10μmのLPS(1)と平均粒子径1μmのLPS(3)とに変更したこと以外は、固体電解質組成物2の調製と同様にして、シート内固体電解質層用組成物として固体電解質組成物4を調製した。
 次いで、固体電解質積層シート1の作製において、固体電解質組成物2に代えて固体電解質組成物4を用いたこと以外は、固体電解質積層シート1の作製と同様にして、固体電解質積層シートA-3を作製した。
(実施例1-4:固体電解質積層シートA-4の作製)
 固体電解質組成物2の調製において、平均粒子径10μmのLPS(1)を、8:2の質量比の、平均粒子径10μmのLPS(1)と平均粒子径1μmのLPS(3)とに変更したこと以外は、固体電解質組成物2の調製と同様にして、シート内固体電解質層用組成物として固体電解質組成物5を調製した。
 次いで、固体電解質積層シート1の作製において、固体電解質組成物2に代えて固体電解質組成物5を用いたこと以外は、固体電解質積層シート1の作製と同様にして、固体電解質積層シートA-4を作製した。
(実施例1-5:固体電解質積層シートA-5の作製)
 上記多孔質支持体1を厚さ20μmのステンレス鋼(SUS)箔上に固定し、多孔質支持体1上に固体電解質組成物1を非加熱下でバーコーターにより塗工した。こうして固体電解質組成物1を多孔質支持体1内(孔内)に含侵(侵入)させた後に、100℃1時間加熱乾燥して、シート内多孔質支持体を作製した。
 次いで、シート内多孔質支持体の表面に固体電解質組成物4を非加熱下でベーカー式アプリケーターにより塗工し後に、100℃で1時間加熱乾燥した。こうして、シート内多孔質支持体の表面に厚さ100μmのシート内固体電解質層を製膜した。シート内固体電解質層の厚さはシート内固体電解質層の表面上に形成された層の厚さである。
(実施例1-6:固体電解質積層シートA-6の作製)
 固体電解質組成物2の調製において、平均粒子径10μmのLPS(1)を9:1の質量比の、平均粒子径10μmのLPS(1)と平均粒子径1μmのLPS(3)とに変更し、かつ固形分濃度を45質量%から50質量%に変更したこと以外は、シート内固体電解質層用組成物として固体電解質組成物2の調製と同様にして、固体電解質組成物6を調製した。
 上記多孔質支持体2を厚さ20μmのステンレス鋼(SUS)箔上に固定し、多孔質支持体2上に固体電解質組成物1を非加熱下でバーコーターにより塗工した。こうして固体電解質組成物1を多孔質支持体2内(孔内)に含侵(侵入)させた後に、100℃1時間加熱乾燥して、シート内多孔質支持体を作製した。
 次いで、シート内多孔質支持体の表面に固体電解質組成物6を非加熱下でベーカー式アプリケーターにより塗工し後に、100℃で1時間加熱乾燥した。こうして、シート内多孔質支持体の表面に厚さ100μmのシート内固体電解質層を製膜した。
(実施例1-7:固体電解質積層シートA-7の作製)
 固体電解質積層シートA-6の作製において、固体電解質組成物1に代えて固体電解質組成物3を用い、かつ固体電解質組成物6に代えて固体電解質組成物4を用いたこと以外は、固体電解質積層シートA-6の作製と同様にして、固体電解質積層シートA-7を作製した。
(実施例1-8:固体電解質積層シートA-8の作製)
 固体電解質積層シートA-6の作製において、多孔質支持体2に代えて多孔質支持体3を用いたこと以外は、固体電解質積層シートA-6の作製と同様にして、固体電解質積層シートA-8を作製した。
(実施例1-9:固体電解質積層シートA-9の作製)
 固体電解質組成物1の調製において、固形分濃度を45質量%から40質量%に変更したこと以外は、固体電解質組成物1の調製と同様にして、多孔質支持体用組成物として固体電解質組成物7を調製した。
 次いで、固体電解質積層シートA-8の作製において、固体電解質組成物1に代えて固体電解質組成物7を用いたこと以外は、固体電解質積層シートA-8の作製と同様にして、固体電解質積層シートA-9を作製した。
(実施例1-10:固体電解質積層シートA-10の作製)
 固体電解質組成物1の調製において、固形分濃度を45質量%から35質量%に変更したこと以外は、固体電解質組成物1の調製と同様にして、多孔質支持体用組成物として固体電解質組成物8を調製した。
 次いで、固体電解質積層シートA-8の作製において、固体電解質組成物1に代えて固体電解質組成物8を用いたこと以外は、固体電解質積層シートA-8の作製と同様にして、固体電解質積層シートA-10を作製した。
(比較例1-1:固体電解質積層シートB-1の作製)
 固体電解質組成物1の調製において、固形分濃度を45質量%から30質量%に変更したこと以外は、固体電解質組成物1の調製と同様にして、多孔質支持体用組成物として固体電解質組成物9を調製した。
 次いで、固体電解質積層シートA-1の作製において、固体電解質組成物1に代えて固体電解質組成物9を用いたこと以外は、固体電解質積層シートA-1の作製と同様にして、固体電解質積層シートB-1を作製した。
(比較例1-2:固体電解質積層シートB-2の作製)
