WO2018164050A1 - 無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法 - Google Patents

無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法 Download PDF

Info

Publication number
WO2018164050A1
WO2018164050A1 PCT/JP2018/008326 JP2018008326W WO2018164050A1 WO 2018164050 A1 WO2018164050 A1 WO 2018164050A1 JP 2018008326 W JP2018008326 W JP 2018008326W WO 2018164050 A1 WO2018164050 A1 WO 2018164050A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
secondary battery
active material
electrode active
solid electrolyte
Prior art date
Application number
PCT/JP2018/008326
Other languages
English (en)
French (fr)
Inventor
真二 今井
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019504569A priority Critical patent/JP6665343B2/ja
Publication of WO2018164050A1 publication Critical patent/WO2018164050A1/ja
Priority to US16/561,796 priority patent/US11508989B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an inorganic solid electrolyte material, and a slurry using the same, a solid electrolyte membrane for an all solid secondary battery, a solid electrolyte sheet for an all solid secondary battery, a positive electrode active material membrane for an all solid secondary battery, an all solid
  • the present invention relates to a negative electrode active material film for a secondary battery, an electrode sheet for an all solid secondary battery, an all solid secondary battery, and a method of manufacturing the all solid secondary battery.
  • a lithium ion secondary battery is a storage battery that has a negative electrode, a positive electrode, and an electrolyte sandwiched between the negative electrode and the positive electrode, and is capable of charging and discharging by reciprocating lithium ions between the two electrodes.
  • an organic electrolytic solution has been used as an electrolyte in a lithium ion secondary battery.
  • the organic electrolyte is liable to leak, and there is a possibility that a short circuit may occur inside the battery due to overcharging or overdischarging, and there is a need for further improvement in reliability and safety. Under such circumstances, development of an all-solid secondary battery using non-combustible inorganic solid electrolytes in place of organic electrolytes is in progress.
  • all of the negative electrode, electrolyte and positive electrode are solid, which can greatly improve the safety and reliability of the battery using organic electrolyte solution, and also can extend the life. It will be.
  • a sulfide-based inorganic solid electrolyte is known as an inorganic solid electrolyte used for an all-solid secondary battery.
  • the sulfide-based inorganic solid electrolyte is excellent in the ion conductivity, but the reactivity with water, oxygen and the like is highly deteriorated easily.
  • the sulfide-based inorganic solid electrolyte comes in contact with water, harmful hydrogen sulfide is generated.
  • Patent Document 1 discloses that the surface of a sulfide-based inorganic solid electrolyte is coated with a fluorine-containing silane compound or a fluorine-containing acrylic resin so that the sulfide-based inorganic solid electrolyte can be handled even under normal atmosphere. It is stated that the deterioration of the sulfide-based inorganic solid electrolyte
  • the present invention can effectively prevent the deterioration of the sulfide-based inorganic solid electrolyte due to the contact between the sulfide-based inorganic solid electrolyte and the moisture and the like in the atmosphere, and forms a film exhibiting sufficient ion conductivity. It is an object of the present invention to provide an inorganic solid electrolyte material that makes it possible.
  • the present invention also relates to a slurry using the above inorganic solid electrolyte material, a solid electrolyte membrane for an all solid secondary battery, a solid electrolyte sheet for an all solid secondary battery, a positive electrode active material membrane for an all solid secondary battery, an all solid secondary It is an object of the present invention to provide a manufacturing method of a negative electrode active material film for battery, an electrode sheet for all solid secondary battery, an all solid secondary battery, and an all solid secondary battery.
  • the present inventors coated an sulfide-based inorganic solid electrolyte surface with an electronic insulating inorganic material which is solid at 100 ° C. and heat-melts in a temperature range of 200 ° C. or less. It has been found that, by doing this, it is possible to effectively prevent the contact of the sulfide-based inorganic solid electrolyte with the moisture and the like in the air, and to sufficiently suppress the deterioration of the sulfide-based inorganic solid electrolyte.
  • a film is formed using this surface-coated sulfide-based inorganic solid electrolyte, and an excess amount of the coated material (electron-insulating inorganic material) is obtained by thermally melting the electron-insulating inorganic material which is the coating material of the solid electrolyte.
  • the coated material electroly melting the electron-insulating inorganic material which is the coating material of the solid electrolyte.
  • An inorganic solid electrolyte material comprising a sulfide-based inorganic solid electrolyte and an electronic insulating inorganic material which is solid at 100 ° C. and thermally melted at a temperature of 200 ° C. or less, which covers the surface of the sulfide-based inorganic solid electrolyte.
  • a slurry comprising the inorganic solid electrolyte material according to [1] or [2] and a dispersion medium.
  • the all solid secondary battery which has a negative electrode active material film for all the solid secondary batteries as described in [10] or [11] as a negative electrode active material layer.
  • a film formed using the inorganic solid electrolyte material described in [1] or [2] By heating a film formed using the inorganic solid electrolyte material described in [1] or [2], the above-mentioned electron insulating inorganic material in this film is thermally melted, and then the above-described film is cooled to form a solid.
  • the manufacturing method of the all-solid-state secondary battery containing making it an electrolyte layer.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the contact between the sulfide-based inorganic solid electrolyte and the moisture in the atmosphere is effectively suppressed, and the sulfide-based inorganic solid electrolyte is less likely to be deteriorated.
  • the solid electrolyte film for all solid secondary batteries, the positive electrode active material film for all solid secondary batteries, and the negative electrode active material film for all solid secondary batteries of the present invention are inorganic solid electrolytes due to the influence of moisture etc. The deterioration is effectively suppressed, and the ion conductivity is excellent.
  • the solid electrolyte sheet for an all solid secondary battery of the present invention effectively suppresses the deterioration of the inorganic solid electrolyte due to the influence of moisture and the like at the time of sheet formation and the like, and is excellent in the ion conductivity of the solid electrolyte membrane.
  • the electrode sheet for an all solid secondary battery of the present invention is one in which the deterioration of the inorganic solid electrolyte due to the influence of moisture etc. is effectively suppressed at the time of sheet formation etc., and the ion of the positive electrode active material film or the negative electrode active material film Excellent in conductivity.
  • the deterioration of the inorganic solid electrolyte due to the influence of moisture and the like at the time of formation of the solid electrolyte layer, the positive electrode active material layer and / or the negative electrode active material layer is effectively suppressed.
  • the ion conductivity of the solid electrolyte layer and / or the active material layer is excellent.
  • the manufacturing method of the all solid secondary battery of the present invention the deterioration of the inorganic solid electrolyte due to the influence of moisture and the like at the time of formation of the solid electrolyte layer, the positive electrode active material layer and / or the negative electrode active material layer is effectively suppressed. be able to.
  • the method for producing an all solid secondary battery of the present invention it is possible to obtain an all solid secondary battery excellent in ion conductivity of the solid electrolyte layer, the positive electrode active material layer and / or the negative electrode active material layer.
  • FIG. 1 is a longitudinal sectional view schematically showing a basic structure of an all solid secondary battery according to a preferred embodiment of the present invention.
  • the inorganic solid electrolyte material of the present invention is composed of a sulfide-based inorganic solid electrolyte and an electronic insulating inorganic material which is solid at 100 ° C. and thermally melted at a temperature of 200 ° C. or less, which covers the surface thereof.
  • the sulfide-based inorganic solid electrolyte is likely to react with water and the like and deteriorate
  • the inorganic solid electrolyte material of the present invention is obtained by coating the surface of the sulfide-based inorganic solid electrolyte with a specific electron insulating inorganic material.
  • the sulfide-based inorganic solid electrolyte is effectively barrierd from moisture and the like. Therefore, the necessity of using a dry room with an extremely low dew point is reduced in the transportation of sulfide-based inorganic solid electrolyte, the manufacturing process of all solid secondary batteries, etc., and transportation cost, manufacturing cost, etc. can be reduced. It becomes.
  • the sulfide-based inorganic solid electrolyte contains a sulfur atom (S), has ion conductivity of a metal belonging to Group 1 or 2 of the periodic table, and has electronic insulation. .
  • the sulfide-based inorganic solid electrolyte contains at least Li, S and P as elements, and preferably has lithium ion conductivity, but depending on the purpose or case, other than Li, S and P. It may contain an element.
  • a lithium ion conductive inorganic solid electrolyte satisfying the composition represented by the following formula (I) can be mentioned.
  • L a1 M b1 P c1 S d1 A e1 formula (I)
  • L represents an element selected from Li, Na and K, and Li is preferred.
  • M represents an element selected from B, Zn, Sn, Si, Cu, Ga, Sb, Al and Ge.
  • A represents an element selected from I, Br, Cl and F.
  • a1 to e1 represent composition ratios of respective elements, and a1: b1: c1: d1: e1 satisfies 1 to 12: 0 to 5: 1: 2 to 12: 0 to 10. Furthermore, 1 to 9 is preferable, and 1.5 to 7.5 is more preferable.
  • b1 is preferably 0 to 3. Furthermore, 2.5 to 10 is preferable, and 3.0 to 8.5 is more preferable. Further, 0 to 5 is preferable, and 0 to 3 is more preferable.
  • composition ratio of each element can be controlled by adjusting the compounding amount of the raw material compound at the time of producing a sulfide-based inorganic solid electrolyte as described below.
  • the sulfide-based inorganic solid electrolyte may be non-crystalline (glass) or crystallized (glass-ceramicized), or only part of it may be crystallized.
  • a Li—P—S-based glass containing Li, P and S, or a Li—P—S-based glass ceramic containing Li, P and S can be used.
  • the sulfide-based inorganic solid electrolyte includes, for example, lithium sulfide (Li 2 S), phosphorus sulfide (for example, diphosphorus pentasulfide (P 2 S 5 )), single phosphorus, single sulfur, sodium sulfide, hydrogen sulfide, lithium halide (for example, It can be produced by the reaction of at least two or more of LiI, LiBr, LiCl) and sulfides of elements represented by M (for example, SiS 2 , SnS, GeS 2 ).
  • Li 2 S lithium sulfide
  • phosphorus sulfide for example, diphosphorus pentasulfide (P 2 S 5 )
  • single phosphorus single sulfur
  • sodium sulfide sodium sulfide
  • hydrogen sulfide lithium halide
  • M for example, SiS 2 , SnS, GeS 2 .
  • the ratio of Li 2 S to P 2 S 5 in the Li-P-S-based glass and Li-P-S-based glass ceramic is preferably a molar ratio of Li 2 S: P 2 S 5 of 60:40 to 90:10, more preferably 68:32 to 78:22.
  • the lithium ion conductivity can be made high.
  • the lithium ion conductivity can be preferably 1 ⁇ 10 ⁇ 4 S / cm or more, more preferably 1 ⁇ 10 ⁇ 3 S / cm or more. There is no particular upper limit, but it is practical to be 1 ⁇ 10 ⁇ 1 S / cm or less.
  • Li 2 S-P 2 S 5 Li 2 S-P 2 S 5- LiCl, Li 2 S-P 2 S 5- H 2 S, Li 2 S-P 2 S 5- H 2 S-LiCl, Li 2 S-LiI-P 2 S 5, Li 2 S-LiI-Li 2 O-P 2 S 5, Li 2 S-LiBr-P 2 S 5, Li 2 S-Li 2 O-P 2 S 5, Li 2 S-Li 3 PO 4 -P 2 S 5 , Li 2 S-P 2 S 5 -P 2 O 5 , Li 2 S-P 2 S 5- SiS 2 , Li 2 S-P 2 S 5- SiS 2 -LiCl, Li 2 S-P 2 S 5 -SnS, Li 2 S-P 2 S 5 -Al 2 S 3, Li 2 S-GeS 2, Li 2 S-GeS 2 -ZnS, Li
  • the mixing ratio of each raw material does not matter.
  • an amorphization method can be mentioned.
  • the amorphization method for example, a mechanical milling method, a solution method and a melt quenching method can be mentioned. It is because processing at normal temperature becomes possible, and simplification of the manufacturing process can be achieved.
  • the particle size (volume average particle size) of the sulfide-based inorganic solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the measurement of the average particle diameter of a sulfide type inorganic solid electrolyte particle is performed in the following procedures.
  • the sulfide-based inorganic solid electrolyte particles are diluted with heptane to a 1% by weight dispersion in a 20 ml sample bottle.
  • the diluted dispersed sample is irradiated with 1 kHz ultrasound for 10 minutes, and used immediately thereafter for the test.
  • the electronically insulating inorganic material used in the present invention is an inorganic material which is solid at 100 ° C. (that is, the melting point is higher than 100 ° C.) and thermally melted in a temperature range of 200 ° C. or less. “To thermally melt in a temperature range of 200 ° C. or less” means to thermally melt in a temperature range of 200 ° C. or less under one atmospheric pressure.
  • electrotron insulating property refers to the property of not allowing electrons to pass.
  • the inorganic material when referring to the “electronic insulating inorganic material”, it is preferable that the inorganic material has a conductivity of 10 ⁇ 9 S / cm or less at a measurement temperature of 25 ° C.
  • an electron insulating inorganic material for example, sulfur, modified sulfur, iodine, a mixture of sulfur and iodine, etc. can be mentioned, and preferably used as the above-mentioned electron insulating inorganic material sulfur and / or modified sulfur be able to.
  • the above sulfur means elemental sulfur (including sulfur itself as well as those present in multimers). Further, the reformed sulfur is obtained by kneading the sulfur and the modifier.
  • modified sulfur may contain an organic polymer
  • modified sulfur shall be contained in an inorganic material in this invention.
  • the inorganic solid electrolyte material of the present invention takes a form in which the surface of the sulfide-based inorganic solid electrolyte is coated with the above-mentioned electron insulating inorganic material.
  • coating means a form in which part or all of the surface of the sulfide-based inorganic solid electrolyte is coated.
  • the sulfide-based inorganic solid electrolyte is usually in the form of particles, it means that a part or all of individual particles of the sulfide-based inorganic solid electrolyte are coated.
  • a sulfide-based inorganic solid electrolyte and the above-mentioned electronically insulating inorganic material are mixed while being pulverized using a mortar, ball mill, sand mill, vibration ball mill, satellite ball mill, planetary ball mill, swirl flow jet mill etc.
  • a method of physically attaching the formed electron insulating inorganic material to the surface of the sulfide-based inorganic solid electrolyte particles, the finely divided electron-insulated inorganic material or the electron-insulating inorganic material in the thermally molten state as the sulfide-based inorganic material Method of spraying on solid electrolyte particles and adhering electronically insulating inorganic material to the surface of sulfide-based inorganic solid electrolyte particles, method of immersing sulfide-based inorganic solid electrolyte particles in the above-mentioned electron-insulating inorganic material in a thermally molten state Etc. can be adopted. In consideration of the coatability, a method of immersing the sulfide-based inorganic solid electrolyte particles in the thermally insulating electronic insulating inorganic material is preferable.
  • the above-mentioned electron insulating inorganic material is thermally melted at a relatively low temperature of 200 ° C. or less. Therefore, after forming a film using the inorganic solid electrolyte material of the present invention, the film is heated to a certain extent, The electronically insulating inorganic material can be moved into the voids in the film by capillary action. As a result, excess electron insulating inorganic material can be removed from the surface of the electrolyte particles forming the film, and the interface resistance of the obtained film can be reduced to improve the ion conductivity.
  • the slurry of the present invention contains at least the above-mentioned inorganic solid electrolyte material of the present invention and a dispersion medium described later.
  • the slurry of the present invention also preferably contains an organic binder described later.
  • the slurry of the present invention may contain a positive electrode active material and / or a negative electrode active material described later.
  • Solid electrolyte used for all solid secondary battery by applying the slurry of the present invention and drying to remove the dispersion medium to form a film, and if necessary, heat this film to heat melt the electron insulating inorganic material A film of at least one of a film (layer), a positive electrode active material film (layer), and a negative electrode active material film (layer) can be formed.
  • the slurry of the present invention when the slurry of the present invention does not contain any of the positive electrode active material and the negative electrode active material, the slurry of the present invention can be suitably used for formation of a solid electrolyte membrane used for an all solid secondary battery.
  • the slurry of the present invention contains a positive electrode active material and does not contain a negative electrode active material
  • the slurry of the present invention can be suitably used for forming a positive electrode active material film used for an all solid secondary battery.
  • the slurry of the present invention when the slurry of the present invention contains a negative electrode active material and does not contain a positive electrode active material, the slurry of the present invention can be suitably used for forming a negative electrode active material film used for an all solid secondary battery.
  • the solid electrolyte film is usually either a positive electrode active material or a negative electrode active material. Is also not included.
  • the content of the inorganic solid electrolyte material of the present invention is preferably 50 to 90% by mass in the total solid content of the slurry of the present invention. 85 mass% is more preferable.
  • the total content of the positive electrode active material and the inorganic solid electrolyte material is 70 to 98% by mass in the total solid content of the slurry of the present invention. Is preferable, and 80 to 95% by mass is more preferable.
  • the total content of the negative electrode active material and the inorganic solid electrolyte material is 65 to 95% by mass in the total solid content of the slurry of the present invention. Is preferable, and 75 to 95% by mass is more preferable.
  • the dispersion medium contained in the slurry of the present invention is not particularly limited as long as each component in the slurry can be dispersed or dissolved, and, for example, ether compound solvent, amide compound solvent, ketone compound solvent, aromatic compound solvent, aliphatic Compound solvents and nitrile compound solvents can be used.
  • alkylene glycol alkyl ether preferably ethylene glycol diethyl ether (diethoxyethane)
  • ethylene glycol monomethyl ether ethylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, propylene glycol monomethyl ether, diethylene glycol monomethyl ether
  • Triethylene glycol polyethylene glycol, propylene glycol dimethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol monomethyl ether, diethylene glycol monobutyl ether, diethylene glycol dibutyl ether etc.
  • dialkyl ethers dimethyl ether, diethyl ether, dibutyl ether Ether, etc.
  • alkyl aryl ether anisole
  • tetrahydrofuran tetrahydropyran, including dioxane (1,2-, 1,3- and 1,4-isomers of) dioxolane.
  • amide compound solvent examples include N, N-dimethylformamide, 1-methyl-2-pyrrolidone, 2-pyrrolidinone, 1,3-dimethyl-2-imidazolidinone, 2-pyrrolidinone, ⁇ -caprolactam, formamide, N Methylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropanamide and hexamethylphosphoric triamide.
  • ketone compound solvents include acetone, methyl ethyl ketone and cyclohexanone.
  • Aromatic solvents include, for example, benzene, toluene, xylene and mesitylene.
  • aliphatic compound solvents examples include hexane, heptane, cyclohexane, methylcyclohexane, octane, pentane, cyclopentane and cyclooctane.
  • nitrile compound solvents examples include acetonitrile, propronitrile and butyronitrile.
  • the dispersion medium preferably has a boiling point of 50 ° C. or more at normal pressure (1 atm), and more preferably 70 ° C. or more.
  • the upper limit is preferably 250 ° C. or less, more preferably 220 ° C. or less.
  • the dispersion media may be used alone or in combination of two or more.
  • the slurry of the present invention preferably contains an ether compound solvent and / or an aliphatic compound solvent as a dispersion medium, and more preferably contains an ether compound solvent.
  • the ether compound solvent dibutyl ether, diethoxy ethane and / or dioxane are preferable.
  • Heptane, octane and / or cyclooctane are preferred as the aliphatic compound solvent.
  • the content of the dispersion medium in the slurry of the present invention is not particularly limited, and 20 to 80% by mass is preferable, 30 to 70% by mass is more preferable, and 40 to 60% by mass is particularly preferable.
  • the dispersion medium may be used alone or in combination of two or more.
