WO2019054184A1 - 全固体二次電池、全固体二次電池用外装材及び全固体二次電池の製造方法 - Google Patents

全固体二次電池、全固体二次電池用外装材及び全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2019054184A1
WO2019054184A1 PCT/JP2018/032030 JP2018032030W WO2019054184A1 WO 2019054184 A1 WO2019054184 A1 WO 2019054184A1 JP 2018032030 W JP2018032030 W JP 2018032030W WO 2019054184 A1 WO2019054184 A1 WO 2019054184A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
solid
material layer
solid secondary
active material
Prior art date
Application number
PCT/JP2018/032030
Other languages
English (en)
French (fr)
Inventor
宏顕 望月
雅臣 牧野
智則 三村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65722820&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019054184(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201880058829.3A priority Critical patent/CN111095660A/zh
Priority to EP18856988.3A priority patent/EP3683884B1/en
Priority to KR1020207006729A priority patent/KR20200039730A/ko
Priority to JP2019541982A priority patent/JP6860681B2/ja
Publication of WO2019054184A1 publication Critical patent/WO2019054184A1/ja
Priority to US16/813,746 priority patent/US11670796B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an all solid secondary battery, an outer covering material for an all solid secondary battery, and a method of manufacturing the all solid secondary battery.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and enables charge and discharge by reciprocating lithium ions between the two electrodes.
  • organic electrolytes have been used as electrolytes.
  • the organic electrolyte is liable to leak, and a short circuit may occur inside the battery due to overcharge or overdischarge, which may cause ignition, and further improvement of safety and reliability is required. Under such circumstances, an all solid secondary battery using an inorganic solid electrolyte in place of the organic electrolyte has attracted attention.
  • all solid secondary batteries all of the negative electrode, electrolyte and positive electrode are solid, which can greatly improve the safety and reliability of the battery using organic electrolyte solution, and also can extend the life. It will be. Furthermore, the all-solid secondary battery can have a structure in which the electrode and the electrolyte are directly arranged in series. Therefore, the energy density can be increased as compared with a secondary battery using an organic electrolytic solution, and application to an electric car, a large storage battery, and the like is expected.
  • Patent Document 1 describes an all solid secondary battery having a waterproof layer and an elastic layer. The all-solid secondary battery is unlikely to be damaged even when dropped from a certain height, and is considered to be excellent in water resistance.
  • Patent Document 2 describes a battery system including an all solid secondary battery and a covering layer as a temperature buffer unit that buffers the temperature of the all solid secondary battery. This battery system is said to be capable of stabilizing and improving output characteristics by simple temperature buffer means.
  • all solid secondary batteries are expected to be mounted on vehicles such as electric vehicles. That is, when actually mounted on a vehicle, the voltage can be stably maintained even if vibration is continuously or repeatedly received during traveling, and excellent cycle characteristics are required.
  • the all solid secondary battery described in Patent Document 1 since the elastic modulus of the elastic layer is too low, there is a possibility that the battery performance may be deteriorated if the vibration continues.
  • the output characteristics are improved by controlling the temperature of the all solid secondary battery, and there is no description about the performance deterioration due to the vibration that the battery receives.
  • the present invention has a high discharge capacity density, and is practically mounted on a vehicle such as an electric car or a train and travels, and even if it continues to receive large and small vibrations, the voltage is hardly reduced, and further, all solid having excellent cycle characteristics. It is an object to provide a secondary battery.
  • the present invention has a high discharge capacity density by being used as the exterior material layer of the all solid secondary battery, and the voltage is less likely to decrease even if it is mounted on a vehicle and continues to receive vibrations as described above.
  • An object of the present invention is to provide an all-solid-state secondary battery packaging material capable of realizing an all-solid-state secondary battery having excellent cycle characteristics. Further, another object of the present invention is to provide a method of manufacturing the above-mentioned all solid secondary battery.
  • An all solid secondary battery comprising a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, wherein at least a part of the outer material layer has a gas permeability coefficient of 40 cc ⁇ 20 ⁇ m.
  • All-solid secondary battery having a rubber-coated layer of less than 1 / m 2 ⁇ 24 h ⁇ atm.
  • ⁇ 3> The all-solid secondary battery according to ⁇ 1> or ⁇ 2>, wherein the thickness of the exterior material layer is 1 to 100,000 ⁇ m.
  • ⁇ 4> The all-solid-state secondary battery according to any one of ⁇ 1> to ⁇ 3>, wherein at least a part of the side surface is covered with the rubber coating layer.
  • ⁇ 5> The all-solid secondary battery according to any one of ⁇ 1> to ⁇ 4>, wherein the tensile strength at 25 ° C. of the rubber constituting the rubber coating layer is 0.1 to 100 MPa.
  • the inorganic solid electrolyte contained in the positive electrode active material layer, the solid electrolyte layer, and at least one layer of the negative electrode active material layer (the positive electrode active material layer, the solid electrolyte layer, and / or the negative electrode active material layer) The all-solid-state secondary battery according to any one of ⁇ 1> to ⁇ 5>, which is an inorganic solid electrolyte.
  • a method for producing an all solid secondary battery comprising: decompressing a space between a laminate having a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, and an exterior material layer disposed around the laminate.
  • One of the steps ⁇ 1> to ⁇ 6> including the step of adhering the end of the exterior material layer and sealing the laminate in a state where the exterior material layer and the laminate are in close contact with each other.
  • the manufacturing method of the all-solid-state secondary battery as described in 4 ..
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the all-solid-state secondary battery of the present invention has a high discharge capacity density, and even if it is mounted in an actual vehicle and continues to receive large and small vibrations, the voltage is unlikely to decrease, and furthermore, the cycle characteristics are excellent.
  • the all-solid-state secondary battery packaging material of the present invention has a high discharge capacity density by being used as the packaging material layer of the all-solid-state secondary battery, and the voltage decreases even if it is mounted on a vehicle and continues to receive vibration
  • the method for producing an all solid secondary battery of the present invention can produce an all solid secondary battery having the above-mentioned excellent performance.
  • FIG. 1 is a longitudinal sectional view schematically showing an all solid secondary battery according to a preferred embodiment of the present invention.
  • FIG. 5 is a longitudinal sectional view schematically showing another all solid secondary battery according to a preferred embodiment of the present invention.
  • the all-solid secondary battery of the present invention includes a positive electrode active material layer, a negative electrode active material layer, and a solid electrolyte layer, and is covered with an exterior material layer. At least a part of the sheathing material layer is a rubber coating layer having a gas permeability coefficient of 40 cc ⁇ 20 ⁇ m / m 2 ⁇ 24 h ⁇ atm.
  • an all solid secondary battery according to a preferred embodiment of the present invention will be described by way of example with reference to FIG.
  • the form shown in each drawing is a schematic view for facilitating the understanding of the present invention, and the size or relative magnitude relationship of each member may be different in magnitude for convenience of explanation. It does not show the relationship of Moreover, it is not limited to the external shape and shape shown by these figures except the matter prescribed
  • FIG. 1 is a cross-sectional view schematically showing a substantially cubic all-solid secondary battery (lithium ion secondary battery) according to a preferred embodiment of the present invention.
  • the all-solid secondary battery 100 of the present embodiment has the negative electrode current collector 1, the negative electrode active material layer 2, the solid electrolyte layer 3, the positive electrode active material layer 4, and the positive electrode current collector 5 in this order as viewed from the negative electrode side.
  • the entire side surface of the all solid secondary battery stack 10 and a part of the current collector terminal 6 provided in contact with the all solid secondary battery stack 10 are covered with the exterior material layer 7.
  • Each layer is in contact with each other and has a stacked structure.
  • a side surface formed by the negative electrode current collector 1 and the negative electrode active material layer 2, one side surface of the solid electrolyte layer 3 above the side surface, and a positive electrode current collector 5 and a positive electrode active material layer 4 above the side surface The side surfaces formed by the above are combined to form “one side surface” of the all-solid-state secondary battery stack 10.
  • the all-solid-state secondary battery stack 10 has four sides. That is, one side surface in the stacking direction of the laminate composed of the negative electrode current collector 1, the negative electrode active material layer 2, the solid electrolyte layer 3, the positive electrode active material layer 4, and the positive electrode seed material 5 is “one side surface”
  • the laminate has four sides because it is substantially cubic.
  • the surface of the current collection terminal 6 opposite to the positive electrode current collector 5 (when the current collection terminal 6 is not provided, the surface of the positive electrode current collector 5 opposite to the solid electrolyte layer 3) is a top surface
  • the lower surface of the current collecting terminal 6 is the surface opposite to the negative electrode current collector 1 (when the current collecting terminal 6 is not provided, the surface of the negative electrode current collector 1 opposite to the solid electrolyte layer 3) It is called.
  • the shape of the all-solid secondary battery of the present invention is not limited to the shape of the all-solid secondary battery shown in FIG. 1 as long as the effects of the present invention are not impaired.
  • Specific examples of the shape which can be adopted by the all solid secondary battery of the present invention are ordinary n-pillar (n is an integer of 3 to 20), substantially n-prism (n is an integer of 3 to 20), discoid, etc.
  • the shape of an all solid secondary battery is mentioned.
  • the all-solid secondary battery having an n-prism shape and an approximately n-prism shape has n side surfaces.
  • FIG. 2 is a cross-sectional view schematically showing a disk-shaped all solid secondary battery (coin battery) according to a preferred embodiment of the present invention. It is the same as the all solid secondary battery of FIG. 1 except that it has a disk shape.
  • the thicknesses of the positive electrode active material layer 4, the solid electrolyte layer 3, and the negative electrode active material layer 2 are not particularly limited. In addition, in consideration of the size of a general battery, 10 to 1,000 ⁇ m is preferable, and 20 ⁇ m or more and less than 500 ⁇ m are more preferable. In the all solid secondary battery of the present invention, the thickness of at least one of the positive electrode active material layer 4, the solid electrolyte layer 3 and the negative electrode active material layer 2 is more preferably 50 ⁇ m or more and less than 500 ⁇ m.
  • the thickness of the packaging material layer 7 is not particularly limited, but the lower limit is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the upper limit is preferably 100,000 ⁇ m or less, more preferably 50,000 ⁇ m or less, further preferably 20,000 ⁇ m or less, still more preferably 5,000 ⁇ m or less, and still more preferably 200 ⁇ m or less.
  • the thickness of the rubber coating layer is not particularly limited, but the lower limit is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • the upper limit is preferably 100,000 ⁇ m or less, more preferably 50,000 ⁇ m or less, further preferably 20,000 ⁇ m or less, still more preferably 5,000 ⁇ m or less, and still more preferably 200 ⁇ m or less.
  • the thickness of the outer covering material layer 7 or the rubber coating layer is in the above range, the impact on the battery can be effectively suppressed even if vibration continues, and the discharge capacity density as the battery is kept higher be able to.
  • gum coating layer” is not uniform, it means an average value (arithmetic mean value).
  • At least a part of the sheathing material layer 7 is a rubber coated layer having a gas permeability coefficient of 40 cc ⁇ 20 ⁇ m / m 2 ⁇ 24 h ⁇ atm.
  • “at least a part of the packaging material layer 7 is a rubber coating layer having a gas permeability coefficient of less than 40 cc ⁇ 20 ⁇ m / m 2 ⁇ 24 h ⁇ atm” means that the rubber coating layer is formed on any part of the coating material layer. Means to have.
  • the part which has a rubber coating layer is not specifically limited, When the all-solid-state secondary battery laminated body 10 is coat
  • the mode in which the outer covering material layer has a rubber covering layer is not particularly limited, but an aspect in which a part of the outer covering material layer is replaced with a rubber covering layer, an aspect in which at least one layer of the multilayer forming the outer covering material layer is a rubber covering layer, Or the aspect which combined these is mentioned.