 固体電解質積層シートA-3の作製において、固体電解質組成物1に代えて固体電解質組成物9を用いたこと以外は、固体電解質積層シートA-3の作製と同様にして、固体電解質積層シートB-2を作製した。
(比較例1-3:固体電解質積層シートB-3の作製)
 固体電解質積層シートA-1の作製において、固体電解質組成物2を用いてシート内固体電解質層を製膜しなったこと以外は、固体電解質積層シートA-1の作製と同様にして、固体電解質積層シートB-3を作製した。
(比較例1-4:固体電解質積層シートB-4の作製)
 固体電解質積層シートB-1の作製において、固体電解質組成物2を用いてシート内固体電解質層を製膜しなったこと以外は、固体電解質積層シートB-1の作製と同様にして、固体電解質積層シートB-4を作製した。
(比較例1-5:固体電解質積層シートB-5の作製)
 固体電解質積層シートA-5の作製において、固体電解質組成物1を固体電解質組成物9に変更したこと以外は、固体電解質積層シートA-5の作製と同様にして、固体電解質積層シートB-5を作製した。
(比較例1-6:固体電解質積層シートB-6の作製)
 固体電解質積層シートA-6の作製において、固体電解質組成物1を固体電解質組成物9に変更したこと以外は、固体電解質積層シートA-6の作製と同様にして、固体電解質積層シートB-6を作製した。
(比較例1-7:固体電解質積層シートB-7の作製)
 固体電解質積層シートA-6の作製において、固体電解質組成物6を用いてシート内固体電解質層を製膜しなったこと以外は、固体電解質積層シートA-6の作製と同様にして、固体電解質積層シートB-7を作製した。
(比較例1-8:固体電解質積層シートB-8の作製)
 固体電解質積層シートB-6の作製において、固体電解質組成物6を用いてシート内固体電解質層を製膜しなったこと以外は、固体電解質積層シートB-6の作製と同様にして、固体電解質積層シートB-8を作製した。
<空隙率、開口径の測定>
 作製した固体電解質積層シートA-1~A-10及びB-1~B-8について、作製に用いた多孔質支持体1~3、シート内多孔質支持体及びシート内固体電解質層の空隙率(上述の測定方法による測定値)を表1に示す。なお、空隙率の測定において任意の断面は縦断面(垂直断面)とした。また、多孔質支持体1~3について上述の測定方法により測定した開口径を表1に示す。
 表1に、用いた多孔質支持体の厚さ、無機固体電解質の粒径、シート内固体電解質層の厚さ、更に多孔質支持体1~3への無機固体電解質の充填量(多孔質支持体1~3とシート内多孔質支持体との空隙率の差)を示す。無機固体電解質の粒径は、任意の断面を縦断面(垂直断面)として測定した結果、LPS(1)~(3)上記体積平均粒子径とほぼ一致していた。なお、各積層シートにおけるシート内多孔質支持体の厚さは作製に用いた多孔質支持体の厚さと同じであるので、表1での記載を省略する。
 空隙率等が測定不能である場合及びシート内固体電解質層を設けていない場合、該当する欄に符号「-」で示す。
 表1において、SUS箔上に形成した多孔質支持体を用いた場合、表1の「多孔質支持体」欄に「SUS/多孔質支持体X」(Xは多孔質支持体番号)として示す。
 また、シート内固体電解質層の製膜に複数のLPSを用いた場合、表1の「無機固体電解質」欄及び「粒径」欄において、「/」を用いて併記する。
 空隙率、開口径、充填量及び厚さの単位はそれぞれ「%」、「μm」、「%」及び「μm」であるが、表1においては省略する。表1の「粒径」は「平均粒子径」を示し、その単位「μm」を省略する。
 なお、表1に、後述する参考例1で製造した全固体二次電池の、支持体(負極集電体)及び固体電解質層B、更に固体電解質層Aについて、それぞれ「シート内多孔質支持体」欄及び「シート内固体電解質層」欄に示す。
Figure JPOXMLDOC01-appb-T000001
<表の注>
支持体1~3:上記支持体作製例1~3で作製又は準備した多孔質支持体1~3
SUS:ステンレス鋼箔
LPS(1)~LPS(3):合成例1~3で合成したLPS
<実施例2:全固体二次電池の製造>
 以下のようにして全固体二次電池を製造し、その特性を評価した。
 全固体二次電池の製造に際して、以下のようにして正極用シートを作製した。
(作製例1:正極シートの作製)
 - 正極組成物の調製 -
 正極活物質としてニッケルマンガンコバルト酸リチウム(平均粒子径0.5μm、アルドリッチ社製)と、平均粒子径2μmに調整したLPS(2)と、導電助剤としてアセチレンブラック(平均粒子径0.1μm、デンカ社製)と、下記に示すバインダーB-1とを、70:27:2:1の質量比(固形分換算)で混合し、ジルコニア製45mL容器(フリッチュ社製)に加え、直径3mmのジルコニアビーズを20gと分散溶媒としてジイソブチルケトンを加えて、固形分濃度を45質量%に調整した。その後、この容器を遊星ボールミルP-7にセットし、温度25℃で、回転数100rpmで1時間攪拌して、正極組成物(スラリー)を調製した。
 B-1:フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体(PVdF-HFP、PVdF:HFP=8:2(質量比)(アルケマ社製))
 