  • organic binder examples include organic polymers.
  • fluorine-containing resins, hydrocarbon-based thermoplastic resins and / or acrylic resins can be suitably used.
  • fluorine-containing resin examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP).
  • hydrocarbon-based thermoplastic resin examples include polyethylene, polypropylene, styrene butadiene rubber (SBR), hydrogenated styrene butadiene rubber (HSBR), butylene rubber, acrylonitrile-butadiene rubber, polybutadiene, and polyisoprene.
  • acrylic resin various (meth) acrylic monomers, (meth) acrylamide monomers, and copolymers of monomers constituting these resins (preferably, copolymers of acrylic acid and methyl acrylate) may be mentioned.
  • a copolymer (copolymer) of an acrylic resin and a vinyl monomer is also suitably used.
  • a copolymer of methyl (meth) acrylate and styrene, a copolymer of methyl (meth) acrylate and acrylonitrile, and a copolymer of butyl (meth) acrylate, acrylonitrile and styrene can be mentioned.
  • the copolymer may be either a statistical copolymer or periodic copolymer, with block copolymers being preferred.
  • the organic binder polyurethane resin, polyurea resin, polyamide resin, polyimide resin, polyester resin, polyether resin, polycarbonate resin, cellulose derivative resin and the like can be suitably used.
  • the organic binder may be used alone or in combination of two or more.
  • the organic binder preferably has a polar group in order to enhance wettability and adsorption to the particle surface.
  • the polar group is preferably a monovalent group containing a hetero atom, for example, a monovalent group containing a structure in which a hydrogen atom is bonded to any of an oxygen atom, a nitrogen atom and a sulfur atom, and a specific example is a carboxy group Examples include hydroxy, amino, phosphate and sulfo.
  • the organic binder is also preferably in the form of particles.
  • its average particle size is usually preferably 10 nm to 30 ⁇ m, and more preferably 10 to 1000 nm.
  • Mw weight average molecular weight
  • 20,000 or more are more preferable, 30,000 or more are more preferable.
  • 30,000 or more are more preferable.
  • 1,000,000 or less is preferable, 200,000 or less is more preferable, 100,000 or less is more preferable.
  • the content of the organic binder in the total solid content of the slurry of the present invention is preferably 0 to 8% by mass, more preferably 0.5 to 6% by mass, and still more preferably 1 to 3% by mass.
  • the slurry of the present invention contains a lithium salt, a conductive aid, a dispersant and the like.
  • the positive electrode active material which may be contained in the slurry of the present invention is preferably one capable of reversibly inserting and releasing lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and may be a transition metal oxide, an organic substance, an element capable of being complexed with Li such as sulfur, a complex of sulfur and a metal, or the like. Above all, it is preferable to use a transition metal oxide as a positive electrode active material, and a transition metal oxide having a transition metal element M a (one or more elements selected from Co, Ni, Fe, Mn, Cu and V) is more preferable. preferable.
  • an element M b (an element of Group 1 (Ia) other than lithium, an element of Group 1 (Ia) of the metal periodic table, an element of Group 2 (IIa), Al, Ga, In, Ge, Sn, Pb, Elements such as Sb, Bi, Si, P or B may be mixed.
  • the mixing amount is preferably 0 to 30 mol% with respect to the amount (100 mol%) of the transition metal element M a . It is more preferable to be synthesized by mixing so that the molar ratio of Li / Ma is 0.3 to 2.2.
  • transition metal oxide examples include a transition metal oxide having a (MA) layered rock salt type structure, a transition metal oxide having a (MB) spinel type structure, a (MC) lithium-containing transition metal phosphate compound, (MD And the like) and lithium-containing transition metal halogenated phosphoric acid compounds and (ME) lithium-containing transition metal silicate compounds.
  • a transition metal oxide having a (MA) layered rock salt type structure a transition metal oxide having a (MB) spinel type structure
  • MC lithium-containing transition metal phosphate compound
  • MD And the like lithium-containing transition metal halogenated phosphoric acid compounds
  • ME lithium-containing transition metal silicate compounds.
  • transition metal oxide having a layered rock salt structure MA
  • LiCoO 2 lithium cobaltate [LCO]
  • LiNi 2 O 2 lithium nickelate
  • LiNi 0.85 Co 0.10 Al 0.05 O 2 lithium nickel cobalt aluminate [NCA]
  • LiNi 1/3 Co 1/3 Mn 1/3 O 2 lithium nickel manganese cobaltate [NMC]
  • LiNi 0.5 Mn 0.5 O 2 manganese And lithium nickel oxide
  • transition metal oxide having a (MB) spinel structure examples include LiMn 2 O 4 (LMO), LiCoMnO 4, Li 2 FeMn 3 O 8 , Li 2 CuMn 3 O 8 , Li 2 CrMn 3 O 8 and Li 2 NiMn 3 O 8 and the like.
  • (MC) lithium-containing transition metal phosphate compounds include olivine-type iron phosphates such as LiFePO 4 and Li 3 Fe 2 (PO 4 ) 3 , iron pyrophosphates such as LiFeP 2 O 7 , LiCoPO 4 etc. And cobalt salts of monoclinic Nasacon-type vanadium phosphate such as Li 3 V 2 (PO 4 ) 3 (lithium vanadium phosphate).
  • (MD) as the lithium-containing transition metal halogenated phosphate compound for example, Li 2 FePO 4 F such fluorinated phosphorus iron salt, Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And cobalt fluoride phosphates.
  • Li 2 FePO 4 F such fluorinated phosphorus iron salt
  • Li 2 MnPO 4 hexafluorophosphate manganese salts such as F and Li 2 CoPO 4 F And cobalt fluoride phosphates.
  • the (ME) lithium-containing transition metal silicate compound include Li 2 FeSiO 4 , Li 2 MnSiO 4 and Li 2 CoSiO 4 .
  • LCO, LMO, NCA or NMC is more preferable.
  • the shape of the positive electrode active material is not particularly limited, but is preferably in the form of particles.
  • the volume average particle diameter (sphere conversion average particle diameter) of the positive electrode active material is not particularly limited. For example, it can be 0.1 to 50 ⁇ m. In order to make the positive electrode active material have a predetermined particle diameter, a usual pulverizer or classifier may be used.
  • the positive electrode active material obtained by the firing method may be used after washing with water, an acidic aqueous solution, an alkaline aqueous solution and an organic solvent.
  • the volume average particle size (sphere-equivalent average particle size) of the positive electrode active material particles can be measured using a laser diffraction / scattering type particle size distribution measuring apparatus LA-920 (trade name, manufactured by HORIBA).
  • the positive electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (area weight) of the positive electrode active material per unit area (cm 2 ) of the positive electrode active material layer is not particularly limited. It can be determined appropriately depending on the designed battery capacity.
  • the content of the positive electrode active material in the slurry is not particularly limited, and is preferably 10 to 95% by mass, more preferably 30 to 90% by mass, and still more preferably 50 to 85% by mass in solid content 100% by mass. -80% by weight is particularly preferred.
  • the negative electrode active material that may be contained in the slurry of the present invention is preferably one that can reversibly insert and release lithium ions.
  • the material is not particularly limited as long as it has the above characteristics, and carbonaceous materials, metal oxides such as tin oxide, silicon oxides, metal complex oxides, lithium alone, lithium alloys such as lithium aluminum alloy, and And metals such as Sn, Si, Al and In which can be alloyed with lithium.
  • carbonaceous materials or lithium composite oxides are preferably used from the viewpoint of reliability.
  • the metal complex oxide it is preferable that lithium can be absorbed and released.
  • the material is not particularly limited, but it is preferable in view of high current density charge and discharge characteristics that titanium and / or lithium is contained as a component.
  • the carbonaceous material used as the negative electrode active material is a material substantially consisting of carbon.
  • various kinds of synthesis such as petroleum pitch, carbon black such as acetylene black (AB), graphite (natural graphite, artificial graphite such as vapor grown graphite etc.), and PAN (polyacrylonitrile) resin and furfuryl alcohol resin etc.
  • the carbonaceous material which baked resin can be mentioned.
  • various carbon fibers such as PAN-based carbon fiber, cellulose-based carbon fiber, pitch-based carbon fiber, vapor grown carbon fiber, dehydrated PVA (polyvinyl alcohol) -based carbon fiber, lignin carbon fiber, glassy carbon fiber and activated carbon fiber And mesophase microspheres, graphite whiskers, and flat graphite.
  • an amorphous oxide is particularly preferable, and chalcogenide which is a reaction product of a metal element and an element of periodic group 16 is also preferably used.
  • amorphous is an X-ray diffraction method using CuK ⁇ radiation, and means one having a broad scattering band having an apex in a region of 20 ° to 40 ° in 2 ⁇ value, and a crystalline diffraction line May be included.
  • amorphous oxides of semimetal elements and chalcogenides are more preferable, and elements of periodic table group 13 (IIIB) to 15 (VB), Al Particularly preferred are oxides consisting of Ga, Si, Sn, Ge, Pb, Sb and Bi singly or in combination of two or more thereof, and chalcogenides.
  • preferable amorphous oxides and chalcogenides include, for example, Ga 2 O 3 , SiO, GeO, SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 2 O 4 , Pb 3 O 4 , and the like.
  • Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 8 Bi 2 O 3 , Sb 2 O 8 Si 2 O 3 , Bi 2 O 4 , SnSiO 3 , GeSiO, GeS, SnS, SnS 2 , PbS, PbS 2 , Sb 2 S 3 , Sb 2 S 5 and SnSiS 3 are preferably mentioned. They may also be complex oxides with lithium oxide, such as Li 2 SnO 2 .
  • the negative electrode active material also preferably contains a titanium atom. More specifically, Li 4 Ti 5 O 12 (lithium titanate [LTO]) is excellent in rapid charge / discharge characteristics because the volume fluctuation at the time of lithium ion absorption and release is small, and the deterioration of the electrode is suppressed, and lithium ion secondary It is preferable at the point which the lifetime improvement of a battery is attained.
  • Li 4 Ti 5 O 12 lithium titanate [LTO]
  • a Si-based negative electrode it is also preferable to apply a Si-based negative electrode.
  • a Si negative electrode can store more Li ions than carbon negative electrodes (such as graphite and acetylene black). That is, the storage amount of Li ions per unit mass increases. Therefore, the battery capacity can be increased. As a result, there is an advantage that the battery operating time can be extended.
  • the shape of the negative electrode active material is not particularly limited, but is preferably in the form of particles.
  • the particle diameter (volume average particle diameter) of the negative electrode active material is preferably 0.1 to 60 ⁇ m.
  • a usual pulverizer or classifier is used.
  • a mortar, a ball mill, a sand mill, a vibrating ball mill, a satellite ball mill, a planetary ball mill, and a swirl flow jet mill, a sieve, etc. are suitably used.
  • wet pulverization in the presence of water or an organic solvent such as methanol can also be carried out as necessary. It is preferable to carry out classification in order to obtain a desired particle size.
  • the classification method is not particularly limited, and a sieve, an air classifier or the like can be used as required. Classification can be used both dry and wet.
  • the average particle size of the negative electrode active material particles can be measured by the same method as the above-mentioned method of measuring the volume average particle size of the positive electrode active material.
  • the chemical formula of the compound obtained by the above-mentioned firing method can be calculated from the mass difference of the powder before and after firing as a measurement method using inductively coupled plasma (ICP) emission spectroscopy and as a simple method.
  • ICP inductively coupled plasma
  • the negative electrode active materials may be used alone or in combination of two or more.
  • the mass (mg) (area weight) of the negative electrode active material per unit area (cm 2 ) of the negative electrode active material layer is not particularly limited. It can be determined appropriately depending on the designed battery capacity.
  • the content of the negative electrode active material in the slurry is not particularly limited, and is preferably 10 to 80% by mass, and more preferably 20 to 80% by mass, in the solid content of the slurry.
  • the slurry of the present invention may contain, for example, alumina, silica, zeolite, boron nitride and the like.
  • the electrode surface containing the positive electrode active material or the negative electrode active material may be surface-treated with sulfur or phosphorus.
  • the particle surface of the positive electrode active material or the negative electrode active material may be subjected to surface treatment with an actinic ray or an active gas (such as plasma) before and after the surface coating.
  • the solid electrolyte membrane for all solid secondary batteries of the present invention (hereinafter simply referred to as "the electrolyte membrane of the present invention") is a film formed using the inorganic solid electrolyte material of the present invention, preferably the above-mentioned present invention It is obtained by drying a film formed using the slurry of the invention.
  • the electrolyte membrane of the present invention is more preferably formed by heat-melting an electronic insulating inorganic material which covers the surface of the sulfide-based inorganic solid electrolyte after film formation, and then cooling.
  • the electronic insulating inorganic material can be moved to the gaps between the sulfide-based inorganic solid electrolyte particles by capillary action, whereby excess electronic insulating properties present on the surface of the sulfide-based inorganic solid electrolyte can be obtained. Inorganic materials can be removed. As a result, when viewed as the entire film, the distance between the sulfide-based inorganic solid electrolyte particles is reduced, the interface resistance is reduced, and the ion conductivity can be improved.
  • the all solid secondary battery having this electrolyte film as a solid electrolyte layer may be temporarily broken.
  • the penetration of water into the solid electrolyte layer can be effectively prevented, and the generation rate of hydrogen sulfide can be suppressed.
  • the electronically insulating inorganic material it becomes possible to block dendrite growing from the negative electrode to the positive electrode during charge and discharge of the all solid secondary battery, resulting in internal short circuit. It is also possible to reduce the risk.
  • the electrolyte membrane of the present invention is suitably used as a solid electrolyte layer of an all solid secondary battery.
  • the electrolyte membrane of the present invention preferably contains an organic binder. This organic binder is as defined in the description of the slurry of the present invention.
  • the electrolyte membrane of the present invention may contain a positive electrode active material and / or a negative electrode active material, but usually does not contain a positive electrode active material and does not contain a negative electrode active material.
  • the content of the inorganic solid electrolyte material of the present invention in the electrolyte membrane of the present invention is preferably 50 to 98% by mass, more preferably 60 to 95% by mass, and still more preferably 70 to 90% by mass.
  • the content of the organic binder in the electrolyte membrane of the present invention is preferably 0 to 8% by mass, more preferably 0.5 to 6% by mass, and still more preferably 1 to 3% by mass.
  • the electrolyte membrane of the present invention may contain, for example, a positive electrode active material, a negative electrode active material, alumina, silica, zeolite, boron nitride and the like as components other than the above-mentioned inorganic solid electrolyte material and other than the organic binder.
  • the preferred thickness of the electrolyte membrane of the present invention is the same as the thickness of the solid electrolyte layer in the all-solid secondary battery described later. The method for forming an electrolyte membrane of the present invention will be described later.
  • the positive electrode active material film for all solid secondary batteries of the present invention (hereinafter simply referred to as "the positive electrode active material film of the present invention") is a film formed using the positive electrode active material and the inorganic solid electrolyte material of the present invention It is preferably obtained by drying a film formed using the above-mentioned slurry of the present invention (a form containing the positive electrode active material and not containing the negative electrode active material).
  • the positive electrode active material film of the present invention is more preferably formed by thermally melting an electron insulating inorganic material which covers the surface of the sulfide-based inorganic solid electrolyte after film formation, and then cooling it.
  • the electronic insulating inorganic material is moved by capillary action to the space between the sulfide-based inorganic solid electrolyte particles, between the positive electrode active material, or between the sulfide-based inorganic solid electrolyte particles and the positive electrode active material.
  • the electronic insulating inorganic material is moved by capillary action to the space between the sulfide-based inorganic solid electrolyte particles, between the positive electrode active material, or between the sulfide-based inorganic solid electrolyte particles and the positive electrode active material.
  • the voids existing in the film are sufficiently filled with the electron insulating inorganic material, so that the all solid secondary battery having this positive electrode active material film as a positive electrode active material layer is temporarily broken. Even in such a case, it is possible to effectively prevent the entry of moisture into the positive electrode active material layer, and there is also an advantage that it is possible to suppress the generation rate of hydrogen sulfide.
  • the positive electrode active material film of the present invention is suitably used as a positive electrode active material layer of an all solid secondary battery.
  • the positive electrode active material film of the present invention preferably contains an organic binder. This organic binder is as defined in the description of the slurry of the present invention.
  • the content of the inorganic solid electrolyte material of the present invention in the positive electrode active material film of the present invention is preferably 10 to 40% by mass, and more preferably 15 to 30% by mass.
  • the content of the positive electrode active material in the positive electrode active material film of the present invention is preferably 50 to 90% by mass, more preferably 55 to 88% by mass, and still more preferably 60 to 80% by mass.
  • the content of the organic binder in the positive electrode active material film of the present invention is preferably 0 to 8% by mass, more preferably 0.5 to 6% by mass, and still more preferably 1 to 3% by mass.
  • the positive electrode active material film of the present invention may contain, for example, alumina, silica, zeolite, boron nitride and the like.
  • the preferable film thickness of the positive electrode active material film of the present invention is the same as the thickness of the positive electrode active material layer in the all solid secondary battery described later. The method of forming the positive electrode active material film of the present invention will be described later.
  • the negative electrode active material film for all solid secondary batteries of the present invention (hereinafter simply referred to as "the negative electrode active material film of the present invention") is a film formed using the negative electrode active material and the inorganic solid electrolyte material of the present invention It is preferably obtained by drying a film formed using the above-described slurry of the present invention (a form containing an anode active material and not containing a cathode active material).
  • the negative electrode active material film of the present invention is more preferably formed by thermally melting an electron insulating inorganic material which covers the surface of the sulfide-based inorganic solid electrolyte after film formation, and then cooling it.
  • the electronic insulating inorganic material is moved by capillary action to the space between the sulfide-based inorganic solid electrolyte particles, between the negative electrode active material, or between the sulfide-based inorganic solid electrolyte particles and the negative electrode active material.
  • the excess electron insulating inorganic material present on the surface of the sulfide-based inorganic solid electrolyte can be removed.
  • interface resistance can be reduced and ion conductivity is improved.
  • the all-solid secondary battery having this negative electrode active material film as a negative electrode active material layer is temporarily broken. Even in such a case, it is possible to effectively prevent the entry of moisture into the negative electrode active material layer, and there is also an advantage that it is possible to suppress the generation rate of hydrogen sulfide.
  • the negative electrode active material film of the present invention is suitably used as a negative electrode active material layer of an all solid secondary battery.
  • the negative electrode active material film of the present invention preferably contains an organic binder. This organic binder is as defined in the description of the slurry of the present invention.
  • the content of the inorganic solid electrolyte material of the present invention in the negative electrode active material film of the present invention is preferably 10 to 60% by mass, more preferably 15 to 50% by mass, still more preferably 15 to 45% by mass, and 20 to 40% by mass. % Is more preferred.