  • one side is preferably coated with a rubber coating layer, more preferably two sides are coated with a rubber coating layer, and three More preferably, the side surfaces are coated with a rubber coating layer, more preferably, four side surfaces are coated with a rubber coating layer, and particularly preferably, five side surfaces are coated with a rubber coating layer.
  • one side is preferably coated with a rubber coating layer, more preferably two sides are coated with a rubber coating layer, and three More preferably, the side is coated with a rubber coating layer, more preferably four sides are coated with a rubber coating layer, and further preferably five sides are coated with a rubber coating layer, It is particularly preferred that the two sides be coated with a rubber coating.
  • a form in which at least a part of the side surface is covered with the rubber coating layer in the entire lamination direction (the larger the area of the side surface to be covered is, the more preferable).
  • 10 to 100% of the total area of the side is coated with a rubber coating layer
  • a rubber coating layer are preferably coated with a rubber coating layer, more preferably 15 to 100%, still more preferably 20 to 100%, and 40 to 100%.
  • the side surfaces of the negative electrode current collector and the positive electrode current collector are not covered with the rubber coating layer on at least one side surface of n side surfaces
  • the side surfaces of the negative electrode current collector and the positive electrode current collector are not covered with the rubber coating layer on at least a part of the side surfaces, and a positive electrode active material layer, a solid electrolyte layer, A form in which the side surface of the negative electrode active material layer is coated with a rubber coating layer (in this form, the larger the area of the side surface coated with the rubber coating layer, the better).
  • the total area of the side surfaces excluding the side surfaces of the negative electrode current collector and the positive electrode current collector is Among them, 10 to 100% is preferably coated with a rubber coating layer, more preferably 15 to 100% is coated with a rubber coating layer, and 20 to 100% is coated with a rubber coating layer Is more preferably 40 to 100% covered with a rubber coating layer, more preferably 60 to 100% covered with a rubber coating layer, 80 to 100% is a rubber coating layer It is more preferable to be coated, and it is particularly preferable that the entire area of the side surface except the side surfaces of the negative electrode current collector and the positive electrode current collector is covered with a rubber coating layer.
  • the upper surface or the lower surface and the side surface are coated with a rubber coating layer
  • the rubber coating layer is used to absorb vibration. That is, for example, when vibration is transmitted through the member, it is preferable that the member and the rubber coating layer be in contact with each other.
  • the all solid secondary battery of the present invention excludes at least the side surfaces of the negative electrode current collector and the positive electrode current collector among the side surfaces of the all solid secondary battery stack It is preferable that all of the portions be covered with a rubber coating layer. In the all solid secondary battery of the present invention, it is also preferable that the exterior material layer is a rubber coating layer.
  • the gas permeation coefficient of the rubber used in the present invention is less than 40 cc ⁇ 20 ⁇ m / m 2 ⁇ 24 h ⁇ atm.
  • the lower limit of the gas permeability coefficient is not particularly limited, but it is practical to be 0.1 cc ⁇ 20 ⁇ m / m 2 ⁇ 24 h ⁇ atm or more.
  • the gas permeation coefficient is a value determined by the measurement method described in the examples.
  • the rubber coating layer may contain components other than rubber within the range which does not impair the effect of the present invention. 20 mass% or more is preferable, as for content of rubber
  • the elastic modulus at 25 ° C. of the rubber used in the present invention is preferably 0.01 to 100 MPa, more preferably 0.05 to 80 MPa, still more preferably 0.1 to 50 MPa, and 0 It is particularly preferred that the pressure be in the range of 5 to 5 MPa.
  • the elastic modulus of the rubber used in the present invention is a value determined by the measurement method described in the examples.
  • the rubber coating layer is not damaged, and the impact on the battery can be suppressed, so that the tensile strength at 25 ° C. of the rubber used in the present invention is 0.1 to 100 MPa.
  • the pressure is preferably 0.5 to 80 MPa, more preferably 1 to 50 MPa.
  • the tensile strength of the rubber used in the present invention is a value determined by the measurement method described in the examples.
  • butyl rubber is preferably used. It is also possible to use one having a gas permeability coefficient of less than 40 cc ⁇ 20 ⁇ m / m 2 ⁇ 24 h ⁇ atm by using the above-mentioned rubber as a base material and forming a composite using various fillers and the like.
  • the rubber used in the present invention may be used alone or in combination of two or more.
  • the exterior material layer 7 may be a single layer or multiple layers.
  • the packaging material layer 7 may be in contact with at least one of the all solid secondary battery laminate 10 and the current collector 6, and at least one of the all solid secondary battery laminate 10 and the current collector 6 via an adhesive layer. May be coated.
  • the components that constitute the components other than the rubber coating layer of the packaging material layer 7 include various metals such as stainless steel, various plastic sheets such as PET film, and composite sheets such as PET film having an aluminum vapor deposition layer.
  • the form of the coating is not limited to the form shown in FIG. 1, and, for example, a rubber comprising an all solid secondary battery laminate and a current collector terminal made of stainless steel pipe and rubber forming the above rubber coating layer.
  • the form which makes an exterior material layer in combination with a stopper is also contained in the all-solid-state secondary battery of this invention.
  • the packaging material for the all solid secondary battery of the present invention has the above-mentioned rubber coating layer, and the shape thereof is not particularly limited. As a shape, a sheet
  • the method for producing the all-solid secondary battery of the present invention is not particularly limited.
  • the preferable form of the manufacturing method of the all-solid-state secondary battery of this invention is demonstrated.
  • the all solid secondary battery stack 10 can be widely used as a generally used as an all solid secondary battery stack, and can be manufactured by an ordinary method.
  • the all-solid secondary battery stack 10 is sandwiched from the upper surface side and the lower surface side by two outer layer materials (for example, rubber sheets) having an adhesive layer, and the external environmental pressure of the stack is reduced.
  • the rubber sheet is adhered and sealed by adhering the adhesive layers at the end of the rubber sheet while the pressure is reduced.
  • an adhesive layer of a rubber sheet having an adhesive layer is brought into contact with a part of the current collecting terminal 6 on the negative electrode side and the negative electrode current collector 1.
  • another rubber sheet having an adhesive layer is brought into contact with a part of the current collecting terminal 6 on the positive electrode side and the positive electrode current collector 5.
  • the all-solid-state secondary battery stack 10 is sandwiched.
  • an all solid secondary battery laminate 10 Can be sealed.
  • An all solid secondary battery having a shape other than the shape shown in FIG. 1 can be similarly produced.
  • the negative electrode active material layer 2 contains at least an inorganic solid electrolyte and a negative electrode active material, and may contain a binder.
  • the solid electrolyte layer 3 contains at least an inorganic solid electrolyte and may contain a binder.
  • the positive electrode active material layer 4 contains at least an inorganic solid electrolyte and a positive electrode active material, and may contain a binder.
  • the inorganic solid electrolyte is an inorganic solid electrolyte, and the solid electrolyte is a solid electrolyte capable of transferring ions in its inside.
  • An organic solid electrolyte (a polymer electrolyte represented by polyethylene oxide (PEO) or the like, an organic electrolyte represented by lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) or the like because it does not contain an organic substance as a main ion conductive material It is clearly distinguished from electrolyte salt).
  • PEO polyethylene oxide
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • electrolyte salt since the inorganic solid electrolyte is solid in a steady state, it is not usually dissociated or released into cations and anions.
  • inorganic electrolyte salts such as LiPF 6 , LiBF 4 , LiFSI, LiCl
  • the inorganic solid electrolyte is not particularly limited as long as it has ion conductivity of a metal belonging to periodic group 1 or 2 and is generally non-electron conductive.
  • the inorganic solid electrolyte has the ion conductivity of a metal belonging to Group 1 or 2 of the periodic table.
  • a solid electrolyte material to be applied to this type of product can be appropriately selected and used.
  • the inorganic solid electrolyte (i) a sulfide-based inorganic solid electrolyte and (ii) an oxide-based inorganic solid electrolyte can be mentioned as a representative example.
  • a sulfide-based inorganic solid electrolyte is preferably used because a better interface can be formed between the active material and the inorganic solid electrolyte.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom (S) and has ion conductivity of a metal belonging to periodic group 1 or 2 and And compounds having electron insulating properties are preferred.
  • the sulfide-based inorganic solid electrolyte contains at least Li, S and P as elements and preferably has lithium ion conductivity, but depending on the purpose or case, other than Li, S and P. It may contain an element.
  • fills the composition shown by following formula (1) is mentioned.
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 represent composition ratios of respective elements, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10.
  • 1 to 9 is preferable, and 1.5 to 7.5 is more preferable.
  • 0 to 3 is preferable, and 0 to 1 is more preferable as b1.
  • 2.5 to 10 is preferable, and 3.0 to 8.5 is more preferable.
  • 0 to 5 is preferable, and 0 to 3 is more preferable.
  • composition ratio of each element can be controlled by adjusting the compounding amount of the raw material compound at the time of producing a sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramicized), or only part of it may be crystallized.
  • a Li—P—S-based glass containing Li, P and S, or a Li—P—S-based glass ceramic containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), single phosphorus, single sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, It can be produced by the reaction of at least two or more of LiI, LiBr, LiCl) and sulfides of elements represented by M (for example, SiS 2 , SnS, GeS 2 ).
  • Li 2 S lithium sulfide
  • phosphorus sulfide for example, diphosphorus pentasulfide (P 2 S 5 )
  • single phosphorus single sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • M for example, SiS 2 , SnS, GeS 2 .
  • the ratio of Li 2 S to P 2 S 5 in the Li-P-S-based glass and Li-P-S-based glass ceramic is preferably a molar ratio of Li 2 S: P 2 S 5 of 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. There is no particular upper limit, but it is practical to be 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5- LiCl, Li 2 S-P 2 S 5- H 2 S, Li 2 S-P 2 S 5- H 2 S-LiCl, Li 2 S-LiI-P 2 S 5, Li 2 S-LiI-Li 2 O-P 2 S 5, Li 2 S-LiBr-P 2 S 5, Li 2 S-Li 2 O-P 2 S 5, Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5 -P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-GeS 2, Li 2 S-GeS 2 -ZnS
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method for example, a mechanical milling method, a solution method and a melt quenching method can be mentioned. It is because processing at normal temperature becomes possible, and simplification of the manufacturing process can be achieved.
  • oxide-based inorganic solid electrolyte contains an oxygen atom (O) and has ion conductivity of a metal belonging to Periodic Table Group 1 or 2 and And compounds having electron insulating properties are preferred.
  • Li, P and O phosphorus compounds containing Li, P and O.
  • Li 3 PO 4 lithium phosphate
  • LiPON in which part of oxygen of lithium phosphate is replaced with nitrogen
  • LiPOD 1 LiPOD 1
  • LiA 1 ON LiA 1 is at least one selected from Si, B, Ge, Al, C, Ga, etc.
  • the volume average particle size of the inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • grains is performed in the following procedures.
  • the inorganic solid electrolyte particles are diluted with water (heptane for water labile substances) in a 20 ml sample bottle to dilute a 1% by weight dispersion.
  • the diluted dispersed sample is irradiated with 1 kHz ultrasound for 10 minutes, and used immediately thereafter for the test.
  • the content of the inorganic solid electrolyte in the negative electrode active material layer 2, the solid electrolyte layer 3 or the positive electrode active material layer 4 takes into consideration the reduction of the interface resistance and the maintenance of the reduced interface resistance when used in the all solid secondary battery. When it does, it is preferable that it is 5 mass% or more, It is more preferable that it is 10 mass% or more, It is especially preferable that it is 20 mass% or more. From the same viewpoint, the upper limit is preferably 99.9% by mass or less, more preferably 99.5% by mass or less, and particularly preferably 99% by mass or less.
