WO2015033827A1 - リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2015033827A1
WO2015033827A1 PCT/JP2014/072374 JP2014072374W WO2015033827A1 WO 2015033827 A1 WO2015033827 A1 WO 2015033827A1 JP 2014072374 W JP2014072374 W JP 2014072374W WO 2015033827 A1 WO2015033827 A1 WO 2015033827A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lithium ion
secondary battery
ion secondary
slurry composition
Prior art date
Application number
PCT/JP2014/072374
Other languages
English (en)
French (fr)
Inventor
徳一 山本
金田 拓也
祐輔 足立
健太郎 早坂
政憲 渋谷
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2015535436A priority Critical patent/JP6358256B2/ja
Publication of WO2015033827A1 publication Critical patent/WO2015033827A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slurry composition for a negative electrode of a lithium ion secondary battery, a method for producing a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery.
  • Lithium ion secondary batteries have a high energy density and are used in fields such as mobile phones and notebook personal computers. Further, with the expansion and development of applications, electrochemical devices are required to have further improved performance such as low resistance and large capacity.
  • Si or silicon oxide (SiO x) is used in place of the theoretical capacity of the negative electrode active material instead of the graphite material conventionally used.
  • SiO x silicon oxide
  • other silicon-based active materials are being used.
  • the use of a predetermined binder suppresses a decrease in the adhesion strength of the electrode without compositing the active material.
  • the negative electrode active material when a silicon-based active material is used as the negative electrode active material, it is required to suppress the swelling of the electrode due to a large amount of occlusion of lithium ions. Further, lithium ion secondary materials manufactured using this negative electrode active material are required. The secondary battery is required to have good cycle characteristics such as suppressing initial cycle deterioration.
  • An object of the present invention is to provide a slurry composition for a lithium ion secondary battery negative electrode that can suppress the swelling of the electrode and is excellent in the cycle characteristics of the obtained lithium ion secondary battery, and a slurry for the lithium ion secondary battery negative electrode It is providing the manufacturing method of the lithium ion secondary battery negative electrode using a composition, and the lithium ion secondary battery using this lithium ion secondary battery negative electrode.
  • the present inventor has found that the above object can be achieved by including a predetermined particulate binder and a water-soluble polymer, and has completed the present invention.
  • a slurry composition for a negative electrode of a lithium ion secondary battery comprising a negative electrode active material, a particulate binder and a water-soluble polymer, wherein the composite is composed of the particulate binder and the water-soluble polymer and has a thickness of 200 ⁇ m.
  • a slurry composition for a negative electrode of a lithium ion secondary battery having a breaking strength of 20 MPa or more and 90 MPa or less after the film is swollen in the electrolytic solution (2) The slurry composition for a negative electrode of a lithium ion secondary battery according to (1), wherein the composite film having a thickness of 200 ⁇ m composed of the particulate binder and the water-soluble polymer has a light transmission concentration of 0.28 or less, (3)
  • the particulate binder contains a styrene monomer unit, a butadiene monomer unit, and an acid monomer unit, and the content ratio of the acid monomer unit in 100 parts by weight of the particulate binder is 5-50 parts by weight of the slurry composition for a negative electrode of a lithium ion secondary battery according to (1) or (2), (4) The lithium ion secondary battery negative electrode according to any one of (1) to (3), wherein the addition ratio of the water-soluble polymer to the addition amount of the particulate binder is 0.4 to
  • Slurry composition (5) The slurry composition for a negative electrode of a lithium ion secondary battery according to any one of (1) to (4), containing cellulose fiber in an amount of 0.1 to 10% by weight based on the particulate binder.
  • a slurry production process for obtaining a slurry composition for a negative electrode of a secondary battery, and a negative electrode active material layer for forming a negative electrode active material layer by applying and drying the slurry composition for a negative electrode of a lithium ion secondary battery on a current collector A method for producing a lithium ion secondary battery negative electrode comprising a forming step, (8) A lithium ion secondary battery comprising a lithium ion secondary battery negative electrode obtained by the method for producing a lithium ion secondary battery negative electrode according to (7) is provided.
  • the slurry composition for lithium ion secondary battery negative electrodes which can suppress the swelling of an electrode and is excellent in the cycling characteristics of the obtained lithium ion secondary battery,
  • This slurry for lithium ion secondary battery negative electrodes A method for producing a negative electrode for a lithium ion secondary battery using the composition and a lithium ion secondary battery using the negative electrode for the lithium ion secondary battery are provided.
  • the lithium ion secondary battery negative electrode slurry composition of the present invention (hereinafter, also referred to as “negative electrode slurry composition”) is a lithium ion secondary containing a negative electrode active material, a particulate binder, and a water-soluble polymer.
  • the slurry composition for a battery negative electrode has a breaking strength of 20 MPa or more and 90 MPa or less after a 200 ⁇ m-thick composite film made of the particulate binder and the water-soluble polymer is swollen in an electrolytic solution.
  • the slurry composition for the negative electrode of the lithium ion secondary battery of the present invention has a predetermined breaking strength after the particulate binder and the water-soluble polymer to be used are swelled into an electrolyte solution in a composite film having a predetermined thickness.
  • swelling of the active material in the lithium ion secondary battery obtained using the said slurry composition for negative electrodes can be suppressed.
  • the initial swell and the post-cycle swell of the lithium ion secondary battery obtained by using the negative electrode slurry composition are suppressed, and as a result, the initial cycle deterioration and cycle characteristics can be improved. Moreover, since the cutting of the conductive path can be prevented, the rate characteristic can be improved.
  • the breaking strength of the composite film after being swollen in the electrolytic solution fall within the predetermined range
  • the breaking strength of the composite film before swelling, the degree of swelling of the electrolytic solution of the water-soluble polymer, and the particulate binder is set to a specific range.
  • the breaking strength of the composite film before swelling is as follows: each breaking strength when the water-soluble polymer and the particulate binder are each made into a film, the dispersibility of the particulate binder in the water-soluble polymer, and the particles It can be controlled by the ratio between the binder and the water-soluble polymer.
  • the film breaking strength of the water-soluble polymer can be controlled by the 1% aqueous solution viscosity of the water-soluble polymer.
  • the film breaking strength of the particulate binder can be controlled by the gel amount of the particulate binder.
  • the dispersibility of the particulate binder in the water-soluble polymer can be controlled by the particle diameter of the particulate binder and the content ratio of the acid monomer in the particulate binder. Details of each control factor will be described later.
  • concentration of a composite film is mentioned as a measuring method which measures the dispersibility of the particulate binder in a water-soluble polymer indirectly.
  • the negative electrode active material used in the negative electrode slurry composition of the present invention is not particularly limited, but from the viewpoint of suppressing the swelling of the active material itself and from the viewpoint of increasing the capacity, the carbon-based negative electrode active material and the silicon-based negative electrode active material are used. It is preferable to contain a substance.
  • the carbon-based negative electrode active material is not particularly limited, but an active material having carbon as a main skeleton into which lithium can be inserted is preferable.
  • Specific examples include carbonaceous materials and graphite materials.
  • the carbonaceous material is generally low in graphitization in which a carbon precursor is heat-treated (carbonized) at 2000 ° C. or less (the lower limit of the treatment temperature is not particularly limited, but can be, for example, 500 ° C. or more).
  • a carbon material (low crystallinity) is shown, and a graphitic material is a heat treatment of graphitizable carbon at 2000 ° C. or higher (the upper limit of the processing temperature is not particularly limited, but can be, for example, 5000 ° C. or lower).
  • the graphite material which has high crystallinity close
  • Examples of the carbonaceous material include graphitizable carbon that easily changes the carbon structure depending on the heat treatment temperature, and non-graphitic carbon having a structure close to an amorphous structure typified by glassy carbon.
  • graphitizable carbon examples include carbon materials made from tar pitch obtained from petroleum and coal, such as coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fibers, pyrolytic vapor-grown carbon fibers, etc. Is mentioned.