  • the content of the negative electrode active material in the negative electrode active material film of the present invention is preferably 35 to 95% by mass, more preferably 38 to 92% by mass, still more preferably 50 to 90% by mass, and still more preferably 50 to 83% by mass. 55 to 80% by mass is more preferable, and 60 to 80% by mass is more preferable.
  • the content of the organic binder in the negative electrode active material film of the present invention is preferably 0 to 8% by mass, more preferably 0.5 to 6% by mass, and still more preferably 1 to 3% by mass.
  • the negative electrode active material film of the present invention may contain, for example, alumina, silica, zeolite, boron nitride and the like.
  • the preferable film thickness of the negative electrode active material film of the present invention is the same as the thickness of the negative electrode active material layer in the all-solid secondary battery described later. The method of forming the negative electrode active material film of the present invention will be described later.
  • the electrolyte membrane, the positive electrode active material film, and the negative electrode active material film of the present invention contain a lithium salt, a conductive additive, a dispersant, and the like.
  • the method of forming the solid electrolyte film (layer), the positive electrode active material film (layer), and the negative electrode active material film (layer) is not particularly limited, and a general method can be appropriately selected.
  • application preferably wet application
  • spray application spin coating application
  • dip coating dip coating
  • slit application stripe application and bar coat application
  • drying is usually performed.
  • drying treatment may be performed after multilayer coating.
  • the drying temperature is not particularly limited. The lower limit is preferably 30 ° C. or more, more preferably 60 ° C. or more, and still more preferably 80 ° C. or more.
  • the dispersion medium can be removed to be in a solid state. Moreover, it is preferable because the temperature is not excessively high and the members of the all solid secondary battery are not damaged. Thereby, in the all solid secondary battery, excellent overall performance can be exhibited, and good binding can be obtained.
  • the formed solid electrolyte film (layer), positive electrode active material film (layer), and negative electrode active material film (layer) are preferably pressurized.
  • a hydraulic cylinder press machine etc. are mentioned as a pressurization method.
  • the pressure is not particularly limited, and in general, the pressure is preferably in the range of 50 to 1,500 MPa. Moreover, you may heat simultaneously with this pressurization.
  • the heating temperature is not particularly limited, and generally in the range of 30 to 300 ° C. It is also possible to press at a temperature higher than the glass transition temperature of the sulfide-based inorganic solid electrolyte.
  • the pressurization may be performed in a state where the coating solvent or the dispersion medium is dried in advance, or may be performed in a state where the solvent or the dispersion medium remains.
  • the atmosphere during pressurization is not particularly limited, and may be under air, under dry air (dew point ⁇ 20 ° C. or less), under inert gas (eg, in argon gas, in helium gas, in nitrogen gas).
  • the pressurization time may be high pressure in a short time (for example, within several hours), or may be medium pressure for a long time (one day or more).
  • the film (layer) forming step preferably includes the step of thermally melting the electron insulating inorganic material as described above.
  • the electron insulating inorganic material can be thermally melted by adjusting the drying temperature or heating the formed film to a temperature higher than the thermal melting temperature of the electron insulating inorganic material, so that the film (layer) can be formed.
  • Excess electronic insulating inorganic material can be moved into the air gap by capillary action.
  • the heating temperature for the thermal melting is preferably 200 ° C. or less.
  • a solid electrolyte sheet for an all solid secondary battery of the present invention (hereinafter, also simply referred to as “the electrolyte sheet of the present invention”) comprises a substrate and the above-mentioned electrolyte membrane of the present invention disposed on the substrate.
  • the electrode sheet for an all solid secondary battery of the present invention (hereinafter, also simply referred to as “electrode sheet of the present invention”) comprises a substrate and the above-mentioned positive electrode active material of the present invention disposed on the substrate. It has a film or the negative electrode active material film of the present invention.
  • the method for forming a solid electrolyte film, a positive electrode active material film or a negative electrode active material film on a substrate can adopt the above-described film forming method.
  • the substrate is not particularly limited as long as it can support a solid electrolyte film, a positive electrode active material film or a negative electrode active material film, and a sheet of a material, an organic material, an inorganic material, etc. State body) and the like.
  • the organic material include various polymers and the like, and specific examples include polyethylene terephthalate, polypropylene, polyethylene and cellulose.
  • an inorganic material, glass, a ceramic, etc. are mentioned, for example.
  • the solid electrolyte sheet for an all solid secondary battery of the present invention can be used as a material for producing an all solid secondary battery. That is, the solid electrolyte membrane obtained by peeling a base material from this sheet can be used as a solid electrolyte layer of an all solid secondary battery.
  • the electrode sheet of the present invention can be used as a material for producing an all solid secondary battery. That is, a positive electrode active material film obtained by peeling the substrate from this sheet can be used as a positive electrode active material layer of the all solid secondary battery, and a negative electrode active material obtained by peeling the substrate from this sheet The film can be used as the negative electrode active material layer of the all solid secondary battery.
  • a current collector material is used as a substrate
  • the electrode sheet of the present invention can be used as it is, a laminated structure of the positive electrode current collector and the positive electrode active material layer of the all solid secondary battery It can be used as a laminated structure with a layer.
  • the all solid secondary battery of the present invention has the solid electrolyte membrane of the present invention, the positive electrode active material film of the present invention, and / or the negative electrode active material film of the present invention (ie, the solid electrolyte film of the present invention, the present
  • the form of the positive electrode active material film of the invention and at least one of the negative electrode active material film of the present invention is not particularly limited.
  • FIG. 1 is a cross-sectional view schematically showing a lamination state of each layer constituting a battery in one embodiment of the all solid secondary battery of the present invention.
  • the negative electrode current collector 1, the negative electrode active material layer 2, the solid electrolyte layer 3, the positive electrode active material layer 4, and the positive electrode current collector 5 are stacked in this order as viewed from the negative electrode side.
  • the adjacent layers are in direct contact with one another.
  • the above-mentioned alkali metal ion or alkaline earth metal ion accumulated in the negative electrode is returned to the positive electrode side, and electrons can be supplied to the operating portion 6.
  • a light bulb is employed at the operating portion 6 and is turned on by discharge.
  • the thicknesses of the positive electrode active material layer, the solid electrolyte layer, and the negative electrode active material layer are not particularly limited.
  • the thickness of each layer is preferably 10 to 1000 ⁇ m, and more preferably 20 ⁇ m or more and less than 500 ⁇ m, in consideration of general battery dimensions.
  • the positive electrode current collector 5 and the negative electrode current collector 1 are preferably electron conductors. In the present specification, one or both of the positive electrode current collector and the negative electrode current collector may be simply referred to as a current collector.
  • a current collector In addition to aluminum, aluminum alloy, stainless steel, nickel and titanium as materials for forming a positive electrode current collector, aluminum or stainless steel surface treated with carbon, nickel, titanium or silver (a thin film is formed are preferred, among which aluminum and aluminum alloys are more preferred.
  • Materials for forming the negative electrode current collector include aluminum, copper, copper alloy, stainless steel, nickel and titanium, etc., and also carbon, nickel, titanium or silver on the surface of aluminum, copper, copper alloy or stainless steel Are preferred, with aluminum, copper, copper alloys and stainless steel being more preferred.
  • the shape of the current collector is usually in the form of a film sheet, but a net, a punch, a lath body, a porous body, a foam, a molded body of a fiber group and the like can also be used.
  • the thickness of the current collector is not particularly limited, but is preferably 1 to 500 ⁇ m. Further, it is also preferable to make the current collector surface uneven by surface treatment.
  • each of the negative electrode current collector, the negative electrode active material layer, the solid electrolyte layer, the positive electrode active material layer and the positive electrode current collector May be intervened or disposed as appropriate.
  • Each layer may be composed of a single layer or multiple layers.
  • composition containing the component which comprises a positive electrode active material layer is apply
  • a base material for example, metal foil used as a collector
  • a composition containing at least the inorganic solid electrolyte material of the present invention (preferably, the slurry of the present invention not containing either the positive electrode active material or the negative electrode active material) is applied onto the positive electrode active material layer.
  • the layer is heated to a temperature at which the electronically insulating inorganic material covering the sulfide-based inorganic solid electrolyte is thermally melted, and the thermally molten material of the electronically insulating inorganic material is allowed to penetrate into voids in the layer by capillary action.
  • the solid electrolyte layer can be formed by cooling.
  • a composition containing a component for forming a negative electrode active material layer is applied as a negative electrode material on the solid electrolyte layer to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer by overlapping a negative electrode current collector (metal foil) on the negative electrode active material layer Can. If necessary, it can be enclosed in a casing to make a desired all-solid secondary battery.
  • each layer is reversed, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to produce an all solid secondary battery.
  • a laminate of a two-layer structure consisting of a substrate / anode active material layer and a laminate of a three-layer structure consisting of a substrate / a cathode active material layer / a solid electrolyte layer are prepared, and these are superposed to form the present invention.
  • the heating for melting the electron insulating inorganic material in the formation of the solid electrolyte layer is performed immediately after the formation of the layer in the above example.
  • the present invention is not limited to this embodiment. That is, heating may be performed at any stage of the manufacturing process of the all-solid secondary battery as long as the layer is formed.
  • the layer formation itself (coating step itself) can be carried out at a temperature above the thermal melting temperature of the above-mentioned electron-insulating inorganic material, and the drying step in the layer formation can also be at a temperature above the thermal melting temperature. In these cases, it is not necessary to separately provide a heating step for thermally melting the electronically insulating inorganic material.
  • a preferred embodiment of the method for producing an all-solid secondary battery using the inorganic solid electrolyte material of the present invention in the solid electrolyte layer comprises heating the film formed using the inorganic solid electrolyte material of the present invention.
  • the method includes heat melting the electronic insulating inorganic material covering the sulfide-based inorganic solid electrolyte in the film, and then cooling the film to form a solid electrolyte layer.
  • a composition (preferably, a slurry of the present invention containing a positive electrode active material) containing at least a positive electrode active material and the inorganic solid electrolyte material of the present invention is coated on a substrate (for example, metal foil to be a current collector) Then, a positive electrode active material layer is formed. Next, the layer is heated to a temperature at which the electronically insulating inorganic material covering the sulfide-based inorganic solid electrolyte is thermally melted, and the thermally molten material of the electronically insulating inorganic material is allowed to penetrate into voids in the layer by capillary action.
  • a positive electrode sheet for an all solid secondary battery is produced. Then, by cooling, a positive electrode sheet for an all solid secondary battery is produced. Then, a composition containing a component for forming a solid electrolyte layer is applied onto the positive electrode active material layer to form a solid electrolyte layer. On this solid electrolyte layer, a composition containing a component for forming a negative electrode active material layer is applied as a negative electrode material to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer by overlapping a negative electrode current collector (metal foil) on the negative electrode active material layer Can.
  • each layer is reversed, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to produce an all solid secondary battery.
  • a laminate of a two-layer structure consisting of a substrate / anode active material layer and a laminate of a three-layer structure consisting of a substrate / a cathode active material layer / a solid electrolyte layer are prepared, and these are superposed to form the present invention.
  • the heating for melting the electron insulating inorganic material in the formation of the positive electrode active material layer is performed immediately after the formation of the layer in the above example.
  • the present invention is not limited to this embodiment. That is, heating may be performed at any stage of the manufacturing process of the all-solid secondary battery as long as the layer is formed.
  • the layer formation itself (coating step itself) can be carried out at a temperature above the thermal melting temperature of the above-mentioned electron-insulating inorganic material, and the drying step in the layer formation can also be at a temperature above the thermal melting temperature. In these cases, it is not necessary to separately provide a heating step for thermally melting the electronically insulating inorganic material.
  • a film formed using the positive electrode active material and the inorganic solid electrolyte material of the present invention By heating, an electronic insulating inorganic material covering the sulfide-based inorganic solid electrolyte in the film is thermally melted, and then the film is cooled to form a positive electrode active material layer.
  • the composition containing the component which comprises a positive electrode active material layer is apply
  • the layer is heated to a temperature at which the electronically insulating inorganic material covering the sulfide-based inorganic solid electrolyte is thermally melted, and the thermally molten material of the electronically insulating inorganic material is allowed to penetrate into voids in the layer by capillary action. After that, cooling is performed to form a negative electrode active material layer.
  • An all-solid secondary battery having a structure in which a solid electrolyte layer is sandwiched between a positive electrode active material layer and a negative electrode active material layer by overlapping a negative electrode current collector (metal foil) on the negative electrode active material layer Can. If necessary, it can be enclosed in a casing to make a desired all-solid secondary battery.
  • each layer is reversed, a negative electrode active material layer, a solid electrolyte layer, and a positive electrode active material layer are formed on the negative electrode current collector, and the positive electrode current collector is stacked to produce an all solid secondary battery.
  • a laminate of a two-layer structure consisting of a substrate / anode active material layer and a laminate of a three-layer structure consisting of a substrate / a cathode active material layer / a solid electrolyte layer are prepared, and these are superposed to form the present invention.
  • heating for thermally melting the above-mentioned electron-insulating inorganic material is performed immediately after the formation of the layer in the above example.
  • heating may be performed at any stage of the manufacturing process of the all-solid secondary battery as long as the layer is formed.
  • the layer formation itself (coating step itself) can be carried out at a temperature above the thermal melting temperature of the above-mentioned electron-insulating inorganic material, and the drying step in the layer formation can also be at a temperature above the thermal melting temperature. In these cases, it is not necessary to separately provide a heating step for thermally melting the electronically insulating inorganic material.
  • a film formed using the negative electrode active material and the inorganic solid electrolyte material of the present invention By heating, an electron insulating inorganic material covering the sulfide-based inorganic solid electrolyte in the film is thermally melted, and then the film is cooled to form a negative electrode active material layer.
  • the manufacturing method mainly relates to the embodiment in which the inorganic solid electrolyte material of the present invention is used in any one of the positive electrode active material layer, the solid electrolyte layer and the negative electrode active material layer, but the present invention
  • the all solid secondary battery of the present invention or the production method thereof is not limited to these forms. That is, the method for producing an all solid secondary battery of the present invention may have two or more steps among the following steps (a) to (c).
  • the heating step of thermally melting the electron insulating inorganic material may be integrated into one. That is, heat melting of the electron insulating inorganic material in each of the solid electrolyte layer, the positive electrode active material layer, and the negative electrode active material layer can be performed in one heating step.
  • the all-solid secondary battery produced as described above is preferably subjected to initialization after production or before use.
  • the method of initialization is not particularly limited. For example, initial charging and discharging may be performed in a state where the press pressure is increased, and then the pressure may be released until the general working pressure of the all solid secondary battery is reached.
  • the all solid secondary battery of the present invention can be applied to various applications.
  • the application mode is not particularly limited, for example, when installed in an electronic device, a laptop computer, a pen input computer, a mobile computer, an e-book player, a mobile phone, a cordless handset, a pager, a handy terminal, a mobile fax, a mobile phone Copy, portable printer, headphone stereo, video movie, LCD TV, handy cleaner, portable CD, mini disc, electric shaver, transceiver, electronic organizer, calculator, memory card, portable tape recorder, radio, backup power supply, memory card etc
  • Other consumer products include automobiles, electric vehicles, motors, lighting devices, toys, game machines, road conditioners, watches, strobes, cameras, medical devices (pace makers, hearing aids, shoulder machines, etc.). Furthermore, it can be used for various military and space applications. It can also be combined with a solar cell.
  • Preparation Example 1 Preparation of Inorganic Solid Electrolyte Material (Surface-Coated Inorganic Solid Electrolyte) ⁇ Coating by Hot Melt Impregnation> A mortar covered with aluminum foil was placed on a hot plate heated to 170 ° C., and 6.20 g of sulfur was charged therein to thermally melt the sulfur. Into the melted sulfur, 6.20 g of the sulfide-based inorganic solid electrolyte synthesized in Reference Example 1 was charged, and kneaded for 2 hours using a heated pestle. Then, it cooled and solidified sulfur, and obtained surface covering inorganic solid electrolyte.
  • Inorganic Solid Electrolyte Material Surface-Coated Inorganic Solid Electrolyte
  • Test Example 1 Stability Test ⁇ Preparation of Solid Electrolyte Sheet> The surface-coated inorganic solid electrolyte obtained in Preparation Example 1 was left for 2 minutes in an atmosphere (dew point ⁇ 9 ° C. atmosphere) at 25 ° C. and a relative humidity of 10%. Thereafter, it was mixed with 10 ml of a toluene solvent, subjected to shaking treatment for 1 hour using a commercially available shaker, and sufficiently stirred. The obtained dispersion was applied by bar coating on a stainless steel foil and dried at 80 ° C. for 10 minutes to obtain a solid electrolyte sheet.
  • the alternating current impedance was measured at a frequency of 1 MHz to 1 Hz in a constant temperature bath at 30 ° C., using a SOLARTRON 1255B FREQUENCY RESPONSE ANALYZER (trade name), with a voltage amplitude of 5 mV.
  • a stainless steel foil is brought into contact with the upper part of the solid electrolyte layer, held by a commercially available hot press, and heated under pressure at 160 MPa and 150 ° C. for 30 minutes to heat melt sulfur as a surface coating material. After cooling, the upper stainless steel foil was removed to obtain a solid electrolyte sheet 2 (film thickness 150 ⁇ m).

