WO2023100726A1 - 非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池 - Google Patents

非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池 Download PDF

Info

Publication number
WO2023100726A1
WO2023100726A1 PCT/JP2022/043251 JP2022043251W WO2023100726A1 WO 2023100726 A1 WO2023100726 A1 WO 2023100726A1 JP 2022043251 W JP2022043251 W JP 2022043251W WO 2023100726 A1 WO2023100726 A1 WO 2023100726A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
aqueous electrolyte
electrolyte secondary
conductive material
material paste
Prior art date
Application number
PCT/JP2022/043251
Other languages
English (en)
French (fr)
Inventor
弘樹 大島
徳一 山本
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN202280074164.1A priority Critical patent/CN118216019A/zh
Publication of WO2023100726A1 publication Critical patent/WO2023100726A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a conductive material paste for non-aqueous electrolyte secondary batteries, a slurry composition for non-aqueous electrolyte secondary battery negative electrodes, a negative electrode for non-aqueous electrolyte secondary batteries, and a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries such as lithium-ion secondary batteries (hereinafter sometimes abbreviated as "secondary batteries") are small, lightweight, have high energy density, and can be charged and discharged repeatedly. It has properties and is used in a wide range of applications.
  • the electrode for the non-aqueous electrolyte secondary battery is, for example, an electrode mixture formed by drying a current collector and a slurry composition for a non-aqueous electrolyte secondary battery electrode on the current collector with layers.
  • fibrous conductive carbon such as carbon nanotubes (hereinafter sometimes abbreviated as "CNT") has been used as a conductive material to form electrode mixture layers.
  • CNT carbon nanotubes
  • the fibrous conductive carbon and the dispersant are premixed in order to obtain an electrode mixture layer in which the fibrous conductive carbon is well dispersed.
  • a conductive material paste for non-aqueous electrolyte secondary battery electrodes and the resulting conductive material paste and an electrode active material such as a silicon-based active material are combined to prepare a slurry composition for non-aqueous electrolyte secondary battery electrodes.
  • a technique for doing so has been proposed (see Patent Document 1, for example).
  • electrolyte pourability of the secondary battery when the secondary battery is manufactured, it is required that the electrolyte pourability (hereinafter, sometimes abbreviated as “electrolyte pourability of the secondary battery”) is excellent. Secondary batteries are also required to have excellent low-temperature characteristics and excellent cycle characteristics. However, in the conventional technology described above, there is room for improvement in terms of improving the electrolyte pourability and low-temperature characteristics while ensuring sufficiently high cycle characteristics of the secondary battery.
  • an object of the present invention is to provide a conductive material paste for a non-aqueous electrolyte secondary battery that can provide a non-aqueous electrolyte secondary battery having excellent electrolyte pourability, low-temperature characteristics, and cycle characteristics. and
  • the present invention provides a slurry composition for a negative electrode of a non-aqueous electrolyte secondary battery that can provide a non-aqueous electrolyte secondary battery excellent in electrolyte pourability, low-temperature characteristics, and cycle characteristics. aim.
  • Another object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery that can provide a non-aqueous electrolyte secondary battery having excellent electrolyte pourability, low-temperature characteristics, and cycle characteristics.
  • a further object of the present invention is to provide a non-aqueous electrolyte secondary battery that is excellent in electrolyte pourability, low-temperature characteristics, and cycle characteristics.
  • the inventor of the present invention conducted intensive studies with the aim of solving the above problems. Then, the present inventors have proposed a non-aqueous electrolytic solution containing carbon nanotubes, acidic group-containing cellulose nanofibers, and water as a dispersion medium, wherein the mass ratio of the acidic group-containing cellulose nanofibers to the carbon nanotubes is within a predetermined range.
  • the inventors have found that a non-aqueous electrolyte secondary battery having excellent electrolyte pourability, low-temperature characteristics, and cycle characteristics can be provided by using a conductive material paste for secondary batteries, and have completed the present invention. .
  • an object of the present invention is to advantageously solve the above problems, and the present invention includes [1] carbon nanotubes, acidic group-containing cellulose nanofibers, and water,
  • the conductive material paste for a non-aqueous electrolyte secondary battery wherein the mass ratio of the acidic group-containing cellulose nanofibers to the carbon nanotubes (acidic group-containing cellulose nanofibers/carbon nanotubes) is 0.3 or more and 4 or less.
  • a conductive material paste for a non-aqueous electrolyte secondary battery containing carbon nanotubes, acidic group-containing cellulose nanofibers, and water, wherein the mass ratio of the acidic group-containing cellulose nanofibers to the carbon nanotubes is within a predetermined range.
  • the average number of layers of the carbon nanotubes is 2.5 or less.
  • the cycle characteristics of the non-aqueous electrolyte secondary battery can be further improved.
  • the "average number of layers" of carbon nanotubes is obtained by measuring the number of layers of 100 randomly selected CNTs using a transmission electron microscope (TEM) and calculating the average value. can be done.
  • the conductive material paste for a non-aqueous electrolyte secondary battery according to [1] or [2] above preferably includes a structure in which the cellulose nanofibers are adsorbed on the surface of the carbon nanotubes. If the conductive material paste includes a structure in which cellulose nanofibers containing acidic groups are adsorbed on the surface of CNTs, the dispersion stability of the conductive material paste and the viscosity stability of the slurry composition containing the conductive material paste are enhanced. At the same time, the electrolyte pourability, cycle characteristics, and low-temperature characteristics of the non-aqueous electrolyte secondary battery can be further improved.
  • the acidic group-containing cellulose nanofiber preferably has at least one of a carboxyl group and a sulfo group. .
  • acidic group-containing cellulose nanofibers having at least one of a carboxyl group and a sulfo group the dispersion stability of the conductive material paste and the viscosity stability of the slurry composition containing the conductive material paste are improved, and non-aqueous electrolysis is performed. It is possible to further improve electrolyte pourability, cycle characteristics, and low-temperature characteristics of the liquid secondary battery.
  • the electrically conductive material paste for a non-aqueous electrolyte secondary battery according to any one of [1] to [4] above preferably further contains a dispersant having at least one of a carboxyl group and a sulfo group. If a dispersant having at least one of a carboxyl group and a sulfo group is further used, the dispersion stability of the conductive material paste and the viscosity stability of the slurry composition containing the conductive material paste are improved, and the non-aqueous electrolyte secondary The cycle characteristics and low-temperature characteristics of the battery can be further improved.
  • the ratio of the G-band peak intensity to the D-band peak intensity in the Raman spectrum of the carbon nanotube is preferably 2.1 or more.
  • the use of carbon nanotubes with a G/D ratio equal to or greater than the predetermined value can further improve the cycle characteristics of the non-aqueous electrolyte secondary battery.
  • the "G/D ratio" of the carbon nanotube is obtained by measuring the Raman spectrum of the CNT using a microlaser Raman spectrophotometer (Nicolet Almega XR manufactured by Thermo Fisher Scientific Co., Ltd.). For the Raman spectrum, the intensity of the G-band peak observed near 1590 cm -1 and the intensity of the D-band peak observed near 1340 cm -1 are obtained, and the ratio thereof can be calculated.
  • the average diameter of the acidic group-containing cellulose nanofibers is preferably 2 nm or more and 30 nm or less.
  • the "average diameter" of the acidic group-containing cellulose nanofibers refers to the number of layers of 100 randomly selected acidic group-containing cellulose nanofibers using a transmission electron microscope (TEM), the diameter (outer diameter ) and calculating the average value.
  • TEM transmission electron microscope
  • the carbon nanotubes have an average diameter of 1.5 nm or more and 8.0 nm or less.
  • the "average diameter" of carbon nanotubes is obtained by measuring the diameter (outer diameter) of 100 randomly selected CNTs using a transmission electron microscope (TEM) and calculating the average value. can ask.
  • the volume average particle diameter D50 of the particles contained in the conductive material paste for non-aqueous electrolyte secondary batteries is preferably 0.5 ⁇ m or more and 20.0 ⁇ m or less.
  • the "volume average particle size D50" refers to the particle size at which the cumulative volume calculated from the small size side is 50% in the particle size distribution (volume basis) measured by laser diffraction.
  • the mass ratio of the acidic group-containing cellulose nanofibers to the carbon nanotubes is preferably 0.6 or more and 2 or less. If the mass ratio of acidic group-containing cellulose nanofibers to carbon nanotubes (acidic group-containing cellulose nanofibers/carbon nanotubes) is within the predetermined range, the electrolyte pourability, cycle characteristics, And the low temperature characteristics can be further improved.
  • a slurry composition for a negative electrode of a non-aqueous electrolyte secondary battery containing a material paste and a silicon-based active material As described above, if a slurry composition for a non-aqueous electrolyte secondary battery negative electrode containing any of the conductive material pastes for a non-aqueous electrolyte secondary battery described above and a silicon-based active material is used, electrolyte pourability can be achieved. , low-temperature characteristics, and cycle characteristics can be provided.
  • an object of the present invention is to advantageously solve the above problems, and the present invention provides [12] formed using the slurry composition for a non-aqueous electrolyte secondary battery negative electrode of the above [11] It is a negative electrode for a non-aqueous electrolyte secondary battery, comprising a negative electrode mixture layer.
  • a negative electrode for a non-aqueous electrolyte secondary battery comprising a negative electrode mixture layer formed using the slurry composition for a non-aqueous electrolyte secondary battery negative electrode described above is used, electrolyte pourability and low-temperature characteristics can be improved. , and a non-aqueous electrolyte secondary battery having excellent cycle characteristics can be provided.
  • Another object of the present invention is to advantageously solve the above problems. It is a secondary battery.
  • a non-aqueous electrolyte secondary battery including the negative electrode for a non-aqueous electrolyte secondary battery described above can exhibit excellent electrolyte pourability, low-temperature characteristics, and cycle characteristics.
  • a conductive material paste for a non-aqueous electrolyte secondary battery that can provide a non-aqueous electrolyte secondary battery excellent in electrolyte pourability, low-temperature characteristics, and cycle characteristics.
  • a slurry composition for a negative electrode of a non-aqueous electrolyte secondary battery capable of providing a non-aqueous electrolyte secondary battery having excellent electrolyte pourability, low-temperature characteristics, and cycle characteristics. be able to.
  • a negative electrode for a non-aqueous electrolyte secondary battery that can provide a non-aqueous electrolyte secondary battery that is excellent in electrolyte pourability, low-temperature characteristics, and cycle characteristics.
  • a non-aqueous electrolyte secondary battery that is excellent in electrolyte pourability, low-temperature characteristics, and cycle characteristics.
  • the conductive material paste for non-aqueous electrolyte secondary batteries of the present invention is a slurry composition for non-aqueous electrolyte secondary battery negative electrodes (hereinafter simply It is sometimes referred to as a "slurry composition").
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention (hereinafter sometimes simply referred to as "negative electrode”) is a negative electrode formed using the slurry composition for a non-aqueous electrolyte secondary battery negative electrode of the present invention. Equipped with a composite layer.
  • the non-aqueous electrolyte secondary battery of the present invention includes the negative electrode for non-aqueous electrolyte secondary batteries of the present invention.
  • the conductive material paste for a non-aqueous electrolyte secondary battery of the present invention contains carbon nanotubes and acidic group-containing cellulose nanofibers (hereinafter, “acidic group-containing CNF"). ) is a composition dispersed and/or dissolved in water as a dispersion medium.
  • a conductive material paste preferably further contains a dispersant.
  • the conductive material paste of the present invention may further contain components other than the above carbon nanotubes, acidic group-containing cellulose nanofibers, dispersants, and water (hereinafter sometimes referred to as “other components”). good. Further, in this specification, “conductive material paste” generally does not contain an electrode active material such as a negative electrode active material.
  • Carbon nanotubes are materials that can function as electrical conductors. Carbon nanotubes can improve the cycle characteristics of a secondary battery by forming a conductive path in the electrode mixture layer. Also, by using carbon nanotubes, the low-temperature characteristics of the secondary battery can be improved.
  • the carbon nanotube is not particularly limited as long as it is a carbon nanotube (CNT) capable of obtaining the desired effect of the present invention.
  • Carbon nanotubes include single-walled (SW) carbon nanotubes and multi-walled (MW) carbon nanotubes, depending on the type of layer type.
  • the carbon nanotubes contained in the conductive material paste of the present invention may be single-walled carbon nanotubes, multi-walled carbon nanotubes, or a combination thereof.
  • the average number of CNT layers is preferably 5 or less, more preferably 4 or less, still more preferably 2.5 or less, even more preferably 2 or less, and 1.5 or less. is even more preferable. If the average layer number of CNTs is equal to or less than the above upper limit, the cycle characteristics of the secondary battery can be further improved.
  • the lower limit of the average number of CNT layers is not particularly limited, and is usually 1 or more. Also, the average number of layers of CNTs may be 1.2 or more, or may be 1.2 or less.
  • the average diameter of CNTs is preferably 0.5 nm or more, more preferably 1 nm or more, still more preferably 1.5 nm or more, even more preferably 2 nm or more, and 2.5 nm or more. It is more preferably 20 nm or less, more preferably 12 nm or less, still more preferably 8 nm or less, even more preferably 6 nm or less, and even more preferably 4 nm or less. preferable. If the average diameter of the CNTs is equal to or greater than the above lower limit, the aggregation of the CNTs can be sufficiently suppressed, and the dispersibility of the CNTs as a conductive material can be sufficiently ensured.
  • the average diameter of the CNTs is equal to or less than the above upper limit, good conductive paths can be formed in the electrode mixture layer, and the cycle characteristics of the secondary battery can be further improved.
  • the average diameter of the CNTs may be 3.7 nm or more and may be 3.7 nm or less.
  • the ratio of the G-band peak intensity to the D-band peak intensity (G/D ratio) in the Raman spectrum of CNT is preferably 0.6 or more, more preferably 1.2 or more, and 2.1 or more. more preferably 3.0 or more, and even more preferably 3.6 or more. If the G/D ratio of CNTs is equal to or higher than the above lower limit, the cycle characteristics of the secondary battery can be further improved.
  • the upper limit of the G/D ratio of CNT is not particularly limited, it is, for example, 200 or less.
  • the G/D ratio of CNTs may be 4.6 or more, or may be 4.6 or less.
  • CNTs having the properties described above can be produced by known methods such as an arc discharge method, a laser ablation method, and a super-growth method, without being particularly limited.
  • the content of CNTs relative to the total solid content of the conductive material paste is preferably 15% by mass or more, more preferably 20% by mass or more, even more preferably 25% by mass or more, and 60% by mass or less. is preferably 50% by mass or less, more preferably 45% by mass or less, even more preferably 40% by mass or less, and even more preferably 35% by mass or less . If the CNT content is equal to or higher than the above lower limit, the CNT content in the formed electrode mixture layer is further increased, and a better conductive path can be formed, thereby further improving the cycle characteristics of the secondary battery. can be done.
  • the low-temperature characteristics of the secondary battery can be further improved.
  • the content of CNFs containing acidic groups can be increased.
  • the electrolyte pourability and low-temperature characteristics of the secondary battery can be further improved.
  • the content of acidic group-containing CNFs can be increased. Since breakage of the conductive path can be further suppressed, the cycle characteristics of the secondary battery can be further improved.
  • the content of CNTs with respect to the total solid content of the conductive material paste may be 33% by mass or more, or may be 33% by mass or less.
  • the acidic group-containing cellulose nanofiber is a material that can improve the affinity of the electrode mixture layer for the electrolyte solution and improve the electrolyte solution pourability and low-temperature characteristics of the secondary battery.
  • the acidic group-containing cellulose nanofiber increases the strength of the electrode mixture layer and suppresses the disconnection of the conductive path of the CNT due to the expansion and contraction of the active material, thereby improving the cycle characteristics of the secondary battery. can.
  • the acidic group-containing cellulose nanofibers it is possible to improve the dispersion stability of the conductive material paste and the viscosity stability of the slurry composition.
  • Cellulose nanofibers containing acidic groups are cellulose nanofibers with acidic groups. That is, the acidic group-containing cellulose nanofiber is a material having a structure in which at least part of the hydroxyl groups (--OH) of cellulose constituting the cellulose nanofiber are substituted with an acidic group or a functional group having the same.
  • examples of the acidic group include a carboxyl group (--COOH), a sulfo group (--SO 3 H, also referred to as a "sulfonic acid group"), and a phosphoric acid group (--PO 4 H 2 ).
  • the acidic group described above may be in the form of a salt, for example, in the form of an alkali metal salt such as sodium salt or potassium salt, or an ammonium salt.
  • the functional group having an acidic group is not particularly limited as long as it is a functional group having the above-mentioned acidic group, and examples thereof include a carboxymethyl group (--CH 2 COOH), which is a functional group having a carboxyl group. be done.
  • the acidic group-containing cellulose nanofibers are It preferably has at least one of a carboxyl group and a sulfo group.
  • the average diameter of the acidic group-containing CNF is not particularly limited, but is preferably 1.5 nm or more, more preferably 2.0 nm or more, further preferably 2.5 nm or more, and 8.0 nm or less. is preferably 6.0 nm or less, and even more preferably 4.0 nm or less. If the average diameter of the acidic group-containing CNFs is at least the above lower limit, the strength of the formed electrode mixture layer can be further increased, thereby further suppressing the severing of the conductive paths of the CNTs due to the expansion and contraction of the active material. Cycle characteristics of the secondary battery can be further improved.
  • the average diameter of the acidic group-containing CNF when the average diameter of the acidic group-containing CNF is equal to or less than the above upper limit, the dispersion stability of the conductive material paste and the viscosity stability of the slurry composition can be improved.
  • the average diameter of the acidic group-containing CNFs may be 3.4 nm or more and may be 3.4 nm or less.
  • the conductive material paste preferably contains a structure in which CNFs containing acidic groups are adsorbed on the surface of the CNTs. Since the conductive material paste includes a structure in which CNF containing an acidic group is adsorbed on the surface of CNT, the dispersion stability of the conductive material paste, the viscosity stability of the slurry composition, and the electrolyte injection of the secondary battery are improved. properties, cycle characteristics, and low-temperature characteristics can be further improved. Whether CNFs containing acidic groups are adsorbed on the surface of CNTs can be confirmed by observation using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the method for producing the acidic group-containing cellulose nanofibers is not particularly limited.
  • a known method is used to subject cellulose, which is a raw material, to treatments such as miniaturization and introduction of acidic groups by anion modification. It can be manufactured by doing.
  • the cellulose that can be used as a raw material is not particularly limited, but for example, purified cellulose isolated from cellulose biosynthetic systems such as plants, animals, and bacteria-producing gels can be used.
  • cellulose softwood pulp, hardwood pulp, cotton pulp such as cotton linter and cotton lint, non-wood pulp such as straw pulp and bagasse pulp, bacterial cellulose, cellulose isolated from sea squirt, seaweed Isolated cellulose and the like can be used.
  • the mass ratio of acidic group-containing CNF to CNT in the conductive material paste (acidic group-containing CNF/CNT) must be 0.3 or more, preferably 0.4 or more, and 0.4 or more. It is more preferably 5 or more, still more preferably 0.6 or more, still more preferably 0.7 or more, still more preferably 0.8 or more, and must be 4 or less is preferably 3.5 or less, more preferably 3 or less, still more preferably 2.5 or less, even more preferably 2 or less, and 1.5 or less. Even more preferable.
  • the mass ratio of acidic group-containing CNF to CNT is 0.4 or more, the electrolyte affinity of the formed electrode mixture layer is sufficiently increased, and the electrolyte solution injection of the secondary battery Liquid properties and low-temperature properties can be sufficiently improved. Further, if the mass ratio of acidic group-containing CNF to CNT (acidic group-containing CNF/CNT) is at least the above lower limit, by further increasing the strength of the formed electrode mixture layer, CNT due to expansion and contraction of the active material Since breakage of the conductive path can be further suppressed, the cycle characteristics of the secondary battery can be further improved.
  • the mass ratio of acidic group-containing CNF to CNT (acidic group-containing CNF/CNT) is 4 or less, a good conductive path is formed by sufficiently containing CNT in the electrode mixture layer to be formed. Therefore, the cycle characteristics of the secondary battery can be sufficiently improved. Moreover, if the mass ratio of acidic group-containing CNF to CNT (acidic group-containing CNF/CNT) is equal to or less than the above upper limit, the low temperature characteristics of the secondary battery can be further improved. Also, the mass ratio of acidic group-containing CNF to CNT in the conductive material paste (acidic group-containing CNF/CNT) may be 1 or more or 1 or less.
  • the content of the acidic group-containing CNF with respect to the total solid content of the conductive material paste is preferably 15% by mass or more, more preferably 20% by mass or more, and even more preferably 25% by mass or more. It is preferably 50% by mass or less, more preferably 45% by mass or less, and even more preferably 35% by mass or less. If the content of the acidic group-containing CNF is at least the above lower limit, the electrolyte affinity of the formed electrode mixture layer is further increased, and the electrolyte pourability and low-temperature characteristics of the secondary battery can be further improved. .