  • MCMB is carbon fine particles obtained by separating and extracting mesophase spherules produced in the process of heating pitches at around 400 ° C.
  • the mesophase pitch-based carbon fiber is a carbon fiber using as a raw material mesophase pitch obtained by growing and coalescing the mesophase microspheres.
  • Pyrolytic vapor-grown carbon fibers are (1) a method for pyrolyzing acrylic polymer fibers, (2) a method for spinning by spinning a pitch, and (3) using nanoparticles such as iron as a catalyst. It is a carbon fiber obtained by a catalytic vapor deposition (catalytic CVD) method in which hydrocarbon is vapor-phase pyrolyzed.
  • catalytic CVD catalytic vapor deposition
  • non-graphitizable carbon examples include phenol resin fired bodies, polyacrylonitrile-based carbon fibers, pseudo-isotropic carbon, and furfuryl alcohol resin fired bodies (PFA).
  • Graphite materials include natural graphite and artificial graphite.
  • artificial graphite include artificial graphite heat-treated at 2800 ° C or higher, graphitized MCMB heat-treated at 2000 ° C or higher, graphitized mesophase pitch carbon fiber heat-treated at 2000 ° C or higher. It is done.
  • graphite materials are preferable. By using the graphite material, it becomes easy to produce a negative electrode having a high density of the active material layer of the negative electrode.
  • the volume average particle diameter of the carbon-based negative electrode active material is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m, and particularly preferably 1 to 30 ⁇ m from the viewpoint of easy preparation of a negative electrode slurry composition described later. It is.
  • the specific surface area of the carbon-based negative electrode active material is preferably 0.3 to 20.0 m 2 / g from the viewpoint of excellent output characteristics of the lithium ion secondary battery by increasing the active points on the surface of the carbon-based negative electrode active material. More preferably, it is 1.0 to 15.0 m 2 / g, and particularly preferably 4.0 to 10.0 m 2 / g.
  • the active material which has silicon as a main component and can be alloyed with lithium is preferable.
  • SiO x (0.01 ⁇ x ⁇ 2) formed from at least one of SiO and SiO 2 and Si is used as the silicon-based negative electrode active material.
  • SiO x represents a generic name of silicon monoxide which is a non-stoichiometric ratio having a structure in which nano-level Si crystals are precipitated in an SiO 2 amorphous phase.
  • JP 2002-47404 A, Journal of Power Sources 170 (2007) 456-459, and the like are known for the production and characteristics of the compound.
  • the method of producing the compound is not particularly limited, and a method of cooling and precipitating silicon monoxide gas generated by heating a mixture of SiO 2 and Si (metal silicon), and further heat treating SiO.
  • a method of obtaining a disproportionation reaction between Si and SiO 2 can be used.
  • the silicon-based negative electrode active material is preferably combined with conductive carbon from the viewpoint of reducing the swelling of the silicon itself during charging by combining with the conductive carbon and forming a conductive path.
  • the composite method is not particularly limited, and the composite is obtained by coating a silicon-based negative electrode active material by a CVD method (chemical vapor deposition method) or PVD (physical vapor deposition method) using a compound serving as a carbon source.
  • CVD method chemical vapor deposition method
  • PVD physical vapor deposition method
  • SiO x is 900 to 1400 ° C., preferably 1000 to 1400 ° C., more preferably 1050 to 1300 ° C., more preferably, in an atmosphere containing at least an organic gas and / or vapor.
  • heat treatment is performed in a temperature range of 1100 to 1200 ° C.
  • Preferable examples of the method of granulating a mixture containing conductive carbon and a silicon-based negative electrode active material include a pulverization pressure bonding method disclosed in JP-A-2002-216751.
  • the negative electrode active material from the viewpoint of forming a conductive path and improving conductivity, 1 to 100 parts by weight of the silicon-based negative electrode active material with respect to 100 parts by weight of the carbon-based negative electrode active material contained in the negative electrode active material.
  • a substance is included. If the amount of the silicon-based negative electrode active material contained in the negative electrode active material is too large, the life of the battery as a lithium ion secondary battery is reduced. Moreover, when there is too little quantity of the silicon type negative electrode active material contained in a negative electrode active material, the battery capacity when it is set as a lithium ion secondary battery will fall.
  • a metal such as Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Sn, Sr, Zn or the like is contained.
  • Li x Ti y M z O 4 (0.7 ⁇ x ⁇ 1.5, 1.5 ⁇ y ⁇ 2.3, 0 ⁇ z ⁇ 1.6, M is Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn and Nb). Two or more of these may be used.
  • the particulate binder contains a component contained in the negative electrode active material from the negative electrode active material layer. It is a component that can be held so as not to be detached.
  • the particulate binder is water-insoluble.
  • that the particulate binder is “water-insoluble” means that at 25 ° C., when 0.5 g of the compound is dissolved in 100 g of water, the insoluble content becomes 90% by weight or more.
  • the particulate binder used in the negative electrode slurry composition of the present invention is not particularly limited, but preferably contains a styrene monomer unit, a 1,3-butadiene monomer unit and an acid monomer unit.
  • Examples of the acid monomer unit include an ethylenically unsaturated carboxylic acid monomer unit.
  • the ethylenically unsaturated carboxylic acid monomer include ethylenically unsaturated monocarboxylic acids such as acrylic acid and methacrylic acid; ethylenically unsaturated carboxylic acids such as itaconic acid, maleic acid, fumaric acid, maleic anhydride, and citraconic anhydride.
  • saturated polyvalent carboxylic acids and anhydrides thereof partially esterified products of ethylenically unsaturated polyvalent carboxylic acids such as monobutyl fumarate, monobutyl maleate, mono-2-hydroxypropyl maleate; and the like.
  • the content of the acid monomer unit is 5 to 50 parts by weight, preferably 7.5 to 48 parts by weight, more preferably 10 parts by weight based on 100 parts by weight of all monomer units contained in the negative electrode binder composition. ⁇ 45 parts by weight.
  • the particulate binder used in the present invention contains a monomer unit other than the styrene monomer unit, the 1,3-butadiene monomer unit, and the acid monomer unit within the range having the effects of the present invention. May be.
  • the monomer for deriving such a monomer unit is not particularly limited as long as it is a conjugated diene monomer or any other known monomer that can be copolymerized.
  • conjugated diene monomer examples include isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, piperylene and the like, preferably isoprene, 2,3-dimethyl-1,3-butadiene and the like. It is.
  • copolymerizable monomers include styrene monomers such as ⁇ -methylstyrene, ⁇ -methylstyrene, pt-butylstyrene, and chlorostyrene; nitrile group-containing monomers such as acrylonitrile and methacrylonitrile; acrylamide Acrylamide monomers such as N-methylolacrylamide, N-butoxymethylacrylamide; methacrylamide monomers such as methacrylamide, N-methylolmethacrylamide, N-butoxymethylmethacrylamide; glycidyl acrylate, glycidyl methacrylate, allyl glycidyl ether Glycidyl group-containing monomers such as sodium styrene sulfonate, acrylamide methyl propane sulfonic acid-containing monomers; dimethyl methacrylate Amino group-containing methacrylic monomers such as ruaminoethyl and diethyrene;
  • the monomer examples include known monomers listed in Polymer Latex (New Polymer Library 26) (Polymer Press, First Edition) P131 to P134.
  • preferred examples include styrene monomers, nitrile group-containing monomers, polycarboxylic acid monomers, alkoxy group-containing methacrylic acid monomers, and fluorine-containing acrylic acid monomers.
  • Two or more kinds of the above conjugated diene monomers and other known copolymerizable monomers may be used in combination.
  • the method for producing the particulate binder is not particularly limited.