Abstract

硫化物系無機固体電解質と、この硫化物系無機固体電解質表面を被覆する、100℃において固体でかつ特定温度で溶融する電子絶縁性無機材料とからなる無機固体電解質材料、この材料を用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池、及び全固体二次電池の製造方法。

Description

無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法
 本発明は、無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法に関する。
 リチウムイオン二次電池は、負極と、正極と、負極と正極との間に挟まれた電解質とを有し、両極間にリチウムイオンを往復移動させることにより充電と放電を可能とした蓄電池である。リチウムイオン二次電池には従来から、電解質として有機電解液が用いられてきた。しかし有機電解液は液漏れを生じやすく、また、過充電、過放電により電池内部で短絡が生じ発火するおそれもあり、信頼性と安全性のさらなる向上が求められている。
 このような状況下、有機電解液に代えて、不燃性の無機固体電解質を用いた全固体二次電池の開発が進められている。全固体二次電池は負極、電解質及び正極のすべてが固体からなり、有機電解液を用いた電池の課題とされる安全性ないし信頼性を大きく改善することができ、また長寿命化も可能になるとされる。
 全固体二次電池に用いる無機固体電解質として硫化物系無機固体電解質が知られている。硫化物系無機固体電解質はイオン伝導性に優れる一方、水分、酸素等との反応性が高く劣化しやすい。また、硫化物系無機固体電解質が水分と接触すると有害な硫化水素が発生する。したがって、硫化物系無機固体電解質の輸送工程、あるいは硫化物系無機固体電解質を用いた膜形成工程等において、硫化物系無機固体電解質の劣化を抑えて安定した取り扱いを可能とする技術の開発が望まれている。
 この問題に対処すべく特許文献1には、硫化物系無機固体電解質の表面をフッ素含有シラン化合物又はフッ素含有アクリル樹脂でコーティングすることにより、通常の大気下で取り扱っても硫化物系無機固体電解質の劣化が抑えられたことが記載されている。
特開2010-33732号公報
 しかし、上記特許文献1記載の技術では、硫化物系無機固体電解質の表面にフッ素含有シラン化合物又はフッ素含有アクリル樹脂が存在するために固体電解質粒子間の界面抵抗が少なからず上昇する。したがって、所望の優れたイオン伝導度を示す固体電解質層を形成することは難しい。
 本発明は、硫化物系無機固体電解質と、大気中の水分等との接触による硫化物系無機固体電解質の劣化を効果的に防ぐことができ、かつ、十分なイオン伝導性を示す膜の形成を可能とする無機固体電解質材料を提供することを課題とする。また本発明は、上記無機固体電解質材料を用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池、及び全固体二次電池の製造方法を提供することを課題とする。
 本発明者は上記課題に鑑み鋭意検討を重ねた結果、100℃においては固体であり、200℃以下の温度領域で熱溶融する電子絶縁性無機材料を用いて硫化物系無機固体電解質表面を被覆することにより、この硫化物系無機固体電解質と大気中の水分等との接触を効果的に防ぐことができ、硫化物系無機固体電解質の劣化を十分に抑制できることを見い出した。また、この表面被覆された硫化物系無機固体電解質を用いて膜を形成し、固体電解質の被覆物である電子絶縁性無機材料を熱溶融させることにより、余剰な被覆物(電子絶縁性無機材料)を毛細管現象により固体電解質粒子間の空隙へと除去することができ、イオン伝導性に優れた膜の形成が可能になることを見い出した。
 本発明はこれらの知見に基づきさらに検討を重ね、完成されるに至ったものである。
 すなわち、上記の課題は以下の手段により解決された。
〔1〕
 硫化物系無機固体電解質と、この硫化物系無機固体電解質表面を被覆する、100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性無機材料とからなる無機固体電解質材料。
〔2〕
 上記電子絶縁性無機材料が硫黄及び/又は改質硫黄である、〔1〕に記載の無機固体電解質材料。
〔3〕
 〔1〕又は〔2〕に記載の無機固体電解質材料と分散媒体とを含むスラリー。
〔4〕
 上記スラリーが有機バインダーを含有する、〔3〕に記載のスラリー。
〔5〕
 〔1〕又は〔2〕に記載の無機固体電解質材料を用いた全固体二次電池用固体電解質膜。
〔6〕
 上記全固体二次電池用固体電解質膜が有機バインダーを含有する、〔5〕に記載の全固体二次電池用固体電解質膜。
〔7〕
 基材と、この基材上に配された〔5〕又は〔6〕に記載の全固体二次電池用固体電解質膜を有する全固体二次電池用固体電解質シート。
〔8〕
 正極活物質と、〔1〕又は〔2〕に記載の無機固体電解質材料とを用いた全固体二次電池用正極活物質膜。
〔9〕
 上記全固体二次電池用正極活物質膜が有機バインダーを含有する、〔8〕に記載の全固体二次電池用正極活物質膜。
〔10〕
 負極活物質と、〔1〕又は〔2〕に記載の無機固体電解質材料とを用いた全固体二次電池用負極活物質膜。
〔11〕
 上記全固体二次電池用負極活物質膜が有機バインダーを含有する、〔10〕に記載の全固体二次電池用負極活物質膜。
〔12〕
 基材と、この基材上に配された〔8〕もしくは〔9〕に記載の全固体二次電池用正極活物質膜又は〔10〕もしくは〔11〕に記載の全固体二次電池用負極活物質膜を有する全固体二次電池用電極シート。
〔13〕
 固体電解質層として〔5〕又は〔6〕に記載の全固体二次電池用固体電解質膜を有する全固体二次電池。
〔14〕
 正極活物質層として〔8〕又は〔9〕に記載の全固体二次電池用正極活物質膜を有する全固体二次電池。
〔15〕
 負極活物質層として〔10〕又は〔11〕に記載の全固体二次電池用負極活物質膜を有する全固体二次電池。
〔16〕
 〔1〕又は〔2〕に記載の無機固体電解質材料を用いて形成した膜を熱することにより、この膜中の上記電子絶縁性無機材料を熱溶融させ、次いで上記膜を冷却することにより固体電解質層とすることを含む、全固体二次電池の製造方法。
〔17〕
 正極活物質と、〔1〕又は〔2〕に記載の無機固体電解質材料とを用いて形成した膜を熱することにより、この膜中の上記電子絶縁性無機材料を熱溶融させ、次いで上記膜を冷却することにより正極活物質層とすることを含む、全固体二次電池の製造方法。
〔18〕
 負極活物質と、〔1〕又は〔2〕に記載の無機固体電解質材料とを用いて形成した膜を熱することにより、この膜中の上記電子絶縁性無機材料を熱溶融させ、次いで上記膜を冷却することにより負極活物質層とすることを含む、全固体二次電池の製造方法。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明の無機固体電解質材料及びこれを用いたスラリーは、硫化物系無機固体電解質と大気中の水分等との接触が効果的に抑えられて硫化物系無機固体電解質の劣化を生じにくく、十分なイオン伝導性を示す膜の形成を可能とする。
 本発明の全固体二次電池用固体電解質膜、全固体二次電池用正極活物質膜及び全固体二次電池用負極活物質膜は、膜形成時等において水分等の影響による無機固体電解質の劣化が効果的に抑えられたものであり、イオン伝導性に優れる。
 本発明の全固体二次電池用固体電解質シートは、シート形成時等において水分等の影響による無機固体電解質の劣化が効果的に抑えられたものであり、固体電解質膜のイオン伝導性に優れる。
 本発明の全固体二次電池用電極シートは、シート形成時等において水分等の影響による無機固体電解質の劣化が効果的に抑えられたものであり、正極活物質膜又は負極活物質膜のイオン伝導性に優れる。
 本発明の全固体二次電池は、固体電解質層、正極活物質層及び/又は負極活物質層の形成時等において水分等の影響による無機固体電解質の劣化が効果的に抑えられたものであり、固体電解質層及び/又は活物質層のイオン伝導性に優れる。
 本発明の全固体二次電池の製造方法によれば、固体電解質層、正極活物質層及び/又は負極活物質層の形成時等において水分等の影響による無機固体電解質の劣化を効果的に抑えることができる。また本発明の全固体二次電池の製造方法によれば、固体電解質層、正極活物質層及び/又は負極活物質層のイオン伝導性に優れた全固体二次電池を得ることができる。
本発明の好ましい実施形態に係る全固体二次電池の基本構造を模式化して示す縦断面図である。
 本発明の好ましい実施形態について以下に説明する。
[無機固体電解質材料]
 本発明の無機固体電解質材料は、硫化物系無機固体電解質と、その表面を被覆する、100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性無機材料とにより構成される。硫化物系無機固体電解質は水分等と反応して劣化しやすいが、本発明の無機固体電解質材料は、この硫化物系無機固体電解質表面が特定の電子絶縁性無機材料で被覆されていることにより、水分等から硫化物系無機固体電解質が効果的にバリアされる。したがって、硫化物系無機固体電解質の搬送、全固体二次電池の製造工程等において、超低露点のドライルーム等を使用する必要性が低減され、搬送コスト、製造コスト等を低減することが可能となる。
<硫化物系無機固体電解質>
 硫化物系無機固体電解質は、硫黄原子(S)を含有し、かつ、周期律表第1族または第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有するものが好ましい。硫化物系無機固体電解質は、元素として少なくともLi、SおよびPを含有し、リチウムイオン伝導性を有しているものが好ましいが、目的または場合に応じて、Li、SおよびP以外の他の元素を含んでもよい。
 例えば下記式(I)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
 