  • the content of the inorganic solid electrolyte in the negative electrode active material layer 2 and the positive electrode active material layer 4 is preferably such that the total content of the active material and the inorganic solid electrolyte is in the above range.
  • the inorganic solid electrolyte may be used alone or in combination of two or more.
  • the active material includes a positive electrode active material and a negative electrode active material, and can be alloyed with a transition metal oxide and a sulfur-containing compound as a positive electrode active material, or lithium titanate, graphite, lithium metal and lithium as a negative electrode active material. Compounds are preferred.
  • the positive electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element capable of being complexed with Li such as sulfur, a complex of sulfur and a metal, or the like. Among them, it is preferable to use a transition metal oxide as the positive electrode active material, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V) Are more preferred.
  • an element M b (an element of Group 1 (Ia) other than lithium, an element of Group 1 (Ia) of the metal periodic table, an element of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount (100 mol%) of the transition metal element M a . It is more preferable to be synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2.
  • transition metal oxide examples include a transition metal oxide having a (MA) layered rock salt type structure, a transition metal oxide having a (MB) spinel type structure, a (MC) lithium-containing transition metal phosphate compound, (MD And the like) lithium-containing transition metal halogenated phosphoric acid compounds and (ME) lithium-containing transition metal silicate compounds.
  • MA transition metal oxide having a
  • MB transition metal oxide having a (MB) spinel type structure
  • MC lithium-containing transition metal phosphate compound
  • MD And the like lithium-containing transition metal halogenated phosphoric acid compounds
  • ME lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt structure MA
  • LiCoO 2 lithium cobaltate [LCO]
  • LiNiO 2 lithium nickelate
  • LiNi 0.85 Co 0.10 Al 0.05 O 2 Nickel-cobalt aluminum aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 nickel-manganese cobaltate lithium [NMC]
  • LiNi 0.5 Mn 0.5 O 2 manganese nickel acid Lithium
  • transition metal oxides having a (MB) spinel structure include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 and the like.
  • Examples of the (MC) lithium-containing transition metal phosphate compound include olivine-type iron phosphates such as LiFePO 4 (lithium iron phosphate [LFP]) and Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 and the like Iron pyrophosphates, cobalt phosphates such as LiCoPO 4 , and monoclinic Nasacon vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • olivine-type iron phosphates such as LiFePO 4 (lithium iron phosphate [LFP]) and Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 and the like Iron pyrophosphates, cobalt phosphates such as LiCoPO 4 , and monoclinic Nasacon vanadium phosphate salts such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And cobalt fluoride phosphates.
  • Li 2 FePO 4 F such fluorinated phosphorus iron salt
  • Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And cobalt fluoride phosphates.
  • Examples of the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 and Li 2 CoSiO 4 .
  • the shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m. In order to make the positive electrode active material have a predetermined particle diameter, a usual pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution and an organic solvent.
  • the volume average particle size (sphere-equivalent average particle size) of the positive electrode active material particles can be measured using a laser diffraction / scattering type particle size distribution measuring apparatus LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (area weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined appropriately depending on the designed battery capacity.
  • the content of the positive electrode active material in the positive electrode active material layer 4 is not particularly limited, and is preferably 10 to 99% by mass, more preferably 30 to 98% by mass, still more preferably 50 to 97% by mass, and 55 to 95% by mass. % Is particularly preferred.
  • the negative electrode active material is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above-mentioned characteristics, and carbonaceous materials, metal oxides such as tin oxide, silicon oxides, metal complex oxides, lithium alone such as lithium alloy and lithium aluminum alloy, and And metals such as Sn, Si, Al and In which can be alloyed with lithium.
  • carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability.
  • a metal complex oxide it is preferable that lithium can be occluded and released.
  • the material is not particularly limited, but it is preferable from the viewpoint of high current density charge / discharge characteristics that at least one of titanium and lithium is contained as a component.
  • the carbonaceous material used as the negative electrode active material is a material substantially consisting of carbon.
  • various kinds of synthesis such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor grown graphite etc.), and PAN (polyacrylonitrile) resin and furfuryl alcohol resin etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber and activated carbon fiber And mesophase microspheres, graphite whiskers, and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenide which is a reaction product of a metal element and an element of periodic group 16 is also preferably used.
  • amorphous is an X-ray diffraction method using CuK ⁇ radiation, and means one having a broad scattering band having an apex in a region of 20 ° to 40 ° in 2 ⁇ value, and a crystalline diffraction line May be included.
  • amorphous oxides of semimetal elements and chalcogenides are more preferable, and elements of periodic table group 13 (IIIB) to 15 (VB), Al Particularly preferred are oxides consisting of Ga, Si, Sn, Ge, Pb, Sb and Bi singly or in combination of two or more thereof, and chalcogenides.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , and the like.
  • Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeSiO, GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferably mentioned. They may also be complex oxides with lithium oxide, such as Li 2 SnO 2 .
  • the negative electrode active material also preferably contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics because the volume fluctuation at the time of lithium ion absorption and release is small, and the deterioration of the electrode is suppressed, and lithium ion secondary It is preferable at the point which the lifetime improvement of a battery is attained.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can store more Li ions than carbon negative electrodes (graphite, acetylene black, etc.). That is, the storage amount of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery operating time can be extended.
  • the shape of the negative electrode active material is not particularly limited, but is preferably in the form of particles.
  • the average particle size of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a usual pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, a swirling flow jet mill, a sieve and the like are suitably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can also be carried out as necessary. It is preferable to carry out classification in order to obtain a desired particle size.
  • the classification method is not particularly limited, and a sieve, an air classifier or the like can be used as required. Classification can be used both dry and wet.
  • the average particle size of the negative electrode active material particles can be measured by the same method as the above-mentioned method of measuring the volume average particle size of the positive electrode active material.
  • the chemical formula of the compound obtained by the above-mentioned firing method can be calculated from the mass difference of the powder before and after firing as a measurement method using inductively coupled plasma (ICP) emission spectroscopy and as a simple method.
  • ICP inductively coupled plasma
  • the negative electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (area weight) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be determined appropriately depending on the designed battery capacity.
  • the content of the negative electrode active material in the negative electrode active material layer 2 is not particularly limited, and is preferably 10 to 100% by mass, and more preferably 20 to 100% by mass.
  • the surfaces of the positive electrode active material and the negative electrode active material may be surface coated with another metal oxide.
  • the surface coating agent may, for example, be a metal oxide containing Ti, Nb, Ta, W, Zr, Al, Si or Li. Specific examples thereof include titanate spinel, tantalum-based oxides, niobium-based oxides, lithium niobate-based compounds, etc.
  • the electrode surface containing a positive electrode active material or a negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with an actinic ray or an active gas (such as plasma) before and after the surface coating.
  • the negative electrode active material layer 2, the solid electrolyte layer 3 and the positive electrode active material layer 4 may contain a binder, and preferably may contain polymer particles.
  • the binder used in the present invention is not particularly limited as long as it is an organic polymer.
  • the binder that can be used in the present invention is not particularly limited, and, for example, a binder made of a resin described below is preferable.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of monomers constituting these resins (preferably, copolymers of acrylic acid and methyl acrylate) may be mentioned.
  • copolymers (copolymers) with other vinyl monomers are also suitably used.
  • a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene can be mentioned.
  • the copolymer may be either a statistical copolymer or a periodic copolymer, and a block copolymer is preferred.
  • other resins include polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, and cellulose derivative resin.
  • fluorine-containing resins, hydrocarbon-based thermoplastic resins, acrylic resins, polyurethane resins, polycarbonate resins and cellulose derivative resins are preferable, which have a good affinity to the inorganic solid electrolyte, and the flexibility of the resin itself is good. Therefore, acrylic resins and polyurethane resins are particularly preferred. One of these may be used alone, or two or more of these may be used in combination.
  • the shape of the binder is not particularly limited, and may be in the form of particles or irregular shapes in the all solid secondary battery, and is preferably in the form of particles.
  • a commercial item can be used for the binder used for this invention. Moreover, it can also prepare by a conventional method.
  • the water concentration of the binder used in the present invention is preferably 100 ppm (by mass) or less. Further, the binder used in the present invention may be used in the solid state, or may be used in the state of polymer particle dispersion or polymer solution.
  • 5,000 or more are preferable, as for the mass mean molecular weight of the binder used for this invention, 10,000 or more are more preferable, and 30,000 or more are more preferable.
  • the upper limit is substantially 1,000,000 or less, an embodiment in which a binder having a weight average molecular weight in this range is crosslinked is also preferable.
  • the molecular weight of the binder is the mass average molecular weight unless otherwise specified, and the mass average molecular weight in terms of standard polystyrene is measured by gel permeation chromatography (GPC). As a measuring method, it is set as the value measured by the method of the following conditions. However, depending on the type of binder, an appropriate eluent may be selected and used.
  • the content of the binder in the negative electrode active material layer 2, the solid electrolyte layer 3 or the positive electrode active material layer 4 is determined in consideration of reduction of interface resistance and maintenance of reduced interface resistance when used in an all solid secondary battery. 0.01 mass% or more is preferable, 0.1 mass% or more is more preferable, and 1 mass% or more is more preferable.
  • the upper limit is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less from the viewpoint of battery characteristics.
  • Each layer constituting the all-solid secondary battery of the present invention may contain a conductive aid, a dispersant and a lithium salt, as long as the effects of the present invention are not impaired.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors. In the present invention, one or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • a current collector In addition to aluminum, aluminum alloy, stainless steel, nickel and titanium as materials for forming a positive electrode current collector, aluminum or stainless steel surface treated with carbon, nickel, titanium or silver (a thin film is formed are preferred, among which aluminum and aluminum alloys are more preferred.
  • materials for forming the negative electrode current collector in addition to aluminum, copper, copper alloy, stainless steel, nickel and titanium etc., carbon, nickel, titanium or silver is treated on the surface of aluminum, copper, copper alloy or stainless steel are preferred, with aluminum, copper, copper alloys and stainless steel being more preferred.
  • the shape of the current collector is usually in the form of a film sheet, but a net, a punch, a lath body, a porous body, a foam, a molded body of a fiber group and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable to make the current collector surface uneven by surface treatment.
  • each layer may be composed of a single layer or multiple layers.
  • the all solid secondary battery of the present invention is not limited thereto, for example, a plurality of all solid secondary batteries It also includes the battery stack 10 integrally covered with the covering material layer.