  • styrene, 1,3-butadiene and an acid monomer and further, the above-mentioned various copolymerizable monomer components are preferably polymerized in the presence of an emulsifier. It can be produced by adding an initiator and emulsion polymerization in a solvent. In addition, another additive can also be mix
  • the number average particle diameter of the obtained polymer (latex) is preferably from 50 to 500 nm, more preferably from 80 to 400 nm, from the viewpoint of improving the strength and flexibility of the obtained negative electrode.
  • the solvent is not particularly limited, but water is preferably used. If necessary, two or more solvents may be mixed and used. When water is included as a solvent, the amount of water with respect to the total solvent is preferably 50% by weight or more, more preferably 80% by weight or more. More preferably, it is 90% by weight or more. In addition, when using water as a solvent, you may add hydrophilic solvents, such as alcohol, at 5 weight% or less with respect to all the solvents as needed.
  • hydrophilic solvents such as alcohol
  • the emulsifier examples include, but are not limited to, sodium dodecylbenzene sulfonate, sodium lauryl sulfate, sodium dodecyl diphenyl ether disulfonate, sodium succinate dialkyl ester sulfonate, and the like, which are so-called reactive emulsifiers having an unsaturated bond. May be.
  • sodium dodecyl diphenyl ether disulfonate is preferable from the viewpoint of versatility during production and less foaming. Two or more of these may be used in combination.
  • the addition amount of the emulsifier is not particularly limited, and from the viewpoint that the polymerization reaction proceeds stably and a particulate binder dispersed in a solvent can be obtained, for example, styrene, 1,3-butadiene, acid, which is a raw material, and the like.
  • a particulate binder dispersed in a solvent can be obtained, for example, styrene, 1,3-butadiene, acid, which is a raw material, and the like.
  • 0.1 to 10.0 parts by weight more preferably 0.15 to 5 parts by weight, particularly preferably 0.2 to 2 parts by weight based on 100 parts by weight of the monomer and other copolymerizable monomers in total. .5 parts by weight.
  • Examples of the polymerization initiator include sodium persulfate (NaPS), ammonium persulfate (APS), and potassium persulfate (KPS). Among them, potassium persulfate (KPS) and ammonium persulfate are preferable, and potassium persulfate (KPS) is more preferable. preferable. By using potassium persulfate (KPS) as a polymerization initiator, it is possible to suppress a decrease in cycle characteristics of the obtained lithium ion secondary battery.
  • NaPS sodium persulfate
  • APS ammonium persulfate
  • KPS potassium persulfate
  • KPS potassium persulfate
  • KPS potassium persulfate
  • KPS potassium persulfate
  • the addition amount of the polymerization initiator is not particularly limited, and for example, from the viewpoint of preventing thickening of the negative electrode slurry composition and obtaining a stable slurry composition, for example, styrene or 1,3-butadiene as a raw material. , Preferably 0.5 to 2.5 parts by weight, more preferably 0.6 to 2.0 parts by weight, particularly preferably 0 to 100 parts by weight of the total of the acid monomer and other copolymerizable monomers. .7 to 1.5 parts by weight.
  • additives include molecular weight modifiers or chain transfer agents, such as n-hexyl mercaptan, n-octyl mercaptan, t-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, n- Alkyl mercaptans such as stearyl mercaptan; xanthogen compounds such as dimethylxanthogen disulfide and diisopropylxanthogen disulfide; thiuram compounds such as terpinolene, tetramethylthiuram disulfide, tetraethylthiuram disulfide and tetramethylthiuram monosulfide; 2,6-di- phenolic compounds such as t-butyl-4-methylphenol and styrenated phenol; allyl compounds such as allyl alcohol; dichloromethane, dibrom
  • alkyl mercaptan and t-dodecyl mercaptan are preferable from the viewpoint of suppressing side reactions, and t-dodecyl mercaptan can be more preferably used. Two or more of these may be used in combination.
  • the addition amount of the additive is not particularly limited, and is preferably, for example, relative to 100 parts by weight of the total of styrene, 1,3-butadiene, acid monomer and other copolymerizable monomers as raw materials.
  • the amount is 0 to 5 parts by weight, more preferably 0 to 2.0 parts by weight.
  • a surfactant may be used during the polymerization.
  • the surfactant may be any of an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • Specific examples of the anionic surfactant include sodium lauryl sulfate, ammonium lauryl sulfate, sodium dodecyl sulfate, ammonium dodecyl sulfate, sodium octyl sulfate, sodium decyl sulfate, sodium tetradecyl sulfate, sodium hexadecyl sulfate, sodium octadecyl sulfate and the like.
  • alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium lauryl benzene sulfonate, sodium hexadecyl benzene sulfonate
  • fats such as sodium lauryl sulfonate, sodium dodecyl sulfonate, sodium tetradecyl sulfonate Group sulfonates; and the like. Two or more of these may be used.
  • the addition amount of the surfactant is preferably 0.5 to 10 parts by weight with respect to 100 parts by weight as a total of styrene, 1,3-butadiene, acid monomer and other copolymerizable monomers as raw materials. More preferably, it is 1 to 5 parts by weight.
  • various additives such as a pH adjusting agent such as sodium hydroxide and ammonia; a dispersing agent, a chelating agent, an oxygen scavenger, a builder, and a seed latex for adjusting the particle size may be appropriately used.
  • a pH adjusting agent such as sodium hydroxide and ammonia
  • a dispersing agent such as sodium hydroxide and ammonia
  • a chelating agent such as sodium hydroxide and ammonia
  • an oxygen scavenger such as sodium hydroxide and ammonia
  • the gel amount of the particulate binder is preferably 70 to 98%, more preferably 80 to 97%, and particularly preferably 85 to 96%.
  • the gel amount is a value representing the weight ratio of the solid content insoluble in tetrahydrofuran among the total solid content of the particulate binder.
  • the aqueous dispersion of the above copolymer latex is dried for 3 days in an environment of 50% humidity and 23 to 25 ° C., and further dried for 1 hour in a 120 ° C. hot air oven.
  • the amount of gel can be determined using a 0.3 mm film. That is, the film piece is cut into 3 to 5 mm square, and about 1 g is precisely weighed, and the weight of the obtained film piece is defined as W0.
  • the amount of the gel is the polymerization temperature of the styrene-butadiene copolymer latex constituting the particulate binder, the addition amount of the molecular weight modifier and the chain transfer agent, the type, and the composition of the other copolymerizable monomer to be added, Can be controlled by quantity.
  • the amount of gel is too large, it tends to be difficult to obtain a uniform coating film during the production of the negative electrode, and as a result, the cycle characteristics tend to deteriorate. Moreover, when the amount of gel is too small, the obtained negative electrode tends to swell in the electrolyte solution, and the electrode plate tends to swell.
  • ⁇ Electrolytic solution swelling> For the degree of swelling of the electrolyte, a water dispersion containing a particulate binder is prepared, and this water dispersion is dried in an environment of 50% humidity and 23 to 25 ° C. to form a film having a thickness of 3 ⁇ 0.3 mm. And it can obtain
  • the degree of swelling of the electrolytic solution can be controlled by the gel amount of the particulate binder and the composition of the acrylate monomer.
  • the degree of swelling of the electrolytic solution is preferably 110 to 450%, more preferably 120 to 300%. If the degree of swelling of the electrolytic solution is too large, the breaking strength of the composite film after swelling in the electrolytic solution tends to decrease, and as a result, battery characteristics such as swelling characteristics after cycling tend to decrease. On the other hand, when the degree of swelling of the electrolytic solution is too small, the rate characteristics deteriorate because the particulate binder film hinders the migration of lithium ions in the lithium ion secondary battery.
  • the slurry composition for negative electrodes of this invention contains a water-soluble polymer.
  • the water-soluble polymer used in the present invention refers to a polymer having an insoluble content of less than 10% by weight when 0.5 g of polymer is dissolved in 100 g of water at 25 ° C.