 - 正極活物質層の形成 -
 得られた正極組成物を、カーボンコートした、厚み20μmのアルミニウム箔(正極集電体)の表面に、ベーカー式アプリケーター(商品名:SA-201)により塗布し、100℃1時間加熱乾燥して、厚さ150μmの正極活物質層(塗布乾燥層)を有する正極シートを作製した。
(実施例2-1~2-4:全固体二次電池1~4の製造)
 作製した正極シートを直径1cmの円盤状に打ち抜いて円盤状正極シートを得た。また、表2の「固体電解質積層シートNo.」欄に示す固体電解質積層シートを直径1.2cmの円盤状に打ち抜いて円盤状固体電解質積層シート(積層シート材)を得た。円盤状正極シートが円盤状固体電解質積層シートからはみ出さないように、円盤状正極シートの正極活物質層と円盤状固体電解質積層シートのシート内固体電解質層とを対向させて、重ね合わせた。
 この状態で、円盤状正極シート及び円盤状固体電解質積層シートを重ね合わせた方向に500MPaの圧力で1分間加圧した。この加圧により、シート内多孔質支持体及びシート内固体電解質層が加圧圧縮され、表2に示す厚さ及び空隙率の、電池内多孔質支持体及び電池内固体電解質層を形成した。こうして、固体電解質積層シートと正極シートとの圧着積層体をそれぞれ得た。
 次いで、厚さ50μmの金属リチウム箔を直径1.1cmの円盤状に打ち抜いて、圧着積層体のシート内多孔質支持体の表面中央部上に(円盤状に打ち抜いた金属リチウム箔が円盤状固体電解質積層シートからはみ出さないように)配置して、積層方向の両側から、直径1.5cmのSUS棒で、積層方向に5MPaの拘束圧で拘束した。
 こうして、未充電状態の全固体二次電池1~4をそれぞれ製造した。
 全固体二次電池1~4は、負極集電体(SUS棒)と、負極活物質層(金属リチウム箔)、電池内多孔質支持体と、電池内固体電解質層と、正極活物質層と、正極集電体(アルミニウム箔)とからなる、図1に示す積層構造を有する。なお、正極活物質層の厚さは80μmであった。
(実施例2-5~2-10:全固体二次電池5~10の製造)
 実施例2-1の全固体二次電池1の製造において、固体電解質積層シートA-1を表2の「固体電解質積層シートNo.」欄に示す固体電解質積層シートに変更したこと以外は、実施例2-1の全固体二次電池1の製造と同様にして、固体電解質積層シートと正極シートとの圧着積層体をそれぞれ得た。これら圧着積層体において、表2に示す厚さ及び空隙率の、電池内多孔質支持体及び電池内固体電解質層が形成されていた。
 次いで、各圧着積層体を、その積層方向の両側から、直径1.5cmのSUS棒で、積層方向に5MPaの拘束圧で拘束した。
 こうして、未充電状態の全固体二次電池5~10をそれぞれ製造した。
 全固体二次電池5~10は、負極集電体(SUS棒及びSUS箔)と、電池内多孔質支持体と、電池内固体電解質層と、正極活物質層と、正極集電体(アルミニウム箔)とからなる積層構造を有する。なお、正極活物質層の厚さは80μmであった。
(比較例2-1~2-4:全固体二次電池C1~C4の製造)
 実施例2-1の全固体二次電池1の製造において、固体電解質積層シートA-1を表2の「固体電解質積層シートNo.」欄に示す固体電解質積層シートに変更したこと以外は、実施例2-1の全固体二次電池1の製造と同様にして、全固体二次電池C1~C4を製造した。
(比較例2-5~2-8:全固体二次電池C5~C8の製造)
 実施例2-5の全固体二次電池5の製造において、固体電解質積層シートA-5を表2の「固体電解質積層シートNo.」欄に示す固体電解質積層シートに変更したこと以外は、実施例2-5の全固体二次電池5の製造と同様にして、全固体二次電池C5~C8を製造した。
(比較例2-9及び2-10:全固体二次電池C9及びC10の製造)