   La1b1c1d1e1 式(I)
 
 式中、LはLi、NaおよびKから選択される元素を示し、Liが好ましい。Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1はさらに、1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましい。d1はさらに、2.5~10が好ましく、3.0~8.5がより好ましい。e1はさらに、0~5が好ましく、0~3がより好ましい。
 各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、PおよびSを含有するLi-P-S系ガラス、またはLi、PおよびSを含有するLi-P-S系ガラスセラミックスを用いることができる。
 硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mであらわされる元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
 Li-P-S系ガラスおよびLi-P-S系ガラスセラミックスにおける、LiSとPとの比率は、LiS:Pのモル比で、好ましくは60:40~90:10、より好ましくは68:32~78:22である。LiSとPとの比率をこの範囲にすることにより、リチウムイオン伝導度を高いものとすることができる。具体的には、リチウムイオン伝導度を好ましくは1×10-4S/cm以上、より好ましくは1×10-3S/cm以上とすることができる。上限は特にないが、1×10-1S/cm以下であることが実際的である。
 具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。たとえばLiS-P、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。このような原料組成物を用いて硫化物系無機固体電解質材料を合成する方法としては、例えば非晶質化法を挙げることができる。非晶質化法としては、例えば、メカニカルミリング法、溶液法および溶融急冷法を挙げられる。常温での処理が可能になり、製造工程の簡略化を図ることができるからである。
 硫化物系無機固体電解質の粒子径(体積平均粒子径)は特に限定されないが、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、硫化物系無機固体電解質粒子の平均粒子径の測定は、以下の手順で行う。硫化物系無機固体電解質粒子を、ヘプタンを用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザ回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
<電子絶縁性無機材料>
 本発明に用いる電子絶縁性無機材料は、100℃において固体(すなわち融点が100℃越え)で、かつ200℃以下の温度領域で熱溶融する無機材料である。「200℃以下の温度領域で熱溶融する」とは、1気圧下において、200℃以下の温度領域で熱溶融することを意味する。ここで「電子絶縁性」とは、電子を通過させない性質をいう。本発明において「電子絶縁性無機材料」という場合、導電率が測定温度25℃において10-9S/cm以下の無機材料であることが好ましい。
 このような電子絶縁性無機材料として、例えば、硫黄、改質硫黄、ヨウ素、硫黄とヨウ素の混合物等を挙げることができ、上記電子絶縁性無機材料として硫黄及び/又は改質硫黄を好適に用いることができる。
 上記硫黄は単体硫黄(硫黄そのもののほか多量体で存在するものも含む。)を意味する。また、改質硫黄は、硫黄と改質剤とを混練して得られるものである。例えば、純硫黄と改質添加剤であるオレフィン系化合物とを混練し、硫黄の一部を硫黄ポリマーに改質した改質硫黄を得ることができる。なお、改質硫黄は有機ポリマーを含み得るものであるが、本発明において「改質硫黄」は無機材料に含まれるものとする。
(電子絶縁性無機材料による被覆)
 本発明の無機固体電解質材料は、硫化物系無機固体電解質の表面が上記電子絶縁性無機材料で被覆された形態をとる。本発明において「被覆」とは、硫化物系無機固体電解質の表面の一部又は全部が被覆された形態を意味する。ここで、硫化物系無機固体電解質は通常は粒子状なので、硫化物系無機固体電解質の個々の粒子について、その一部又は全部が被覆されていることを意味する。
 硫化物系無機固体電解質の表面を上記電子絶縁性無機材料で被覆する方法に特に制限はない。例えば、硫化物系無機固体電解質と上記電子絶縁性無機材料とを乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミル、旋回気流型ジェットミル等を用いて粉砕しながら混合し、微粒子状にした電子絶縁性無機材料を硫化物系無機固体電解質粒子の表面に物理的に付着させる方法、微粒子化した上記電子絶縁性無機材料あるいは熱溶融状態にある上記電子絶縁性無機材料を硫化物系無機固体電解質粒子にスプレーし、電子絶縁性無機材料を硫化物系無機固体電解質粒子表面に付着させる方法、熱溶融状態にある上記電子絶縁性無機材料中に硫化物系無機固体電解質粒子を浸漬させる方法等を採用することができる。被覆性を考慮すると、熱溶融状態にある電子絶縁性無機材料中に硫化物系無機固体電解質粒子を浸漬させる方法が好ましい。
 上記電子絶縁性無機材料は、200℃以下の比較的低温で熱溶融するものであるため、本発明の無機固体電解質材料を用いて膜を形成した後、この膜を一定程度加熱することにより、電子絶縁性無機材料を膜中の空隙へと毛細管現象により移動させることができる。結果、膜を形成する電解質粒子の表面から余剰な電子絶縁性無機材料を除去することができ、得られる膜の界面抵抗を低減してイオン伝導度を向上させることが可能になる。
[スラリー]
 本発明のスラリーは、上述した本発明の無機固体電解質材料と、後述する分散媒体とを少なくとも含有する。本発明のスラリーは後述する有機バインダーを含有することも好ましい。また、本発明のスラリーは、後述する正極活物質及び/又は負極活物質を含有していてもよい。本発明のスラリーを塗布し、乾燥させて分散媒体を除去して膜を形成し、必要によりこの膜を熱して電子絶縁性無機材料を熱溶融させることにより、全固体二次電池に用いる固体電解質膜(層)、正極活物質膜(層)、及び負極活物質膜(層)の少なくともいずれかの膜を形成することができる。
 すなわち、本発明のスラリーが正極活物質と負極活物質のいずれも含まない場合には、本発明のスラリーを全固体二次電池に用いる固体電解質膜の形成に好適に用いることができる。また、本発明のスラリーが正極活物質を含み、かつ負極活物質を含まない場合には、本発明のスラリーを全固体二次電池に用いる正極活物質膜の形成に好適に用いることができる。また、本発明のスラリーが負極活物質を含み、かつ正極活物質を含まない場合には、本発明のスラリーを全固体二次電池に用いる負極活物質膜の形成に好適に用いることができる。なお、正極活物質及び/又は負極活物質を含むスラリーを全固体二次電池に用いる固体電解質膜の形成に用いてもよいが、固体電解質膜は通常は、正極活物質及び負極活物質をいずれも含まない形態である。
 本発明のスラリーが正極活物質と負極活物質のいずれも含まない場合、本発明のスラリーの全固形分中、本発明の無機固体電解質材料の含有量は50~90質量%が好ましく、70~85質量%がより好ましい。
 また、本発明のスラリーが正極活物質と無機固体電解質材料を含む場合には、本発明のスラリーの全固形分中、正極活物質と無機固体電解質材料の含有量の合計は70~98質量%が好ましく、80~95質量%がより好ましい。
 また、本発明のスラリーが負極活物質と無機固体電解質材料を含む場合には、本発明のスラリーの全固形分中、負極活物質と無機固体電解質材料の含有量の合計は65~95質量%が好ましく、75~95質量%がより好ましい。
<分散媒体>
 本発明のスラリーに含まれる分散媒体は、スラリー中の各成分を分散ないし溶解させることができれば特に制限はなく、例えば、エーテル化合物溶媒、アミド化合物溶媒、ケトン化合物溶媒、芳香族化合物溶媒、脂肪族化合物溶媒、及びニトリル化合物溶媒を用いることができる。
 エーテル化合物溶媒としては、例えば、アルキレングリコールアルキルエーテル(好ましくはエチレングリコールジエチルエーテル(ジエトキシエタン))、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコール、ポリエチレングリコール、プロピレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジブチルエーテル等)、ジアルキルエーテル(ジメチルエーテル、ジエチルエーテル、ジブチルエーテル等)、アルキルアリールエーテル(アニソール)、テトラヒドロフラン、テトラヒドロピラン、ジオキサン(1,2-、1,3-及び1,4-の各異性体を含む)、ジオキソランが挙げられる。
 アミド化合物溶媒としては、例えば、N,N-ジメチルホルムアミド、1-メチル-2-ピロリドン、2-ピロリジノン、1,3-ジメチル-2-イミダゾリジノン、2-ピロリジノン、ε-カプロラクタム、ホルムアミド、N-メチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロパンアミドおよびヘキサメチルホスホリックトリアミドが挙げられる。
 ケトン化合物溶媒としては、例えば、アセトン、メチルエチルケトンおよびシクロヘキサノンが挙げられる。
 芳香族化合物溶媒としては、例えば、ベンゼン、トルエン、キシレンおよびメシチレンが挙げられる。
 脂肪族化合物溶媒としては、例えば、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、オクタン、ペンタン、シクロペンタンおよびシクロオクタンなどが挙げられる。
 ニトリル化合物溶媒としては、例えば、アセトニトリル、プロピロニトリルおよびブチロニトリルが挙げられる。
 上記分散媒体は常圧(1気圧)での沸点が50℃以上であることが好ましく、70℃以上であることがより好ましい。上限は250℃以下であることが好ましく、220℃以下であることがさらに好ましい。上記分散媒体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 本発明のスラリーは、なかでも、分散媒体としてエーテル化合物溶媒及び/又は脂肪族化合物溶媒を含有することが好ましく、エーテル化合物溶媒を含有することがより好ましい。このエーテル化合物溶媒としては、ジブチルエーテル、ジエトキシエタン及び/又はジオキサンが好ましい。脂肪族化合物溶媒としては、ヘプタン、オクタン及び/又はシクロオクタンが好ましい。
 本発明のスラリー中の分散媒体の含有量は特に制限されず、20~80質量%が好ましく、30~70質量%がより好ましく、40~60質量%が特に好ましい。
 分散媒体は1種を単独で用いても、2種以上を組み合わせて用いてもよい。
<有機バインダー>
 本発明のスラリーが有機バインダーを含有する場合、この有機バインダーとしては有機ポリマーが挙げられる。例えば、含フッ素樹脂、炭化水素系熱可塑性樹脂及び/又はアクリル樹脂を好適に用いることができる。
 含フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリビニレンジフルオリド(PVdF)、ポリビニレンジフルオリドとヘキサフルオロプロピレンとの共重合体(PVdF-HFP)が挙げられる。
 炭化水素系熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム(SBR)、水素添加スチレンブタジエンゴム(HSBR)、ブチレンゴム、アクリロニトリル-ブタジエンゴム、ポリブタジエン、ポリイソプレンが挙げられる。
 アクリル樹脂としては、各種の(メタ)アクリルモノマー類、(メタ)アクリルアミドモノマー類、およびこれら樹脂を構成するモノマーの共重合体(好ましくは、アクリル酸とアクリル酸メチルとの共重合体)が挙げられる。また、アクリル樹脂とビニル系モノマーとの共重合体(コポリマー)も好適に用いられる。例えば、(メタ)アクリル酸メチルとスチレンとの共重合体、(メタ)アクリル酸メチルとアクリロニトリルとの共重合体、(メタ)アクリル酸ブチルとアクリロニトリルとスチレンとの共重合体が挙げられる。本明細書において、コポリマーは、統計コポリマーおよび周期コポリマーのいずれでもよく、ブロックコポリマーが好ましい。
 また、上記有機バインダーとして、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、セルロース誘導体樹脂等も好適に用いることができる。
 有機バインダーは1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 上記有機バインダーは、強い結着性を示す(集電体からの剥離抑制および、固体界面の結着によるサイクル寿命の向上)の観点から、上述のアクリル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、含フッ素樹脂および炭化水素系熱可塑性樹脂からなる群から選択される少なくとも1種であることが好ましい。
 上記有機バインダーは、粒子表面への濡れ性や吸着性を高めるため、極性基を有することが好ましい。極性基とは、ヘテロ原子を含む1価の基、例えば、酸素原子、窒素原子および硫黄原子のいずれかと水素原子が結合した構造を含む1価の基が好ましく、具体例としては、カルボキシ基、ヒドロキシ基、アミノ基、リン酸基およびスルホ基が挙げられる。
 上記有機バインダーは粒子状であることも好まし。粒子状である場合、その平均粒子径は、通常10nm~30μmが好ましく、10~1000nmが好ましい。
 上記有機バインダーの重量平均分子量(Mw)は10,000以上が好ましく、20,000以上がより好ましく、30,000以上がさらに好ましい。上限としては、1,000,000以下が好ましく、200,000以下がより好ましく、100,000以下がさらに好ましい。
 本発明のスラリーの全固形分中、有機バインダーの含有量は、0~8質量%が好ましく、0.5~6質量%がより好ましく、1~3質量%がさらに好ましい。
 本発明のスラリーは、リチウム塩、導電助剤、分散剤等が含まれていることも好ましい。
<正極活物質>
 本発明のスラリーが含有してもよい正極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、遷移金属酸化物や、有機物、硫黄などのLiと複合化できる元素や硫黄と金属の複合物などでもよい。
 中でも正極活物質として遷移金属酸化物を用いることが好ましく、遷移金属元素M(Co、Ni、Fe、Mn、CuおよびVから選択される1種以上の元素)を有する遷移金属酸化物がより好ましい。また、この遷移金属酸化物に元素M(リチウム以外の金属周期律表の第1(Ia)族の元素、第2(IIa)族の元素、Al、Ga、In、Ge、Sn、Pb、Sb、Bi、Si、PまたはBなどの元素)を混合してもよい。混合量としては、遷移金属元素Mの量(100mol%)に対して0~30mol%が好ましい。Li/Maのモル比が0.3~2.2になるように混合して合成されたものが、より好ましい。
 遷移金属酸化物の具体例としては、(MA)層状岩塩型構造を有する遷移金属酸化物、(MB)スピネル型構造を有する遷移金属酸化物、(MC)リチウム含有遷移金属リン酸化合物、(MD)リチウム含有遷移金属ハロゲン化リン酸化合物および(ME)リチウム含有遷移金属ケイ酸化合物等が挙げられる。
 (MA)層状岩塩型構造を有する遷移金属酸化物の具体例として、LiCoO(コバルト酸リチウム[LCO])、LiNi(ニッケル酸リチウム)LiNi0.85Co0.10Al0.05(ニッケルコバルトアルミニウム酸リチウム[NCA])、LiNi1/3Co1/3Mn1/3(ニッケルマンガンコバルト酸リチウム[NMC])およびLiNi0.5Mn0.5(マンガンニッケル酸リチウム)が挙げられる。
 (MB)スピネル型構造を有する遷移金属酸化物の具体例として、LiMn(LMO)、LiCoMnO4、LiFeMn、LiCuMn、LiCrMnおよびLiNiMnが挙げられる。
 (MC)リチウム含有遷移金属リン酸化合物としては、例えば、LiFePOおよびLiFe(PO等のオリビン型リン酸鉄塩、LiFeP等のピロリン酸鉄類、LiCoPO等のリン酸コバルト類ならびにLi(PO(リン酸バナジウムリチウム)等の単斜晶ナシコン型リン酸バナジウム塩が挙げられる。
 (MD)リチウム含有遷移金属ハロゲン化リン酸化合物としては、例えば、LiFePOF等のフッ化リン酸鉄塩、LiMnPOF等のフッ化リン酸マンガン塩およびLiCoPOF等のフッ化リン酸コバルト類が挙げられる。
 (ME)リチウム含有遷移金属ケイ酸化合物としては、例えば、LiFeSiO、LiMnSiOおよびLiCoSiO等が挙げられる。
 本発明では、LCO、LMO、NCA又はNMCがより好ましい。
 正極活物質の形状は特に制限されないが粒子状が好ましい。正極活物質の体積平均粒子径(球換算平均粒子径)は特に限定されない。例えば、0.1~50μmとすることができる。正極活物質を所定の粒子径にするには、通常の粉砕機や分級機を用いればよい。焼成法によって得られた正極活物質は、水、酸性水溶液、アルカリ性水溶液、有機溶剤にて洗浄した後使用してもよい。正極活物質粒子の体積平均粒子径(球換算平均粒子径)は、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定することができる。