  • water-soluble polymers include cellulosic polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose, and their ammonium or alkali metal salts, alginates such as propylene glycol alginate, and alginates such as sodium alginate.
  • examples include starch, casein, various modified starches, chitin, and chitosan derivatives.
  • “(modified) poly” means “unmodified poly” or “modified poly”.
  • water-soluble polymers can be used alone or in combination of two or more.
  • a cellulose polymer is preferable, and carboxymethyl cellulose or an ammonium salt or an alkali metal salt thereof is particularly preferable.
  • carboxymethyl cellulose (salt) is particularly preferable.
  • the amount of the water-soluble polymer added is not particularly limited as long as it does not impair the effects of the present invention, but 150 parts by weight of the particulate binder. Is preferably 60 to 300 parts by weight, more preferably 70 to 300 parts by weight, still more preferably 80 to 250 parts by weight, and particularly preferably 100 to 200 parts by weight.
  • the degree of etherification of the carboxymethylcellulose (salt) to be used is preferably 0.4 or more, more preferably 0.7 or more, and preferably 1.5. Below, more preferably 1.0 or less.
  • carboxymethylcellulose (salt) having an etherification degree of 0.4 or more workability when the slurry composition for negative electrode is applied on a current collector or the like can be improved.
  • the degree of etherification is less than 0.4, the water-soluble polymer can be a gel-like substance because the hydrogen bonds within and between the molecules of carboxymethylcellulose (salt) are strong.
  • the degree of etherification of carboxymethylcellulose means the average value of the number of hydroxyl groups substituted with a substituent such as carboxymethyl group per unit of anhydrous glucose constituting carboxymethylcellulose (salt). It can take a value less than 3.
  • the degree of etherification increases, the proportion of hydroxyl groups in one molecule of carboxymethylcellulose (salt) decreases (that is, the proportion of substituents increases), and as the degree of etherification decreases, the proportion of hydroxyl groups in one molecule of carboxymethylcellulose (salt) increases. This indicates that the proportion of hydroxyl groups increases (that is, the proportion of substituents decreases).
  • This degree of etherification (degree of substitution) can be determined by the method described in JP2011-34962A.
  • the viscosity of a 1% by weight aqueous solution of carboxymethylcellulose (salt) is preferably 500 mPa ⁇ s or more, more preferably 1000 mPa ⁇ s or more, preferably 10,000 mPa ⁇ s or less, more preferably 9000 mPa ⁇ s or less.
  • carboxymethylcellulose (salt) having a viscosity of 500 mPa ⁇ s or more when the aqueous solution is 1% by weight the negative electrode slurry composition can be given moderate viscosity. Therefore, workability at the time of applying the slurry composition for negative electrode on a current collector or the like can be improved.
  • the viscosity of the 1% by weight aqueous solution correlates with the film strength of carboxymethyl cellulose itself, and can improve the breaking strength of the composite film described later. Further, by using carboxymethylcellulose (salt) having a viscosity of 1% by weight aqueous solution of 10,000 mPa ⁇ s or less, the viscosity of the negative electrode slurry composition does not become too high, and the negative electrode slurry composition is applied onto a current collector or the like. The workability at the time of performing can be improved, and the adhesion between the negative electrode active material layer obtained using the negative electrode slurry composition and the current collector can be improved. In addition, the viscosity of the 1 weight% aqueous solution of carboxymethylcellulose (salt) is a value when it measures at 25 degreeC and rotation speed 60rpm using a B-type viscosity meter.
  • the light transmission density of the 200 ⁇ m thick composite film comprising the particulate binder and the water-soluble polymer contained in the negative electrode slurry composition of the present invention is preferably 0.28 or less.
  • the light transmission density of the composite film can be measured by using a white filter in a transmission densitometer (manufactured by Gretag Macbeth).
  • the light transmission density of the composite film is greater than 0.28, it indicates that the dispersibility of the particulate binder in the water-soluble polymer is poor. At this time, defects due to poor dispersion of the particulate binder in the composite film are likely to occur. As a result, stress concentrates on the defect and breaks, and the breaking strength of the composite film before swelling tends to be lower than the film breaking strength of each material. As a result, the swelling in the electrode plate cannot be suppressed during the charge / discharge cycle of the obtained lithium ion secondary battery, and the cycle characteristics deteriorate.
  • the breaking strength of the composite film composed of the particulate binder and the water-soluble polymer contained in the negative electrode slurry composition is 65 to 200 MPa, preferably 67 to 190 MPa, more preferably 70 to 180 MPa.
  • the breaking strength can be obtained by performing a tensile test using a test piece punched into a predetermined shape after drying the composite film.
  • the breaking strength of the composite film When the breaking strength of the composite film is larger than the above range, the electrode plate becomes hard and cannot be wound. That is, it becomes difficult to produce a lithium ion secondary battery. On the other hand, when the breaking strength of the composite film is smaller than the above range, the swelling of the negative electrode increases, and the cycle characteristics of the obtained lithium ion secondary battery deteriorate.
  • the breaking strength after swelling the composite film comprising the particulate binder and the water-soluble polymer contained in the slurry composition for negative electrode in the electrolyte is 20 to 90 MPa, preferably 23 to 90 MPa, more preferably. Is 28 to 90 MPa.
  • the breaking strength after swelling the composite film in the electrolytic solution can be measured in the same manner as the breaking strength of the composite film.
  • electrolyte solution the electrolyte solution used for the below-mentioned lithium ion secondary battery can be used as electrolyte solution.
  • the electrode plate becomes hard and cannot be wound. That is, it becomes difficult to produce a lithium ion secondary battery.
  • the breaking strength of the composite film after swelling in the electrolytic solution is too small, the swelling of the negative electrode is increased, and the cycle characteristics of the obtained lithium ion secondary battery are deteriorated.
  • Cellulose fiber In the slurry composition for negative electrode of the present invention, it is preferable to use refined cellulose fibers.
  • the refined cellulose fiber is actually used in the form of a cellulose fiber dispersion, which will be described later.
  • the cellulose fiber When forming water for the secondary battery, when the water is removed from the dispersion, the cellulose fiber forms a network structure. It plays a role as a useful binder for binding an electrode layer containing an electrode active material or a conductive additive onto an electrode current collector.
  • the cellulose raw material is pulverized and refined.
  • the method for pulverizing cellulose is not limited, but in order to make the fiber diameter suitable for the purpose of the present invention, a strong shearing force such as a high-pressure homogenizer, a grinder (stone mill type mill), or a medium stirring mill such as a bead mill is obtained. Is preferred. Of these, it is preferable to use a high-pressure homogenizer to make the fine particles.
  • a wet pulverization method as disclosed in JP-A-2005-270891, that is, an aqueous dispersion in which cellulose is dispersed is used as a pair of nozzles.
  • the cellulose is pulverized by being injected and collided with each other at a high pressure, and can be carried out by using, for example, a starburst system (high pressure pulverizer manufactured by Sugino Machine Co., Ltd.).
  • the degree of refinement and homogenization depends on the pressure fed to the ultra-high pressure chamber of the high-pressure homogenizer, the number of passes through the ultra-high pressure chamber (number of treatments), and water. It will depend on the cellulose concentration in the dispersion.
  • the pumping pressure (treatment pressure) is preferably 50 to 250 MPa, more preferably 100 to 245 MPa. If the pumping pressure is too small, the cellulose fiber is not sufficiently refined, and the effect expected by the refinement cannot be obtained.
  • the cellulose concentration in the aqueous dispersion during the micronization treatment is preferably 0.1 to 30% by weight, more preferably 0.5 to 10% by weight. If the cellulose concentration in the aqueous dispersion is too low, the productivity is remarkably low, and if the cellulose concentration in the aqueous dispersion is too high, the pulverization efficiency is lowered and the desired refined cellulose fiber cannot be obtained.