  • the all solid secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, for example, when installed in an electronic device, a laptop computer, a pen input computer, a mobile computer, an e-book player, a mobile phone, a cordless handset, a pager, a handy terminal, a mobile fax, a mobile phone Examples include copying, portable printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, mini-discs, electric shavers, transceivers, electronic organizers, calculators, portable tape recorders, radios, backup power supplies, memory cards and the like.
  • automobiles electric cars, etc.
  • electric vehicles motors, lighting equipment, toys, game machines, road conditioners, watches, strobes, cameras, medical devices (pace makers, hearing aids, shoulder machines, etc.), etc.
  • it can be used for various military and space applications. It can also be combined with a solar cell.
  • it is preferable to be used for automobiles, electric vehicles, motors, watches, cameras, medical devices, and mobile phones which cause large vibrations in all solid secondary batteries at the time of use, such as automobiles, electric vehicles, medical devices and mobile phones More preferably, it is used for
  • the all-solid secondary battery refers to a secondary battery in which the positive electrode, the negative electrode, and the electrolyte are both solid. In other words, it is distinguished from an electrolyte type secondary battery in which a carbonate-based solvent is used as the electrolyte.
  • the present invention is premised on an inorganic all solid secondary battery.
  • the inorganic solid electrolyte is distinguished from an electrolyte (polymer electrolyte) in which the above-described polymer compound is used as an ion conduction medium, and the inorganic compound is an ion conduction medium. Specific examples thereof include the above-mentioned Li-P-S-based glass, LLT and LLZ.
  • the inorganic solid electrolyte itself does not release cations (Li ions) but exhibits an ion transport function.
  • a material serving as a supply source of ions which are added to the electrolytic solution or the solid electrolyte layer to release cations may be referred to as an electrolyte.
  • an electrolyte salt When it distinguishes with the electrolyte as said ion transport material, this is called an "electrolyte salt" or a “support electrolyte.”
  • electrolyte salt LiTFSI is mentioned, for example.
  • the term "composition” means a mixture in which two or more components are uniformly mixed. However, as long as uniformity is substantially maintained, aggregation or uneven distribution may occur in part within the range where the desired effect is exhibited.
  • the sulfide-based inorganic solid electrolyte is preferably T.I. Ohtomo, A. Hayashi, M. Tatsumisago, Y .; Tsuchida, S. Hama, K. Kawamoto, Journal of Power Sources, 233, (2013), pp 231-235 and A.A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T .; Minami, Chem. Lett. , (2001), pp 872-873.
  • lithium sulfide Li 2 S, manufactured by Aldrich, purity> 99.98%) 2.42 g, phosphorus pentasulfide (P 2 S) in a glove box under an argon atmosphere (dew point ⁇ 70 ° C.) (5 , manufactured by Aldrich, purity> 99%) 3.90 g of each was weighed, placed in a mortar made of agate, and mixed for 5 minutes using a mortar made of agate.
  • Li 2 S and P 2 S 5 at a molar ratio of Li 2 S: P 2 S 5 75: was 25.
  • 66 zirconia beads of 5 mm in diameter were charged into a 45 mL container made of zirconia (manufactured by Fritsch), the whole mixture of the above lithium sulfide and phosphorus pentasulfide was charged, and the container was sealed under an argon atmosphere.
  • a container is set in a planetary ball mill P-7 (trade name) manufactured by Fritsch, and mechanical milling is performed at a temperature of 25 ° C. and a rotation number of 510 rpm for 20 hours to obtain a sulfide-based inorganic solid electrolyte (Li-P-S-based yellow powder). Glass) 6.20g was obtained.
  • composition for positive electrode (P-1) 180 pieces of zirconia beads with a diameter of 5 mm were charged into a 45 mL container made of zirconia (manufactured by Fritsch), 3.0 g of the Li-P-S based glass synthesized above, and 12.3 g of heptane as a dispersion medium.
  • the container was set in a Fritsch planetary ball mill P-7 (trade name), and mixed at a temperature of 25 ° C. and a rotation speed of 300 rpm for 2 hours.
  • a composition for a positive electrode described in Table 1 below was prepared in the same manner as the composition for a positive electrode (P-1) except that the composition described in Table 1 below was changed.
  • Li-P-S Li-P-S based glass LLZ synthesized above: Li 7 La 3 Zr 2 O 12 (made by Toshima Seisakusho)
  • LLT Li 0.33 La 0.55 TiO 3 (made by Toshima Seisakusho)
  • LCO LiCoO 2 (Nippon Chemical Industry Co., Ltd.)
  • NMC LiNi 0.33 Co 0.33 Mn 0.33 O 2 (manufactured by Aldrich)
  • PVdF-HFP (Polyvinylidene fluoride-hexafluoropropylene copolymer (manufactured by Arkema, trade name "KYNAR FLEX 2500-20")
  • UF-20S trade name, flow sen UF-20S (manufactured by Sumitomo Seika Co., Ltd., polyethylene powder, average particle diameter 20 ⁇ m)
  • composition for negative electrode (N-1) One hundred and eighty zirconia beads with a diameter of 5 mm were charged into a 45 mL container made of zirconia (manufactured by Fritsch), 4.0 g of the Li-P-S based glass synthesized above, and 12.3 g of heptane as a dispersion medium.
  • the container was set in a Fritsch planetary ball mill P-7, and mixed at a temperature of 25 ° C. and a rotation number of 300 rpm for 2 hours.
  • a negative electrode composition described in the following Table 2 was prepared in the same manner as the negative electrode composition (N-1) except that the composition described in the following Table 2 was changed.
  • Li-P-S Li-P-S based glass LLZ synthesized above: Li 7 La 3 Zr 2 O 12 (made by Toshima Seisakusho)
  • LLT Li 0.33 La 0.55 TiO 3 (made by Toshima Seisakusho)
  • CGB 20 trade name, negative electrode active material manufactured by Nippon Graphite Co., Ltd.
  • PVdF-HFP Polyvinylidene fluoride-hexafluoropropylene copolymer (manufactured by Arkema, trade name "KYNAR FLEX 2500-20")
  • UF-20S trade name, flow sen UF-20S (manufactured by Sumitomo Seika Co., Ltd., polyethylene powder, average particle diameter 20 ⁇ m)
  • solid electrolyte composition (E-1) 180 pieces of zirconia beads with a diameter of 5 mm were charged into a 45 mL container made of zirconia (manufactured by Fritsch), 10.0 g of the Li-P-S based glass synthesized above, and 15.0 g of heptane as a dispersion medium were charged. Thereafter, the container was set in a Fritsch planetary ball mill P-7, and stirring was continued at a temperature of 25 ° C. and a rotation number of 300 rpm for 2 hours to prepare a solid electrolyte composition (E-1).
  • a solid electrolyte composition shown in the following Table 3 was prepared in the same manner as the solid electrolyte composition (E-1) except that the inorganic solid electrolyte, the binder and the dispersion medium were changed to the constitution shown in the following Table 3.
  • Li-P-S Li-P-S based glass LLZ synthesized above: Li 7 La 3 Zr 2 O 12 (made by Toshima Seisakusho)
  • LLT Li 0.33 La 0.55 TiO 3 (made by Toshima Seisakusho)
  • PVdF-HFP (Polyvinylidene fluoride-hexafluoropropylene copolymer (manufactured by Arkema, trade name "KYNAR FLEX 2500-20")
  • UF-20S trade name, flow sen UF-20S (manufactured by Sumitomo Seika Co., Ltd., polyethylene powder, average particle diameter 20 ⁇ m)
  • composition for negative electrode (N-1) prepared above is applied onto a copper foil with a thickness of 20 ⁇ m by an applicator (trade name: SA-201 baker type applicator, manufactured by Tester Sangyo Co., Ltd.), and it is applied for 1 hour at 80 ° C. After heating, it was further dried at 110 ° C. for 1 hour. Then, it pressurized (20 Mpa, 1 minute), heating (120 degreeC) using the heat press machine, and the all-solid-state secondary battery negative electrode sheet which has the laminated structure of a negative electrode active material layer / copper foil was produced.
  • an applicator trade name: SA-201 baker type applicator, manufactured by Tester Sangyo Co., Ltd.
  • the solid electrolyte composition (E-1) prepared above was applied by an applicator onto the negative electrode active material layer prepared above, heated at 80 ° C. for 1 hour, and further dried at 110 ° C. for 6 hours.
  • the sheet having the solid electrolyte layer formed on the negative electrode active material layer is pressurized (30 MPa, 1 minute) while heating (120 ° C.) using a heat press, and solid electrolyte layer / negative electrode active material layer / copper foil A negative electrode sheet for an all solid secondary battery having a laminated structure was produced.
  • composition for a positive electrode (P-1) prepared above was applied on an aluminum foil with a thickness of 20 ⁇ m by an applicator, heated at 80 ° C. for 1 hour, and further dried at 110 ° C. for 1 hour. Then, it pressurized (20 Mpa, 1 minute), heating (120 degreeC) using the heat press machine, and the positive electrode sheet for all the solid secondary batteries which have a laminated structure of a positive electrode active material layer / aluminum foil was produced.
  • a laminate for an all-solid secondary battery described in Table 4 below was prepared in the same manner as the laminate for an all-solid secondary battery (L-1) except that the layer configuration described in Table 4 below was changed. .
  • test No. 1 While pressurizing the laminated body L-1 (20 MPa), the pressure on the surrounding environment was reduced to bond the polyethylene heat-sealable layers of the surplus portion of the butyl rubber sheet, thereby sealing four side surfaces.
  • test No. 1 having the configuration shown in FIG. 101 all solid secondary batteries were obtained.
  • Test No. The current collection terminal of the all-solid-state secondary battery 101 can maintain sealing by means of the heat fusion layer of the exterior material layer, and can ensure conduction with the battery.
  • test No. 1 In the same manner as in the all solid secondary battery of No. 101, test No. 1 described in Table 5 below. All solid secondary batteries of 102 to 118 and c01 to c04 were manufactured.
  • Blended rubber sheet A A blend of 20% by mass of nitrile rubber in an SBR sheet.
  • Each sheet interface has an adhesive layer.
  • SBR styrene butadiene rubber
  • the gas permeation coefficient was measured in accordance with JIS K 6275-1 (2009).
  • the unit of gas permeability coefficient: cc ⁇ 20 ⁇ m / (m 2 ⁇ 24 h ⁇ atm) is the amount of gas per 24 hours under a sheet area of 1 m 2 and a pressure of 1 atm when the sheet to be measured is 20 ⁇ m thick Indicates The measurement was performed at 25 ° C. with nitrogen gas as the measurement target.
  • ⁇ Elastic modulus> It measured on the conditions based on JISK6251-1993. That is, using a No. 3 test piece of the dumbbell-shaped test piece, the test piece is set in a tensile tester, tested at a tensile speed of 500 mm / min under an environmental temperature of 25 ° C., tensile stress and tensile strain And the cross-sectional area of the test piece.
  • the all-solid-state secondary battery manufactured above was measured by a charge / discharge evaluation device "TOSCAT-3000" (trade name) manufactured by Toyo System Co., Ltd.
  • the all solid secondary battery was charged at a current value of 0.2 mA until the battery voltage reached 4.2 V, and then discharged at a current value of 0.2 mA until the battery voltage reached 3.0 V. This charge and discharge was taken as one cycle. This cycle is repeated, and the discharge capacity at the third cycle is defined as the discharge capacity of the all solid secondary battery.
  • a value obtained by dividing this discharge capacity by the mass of the battery including the exterior material layer was taken as the discharge capacity density.
  • the discharge capacity density of 5 Wh / kg or more is the pass level of the main test.
  • the all-solid-state secondary battery manufactured above was measured by a charge / discharge evaluation device "TOSCAT-3000" (trade name) manufactured by Toyo System Co., Ltd.
  • the all solid secondary battery was charged at a current value of 0.2 mA until the battery voltage was 4.2V.
  • the all solid secondary battery after charging was set in a vibration tester so as to be parallel to the electrode laminated surface, and the vibration test was conducted under the condition according to JIS-D-1601 which is a method of testing vibration of automobile parts.
  • the vibration endurance test after conducting the vibration test under the conditions of step 30, frequency 33 Hz, vibration acceleration 30 m / s 2 in the vibration endurance test, the voltage of the all solid secondary battery is measured, and the vibration test is based on the following evaluation criteria. The voltage after was evaluated. In addition, evaluation C or more is a pass level of this test.
  • test No. 1 having no exterior material layer defined in the present invention.
  • the all solid secondary batteries of c01 to c04 failed the battery voltage drop and the cycle characteristics after the vibration test.
  • test No. Since c03 has a high gas permeation coefficient and the gas containing the water vapor in the external environment of the battery intrudes into the battery, it is considered that the discharge capacity density is rejected because the battery material is deteriorated.
  • no. The all-solid-state secondary batteries of the present invention 101 to 118 passed the battery voltage drop and the cycle characteristics after the vibration test.
  • the all-solid secondary battery of the present invention using a sulfide-based inorganic solid electrolyte has a gas contact, in particular, with a gas entering from the interface between the active material and the sulfide-based inorganic solid electrolyte. Can be prevented, and the decrease in battery voltage and cycle characteristics after vibration tests assuming actual running can be suppressed to the same extent as the all-solid secondary battery of the present invention using an oxide-based inorganic solid electrolyte I understand that I was able to do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