  • the content ratio of the acidic group-containing CNF is at least the above lower limit, the strength of the formed electrode mixture layer is further increased, so that the breakage of the conductive path of the CNT due to the expansion and contraction of the active material can be further suppressed. , the cycle characteristics of the secondary battery can be further improved.
  • the content of acidic group-containing CNFs is equal to or less than the above upper limit, the content of CNTs in the electrode mixture layer to be formed can be increased, so that a better conductive path can be formed. Cycle characteristics can be further improved.
  • the content of acidic group-containing CNFs is equal to or less than the above upper limit, the content of CNTs in the formed electrode mixture layer can be increased, so that the low-temperature characteristics of the secondary battery can be further improved.
  • the content ratio of the acidic group-containing CNF with respect to the total solid content of the conductive material paste may be 33% by mass or more, or may be 33% by mass or less.
  • the conductive material paste of the present invention preferably further contains a dispersant in addition to the CNTs and acidic group-containing CNFs described above.
  • a dispersant that can be preferably contained in the conductive material paste of the present invention has at least one of a carboxyl group and a sulfo group.
  • the carboxyl group and/or sulfo group of the dispersant may be in the form of a salt, such as an alkali metal salt such as a sodium salt, or an ammonium salt.
  • the aggregation of CNTs in the conductive material paste can be suppressed, and the dispersion stability of the conductive material paste and the viscosity stability of the slurry composition can be improved. Since the dispersibility of CNTs in the formed electrode mixture layer can be enhanced to form a better conductive path, the cycle characteristics of the secondary battery can be further improved. In addition, by using the dispersant having the above-described predetermined functional group, the low-temperature characteristics of the secondary battery can be further improved.
  • Dispersants having a carboxyl group include, for example, carboxymethylcellulose and its salts; polymers obtained by polymerizing carboxyl group-containing monomers such as acrylic acid and methacrylic acid; and salts thereof.
  • Dispersants having a sulfo group include, for example, polymers obtained by polymerizing sulfo group-containing monomers such as styrenesulfonic acid, vinylsulfonic acid, methylvinylsulfonic acid, and (meth)allylsulfonic acid, and salts thereof. is mentioned.
  • Dispersants having both a carboxyl group and a sulfo group include copolymers of the above-mentioned carboxyl group-containing monomer and sulfo group-containing monomer and salts thereof.
  • the dispersant from the viewpoint of further improving the low-temperature characteristics and cycle characteristics of the secondary battery, carboxymethyl cellulose and its salts, and polymers obtained by polymerizing sulfo group-containing monomers and its salts are used.
  • carboxymethylcellulose and its salts, and homopolymers of styrenesulfonic acid (that is, polystyrenesulfonic acid) and its salts are preferably used, and it is further preferable to use salts of carboxymethylcellulose and polystyrenesulfonic acid.
  • alkali metal salts of carboxymethyl cellulose and alkali metal salts of polystyrene sulfonate are more preferably used, and sodium carboxymethyl cellulose and sodium polystyrene sulfonate are particularly preferably used.
  • the dispersant that can be preferably contained in the conductive material paste is not particularly limited, but is usually water-soluble.
  • the dispersant is "water-soluble", when 0.5 g of the dispersant is dissolved in 100 g of water at 25 ° C., the insoluble content is 0% by mass or more and less than 1.0% by mass. Say things.
  • the dispersing agent that can be preferably contained in the conductive material paste and the above-described acidic group-containing cellulose nanofiber are different components.
  • carboxymethyl cellulose and / or a salt thereof that can be used as a dispersant is water-soluble and therefore does not have a fibrous structure in water, whereas acidic group-containing CNF is insoluble in water. , which has a fibrous structure in water.
  • the content of the dispersant with respect to the total solid content of the conductive material paste is preferably 15% by mass or more, more preferably 20% by mass or more, even more preferably 25% by mass or more, and 60% by mass. is preferably 45% by mass or less, more preferably 40% by mass or less, and even more preferably 35% by mass or less. If the content of the dispersant is at least the above lower limit, the aggregation of CNTs in the conductive material paste can be further suppressed, and the dispersion stability of the conductive material paste and the viscosity stability of the slurry composition can be further improved.
  • the dispersibility of the CNTs in the electrode mixture layer thus formed can be further increased, and a better conductive path can be formed, so that the cycle characteristics of the secondary battery can be further improved.
  • the content of the dispersant is equal to or higher than the above lower limit, the low-temperature characteristics of the secondary battery can be further improved.
  • the content of the dispersant is equal to or less than the above upper limit, sufficiently high electrolyte pourability and cycle characteristics of the secondary battery can be ensured.
  • the content ratio of the dispersant to the total solid content of the conductive material paste may be 33% by mass or more, or may be 33% by mass or less.
  • Other components that the conductive material paste may contain are not particularly limited, and a dispersion medium other than water, carbon black as a conductive material other than carbon nanotubes, graphene, a binder, and a "non-aqueous electrolyte secondary battery negative electrode "slurry composition for use” section (for example, a component other than the electrode active material among the thickeners, which is different from the dispersant described above).
  • a component other than the electrode active material among the thickeners which is different from the dispersant described above.
  • another component can be used individually by 1 type or in combination of 2 or more types.
  • dispersion media other than water examples include organic solvents.
  • organic solvents include, but are not limited to, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, and amyl alcohol.
  • alcohols such as; acetone, methyl ethyl ketone, ketones such as cyclohexanone; esters such as ethyl acetate, butyl acetate; ethers such as diethyl ether, dioxane, tetrahydrofuran; N,N-dimethylformamide, N-methyl-2-pyrrolidone amide-based organic solvents such as (NMP); aromatic hydrocarbons such as toluene, xylene, chlorobenzene, ortho-dichlorobenzene, and para-dichlorobenzene;
  • an organic solvent can be used individually by 1 type or in combination of 2 or more types.
  • the conductive material paste of the present invention may further contain carbon black.
  • the carbon black used in the present invention is an aggregate in which several layers of graphitic carbon microcrystals are gathered to form a turbostratic structure, and specifically, acetylene black, ketjen black, furnace black, channel black, and thermal lamp. black and the like.
  • carbon blacks acetylene black, furnace black, and ketjen black are particularly preferable in that the conductive adhesive layer can be filled at a high density, the electron transfer resistance can be reduced, and the internal resistance of the electrochemical element can be reduced.
  • the carbon black that can be contained in the conductive material paste of the present invention preferably contains a hetero element different from the carbon element that is the main component.
  • the hetero element include silicon, nitrogen, and boron. Boron is particularly preferable because it can reduce the electron transfer resistance and the internal resistance of the electrochemical device.
  • the content of the hetero element in the carbon black that can be contained in the conductive material paste of the present invention is preferably in the range of 0.01% by mass or more and 20% by mass or less, and 0.05% by mass or more and 10% by mass or less. is more preferably in the range of 0.1% by mass or more and 5% by mass or less is particularly preferable. If the content of the hetero element in the carbon black is within the predetermined range, the electron transfer resistance is reduced, and the internal resistance of the electrochemical device is reduced.
  • the specific surface area of the carbon black that can be contained in the conductive material paste of the present invention is, for example, 25 m 2 /g or more and 300 m 2 /g or less, preferably 30 m 2 /g or more and 200 m 2 from the viewpoint of maintaining good conductivity. /g or less, more preferably 40 m 2 /g or more and 150 m 2 /g or less. If the specific surface area of the carbon black is too large, the viscosity becomes high, making it difficult to produce a slurry composition suitable for high-speed coating. Conversely, if the specific surface area of the carbon black is too small, the conductivity will decrease and the dispersibility of the slurry composition will deteriorate.
  • the volume average particle diameter D50 of carbon black that can be contained in the conductive material paste of the present invention is preferably 0.01 ⁇ m or more and less than 1.0 ⁇ m, more preferably 0.05 ⁇ m or more and less than 0.8 ⁇ m, and particularly preferably 0.1 ⁇ m or more. less than 0.5 ⁇ m.
  • carbon black having a volume-average particle size D50 within the predetermined range is used, spherical graphite and carbon black are densely packed in the conductive adhesive layer.
  • the conductive material paste of the present invention may further contain a binder.
  • a binder for example, a particulate polymer can be used.
  • the particulate polymer contains, for example, unsaturated carboxylic acid monomer units, aromatic vinyl monomer units, and diene monomer units as polymer constituent units.
  • the particulate polymer as the binder is a component different from the above-described dispersant having at least one of a carboxyl group and a sulfo group.
  • the expression that a polymer such as a particulate polymer "contains a monomer unit” means that "the polymer obtained using the monomer contains repeating units derived from the monomer. means "contained”.
  • the content of monomer units in a polymer such as a particulate polymer is measured using a nuclear magnetic resonance (NMR) method such as 1 H-NMR and 13 C-NMR. can be done.
  • NMR nuclear magnetic resonance
  • Examples of unsaturated carboxylic acid monomer units include ethylenically unsaturated carboxylic acid monomer units.
  • Ethylenically unsaturated carboxylic acid monomers capable of forming ethylenically unsaturated carboxylic acid monomer units generally do not have hydroxyl groups (--OH) other than the hydroxyl group in the carboxyl group.
  • Examples of ethylenically unsaturated carboxylic acid monomers include ethylenically unsaturated monocarboxylic acids and derivatives thereof, ethylenically unsaturated dicarboxylic acids and acid anhydrides thereof, and derivatives thereof.
  • the ethylenically unsaturated carboxylic acid monomers may be used singly or in combination of two or more at any ratio.
  • ethylenically unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • ethylenically unsaturated monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid. acid, ⁇ -diaminoacrylic acid, and the like.
  • Examples of ethylenically unsaturated dicarboxylic acids include maleic acid, fumaric acid and itaconic acid.
  • Examples of acid anhydrides of ethylenically unsaturated dicarboxylic acids include maleic anhydride, diacrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • Examples of ethylenically unsaturated dicarboxylic acid derivatives include methylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, and fluoromaleic acid.
  • the content of the unsaturated carboxylic acid monomer unit is preferably 2 parts by mass or more, and 4 parts by mass when the total monomer units are 100 parts by mass. It is more preferably 8 parts by mass or more, preferably 30 parts by mass or less, more preferably 25 parts by mass or less, and even more preferably 20 parts by mass or less. . If the content of the unsaturated carboxylic acid monomer unit in the particulate polymer as the binder is at least the above lower limit, the viscosity stability of the slurry composition prepared using the conductive material paste can be improved. .
  • the solid content concentration of the slurry composition prepared using the conductive material paste can be increased. can.
  • Aromatic vinyl monomers capable of forming aromatic vinyl monomer units include, for example, styrene, ⁇ -methylstyrene, pt-butylstyrene, butoxystyrene, vinyltoluene, chlorostyrene and vinylnaphthalene. .
  • the aromatic vinyl monomers may be used singly or in combination of two or more at any ratio. Among these, styrene is preferred.
  • the content of the aromatic vinyl monomer unit is preferably 20 parts by mass or more, and preferably 25 parts by mass or more when the total monomer units are 100 parts by mass. is more preferably 30 parts by mass or more, preferably 90 parts by mass or less, more preferably 80 parts by mass or less, and even more preferably 70 parts by mass or less. If the content of the aromatic vinyl monomer unit in the particulate polymer as the binder is at least the above lower limit, the viscosity stability of the slurry composition prepared using the conductive material paste can be improved.
  • the degree of swelling of the particulate polymer as the binder with respect to the electrolytic solution used in the secondary battery is reduced to It can be within a suitable range.
  • diene-based monomers capable of forming diene-based monomer units include aliphatic conjugated diene monomers.
  • aliphatic conjugated diene monomers include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadienechloroprene, and cyanobutadiene. be done.
  • the conjugated diene-based monomers described above may be used alone, or two or more of them may be used in combination at an arbitrary ratio. Among these, 1,3-butadiene and isoprene are preferred, and 1,3-butadiene is more preferred, in terms of easy availability.
  • the content of the diene-based monomer units is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, when the total monomer units are 100 parts by mass. more preferably 30 parts by mass or more, preferably 85 parts by mass or less, more preferably 80 parts by mass or less, and even more preferably 70 parts by mass or less. If the content of the diene-based monomer unit in the particulate polymer as the binder is at least the above lower limit, the adhesiveness of the negative electrode formed using the slurry composition containing the conductive material paste can be enhanced.
  • the viscosity stability of the slurry composition prepared using the conductive material paste is sufficiently high. can do.
  • the particulate polymer as a binder contains monomer units other than the above-described unsaturated carboxylic acid monomer units, aromatic vinyl monomer units, and diene monomer units (“other monomer units ) may be further included.
  • Other monomers capable of forming other monomer units are not particularly limited, and examples thereof include cyano group-containing vinyl monomers, amino group-containing vinyl monomers, pyridyl group-containing vinyl monomers, alkoxyl group-containing vinyl monomers;
  • the monomer copolymerizable with the diene-based monomer described above may be used alone, or two or more thereof may be used in combination at an arbitrary ratio.
  • the particulate polymer as a binder can be obtained by polymerizing a monomer composition containing the various monomers described above by a known method.
  • the pH of the conductive material paste is preferably 6 or higher, more preferably 6.5 or higher, preferably 9 or lower, and more preferably 8.5 or lower. If the pH of the conductive material paste is equal to or higher than the above lower limit, the viscosity stability of the slurry composition can be enhanced. On the other hand, if the pH of the conductive material paste is equal to or less than the above upper limit, the adhesiveness of the negative electrode formed using the slurry composition containing the conductive material paste can be enhanced. Also, the pH of the conductive material paste may be 8 or higher or 8 or lower.
  • the volume average particle diameter D50 of the particles contained in the conductive material paste is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, still more preferably 2 ⁇ m or more, and preferably 20 ⁇ m or less. , is more preferably 16 ⁇ m or less, and even more preferably 14 ⁇ m or less. If the volume average particle diameter D50 of the particles contained in the conductive material paste is at least the above lower limit, the dispersion stability of the conductive material paste can be increased, and after coating the slurry composition, a good surface with little roughening can be obtained. An electrode mixture layer can be obtained.
  • the volume average particle diameter D50 of the particles contained in the conductive material paste may be 9 ⁇ m or more or 9 ⁇ m or less, or may be 12 ⁇ m or more or 12 ⁇ m or less.
  • the conductive material paste of the present invention can be produced by mixing the above-described CNTs, acidic group-containing CNF, water, and optionally a dispersant and other components in the above-described blending amounts. .
  • the mixing of various components is not particularly limited, and can be performed using a known mixing device.
  • mixing devices include dispersers, homomixers, planetary mixers, kneaders, ball mills, bead mills and homogenizers.
  • the slurry composition for a non-aqueous electrolyte secondary battery negative electrode of the present invention contains the above-described conductive material paste, silicon-based active material, etc., and if necessary, negative electrode active materials other than silicon-based active materials (hereinafter referred to as "other may be referred to as "negative electrode active material”), a thickener, a binder, carbon black, and other additives.
  • negative electrode active material other than silicon-based active materials
  • the conductive material paste of the present invention described above can be used.
  • the amount of the conductive material paste added in preparing the slurry composition is not particularly limited, but the content of CNTs and the content of acidic group-containing CNFs in the slurry composition to be prepared are each within a predetermined range described later. It is preferable to adjust so that it is inside.
  • the content of CNTs in the slurry composition is, for example, 0.01 part by mass or more, preferably 0.01 part by mass or more, with respect to 100 parts by mass of the negative electrode active material content (the total content of the silicon-based active material and other negative electrode active materials). It is 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, and is, for example, 3 parts by mass or less, preferably 1 part by mass or less, and more preferably 0.6 parts by mass or less. If the content of CNTs in the slurry composition is at least the above lower limit, the cycle characteristics of the secondary battery can be further improved.
  • the content of CNTs in the slurry composition is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, more preferably 1 part by mass with respect to 100 parts by mass of the content of the silicon-based active material. For example, it is 50 parts by mass or less, preferably 20 parts by mass or less, and more preferably 10 parts by mass or less. If the content of CNTs in the slurry composition is at least the above lower limit, the cycle characteristics of the secondary battery can be further improved. On the other hand, if the content of CNTs in the slurry composition is equal to or less than the above upper limit, a sufficiently high capacity of the secondary battery can be ensured.
  • the content of the acidic group-containing CNF in the slurry composition is, for example, 0.01 parts by mass or more with respect to 100 parts by mass of the content of the negative electrode active material (the total content of the silicon-based active material and other negative electrode active materials). , preferably 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, for example, 5 parts by mass or less, preferably 2 parts by mass or less, more preferably 1 part by mass or less. If the content of the acidic group-containing CNF in the slurry composition is at least the above lower limit, it is possible to further improve the electrolytic solution pourability, low-temperature characteristics, and cycle characteristics of the secondary battery.
  • the content of the acidic group-containing CNF in the slurry composition is, for example, 0.1 parts by mass or more, preferably 0.5 parts by mass or more, more preferably 100 parts by mass of the content of the silicon-based active material. It is 1 part by mass or more, and is, for example, 50 parts by mass or less, preferably 20 parts by mass or less, and more preferably 10 parts by mass or less.
  • the content of the acidic group-containing CNF in the slurry composition is at least the above lower limit, it is possible to further improve the electrolytic solution pourability, low-temperature characteristics, and cycle characteristics of the secondary battery. On the other hand, if the content of the acidic group-containing CNF in the slurry composition is equal to or less than the above upper limit, a sufficiently high capacity of the secondary battery can be ensured.
  • Silicon-based active materials include, for example, silicon (Si), alloys containing silicon, SiO, SiO x , composites of Si-containing materials and conductive carbon obtained by coating or combining Si-containing materials with conductive carbon, and the like. is mentioned.
  • the particle size of the silicon-based active material is not particularly limited, and may be the same as that of conventionally used electrode active materials. Silicon-based active materials may be used singly or in combination of two or more.
  • the amount of the silicon-based active material in the slurry composition is not particularly limited, and can be within the conventionally used range.
  • the content of the silicon-based active material in the slurry composition is, for example, 3% by mass or more, preferably 5% by mass or more, more preferably 8% by mass or more, for example 40% by mass, relative to the total solid content of the slurry composition. % or less, preferably 35 mass % or less, more preferably 30 mass % or less. If the content of the silicon-based active material is equal to or higher than the above lower limit, the capacity of the secondary battery can be increased. On the other hand, if the content of the silicon-based active material is equal to or less than the above upper limit, sufficiently high cycle characteristics of the secondary battery can be ensured.
  • negative electrode active materials include, but are not particularly limited to, carbon-based negative electrode active materials, metal-based negative electrode active materials, and negative electrode active materials in which these are combined.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton and capable of inserting lithium (also referred to as “doping”).
  • Examples of carbon-based negative electrode active materials include carbonaceous materials and graphite quality materials.
  • Examples of the carbonaceous material include graphitizable carbon and non-graphitizable carbon having a structure close to an amorphous structure represented by glassy carbon.
  • graphitizable carbon includes, for example, carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fibers, and pyrolytic vapor growth carbon fibers.
  • Non-graphitic carbons include, for example, phenolic resin sintered bodies, polyacrylonitrile-based carbon fibers, pseudoisotropic carbons, furfuryl alcohol resin sintered bodies (PFA), and hard carbons.
  • examples of graphite materials include natural graphite and artificial graphite.
  • artificial graphite for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB obtained by heat-treating MCMB at 2000 ° C. or higher, mesophase pitch-based carbon fiber at 2000 ° C.
  • Graphitized mesophase pitch-based carbon fibers heat-treated as described above may be used.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of intercalating lithium in its structure, and the theoretical electric capacity per unit mass when lithium is intercalated is 500 mAh / g or more.
  • metal-based active materials include lithium metals and single metals capable of forming lithium alloys (eg, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Sn, Sr , Zn, Ti, etc.) and alloys thereof, as well as their oxides, sulfides, nitrides, carbides, phosphides, etc. are used.
  • the particle size of other negative electrode active materials is not particularly limited, and may be the same as that of conventionally used electrode active materials. And other negative electrode active materials can be used individually by 1 type or in combination of 2 or more types.
  • the amount of other negative electrode active materials in the slurry composition is not particularly limited, and can be within the conventionally used range.