  • the number of micronization treatments depends on the cellulose concentration in the aqueous dispersion, but when the cellulose concentration is 0.1 to 1% by weight, the number of treatments can be sufficiently refined in about 10 to 50 passes. About 1 to 10% by weight, about 50 to 200 passes are required. Moreover, when the cellulose concentration is too high, the number of treatments is several hundred times or more, which is unrealistic from an industrial viewpoint.
  • a laser diffraction / scattering particle size distribution analyzer can be used for evaluation of the refinement of the refined cellulose fiber used in the present invention.
  • the particle diameter (median diameter) at 50% cumulative volume is preferably 0.01 to 40 ⁇ m, It is particularly preferable to use a cellulose fiber having a thickness of 0.05 to 10 ⁇ m.
  • the particle diameter is too small, the effect of addition cannot be obtained because the cellulose fibers are too short, that is, in the lithium ion secondary battery negative electrode obtained using the negative electrode slurry composition obtained in the following, It does not lead to an improvement in the binding property of the body and the electrode layer containing the electrode active material and the conductive additive.
  • the particle diameter is larger than 40 ⁇ m, the cellulose fiber is not sufficiently refined, that is, the uniformity of the electrode layer is insufficient, so that the expected effect cannot be obtained.
  • the finely divided cellulose fiber used in the present invention is not particularly limited with respect to the fiber diameter, but is preferably 0.001 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • the aspect ratio (L / D) is not particularly limited, but is preferably 10 to 100,000, more preferably 100 to 10,000.
  • the finely divided cellulose fiber used in the present invention can be used for preparing a slurry composition for a negative electrode in the form of an aqueous dispersion of cellulose fiber obtained by the wet pulverization method described above.
  • the amount of finely divided cellulose fibers in the negative electrode slurry composition is usually preferably 0.1 to 10 parts by weight, more preferably 100 parts by weight based on the total solid content of the particulate binder.
  • the amount is 0.1 to 5 parts by weight, more preferably 0.1 to 3 parts by weight.
  • the negative electrode slurry composition of the present invention can be obtained by mixing a negative electrode active material, a particulate binder, a water-soluble polymer, and a solvent such as water used as necessary.
  • the mixing method is not particularly limited, and examples thereof include a method using a mixing apparatus such as a stirring type, a shaking type, and a rotary type.
  • a method using a dispersion kneader such as a homogenizer, a ball mill, a sand mill, a roll mill, a planetary mixer, and a planetary kneader can be used.
  • the slurry composition for lithium ion secondary battery negative electrodes is obtained by adding and mixing a solvent and a particulate binder to a kneaded material. You may get
  • the kneading step is a step of kneading the negative electrode active material and the water-soluble polymer to obtain a solid kneaded product, and mixing the kneaded mixture of the water-soluble polymer and a part of the solvent in the negative electrode active material which is a powder.
  • the negative electrode active material and the water-soluble polymer are in a non-fluid mass state, that is, a “kneaded product”.
  • the amount of water-soluble polymer added in the kneading step is not particularly limited, but is preferably 0.3 parts by weight or more, more preferably 0.4 parts by weight or more, and preferably 1. part by weight per 100 parts by weight of the negative electrode active material. 5 parts by weight or less, more preferably 1 part by weight or less.
  • the solid content concentration of the kneaded product is preferably 55 to 70%, more preferably 57 to 68%.
  • a high shear force can be imparted to the kneaded product, and a negative electrode slurry composition in which a negative electrode active material and a water-soluble polymer are suitably dispersed during the slurry production process is obtained.
  • a mixer used for solidification The planetary mixer which can apply a high shear suitably to the slurry composition for negative electrodes of high solid content concentration is preferable.
  • the kneading time is preferably 30 minutes or more, more preferably 40 minutes or more, preferably 120 minutes or less, more preferably 100 minutes or less.
  • the silicon-based negative electrode active material can be dispersed well, and a good electrode plate structure can be obtained. Therefore, the negative electrode slurry produced by the production method of the present invention The rate characteristic of the lithium ion secondary battery obtained by using the composition can be ensured.
  • the kneading time is set to 120 minutes or less, it is possible to suppress a decrease in the viscosity of the negative electrode slurry composition due to the cleavage of the molecular chain of the water-soluble polymer, and hence each of the negative electrode slurry compositions in the negative electrode slurry composition.
  • the uneven distribution of components can be prevented.
  • a water-soluble polymer, a particulate binder and a solvent are added.
  • the amount of the water-soluble polymer added in the slurry production process is not particularly limited, but is preferably 0.3 parts by weight or more, more preferably 0.4 parts by weight or more, and preferably 1. part by weight per 100 parts by weight of the negative electrode active material. 5 parts by weight or less, more preferably 1 part by weight or less.
  • the addition amount of the particulate binder is not particularly limited, but is preferably 0.5 parts by weight or more, more preferably 0.8 parts by weight or more, particularly preferably 1 part by weight or more per 100 parts by weight of the negative electrode active material. Yes, preferably 5 parts by weight or less, more preferably 3 parts by weight or less.
  • the negative electrode obtained using the slurry composition for a negative electrode produced by the production method of the present invention is applied to a lithium ion secondary battery by setting the addition amount of the particulate binder to 5 parts by weight or less.
  • inhibition of lithium ion migration by the particulate binder can be suppressed, and the rate characteristics of the lithium ion secondary battery can be improved.
  • by making the addition amount of a particulate binder into 3 weight part or less aggregation of a particulate binder is prevented and the particle dispersibility in the slurry composition for negative electrodes obtained becomes favorable.
  • the solid content concentration of the negative electrode slurry composition is preferably 35% by weight or more, more preferably 40% by weight or more, preferably 60% by weight or less, more preferably 55% by weight or less.
  • the solid content concentration of the slurry composition is preferably 35% by weight or more, more preferably 40% by weight or more, preferably 60% by weight or less, more preferably 55% by weight or less.
  • the solid content concentration of the negative electrode slurry composition is too low, the viscosity decreases, and various characteristics cannot be ensured due to uneven distribution of each component in the negative electrode slurry composition.
  • the solid content concentration of the slurry composition for negative electrode is too high, the handleability is poor and it is not possible to apply a uniform thickness on the current collector.
  • the solid content concentration may be adjusted using only the aqueous dispersion of the particulate binder, for example, using an aqueous dispersion of the particulate binder and separately added water. Also good.
  • the lithium ion secondary battery negative electrode of the present invention is an electrode having a negative electrode active material layer and a current collector formed by applying and drying a negative electrode slurry composition.
  • the manufacturing method of a negative electrode is not specifically limited, It is the method of apply
  • the method for applying the negative electrode slurry composition to the current collector is not particularly limited. Examples thereof include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a comma direct coating, a slide die coating, and a brush coating method.
  • Examples of the drying method include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually 1 to 60 minutes, and the drying temperature is usually 40 to 180 ° C.
  • the active material layer may be formed by repeating application and drying a plurality of times.
  • the current collector is not particularly limited as long as it is an electrically conductive and electrochemically durable material, but is preferably a metal material because of its heat resistance, for example, iron, copper, aluminum, nickel, stainless steel. Examples include steel, titanium, tantalum, gold, and platinum.
  • the shape of the current collector is not particularly limited, but a sheet shape is preferable.
  • the current collector is preferably used after roughening in advance.
  • the roughening method include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.
  • the mechanical polishing method an abrasive cloth paper with a fixed abrasive particle, a grindstone, an emery buff, a wire brush provided with a steel wire or the like is used.
  • an intermediate layer may be formed on the surface of the current collector in order to increase the adhesive strength and conductivity of the negative electrode active material layer.
  • the press working is performed using, for example, a roll press or a sheet press using a metal roll, an elastic roll, or a heating roll.
  • the pressing temperature is lower than the temperature at which the coating film of the active material layer is dried, it may be performed at room temperature or may be performed at room temperature. 15 to 35 ° C.).