 実施例2-1の全固体二次電池1の製造において、重ね合わせた円盤状正極シートと円盤状固体電解質積層シートとを加圧するときの圧力を500MPaから、300MPa(比較例2-9)又は1000MPa(比較例2-10)に変更したこと以外は、実施例2-1の全固体二次電池1の製造と同様にして、全固体二次電池C9及びC10を製造した。
 全固体二次電池C9、C10の正極活物質層の厚さは、85μm、75μmであった。
(参考例1:全固体二次電池Rの製造)
 上記正極シートを直径1cmの円盤状に打ち抜いた円盤状正極シートを、直径10mmのポリエチレンテレフタラート(PET)製の円筒に入れた。円筒内の正極活物質層上に平均粒径10μmのLPS(1)を30mg入れ、円筒の両側から直径10mmのSUS棒を挿入した。次いで、円盤状正極シートのアルミニウム箔側と、LPS(1)側とから、軸線方向にSUS棒により350MPaの圧力を加えて、加圧した。こうして、LPS(1)からなる固体電解質層Aを形成した。この固体電解質層A側のSUS棒を一旦外し、固体電解質層A上に平均粒径を1μmに調整したLPS(3)を5mg入れ、その上に直径1cmの円盤状に打ち抜いた円盤状SUS箔を挿入、配置した。次いで、外していたSUS棒を円筒内に再度挿入し、軸線方向に10MPaの圧力をかけた後に、5MPaの圧力かけた状態で固定した。こうして固体電解質層A上に固体電解質層Bを形成し、2層構造の固体電解質層A及びBを有する全固体二次電池Rを製造した。
 全固体二次電池Rは、負極集電体(SUS棒及びSUS箔)と、固体電解質層Bと、固体電解質層Aと、正極活物質層と、正極集電体(アルミニウム箔)とからなる積層構造を有する。なお、正極活物質層の厚さは80μmあった。
<空隙率の測定>
 製造した各全固体二次電池について、電池内多孔質支持体及び電池内固体電解質層、更に固体電解質層A及びBの空隙率(上述の測定方法による測定値)を表2に示す。
 また、電池内多孔質支持体及び電池内固体電解質層、更に固体電解質層A及びBの厚さを表2に示す。空隙率及び厚さの単位はそれぞれ「%」及び「μm」であるが、表2においては省略する。
<無機固体電解質の粒子の粒径の測定>
 加圧して形成した電池内多孔支持体に内蔵されている無機固体電解質及び電池内固体電解質層を構成している無機固体電解質について、上記測定方法により、粒径を測定した結果を表2に示す。粒径の単位は「μm」であるが、表2においては省略する。
(初期化)
 製造した各全固体二次電池について、0.05mA/cmで4.25Vまで充電した後、0.05mA/cmで2.5Vまで放電して、初期化した。
 こうして初期化した全固体二次電池1~10、C1~C10及びRをそれぞれ得た。
 なお、各全固体二次電池において、充電時に電池内多孔質支持体の空隙に金属リチウムが析出するが、全固体二次電池5~10及びC5~C8においては、析出した金属リチウムが負極活物質層として機能する。
<評価:充放電サイクル特性試験>
 初期化後の各全固体二次電池について、電流密度0.5mA/cmで4.25Vまで充電後、0.5mA/cmで2.5Vまで放電する充放電サイクルを1サイクルとして、100サイクル繰り返して行った。
 充放電サイクル特性は、このときの放電容量維持率及び内部短絡の発生の有無を下記基準により評価し、結果を表2に示す。
 放電容量維持率は、1サイクル目の放電容量に対する100サイクル後の放電容量の割合(百分率)を求めて、評価した。
 また、内部短絡の発生は、充放電サイクルを繰り返し行っている際に、充電時に急激な電圧降下が生じた場合に内部短絡が発生したと判断して、その後の充放電サイクル特性試験を中止し、内部短絡が発生した充放電サイクル数で評価した。
Figure JPOXMLDOC01-appb-T000002
<表の注>
Li箔:金属リチウム箔
NMC:ニッケルマンガンコバルト酸リチウム
 表1及び表2に示す結果から、次のことが分かる。