  • the mass ratio of the silicon-based active material to the other negative electrode active material (silicon-based active material/other negative electrode active material) in the slurry composition is preferably 1/99 or more, more preferably 1/49 or more. It is more preferably 1/19 or more, more preferably 1/1 or less, more preferably 2/3 or less, and even more preferably 1/4 or less. If the mass ratio (silicon-based active material/other negative electrode active material) of the silicon-based active material and the other negative electrode active material in the slurry composition is equal to or higher than the above lower limit, the capacity of the secondary battery can be increased.
  • the mass ratio of the silicon-based active material to the other negative electrode active material (silicon-based active material/other negative electrode active material) in the slurry composition is equal to or less than the above upper limit, the cycle characteristics of the secondary battery are sufficiently high. can be secured. Further, the mass ratio of the silicon-based active material and the other negative electrode active material (silicon-based active material/other negative electrode active material) in the slurry composition may be 1/9 or more or 1/9 or less. There may be.
  • the content ratio of the negative electrode active material in the slurry composition (that is, the total content ratio of the silicon-based active material and other negative electrode active materials) is, for example, 90% by mass or more, preferably 90% by mass or more, relative to the total solid content of the slurry composition. is 92% by mass or more, more preferably 95% by mass or more, and for example 99% by mass or less. If the content of the negative electrode active material is at least the above lower limit, the capacity of the secondary battery can be increased. Moreover, if the content of the negative electrode active material is equal to or less than the above upper limit, the cycle characteristics of the secondary battery can be further improved.
  • thickeners include, but are not limited to, carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, polymethacrylic acid, polyacrylic acid, acrylamide/acrylic acid/N-hydroxyethylacrylamide ternary A copolymer is mentioned. These can be used individually by 1 type or in combination of 2 or more types. Moreover, these can be used in either an unneutralized state or a neutralized state.
  • the content of the thickener in the slurry composition of the present invention is 0.2 parts per 100 parts by mass of the negative electrode active material content (the total content of the silicon-based active material and other negative electrode active materials). It is preferably at least 0.4 parts by mass, more preferably at least 0.4 parts by mass, preferably at most 5.0 parts by mass, and more preferably at most 4.0 parts by mass. If the content of the thickening agent per 100 parts by mass of the negative electrode active material is at least the above lower limit, the cycle characteristics of the secondary battery can be further improved. On the other hand, when the content of the thickening agent per 100 parts by mass of the negative electrode active material is equal to or less than the above upper limit, the capacity of the secondary battery can be improved.
  • the content of the thickener in the slurry composition of the present invention is 2 parts by mass with respect to 100 parts by mass of the negative electrode active material content (the total content of the silicon-based active material and other negative electrode active materials).
  • the amount may be greater than or equal to 2 parts by mass or less.
  • the binder for example, the particulate polymer described above in the section of "Conductive material paste" can be used.
  • the content of the binder in the slurry composition of the present invention is, for example, 0 with respect to 100 parts by mass of the content of the negative electrode active material (the total content of the silicon-based active material and other negative electrode active materials). .1 parts by mass or more and 3.0 parts by mass or less.
  • the content of the binder in the slurry composition of the present invention is 1 part by mass with respect to 100 parts by mass of the content of the negative electrode active material (the total content of the silicon-based active material and other negative electrode active materials). The amount may be greater than or equal to 1 part by mass or less.
  • the binder for example, the carbon black described above in the section of "Conductive material paste" can be used.
  • the content of the binder in the slurry composition of the present invention is not particularly limited, and can be appropriately adjusted within the range in which the desired effects of the present invention can be obtained.
  • additives that can be contained in the slurry composition include, for example, reinforcing materials, antioxidants, and electrolytic solution additives that have the function of suppressing decomposition of the electrolytic solution. These arbitrary components can be used individually by 1 type or in combination of 2 or more types.
  • the mixing method is not particularly limited, and for example, a known mixing device can be used.
  • the negative electrode for a non-aqueous electrolyte secondary battery of the present invention includes a negative electrode mixture layer formed using the slurry composition of the present invention described above. More specifically, the negative electrode of the present invention usually has a structure in which a negative electrode mixture layer made of the dried slurry composition of the present invention is provided on a current collector. Therefore, the negative electrode mixture layer contains carbon nanotubes, acidic group-containing cellulose nanofibers, and silicon-based active material, and if necessary, other negative electrode active materials, dispersants, thickeners, binders, and carbon black. , may contain other additives.
  • the preferred abundance ratio of each component in the electrode mixture layer is the same as the preferred abundance ratio of each component in the slurry composition. Further, since the negative electrode of the present invention includes the negative electrode mixture layer formed using the slurry composition of the present invention described above, excellent electrolyte pourability, low temperature characteristics, and cycle characteristics.
  • the current collector for the negative electrode is made of an electrically conductive and electrochemically durable material.
  • a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used. These materials can be used singly or in combination of two or more.
  • a current collector made of copper (copper foil, etc.) is preferable.
  • the method for producing the negative electrode of the present invention is not particularly limited.
  • the negative electrode of the present invention can be produced by applying the slurry composition of the present invention described above to at least one surface of a current collector and drying it to form a negative electrode mixture layer.
  • the production method includes a step of applying a slurry composition to at least one surface of a current collector (application step), and drying the slurry composition applied to at least one surface of the current collector. and a step of forming a negative electrode mixture layer on the current collector (drying step).
  • the method for applying the slurry composition onto the current collector is not particularly limited, and known methods can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the negative electrode mixture layer obtained by drying.
  • the method for drying the slurry composition on the current collector is not particularly limited, and known methods can be used. drying method. By drying the slurry composition on the current collector in this manner, a negative electrode mixture layer can be formed on the current collector, and a negative electrode including the current collector and the negative electrode mixture layer can be obtained.
  • the negative electrode mixture layer may be pressurized using a mold press, a roll press, or the like.
  • the pressure treatment can improve the peel strength of the negative electrode.
  • Non-aqueous electrolyte secondary battery of the present invention includes the negative electrode of the present invention described above. Since the non-aqueous electrolyte secondary battery of the present invention includes the negative electrode of the present invention, it is excellent in electrolyte pourability, low-temperature characteristics, and cycle characteristics. Examples of non-aqueous electrolyte secondary batteries of the present invention include lithium ion secondary batteries and sodium ion secondary batteries.
  • This lithium ion secondary battery comprises the negative electrode, positive electrode, electrolytic solution, and separator of the present invention.
  • the positive electrode is not particularly limited, and a known positive electrode for non-aqueous electrolyte secondary batteries (eg, lithium ion secondary batteries) can be used.
  • a known positive electrode for non-aqueous electrolyte secondary batteries eg, lithium ion secondary batteries
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt for example, is used as the supporting electrolyte.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable, because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • one electrolyte may be used alone, or two or more electrolytes may be used in combination at an arbitrary ratio.
  • lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted depending on the type of supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Examples include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), carbonates such as butylene carbonate (BC) and methyl ethyl carbonate (EMC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethylsulfoxide and the like are preferably used. A mixture of these solvents may also be used.
  • carbonates are preferably used because they have a high dielectric constant and a wide stable potential range, and a mixture of ethylene carbonate and ethyl methyl carbonate is more preferably used.
  • concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate, for example, it is preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. is more preferred.
  • known additives such as fluoroethylene carbonate (FEC), vinylene carbonate (VC), ethyl methyl sulfone, etc. may be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, those described in JP-A-2012-204303 can be used. Among these, the film thickness of the entire separator can be made thin, and as a result, the ratio of the electrode active material in the lithium ion secondary battery can be increased to increase the capacity per volume. Microporous membranes made of resins of the system (polyethylene, polypropylene, polybutene, polyvinyl chloride) are preferred.
  • a non-aqueous electrolyte secondary battery according to the present invention can be produced, for example, by stacking the negative electrode of the present invention and a positive electrode with a separator interposed therebetween, and winding or folding this according to the shape of the battery as necessary to form a battery container. It can be produced by putting it in a battery container, injecting an electrolytic solution into the battery container, and sealing the battery container. In order to prevent an increase in internal pressure of the secondary battery and the occurrence of overcharge/discharge, etc., a fuse, an overcurrent protection element such as a PTC element, an expanded metal, a lead plate, or the like may be provided as necessary.
  • the shape of the non-aqueous electrolyte secondary battery may be, for example, coin-shaped, button-shaped, sheet-shaped, cylindrical, rectangular, or flat.
  • ⁇ Volume average particle size D50> For the prepared conductive material paste, in accordance with JIS Z8825: 2013, using a laser diffraction/scattering particle size distribution analyzer (manufactured by Microtrack Bell, Microtrack MT-3300EXII), Wet measurement of volume average particle diameter D50. bottom. At the time of measurement, ion-exchanged water was used as a dilution solvent to adjust the scattered light intensity to a predetermined value.
  • ⁇ Dispersion stability> The viscosity ⁇ 1 immediately after preparation of the conductive material paste was measured using a Brookfield viscometer at a temperature of 25° C. and a spindle rotation speed of 60 rpm after 60 seconds had passed since the start of spindle rotation. After the measurement of ⁇ 1, the conductive material paste was stored under static conditions at 25° C. for 10 days, and the viscosity ⁇ 2 after storage was measured in the same manner as the viscosity ⁇ 1. The ratio of ⁇ 2 to ⁇ 1 ( ⁇ 2/ ⁇ 1) was defined as the paste viscosity ratio and evaluated according to the following criteria.
  • Paste viscosity ratio is less than 1.15
  • B Paste viscosity ratio is 1.15 or more and less than 1.6
  • C Paste viscosity ratio is 1.6 or more and less than 2.0
  • D Paste viscosity ratio is 2.0 or more
  • ⁇ Viscosity stability> The viscosity ⁇ 3 immediately after preparation of the slurry composition was measured using a Brookfield viscometer under conditions of a temperature of 25° C. and a spindle rotation speed of 60 rpm, 60 seconds after the start of spindle rotation. After the measurement of ⁇ 3, the slurry composition was stored under static conditions at 25° C. for 3 days, and the viscosity ⁇ 4 after storage was measured in the same manner as the viscosity ⁇ 3. The ratio of ⁇ 4 to ⁇ 3 ( ⁇ 4/ ⁇ 3) was defined as the slurry viscosity ratio and evaluated according to the following criteria.
  • ⁇ Electrolyte injection property> A 6 cm ⁇ 6 cm piece of the negative electrode was cut out and placed in an aluminum pouch of 9 cm ⁇ 9 cm, and then 0.2 ml of an electrolytic solution (having the same composition as the electrolytic solution used in the manufacture of a secondary battery described later) was added. After that, it was sealed with a heat sealer (manufactured by TOSEI, product name “desktop vertical type SV-300GII”). The immersion rate of the electrolytic solution after 1 minute from immediately after sealing was measured using an ultrasonic inspection device (manufactured by Japan Probe Co., Ltd., product name "Aerial Ultrasonic Inspection System NAUT21”) and evaluated according to the following criteria.
  • a lithium ion secondary battery is charged to 4.35 V by 0.2 C constant current-constant voltage charging (cutoff 0.02 C) at a temperature of 25 ° C., and then to 2.75 V by 1 C constant current method. By discharging, the 1C discharge capacity at 25°C was determined. Next, at a temperature of -25°C, charge to 4.35 V with a 0.2C constant current-constant voltage charge (cutoff 0.02C), and then at a temperature of -10°C with a 1C constant current method. The 1C discharge capacity at -10°C was determined by discharging to 2.75V. These measurements were performed for 3 cells, and the average value of each measured value was calculated.
  • the capacity retention rate at low temperature (%) C1/C0 ⁇ 100 was calculated and evaluated according to the following criteria. .
  • a higher capacity retention rate indicates that the lithium-ion secondary battery is more excellent in cycle characteristics.
  • ⁇ Preparation of conductive material paste 100 parts of CNT (average layer number: 1.2, average diameter: 3.7 nm, G/D ratio: 4.6), 100 parts of carboxymethylcellulose sodium as a dispersant, and carboxyl groups as CNF containing acidic groups 100 parts of CNF (average diameter: 3.4 nm) and an appropriate amount of ion-exchanged water as a dispersion medium are stirred with a disper (3000 rpm, 60 minutes), and then a bead mill using zirconia beads with a diameter of 1 mm is used. and mixed for 60 minutes at a peripheral speed of 8 m/s.
  • the resulting premix was further mixed in a bead mill for 30 minutes to produce a conductive material paste (solid concentration: 2.0%).
  • the obtained conductive material paste had a pH of 8.0.
  • the volume average particle size D50 and dispersion stability of this conductive material paste were measured and evaluated. Table 1 shows the results. Observation using a transmission electron microscope confirmed that the conductive material paste contained a structure in which CNFs containing acidic groups were adsorbed on the surface of CNTs.
  • a particulate polymer as a binder was prepared as follows. 3.15 parts of styrene, 1.66 parts of 1,3-butadiene, 0.2 parts of sodium lauryl sulfate as an emulsifier, 20 parts of ion-exchanged water, and persulfuric acid as a polymerization initiator in a 5 MPa pressure vessel A equipped with a stirrer After 0.03 part of potassium was added and sufficiently stirred, the mixture was heated to 60° C. to initiate polymerization and allowed to react for 6 hours to obtain seed particles.
  • ⁇ Preparation of negative electrode slurry composition In a planetary mixer with a disper, 90 parts of artificial graphite (volume average particle diameter: 24.5 ⁇ m, specific surface area: 3.5 m 2 /g) as a carbon-based negative electrode active material, and SiO x as a silicon-based negative electrode active material. 10 parts and 2.0 parts of an aqueous solution of carboxymethyl cellulose sodium as a thickening agent (solid content equivalent) were added, adjusted to a solid content concentration of 58% with deionized water, and mixed at room temperature for 60 minutes. After mixing, the conductive material paste obtained as described above was added to the planetary mixer so that the amount of carbon nanotubes was 0.1 part (solid content equivalent), and mixed.
  • the negative electrode slurry composition obtained as described above was coated on a copper foil (current collector) having a thickness of 16 ⁇ m with a comma coater so that the film thickness after drying was 105 ⁇ m and the coating amount was 10 mg/cm 2 . I applied it so that it would be.
  • the copper foil coated with the slurry composition for a negative electrode was conveyed at a speed of 0.5 m/min in an oven at a temperature of 100°C for 2 minutes and then in an oven at a temperature of 120°C for 2 minutes.
  • the negative electrode slurry composition on the foil was dried to obtain a negative electrode raw fabric.
  • This negative electrode original fabric was rolled by a roll press to obtain a negative electrode having a negative electrode mixture layer with a thickness of 80 ⁇ m.
  • electrolyte pourability of the lithium ion secondary battery was evaluated. Table 1 shows the results.
  • the aluminum foil coated with the positive electrode slurry composition was transported at a speed of 0.5 m/min through an oven at a temperature of 60°C for 2 minutes and then through an oven at a temperature of 120°C for 2 minutes to obtain aluminum.
  • the positive electrode slurry composition on the foil was dried to obtain a positive electrode blank.
  • This positive electrode material was rolled by a roll press to obtain a positive electrode having a positive electrode mixture layer with a thickness of 70 ⁇ m.
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m; manufactured by dry process; porosity 55%) was prepared. This separator was cut into a square of 5 cm ⁇ 5 cm and used for manufacturing the following lithium ion secondary battery.
  • An aluminum packaging material exterior was prepared as the exterior of the battery.
  • the positive electrode was cut into a square of 4 cm ⁇ 4 cm, and placed so that the surface on the side of the current collector was in contact with the exterior of the aluminum packaging material.
  • the square separator was placed on the surface of the positive electrode mixture layer of the positive electrode.
  • the negative electrode was cut into a square of 4.2 cm ⁇ 4.2 cm, and this was placed on a separator so that the surface on the negative electrode mixture layer side faced the separator.
  • Example 2 Various productions, measurements and evaluations were carried out in the same manner as in Example 1, except that 100 parts of sodium carboxymethylcellulose as a dispersant was not added during the preparation of the conductive material paste. Table 1 shows the results.
  • Example 3 Various production, measurements and evaluations were carried out in the same manner as in Example 1, except that 100 parts of sodium polystyrene sulfonate was used as a dispersant in place of 100 parts of sodium carboxymethylcellulose when preparing the conductive material paste. gone. Table 1 shows the results.
  • Example 4 When preparing the conductive material paste, instead of 100 parts of CNTs having an average layer number of 1.2, an average diameter of 3.7 nm, and a G/D ratio of 4.6, an average layer number of 2.3 and an average diameter of Various production, measurements and evaluations were carried out in the same manner as in Example 1, except that 100 parts of CNTs having a diameter of 4.5 nm and a G/D ratio of 0.7 were used. Table 1 shows the results.
  • Example 5 Various production, measurement and evaluation were performed in the same manner as in Example 1, except that the amount of cellulose nanofibers having a carboxyl group was changed from 100 parts to 300 parts when preparing the conductive material paste. Table 1 shows the results.
  • Example 6 Various production, measurement and evaluation were performed in the same manner as in Example 1, except that the amount of cellulose nanofibers having a carboxyl group was changed from 100 parts to 50 parts when preparing the conductive material paste. Table 1 shows the results.
  • Example 7 When preparing the conductive material paste, instead of 100 parts of CNTs having an average layer number of 1.2, an average diameter of 3.7 nm, and a G/D ratio of 4.6, an average layer number of 4.5 and an average diameter of Various productions, measurements and evaluations were carried out in the same manner as in Example 1, except that 100 parts of CNTs having a diameter of 10 nm and a G/D ratio of 2.8 were used. Table 1 shows the results.
  • Example 8 When preparing the conductive material paste, instead of 100 parts of cellulose nanofibers having a carboxyl group (average diameter: 3.4 nm), cellulose nanofibers having a sulfo group (average diameter: 3.4 nm) were used as CNFs containing acidic groups. ) were used in the same manner as in Example 1, except that 100 parts were used. Table 1 shows the results.
  • Example 4 Various production, measurement and evaluation were performed in the same manner as in Example 1, except that the amount of cellulose nanofibers having a carboxyl group was changed from 100 parts to 25 parts when preparing the conductive material paste. Table 1 shows the results.
  • Example 5 Various production, measurement and evaluation were performed in the same manner as in Example 1, except that the amount of cellulose nanofibers having a carboxyl group was changed from 100 parts to 600 parts when preparing the conductive material paste. Table 1 shows the results.
  • CNT Carbon nanotube
  • CNF Cellulose nanofiber
  • CMCNa Sodium carboxymethylcellulose
  • PSSNa Sodium polystyrene sulfonate
  • conductive material pastes of Examples 1 to 8 containing CNT, acidic group-containing CNF, and water, and having a mass ratio of acidic group-containing CNF to CNT (acidic group-containing CNF/CNT) within a predetermined range It can be seen that by using it, a secondary battery having excellent electrolyte pourability, low-temperature characteristics, and cycle characteristics can be produced.
  • the conductive material paste of Comparative Example 1 containing no acidic group-containing CNF is used, it can be seen that the secondary battery is inferior in electrolyte pourability and low-temperature characteristics.
  • the conductive material paste of Comparative Example 2 which does not contain CNTs, is used, it can be seen that the low-temperature characteristics and cycle characteristics of the secondary battery are inferior. Furthermore, when the conductive material paste of Comparative Example 3 using CNF having no acidic group instead of CNF containing acidic groups is used, the low-temperature characteristics and cycle characteristics of the secondary battery are inferior. Further, when the conductive material paste of Comparative Example 4 in which the mass ratio of acidic group-containing CNF to CNT (acidic group-containing CNF/CNT) is less than a predetermined range is used, the low temperature characteristics of the secondary battery are inferior. Furthermore, when the conductive material paste of Comparative Example 5 in which the mass ratio of acidic group-containing CNF to CNT (acidic group-containing CNF/CNT) exceeds a predetermined range is used, the cycle characteristics of the secondary battery are inferior.
  • a conductive material paste for a non-aqueous electrolyte secondary battery that can provide a non-aqueous electrolyte secondary battery excellent in electrolyte pourability, low-temperature characteristics, and cycle characteristics.
  • a slurry composition for a negative electrode of a non-aqueous electrolyte secondary battery capable of providing a non-aqueous electrolyte secondary battery having excellent electrolyte pourability, low-temperature characteristics, and cycle characteristics. be able to.
  • a negative electrode for a non-aqueous electrolyte secondary battery that can provide a non-aqueous electrolyte secondary battery that is excellent in electrolyte pourability, low-temperature characteristics, and cycle characteristics.
  • a non-aqueous electrolyte secondary battery that is excellent in electrolyte pourability, low-temperature characteristics, and cycle characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供可能な、非水電解液二次電池用導電材ペーストを提供することを目的とする。本発明の非水電解液二次電池用導電材ペーストは、カーボンナノチューブ、酸性基含有セルロースナノファイバー、および水を含み、前記カーボンナノチューブに対する前記酸性基含有セルロースナノファイバーの質量比(酸性基含有セルロースナノファイバー/カーボンナノチューブ)が0.3以上4以下であることを特徴とする。