  • Roll pressing Pressing with a roll press machine (roll pressing) is preferable because a long sheet-like negative electrode plate can be continuously pressed.
  • a stereotaxic press or a constant pressure press may be performed.
  • the lithium ion secondary battery of this invention is equipped with a positive electrode, a negative electrode, a separator, and electrolyte solution, and is equipped with the said lithium ion secondary battery negative electrode as a negative electrode.
  • a positive electrode slurry containing a positive electrode active material, a positive electrode binder, a solvent used for preparing the positive electrode, a thickener used as necessary, a conductive auxiliary agent, and the like is applied to the surface of the current collector. It can be obtained by forming a positive electrode active material layer on the surface of the current collector by drying.
  • a current collector similar to the current collector that can be used for the negative electrode of the lithium ion secondary battery described above can be used.
  • the positive electrode active material examples include metal oxides that can be reversibly doped and dedoped with lithium ions.
  • examples of the metal oxide include lithium cobaltate, lithium nickelate, lithium manganate, and lithium iron phosphate.
  • the positive electrode active material illustrated above may be used independently according to a use, and may be used in mixture of multiple types.
  • binder for the positive electrode examples include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, and polyacrylonitrile derivatives.
  • Resins Soft polymers such as acrylic soft polymers, diene soft polymers, olefin soft polymers, vinyl soft polymers, and the like.
  • a binder may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • Either water or an organic solvent may be used as the solvent used for producing the electrode.
  • the organic solvent include cycloaliphatic hydrocarbons such as cyclopentane and cyclohexane; aromatic hydrocarbons such as toluene and xylene; ketones such as ethyl methyl ketone and cyclohexanone; ethyl acetate, butyl acetate, and ⁇ -butyrolactone Esters such as ⁇ -caprolactone; Acylonitriles such as acetonitrile and propionitrile; Ethers such as tetrahydrofuran and ethylene glycol diethyl ether: Alcohols such as methanol, ethanol, isopropanol, ethylene glycol, and ethylene glycol monomethyl ether; N Amides such as -methylpyrrolidone and N, N-dimethylformamide; among them, N-methylpyrrolidone (NMP) is preferred.
  • a solvent may be
  • cellulose-based polymers such as carboxymethyl cellulose, methyl cellulose, ethyl cellulose and hydroxypropyl cellulose, and ammonium salts and alkali metal salts thereof; (modified) poly (meth) acrylic acid and these Ammonium salts and alkali metal salts; (modified) polyvinyl alcohols such as polyvinyl alcohol, copolymers of acrylic acid or acrylates and vinyl alcohol, maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol; polyethylene Examples include glycol, polyethylene oxide, polyvinyl pyrrolidone, modified polyacrylic acid, oxidized starch, phosphate starch, casein, and various modified starches.
  • conductive carbon such as acetylene black, ketjen black, carbon black, vapor grown carbon fiber, carbon nanotube, etc.
  • carbon powders such as graphite, fibers and foils of various metals can be used.
  • the amount of the solvent may be adjusted so that the viscosity of the positive electrode slurry is suitable for coating.
  • the solid content of the positive electrode slurry is preferably adjusted to an amount of 30 to 90% by weight, more preferably 40 to 80% by weight.
  • the method for applying the positive electrode slurry to the surface of the current collector is not particularly limited.
  • Examples of the method include a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, and a brush coating method.
  • drying method examples include drying with warm air, hot air, low-humidity air, vacuum drying, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying time is usually 1 to 60 minutes, and the drying temperature is usually 40 to 180 ° C.
  • the porosity of the positive electrode active material layer can be lowered.
  • the porosity is preferably 5 to 30%, more preferably 7 to 20%.
  • the porosity is too low, it is difficult to obtain a high volume capacity, and the positive electrode active material layer is easily peeled off from the current collector.
  • the porosity is too high, sufficient charging efficiency and sufficient discharging efficiency cannot be obtained.
  • the positive electrode active material layer includes a curable polymer, it is preferable to cure the polymer after the positive electrode active material layer is formed.
  • the porous separator which has a pore part
  • the porous separator in which the polymer coat layer was formed in one side or both sides
  • solid polymer electrolytes such as polypropylene, polyethylene, polyolefin, or aramid porous separators, polyvinylidene fluoride, polyethylene oxide, polyacrylonitrile, or polyvinylidene fluoride hexafluoropropylene copolymers.
  • the electrolytic solution for example, a solution obtained by dissolving a lithium salt as a supporting electrolyte in a non-aqueous solvent can be used.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and other lithium salts.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferably used.
  • One of these may be used alone, or two or more of these may be used in combination at any ratio.
  • the amount of the supporting electrolyte is preferably 1 to 30% by weight, more preferably 5 to 20% by weight with respect to the electrolytic solution. If the amount of the supporting electrolyte is too small or too large, the ionic conductivity is lowered, and the charging characteristics and discharging characteristics of the secondary battery may be lowered.
  • the solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • the solvent include alkyl carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); Esters such as butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide;
  • dimethyl carbonate, ethylene carbonate, propylene carbonate, diethyl carbonate, and methyl ethyl carbonate are preferred because high ion conductivity is easily obtained and the use temperature range is wide.
  • a solvent may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • an additive may be included in the electrolytic solution as necessary.
  • carbonate compounds such as vinylene carbonate (VC) are preferable.
  • an additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.
  • electrolyte other than the above examples include a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide and polyacrylonitrile with an electrolyte; an inorganic solid electrolyte such as lithium sulfide, LiI, and Li 3 N; it can.
  • the manufacturing method of the lithium ion secondary battery of the present invention is not particularly limited.
  • the negative electrode and the positive electrode may be overlapped via a separator, and this may be wound or folded according to the shape of the battery and placed in the battery container, and the electrolyte may be injected into the battery container and sealed.
  • an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge.
  • the shape of the battery may be any of, for example, a laminate cell type, a coin type, a button type, a sheet type, a cylindrical type, a square type, and a flat type.
  • a slurry composition for a negative electrode of a lithium ion secondary battery that can suppress the swelling of the electrode and is excellent in the cycle characteristics of the obtained lithium ion secondary battery.
  • the lithium ion secondary batteries produced in the examples and comparative examples were allowed to stand for 5 hours after injection, charged to 4.2 V by a constant current method of 0.2 C, and discharged to 3.0 V. The operation was performed. Furthermore, 100-cycle charge / discharge operation was performed at a charge / discharge rate of 4.2 V and 0.5 C. Thereafter, the discharged cell was disassembled, the negative electrode was taken out, and the thickness (d 2 ) of the negative electrode (excluding the current collector) was measured.
  • the light transmission density of the composite film, the breaking strength of the composite film, and the breaking strength of the composite film after being swollen in an electrolyte solution were measured as follows.
  • components other than the particulate binder, the water-soluble polymer and the solvent must not be added to the composition of the composite film when measuring the light transmission density and the breaking strength.
  • the light transmission concentration when two or more particulate binders and water-soluble polymers were used in combination, the one with the highest blending ratio was selected and used. And the composite film composition was obtained with the same solid content ratio as the solid content ratio which mix
  • the breaking strength of the composite film and the breaking strength of the composite film after being swollen with an electrolyte when two or more particulate binders and water-soluble polymers are used in combination, all the compositions are included. And the composite film was produced with the same solid content ratio as the solid content ratio used with the slurry for negative electrodes.
  • This mixed solution is poured into a mold so that the thickness is about 200 ⁇ m, dried in a high temperature and humidity chamber at 23 ° C. and 50% humidity, and further dried in an oven at 120 ° C. for 20 minutes to obtain a composite film. It was.
  • the light transmission density when the thickness of the composite film was 200 ⁇ m was measured with a transmission densitometer TD904 (manufactured by Gretag Macbeth Co.) using a white filter.