 上記正極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 正極活物質層を形成する場合、正極活物質層の単位面積(cm)当たりの正極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 正極活物質の、スラリー中における含有量は、特に限定されず、固形分100質量%において、10~95質量%が好ましく、30~90質量%がより好ましく、50~85質量がさらに好ましく、55~80質量%が特に好ましい。
<負極活物質>
 本発明のスラリーが含有してもよい負極活物質は、可逆的にリチウムイオンを挿入および放出できるものが好ましい。その材料は、上記特性を有するものであれば、特に制限はなく、炭素質材料、酸化錫等の金属酸化物、酸化ケイ素、金属複合酸化物、リチウム単体およびリチウムアルミニウム合金等のリチウム合金、並びに、Sn、Si、AlおよびIn等のリチウムと合金形成可能な金属等が挙げられる。中でも、炭素質材料又はリチウム複合酸化物が信頼性の点から好ましく用いられる。また、金属複合酸化物としては、リチウムを吸蔵および放出可能であることが好ましい。その材料は、特には制限されないが、構成成分としてチタン及び/又はリチウムを含有していることが、高電流密度充放電特性の観点で好ましい。
 負極活物質として用いられる炭素質材料とは、実質的に炭素からなる材料である。例えば、石油ピッチ、アセチレンブラック(AB)等のカーボンブラック、黒鉛(天然黒鉛、気相成長黒鉛等の人造黒鉛等)、及びPAN(ポリアクリロニトリル)系の樹脂やフルフリルアルコール樹脂等の各種の合成樹脂を焼成した炭素質材料を挙げることができる。さらに、PAN系炭素繊維、セルロース系炭素繊維、ピッチ系炭素繊維、気相成長炭素繊維、脱水PVA(ポリビニルアルコール)系炭素繊維、リグニン炭素繊維、ガラス状炭素繊維および活性炭素繊維等の各種炭素繊維類、メソフェーズ微小球体、グラファイトウィスカーならびに平板状の黒鉛等を挙げることもできる。
 負極活物質として適用される金属酸化物及び金属複合酸化物としては、特に非晶質酸化物が好ましく、さらに金属元素と周期律表第16族の元素との反応生成物であるカルコゲナイトも好ましく用いられる。ここでいう非晶質とは、CuKα線を用いたX線回折法で、2θ値で20°~40°の領域に頂点を有するブロードな散乱帯を有するものを意味し、結晶性の回折線を有してもよい。
 上記非晶質酸化物及びカルコゲナイドからなる化合物群の中でも、半金属元素の非晶質酸化物、及びカルコゲナイドがより好ましく、周期律表第13(IIIB)族~15(VB)族の元素、Al、Ga、Si、Sn、Ge、Pb、SbおよびBiの1種単独あるいはそれらの2種以上の組み合わせからなる酸化物、ならびにカルコゲナイドが特に好ましい。好ましい非晶質酸化物及びカルコゲナイドの具体例としては、例えば、Ga、SiO、GeO、SnO、SnO、PbO、PbO、Pb、Pb、Pb、Sb、Sb、SbBi、SbSi、Bi、SnSiO、GeS、SnS、SnS、PbS、PbS、Sb、SbおよびSnSiSが好ましく挙げられる。また、これらは、酸化リチウムとの複合酸化物、例えば、LiSnOであってもよい。
 負極活物質はチタン原子を含有することも好ましい。より具体的にはLiTi12(チタン酸リチウム[LTO])がリチウムイオンの吸蔵放出時の体積変動が小さいことから急速充放電特性に優れ、電極の劣化が抑制されリチウムイオン二次電池の寿命向上が可能となる点で好ましい。
 本発明においては、Si系の負極を適用することもまた好ましい。一般的にSi負極は、炭素負極(黒鉛およびアセチレンブラックなど)に比べて、より多くのLiイオンを吸蔵できる。すなわち、単位質量あたりのLiイオンの吸蔵量が増加する。そのため、電池容量を大きくすることができる。その結果、バッテリー駆動時間を長くすることができるという利点がある。
 負極活物質の形状は特に制限されないが粒子状が好ましい。負極活物質の粒子径(体積平均粒子径)は、0.1~60μmが好ましい。所定の粒子径にするには、通常の粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、衛星ボールミル、遊星ボールミルおよび旋回気流型ジェットミルや篩などが好適に用いられる。粉砕時には水、あるいはメタノール等の有機溶媒を共存させた湿式粉砕も必要に応じて行うことができる。所望の粒子径とするためには分級を行うことが好ましい。分級方法としては特に限定はなく、篩、風力分級機などを必要に応じて用いることができる。分級は乾式および湿式ともに用いることができる。負極活物質粒子の平均粒子径は、前述の正極活物質の体積平均粒子径の測定方法と同様の方法により測定することができる。
 上記焼成法により得られた化合物の化学式は、測定方法として誘導結合プラズマ(ICP)発光分光分析法、簡便法として、焼成前後の粉体の質量差から算出できる。
 上記負極活物質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 負極活物質層を形成する場合、負極活物質層の単位面積(cm)当たりの負極活物質の質量(mg)(目付量)は特に限定されるものではない。設計された電池容量に応じて、適宜に決めることができる。
 負極活物質の、スラリー中における含有量は、特に限定されず、スラリーの固形分中、10~80質量%であることが好ましく、20~80質量%がより好ましい。
 本発明のスラリーは、例えば、アルミナ、シリカ、ゼオライト、窒化ホウ素等を含有していてもよい。
 正極活物質または負極活物質を含む電極表面は硫黄またはリンで表面処理されていてもよい。また、正極活物質または負極活物質の粒子表面は、上記表面被覆の前後において活性光線または活性気体(プラズマ等)により表面処理を施されていても良い。
[全固体二次電池用固体電解質膜]
 本発明の全固体二次電池用固体電解質膜(以下、単に「本発明の電解質膜」という。)は、本発明の無機固体電解質材料を用いて形成された膜であり、好ましくは上述した本発明のスラリーを用いて形成した膜を乾燥させて得られる。本発明の電解質膜は、より好ましくは、膜形成後に硫化物系無機固体電解質表面を被覆する電子絶縁性無機材料を熱溶融させた後、冷却して形成される。この熱溶融工程により電子絶縁性無機材料を、硫化物系無機固体電解質粒子間の空隙へと毛細管現象により移動させることができ、これにより硫化物系無機固体電解質表面に存在する過剰の電子絶縁性無機材料を除去することができる。その結果、膜全体としてみると硫化物系無機固体電解質粒子間同士の距離が縮まり、界面抵抗が低下してイオン伝導性を向上させることができる。
 また、熱溶融工程後には、膜中の空隙が電子絶縁性無機材料で十分に満たされるために、この電解質膜を固体電解質層として有する全固体二次電池が仮に破壊されるようなことがあっても、固体電解質層への水分の侵入も効果的に防ぐことができ、硫化水素の発生速度を抑えることが可能になる利点もある。また、膜中の空隙が電子絶縁性無機材料で十分に満たされることにより、全固体二次電池の充放電により負極から正極に向けて成長するデンドライトをブロックすることも可能になり、内部短絡のリスクを低減することも可能となる。
 本発明の電解質膜は全固体二次電池の固体電解質層として好適に用いられる。
 本発明の電解質膜は、有機バインダーを含有することが好ましい。この有機バインダーは、本発明のスラリーの説明において挙げたものと同義である。本発明の電解質膜は正極活物質及び/又は負極活物質を含有してもよいが、通常は正極活物質を含有せず、負極活物質も含有しない。
 本発明の電解質膜中、本発明の無機固体電解質材料の含有量は50~98質量%が好ましく、60~95質量%がより好ましく、70~90質量%がさらに好ましい。
 本発明の電解質膜中、有機バインダーの含有量は0~8質量%が好ましく、0.5~6質量%がより好ましく、1~3質量%がさらに好ましい。
 本発明の電解質膜は、上記の無機固体電解質材料以外でかつ有機バインダー以外の成分として、例えば、正極活物質、負極活物質、アルミナ、シリカ、ゼオライト、窒化ホウ素等を含有していてもよい。
 本発明の電解質膜の好ましい膜厚は、後述する全固体二次電池における固体電解質層の層厚と同じである。
 本発明の電解質膜の形成方法は後述する。
[全固体二次電池用正極活物質膜]
 本発明の全固体二次電池用正極活物質膜(以下、単に「本発明の正極活物質膜」という。)は、正極活物質と、本発明の無機固体電解質材料を用いて形成された膜であり、好ましくは上述した本発明のスラリー(正極活物質を含有し、負極活物質を含有しない形態)を用いて形成した膜を乾燥させて得られる。本発明の正極活物質膜は、より好ましくは、膜形成後に硫化物系無機固体電解質表面を被覆する電子絶縁性無機材料を熱溶融させ、次いで冷却して形成される。この熱溶融工程により電子絶縁性無機材料を、硫化物系無機固体電解質粒子間、正極活物質間、ないしは硫化物系無機固体電解質粒子と正極活物質との間の空隙へと毛細管現象により移動させることができ、これにより硫化物系無機固体電解質表面に存在する余剰の電子絶縁性無機材料を除去することができる。結果、界面抵抗を低下させることができ、イオン伝導性が向上する。
 また、熱溶融工程後には、膜中に存在する空隙が電子絶縁性無機材料で十分に満たされるために、この正極活物質膜を正極活物質層として有する全固体二次電池が仮に破壊されるようなことがあっても、正極活物質層中への水分の侵入も効果的に防ぐことができ、硫化水素の発生速度を抑えることが可能になる利点もある。
 本発明の正極活物質膜は全固体二次電池の正極活物質層として好適に用いられる。
 本発明の正極活物質膜は、有機バインダーを含有することが好ましい。この有機バインダーは、本発明のスラリーの説明において挙げたものと同義である。
 本発明の正極活物質膜中、本発明の無機固体電解質材料の含有量は10~40質量%が好ましく、15~30質量%がより好ましい。
 本発明の正極活物質膜中、正極活物質の含有量は50~90質量%が好ましく、55~88質量%がより好ましく、60~80質量%がさらに好ましい。
 本発明の正極活物質膜中、有機バインダーの含有量は0~8質量%が好ましく、0.5~6質量%がより好ましく、1~3質量%がさらに好ましい。
 本発明の正極活物質膜は、例えば、アルミナ、シリカ、ゼオライト、窒化ホウ素等を含有していてもよい。
 本発明の正極活物質膜の好ましい膜厚は、後述する全固体二次電池における正極活物質層の層厚と同じである。
 本発明の正極活物質膜の形成方法は後述する。
[全固体二次電池用負極活物質膜]
 本発明の全固体二次電池用負極活物質膜(以下、単に「本発明の負極活物質膜」という。)は、負極活物質と、本発明の無機固体電解質材料を用いて形成された膜であり、好ましくは上述した本発明のスラリー(負極活物質を含有し、正極活物質を含有しない形態)を用いて形成した膜を乾燥させて得られる。本発明の負極活物質膜は、より好ましくは、膜形成後に硫化物系無機固体電解質表面を被覆する電子絶縁性無機材料を熱溶融させ、次いで冷却して形成される。この熱溶融工程により電子絶縁性無機材料を、硫化物系無機固体電解質粒子間、負極活物質間、ないしは硫化物系無機固体電解質粒子と負極活物質との間の空隙へと毛細管現象により移動させることができ、これにより硫化物系無機固体電解質表面に存在する過剰の電子絶縁性無機材料を除去することができる。結果、界面抵抗を低下させることができ、イオン伝導性が向上する。
 また、熱溶融工程後には、膜中に存在する空隙が電子絶縁性無機材料で十分に満たされるために、この負極活物質膜を負極活物質層として有する全固体二次電池が仮に破壊されるようなことがあっても、負極活物質層中への水分の侵入も効果的に防ぐことができ、硫化水素の発生速度を抑えることが可能になる利点もある。
 本発明の負極活物質膜は全固体二次電池の負極活物質層として好適に用いられる。
 本発明の負極活物質膜は、有機バインダーを含有することが好ましい。この有機バインダーは、本発明のスラリーの説明において挙げたものと同義である。
 本発明の負極活物質膜中、本発明の無機固体電解質材料の含有量は10~60質量%が好ましく、15~50質量%がより好ましく、15~45質量%がさらに好ましく、20~40質量%がさらに好ましい。
 本発明の負極活物質膜中、負極活物質の含有量は35~95質量%が好ましく、38~92質量%がより好ましく、50~90質量%がさらに好ましく、50~83質量%がさらに好ましく、55~80質量%がさらに好ましく、60~80質量%がさらに好ましい。
 本発明の負極活物質膜中、有機バインダーの含有量は0~8質量%が好ましく、0.5~6質量%がより好ましく、1~3質量%がさらに好ましい。
 本発明の負極活物質膜は、例えば、アルミナ、シリカ、ゼオライト、窒化ホウ素等を含有していてもよい。
 本発明の負極活物質膜の好ましい膜厚は、後述する全固体二次電池における負極活物質層の層厚と同じである。
 本発明の負極活物質膜の形成方法は後述する。
 本発明の電解質膜、正極活物質膜及び負極活物質膜は、リチウム塩、導電助剤、分散剤等が含まれていることも好ましい。
[膜形成方法]
 本発明において、固体電解質膜(層)、正極活物質膜(層)、及び負極活物質膜(層)の形成方法は特に限定されず、一般的な方法を適宜に選択できる。例えば、塗布(好ましくは湿式塗布)、スプレー塗布、スピンコート塗布、ディップコート、スリット塗布、ストライプ塗布およびバーコート塗布が挙げられる。
 塗布した後には通常、乾燥処理が施される。また、重層塗布した後に乾燥処理をしてもよい。乾燥温度は特に限定されない。下限は30℃以上が好ましく、60℃以上がより好ましく、80℃以上がさらに好ましい。上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下がさらに好ましい。このような温度範囲で加熱することで、分散媒体を除去し、固体状態にすることができる。また、温度を高くしすぎず、全固体二次電池の各部材を損傷せずに済むため好ましい。これにより、全固体二次電池において、優れた総合性能を示し、かつ良好な結着性を得ることができる。
 形成した固体電解質膜(層)、正極活物質膜(層)、及び負極活物質膜(層)は、加圧することが好ましい。加圧方法としては油圧シリンダープレス機等が挙げられる。加圧力としては、特に限定されず、一般的には50~1500MPaの範囲であることが好ましい。また、この加圧と同時に加熱してもよい。加熱温度としては、特に限定されず、一般的には30~300℃の範囲である。硫化物系無機固体電解質のガラス転移温度よりも高い温度でプレスすることもできる。
 加圧は塗布溶媒又は分散媒をあらかじめ乾燥させた状態で行ってもよいし、溶媒又は分散媒が残存している状態で行ってもよい。
 加圧中の雰囲気としては、特に限定されず、大気下、乾燥空気下(露点-20℃以下)および不活性ガス中(例えばアルゴンガス中、ヘリウムガス中、窒素ガス中)などいずれでもよい。
 加圧時間は短時間(例えば数時間以内)で高い圧力をかけてもよいし、長時間(1日以上)かけて中程度の圧力をかけてもよい。
 本発明において膜(層)形成工程は、上述のように電子絶縁性無機材料を熱溶融させる工程を含むことが好ましい。上記乾燥温度を調整したり、形成した膜を乾燥後、電子絶縁性無機材料の熱溶融温度以上の温度に熱したりすることにより電子絶縁性無機材料を熱溶融させることができ、膜(層)中の空隙へと余分な電子絶縁性無機材料を毛細管現象により移動させることができる。
 本発明において熱溶融のための加熱温度は200℃以下が好ましい。
[全固体二次電池用固体電解質シート、全固体二次電池用電極シート]
 本発明の全固体二次電池用固体電解質シート(以下、単に「本発明の電解質シート」とも称す。)は、基材と、この基材上に配された、上述した本発明の電解質膜を有する。
 また本発明の全固体二次電池用電極シート(以下、単に「本発明の電極シート」とも称す。)は、基材と、この基材上に配された、上述した本発明の正極活物質膜又は本発明の負極活物質膜を有する。基材上への固体電解質膜、正極活物質膜又は負極活物質膜の形成方法は、上述した膜形成方法を採用することができる。
 基材としては、固体電解質膜、正極活物質膜あるいは負極活物質膜を支持できるものであれば特に限定されず、後記集電体で説明する材料、有機材料および無機材料等のシート体(板状体)等が挙げられる。有機材料としては、各種ポリマー等が挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレンおよびセルロース等が挙げられる。無機材料としては、例えば、ガラスおよびセラミック等が挙げられる。
 本発明の全固体二次電池用固体電解質シートは、全固体二次電池を製造する材料として用いることができる。すなわち、このシートから基材を剥離して得られる固体電解質膜を全固体二次電池の固体電解質層として用いることができる。
 本発明の電極シートは、全固体二次電池を製造する材料として用いることができる。すなわち、このシートから基材を剥離して得られる正極活物質膜を全固体二次電池の正極活物質層として用いることができ、また、このシートから基材を剥離して得られる負極活物質膜を全固体二次電池の負極活物質層として用いることができる。また、基材として集電体材料を用いれば、本発明の電極シートをそのまま、全固体二次電池の正極集電体と正極活物質層との積層構造、あるいは負極集電体と負極活物質層との積層構造として用いることができる。
[全固体二次電池]