Description

非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池
 本発明は、非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池に関するものである。
 リチウムイオン二次電池などの非水電解液二次電池(以下、「二次電池」と略記することがある。)は、小型で軽量、且つ、エネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。ここで、非水電解液二次電池用の電極は、例えば、集電体と、当該集電体上に非水電解液二次電池電極用スラリー組成物を乾燥して形成される電極合材層とを備えている。
 近年、電極合材層の形成に、導電材としてカーボンナノチューブ(以下、「CNT」と略記する場合がある。)などの繊維状導電性カーボンが用いられている。ここで繊維状導電性カーボンを用いた電極合材層の形成に際しては、繊維状導電性カーボンが良好に分散した電極合材層を得るべく、繊維状導電性カーボンと分散剤とを予混合して非水電解液二次電池電極用導電材ペーストとし、得られた導電材ペーストと、シリコン系活物質等の電極活物質とを合わせて非水電解液二次電池電極用スラリー組成物を調製する技術が提案されている(例えば、特許文献1参照)。
国際公開第2020/196115号
 ここで、二次電池の作製時においては電解液の注液性(以下、「二次電池の電解液注液性」と略記することがある)に優れることが求められる。また、二次電池は、優れた低温特性およびサイクル特性に優れることも求められている。
 しかしながら、上記従来の技術においては、二次電池のサイクル特性を十分に高く確保しつつ、電解液注液性および低温特性を向上させる点に改善の余地があった。
 そこで、本発明は、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供可能な、非水電解液二次電池用導電材ペーストを提供することを目的とする。
 また、本発明は、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供可能な、非水電解液二次電池負極用スラリー組成物を提供することを目的とする。
 そして、本発明は、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供可能な、非水電解液二次電池用負極を提供することを目的とする。
 さらに、本発明によれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、カーボンナノチューブ、酸性基含有セルロースナノファイバー、および分散媒としての水を含有し、カーボンナノチューブに対する酸性基含有セルロースナノファイバーの質量比が所定の範囲内である非水電解液二次電池用導電材ペーストを用いることで、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供し得ることを見出し、本発明を完成させるに至った。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[1]カーボンナノチューブ、酸性基含有セルロースナノファイバー、および水を含み、
 前記カーボンナノチューブに対する前記酸性基含有セルロースナノファイバーの質量比(酸性基含有セルロースナノファイバー/カーボンナノチューブ)が0.3以上4以下である、非水電解液二次電池用導電材ペーストである。
 このように、カーボンナノチューブ、酸性基含有セルロースナノファイバー、および水を含み、カーボンナノチューブに対する酸性基含有セルロースナノファイバーの質量比が所定の範囲内である非水電解液二次電池用導電材ペーストを用いれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供することができる。
 [2]上記[1]の非水電解液二次電池用導電材ペーストにおいて、前記カーボンナノチューブの平均層数が2.5以下であることが好ましい。
 平均層数が上記所定値以下であるカーボンナノチューブを用いれば、非水電解液二次電池のサイクル特性を更に向上させることができる。
 なお、本発明において、カーボンナノチューブの「平均層数」は、透過電子顕微鏡(TEM)を用いて無作為に選択されたCNT100本の層数を測定し、その平均値を算出することにより求めることができる。
 [3]上記[1]または[2]の非水電解液二次電池用導電材ペーストにおいて、前記カーボンナノチューブの表面に前記セルロースナノファイバーが吸着してなる構造を含むことが好ましい。
 導電材ペーストが、CNTの表面に酸性基含有セルロースナノファイバーが吸着してなる構造を含めば、当該導電材ペーストの分散安定性、および当該導電材ペーストを含むスラリー組成物の粘度安定性を高めると共に、非水電解液二次電池の電解液注液性、サイクル特性、および低温特性を更に向上させることができる。
 [4]上記[1]~[3]のいずれかの非水電解液二次電池用導電材ペーストにおいて、前記酸性基含有セルロースナノファイバーが、カルボキシル基およびスルホ基の少なくとも一方を有することが好ましい。
 カルボキシル基およびスルホ基の少なくとも一方を有する酸性基含有セルロースナノファイバーを用いれば、当該導電材ペーストの分散安定性、および当該導電材ペーストを含むスラリー組成物の粘度安定性を高めると共に、非水電解液二次電池の電解液注液性、サイクル特性、および低温特性を更に向上させることができる。
 [5]上記[1]~[4]のいずれかの非水電解液二次電池用導電材ペーストにおいて、カルボキシル基およびスルホ基の少なくとも一方を有する分散剤を更に含むことが好ましい。
 カルボキシル基およびスルホ基の少なくとも一方を有する分散剤を更に用いれば、当該導電材ペーストの分散安定性、および当該導電材ペーストを含むスラリー組成物の粘度安定性を高めると共に、非水電解液二次電池のサイクル特性、および低温特性を更に向上させることができる。
 [6]上記[1]~[5]のいずれかの非水電解液二次電池用導電材ペーストにおいて、前記カーボンナノチューブのラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が2.1以上であることが好ましい。
 G/D比が上記所定値以上であるカーボンナノチューブを用いれば、非水電解液二次電池のサイクル特性を更に向上させることができる。
 なお、本発明において、カーボンナノチューブの「G/D比」は、顕微レーザラマン分光光度計(サーモフィッシャーサイエンティフィック(株)製Nicolet Almega XR)を用いてCNTのラマンスペクトルを計測し、得られたラマンスペクトルについて、1590cm-1近傍で観察されたGバンドピークの強度と、1340cm-1近傍で観察されたDバンドピークの強度とを求めた上で、これらの比として算出することができる。
 [7]上記[1]~[6]のいずれかの非水電解液二次電池用導電材ペーストにおいて、前記酸性基含有セルロースナノファイバーの平均直径が2nm以上30nm以下であることが好ましい。平均直径が上記所定の範囲内である酸性基含有セルロースナノファイバーを用いれば、当該導電材ペーストの分散安定性、および当該導電材ペーストを含むスラリー組成物の粘度安定性を高めると共に、非水電解液二次電池のサイクル特性を更に向上させることができる。
 なお、本発明において、酸性基含有セルロースナノファイバーの「平均直径」は、透過電子顕微鏡(TEM)を用いて無作為に選択された酸性基含有セルロースナノファイバー100本の層数、直径(外径)を測定し、その平均値を算出することにより求めることができる。
 [8]上記[1]~[7]のいずれかの非水電解液二次電池用導電材ペーストにおいて、前記カーボンナノチューブの平均直径が1.5nm以上8.0nm以下であることが好ましい。平均直径が上記所定の範囲内であるCNTを用いれば、当該導電材ペーストの分散安定性を高めると共に、非水電解液二次電池のサイクル特性を更に向上させることができる。
 なお、本発明において、カーボンナノチューブの「平均直径」は、透過電子顕微鏡(TEM)を用いて無作為に選択されたCNT100本の直径(外径)を測定し、その平均値を算出することにより求めることができる。
 [9]上記[1]~[8]のいずれかの非水電解液二次電池用導電材ペーストにおいて、前記非水電解液二次電池用導電材ペーストに含まれる粒子の体積平均粒子径D50が、0.5μm以上20.0μm以下であることが好ましい。
 なお、本発明において、「体積平均粒子径D50」とは、レーザー回折法で測定された粒度分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径を指す。
 [10]上記[1]~[9]のいずれかの非水電解液二次電池用導電材ペーストにおいて、前記カーボンナノチューブに対する前記酸性基含有セルロースナノファイバーの質量比(酸性基含有セルロースナノファイバー/カーボンナノチューブ)が0.6以上2以下であることが好ましい。カーボンナノチューブに対する酸性基含有セルロースナノファイバーの質量比(酸性基含有セルロースナノファイバー/カーボンナノチューブ)が上記所定の範囲内であれば、非水電解液二次電池の電解液注液性、サイクル特性、および低温特性を更に向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[11]上記[1]~[10]のいずれかの非水電解液二次電池用導電材ペーストと、シリコン系活物質とを含む、非水電解液二次電池負極用スラリー組成物である。
 このように、上述したいずれかの非水電解液二次電池用導電材ペーストと、シリコン系活物質とを含む非水電解液二次電池負極用スラリー組成物を用いれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供することができる。
 さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[12]上記[11]の非水電解液二次電池負極用スラリー組成物を用いて形成した負極合材層を備える、非水電解液二次電池用負極である。
 このように、上述した非水電解液二次電池負極用スラリー組成物を用いて形成した負極合材層を備える非水電解液二次電池用負極を用いれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[13]上記[12]の非水電解液二次電池用負極を備える、非水電解液二次電池である。
 このように、上述した非水電解液二次電池用負極を備える非水電解液二次電池は、優れた電解液注液性、低温特性、およびサイクル特性を発揮することができる。
 本発明によれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供可能な、非水電解液二次電池用導電材ペーストを提供することができる。
 また、本発明によれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供可能な、非水電解液二次電池負極用スラリー組成物を提供することができる。
 そして、本発明によれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供可能な、非水電解液二次電池用負極を提供することができる。
 さらに、本発明によれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の非水電解液二次電池用導電材ペースト(以下、単に「導電材ペースト」ということがある。)は、非水電解液二次電池負極用スラリー組成物(以下、単に「スラリー組成物」ということがある。)を製造する際の材料として用いられる。また、本発明の非水電解液二次電池用負極(以下、単に「負極」ということがある。)は、本発明の非水電解液二次電池負極用スラリー組成物を用いて形成した負極合材層を備える。また、本発明の非水電解液二次電池は、本発明の非水電解液二次電池用負極を備える。
(非水電解液二次電池用導電材ペースト)
 本発明の非水電解液二次電池用導電材ペースト(以下、単に「導電材ペースト」ということもある。)は、カーボンナノチューブ、および酸性基含有セルロースナノファイバー(以下、「酸性基含有CNF」と略記する場合がある。)が分散媒としての水に分散および/または溶解してなる組成物である。このような導電材ペーストを用いれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を作製することができる。
 なお、本発明の導電材ペーストは、分散剤を更に含むことが好ましい。さらに、本発明の導電材ペーストは、上記カーボンナノチューブ、酸性基含有セルロースナノファイバー、分散剤、および水以外の成分(以下、「その他の成分」と称することがある。)を更に含んでいてもよい。
 また、本明細書中において、「導電材ペースト」は、通常、負極活物質などの電極活物質を含まないものとする。
<カーボンナノチューブ>
 カーボンナノチューブは、導電材として機能し得る材料である。カーボンナノチューブは、電極合材層中において導電パスを形成することで、二次電池のサイクル特性を向上させることができる。また、カーボンナノチューブを用いることで、二次電池の低温特性を向上させることもできる。
 カーボンナノチューブとしては、本発明の所望の効果が得られるカーボンナノチューブ(CNT)であれば、特に限定されない。カーボンナノチューブとしては、層の形式の種類に応じて、単層(SW)カーボンナノチューブおよび多層(MW)カーボンナノチューブが挙げられる。そして、本発明の導電材ペーストに含まれるカーボンナノチューブは、単層カーボンナノチューブ、多層カーボンナノチューブ、またはこれらの組合せのいずれであってもよい。
 CNTの平均層数は、5以下であることが好ましく、4以下であることがより好ましく、2.5以下であることが更に好ましく、2以下であることが一層好ましく、1.5以下であることがより一層好ましい。CNTの平均層数が上記上限以下であれば、二次電池のサイクル特性を更に向上させることができる。
 なお、CNTの平均層数の下限は、特に限定されることはなく、通常1以上である。
 また、CNTの平均層数は、1.2以上であってもよいし、1.2以下であってもよい。
 CNTの平均直径は、0.5nm以上であることが好ましく、1nm以上であることがより好ましく、1.5nm以上であることが更に好ましく、2nm以上であることが一層好ましく、2.5nm以上であることがより一層好ましく、20nm以下であることが好ましく、12nm以下であることがより好ましく、8nm以下であることが更に好ましく、6nm以下であることが一層好ましく、4nm以下であることがより一層好ましい。CNTの平均直径が上記下限以上であれば、CNTの凝集を十分に抑制して、導電材としてのCNTの分散性を十分に確保することができる。一方、CNTの平均直径が上記上限以下であれば、電極合材層中において良好な導電パスを形成し、二次電池のサイクル特性を更に向上させることができる。
 また、CNTの平均直径は、3.7nm以上であってもよいし、3.7nm以下であってもよい。
 CNTのラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)は、0.6以上であることが好ましく、1.2以上であることがより好ましく、2.1以上であることが更に好ましく、3.0以上であることが一層好ましく、3.6以上であることがより一層好ましい。CNTのG/D比が上記下限以上であれば、二次電池のサイクル特性を更に向上させることができる。なお、CNTのG/D比の上限は、特に限定されないが、例えば200以下である。
 また、CNTのG/D比は、4.6以上であってもよいし、4.6以下であってもよい。
<<カーボンナノチューブの製造方法>>
 上述した性状を有するCNTは、特に限定されることなく、アーク放電法、レーザーアブレーション法、スーパーグロース法などの既知の手法を用いて製造することができる。
<<カーボンナノチューブの含有割合>>
 導電材ペーストの全固形分に対するCNTの含有割合は、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることが更に好ましく、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、45質量%以下であることが更に好ましく、40質量%以下であることが一層好ましく、35質量%以下であることがより一層好ましい。CNTの含有割合が上記下限以上であれば、形成される電極合材層中のCNTの含有量が更に高まり、更に良好な導電パスを形成できるため、二次電池のサイクル特性を更に向上させることができる。また、CNTの含有割合が上記下限以上であれば、二次電池の低温特性を更に向上させることもできる。一方、CNTの含有割合が上記上限以下であれば、酸性基含有CNFの含有割合を増大させ得るため、形成される電極合材層の電解液に対する親和性(以下、「電解液親和性」と称することがある。)が更に高まり、二次電池の電解液注液性および低温特性を更に向上させることができる。また、CNTの含有割合が上記上限以下であれば、酸性基含有CNFの含有割合を増大させ得るため、形成される電極合材層の強度を更に高めることにより、活物質の膨張および収縮によるCNTの導電パスの切断を更に抑制できるので、二次電池のサイクル特性を更に向上させることができる。
 また、導電材ペーストの全固形分に対するCNTの含有割合は、33質量%以上であってもよいし、33質量%以下であってもよい。
<酸性基含有セルロースナノファイバー>
 酸性基含有セルロースナノファイバーは、電極合材層の電解液に対する親和性を高めて、二次電池の電解液注液性および低温特性を向上させ得る材料である。
 また、酸性基含有セルロースナノファイバーは、電極合材層の強度を高めて、活物質の膨張および収縮によるCNTの導電パスの切断を抑制することで、二次電池のサイクル特性を向上させることもできる。
 さらに、酸性基含有セルロースナノファイバーを用いることで、導電材ペーストの分散安定性、およびスラリー組成物の粘度安定性を向上させることもできる。