正極活物質層と負極活物質層と固体電解質層とを具備し、外装材層で被覆された全固体二次電池であって、上記外装材層の少なくとも一部が、ガス透過係数40cc・20μm/m・24h・atm未満のゴム被覆層である、全固体二次電池、全固体二次電池用外装材及び全固体二次電池。

Description

全固体二次電池、全固体二次電池用外装材及び全固体二次電池の製造方法
 本発明は、全固体二次電池、全固体二次電池用外装材及び全固体二次電池の製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極及び正極の間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充放電を可能とした蓄電池である。リチウムイオン二次電池には、従来、電解質として有機電解液が用いられてきた。しかし、有機電解液は液漏れを生じやすく、また、過充電又は過放電により電池内部で短絡が生じ発火するおそれもあり、安全性と信頼性のさらなる向上が求められている。
 このような状況下、有機電解液に代えて、無機固体電解質を用いた全固体二次電池が注目されている。全固体二次電池は負極、電解質及び正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。さらに、全固体二次電池は、電極と電解質を直接並べて直列に配した構造とすることができる。そのため、有機電解液を用いた二次電池に比べてエネルギーの高密度化が可能となるので、電気自動車や大型蓄電池等への応用が期待されている。
 上記のような各利点から、次世代のリチウムイオン電池として全固体二次電池の実用化に向けた研究開発が活発に進められており、全固体二次電池の電池性能向上のための技術が多数報告されるようになってきた。例えば、特許文献1には、防水層と弾性層とを有する全固体二次電池が記載されている。この全固体二次電池は、一定の高さから落下させてても破損しにくく、耐水性に優れるとされる。特許文献2には、全固体二次電池とこの全固体二次電池の温度を緩衝する温度緩衝手段としての被覆層とを備える電池システムが記載されている。この電池システムは、簡易な温度緩衝手段により出力特性を安定化し向上させることができるとされる。
特開2015-220099号公報 特開2010-212062号公報
 上述のように、全固体二次電池は、電気自動車等の車両にも搭載されることが期待されている。すなわち、実際に車両に搭載されたときに、走行中に、振動を継続して、又は繰り返して受けても、電圧を安定維持することができ、サイクル特性に優れることが求められる。
 特許文献1記載の全固体二次電池は、弾性層の弾性率が低すぎるため、振動を受け続けると電池性能が低下するおそれがある。他方、特許文献2記載の電池システムは、全固体二次電池の温度を制御することにより、出力特性を向上させており、電池が受ける振動による性能低下については記載がない。
 本発明は、放電容量密度が高く、電気自動車、電車等の車両に実際に搭載され走行して、大小の振動を受け続けても、電圧が低下しにくく、さらには、サイクル特性に優れる全固体二次電池を提供することを課題とする。また、本発明は、全固体二次電池の外装材層として用いることにより、放電容量密度が高く、上記のように車両に搭載され振動を受け続けても、電圧が低下しにくく、さらには、サイクル特性に優れる全固体二次電池を実現することができる全固体二次電池用外装材を提供することを課題とする。さらに、本発明は、上記全固体二次電池の製造方法を提供することを課題とする。
 本発明者らが種々検討した結果、上記の課題は以下の手段により解決された。
<1>
 正極活物質層と負極活物質層と固体電解質層とを具備し、外装材層で被覆された全固体二次電池であって、上記外装材層の少なくとも一部が、ガス透過係数40cc・20μm/m・24h・atm未満のゴム被覆層である、全固体二次電池。
<2>
 上記ゴム被覆層を構成するゴムの25℃における弾性率が、0.01~100MPaである、<1>に記載の全固体二次電池。
<3>
 上記外装材層の厚さが1~100,000μmである、<1>又は<2>に記載の全固体二次電池。
<4>
 側面の少なくとも一部が、上記ゴム被覆層により被覆された、<1>~<3>のいずれか1つに記載の全固体二次電池。
<5>
 上記ゴム被覆層を構成するゴムの25℃における引張強さが0.1~100MPaである、<1>~<4>のいずれか1つに記載の全固体二次電池。
<6>
 上記正極活物質層、上記固体電解質層及び上記負極活物質層の少なくとも1層(上記正極活物質層、上記固体電解質層及び/又は上記負極活物質層)に含まれる無機固体電解質が、硫化物系無機固体電解質である、<1>~<5>のいずれか1つに記載の全固体二次電池。
<7>
 ガス透過係数40cc・20μm/m・24h・atm未満のゴム被覆層を有する、全固体二次電池用外装材。
<8>
 全固体二次電池の製造方法であって、正極活物質層と負極活物質層と固体電解質層とを有する積層体とこの積層体の周囲に配置された外装材層との空間を減圧することにより、上記外装材層と上記積層体とを密着させた状態において、上記外装材層端部を接着させ、上記積層体を封止する工程を含む、<1>~<6>のいずれか1つに記載の全固体二次電池の製造方法。
 本発明の説明において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明の全固体二次電池は、放電容量密度が高く、実際の車両に搭載され大小の振動を受け続けても、電圧が低下しにくく、さらには、サイクル特性に優れる。また、本発明の全固体二次電池用外装材は、全固体二次電池の外装材層として用いることにより、放電容量密度が高く、車両に搭載され振動を受け続けても、電圧が低下しにくく、さらには、サイクル特性に優れる全固体二次電池を実現することができる。さらに、本発明の全固体二次電池の製造方法は、上記の優れた性能を有する全固体二次電池を製造することができる。
本発明の好ましい実施形態に係る全固体二次電池を模式化して示す縦断面図である。 本発明の好ましい実施形態に係る別の全固体二次電池を模式化して示す縦断面図である。
<全固体二次電池>
 本発明の全固体二次電池は、正極活物質層と負極活物質層と固体電解質層とを具備し、外装材層で被覆されている。上記外装材層の少なくとも一部は、ガス透過係数40cc・20μm/m・24h・atm未満のゴム被覆層である。
 以下、図1を参照して本発明の好ましい実施形態に係る全固体二次電池を例に挙げて説明する。なお、各図面に示される形態は、本発明の理解を容易にするための模式図であり、各部材のサイズないし相対的な大小関係等は説明の便宜上大小を変えている場合があり、実際の関係をそのまま示すものではない。また、本発明で規定する事項以外はこれらの図面に示された外形、形状に限定されるものでもない。
 図1は、本発明の好ましい実施形態に係る、略立方体の全固体二次電池(リチウムイオン二次電池)を模式化して示す断面図である。本実施形態の全固体二次電池100は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に有する全固体二次電池積層体10の側面全体と、全固体二次電池積層体10に接して設けられた集電端子6の一部とが、外装材層7で被覆されている。各層はそれぞれ接触しており、積層した構造をとっている。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、そこにリチウムイオン(Li)が蓄積される。一方、放電時には、負極に蓄積されたリチウムイオン(Li)が正極側に戻され、集電端子6を介して作動部位(図示せず)に電子が供給される。
 負極集電体1と負極活物質層2が形成する1つの側面と、その側面の上方の固体電解質層3の1つの側面と、その側面の上方の正極集電体5と正極活物質層4が形成する1つの側面を合わせて全固体二次電池積層体10の「1つの側面」とする。全固体二次電池積層体10はこの側面を4つ有する。すなわち、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、及び正極種電体5からなる積層体の積層方向の一側面が「1つの側面」であり、この積層体は略立方体であるため4つの側面を有している。また、集電端子6の、正極集電体5とは反対側の面(集電端子6を有しない場合、正極集電体5の、固体電解質層3とは反対側の面)を上面と称し、集電端子6の、負極集電体1とは反対側の面(集電端子6を有しない場合、負極集電体1の、固体電解質層3とは反対側の面)を下面と称する。
 本発明の全固体二次電池の形状は、本発明の効果を損なわない範囲において、図1に記載の全固体二次電池の形状に限定されるものではない。本発明の全固体二次電池が採り得る形状の具体例として、n角柱状(nは3~20の整数)、略n角柱状(nは3~20の整数)、円盤状等、通常の全固体二次電池の形状が挙げられる。
 n角柱状及び略n角柱状の全固体二次電池は、上記側面をn個有する。
 図2は、本発明の好ましい実施形態に係る、円盤状の全固体二次電池(コイン電池)を模式化して示す断面図である。円盤状であること以外は、上記図1の全固体二次電池と同じである。
 正極活物質層4、固体電解質層3、負極活物質層2の厚さは特に限定されない。なお、一般的な電池の寸法を考慮すると、10~1,000μmが好ましく、20μm以上500μm未満がより好ましい。本発明の全固体二次電池においては、正極活物質層4、固体電解質層3及び負極活物質層2の少なくとも1層の厚さが、50μm以上500μm未満であることがさらに好ましい。
 また、外装材層7の厚さは特に制限されないが、下限は、1μm以上が好ましく、5μm以上がより好ましく、10μm以上がさらに好ましく、50μm以上が特に好ましい。上限は、100,000μm以下が好ましく、50,000μm以下がより好ましく、20,000μm以下がさらに好ましく、5,000μm以下がさらに好ましく、200μm以下がさらに好ましい。また、ゴム被覆層の厚さは特に制限されないが、下限は、1μm以上が好ましく、5μm以上がより好ましく、10μm以上がさらに好ましく、50μm以上が特に好ましい。上限は、100,000μm以下が好ましく、50,000μm以下がより好ましく、20,000μm以下がさらに好ましく、5,000μm以下がさらに好ましく、200μm以下がさらに好ましい。
 外装材層7又はゴム被覆層の厚さが上記範囲内にあることにより、振動を受け続けても、電池への衝撃を効果的に抑えることができ、電池としての放電容量密度をより高く保つことができる。なお、「外装材層7の厚さ」又は「ゴム被覆層の厚さ」が、均一でない場合は平均値(算術平均値)を意味する。
 外装材層7の少なくとも一部は、ガス透過係数40cc・20μm/m・24h・atm未満のゴム被覆層である。ここで、「外装材層7の少なくとも一部は、ガス透過係数40cc・20μm/m・24h・atm未満のゴム被覆層である」とは、外装材層のいずれかの部分にゴム被覆層を有していることを意味する。ゴム被覆層を有する部分は、特に限定されないが、全固体二次電池積層体10を被覆した場合に、その積層体10の側面(正極活物質層、負極活物質層及び固体電解質層のうち2つの層の積層界面が現れる端面)、上面又は下面のいずれかを被覆する部分が好ましい。外装材層がゴム被覆層を有する態様は、特に限定されないが、外装材層の一部分をゴム被覆層で置き換える態様、外装材層を形成する複層のうち少なくとも一層をゴム被覆層とする態様、又はこれらを組み合わせた態様が挙げられる。
 全固体二次電池積層体の表面のうち、ゴム被覆層で被覆される部位は特に制限されないが、例えば、以下の形態が挙げられる。
(1)n個の側面を有する全固体二次電池積層体の、上面、下面及びn個の側面がゴム被覆層で被覆された形態
 円盤状の全固体二次電池積層体の、上面、下面及び側面がゴム被覆層で被覆された形態
 上記(1)は、全固体二次電池積層体の表面のすべてがゴム被覆層で被覆された形態である。
(2)n個の側面を有する全固体二次電池積層体及び円盤状の全固体二次電池積層体の、上面及び下面の少なくとも一方がゴム被覆層で被覆された形態
(3)n個の側面を有する全固体二次電池積層体の、n個の側面のうちの少なくとも1つの側面がゴム被覆層で被覆された形態(被覆される側面の数が多い程好ましい。)
 例えば、4つの側面を有する全固体二次電池積層体においては、1つの側面がゴム被覆層で被覆されていることが好ましく、2つの側面がゴム被覆層で被覆されていることがより好ましく、3つの側面がゴム被覆層で被覆されていることがさらに好ましく、4つの側面がゴム被覆層で被覆されていることが特に好ましい。5つの側面を有する全固体二次電池積層体においては、1つの側面がゴム被覆層で被覆されていることが好ましく、2つの側面がゴム被覆層で被覆されていることがより好ましく、3つの側面がゴム被覆層で被覆されていることがさらに好ましく、4つの側面がゴム被覆層で被覆されていることがさらに好ましく、5つの側面がゴム被覆層で被覆されていることが特に好ましい。6つの側面を有する全固体二次電池積層体においては、1つの側面がゴム被覆層で被覆されていることが好ましく、2つの側面がゴム被覆層で被覆されていることがより好ましく、3つの側面がゴム被覆層で被覆されていることがさらに好ましく、4つの側面がゴム被覆層で被覆されていることがさらに好ましく、5つの側面がゴム被覆層で被覆されていることがさらに好ましく、6つの側面がゴム被覆層で被覆されていることが特に好ましい。後述の(4)も同様である。
 円盤状の全固体二次電池積層体において、側面の少なくとも一部が積層方向全体に亘りゴム被覆層で被覆された形態(被覆される側面の面積が大きい程好ましい。)
 上記(3)において、n個の側面を有する全固体二次電池積層体および円盤状の全固体二次電池積層体において、側面の全面積のうち、10~100%がゴム被覆層で被覆されていることが好ましく、15~100%がゴム被覆層で被覆されていることがより好ましく、20~100%がゴム被覆層で被覆されていることがさらに好ましく、40~100%がゴム被覆層で被覆されていることがさらに好ましく、60~100%がゴム被覆層で被覆されていることがさらに好ましく、80~100%がゴム被覆層で被覆されていることがさらに好ましく、側面の全面積がゴム被覆層で被覆されていることが特に好ましい。
(4)n個の側面を有する全固体二次電池積層体において、n個の側面のうちの少なくとも1つの側面において、負極集電体及び正極集電体の側面はゴム被覆層で被覆されず、正極活物質層、固体電解質層及び負極活物質層の側面がゴム被覆層で被覆された形態(この形態でゴム被覆層により被覆される側面の数が多い程好ましい。)
 円盤状の全固体二次電池積層体において、側面のうちの少なくとも一部において、負極集電体及び正極集電体の側面はゴム被覆層で被覆されず、正極活物質層、固体電解質層及び負極活物質層の側面がゴム被覆層で被覆された形態(この形態でゴム被覆層により被覆される側面の面積が大きい程好ましい。)
 上記(4)において、n個の側面を有する全固体二次電池積層体および円盤状の全固体二次電池積層体において、負極集電体及び正極集電体の側面を除く側面の全面積のうち、10~100%がゴム被覆層で被覆されていることが好ましく、15~100%がゴム被覆層で被覆されていることがより好ましく、20~100%がゴム被覆層で被覆されていることがさらに好ましく、40~100%がゴム被覆層で被覆されていることがさらに好ましく、60~100%がゴム被覆層で被覆されていることがさらに好ましく、80~100%がゴム被覆層で被覆されていることがさらに好ましく、負極集電体及び正極集電体の側面を除く側面の全面積がゴム被覆層で被覆されていることが特に好ましい。
(5)n個の側面を有する全固体二次電池及び円盤状の全固体二次電池において、上面または下面と側面がゴム被覆層で被覆された形態
 上記(1)~(5)の形態において、ゴム被覆層が振動を吸収するように用いられることが好ましい。すわなち、例えば、振動が部材を介して伝わる場合、この部材とゴム被覆層が接していることが好ましい。
 上記形態のうち、(1)、(3)及び(4)が特に好ましい。負極活物質層2、固体電解質層3及び正極活物質層4のうち2つの層で形成される積層界面からのガスの侵入を効果的に防止して、ガスの接触による性能低下、すなわち、電圧及びサイクル特性の低下を抑制することができるからである。
 積層界面からのガスの侵入抑制の観点からは、本発明の全固体二次電池は、全固体二次電池積層体の側面のうち、少なくとも、負極集電体及び正極集電体の側面を除いた部分のすべてがゴム被覆層で被覆されていることが好ましい。
 本発明の全固体二次電池において、外装材層は、そのすべてがゴム被覆層であることも好ましい。
(外装材層)
 上述のように、外装材層7の一部は、ゴム被覆層からなる。以下、ゴム被覆層及びゴム被覆層を構成するゴムについて記載する。
 本発明に用いられるゴムのガス透過係数は、40cc・20μm/m・24h・atm未満である。ガス透過係数の下限は特に制限されないが、0.1cc・20μm/m・24h・atm以上が実際的である。ガス透過係数は、実施例に記載の測定方法により求められる値である。
 ゴム被覆層は、本発明の効果を損なわない範囲内でゴム以外の成分を含んでもよい。ゴム被覆層中、ゴムの含有量は、20質量%以上が好ましく、50質量%以上がより好ましく、100質量%でもよい。
 本発明に用いられるゴムの25℃における弾性率は、0.01~100MPaであることが好ましく、0.05~80MPaであることがより好ましく、0.1~50MPaであることがさらに好ましく、0.5~5MPaであることが特に好ましい。本発明に用いられるゴムの弾性率は、実施例に記載の測定方法により求められる値である。
 振動を受け続けても、ゴム被覆層が破損することなく、電池への衝撃を抑えることができるため、本発明に用いられるゴムの25℃における引張強さが0.1~100MPaであることが好ましく、0.5~80MPaであることがより好ましく、1~50MPaであることが特に好ましい。本発明に用いられるゴムの引張強さは、実施例に記載の測定方法により求められる値である。