 本発明の全固体二次電池は、本発明の固体電解質膜、本発明の正極活物質膜、及び/又は本発明の負極活物質膜を有すれば(すなわち、本発明の固体電解質膜、本発明の正極活物質膜、及び本発明の負極活物質膜の少なくともいずれかの膜を有すれば)、その形態は特に限定されない。
 図1は、本発明の全固体二次電池の一実施形態について、電池を構成する各層の積層状態を模式化して示す断面図である。本実施形態の全固体二次電池10は、負極側からみて、負極集電体1、負極活物質層2、固体電解質層3、正極活物質層4、正極集電体5を、この順に積層してなる構造を有しており、隣接する層同士は直に接触している。このような構造を採用することで、充電時には、負極側に電子(e)が供給され、同時に正極活物質を構成するアルカリ金属又はアルカリ土類金属がイオン化して固体電解質層3を通過(伝導)して移動し、負極に蓄積される。例えばリチウムイオン二次電池であれば、負極にリチウムイオン(Li)が蓄積されることになる。
 一方、放電時には、負極に蓄積された上記のアルカリ金属イオンないしアルカリ土類金属イオンが正極側に戻され、作動部位6に電子を供給することができる。図示した全固体二次電池の例では、作動部位6に電球を採用しており、放電によりこれが点灯するようにされている。
 本発明の全固体二次電池において、正極活物質層、固体電解質層、及び負極活物質層の厚さは特に限定されない。一般的な電池の寸法を考慮すると、上記各層の厚さは10~1000μmが好ましく、20μm以上500μm未満がより好ましい。
<集電体(金属箔)>
 正極集電体5及び負極集電体1は、電子伝導体が好ましい。
 本明細書において、正極集電体及び負極集電体のいずれか、又は、両方を合わせて、単に、集電体と称することがある。
 正極集電体を形成する材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウムまたはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたもの(薄膜を形成したもの)が好ましく、その中でも、アルミニウムおよびアルミニウム合金がより好ましい。
 負極集電体を形成する材料としては、アルミニウム、銅、銅合金、ステンレス鋼、ニッケルおよびチタンなどの他に、アルミニウム、銅、銅合金またはステンレス鋼の表面にカーボン、ニッケル、チタンあるいは銀を処理させたものが好ましく、アルミニウム、銅、銅合金およびステンレス鋼がより好ましい。
 集電体の形状は、通常フィルムシート状のものが使用されるが、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群の成形体なども用いることができる。
 集電体の厚みは、特に限定されないが、1~500μmが好ましい。また、集電体表面は、表面処理により凹凸を付けることも好ましい。
 本発明の全固体二次電池において、負極集電体、負極活物質層、固体電解質層、正極活物質層及び正極集電体の各層の間又はその外側には、機能性の層や部材等を適宜介在ないし配設してもよい。また、各層は単層で構成されていても、複層で構成されていてもよい。
[全固体二次電池の製造方法]
 本発明の全固体二次電池の好ましい製造方法について説明する。
<固体電解質層に本発明の無機固体電解質材料を用いた全固体二次電池の製造>
 基材(例えば、集電体となる金属箔)上に、正極活物質層を構成する成分を含む組成物を塗布して正極活物質層を形成し、全固体二次電池用正極シートを作製する。次いで、この正極活物質層の上に、本発明の無機固体電解質材料を少なくとも含有する組成物(好ましくは、正極活物質と負極活物質のいずれも含有しない本発明のスラリー)を塗布して層を形成する。次いでこの層を、硫化物系無機固体電解質を被覆する電子絶縁性無機材料が熱溶融する温度まで加熱し、電子絶縁性無機材料の熱溶融物を毛細管現象により層中の空隙に浸透させる。その後、冷却することにより、固体電解質層を形成することができる。
 冷却後、固体電解質層の上に、負極用材料として、負極活物質層を形成する成分を含有する組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。また、基材/負極活物質層からなる2層構造の積層体と、基材/正極活物質層/固体電解質層からなる3層構造の積層体とを調製し、これらを重ねあわせて本発明の全固体二次電池を得ることもできる。また基材/正極活物質層からなる2層構造の積層体と、基材/負極活物質層/固体電解質層からなる3層構造の積層体とを調製し、これらを重ねあわせて本発明の全固体二次電池を得ることもできる。
 固体電解質層の形成において上記電子絶縁性無機材料を溶融させるための加熱は、上記の例では層を形成した直後に行っている。しかし本発明はこの実施形態に限定されない。すなわち、層を形成した後であれば、全固体二次電池の製造工程のどの段階で加熱してもよい。また、層形成自体(塗布工程自体)を上記電子絶縁性無機材料の熱溶融温度以上の温度で行うこともでき、また層形成における乾燥工程を熱溶融温度以上の温度とすることもできる。これらの場合、電子絶縁性無機材料を熱溶融させるための加熱工程を別途設ける必要はない。
 すなわち、固体電解質層に本発明の無機固体電解質材料を用いた全固体二次電池の製造方法の好ましい実施形態は、本発明の無機固体電解質材料を用いて形成した膜を熱することにより、この膜中の、硫化物系無機固体電解質を被覆する電子絶縁性無機材料を熱溶融させ、次いでこの膜を冷却することにより固体電解質層とすることを含む。
<正極活物質層に本発明の無機固体電解質材料を用いた全固体二次電池の製造>
 基材(例えば、集電体となる金属箔)上に、正極活物質と本発明の無機固体電解質材料とを少なくとも含む組成物(好ましくは、正極活物質を含有する本発明のスラリー)を塗布して正極活物質層を形成する。次いでこの層を、硫化物系無機固体電解質を被覆する電子絶縁性無機材料が熱溶融する温度まで加熱し、電子絶縁性無機材料の熱溶融物を毛細管現象により層中の空隙に浸透させる。その後、冷却することにより、全固体二次電池用正極シートを作製する。
 次いで、この正極活物質層の上に、固体電解質層を形成する成分を含有する組成物を塗布して固体電解質層を形成する。この固体電解質層の上に、負極用材料として、負極活物質層を形成する成分を含有する組成物を塗布して、負極活物質層を形成する。負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。また、基材/負極活物質層からなる2層構造の積層体と、基材/正極活物質層/固体電解質層からなる3層構造の積層体とを調製し、これらを重ねあわせて本発明の全固体二次電池を得ることもできる。また基材/正極活物質層からなる2層構造の積層体と、基材/負極活物質層/固体電解質層からなる3層構造の積層体とを調製し、これらを重ねあわせて本発明の全固体二次電池を得ることもできる。
 正極活物質層の形成において上記電子絶縁性無機材料を溶融させるための加熱は、上記の例では層を形成した直後に行っている。しかし本発明はこの実施形態に限定されない。すなわち、層を形成した後であれば、全固体二次電池の製造工程のどの段階で加熱してもよい。また、層形成自体(塗布工程自体)を上記電子絶縁性無機材料の熱溶融温度以上の温度で行うこともでき、また層形成における乾燥工程を熱溶融温度以上の温度とすることもできる。これらの場合、電子絶縁性無機材料を熱溶融させるための加熱工程を別途設ける必要はない。
 すなわち、正極活物質層に本発明の無機固体電解質材料を用いた全固体二次電池の製造方法の好ましい実施形態は、正極活物質と本発明の無機固体電解質材料とを用いて形成した膜を熱することにより、この膜中の、硫化物系無機固体電解質を被覆する電子絶縁性無機材料を熱溶融させ、次いでこの膜を冷却することにより正極活物質層とすることを含む。
<負極活物質層に本発明の無機固体電解質材料を用いた全固体二次電池の製造>
 基材(例えば、集電体となる金属箔)上に、正極活物質層を構成する成分を含有する組成物を塗布して正極活物質層を形成する。
 次いで、この正極活物質層の上に、固体電解質層を形成する成分を含有する組成物を塗布して固体電解質層を形成する。
 この固体電解質層の上に、負極活物質と本発明の無機固体電解質材料とを少なくとも含む組成物(好ましくは、負極活物質を含有する本発明のスラリー)を塗布して負極活物質層を形成する。次いでこの層を、硫化物系無機固体電解質を被覆する電子絶縁性無機材料が熱溶融する温度まで加熱し、電子絶縁性無機材料の熱溶融物を毛細管現象により層中の空隙に浸透させる。その後、冷却することにより負極活物質層とする。
 負極活物質層の上に、負極集電体(金属箔)を重ねることにより、正極活物質層と負極活物質層の間に固体電解質層が挟まれた構造の全固体二次電池を得ることができる。必要によりこれを筐体に封入して所望の全固体二次電池とすることができる。
 また、各層の形成方法を逆にして、負極集電体上に、負極活物質層、固体電解質層及び正極活物質層を形成し、正極集電体を重ねて、全固体二次電池を製造することもできる。また、基材/負極活物質層からなる2層構造の積層体と、基材/正極活物質層/固体電解質層からなる3層構造の積層体とを調製し、これらを重ねあわせて本発明の全固体二次電池を得ることもできる。また基材/正極活物質層からなる2層構造の積層体と、基材/負極活物質層/固体電解質層からなる3層構造の積層体とを調製し、これらを重ねあわせて本発明の全固体二次電池を得ることもできる。
 負極活物質層の形成において上記電子絶縁性無機材料を熱溶融させるための加熱は、上記の例では層を形成した直後に行っている。しかし本発明はこの実施形態に限定されない。すなわち、層を形成した後であれば、全固体二次電池の製造工程のどの段階で加熱してもよい。また、層形成自体(塗布工程自体)を上記電子絶縁性無機材料の熱溶融温度以上の温度で行うこともでき、また層形成における乾燥工程を熱溶融温度以上の温度とすることもできる。これらの場合、電子絶縁性無機材料を熱溶融させるための加熱工程を別途設ける必要はない。
 すなわち、負極活物質層に本発明の無機固体電解質材料を用いた全固体二次電池の製造方法の好ましい実施形態は、負極活物質と本発明の無機固体電解質材料とを用いて形成した膜を熱することにより、この膜中の、硫化物系無機固体電解質を被覆する電子絶縁性無機材料を熱溶融させ、次いでこの膜を冷却することにより負極活物質層とすることを含む。
 上記の製造方法の説明は、主として、正極活物質層、固体電解質層及び負極活物質層のいずれか1つの層に本発明の無機固体電解質材料を用いた形態に係るものであるが、本発明の全固体二次電池ないしその製造方法はこれらの形態に限定されない。
 すなわち、本発明の全固体二次電池の製造方法は、下記工程(a)~(c)のうち2つ以上の工程を有してもよい。
(a)「本発明の無機固体電解質材料を用いて形成した膜を熱することにより、この膜中の、硫化物系無機固体電解質を被覆する電子絶縁性無機材料を熱溶融させ、次いでこの膜を冷却することにより固体電解質層とする」工程、
(b)「正極活物質と本発明の無機固体電解質材料とを用いて形成した膜を熱することにより、この膜中の、硫化物系無機固体電解質を被覆する電子絶縁性無機材料を熱溶融させ、次いでこの膜を冷却することにより正極活物質層とする」工程、
(c)「負極活物質と本発明の無機固体電解質材料とを用いて形成した膜を熱することにより、この膜中の、硫化物系無機固体電解質を被覆する電子絶縁性無機材料を熱溶融させ、次いでこの膜を冷却することにより負極活物質層とする」工程。
 上述した固体電解質層、正極活物質層及び負極活物質層の各層の形成において、電子絶縁性無機材料を熱溶融させる加熱工程を1つにまとめてもよい。すなわち、固体電解質層、正極活物質層及び負極活物質層の各層における電子絶縁性無機材料の熱溶融を一の加熱工程により行うことができる。
<初期化>
 上記のようにして製造した全固体二次電池は、製造後又は使用前に初期化を行うことが好ましい。初期化の方法は特に限定されず、例えば、プレス圧を高めた状態で初充放電を行い、その後、全固体二次電池の一般使用圧力になるまで圧力を開放することにより行うことができる。
[全固体二次電池の用途]
 本発明の全固体二次電池は種々の用途に適用することができる。適用態様には特に限定はないが、例えば、電子機器に搭載する場合、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、コードレスフォン子機、ページャー、ハンディーターミナル、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、電気シェーバー、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、メモリーカードなどが挙げられる。その他民生用として、自動車、電動車両、モーター、照明器具、玩具、ゲーム機器、ロードコンディショナー、時計、ストロボ、カメラ、医療機器(ペースメーカー、補聴器、肩もみ機など)などが挙げられる。更に、各種軍需用、宇宙用として用いることができる。また、太陽電池と組み合わせることもできる。
 なかでも、高容量かつ高レート放電特性が要求されるアプリケーションに適用することが好ましい。例えば、今後大容量化が予想される蓄電設備等においては高い安全性が必須となりさらに電池性能の両立が要求される。また、電気自動車などは高容量の二次電池を搭載し、家庭で日々充電が行われる用途が想定される。本発明によれば、このような使用形態に好適に対応してその優れた効果を発揮することができる。
 本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらの実施形態に限定されるものではない。
[参考例1] 硫化物系無機固体電解質の合成
 アルゴン雰囲気下(露点-70℃)のグローブボックス内で、硫化リチウム(LiS、Aldrich社製、純度>99.98%)2.42g、五硫化二リン(P、Aldrich社製、純度>99%)3.90gをそれぞれ秤量し、メノウ製乳鉢に投入した。LiS及びPはモル比でLiS:P=75:25である。メノウ製乳鉢上において、メノウ製乳棒を用いて、5分間混合した。
 ジルコニア製45mL容器(フリッチュ社製)に、直径5mmのジルコニアビーズを66個投入し、上記混合物全量を投入し、アルゴン雰囲気下で容器を完全に密閉した。フリッチュ社製遊星ボールミルP-7に容器をセットし、25℃で、回転数510rpmで20時間メカニカルミリングを行うことで黄色粉体の硫化物系無機固体電解質(Li/P/Sガラス、以下「LPS」ともいう。)6.20gを得た。
 得られたLPSの体積平均粒子径を、レーザ回折/散乱式粒度分布測定装置LA-920(商品名、HORIBA社製)を用いて測定した結果、8μmであった。
[調製例1] 無機固体電解質材料(表面被覆無機固体電解質)の調製
<熱溶融含浸による被覆>
 170℃に加熱したホットプレート上に、アルミ箔で覆った乳鉢を置き、その中に硫黄を6.20g投入し、硫黄を熱溶融させた。
 溶けた硫黄の中に、参考例1で合成した硫化物系無機固体電解質6.20gを投入し、加温した乳棒を使って2時間練った。
 その後、冷却して硫黄を固化し、表面被覆無機固体電解質を得た。
[試験例1] 安定性試験
<固体電解質シートの作製>
 調製例1で得られた表面被覆無機固体電解質を、25℃、相対湿度10%の雰囲気下(露点-9℃の雰囲気下)に2分間放置した。その後、トルエン溶媒10mlと混合し、市販の振盪器を用いて1時間加振処理を行って十分に撹拌した。得られた分散液を、ステンレス箔上にバーコートで塗布し、80℃で10分間乾燥し、固体電解質シートを得た。その後、ステンレス箔を固体電解質層上部と接触させ、市販のホットプレス機で挟み、120MPa、150℃で30分間、加圧しながら加熱をし、表面被覆材料である硫黄を熱溶融させた。その後冷却することにより、固体電解質シート1(膜厚150μm)を得た。
 なお、無機固体電解質を25℃、相対湿度10%の雰囲気下(露点-9℃の雰囲気下)に2分間放置した後の作業は、露点-40℃のドライルーム内において行った。
<比較用固体電解質シートの作製>
 参考例1と同様にして得た無機固体電解質を、25℃、相対湿度10%の雰囲気下(露点-9℃の雰囲気下)に2分間放置した。その後、トルエン溶媒10mlと混合し、市販の振盪器を用いて1時間加振処理を行って十分に撹拌した。得られた分散液をステンレス箔上にバーコートで塗布し、80℃で10分間乾燥し、その後、ステンレス箔を固体電解質層上部と接触させ、市販のプレス機で挟み、120MPa、室温で30分間加圧して比較用固体電解質シート1(膜厚150μm)を得た。
 なお、無機固体電解質を25℃、相対湿度10%の雰囲気下(露点-9℃の雰囲気下)に2分間放置した後の作業は、露点-40℃のドライルーム内において行った。
<イオン伝導性の評価>
 露点-40℃のドライルームの中で、下記のイオン伝導度測定用セルを作製し、そのイオン伝導度を求めた。
-セルの作製とイオン伝導性の評価-
 上記で作製した各固体電解質シートを直径14.5mmの円板状に切り出し、スペーサーとワッシャーを組み込んで、ステンレス製の2032型コインケースに入れた。コインケースの外部から拘束圧(ネジ締め圧:8N)をかけ、イオン伝導度測定用セルを作製した。
 上記で得られた各イオン伝導度測定用セルを用いて、イオン伝導度を測定した。具体的には、30℃の恒温槽中、SOLARTRON社製 1255B FREQUENCY RESPONSE ANALYZER(商品名)を用いて電圧振幅を5mVとし、周波数1MHz~1Hzまで交流インピーダンス測定した。これにより試料の膜厚方向の抵抗を求め、下記計算式によりイオン伝導度を求めた。結果を下表に示す。
 