 酸性基含有セルロースナノファイバーは、酸性基を有するセルロースナノファイバーである。即ち、酸性基含有セルロースナノファイバーは、セルロースナノファイバーを構成するセルロースが有する水酸基(-OH)の少なくとも一部が、酸性基またはこれを有する官能基に置換されてなる構造を有する材料である。
 ここで、酸性基としては、例えば、カルボキシル基(-COOH)、スルホ基(-SOH、「スルホン酸基」とも称する。)、およびリン酸基(-PO)などが挙げられる。なお、上述した酸性基は、塩の形態であってもよく、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、および、アンモニウム塩などの形態であってもよい。
 また、酸性基を有する官能基としては、上述した酸性基を有する官能基であれば、特に限定されず、例えば、カルボキシル基を有する官能基であるカルボキシメチル基(-CHCOOH)などが挙げられる。
 そして、導電材ペーストの分散安定性、スラリー組成物の粘度安定性、並びに、二次電池の電解液注液、低温特性、およびサイクル特性を更に向上させる観点から、酸性基含有セルロースナノファイバーは、カルボキシル基およびスルホ基の少なくとも一方を有することが好ましい。
 酸性基含有CNFの平均直径は、特に限定されないが、1.5nm以上であることが好ましく、2.0nm以上であることがより好ましく、2.5nm以上であることが更に好ましく、8.0nm以下であることが好ましく、6.0nm以下であることがより好ましく、4.0nm以下であることが更に好ましい。酸性基含有CNFの平均直径が上記下限以上であれば、形成される電極合材層の強度を更に高めることにより、活物質の膨張および収縮によるCNTの導電パスの切断を更に抑制できるので、二次電池のサイクル特性を更に向上させることができる。一方、酸性基含有CNFの平均直径が上記上限以下であれば、導電材ペーストの分散安定性およびスラリー組成物の粘度安定性を向上させることができる。
 また、酸性基含有CNFの平均直径は、3.4nm以上であってもよいし、3.4nm以下であってもよい。
 導電材ペースト中においては、上記CNTの表面に酸性基含有CNFが吸着してなる構造が含まれることが好ましい。導電材ペーストが、CNTの表面に酸性基含有CNFが吸着してなる構造を含むことにより、導電材ペーストの分散安定性、スラリー組成物の粘度安定性、並びに、二次電池の電解液注液性、サイクル特性、および低温特性を更に向上させることができる。
 なお、CNTの表面に酸性基含有CNFが吸着しているかどうかは、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)を用いた観察によって確認することができる。
<<酸性基含有セルロースナノファイバーの製造方法>>
 酸性基含有セルロースナノファイバーの製造方法は、特に限定されることはなく、例えば、既知の方法により、原料となるセルロースに対して、微細化、および、アニオン変性による酸性基の導入などの処理を行うことにより製造することができる。
 なお、原料として使用し得るセルロースとしては、特に限定されないが、例えば、植物、動物、バクテリア産生ゲル等のセルロースの生合成系から単離した精製セルロースを用いることができる。具体的には、セルロースとして、針葉樹系パルプ、広葉樹系パルプ、コットンリンターやコットンリント等の綿系パルプ、麦わらパルプやバガスパルプ等の非木材系パルプ、バクテリアセルロース、ホヤから単離されるセルロース、海草から単離されるセルロースなどを用いることができる。
<<CNTに対する酸性基含有CNFの質量比(酸性基含有CNF/CNT)>>
 そして、導電材ペースト中におけるCNTに対する酸性基含有CNFの質量比(酸性基含有CNF/CNT)は、0.3以上であることが必要であり、0.4以上であることが好ましく、0.5以上であることがより好ましく、0.6以上であることが更に好ましく、0.7以上であることが一層好ましく、0.8以上であることがより一層好ましく、4以下であることが必要であり、3.5以下であることが好ましく、3以下であることがより好ましく、2.5以下であることが更に好ましく、2以下であることが一層好ましく、1.5以下であることがより一層好ましい。CNTに対する酸性基含有CNFの質量比(酸性基含有CNF/CNT)が0.4以上であると、形成される電極合材層の電解液親和性が十分に高まり、二次電池の電解液注液性および低温特性を十分に向上させることができる。また、CNTに対する酸性基含有CNFの質量比(酸性基含有CNF/CNT)が上記下限以上であれば、形成される電極合材層の強度を更に高めることにより、活物質の膨張および収縮によるCNTの導電パスの切断を更に抑制できるため、二次電池のサイクル特性を更に向上させることができる。一方、CNTに対する酸性基含有CNFの質量比(酸性基含有CNF/CNT)が4以下であると、形成される電極合材層中にCNTを十分に含有させることにより、良好な導電パスを形成できるため、二次電池のサイクル特性を十分に向上させることができる。また、CNTに対する酸性基含有CNFの質量比(酸性基含有CNF/CNT)が上記上限以下であれば、二次電池の低温特性を更に向上させることもできる。
 また、導電材ペースト中におけるCNTに対する酸性基含有CNFの質量比(酸性基含有CNF/CNT)は、1以上であってもよいし、1以下であってもよい。
<<酸性基含有セルロースナノファイバーの含有割合>>
 導電材ペーストの全固形分に対する酸性基含有CNFの含有割合は、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることが更に好ましく、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、45質量%以下であることが更に好ましく、35質量%以下であることが一層好ましい。酸性基含有CNFの含有割合が上記下限以上であれば、形成される電極合材層の電解液親和性が更に高まり、二次電池の電解液注液性および低温特性を更に向上させることができる。また、酸性基含有CNFの含有割合が上記下限以上であれば、形成される電極合材層の強度を更に高めることにより、活物質の膨張および収縮によるCNTの導電パスの切断を更に抑制できるため、二次電池のサイクル特性を更に向上させることができる。一方、酸性基含有CNFの含有割合が上記上限以下であれば、形成される電極合材層中のCNTの含有割合を増大させ得るため、更に良好な導電パスを形成できるので、二次電池のサイクル特性を更に向上させることができる。また、酸性基含有CNFの含有割合が上記上限以下であれば、形成される電極合材層中のCNTの含有割合を増大させ得るため、二次電池の低温特性を更に向上させることもできる。
 また、導電材ペーストの全固形分に対する酸性基含有CNFの含有割合は、33質量%以上であってもよいし、33質量%以下であってもよい。
<分散剤>
 本発明の導電材ペーストは、上述したCNTおよび酸性基含有CNFに加えて、分散剤を更に含むことが好ましい。
 そして、本発明の導電材ペーストに好適に含まれ得る分散剤は、カルボキシル基およびスルホ基の少なくとも一方を有する。なお、分散剤が有するカルボキシル基および/またはスルホ基は、塩の形態であってもよく、例えば、ナトリウム塩等のアルカリ金属塩、およびアンモニウム塩などの形態であってもよい。
 カルボキシル基およびスルホ基の少なくとも一方を有する分散剤を用いれば、導電材ペースト中のCNTの凝集を抑制して、導電材ペーストの分散安定性およびスラリー組成物の粘度安定性を向上させ得ると共に、形成される電極合材層中のCNTの分散性を高めて、更に良好な導電パスを形成できるため、二次電池のサイクル特性を更に向上させることができる。また、上記所定の官能基を有する分散剤を用いれば、二次電池の低温特性を更に向上させることもできる。
 カルボキシル基を有する分散剤としては、例えば、カルボキシメチルセルロースおよびその塩;アクリル酸、メタクリル酸等のカルボキシル基含有単量体を重合して得られる重合体およびその塩;などが挙げられる。
 スルホ基を有する分散剤としては、例えば、スチレンスルホン酸、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸等のスルホ基含有単量体を重合して得られる重合体およびその塩などが挙げられる。
 カルボキシル基およびスルホ基の双方を有する分散剤としては、上述したカルボキシル基含有単量体とスルホ基含有単量体との共重合体およびその塩などが挙げられる。
 中でも、分散剤としては、二次電池の低温特性およびサイクル特性を一層向上させる観点から、カルボキシメチルセルロースおよびその塩、並びに、スルホ基含有単量体を重合して得られる重合体およびその塩を用いることが好ましく、カルボキシメチルセルロースおよびその塩、並びに、スチレンスルホン酸の単独重合体(即ち、ポリスチレンスルホン酸)およびその塩を用いることが好ましく、カルボキシメチルセルロースの塩およびポリスチレンスルホン酸の塩を用いることが更に好ましく、カルボキシメチルセルロースのアルカリ金属塩およびポリスチレンスルホン酸のアルカリ金属塩を用いることが一層好ましく、カルボキシメチルセルロースナトリウムおよびポリスチレンスルホン酸ナトリウムを用いることが特に好ましい。
 導電材ペーストに好適に含まれ得る分散剤は、特に限定されないが、通常、水溶性である。ここで、分散剤が「水溶性」であるとは、25℃において、当該分散剤0.5gを100gの水に溶解した際に、不溶分が0質量%以上1.0質量%未満となることをいう。
 なお、導電材ペーストに好適に含まれ得る分散剤と、上述した酸性基含有セルロースナノファイバーとは異なる成分である。
 例えば、分散剤として用い得るカルボキシメチルセルロースおよび/またはその塩は、水溶性であるため、水中において繊維状の構造を有していないのに対して、酸性基含有CNFは水に対して不溶であり、水中で繊維状の構造を有している。
<<分散剤の含有割合>>
 導電材ペーストの全固形分に対する分散剤の含有割合は、15質量%以上であることが好ましく、20質量%以上であることがより好ましく、25質量%以上であることが更に好ましく、60質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることが更に好ましく、35質量%以下であることが一層好ましい。分散剤の含有割合が上記下限以上であれば、導電材ペースト中のCNTの凝集を更に抑制して、導電材ペーストの分散安定性およびスラリー組成物の粘度安定性を更に向上させ得ると共に、形成される電極合材層中のCNTの分散性を更に高めて、一層良好な導電パスを形成できるため、二次電池のサイクル特性を一層向上させることができる。また、分散剤の含有割合が上記下限以上であれば、二次電池の低温特性を一層向上させることもできる。一方、分散剤の含有割合が上記上限以下であれば、二次電池の電解液注液性およびサイクル特性を十分に高く確保することができる。
 また、導電材ペーストの全固形分に対する分散剤の含有割合は、33質量%以上であってもよいし、33質量%以下であってもよい。
<その他の成分>
 導電材ペーストが含み得るその他の成分としては、特に限定されず、水以外の分散媒、カーボンナノチューブ以外の導電材としてのカーボンブラック、グラフェン、結着材、そして「非水電解液二次電池負極用スラリー組成物」の項で後述する電極活物質以外の成分(例えば、増粘剤のうち、上述した分散剤とは異なる成分)が挙げられる。なお、その他の成分は、一種単独で、または二種以上を組み合わせて用いることができる。
<水以外の分散媒>
 水以外の分散媒としては、有機溶媒が挙げられる。有機溶媒としては、特に限定されることなく、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチルなどのエステル類;ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類;N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)などのアミド系有機溶媒;トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類;などが挙げられる。なお、有機溶媒は、一種単独で、または二種以上を組み合わせて用いることができる。
<<カーボンブラック>>
 本発明の導電材ペーストは、カーボンブラックを更に含んでもよい。本発明に用いるカーボンブラックは、黒鉛質の炭素微結晶が数層集まって乱層構造を形成した集合体であって、具体的にはアセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラックなどが挙げられる。カーボンブラックの中でも、導電性接着剤層が高密度に充填し、電子移動抵抗を低減でき、さらに電気化学素子の内部抵抗を低減できる点で、アセチレンブラック、ファーネスブラック、ケッチェンブラックが特に好ましい。
 本発明の導電材ペーストに含まれ得るカーボンブラックは、主成分である炭素元素と異なるヘテロ元素を含有することが好ましい。前記ヘテロ元素としては、具体的にはケイ素、窒素、ホウ素が挙げられ、電子移動抵抗を低減し、電気化学素子の内部抵抗を低減できる点で、ホウ素が特に好ましい。
 本発明の導電材ペーストに含まれ得るカーボンブラック中のヘテロ元素の含有量は、0.01質量%以上20質量%以下の範囲内にあることが好ましく、0.05質量%以上10質量%以下の範囲内にあることがより好ましく、0.1質量%以上5質量%以下の範囲内にあることが特に好ましい。カーボンブラック中のヘテロ元素の含有量が上記所定の範囲内であれば、電子移動抵抗が低減され、電気化学素子の内部抵抗が低減する。
 ここで、本発明の導電材ペーストに含まれ得るカーボンブラックの比表面積は、良好な導電性を保つ観点から、例えば25m/g以上300m/g以下、好ましくは30m/g以上200m/g以下、更に好ましくは40m/g以上150m/g以下である。カーボンブラックの比表面積が大き過ぎると、高粘度となり高速塗工に適したスラリー組成物の製造が困難となる。逆に、カーボンブラックの比表面積が小さ過ぎると、導電性が低下すると共に、スラリー組成物の分散性が悪化する。
 本発明の導電材ペーストに含まれ得るカーボンブラックの体積平均粒子径D50は、好ましくは0.01μm以上1.0μm未満、より好ましくは0.05μm以上0.8μm未満、特に好ましくは0.1μm以上0.5μm未満である。本発明において、体積平均粒子径D50が上記所定の範囲にあるカーボンブラックを用いれば、導電性接着剤層中の球状黒鉛およびカーボンブラックが高密度に充填する。
<<粒子状ポリマー(結着材)>>
 本発明の導電材ペーストは、結着材を更に含んでいてもよい。
 結着材としては、例えば、粒子状ポリマーを用いることができる。粒子状ポリマーは、ポリマーの構成単位として、例えば、不飽和カルボン酸単量体単位、芳香族ビニル単量体単位、ジエン系単量体単位を含む。なお、結着材としての粒子状ポリマーは、上述したカルボキシル基およびスルホ基の少なくとも一方を有する分散剤とは異なる成分であるものとする。
 なお、本明細書中において、粒子状ポリマーなどの重合体が「単量体単位を含む」とは、「その単量体を用いて得た重合体中に当該単量体由来の繰り返し単位が含まれている」ことを意味する。
 また、本明細書中において、粒子状ポリマーなどの重合体中の単量体単位の含有割合は、H-NMRおよび13C-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。
〔不飽和カルボン酸単量体単位〕
 不飽和カルボン酸単量体単位としては、エチレン性不飽和カルボン酸単量体単位が挙げられる。エチレン性不飽和カルボン酸単量体単位を形成し得るエチレン性不飽和カルボン酸単量体は、通常、カルボキシル基中のヒドロキシル基以外にヒドロキシル基(-OH)を有しない。
 そして、エチレン性不飽和カルボン酸単量体としては、例えば、エチレン性不飽和モノカルボン酸およびその誘導体、エチレン性不飽和ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。なお、エチレン性不飽和カルボン酸単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 ここで、エチレン性不飽和モノカルボン酸の例としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 また、エチレン性不飽和モノカルボン酸の誘導体の例としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 また、エチレン性不飽和ジカルボン酸の例としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 また、エチレン性不飽和ジカルボン酸の酸無水物の例としては、無水マレイン酸、ジアクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 そして、エチレン性不飽和ジカルボン酸の誘導体の例としては、メチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸、などが挙げられる。
 結着材としての粒子状ポリマーにおいて、全単量体単位を100質量部としたときに、不飽和カルボン酸単量体単位の含有量は、2質量部以上であることが好ましく、4質量部以上であることがより好ましく、8質量部以上であることが更に好ましく、30質量部以下であることが好ましく、25質量部以下であることがより好ましく、20質量部以下であることが更に好ましい。結着材としての粒子状ポリマーにおける不飽和カルボン酸単量体単位の含有割合が上記下限以上であれば、導電材ペーストを用いて調製されるスラリー組成物の粘度安定性を向上させることができる。一方、結着材としての粒子状ポリマーにおける不飽和カルボン酸単量体単位の含有割合が上記上限以下であれば、導電材ペーストを用いて調製されるスラリー組成物の固形分濃度を高めることができる。
〔芳香族ビニル単量体単位〕
 芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、p-t-ブチルスチレン、ブトキシスチレン、ビニルトルエン、クロロスチレンおよびビニルナフタレンが挙げられる。なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。そしてこれらの中でも、スチレンが好ましい。