 本発明に用いられるゴムとして、イソプレンゴム、ブタジエンゴム、スチレン・ブタジエンゴム、ブチルゴム、塩素化ブチルゴム、ニトリルゴム、ニトリル・ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、クロロプレンゴム、アルキルゴム、クロロスルホン化ポリエチレンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、エチレン・酢酸ビニルゴム、エピクロルヒドリンゴム及び多硫化ゴム等のうち少なくともガス透過係数が、40cc・20μm/m・24h・atm未満のものを用いることができる。本発明ではブチルゴムを用いることが好ましい。
 上記ゴムを母材として、各種フィラーなどを用いて複合化することにより、ガス透過係数を40cc・20μm/m・24h・atm未満としたものを用いることもできる。
 本発明に用いられるゴムは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 外装材層7は、単層でも複層でもよい。また、外装材層7は全固体二次電池積層体10及び集電体6の少なくとも一方に接してもよく、接着層を介して全固体二次電池積層体10及び集電体6の少なくとも一方を被覆してもよい。
 外装材層7のゴム被覆層以外を構成する成分は特に制限されず、例えば、ステンレス鋼などの各種金属類、PETフィルムなどの各種プラスチックシートおよびアルミ蒸着層を有するPETフイルムなどの複合シートが挙げられる。
 また、被覆の形態も図1に示した形態に限定されるものではなく、例えば、全固体二次電池積層体と集電端子とをステンレス鋼管と、上記ゴム被覆層を形成するゴムからなるゴム栓とを組み合わせて外装材層とする形態も本発明の全固体二次電池に含まれる。
 本発明の全固体二次電池用外装材は、上記ゴム被覆層を有し、その形状は特に制限されない。形状として例えば、シート、立方体及び直方体等が挙げられる。
<全固体二次電池の製造方法>
 本発明の全固体二次電池の製造方法は特に制限されない。以下、本発明の全固体二次電池の製造方法の好ましい形態について説明する。
-全固体二次電池積層体10の作製-
 全固体二次電池積層体10は、全固体二次電池積層体として一般的に用いられているものを広く用いることができ、常法により作製することができる。
-全固体二次電池積層体10の封止-
 全固体二次電池積層体10を、接着層を有する2つの外層材料(例えば、ゴムシート)により上面側および下面側から挟み込み、この積層体の外部環境圧力を減圧する。減圧した状態でゴムシート端部の接着層同士を接着させることによりゴムシートを接着させ、封止する。
 具体的には、例えば、接着層を有するゴムシートの接着剤層を負極側の集電端子6の一部と負極集電体1に接触させる。他方、接着層を有する別のゴムシートを正極側の集電端子6の一部と正極集電体5に接触させる。このようにして、全固体二次電池積層体10を挟み込む。挟み込んだ状態で負極と正極の両側から圧力を加えた状態で、集電体と重ならない側面側から減圧し、接着層同士が重なったゴムシートを接着することにより全固体二次電池積層体10を封止することができる。
 図1に示す形状以外の形状を有する全固体二次電池も同様にして作製することができる。
(全固体二次電池積層体の構成成分)
 負極活物質層2は少なくとも無機固体電解質と負極活物質とを含み、バインダーを含んでもよい。固体電解質層3は少なくとも無機固体電解質を含み、バインダーを含んでもよい。正極活物質層4は少なくとも無機固体電解質と正極活物質とを含み、バインダーを含を含んでもよい。
(無機固体電解質)
 無機固体電解質とは、無機の固体電解質のことであり、固体電解質とは、その内部においてイオンを移動させることができる固体状の電解質のことである。主たるイオン伝導性材料として有機物を含むものではないことから、有機固体電解質(ポリエチレンオキシド(PEO)などに代表される高分子電解質、リチウムビス(トリフルオロメタンスルホニル)イミド(LiTFSI)などに代表される有機電解質塩)とは明確に区別される。また、無機固体電解質は定常状態では固体であるため、通常カチオン及びアニオンに解離又は遊離していない。この点で、電解液やポリマー中でカチオン及びアニオンが解離又は遊離している無機電解質塩(LiPF、LiBF、LiFSI、LiClなど)とも明確に区別される。無機固体電解質は周期律表第1族又は第2族に属する金属のイオンの伝導性を有するものであれば特に限定されず電子伝導性を有さないものが一般的である。
 本発明において、無機固体電解質は、周期律表第1族又は第2族に属する金属のイオン伝導性を有する。上記無機固体電解質は、この種の製品に適用される固体電解質材料を適宜選定して用いることができる。無機固体電解質は(i)硫化物系無機固体電解質と(ii)酸化物系無機固体電解質が代表例として挙げられる。本発明において、活物質と無機固体電解質との間により良好な界面を形成することができるため、硫化物系無機固体電解質が好ましく用いられる。
(i)硫化物系無機固体電解質
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族又は第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。硫化物系無機固体電解質は、元素として少なくともLi、S及びPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的又は場合に応じて、Li、S及びP以外の他の元素を含んでもよい。
 例えば下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、Na及びKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1はさらに、1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1はさらに、2.5~10が好ましく、3.0~8.5がより好ましい。e1はさらに、0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラス及びLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。たとえばLiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法及び溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
(ii)酸化物系無機固体電解質
 酸化物系無機固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族又は第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
 具体的な化合物例としては、例えばLixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl、Mg、Ca、Sr、V、Nb、Ta、Ti、Ge、In、Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC、S、Al、Si、Ga、Ge、In、Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦1、0≦zd≦2、0≦ad≦1、1≦md≦7、3≦nd≦13)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子又は2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。またLi、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
 無機固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、無機固体電解質粒子の平均粒子径の測定は、以下の手順で行う。無機固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
 無機固体電解質の負極活物質層2、固体電解質層3又は正極活物質層4中の含有量は、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮したとき、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.5質量%以下であることがより好ましく、99質量%以下であることが特に好ましい。
 ただし、負極活物質層2及び正極活物質層4中の無機固体電解質の含有量は、活物質と無機固体電解質との合計含有量が上記範囲であることが好ましい。
 上記無機固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(活物質)
 活物質としては、正極活物質及び負極活物質が挙げられ、正極活物質である遷移金属酸化物および含硫黄化合物又は、負極活物質であるチタン酸リチウム、黒鉛、リチウム金属およびリチウムと合金化可能な化合物が好ましい。
 -正極活物質-
 正極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも、正極活物質としては、遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、Cu及びVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、P又はBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物及び(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNiO(ニッケル酸リチウム)LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])及びLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO4、LiFeMn、LiCuMn、LiCrMn及びLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePO(リン酸鉄リチウム[LFP])及びLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類ならびにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩及びLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiO及びLiCoSiO等が挙げられる。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 正極活物質の、正極活物質層4中における含有量は、特に限定されず、10~99質量%が好ましく、30~98質量%がより好ましく、50~97質量がさらに好ましく、55~95質量%が特に好ましい。
 -負極活物質-
 負極活物質は、可逆的にリチウムイオンを挿入及び放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体及びリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、Al及びIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵及び放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及びリチウムの少なくとも1つを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維及び活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、Sb及びBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、Sb及びSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛及びアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の平均粒子径は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル及び旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式及び湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質の、負極活物質層2中における含有量は、特に限定されず、10~100質量%であることが好ましく、20~100質量%がより好ましい。
 正極活物質及び負極活物質の表面は別の金属酸化物で表面被覆されていてもよい。表面被覆剤としてはTi,Nb、Ta、W、Zr、Al、Si又はLiを含有する金属酸化物等が挙げられる。具体的には、チタン酸スピネル、タンタル系酸化物、ニオブ系酸化物、ニオブ酸リチウム系化合物等が挙げられ、具体的には、LiTi12、LiTi、LiTaO、LiNbO、LiAlO、LiZrO、LiWO、LiTiO、Li、LiPO、LiMoO、LiBO、LiBO、LiCO、LiSiO、SiO、TiO、ZrO、Al、B等が挙げられる。
 また、正極活物質又は負極活物質を含む電極表面は硫黄又はリンで表面処理されていてもよい。
 さらに、正極活物質又は負極活物質の粒子表面は、上記表面被覆の前後において活性光線又は活性気体(プラズマ等)により表面処理を施されていても良い。
(バインダー(D))
 負極活物質層2、固体電解質層3及び正極活物質層4はバインダーを含有してもよく、好ましくはポリマー粒子を含有してもよい。
 本発明で使用するバインダーは、有機ポリマーであれば特に限定されない。
 本発明に用いることができるバインダーは、特に制限はなく、例えば、以下に述べる樹脂からなるバインダーが好ましい。
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリルブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
 アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、及びこれら樹脂を構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。
 また、そのほかのビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本願明細書において、コポリマーは、統計コポリマー及び周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
 その他の樹脂としては例えばポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等が挙げられる。
 その中でも含フッ素樹脂、炭化水素系熱可塑性樹脂、アクリル樹脂、ポリウレタン樹脂、ポリカーボネート樹脂及びセルロース誘導体樹脂が好ましく、無機固体電解質との親和性が良好であり、また、樹脂自体の柔軟性が良好なため、アクリル樹脂及びポリウレタン樹脂が特に好ましい。
 これらは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 バインダーの形状は特に限定されず、全固体二次電池中において粒子状であっても不定形状であってもよく、粒子状であることが好ましい。
 なお、本発明に用いられるバインダーは市販品を用いることができる。また、常法により調製することもできる。
 本発明に用いられるバインダーの水分濃度は、100ppm(質量基準)以下が好ましい。
 また、本発明に用いられるバインダーは、固体の状態で使用しても良いし、ポリマー粒子分散液又はポリマー溶液の状態で用いてもよい。
 本発明に用いられるバインダーの質量平均分子量は5,000以上が好ましく、10,000以上がより好ましく、30,000以上がさらに好ましい。上限としては、1,000,000以下が実質的であるが、この範囲の質量平均分子量を有するバインダーが架橋された態様も好ましい。
-分子量の測定-
 本発明においてバインダーの分子量については、特に断らない限り、質量平均分子量をいい、ゲルパーミエーションクロマトグラフィー(GPC)によって標準ポリスチレン換算の質量平均分子量を計測する。測定法としては、下記条件の方法により測定した値とする。ただし、バインダー種によっては適宜適切な溶離液を選定して用いればよい。
(条件)
  カラム:TOSOH TSKgel Super HZM-H(商品名)、TOSOH TSKgel Super HZ4000(商品名)、TOSOH TSKgel Super HZ2000(商品名)をつないだカラムを用いる。
  キャリア:テトラヒドロフラン
  測定温度:40℃
  キャリア流量:1.0mL/min
  試料濃度:0.1質量%
  検出器:RI(屈折率)検出器
 バインダーの負極活物質層2、固体電解質層3又は正極活物質層4中での含有量は、全固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮すると、0.01質量%以上が好ましく、0.1質量%以上がより好ましく、1質量%以上がさらに好ましい。上限としては、電池特性の観点から、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。