 全固体二次電池C1及びC2は、空隙率が小さすぎるシート内多孔質支持体を有する固体電解質積層シートB-1及びB-2を用いて製造されたものである。これらの全固体二次電池は数サイクルで内部短絡が発生する。これは、電池内多孔質支持体の空隙率が本発明で規定する範囲よりも小さすぎるので、充放電による体積変動が大きく、電池内固体電解質層が損傷したためと考えられる。
 全固体二次電池C3、C4、C7及びC8は、いずれもシート内多孔質支持体のみを有する固体電解質積層シートB-3、B-4、B-7及びB-8を用いて製造されたものである。これらの全固体二次電池はわずか1サイクル又は2サイクルで内部短絡が発生する。これは、電池内固体電解質層を有していないため、デンドライドの正極活物質層への到達を阻止できなかったことによると考えられる。
 全固体二次電池C5及びC6は、空隙率が小さすぎるシート内多孔質支持体を有する固体電解質積層シートB-5及びB-6を用いて製造された自己形成負極型全固体二次電池である。そのため、全固体二次電池C1及びC2と同様に内部短絡が発生するが、そのときの充放電サイクル数がより少ない。
 全固体二次電池C9は、本発明で規定する固体電解質積層シートを用いても、全固体二次電池の製造における加圧力が弱すぎて、電池内固体電解質層の空隙率が10%を超えているため、デンドライドの正極活物質層への到達を抑制できずに20サイクルで短絡が生じる。一方、全固体二次電池C10は、本発明で規定する固体電解質積層シートを用いても、全固体二次電池の製造における加圧力が強すぎて、電池内多孔質支持体の空隙率が15%未満になっているため、体積変動による応力を吸収(相殺)できずに、短絡が生じる。
 参考例は、電池内多孔質支持体に代えて高空隙の固体電解質層Bを固体電解質層A(電池内固体電解質層に相当)に積層した2層構造の固体電解質層を採用した全固体二次電池Rについて、サイクル特性を評価したものである。この全固体二次電池Rは、固体電解質層Bが40%の空隙率を有し、かつ固体電解質層Aが10%の空隙率を有しているため、100サイクルまで短絡の発生を防止できるが、固体電解質層B中に多孔質支持体を組み込んでいないため、放電容量維持率は20%であり、より一層高い信頼性が求められる近年の全固体二次電池としては十分とは言えない。
 これに対して、本発明で規定する固体電解質積層シートを、電池内多孔質支持体及び電池内固体電解質層が本発明で規定する空隙率を満たすように正極用シートに圧着積層して製造した本発明の全固体二次電池1~10は、いずれも、100サイクルまで内部短絡の発生を防止でき、しかも100サイクル後の放電容量維持率も60%以上と大きく優れたサイクル特性を示す。
 特に、負極活物質層として金属リチウム箔を採用した全固体二次電池1~4は、100サイクル後の放電容量維持率が72%という非常に優れたサイクル特性を示す。一方、自己形成負極型全固体二次電池5~10は、金属リチウムの析出及び溶解を繰り返しても、体積変動、金属リチウムの孤立を抑制でき、電池容量を高めながらも優れたサイクル特性を示す。
 すなわち、本発明の全固体二次電池は、負極活物質層を予め形成する態様の全固体二次電池(特に負極活物質層として金属リチウム箔を採用した高容量化全固体二次電池)であっても、自己形成負極型全固体二次電池であっても、内部短絡の発生を高度に防止しながらも優れたサイクル特性を示して安定的に稼働(駆動)する。そのため、近年の全固体二次電池に要求されるより高いレベルでの信頼性を実現できる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2021年3月26日に日本国で特許出願された特願2021-053904に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 (電池内)多孔質支持体
3 (電池内)固体電解質層
4 正極活物質層
5 正極集電体
6 作動部位
8 (シート内)多孔質支持体
9 (シート内)固体電解質層
10 全固体二次電池
11 負極用積層シート