  • the light transmission density of the composite film includes the thickness of the composite film, the transmittance of the particulate binder and the water-soluble polymer, the ratio of the particulate binder to the water-soluble polymer, and the particulate binding in the water-soluble polymer. It can be controlled by the dispersibility of the adhesive. The dispersibility of the particulate binder in the water-soluble polymer can be controlled by the particle diameter of the particulate binder and the content ratio of the acid monomer in the particulate binder.
  • a composite film having a thickness of 200 ⁇ m was prepared in the same manner as a composite film used for measuring the light transmission density.
  • the composite film was punched into a predetermined shape using a predetermined mold (JIS No. 3) to produce a test piece.
  • the tensile test was done at the speed
  • the breaking strength of the composite film includes the thickness of the composite film, the gel amount of the particulate binder, the dispersibility of the particulate binder in the water-soluble polymer, the 1% viscosity of the water-soluble polymer, and the particulate binder. And can be controlled by the ratio of water-soluble polymer.
  • the breaking strength of the composite film after being swollen in the electrolytic solution can be controlled by the thickness of the composite film, the breaking strength of the composite film before swelling, and the degree of swelling of the water-soluble polymer and the particulate binder.
  • Example 1 Synthesis of particulate binder
  • MAA methacrylic acid
  • HOA methacrylic acid
  • HOA acrylic acid-2- 1 part of hydroxyethyl
  • t-dodecyl mercaptan a molecular weight regulator
  • sodium dodecylbenzenesulfonate a molecular weight regulator
  • polymerization 1 part of potassium persulfate was added as an initiator, and after sufficiently stirring, the polymerization was started by heating to 55 ° C. The reaction was stopped by cooling when the monomer consumption reached 95.0%.
  • the aqueous dispersion containing the polymer was adjusted to pH 8 by adding a 5% aqueous sodium hydroxide solution. Then, the unreacted monomer was removed by heating under reduced pressure. Thereafter, the mixture was cooled to 30 ° C. or lower to obtain an aqueous dispersion of the particulate binder.
  • the number average particle diameter of the particulate binder was 145 nm.
  • a particulate binder film was prepared and the gel amount was measured to be 95%, and the electrolyte swelling degree was measured to be 140%.
  • CMC carboxymethylcellulose
  • MAC800LC 1% viscosity 6700 mPa ⁇ s
  • Nippon Paper Chemical Co., Ltd. a 1% aqueous solution of sodium salt of carboxymethylcellulose (hereinafter sometimes referred to as “CMC”) as a water-soluble polymer (“MAC800LC” 1% viscosity 6700 mPa ⁇ s) manufactured by Nippon Paper Chemical Co., Ltd.) is solidified in the dry mixture. Added 0.6 parts per minute. These mixtures were adjusted to a solid content concentration of 60% with ion-exchanged water, and then kneaded and mixed at 25 ° C. and a rotation speed of 45 rpm for 60 minutes.
  • CMC carboxymethylcellulose
  • the light transmission density of the composite film composed of 1.5 parts of the particulate binder used in Example 1 and 1 part of CMC (both corresponding to solid content) is 0.1, and the breaking strength of this composite film is 160 MPa,
  • the breaking strength of the composite film after swelling in the electrolytic solution was 67 MPa.
  • the negative electrode slurry composition was applied on a copper foil having a thickness of 15 ⁇ m by a comma coater so that the coating amount was 9 to 9.5 mg / cm 2 . This drying was performed by transporting the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes.
  • the negative electrode original fabric was obtained by heat-processing at 120 degreeC for 2 minute (s).
  • the raw fabric was pressed with a roll press machine so that the density was 1.55 to 1.60 g / cm 3 to obtain a negative electrode.
  • the positive electrode slurry composition was applied onto an aluminum foil having a thickness of 20 ⁇ m with a comma coater.
  • coating was performed by conveying the aluminum foil in 60 degreeC oven over 2 minutes at the speed
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m; manufactured by a dry method; porosity 55%) was prepared. This separator was cut into a 5 ⁇ 5 cm 2 square.
  • an aluminum packaging exterior was prepared as a battery exterior.
  • the positive electrode was cut into a 4 ⁇ 4 cm 2 square and placed so that the current collector-side surface was in contact with the aluminum packaging exterior.
  • the square separator produced above was placed on the surface of the positive electrode active material layer of the cut out positive electrode.
  • the negative electrode was cut into a square of 4.2 ⁇ 4.2 cm 2 and arranged on the separator so that the surface on the negative electrode active material layer side faces the separator.
  • Example 2 A slurry for negative electrode as in Example 1 except that the type of water-soluble polymer used for the preparation of the slurry composition for negative electrode was changed to a 1% aqueous solution of CMC (“Daicel 1380” manufactured by Daicel Finechem 1% viscosity 1000 mPa ⁇ s). A composition was prepared. Thereafter, in the same manner as in Example 1, a negative electrode and a lithium ion secondary battery were manufactured.
  • CMC 1% aqueous solution of CMC
  • the light transmission density of the composite film composed of 1.5 parts of the particulate binder used in Example 2 and 1 part of CMC (both corresponding to solid content) is 0.1, and the breaking strength of this composite film is 88 MPa, The breaking strength after swelling was 32 MPa.
  • Example 3 The monomer charge ratio when synthesizing the particulate binder is 44 parts of styrene, 35 parts of 1,3-butadiene, and 20 parts of acrylic acid (hereinafter also referred to as “AA”) as the acid monomer.
  • a particulate binder was synthesized in the same manner as in Example 1 except that 1 part of HEA was used as the hydroxyl group-containing monomer.
  • the number average particle diameter of the particulate binder was 145 nm.
  • a particulate binder film was prepared and the amount of gel was measured to be 96%, and the electrolyte swelling degree was measured to be 140%.
  • a negative electrode slurry composition, a negative electrode, and a lithium ion secondary battery were manufactured in the same manner as in Example 2 except that the particulate binder obtained as described above was used.
  • the light transmission density of the composite film composed of 1.5 parts of the particulate binder used in Example 3 and 1 part of CMC (both corresponding to the solid content) is 0.1
  • the breaking strength of the composite film is 80 MPa
  • the breaking strength after swelling was 29 MPa.
  • Example 4 The monomer charge ratio when synthesizing the particulate binder was 54 parts styrene, 35 parts 1,3-butadiene, 10 parts acrylic acid as the acid monomer, and 1 part HEA as the hydroxyl group-containing monomer. Except that, the particulate binder was synthesized in the same manner as in Example 1. Here, the number average particle diameter of the particulate binder was 145 nm. Further, a particulate binder film was prepared and the gel amount was measured to be 93%, and the electrolyte solution swelling degree was measured to be 140%.
  • the particulate binder obtained as described above is 1.5 parts in solids equivalent
  • the water-soluble polymer is 0.72 parts in solids in the kneading process
  • solids equivalent in the slurry production process A negative electrode slurry composition, a negative electrode, and a lithium ion secondary battery were manufactured in the same manner as in Example 2 except that 0.48 parts were used.
  • the light transmission density of the composite film composed of 1.5 parts of the particulate binder used in Example 4 and 1.2 parts of CMC (both corresponding to solid content) is 0.15
  • the breaking strength of this composite film is The breaking strength after swelling was 72 MPa.
  • Example 5 The monomer charge ratio when synthesizing the particulate binder was 59 parts of styrene, 35 parts of 1,3-butadiene, 5 parts of acrylic acid as an acid monomer, and 1 part of HEA as a hydroxyl group-containing monomer. Except that, the particulate binder was synthesized in the same manner as in Example 1. Here, the number average particle diameter of the particulate binder was 145 nm. A particulate binder film was prepared and the gel amount was measured to be 88%, and the electrolyte swelling degree was measured to be 155%.
  • a negative electrode slurry composition, a negative electrode, and a lithium ion secondary battery were manufactured in the same manner as in Example 2 except that the particulate binder obtained as described above was used.