 結着材としての粒子状ポリマーにおいて、全単量体単位を100質量部としたときに、芳香族ビニル単量体単位の含有量は、20質量部以上であることが好ましく、25質量部以上であることがより好ましく、30質量部以上であることが更に好ましく、90質量部以下であることが好ましく、80質量部以下であることがより好ましく、70質量部以下であることが更に好ましい。結着材としての粒子状ポリマーにおける芳香族ビニル単量体単位の含有割合が上記下限以上であれば、導電材ペーストを用いて調製されるスラリー組成物の粘度安定性を向上させることができる。一方、結着材としての粒子状ポリマーにおける芳香族ビニル単量体単位の含有割合が上記上限以下であれば、結着材としての粒子状ポリマーの二次電池に用いられる電解液に対する膨潤度を好適な範囲内とすることができる。
〔ジエン系単量体単位〕
 ジエン系単量体単位を形成し得るジエン系単量体としては、例えば、脂肪族共役ジエン単量体が挙げられる。脂肪族共役ジエン単量体としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエンクロロプレン、シアノブタジエンなどが挙げられる。なお、上述した共役ジエン系モノマーは、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。これらの中でも、入手が容易である点で、1,3-ブタジエン、イソプレンが好ましく、1,3-ブタジエンがより好ましい。
 結着材としての粒子状ポリマーにおいて、全単量体単位を100質量部としたときに、ジエン系単量体単位の含有量は、20質量部以上であることが好ましく、25質量部以上であることがより好ましく、30質量部以上であることが更に好ましく、85質量部以下であることが好ましく、80質量部以下であることがより好ましく、70質量部以下であることが更に好ましい。結着材としての粒子状ポリマーにおけるジエン系単量体単位の含有割合が上記下限値以上であれば、導電材ペーストを含むスラリー組成物を用いて形成される負極の接着性を高めることできる。一方、結着材としての粒子状ポリマーにおけるジエン系単量体単位の含有割合が上記上限値以下であれば、導電材ペーストを用いて調製されるスラリー組成物の粘度安定性を十分に高く確保することができる。
〔その他の単量体単位〕
 結着材としての粒子状ポリマーは、上述した不飽和カルボン酸単量体単位、芳香族ビニル単量体単位、およびジエン系単量体単位以外の単量体単位(「その他の単量体単位」と称することがある。)を更に含んでいてもよい。
 その他の単量体単位を形成し得るその他の単量体としては、特に制限はなく、例えば、シアノ基含有ビニル単量体、アミノ基含有ビニル単量体、ピリジル基含有ビニル単量体、アルコキシル基含有ビニル単量体などが挙げられる。なお、上述したジエン系単量体と共重合可能な単量体は、1種類を単独で使用してもよいし、2種類以上を任意の比率で組み合わせて用いてもよい。
〔粒子状ポリマーの調製方法〕
 なお、結着材としての粒子状ポリマーは、上述した各種の単量体を含む単量体組成物を既知の方法で重合することにより得ることができる。
<導電材ペーストのpH>
 導電材ペーストのpHは、6以上が好ましく、6.5以上がより好ましく、9以下が好ましく、8.5以下であることがより好ましい。導電材ペーストのpHが上記下限以上であれば、スラリー組成物の粘度安定性を高めることができる。一方、導電材ペーストのpHが上記上限以下であれば、導電材ペーストを含むスラリー組成物を用いて形成される負極の接着性を高めることできる。
 また、導電材ペーストのpHは、8以上であってもよいし、8以下であってもよい。
<体積平均粒子径D50>
 導電材ペーストに含まれる粒子の体積平均粒子径D50は、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが更に好ましく、20μm以下であることが好ましく、16μm以下であることがより好ましく、14μm以下であることが更に好ましい。導電材ペーストに含まれる粒子の体積平均粒子径D50が上記下限以上であれば、導電材ペーストの分散安定性を高くすることができ、また、スラリー組成物の塗工後に表面荒れの少ない良好な電極合材層を得ることができる。一方、導電材ペーストに含まれる粒子の体積平均粒子径D50が上記上限以下であれば、電極合材層中において良好な導電パスを形成し、二次電池のサイクル特性を更に向上させることができる。
 また、導電材ペーストに含まれる粒子の体積平均粒子径D50は、9μm以上であってもよいし、9μm以下であってもよいし、また、12μm以上であってもよいし、12μm以下であってもよい。
<導電材ペーストの製造方法>
 本発明の導電材ペーストは、上述したCNTと、酸性基含有CNFと、水と、必要に応じて用いられる分散剤およびその他の成分を、上述した配合量で混合することによって製造することができる。
 なお、各種成分の混合は、特に限定されず、既知の混合装置を用いて行うことができる。このような混合装置としては、例えば、ディスパー、ホモミキサー、プラネタリーミキサー、ニーダー、ボールミル、ビーズミル、ホモジナイザーなどが挙げられる。
(非水電解液二次電池負極用スラリー組成物)
 本発明の非水電解液二次電池負極用スラリー組成物は、上述した導電材ペーストおよびシリコン系活物質等を含み、必要に応じて、シリコン系活物質以外の負極活物質(以下、「その他の負極活物質」と称することがある。)、増粘剤、結着材、カーボンブラック、および、その他の添加剤を含んでもよい。
 このように、上述した導電材ペーストを含むスラリー組成物を用いれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を作製することができる。
<導電材ペースト>
 導電材ペーストとしては、上述した本発明の導電材ペーストを用いることができる。
 なお、スラリー組成物の調製の際における導電材ペーストの添加量は、特に限定されないが、調製されるスラリー組成物中のCNTの含有量および酸性基含有CNFの含有量がそれぞれ後述する所定の範囲内になるように調整することが好ましい。
<<CNTの含有量>>
 スラリー組成中のCNTの含有量は、負極活物質の含有量(シリコン系活物質およびその他の負極活物質の合計含有量)100質量部に対して、例えば、0.01質量部以上、好ましくは0.05質量部以上、より好ましくは0.1質量部以上であり、例えば3質量部以下、好ましくは1質量部以下、より好ましくは0.6質量部以下である。スラリー組成中のCNTの含有量が上記下限以上であれば、二次電池のサイクル特性を更に向上させることができる。一方、スラリー組成中のCNTの含有量が上記上限以下であれば、二次電池の容量を十分に高く確保することができる。
 また、スラリー組成物中のCNTの含有量は、シリコン系活物質の含有量100質量部に対して、例えば0.1質量部以上、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、例えば50質量部以下、好ましくは20質量部以下、より好ましくは10質量部以下である。スラリー組成中のCNTの含有量が上記下限以上であれば、二次電池のサイクル特性を更に向上させることができる。一方、スラリー組成中のCNTの含有量が上記上限以下であれば、二次電池の容量を十分に高く確保することができる。
<<酸性基含有CNFの含有量>>
 スラリー組成中の酸性基含有CNFの含有量は、負極活物質の含有量(シリコン系活物質およびその他の負極活物質の合計含有量)100質量部に対して、例えば、0.01質量部以上、好ましくは0.05質量部以上、より好ましくは0.1質量部以上であり、例えば5質量部以下、好ましくは2質量部以下、より好ましくは1質量部以下である。スラリー組成中の酸性基含有CNFの含有量が上記下限以上であれば、二次電池の電解液注液性、低温特性、およびサイクル特性を更に向上させることができる。一方、スラリー組成中の酸性基含有CNFの含有量が上記上限以下であれば、二次電池の容量を十分に高く確保することができる。
 また、スラリー組成物中の酸性基含有CNFの含有量は、シリコン系活物質の含有量100質量部に対して、例えば0.1質量部以上、好ましくは0.5質量部以上、より好ましくは1質量部以上であり、例えば50質量部以下、好ましくは20質量部以下、より好ましくは10質量部以下である。スラリー組成中の酸性基含有CNFの含有量が上記下限以上であれば、二次電池の電解液注液性、低温特性、およびサイクル特性を更に向上させることができる。一方、スラリー組成中の酸性基含有CNFの含有量が上記上限以下であれば、二次電池の容量を十分に高く確保することができる。
<シリコン系活物質>
 シリコン系活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiO、Si含有材料を導電性カーボンで被覆または複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。
 なお、シリコン系活物質の粒径は、特に限定されることなく、従来使用されている電極活物質と同様とすることができる。
 そして、シリコン系活物質は、一種単独で、または二種以上を組み合わせて用いることができる。
 スラリー組成物中のシリコン系活物質の量は、特に限定されず、従来使用されている範囲内とすることができる。
 スラリー組成中のシリコン系活物質の含有割合は、スラリー組成物の全固形分に対して、例えば3質量%以上、好ましくは5質量%以上、より好ましくは8質量%以上であり、例えば40質量%以下、好ましくは35質量%以下、より好ましくは30質量%以下である。シリコン系活物質の含有割合が上記下限以上であれば、二次電池の容量を高めることができる。一方、シリコン系活物質の含有割合が上記上限以下であれば、二次電池のサイクル特性を十分に高く確保することができる。
<その他の負極活物質>
 その他の負極活物質としては、特に限定されないが、炭素系負極活物質、金属系負極活物質、およびこれらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
 そして、炭素質材料としては、例えば、易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 ここで、易黒鉛性炭素としては、例えば、石油または石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 さらに、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
 ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Sn、Sr、Zn、Tiなど)およびその合金、並びに、それらの酸化物、硫化物、窒化物、炭化物、燐化物などが用いられる。
 なお、その他の負極活物質の粒径は、特に限定されることなく、従来使用されている電極活物質と同様とすることができる。
 そして、その他の負極活物質は、一種単独で、または二種以上を組み合わせて用いることができる。
 スラリー組成物中のその他の負極活物質の量は、特に限定されず、従来使用されている範囲内とすることができる。
 スラリー組成中のシリコン系活物質とその他の負極活物質との質量比(シリコン系活物質/その他の負極活物質)は、1/99以上であることが好ましく、1/49以上であることがより好ましく、1/19以上であることが更に好ましく、1/1以下であることが好ましく、2/3以下であることがより好ましく、1/4以下であることが更に好ましい。スラリー組成中のシリコン系活物質とその他の負極活物質との質量比(シリコン系活物質/その他の負極活物質)が上記下限以上であれば、二次電池の容量を高めることができる。一方、スラリー組成中のシリコン系活物質とその他の負極活物質との質量比(シリコン系活物質/その他の負極活物質)が上記上限以下であれば、二次電池のサイクル特性を十分に高く確保することができる。
 また、スラリー組成中のシリコン系活物質とその他の負極活物質との質量比(シリコン系活物質/その他の負極活物質)は、1/9以上であってもよいし、1/9以下であってもよい。
 さらに、スラリー組成中の負極活物質の含有割合(即ち、シリコン系活物質およびその他の負極活物質の合計含有割合)は、スラリー組成物の全固形分に対して、例えば90質量%以上、好ましくは92質量%以上、より好ましくは95質量%以上であり、例えば99質量%以下である。負極活物質の含有割合が上記下限以上であれば、二次電池の容量を高めることができる。また、負極活物質の含有割合が上記上限以下であれば、二次電池のサイクル特性を更に向上させることができる。
<増粘剤>
 増粘剤としては、特に限定されないが、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリメタクリル酸、ポリアクリル酸、アクリルアミド/アクリル酸/N-ヒドロキシエチルアクリルアミドの三元共重合体が挙げられる。これらは一種単独で、または二種以上を組み合わせて用いることができる。また、これらは未中和状態、あるいは、中和状態のいずれでも用いることが可能である。
 そして、本発明のスラリー組成物中の増粘剤の含有量は、負極活物質の含有量(シリコン系活物質およびその他の負極活物質の合計含有量)100質量部に対して、0.2質量部以上であることが好ましく、0.4質量部以上であることがより好ましく、5.0質量部以下であることが好ましく、4.0質量部以下であることがより好ましい。負極活物質100質量部当たりの増粘剤の含有量が上記下限以上であれば、二次電池のサイクル特性を更に向上させることができる。一方、負極活物質100質量部当たりの増粘剤の含有量が上記上限以下であれば、二次電池の容量を向上させることができる。
 また、本発明のスラリー組成物中の増粘剤の含有量は、負極活物質の含有量(シリコン系活物質およびその他の負極活物質の合計含有量)100質量部に対して、2質量部以上であってもよいし、2質量部以下であってもよい。
<結着材>
 結着材としては、例えば、「導電材ペースト」の項で上述した粒子状ポリマーを用いることができる。そして、本発明のスラリー組成物中の結着材の含有量は、負極活物質の含有量(シリコン系活物質およびその他の負極活物質の合計含有量)100質量部に対して、例えば、0.1質量部以上とすることができ、また、3.0質量部以下とすることができる。
 また、本発明のスラリー組成物中の結着材の含有量は、負極活物質の含有量(シリコン系活物質およびその他の負極活物質の合計含有量)100質量部に対して、1質量部以上であってもよいし、1質量部以下であってもよい。
<カーボンブラック>
 結着材としては、例えば、「導電材ペースト」の項で上述したカーボンブラックを用いることができる。そして、本発明のスラリー組成物中の結着材の含有量は、とくに限定されることはなく、本発明の所望の効果が得られる範囲内で適宜調整することができる。
<その他の添加剤>
 スラリー組成物に含まれ得るその他の添加剤としては、例えば、補強材、酸化防止剤、電解液の分解を抑制する機能を有する電解液添加剤が挙げられる。これらの任意成分は、一種単独で、または二種以上を組み合わせて用いることができる。
<スラリー組成物の調製方法>
 上述した成分を混合してスラリー組成物を得るに際し、混合方法には特に制限は無く、例えば、既知の混合装置を用いることができる。
(非水電解液二次電池用負極)
 本発明の非水電解液二次電池用負極は、上述した本発明のスラリー組成物を用いて形成される負極合材層を備える。より具体的には、本発明の負極は、通常、本発明のスラリー組成物の乾燥物からなる負極合材層を集電体上に備えた構造を有する。そのため、負極合材層は、カーボンナノチューブ、酸性基含有セルロースナノファイバー、およびシリコン系活物質を含み、必要に応じて、その他の負極活物質、分散剤、増粘剤、結着材、カーボンブラック、その他の添加剤を含んでもよい。なお、電極合材層中における各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。
 そして、本発明の負極は、上述した本発明のスラリー組成物を用いて形成した負極合材層を備えているので、非水電解液二次電池に優れた電解液注液性、低温特性、およびサイクル特性を発揮させることができる。
<集電体>
 負極用の集電体は、電気導電性を有し、かつ、電気化学的に耐久性のある材料からなる。集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。これらの材料は、一種単独で、または二種以上を組み合わせて用いることができる。そして、負極用の集電体としては、銅からなる集電体(銅箔など)が好ましい。
<負極の製造方法>
 本発明の負極を製造する方法は特に限定されない。例えば、本発明の負極は、上述した本発明のスラリー組成物を、集電体の少なくとも一方の面に塗布し、乾燥して負極合材層を形成することで製造することができる。より詳細には、当該製造方法は、スラリー組成物を集電体の少なくとも一方の面に塗布する工程(塗布工程)と、集電体の少なくとも一方の面に塗布されたスラリー組成物を乾燥して集電体上に負極合材層を形成する工程(乾燥工程)とを含む。
<<塗布工程>>
 スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる負極合材層の厚みに応じて適宜に設定しうる。
<<乾燥工程>>
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に負極合材層を形成し、集電体と負極合材層とを備える負極を得ることができる。
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、負極合材層に加圧処理を施してもよい。加圧処理により、負極のピール強度を向上させることができる。
(非水電解液二次電池)
 本発明の非水電解液二次電池は、上述した本発明の負極を備える。そして、本発明の非水電解液二次電池は、本発明の負極を備えているため、電解液注液性、低温特性、およびサイクル特性に優れている。なお、本発明の非水電解液二次電池としては、例えば、リチウムイオン二次電池、ナトリウムイオン二次電池などが挙げられる。