Claims (14)

  1.  周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質を内蔵したシート状の多孔質支持体と、前記多孔質支持体の一方の表面上の、周期律表第1族若しくは第2族に属する金属のイオンの伝導性を有する無機固体電解質を含有する固体電解質層とを有する固体電解質積層シートであって、
     前記多孔質支持体の空隙率が20%以上であり、かつ前記固体電解質層の空隙率が前記多孔質支持体の空隙率よりも小さい、固体電解質積層シート。
  2.  前記多孔質支持体に内蔵されている前記無機固体電解質が前記多孔質支持体の開口径よりも小さな粒子である、請求項1に記載の固体電解質積層シート。
  3.  前記固体電解質層に含有されている前記無機固体電解質が前記多孔質支持体の開口径よりも大きな粒子と小さな粒子とを含む、請求項1又は2に記載の固体電解質積層シート。
  4.  前記多孔質支持体の他方の表面に負極集電体を有する、請求項1~3のいずれか1項に記載の固体電解質積層シート。
  5.  請求項1~4のいずれか1項に記載の固体電解質積層シートを用いた全固体二次電池であって、
     負極集電体、前記固体電解質積層シートの前記多孔質支持体、前記固体電解質層及び正極活物質層をこの順で積層圧着した層構造を有し、
     積層圧着後の多孔質支持体の空隙率が15%以上であり、
     積層圧着後の固体電解質層の空隙率が10%以下である、全固体二次電池。
  6.  前記負極集電体及び前記多孔質支持体の間に負極活物質層を有する、請求項5に記載の全固体二次電池。
  7.  前記負極活物質層が金属リチウム箔である、請求項6に記載の全固体二次電池。
  8.  前記全固体二次電池の充電状態において、少なくとも前記多孔質支持体が負極活物質を内蔵している、請求項5に記載の全固体二次電池。
  9.  積層圧着後の前記多孔質支持体に内蔵されている無機固体電解質が前記多孔質支持体の開口径よりも小さな粒子である、請求項5~8のいずれか1項に記載の全固体二次電池。
  10.  積層圧着後の前記固体電解質層に含有されている無機固体電解質が前記多孔質支持体の開口径よりも大きな粒子と小さな粒子とを含む、請求項5~9のいずれか1項に記載の全固体二次電池。
  11.  請求項1~4のいずれか1項に記載の固体電解質積層シートを用いて全固体二次電池を製造する方法であって、
     前記固体電解質積層シートの前記多孔質支持体を15%以上の空隙率に抑えつつ、前記固体電解質層を10%以下の空隙率になるまで、前記固体電解質積層シートを加圧する工程を有する、全固体二次電池の製造方法。
  12.  前記負極集電体及び前記多孔質支持体の間に負極活物質層を形成する工程を有する、請求項11に記載の全固体二次電池の製造方法。
  13.  前記負極活物質層を形成する工程が、負極活物質を含有する負極組成物を製膜する工程又は金属リチウム箔を積層する工程である、請求項12に記載の全固体二次電池の製造方法。
  14.  前記負極活物質層を形成する工程が、前記加圧する工程の後に、全固体二次電池を充電して、少なくとも前記多孔質支持体内に負極活物質を析出させる工程である、請求項12に記載の全固体二次電池の製造方法。
PCT/JP2022/013526 2021-03-26 2022-03-23 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法 WO2022202901A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237025420A KR20230125032A (ko) 2021-03-26 2022-03-23 고체 전해질 적층 시트 및 전고체 이차 전지, 및, 전고체이차 전지의 제조 방법
CN202280013764.7A CN116868407A (zh) 2021-03-26 2022-03-23 固体电解质层叠片及全固态二次电池、以及全固态二次电池的制造方法
JP2023509247A JPWO2022202901A1 (ja) 2021-03-26 2022-03-23
US18/361,903 US20240006715A1 (en) 2021-03-26 2023-07-30 Solid electrolyte laminated sheet, all-solid state secondary battery, and manufacturing method for all-solid state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053904 2021-03-26
JP2021-053904 2021-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/361,903 Continuation US20240006715A1 (en) 2021-03-26 2023-07-30 Solid electrolyte laminated sheet, all-solid state secondary battery, and manufacturing method for all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2022202901A1 true WO2022202901A1 (ja) 2022-09-29