 本発明の全固体二次電池を構成する各層は、本発明の効果を損なわない範囲内で、導電助剤、分散剤及びリチウム塩を含んでもよい。
-集電体(金属箔)-
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本発明において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウム及びアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケル及びチタンなどの他に、アルミニウム、銅、銅合金又はステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金及びステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明において、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4及び正極集電体5の各層の間には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
 1つの全固体二次電池積層体10を外装材層で被覆した全固体二次電池について説明したが、本発明の全固体二次電池はこれに限定されず、例えば、複数の全固体二次電池積層体10を外装材層で一体的に被覆したものも包含する。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車(電気自動車等)、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。これらの中でも使用時に全固体二次電池に大きな振動がかかる、自動車、電動車両、モーター、時計、カメラ、医療機器、及び携帯電話に用いられることが好ましく、自動車、電動車両、医療機器及び携帯電話に用いられることがより好ましい。
 全固体二次電池とは、正極、負極、電解質がともに固体で構成された二次電池を言う。換言すれば、電解質としてカーボネート系の溶媒を用いるような電解液型の二次電池とは区別される。このなかで、本発明は無機全固体二次電池を前提とする。全固体二次電池には、電解質としてポリエチレンオキサイド等の高分子化合物を用いる有機(高分子)全固体二次電池と、上記のLi-P-S系ガラス、LLT及びLLZ等を用いる無機全固体二次電池とに区分される。なお、無機全固体二次電池に有機化合物を適用することは妨げられず、正極活物質、負極活物質、無機固体電解質のバインダーや添加剤として有機化合物を適用することができる。
 無機固体電解質とは、上述した高分子化合物をイオン伝導媒体とする電解質(高分子電解質)とは区別されるものであり、無機化合物がイオン伝導媒体となるものである。具体例としては、上記のLi-P-S系ガラス、LLT及びLLZが挙げられる。無機固体電解質は、それ自体が陽イオン(Liイオン)を放出するものではなく、イオンの輸送機能を示すものである。これに対して、電解液ないし固体電解質層に添加して陽イオン(Liイオン)を放出するイオンの供給源となる材料を電解質と呼ぶことがある。上記のイオン輸送材料としての電解質と区別する際には、これを「電解質塩」又は「支持電解質」と呼ぶ。電解質塩としては、例えばLiTFSIが挙げられる。
 本発明において「組成物」というときには、2種以上の成分が均一に混合された混合物を意味する。ただし、実質的に均一性が維持されていればよく、所望の効果を奏する範囲で、一部において凝集や偏在が生じていてもよい。
 以下に、実施例に基づき本発明についてさらに詳細に説明する。なお、本発明がこれにより限定して解釈されるものではない。以下の実施例において組成を表す「部」及び「%」は、特に断らない限り質量基準である。また、「室温」は25℃を意味する。
-硫化物系無機固体電解質(Li-P-S系ガラス)の合成-
 硫化物系無機固体電解質は、T.Ohtomo,A.Hayashi,M.Tatsumisago,Y.Tsuchida,S.Hama,K.Kawamoto,Journal of Power Sources,233,(2013),pp231-235及びA.Hayashi,S.Hama,H.Morimoto,M.Tatsumisago,T.Minami,Chem.Lett.,(2001),pp872-873の非特許文献を参考にして合成した。
 具体的には、アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入し、メノウ製乳鉢を用いて、5分間混合した。なお、LiS及びPはモル比でLiS:P=75:25とした。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記硫化リチウムと五硫化二リンの混合物全量を投入し、アルゴン雰囲気下で容器を密閉した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数510rpmで20時間メカニカルミリングを行い、黄色粉体の硫化物系無機固体電解質(Li-P-S系ガラス)6.20gを得た。
-正極用組成物(P-1)の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス3.0g、分散媒体としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7(商品名)に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてLCO(LiCoO、日本化学工業社製)7.0gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数100rpmで10分間混合を続け、正極用組成物(P-1)を調製した。
 下記表1に記載の組成に変えた以外は正極用組成物(P-1)と同様にして、下記表1に記載の正極用組成物を調製した。
Figure JPOXMLDOC01-appb-T000001
<表の注>
Li-P-S:上記で合成したLi-P-S系ガラス
LLZ:LiLaZr12(豊島製作所製)
LLT:Li0.33La0.55TiO(豊島製作所製)
LCO:LiCoO(日本化学工業製)
NMC:LiNi0.33Co0.33Mn0.33(アルドリッチ社製)
PVdF-HFP:(ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ社製、商品名「KYNAR FLEX 2500-20」)
UF-20S:商品名、フローセンUF-20S(住友精化社製、ポリエチレン粉末、平均粒子径20μm)
-負極用組成物(N-1)の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス4.0g、分散媒体としてヘプタン12.3gを投入した。フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間混合した。その後、活物質としてCGB20(商品名、日本黒鉛社製)6.0gを容器に投入し、同様に、遊星ボールミルP-7に容器をセットし、温度25℃、回転数200rpmで15分間混合を続け負極用組成物(N-1)を調製した。
 下記表2に記載の組成に変えた以外は負極用組成物(N-1)と同様にして、下記表2に記載の負極用組成物を調製した。
Figure JPOXMLDOC01-appb-T000002
<表の注>
Li-P-S:上記で合成したLi-P-S系ガラス
LLZ:LiLaZr12(豊島製作所製)
LLT:Li0.33La0.55TiO(豊島製作所製)
CGB20:商品名、日本黒鉛社製負極活物質 体積平均粒子径20μm
Sn:アルドリッチ社製 体積平均粒子径10μm
PVdF-HFP:(ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ社製、商品名「KYNAR FLEX 2500-20」)
UF-20S:商品名、フローセンUF-20S(住友精化社製、ポリエチレン粉末、平均粒子径20μm)
-固体電解質組成物(E-1)の調製-
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを180個投入し、上記で合成したLi-P-S系ガラス10.0g、分散媒体としてヘプタン15.0gを投入した。その後、フリッチュ社製遊星ボールミルP-7に容器をセットし、温度25℃、回転数300rpmで2時間攪拌を続け、固体電解質組成物(E-1)を調製した。
 無機固体電解質、バインダー及び分散媒体を下記表3に記載の構成に変えた以外は固体電解質組成物(E-1)と同様にして、下記表3に記載の固体電解質組成物を調製した。
Figure JPOXMLDOC01-appb-T000003
<表の注>
Li-P-S:上記で合成したLi-P-S系ガラス
LLZ:LiLaZr12(豊島製作所製)
LLT:Li0.33La0.55TiO(豊島製作所製)
PVdF-HFP:(ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体(アルケマ社製、商品名「KYNAR FLEX 2500-20」)
UF-20S:商品名、フローセンUF-20S(住友精化社製、ポリエチレン粉末、平均粒子径20μm)
 -全固体二次電池用負極シートの作製-
 上記で調製した負極用組成物(N-1)を、厚み20μmの銅箔上に、アプリケーター(商品名:SA-201ベーカー式アプリケータ、テスター産業社製)により塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧し(20MPa、1分間)、負極活物質層/銅箔の積層構造を有する全固体二次電池用負極シートを作製した。
 上記で作製した負極活物質層上に、上記で調製した固体電解質組成物(E-1)を、アプリケーターにより塗布し、80℃で1時間加熱後、さらに110℃で6時間乾燥させた。負極活物質層上に固体電解質層を形成したシートをヒートプレス機を用いて、加熱(120℃)しながら加圧(30MPa、1分間)し、固体電解質層/負極活物質層/銅箔の積層構造を有する全固体二次電池用負極シートを作製した。
-全固体二次電池用正極シートの作製-
 上記で調製した正極用組成物(P-1)を、厚み20μmのアルミ箔上に、アプリケーターにより塗布し、80℃で1時間加熱後、さらに110℃で1時間乾燥させた。その後、ヒートプレス機を用いて、加熱(120℃)しながら加圧(20MPa、1分間)し、正極活物質層/アルミ箔の積層構造を有する全固体二次電池用正極シートを作製した。
-全固体二次電池用積層体(L-1)の作製-
 上記で作製した負極活物質層上に固体電解質層を有する全固体二次電池用負極シートを一辺22mm角の正方形状に切り出した。他方、上記で作製した全固体二次電池用正極シートを一辺20mm角の正方形状に切り出した。全固体二次電池用正極シートの正極活物質層と固体電解質層が向かい合うように配置した後に、ヒートプレス機を用いて、加熱(120℃)しながら加圧(40MPa、1分間)し、アルミ箔/正極活物質層/固体電解質層/負極活物質層/銅箔の積層構造を有する全固体二次電池用積層体(L-1)を作製した。
 下記表4に記載の層構成に変えたこと以外は、全固体二次電池用積層体(L-1)と同様にして、下記表4に記載の全固体二次電池用積層体を作製した。
Figure JPOXMLDOC01-appb-T000004
-試験No.101の全固体二次電池の製造-
 上記で作製した全固体二次電池用積層体(L-1)の銅箔及びアルミ箔の組成物未塗布部(電極活物質層が形成されていない面)に接する厚み100μm、幅5mm、長さ20mmの、正極用集電端子及び負極用集電端子を配置した。正極用集電端子はアルミ製、負極用集電端子はニッケル製を用いた。外装材層として、片面にポリエチレン製熱融着層を有する厚み1mm、一辺が30mm角の正方形状のブチルゴムシート2枚を用いて、全固体二次電池用積層体L-1を挟んだ状態で、積層体L-1を加圧(20MPa)しながら、周辺環境圧力を減圧し、ブチルゴムシートの余剰分のポリエチレン製熱融着層同士を接着させることにより、4つの側面を封止した。このようにして、図1に示す構成を有する、試験No.101の全固体二次電池を得た。試験No.101の全固体二次電池の集電端子は外装材層の熱融着層を介して、密封を保ち、電池との導通が確保できる。
 試験No.101の全固体二次電池と同様にして、下記表5に記載の試験No.102~118及びc01~c04の全固体二次電池を製造した。
Figure JPOXMLDOC01-appb-T000005
<表の注>
ブレンドゴムシートA:SBRシートにニトリルゴムを20質量%ブレンドしたもの。
アルミラミネートシート:アルミニウムシートとポリエチレンテレフタレートシートとのラミネートフィルム(アルミラミネートシートの厚さ:アルミニウムシートとポリエチレンテレフタレートシートの厚さ=30:70)、ポリエチレン製熱融着層をアルミニウムシート上に有する。またそれぞれシート界面には、接着剤層を有する。
SBR:スチレン・ブタジエンゴム
<ガス透過係数>
 ガス透過係数の測定はJIS K 6275-1(2009)に準拠して測定した。ガス透過係数の単位:cc・20μm/(m・24h・atm)は、測定するシートが20μm厚みの場合に、シート面積1m、気圧1 atm下で、24時間当たりに透過する気体の量を示す。窒素ガスを測定対象として、25℃で測定を行った。
<弾性率>
 JIS K 6251-1993に準拠した条件で測定した。すなわち、ダンベル状試験片のうち,3号形試験片を用いて、該試験片を引張試験機にセットし、25℃の環境温度下で引張速度500mm/分で試験し、引張応力と引張歪み、及び試験片の断面積から算出した。
<引張強さ>
 JIS K 6251-1993に準拠した条件で測定した。すなわち、ダンベル状試験片のうち,3号形試験片を用いて、該試験片を引張試験機にセットし、25℃の環境温度下で引張速度500mm/分で試験し、試験片の切断に至るまでの最大引張力を読み取り、引張強さとした。
-放電容量密度の測定-
 上記で製造した全固体二次電池を、東洋システム社製の充放電評価装置「TOSCAT-3000」(商品名)により測定した。全固体二次電池を電池電圧が4.2Vになるまで電流値0.2mAで充電した後、電池電圧が3.0Vになるまで電流値0.2mAで放電した。この充放電を1サイクルとした。このサイクルを繰り返し、3サイクル目の放電容量を全固体二次電池の放電容量とした。この放電容量を、外装材層を含む電池の質量で割った値を放電容量密度とした。なお、放電容量密度5Wh/kg以上が本試験の合格レベルである。
-振動試験後の電圧-
 上記で製造した全固体二次電池を、東洋システム社製の充放電評価装置「TOSCAT-3000」(商品名)により測定した。全固体二次電池を電池電圧が4.2Vになるまで電流値0.2mAで充電した。充電後の全固体二次電池を電極積層面と平行になるように振動試験機にセットし、自動車部品振動試験方法であるJIS-D-1601に準拠した条件で、振動試験を実施した。すなわち、5.3 振動耐久試験において、段階30、振動数33Hz、振動加速度30m/sの条件で振動試験を実施した後、全固体二次電池の電圧を測定し、下記評価基準により振動試験後の電圧を評価した。なお、評価C以上が本試験の合格レベルである。
(評価基準)
A:4.0V以上
B:3.9V以上4.0V未満
C:3.8V以上3.9V未満
D:3.7V以上3.8V未満
E:3.7V未満
-振動試験後のサイクル特性の評価-
 上記で実施した振動試験後の全固体二次電池のサイクル特性を、東洋システム社製の充放電評価装置「TOSCAT-3000」(商品名)により測定した。電池電圧が4.2Vになるまで電流値0.2mAで充電した後、電池電圧が3.0Vになるまで電流値0.2mAで放電した。この充放電を1サイクルとした。3サイクル目の放電容量の80%未満の放電容量となるまでこのサイクルを繰り返した。3サイクル目の放電容量の80%以上の放電容量を維持したサイクル数から、下記評価基準に従ってサイクル特性を評価した。なお、サイクル特性C以上が本試験の合格レベルである。
(評価基準)
A:50回以上
B:40回以上50回未満
C:30回以上40回未満
D:10回以上30回未満
E:10回未満
Figure JPOXMLDOC01-appb-T000006
 表6から明らかなように、本発明に規定する外装材層を有さない試験No.c01~c04の全固体二次電池は、振動試験後の電池電圧の低下とサイクル特性がいずれも不合格であった。なお、試験No.c03は、ガス透過係数が高く、電池の外部環境の水蒸気を含む気体が電池内部に侵入したことにより、電池材料が劣化したため、放電容量密度が不合格であったと考えられる。
 これに対して、No.101~118の本発明の全固体二次電池は、振動試験後の電池電圧の低下とサイクル特性がいずれも合格であった。
 また、試験No.102と104との比較から、硫化物系無機固体電解質を用いた本発明の全固体二次電池は、ガスとの接触、とりわけ活物質と硫化物系無機固体電解質との界面から侵入するガスとの接触を防止でき、さらに、実走行を想定した振動試験後の電池電圧の低下とサイクル特性の低下を、酸化物系無機固体電解質を用いた本発明の全固体二次電池と同程度に抑制できたことがわかる。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2017年9月13日に日本国で特許出願された特願2017-175610に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 負極集電体
2 負極活物質層
3 固体電解質層
4 正極活物質層
5 正極集電体
6 集電端子
7 外装材層
10 全固体二次電池積層体
100 全固体二次電池