 ここで、以下では、本発明の非水電解液二次電池の一例としてのリチウムイオン二次電池の構成について説明する。このリチウムイオン二次電池は、本発明の負極、正極、電解液、セパレータを備える。
<正極>
 正極としては、特に限定されず既知の非水電解液二次電池(例、リチウムイオン二次電池)用の正極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましく、エチレンカーボネートとエチルメチルカーボネートとの混合物を用いることが更に好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5~15質量%とすることが好ましく、2~13質量%とすることがより好ましく、5~10質量%とすることが更に好ましい。また、電解液には、既知の添加剤、例えばフルオロエチレンカーボネート(FEC)、ビニレンカーボネート(VC)、エチルメチルスルホンなどを添加してもよい。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<非水電解液二次電池の製造方法>
 本発明に従う非水電解液二次電池は、例えば、本発明の負極と、正極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。非水電解液二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 そして、実施例および比較例において、導電材ペーストに含まれる粒子の体積平均粒子径D50、導電材ペーストの分散安定性、スラリー組成物の粘度安定性、リチウムイオン二次電池の電解液注液性、低温特性、サイクル特性は、それぞれ以下の方法を使用して評価した。
<体積平均粒子径D50>
 作製した導電材ペーストについて、JIS Z8825:2013に準拠し、レーザー回析・散乱式粒度分布測定装置(マイクロトラックベル社製、マイクロトラックMT-3300EXII)を用いて、体積平均粒子径D50を湿式測定した。測定時にはイオン交換水を希釈溶媒として使用し、所定の散乱光強度となるよう調整した。
<分散安定性>
 導電材ペーストの作製直後の粘度η1を、B型粘度計を用いて、温度25℃、スピンドル回転速度60rpmの条件で、スピンドル回転開始後60秒間経過時に測定した。η1測定後の導電材ペーストを25℃10日間静置条件で保管し、粘度η1と同様にして保管後の粘度η2を測定した。η2のη1に対する比(η2/η1)をペースト粘度比とし、下記基準で評価した。ペースト粘度比の値が1.0に近いほど、導電材ペーストの粘度上昇が抑制され、分散安定性に優れることを示す。
 A:ペースト粘度比が1.15未満
 B:ペースト粘度比が1.15以上1.6未満
 C:ペースト粘度比が1.6以上2.0未満
 D:ペースト粘度比が2.0以上
<粘度安定性>
 スラリー組成物の作製直後の粘度η3を、B型粘度計を用いて、温度25℃、スピンドル回転速度60rpmの条件で、スピンドル回転開始後60秒間経過時に測定した。η3測定後のスラリー組成物を25℃3日間静置条件で保管し、粘度η3と同様にして保管後の粘度η4を測定した。η4のη3に対する比(η4/η3)をスラリー粘度比とし、下記基準で評価した。スラリー粘度比の値が1.0に近いほど、スラリー組成物の粘度上昇が抑制され、粘度安定性に優れることを示す。
 A:スラリー粘度比が1.2未満
 B:スラリー粘度比が1.2以上1.4未満
 C:スラリー粘度比が1.4以上1.5未満
 D:スラリー粘度比が1.5以上
<電解液注液性>
 負極を6cm×6cmに切り出し、9cm×9cmのアルミパウチに入れた後、電解液(後述する二次電池の製造に用いる電解液と同じ組成のもの)を0.2ml投入した。その後、ヒートシーラー(TOSEI社製、製品名「卓上縦型SV-300GII」)にてシールした。シール直後から1分経過後における電解液の浸漬率を超音波検査装置(ジャパンプローブ社製、製品名「空中超音波検査システムNAUT21」)を用いて測定し、以下の基準で評価した。この電解液の浸漬率が高いほど、リチウムイオン二次電池の作製時における電解液の注液性(即ち、リチウムイオン二次電池の電解液注液性)が優れていることを示す。
 A:電解液の浸漬率が75体積%以上
 B:電解液の浸漬率が65体積%以上75体積%未満
 C:電解液の浸漬率が65体積%未満
<低温特性>
 リチウムイオン二次電池を、25℃の温度下で0.2Cの定電流-定電圧充電(カットオフ0.02C)によって4.35Vまで充電し、その後1Cの定電流法にて2.75Vまで放電することによって、25℃における1C放電容量を求めた。次に-25℃の温度下において、0.2Cの定電流-定電圧充電(カットオフ0.02C)にて4.35Vまで充電し、-10℃の温度下で1Cの定電流法にて2.75Vまで放電することによって、-10℃における1C放電容量を求めた。これらの測定を3セルについて行い、各測定値の平均値を算出した。25℃における1C放電容量の平均値をC0、-10℃における1C放電容量の平均値をC1として、低温での容量保持率(%)=C1/C0×100を算出し、下記基準で評価した。低温での容量保持率が高いほど、リチウムイオン二次電池が低温でも低抵抗であること、即ち、低温特性に優れていることを示す。
 A:85%以上
 B:75%以上85%未満
 C:60%以上75%未満
 D:60%未満
<サイクル特性>
 リチウムイオン二次電池を、電解液注液後、25℃の環境下で24時間静置させた。次いで、0.2Cの定電流-定電圧充電(カットオフ0.02C)によりセル電圧4.35Vまで充電し、セル電圧2.75Vまで定電流放電する充放電の操作を行い、初期容量C0を測定した。さらに、25℃の環境下で1.0Cの定電流-定電圧充電(カットオフ0.02C)によってセル電圧4.35Vまで充電し、セル電圧2.75Vまで定電流法で放電する充放電を繰り返し、100サイクル後の容量C1を測定した。そして、容量維持率(%)=C1/C0×100を算出し、下記基準で評価した。容量維持率が高いほど、リチウムイオン二次電池がサイクル特性に優れることを示す。
 A:容量維持率が90%以上
 B:容量維持率が85%以上90%未満
 C:容量維持率が80%以上85%未満
 D:容量維持率が80%未満
(実施例1)
<導電材ペーストの調製>
 CNT(平均層数:1.2、平均直径:3.7nm、G/D比:4.6)100部と、分散剤としてのカルボキシメチルセルロースナトリウム100部と、酸性基含有CNFとしてのカルボキシル基を有するCNF(平均直径:3.4nm)100部と、分散媒としての適量のイオン交換水とを、ディスパーにて撹拌(3000rpm、60分)し、次いで直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/sにて60分間混合した。得られた予混合物をさらに30分間ビーズミルにて混合することにより、導電材ペースト(固形分濃度:2.0%)を製造した。得られた導電材ペーストのpHは、8.0であった。この導電材ペーストについて、体積平均粒子径D50および分散安定性を測定および評価した。結果を表1に示す。
 なお、透過型電子顕微鏡を用いて観察したところ、上記導電材ペースト中には、CNTの表面に酸性基含有CNFが吸着してなる構造が含まれることが確認された。
<粒子状ポリマーの調製>
 結着材としての粒子状ポリマーは、以下のようにして調製した。
 撹拌機付き5MPa耐圧容器Aに、スチレン3.15部、1,3-ブタジエン1.66部、乳化剤としてのラウリル硫酸ナトリウム0.2部、イオン交換水20部、および重合開始剤としての過硫酸カリウム0.03部を入れ、十分に撹拌した後、60℃に加温して重合を開始させ、6時間反応させてシード粒子を得た。
 上記の反応後、75℃に加温し、スチレン53.85部、1,3-ブタジエン31.34部、アクリル酸10.0部、連鎖移動剤としてのtert-ドデシルメルカプタン0.25部、乳化剤としてのラウリル硫酸ナトリウム0.35部を入れた別の容器Bから、これらの混合物の耐圧容器Aへの添加を開始し、これと同時に、重合開始剤として過硫酸カリウム1部の耐圧容器Aへの添加を開始することで2段目の重合を開始した。
 すなわち、粒子状ポリマーの調製に用いる単量体組成物全体としては、スチレン57部、1,3-ブタジエン33部、アクリル酸10部を用いた。
 2段目の重合開始から5時間半後、これらの単量体組成物を含む混合物の全量添加が完了し、その後、さらに85℃に加温して6時間反応させた。重合転化率が97%になった時点で冷却し反応を停止した。この重合物を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後冷却し、非水溶性である粒子状ポリマーの水分散液を得た。
<負極用スラリー組成物の調製>
 ディスパー付きのプラネタリーミキサーに、炭素系負極活物質としての人造黒鉛(体積平均粒子径:24.5μm、比表面積:3.5m/g)90部と、シリコン系負極活物質としてのSiO10部と、増粘剤としてのカルボキシメチルセルロースナトリウムの水溶液2.0部(固形分相当量)を加え、イオン交換水で固形分濃度58%に調整し、室温下で60分間混合した。混合後、当該プラネタリーミキサーに、上記のようにして得られた導電材ペーストをカーボンナノチューブが0.1部(固形分相当量)となるように添加し、混合した。次いで、上記で得られた粒子状ポリマーを1.0部(固形分相当)加え、イオン交換水で固形分濃度50%に調整して混合液を得た。得られた混合液を減圧下で脱泡処理して、流動性の良い負極用スラリー組成物を得た。この負極用スラリー組成物について、粘度安定性を評価した。結果を表1に示す。
<負極の製造>
 上記のようにして得られた負極用スラリー組成物を、コンマコーターで、厚さ16μmの銅箔(集電体)の上に、乾燥後の膜厚が105μm、塗布量が10mg/cmになるように塗布した。この負極用スラリー組成物が塗布された銅箔を、0.5m/分の速度で温度100℃のオーブン内を2分間、さらに温度120℃のオーブン内を2分間かけて搬送することにより、銅箔上の負極用スラリー組成物を乾燥させ、負極原反を得た。この負極原反をロールプレスで圧延して、負極合材層の厚みが80μmの負極を得た。この負極を用いて、リチウムイオン二次電池の電解液注液性を評価した。結果を表1に示す。
<正極の製造>
 プラネタリーミキサーに、正極活物質としてのスピネル構造を有するLiCoO:95部、正極用結着材としてのPVDF(ポリフッ化ビニリデン)を固形分相当で3部、導電材としてのアセチレンブラック2部、および溶媒としてのN-メチルピロリドン20部を加えて混合し、正極用スラリー組成物を得た。
 得られた正極用スラリー組成物を、コンマコーターで、厚さ20μmのアルミニウム箔(集電体)上に、乾燥後の膜厚が100μm程度になるように塗布した。この正極用スラリー組成物が塗布されたアルミニウム箔を、0.5m/分の速度で温度60℃のオーブン内を2分間、さらに温度120℃のオーブン内を2分間かけて搬送することにより、アルミニウム箔上の正極用スラリー組成物を乾燥させ、正極原反を得た。この正極原反をロールプレスで圧延して、正極合材層の厚みが70μmの正極を得た。
<セパレータの用意>
 単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意した。このセパレータを、5cm×5cmの正方形に切り抜いて、下記のリチウムイオン二次電池の製造に使用した。
<二次電池の製造>
 電池の外装として、アルミニウム包材外装を用意した。上記正極を、4cm×4cmの正方形に切り出して、集電体側の表面がアルミニウム包材外装に接するように配置した。次に、正極の正極合材層の面上に、上記正方形のセパレータを配置した。さらに、上記負極を、4.2cm×4.2cmの正方形に切り出して、これをセパレータ上に、負極合材層側の表面がセパレータに向かい合うよう配置した。その後、電解液として濃度1.0MのLiPF溶液(溶媒はエチレンカーボネート/ジエチルカーボネート=1/2(体積比)の混合溶媒)、添加剤としてフルオロエチレンカーボネートおよびビニレンカーボネートをそれぞれ2体積%(溶媒比)含有)を充填した。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム包材外装を閉口し、ラミネートセル型のリチウムイオン二次電池を製造した。このリチウムイオン二次電池について、低温特性およびサイクル特性を評価した。結果を表1に示す。
(実施例2)
 導電材ペーストの調製の際に、分散剤としてのカルボキシメチルセルロースナトリウム100部を添加しなかったこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(実施例3)
 導電材ペーストの調製の際に、分散剤として、カルボキシメチルセルロースナトリウム100部に代えて、ポリスチレンスルホン酸ナトリウム100部を用いたこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(実施例4)
 導電材ペーストの調製の際に、平均層数が1.2、平均直径が3.7nm、G/D比が4.6であるCNT100部に代えて、平均層数が2.3、平均直径が4.5nm、G/D比が0.7であるCNT100部を用いたこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(実施例5)
 導電材ペーストの調製の際に、カルボキシル基を有するセルロースナノファイバーの添加量を100部から300部に変更したこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(実施例6)
 導電材ペーストの調製の際に、カルボキシル基を有するセルロースナノファイバーの添加量を100部から50部に変更したこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(実施例7)
 導電材ペーストの調製の際に、平均層数が1.2、平均直径が3.7nm、G/D比が4.6であるCNT100部に代えて、平均層数が4.5、平均直径が10nm、G/D比が2.8であるCNT100部を用いたこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(実施例8)
 導電材ペーストの調製の際に、酸性基含有CNFとして、カルボキシル基を有するセルロースナノファイバー(平均直径:3.4nm)100部に代えて、スルホ基を有するセルロースナノファイバー(平均直径:3.4nm)100部を用いたこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(比較例1)
 導電材ペーストの調製の際に、酸性基含有CNFとしてのカルボキシル基を有するセルロースナノファイバー(平均直径:3.4nm)100部を添加しなかったこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(比較例2)
 導電材ペーストの調製の際に、CNT100部を添加しなかったこと以外は、実施例2と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(比較例3)
 導電材ペーストの調製の際に、カルボキシル基を有するセルロースナノファイバー(平均直径:3.4nm)100部に代えて、カルボキシル基、スルホ基等の酸性基を有しないセルロースナノファイバー(平均直径:3.4nm)100部を用いたこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(比較例4)
 導電材ペーストの調製の際に、カルボキシル基を有するセルロースナノファイバーの添加量を100部から25部に変更したこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
(比較例5)
 導電材ペーストの調製の際に、カルボキシル基を有するセルロースナノファイバーの添加量を100部から600部に変更したこと以外は、実施例1と同様にして、各種製造、測定および評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表中の略称は、以下の通りである。
CNT:カーボンナノチューブ
CNF:セルロースナノファイバー
CMCNa:カルボキシメチルセルロースナトリウム
PSSNa:ポリスチレンスルホン酸ナトリウム
 表1より、CNT、酸性基含有CNF、および水を含み、CNTに対する酸性基含有CNFの質量比(酸性基含有CNF/CNT)が所定の範囲内である実施例1~8の導電材ペーストを用いれば、電解液注液性、低温特性、およびサイクル特性に優れた二次電池を作製できることが分かる。
 一方、酸性基含有CNFを含まない比較例1の導電材ペーストを用いた場合、二次電池の電解液注液性および低温特性に劣ることが分かる。
 また、CNTを含まない比較例2の導電材ペーストを用いた場合、二次電池の低温特性およびサイクル特性に劣ることが分かる。
 さらに、酸性基含有CNFに代えて酸性基を有しないCNFを用いた比較例3の導電材ペーストを用いた場合、二次電池の低温特性およびサイクル特性に劣ることが分かる。
 また、CNTに対する酸性基含有CNFの質量比(酸性基含有CNF/CNT)が所定の範囲に満たない比較例4の導電材ペーストを用いた場合、二次電池の低温特性に劣ることが分かる。
 さらに、CNTに対する酸性基含有CNFの質量比(酸性基含有CNF/CNT)が所定の範囲を超える比較例5の導電材ペーストを用いた場合、二次電池のサイクル特性に劣ることが分かる。
 本発明によれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供可能な、非水電解液二次電池用導電材ペーストを提供することができる。
 また、本発明によれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供可能な、非水電解液二次電池負極用スラリー組成物を提供することができる。
 そして、本発明によれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供可能な、非水電解液二次電池用負極を提供することができる。
 さらに、本発明によれば、電解液注液性、低温特性、およびサイクル特性に優れた非水電解液二次電池を提供することができる。
 