Family

ID=83395693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013526 WO2022202901A1 (ja) 2021-03-26 2022-03-23 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法

Country Status (5)

Country Link
US (1) US20240006715A1 (ja)
JP (1) JPWO2022202901A1 (ja)
KR (1) KR20230125032A (ja)
CN (1) CN116868407A (ja)
WO (1) WO2022202901A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168282A (ja) * 2016-03-16 2017-09-21 セイコーエプソン株式会社 電極複合体、電池、電極複合体の製造方法及び電池の製造方法
JP2020107594A (ja) * 2018-03-30 2020-07-09 富士フイルム株式会社 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池、並びに、これらの製造方法
WO2020196040A1 (ja) * 2019-03-22 2020-10-01 富士フイルム株式会社 全固体リチウムイオン二次電池とその製造方法、及び負極用積層シート

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058250A (ja) 2014-09-10 2016-04-21 セイコーエプソン株式会社 リチウム電池用電極体及びリチウム電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168282A (ja) * 2016-03-16 2017-09-21 セイコーエプソン株式会社 電極複合体、電池、電極複合体の製造方法及び電池の製造方法
JP2020107594A (ja) * 2018-03-30 2020-07-09 富士フイルム株式会社 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池、並びに、これらの製造方法
WO2020196040A1 (ja) * 2019-03-22 2020-10-01 富士フイルム株式会社 全固体リチウムイオン二次電池とその製造方法、及び負極用積層シート

Also Published As

Publication number Publication date
KR20230125032A (ko) 2023-08-28
CN116868407A (zh) 2023-10-10
US20240006715A1 (en) 2024-01-04
JPWO2022202901A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
JP6912658B2 (ja) 全固体二次電池及びその製造方法
CN111201660B (zh) 固体电解质组合物、全固态二次电池及其制造方法
WO2019208347A1 (ja) 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
KR20200051020A (ko) 전극 적층체, 전고체 적층형 이차 전지 및 그 제조 방법
JP7064613B2 (ja) 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
JP6966502B2 (ja) 固体電解質シート、全固体二次電池用負極シート及び全固体二次電池、並びに、これらの製造方法
CN111971758B (zh) 固体电解质片、全固态二次电池用负极片及全固态二次电池的制造方法
WO2019054184A1 (ja) 全固体二次電池、全固体二次電池用外装材及び全固体二次電池の製造方法
KR102501561B1 (ko) 전고체 리튬 이온 이차 전지와 그 제조 방법, 및 부극용 적층 시트
CN111247673B (zh) 活性物质层形成用组合物、电池、电极片及相关制造方法
JP7059302B2 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JP7014899B2 (ja) 固体電解質含有シート、全固体二次電池用電極シート、全固体二次電池、電子機器及び電気自動車、並びに、これらの製造方法
JP6948382B2 (ja) 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質シート及び全固体二次電池用正極活物質シート
JP7119214B2 (ja) 全固体二次電池及びその製造方法
WO2018164050A1 (ja) 無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法
JP7061728B2 (ja) 複合電極活物質、電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、複合電極活物質、全固体二次電池用電極シート及び全固体二次電池の製造方法
JP6920413B2 (ja) 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質膜及びその製造方法
WO2022202901A1 (ja) 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509247

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237025420

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280013764.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775683

Country of ref document: EP

Kind code of ref document: A1