 イオン伝導度(mS/cm)=
  1000×試料膜厚(cm)/[抵抗(Ω)×試料面積(cm)]
 
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、硫化物系無機固体電解質を、25℃、相対湿度10%の雰囲気下に曝した場合には、硫化物系無機固体電解質が劣化し、この電解質を用いて形成したシートはイオン伝導性に大きく劣る結果となった(比較用固体電解質シート1)。
 これに対し、硫化物系無機固体電解質を、本発明で規定する電子絶縁性無機材料により被覆された形態とすることにより、25℃、相対湿度10%の雰囲気下に曝しても硫化物系無機固体電解質が劣化しにくく、この電解質を用いて形成したシートはイオン伝導性に優れることがわかった(固体電解質シート1)。
[試験例2] 表面被覆材料のイオン伝導性に対する影響
<固体電解質シートの作製>
 露点-40℃のドライルームの中で下記操作を行って固体電解質シートを得た。
 調製例1と同様にして得た表面被覆無機固体電解質を、トルエン溶媒10mlと混合し、市販の振盪器を用いて1時間加振処理を行って十分に撹拌した。得られた分散液を、ステンレス箔上にバーコートで塗布し、80℃で10分間乾燥し、固体電解質シートを得た。その後、ステンレス箔を固体電解質層上部と接触させ、市販のホットプレス機で挟み、160MPa、150℃で30分間、加圧しながら加熱をし、表面被覆材料である硫黄を熱溶融させた。その後冷却し、上部のステンレス箔を取り除いて、固体電解質シート2(膜厚150μm)を得た。
<比較用固体電解質シートの作製>
 露点-40℃のドライルームの中で下記操作を行って固体電解質シートを得た。
 参考例1と同様にして得た無機固体電解質を、トルエン溶媒10mlと混合し、市販の振盪器を用いて1時間加振処理を行って十分に撹拌した。得られた分散液をステンレス箔上にバーコートで塗布し、80℃で10分間乾燥し、固体電解質シートを得た。その後、ステンレス箔を固体電解質層上部と接触させ、市販のプレス機で挟み、160MPaで30分間、加圧した。その後、上部のステンレス箔を取り除いて、比較用固体電解質シート2(膜厚150μm)を得た。
<イオン伝導性の評価>
 得られた固体電解質シートの上部に、再度ステンレス箔を接触させた後、上記「<イオン伝導性の評価>」に記載されたのと同様にしてイオン伝導度測定用セルを作製し、そのイオン伝導度を求めた。
 結果を下表に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、硫化物系無機固体電解質を、本発明で規定する電子絶縁性無機材料により被覆された形態としても、被覆していない状態と同等のイオン伝導度を示すことがわかる。この結果は、電子絶縁性無機材料による被覆が、硫化物系無機固体電解質のイオン伝導度には事実上影響しないことを示す。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2017年3月7日に日本国で特許出願された特願2017-042635に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
10  全固体二次電池
1   負極集電体
2   負極活物質層
3   固体電解質層
4   正極活物質層
5   正極集電体
6   作動部位

Claims (18)

  1.  硫化物系無機固体電解質と、該硫化物系無機固体電解質表面を被覆する、100℃において固体でかつ200℃以下の温度領域で熱溶融する電子絶縁性無機材料とからなる無機固体電解質材料。
  2.  前記電子絶縁性無機材料が硫黄及び/又は改質硫黄である、請求項1記載の無機固体電解質材料。
  3.  請求項1又は2記載の無機固体電解質材料と分散媒体とを含むスラリー。
  4.  前記スラリーが有機バインダーを含有する、請求項3記載のスラリー。
  5.  請求項1又は2記載の無機固体電解質材料を用いた全固体二次電池用固体電解質膜。
  6.  前記全固体二次電池用固体電解質膜が有機バインダーを含有する、請求項5記載の全固体二次電池用固体電解質膜。
  7.  基材と、該基材上に配された請求項5又は6記載の全固体二次電池用固体電解質膜を有する全固体二次電池用固体電解質シート。
  8.  正極活物質と、請求項1又は2記載の無機固体電解質材料とを用いた全固体二次電池用正極活物質膜。
  9.  前記全固体二次電池用正極活物質膜が有機バインダーを含有する、請求項8記載の全固体二次電池用正極活物質膜。
  10.  負極活物質と、請求項1又は2記載の無機固体電解質材料とを用いた全固体二次電池用負極活物質膜。
  11.  前記全固体二次電池用負極活物質膜が有機バインダーを含有する、請求項10記載の全固体二次電池用負極活物質膜。
  12.  基材と、該基材上に配された請求項8もしくは9記載の全固体二次電池用正極活物質膜又は請求項10もしくは11記載の全固体二次電池用負極活物質膜を有する全固体二次電池用電極シート。
  13.  固体電解質層として請求項5又は6記載の全固体二次電池用固体電解質膜を有する全固体二次電池。
  14.  正極活物質層として請求項8又は9記載の全固体二次電池用正極活物質膜を有する全固体二次電池。
  15.  負極活物質層として請求項10又は11記載の全固体二次電池用負極活物質膜を有する全固体二次電池。
  16.  請求項1又は2記載の無機固体電解質材料を用いて形成した膜を熱することにより該膜中の前記電子絶縁性無機材料を熱溶融させ、次いで前記膜を冷却することにより固体電解質層を形成することを含む、全固体二次電池の製造方法。
  17.  正極活物質と、請求項1又は2記載の無機固体電解質材料とを用いて形成した膜を熱することにより該膜中の前記電子絶縁性無機材料を熱溶融させ、次いで前記膜を冷却することにより正極活物質層を形成することを含む、全固体二次電池の製造方法。
  18.  負極活物質と、請求項1又は2記載の無機固体電解質材料とを用いて形成した膜を熱することにより該膜中の前記電子絶縁性無機材料を熱溶融させ、次いで前記膜を冷却することにより負極活物質層とすることを含む、全固体二次電池の製造方法。
PCT/JP2018/008326 2017-03-07 2018-03-05 無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法 WO2018164050A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019504569A JP6665343B2 (ja) 2017-03-07 2018-03-05 無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法
US16/561,796 US11508989B2 (en) 2017-03-07 2019-09-05 Solid electrolyte film for all-solid state secondary battery, solid electrolyte sheet for all-solid state secondary battery, positive electrode active material film for all-solid state secondary battery, negative electrode active material film for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and method for manufacturing all-solid state secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-042635 2017-03-07
JP2017042635 2017-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/561,796 Continuation US11508989B2 (en) 2017-03-07 2019-09-05 Solid electrolyte film for all-solid state secondary battery, solid electrolyte sheet for all-solid state secondary battery, positive electrode active material film for all-solid state secondary battery, negative electrode active material film for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and method for manufacturing all-solid state secondary battery

Publications (1)

Publication Number Publication Date
WO2018164050A1 true WO2018164050A1 (ja) 2018-09-13

Family

ID=63448563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008326 WO2018164050A1 (ja) 2017-03-07 2018-03-05 無機固体電解質材料、並びに、これを用いたスラリー、全固体二次電池用固体電解質膜、全固体二次電池用固体電解質シート、全固体二次電池用正極活物質膜、全固体二次電池用負極活物質膜、全固体二次電池用電極シート、全固体二次電池及び全固体二次電池の製造方法

Country Status (3)

Country Link
US (1) US11508989B2 (ja)
JP (1) JP6665343B2 (ja)
WO (1) WO2018164050A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012792A (ja) * 2019-07-04 2021-02-04 トヨタ自動車株式会社 ナトリウムイオン電池用固体電解質

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422109B (zh) * 2021-06-23 2023-02-21 中国第一汽车股份有限公司 一种多层固体电解质膜及其应用
CN115425286A (zh) * 2022-11-04 2022-12-02 中国科学院宁波材料技术与工程研究所 一种基于纳米硫化物固体电解质的薄膜、制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208897A (ja) * 2002-01-16 2003-07-25 Matsushita Electric Ind Co Ltd リチウム電池およびその製法
JP2009117168A (ja) * 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd 全固体電池およびその製造方法
JP2010186682A (ja) * 2009-02-13 2010-08-26 Toyota Motor Corp 固体電解質層の製造方法
WO2011010552A1 (ja) * 2009-07-22 2011-01-27 住友電気工業株式会社 非水電解質電池及び非水電解質電池用固体電解質
JP2011113720A (ja) * 2009-11-25 2011-06-09 Toyota Motor Corp Liイオン伝導性材料およびリチウム電池
JP2012094437A (ja) * 2010-10-28 2012-05-17 Toyota Motor Corp 全固体電池
JP2013143297A (ja) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd 電極材料、電極及びそれを用いた電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033732A (ja) 2008-07-25 2010-02-12 Idemitsu Kosan Co Ltd リチウム電池用被コーティング固体電解質、及びそれを用いた全固体二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208897A (ja) * 2002-01-16 2003-07-25 Matsushita Electric Ind Co Ltd リチウム電池およびその製法
JP2009117168A (ja) * 2007-11-06 2009-05-28 Sumitomo Electric Ind Ltd 全固体電池およびその製造方法
JP2010186682A (ja) * 2009-02-13 2010-08-26 Toyota Motor Corp 固体電解質層の製造方法
WO2011010552A1 (ja) * 2009-07-22 2011-01-27 住友電気工業株式会社 非水電解質電池及び非水電解質電池用固体電解質
JP2011113720A (ja) * 2009-11-25 2011-06-09 Toyota Motor Corp Liイオン伝導性材料およびリチウム電池
JP2012094437A (ja) * 2010-10-28 2012-05-17 Toyota Motor Corp 全固体電池
JP2013143297A (ja) * 2012-01-11 2013-07-22 Idemitsu Kosan Co Ltd 電極材料、電極及びそれを用いた電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012792A (ja) * 2019-07-04 2021-02-04 トヨタ自動車株式会社 ナトリウムイオン電池用固体電解質

Also Published As

Publication number Publication date
US11508989B2 (en) 2022-11-22
US20190393550A1 (en) 2019-12-26
JPWO2018164050A1 (ja) 2019-11-07
JP6665343B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
US10818967B2 (en) Solid electrolyte composition, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
JP6912658B2 (ja) 全固体二次電池及びその製造方法
TWI458154B (zh) 鋰二次電池
JP6684901B2 (ja) 固体電解質組成物、固体電解質含有シートおよび全固体二次電池ならびに固体電解質含有シートおよび全固体二次電池の製造方法
JPWO2018047946A1 (ja) 電極層材、全固体二次電池電極用シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2017104405A1 (ja) 電極用材料、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
WO2019097906A1 (ja) 固体電解質組成物、固体電解質含有シート、全固体二次電池用電極シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
JP6572063B2 (ja) 全固体二次電池、全固体二次電池用電極シート及びこれらの製造方法
JP7064613B2 (ja) 全固体二次電池用積層部材の製造方法及び全固体二次電池の製造方法
US11508989B2 (en) Solid electrolyte film for all-solid state secondary battery, solid electrolyte sheet for all-solid state secondary battery, positive electrode active material film for all-solid state secondary battery, negative electrode active material film for all-solid state secondary battery, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and method for manufacturing all-solid state secondary battery
WO2019054184A1 (ja) 全固体二次電池、全固体二次電池用外装材及び全固体二次電池の製造方法
US11658282B2 (en) Composition for forming active material layer and method for manufacturing the same, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
JP6948382B2 (ja) 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質シート及び全固体二次電池用正極活物質シート
JP7119214B2 (ja) 全固体二次電池及びその製造方法
WO2018164051A1 (ja) 全固体二次電池及びその製造方法、並びに全固体二次電池用固体電解質膜及びその製造方法
JP2018120739A (ja) 固体電解質含有シートの製造方法、全固体二次電池用電極シートの製造方法、及び全固体二次電池の製造方法
WO2019098299A1 (ja) 固体電解質組成物、固体電解質含有シート及び全固体二次電池並びに固体電解質含有シート及び全固体二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18764542

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504569

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18764542

Country of ref document: EP

Kind code of ref document: A1