Claims (13)

  1.  カーボンナノチューブ、酸性基含有セルロースナノファイバー、および水を含み、
     前記カーボンナノチューブに対する前記酸性基含有セルロースナノファイバーの質量比(酸性基含有セルロースナノファイバー/カーボンナノチューブ)が0.3以上4以下である、非水電解液二次電池用導電材ペースト。
  2.  前記カーボンナノチューブの平均層数が2.5以下である、請求項1に記載の非水電解液二次電池用導電材ペースト。
  3.  前記カーボンナノチューブの表面に前記セルロースナノファイバーが吸着してなる構造を含む、請求項1に記載の非水電解液二次電池用導電材ペースト。
  4.  前記酸性基含有セルロースナノファイバーが、カルボキシル基およびスルホ基の少なくとも一方を有する、請求項1に記載の非水電解液二次電池用導電材ペースト。
  5.  カルボキシル基およびスルホ基の少なくとも一方を有する分散剤を更に含む、請求項1に記載の非水電解液二次電池用導電材ペースト。
  6.  前記カーボンナノチューブのラマンスペクトルにおけるDバンドピーク強度に対するGバンドピーク強度の比(G/D比)が2.1以上である、請求項1に記載の非水電解液二次電池用導電材ペースト。
  7.  前記酸性基含有セルロースナノファイバーの平均直径が2nm以上30nm以下である、請求項1に記載の非水電解液二次電池用導電材ペースト。
  8.  前記カーボンナノチューブの平均直径が1.5nm以上8.0nm以下である、請求項1に記載の非水電解液二次電池用導電材ペースト。
  9.  前記非水電解液二次電池用導電材ペーストに含まれる粒子の体積平均粒子径D50が、0.5μm以上20.0μm以下である、請求項1に記載の非水電解液二次電池用導電材ペースト。
  10.  前記カーボンナノチューブに対する前記酸性基含有セルロースナノファイバーの質量比(酸性基含有セルロースナノファイバー/カーボンナノチューブ)が0.6以上2以下である、請求項1に記載の非水電解液二次電池用導電材ペースト。
  11.  請求項1~10のいずれかに記載の非水電解液二次電池用導電材ペーストと、シリコン系活物質とを含む、非水電解液二次電池負極用スラリー組成物。
  12.  請求項11に記載の非水電解液二次電池負極用スラリー組成物を用いて形成した負極合材層を備える、非水電解液二次電池用負極。
  13.  請求項12に記載の非水電解液二次電池用負極を備える、非水電解液二次電池。
     
PCT/JP2022/043251 2021-11-30 2022-11-22 非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池 WO2023100726A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280074164.1A CN118216019A (zh) 2021-11-30 2022-11-22 非水电解液二次电池用导电材料糊、非水电解液二次电池负极用浆料组合物、非水电解液二次电池用负极以及非水电解液二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-194991 2021-11-30
JP2021194991 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100726A1 true WO2023100726A1 (ja) 2023-06-08

Family

ID=86612071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043251 WO2023100726A1 (ja) 2021-11-30 2022-11-22 非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池

Country Status (2)

Country Link
CN (1) CN118216019A (ja)
WO (1) WO2023100726A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095949A1 (ja) * 2022-10-31 2024-05-10 三菱鉛筆株式会社 電極形成用塗工液

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2018123324A1 (ja) * 2016-12-27 2018-07-05 株式会社日立製作所 リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2019064538A1 (ja) * 2017-09-29 2019-04-04 Attaccato合同会社 リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ
JP2020057500A (ja) * 2018-10-01 2020-04-09 トヨタ自動車株式会社 負極、電池、および負極の製造方法
JP2020129479A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 リチウムイオン二次電池用の負極
US20210202978A1 (en) * 2019-08-22 2021-07-01 University Of Maryland, College Park Ion-conducting structures, devices including ion-conducting structures, and methods for use and fabrication thereof
JP2021150214A (ja) * 2020-03-23 2021-09-27 株式会社東芝 電極、二次電池、電池パック、及び車両

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2018123324A1 (ja) * 2016-12-27 2018-07-05 株式会社日立製作所 リチウムイオン二次電池用電極およびリチウムイオン二次電池
WO2019064538A1 (ja) * 2017-09-29 2019-04-04 Attaccato合同会社 リチウムイオン電池用バインダおよびこれを用いた電極並びにセパレータ
JP2020057500A (ja) * 2018-10-01 2020-04-09 トヨタ自動車株式会社 負極、電池、および負極の製造方法
JP2020129479A (ja) * 2019-02-08 2020-08-27 トヨタ自動車株式会社 リチウムイオン二次電池用の負極
US20210202978A1 (en) * 2019-08-22 2021-07-01 University Of Maryland, College Park Ion-conducting structures, devices including ion-conducting structures, and methods for use and fabrication thereof
JP2021150214A (ja) * 2020-03-23 2021-09-27 株式会社東芝 電極、二次電池、電池パック、及び車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024095949A1 (ja) * 2022-10-31 2024-05-10 三菱鉛筆株式会社 電極形成用塗工液

Also Published As

Publication number Publication date
CN118216019A (zh) 2024-06-18

Similar Documents

Publication Publication Date Title
JP7184076B2 (ja) カーボンナノチューブ分散液、二次電池電極用スラリー、二次電池電極用スラリーの製造方法、二次電池用電極および二次電池
US9203091B2 (en) Slurry for secondary battery negative electrodes, secondary battery negative electrode and manufacturing method thereof, and secondary battery
KR101978463B1 (ko) 리튬 이온 이차 전지 부극용 슬러리 조성물, 리튬 이온 이차 전지 부극, 및 리튬 이온 이차 전지
JP6088824B2 (ja) リチウム系電池用電極およびリチウム系電池
JP6522167B2 (ja) 金属ナノ粒子を含む正極活物質及び正極、それを含むリチウム−硫黄電池
JP7268600B2 (ja) 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子
WO2015033827A1 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池
KR102595197B1 (ko) 전기 화학 소자 전극용 조성물, 전기 화학 소자용 전극 및 전기 화학 소자, 그리고 전기 화학 소자 전극용 조성물의 제조 방법
JP6801167B2 (ja) 非水電解質二次電池用電極
JP6665592B2 (ja) 非水系二次電池電極用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極並びに非水系二次電池
WO2023100726A1 (ja) 非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池
JPWO2019181871A1 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
KR20190047907A (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
KR20200121498A (ko) 리튬 이차전지용 양극 슬러리 조성물, 이를 포함하는 양극 및 리튬 이차전지
JP6733318B2 (ja) 電気化学素子電極用組成物、電気化学素子用電極および電気化学素子、並びに電気化学素子電極用組成物の製造方法
WO2020137403A1 (ja) 二次電池電極用炭素材料分散液、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2023053926A1 (ja) 非水系二次電池用導電材ペースト、非水系二次電池負極用スラリー、非水系二次電池用負極及び非水系二次電池
WO2024024552A1 (ja) 非水系二次電池用負極及び非水系二次電池
WO2022163330A1 (ja) 電気化学素子電極用導電材ペースト、電気化学素子電極用スラリー組成物、電気化学素子用電極及び電気化学素子、並びに電気化学素子電極用導電材ペーストの製造方法
WO2024024446A1 (ja) カーボンナノチューブ分散液、非水系二次電池負極用スラリー、非水系二次電池用負極及び非水系二次電池
WO2023145612A1 (ja) カーボンナノチューブ分散液、非水系二次電池負極用スラリー、非水系二次電池用負極及び非水系二次電池
WO2023008221A1 (ja) 非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池
US20240128459A1 (en) Composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method of producing composition for electrochemical device electrode
CN116779811A (zh) 一种有机无机互穿网络结构的含硅颗粒表面弹性体包裹层及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901159

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023564906

Country of ref document: JP

Kind code of ref document: A