Claims (8)

  1.  正極活物質層と負極活物質層と固体電解質層とを具備し、外装材層で被覆された全固体二次電池であって、前記外装材層の少なくとも一部が、ガス透過係数40cc・20μm/m・24h・atm未満のゴム被覆層である、全固体二次電池。
  2.  前記ゴム被覆層を構成するゴムの25℃における弾性率が、0.01~100MPaである、請求項1に記載の全固体二次電池。
  3.  前記外装材層の厚さが1~100,000μmである、請求項1又は2に記載の全固体二次電池。
  4.  側面の少なくとも一部が、前記ゴム被覆層により被覆された、請求項1~3のいずれか1項に記載の全固体二次電池。
  5.  前記ゴム被覆層を構成するゴムの25℃における引張強さが0.1~100MPaである、請求項1~4のいずれか1項に記載の全固体二次電池。
  6.  前記正極活物質層、前記固体電解質層及び前記負極活物質層の少なくとも1層に含まれる無機固体電解質が、硫化物系無機固体電解質である、請求項1~5のいずれか1項に記載の全固体二次電池。
  7.  ガス透過係数40cc・20μm/m・24h・atm未満のゴム被覆層を有する、全固体二次電池用外装材。
  8.  全固体二次電池の製造方法であって、正極活物質層と負極活物質層と固体電解質層とを有する積層体と該積層体の周囲に配置された外装材層との空間を減圧することにより、前記外装材層と前記積層体とを密着させた状態において、前記外装材層端部を接着させ、全固体二次電池全体を封止する工程を含む、請求項1~6のいずれか1項に記載の全固体二次電池の製造方法。
PCT/JP2018/032030 2017-09-13 2018-08-29 全固体二次電池、全固体二次電池用外装材及び全固体二次電池の製造方法 WO2019054184A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880058829.3A CN111095660A (zh) 2017-09-13 2018-08-29 全固态二次电池、全固态二次电池用外装材料及全固态二次电池的制造方法
EP18856988.3A EP3683884B1 (en) 2017-09-13 2018-08-29 All-solid secondary cell, outer cladding material for all-solid secondary cell, and method for manufacturing said all-solid secondary cell
KR1020207006729A KR20200039730A (ko) 2017-09-13 2018-08-29 전고체 이차전지, 전고체 이차전지용 외장재 및 전고체 이차전지의 제조 방법
JP2019541982A JP6860681B2 (ja) 2017-09-13 2018-08-29 全固体二次電池、全固体二次電池用外装材及び全固体二次電池の製造方法
US16/813,746 US11670796B2 (en) 2017-09-13 2020-03-10 All-solid state secondary battery, exterior material for all-solid state secondary battery, and method for manufacturing all-solid state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017175610 2017-09-13
JP2017-175610 2017-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/813,746 Continuation US11670796B2 (en) 2017-09-13 2020-03-10 All-solid state secondary battery, exterior material for all-solid state secondary battery, and method for manufacturing all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2019054184A1 true WO2019054184A1 (ja) 2019-03-21

Family

ID=65722820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032030 WO2019054184A1 (ja) 2017-09-13 2018-08-29 全固体二次電池、全固体二次電池用外装材及び全固体二次電池の製造方法

Country Status (6)

Country Link
US (1) US11670796B2 (ja)
EP (1) EP3683884B1 (ja)
JP (1) JP6860681B2 (ja)
KR (1) KR20200039730A (ja)
CN (1) CN111095660A (ja)
WO (1) WO2019054184A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020195310A1 (ja) * 2019-03-26 2020-10-01
JPWO2021039950A1 (ja) * 2019-08-30 2021-03-04
WO2021105433A1 (fr) * 2019-11-29 2021-06-03 Saft Élément électrochimique, ainsi que modules et batteries le contenant
WO2022172613A1 (ja) * 2021-02-12 2022-08-18 パナソニックIpマネジメント株式会社 電池、電池システムおよび電池の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220072229A1 (en) * 2019-01-14 2022-03-10 Ocella Inc. Electronic wearable patch for medical uses
EP4213270A1 (en) * 2021-09-28 2023-07-19 LG Energy Solution, Ltd. Electrode assembly for secondary battery, and secondary battery comprising same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460953A (en) * 1987-08-31 1989-03-08 Matsushita Electric Ind Co Ltd Solid electrolyte battery
JP2000173564A (ja) * 1998-12-03 2000-06-23 Tokai Rubber Ind Ltd 薄型電池用袋体
JP2004199994A (ja) * 2002-12-18 2004-07-15 Toshiba Corp 電池
JP2006351326A (ja) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd 固体電池
JP2008192377A (ja) * 2007-02-01 2008-08-21 Toyota Motor Corp 蓄電装置
JP2010212062A (ja) 2009-03-10 2010-09-24 Ngk Insulators Ltd 電池システム
JP2015103370A (ja) * 2013-11-25 2015-06-04 積水化学工業株式会社 リチウムイオン二次電池及びその製造方法
JP2015220099A (ja) 2014-05-19 2015-12-07 Tdk株式会社 全固体リチウムイオン二次電池
JP2015220106A (ja) * 2014-05-19 2015-12-07 Tdk株式会社 全固体リチウムイオン二次電池
JP2017175610A (ja) 2017-03-02 2017-09-28 日本電気株式会社 光伝送装置、光伝送システム及び光通信方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3831939B2 (ja) * 2001-11-12 2006-10-11 ソニー株式会社 電池
JP4379467B2 (ja) * 2006-12-11 2009-12-09 日産自動車株式会社 電池モジュール
JP2008204754A (ja) 2007-02-20 2008-09-04 Toyota Motor Corp 密閉型電池及びその製造方法
JP5084617B2 (ja) 2007-06-15 2012-11-28 国立大学法人東北大学 低締付金属ガスケット
WO2009119628A1 (ja) * 2008-03-26 2009-10-01 帝人株式会社 固体高分子型燃料電池の電解質膜補強用フィルム
KR101304870B1 (ko) 2010-12-02 2013-09-06 주식회사 엘지화학 전지셀의 제조방법 및 이를 이용하여 생산되는 전지셀
JP5610057B2 (ja) * 2011-02-24 2014-10-22 トヨタ自動車株式会社 固体電池
US8852816B2 (en) * 2011-03-15 2014-10-07 Ohara Inc. All-solid secondary battery
WO2013019203A1 (en) * 2011-08-01 2013-02-07 Ingersoll-Rand Company Multi cell carriers
JP5838323B2 (ja) * 2011-08-29 2016-01-06 パナソニックIpマネジメント株式会社 電池包装体
US20120135292A1 (en) * 2011-10-31 2012-05-31 Sakti3, Inc. Conformal solid state package method and device for a battery device
CN102683741A (zh) * 2012-06-07 2012-09-19 东莞新能德科技有限公司 一种锂离子电池
WO2014034076A1 (ja) * 2012-08-29 2014-03-06 三洋電機株式会社 固体電解コンデンサ
CN103254633B (zh) * 2013-05-30 2016-05-18 刘继福 锂离子聚合物电池外膜用尼龙薄膜复合材料
ES2725901T3 (es) * 2013-08-30 2019-09-30 Gogoro Inc Dispositivo portátil de almacenamiento de energía eléctrica
KR102035375B1 (ko) 2013-10-15 2019-10-22 가부시키가이샤 무라타 세이사쿠쇼 전지, 전지 팩, 전자 기기, 전동 차량, 축전 장치 및 전력 시스템
CN203690420U (zh) * 2014-01-23 2014-07-02 东莞新能源科技有限公司 锂离子电池
DE102014207531A1 (de) 2014-04-22 2015-10-22 Bayerische Motoren Werke Aktiengesellschaft Galvanisches Element mit Festkörperzellenstapel
CN105355956B (zh) * 2015-10-16 2018-01-19 广东烛光新能源科技有限公司 一种电化学电池及其制备方法
JP6850539B2 (ja) * 2016-02-25 2021-03-31 藤森工業株式会社 電池外装用積層体、電池外装体及び電池

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6460953A (en) * 1987-08-31 1989-03-08 Matsushita Electric Ind Co Ltd Solid electrolyte battery
JP2000173564A (ja) * 1998-12-03 2000-06-23 Tokai Rubber Ind Ltd 薄型電池用袋体
JP2004199994A (ja) * 2002-12-18 2004-07-15 Toshiba Corp 電池
JP2006351326A (ja) * 2005-06-15 2006-12-28 Matsushita Electric Ind Co Ltd 固体電池
JP2008192377A (ja) * 2007-02-01 2008-08-21 Toyota Motor Corp 蓄電装置
JP2010212062A (ja) 2009-03-10 2010-09-24 Ngk Insulators Ltd 電池システム
JP2015103370A (ja) * 2013-11-25 2015-06-04 積水化学工業株式会社 リチウムイオン二次電池及びその製造方法
JP2015220099A (ja) 2014-05-19 2015-12-07 Tdk株式会社 全固体リチウムイオン二次電池
JP2015220106A (ja) * 2014-05-19 2015-12-07 Tdk株式会社 全固体リチウムイオン二次電池
JP2017175610A (ja) 2017-03-02 2017-09-28 日本電気株式会社 光伝送装置、光伝送システム及び光通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. HAYASHIS. HAMAH. MORIMOTOM. TATSUMISAGOT. MINAMI, CHEM. LETT., 2001, pages 872,873
See also references of EP3683884A4
T. OHTOMOA. HAYASHIM. TATSUMISAGOY. TSUCHIDAS. HAMAK. KAWAMOTO, JOURNAL OF POWER SOURCES, vol. 233, 2013, pages 231 - 235

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020195310A1 (ja) * 2019-03-26 2020-10-01
WO2020195310A1 (ja) * 2019-03-26 2020-10-01 株式会社村田製作所 固体電池
CN113614973A (zh) * 2019-03-26 2021-11-05 株式会社村田制作所 固体电池
JP7259938B2 (ja) 2019-03-26 2023-04-18 株式会社村田製作所 固体電池
JPWO2021039950A1 (ja) * 2019-08-30 2021-03-04
JP7263525B2 (ja) 2019-08-30 2023-04-24 富士フイルム株式会社 無機固体電解質含有組成物、全固体二次電池用シート及び全固体二次電池並びに、全固体二次電池用シート及び全固体二次電池の製造方法
WO2021105433A1 (fr) * 2019-11-29 2021-06-03 Saft Élément électrochimique, ainsi que modules et batteries le contenant
FR3103969A1 (fr) * 2019-11-29 2021-06-04 Saft Element electrochimique, les modules et batteries les contenant
WO2022172613A1 (ja) * 2021-02-12 2022-08-18 パナソニックIpマネジメント株式会社 電池、電池システムおよび電池の製造方法

Also Published As

Publication number Publication date
EP3683884B1 (en) 2024-02-28
JP6860681B2 (ja) 2021-04-21
KR20200039730A (ko) 2020-04-16
US11670796B2 (en) 2023-06-06
EP3683884A1 (en) 2020-07-22
JPWO2019054184A1 (ja) 2020-10-22
EP3683884A4 (en) 2020-11-25
US20200212376A1 (en) 2020-07-02
CN111095660A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
KR102126144B1 (ko) 고체 전해질 조성물, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지와, 전고체 이차 전지용 전극 시트 및 전고체 이차 전지의 제조 방법
US11909034B2 (en) All-solid state secondary battery and method of manufacturing the same
US11670796B2 (en) All-solid state secondary battery, exterior material for all-solid state secondary battery, and method for manufacturing all-solid state secondary battery
US11552332B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary battery
KR20200051020A (ko) 전극 적층체, 전고체 적층형 이차 전지 및 그 제조 방법
US11552331B2 (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid state secondary battery, method of manufacturing solid electrolyte-containing sheet, and method of manufacturing all-solid state secondary
JP7165747B2 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法
JP7064613B2 (ja) 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
KR102501561B1 (ko) 전고체 리튬 이온 이차 전지와 그 제조 방법, 및 부극용 적층 시트
JP7119214B2 (ja) 全固体二次電池及びその製造方法
WO2018164050A1 (ja) 無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法
WO2018168550A1 (ja) 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質シート及び全固体二次電池用正極活物質シート
JP2022169698A (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法
WO2022202901A1 (ja) 固体電解質積層シート及び全固体二次電池、並びに、全固体二次電池の製造方法
JP7245847B2 (ja) 電極用組成物、全固体二次電池用電極シート及び全固体二次電池、並びに、電極用組成物、全固体二次電池用電極シート及び全固体二次電池の各製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541982

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207006729

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018856988

Country of ref document: EP

Effective date: 20200414