  • the light transmission density of the composite film composed of 1.5 parts of the particulate binder used in Example 5 and 1 part of CMC (both corresponding to the solid content) is 0.2, and the breaking strength of this composite film is 66 MPa, The breaking strength after swelling was 22 MPa.
  • Example 6 Same as Example 2 except that the amount of the water-soluble polymer used for the preparation of the negative electrode slurry composition was 1.5 parts corresponding to the solid content in the kneading process and 0.9 parts corresponding to the solid content in the slurry manufacturing process. A slurry composition for negative electrode was prepared. Thereafter, in the same manner as in Example 2, a negative electrode and a lithium ion secondary battery were manufactured.
  • the light transmission density of the composite film consisting of 1.5 parts of the particulate binder used in Example 6 and 2.4 parts of CMC (both corresponding to solid content) is 0.1
  • the breaking strength of this composite film is The breaking strength after swelling was 95 MPa.
  • Example 7 A slurry composition for a negative electrode was prepared in the same manner as in Example 2 except that 2.5 parts of cellulose fiber (BINFIS-cellulose fiber diameter 0.02 ⁇ m, manufactured by Sugino Machine Co., Ltd.) was added in the slurry production process. Thereafter, in the same manner as in Example 2, a negative electrode and a lithium ion secondary battery were manufactured.
  • cellulose fiber BINFIS-cellulose fiber diameter 0.02 ⁇ m, manufactured by Sugino Machine Co., Ltd.
  • the light transmission density of the composite film composed of 1.5 parts of the particulate binder used in Example 7 and 1 part of CMC (both corresponding to solid content) is 0.1
  • the breaking strength of the composite film is 88 MPa
  • the breaking strength after swelling was 32 MPa.
  • Example 8 A slurry for negative electrode as in Example 2, except that the amount of cellulose fiber used for preparation of the slurry composition for negative electrode was 0.1 part and that the particulate binder obtained in Example 3 was used. A composition was prepared. Thereafter, in the same manner as in Example 2, a negative electrode and a lithium ion secondary battery were manufactured.
  • the light transmission density of the composite film consisting of 1.5 parts of the particulate binder used in Example 8 and 1 part of CMC (both corresponding to the solid content) is 0.1, and the breaking strength of this composite film is 80 MPa, The breaking strength after swelling was 29 MPa.
  • Example 9 The type of water-soluble polymer used for the preparation of the slurry composition for the negative electrode was polyacrylic acid (hereinafter sometimes referred to as “PAA”) (Aldrich molecular weight 450,000), which was a lithium salt of PAA neutralized with LiOH. Except for the above, a negative electrode slurry composition was prepared in the same manner as in Example 1. Thereafter, in the same manner as in Example 1, a negative electrode and a lithium ion secondary battery were manufactured.
  • PAA polyacrylic acid
  • the light transmission density of the composite film composed of 1.5 parts of the particulate binder used in Example 9 and 1 part of PAA (both corresponding to the solid content) is 0.1, and the breaking strength of this composite film is 85 MPa, The breaking strength after swelling was 35 MPa.
  • Example 10 In the slurry production process, the negative electrode slurry composition was adjusted in the same manner as in Example 1 except that the kneading process was not performed. That is, the planetary mixer with a disperser and mixed for 15 minutes dry at a rotational speed of 10rpm by adding SiO x 5 parts coated 95 parts of artificial graphite and carbon as a negative electrode active material. Furthermore, 1 part of 1% aqueous solution of CMC is equivalent to the solid content, 1.5 parts of the aqueous dispersion of the particulate binder is equivalent to the solid content, and ion-exchanged water is added to the dry mixture at a solid content concentration of 50%.
  • the slurry was mixed for 60 minutes at a rotational speed of 40 rpm at 25 ° C. to produce a slurry. Then, the negative electrode slurry composition was prepared in the same manner as in Example 1, and the negative electrode and the lithium ion secondary battery were manufactured in the same manner as in Example 1.
  • the light transmission density of the composite film consisting of 1.5 parts of the particulate binder used in Example 10 and 1 part of CMC (both corresponding to solid content) is 0.1, and the breaking strength of this composite film is 160 MPa, The breaking strength after swelling was 67 MPa.
  • the monomer charge ratio when synthesizing the particulate binder is 30 parts of ethyl acrylate, 29.2 parts of butyl acrylate, 40 parts of MAA as the acid monomer, and as the cross-linking agent.
  • a particulate binder was synthesized in the same manner as in Example 1 except that 0.8 parts of ethylene dimethacrylate was used.
  • the number average particle diameter of the particulate binder was 120 nm.
  • the film of the particulate binder was prepared and the amount of gel was measured, it was 2%, and when the degree of electrolyte swelling was measured, it was 450%.
  • a negative electrode slurry composition, a negative electrode, and a lithium ion secondary battery were manufactured in the same manner as in Example 1 except that the particulate binder obtained as described above was used.
  • the light transmission density of the composite film composed of 1.5 parts of the particulate binder used in Comparative Example 1 and 1 part of CMC (both corresponding to solid content) is 0.1, and the breaking strength of this composite film is 150 MPa, The breaking strength after swelling was 18 MPa.
  • Comparative Example 2 Slurry for negative electrode as in Comparative Example 1 except that the type of water-soluble polymer used for the preparation of the slurry composition for negative electrode was changed to a 1% aqueous solution of CMC (“Daicel 1380” manufactured by Daicel Finechem 1% viscosity 1000 mPa ⁇ s). The composition, the negative electrode, and the lithium ion secondary battery were manufactured.
  • CMC 1% aqueous solution of CMC
  • the light transmission density of the composite film consisting of 1.5 parts of the particulate binder used in Comparative Example 2 and 1 part of CMC (both corresponding to solid content) is 0.1, and the breaking strength of this composite film is 78 MPa, The breaking strength after swelling was 10 MPa.
  • the monomer charge ratio when synthesizing the particulate binder is 61 parts of styrene, 35 parts of 1,3-butadiene, and 3 parts of itaconic acid (hereinafter sometimes referred to as “IA”) as the acid monomer.
  • a particulate binder was synthesized in the same manner as in Example 1 except that 1 part of HEA was used as the hydroxyl group-containing monomer.
  • the number average particle diameter of the particulate binder was 145 nm.
  • a particulate binder film was prepared and the gel amount was measured to be 90%, and the electrolyte swelling degree was measured to be 150%.
  • a negative electrode slurry composition, a negative electrode, and a lithium ion secondary battery were manufactured in the same manner as in Example 2 except that the particulate binder obtained as described above was used.
  • the light transmission density of the composite film composed of 1.5 parts of the particulate binder used in Comparative Example 3 and 1 part of CMC (both corresponding to the solid content) is 0.3
  • the breaking strength of the composite film is 50 MPa
  • the breaking strength after swelling was 16 MPa.
  • Example 4 The same as Example 1 except that the type of water-soluble polymer used for the preparation of the negative electrode slurry composition was a 1% aqueous solution of CMC (“Serogen WS-C” manufactured by Daiichi Kogyo Seiyaku Co., Ltd., 1% viscosity 250 mPa ⁇ s). A slurry composition for negative electrode was prepared. Thereafter, in the same manner as in Example 1, a negative electrode and a lithium ion secondary battery were manufactured.
  • CMC Carogen WS-C
  • the light transmission density of the composite film composed of 1.5 parts of the particulate binder used in Comparative Example 4 and 1 part of CMC (both corresponding to solid content) is 0.1, and the breaking strength of this composite film is 40 MPa, The breaking strength after swelling was 10 MPa.
  • a lithium ion secondary battery negative electrode slurry composition comprising a negative electrode active material, a particulate binder, and a water-soluble polymer, the composite film comprising the particulate binder and the water-soluble polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 負極活物質、粒子状結着剤および水溶性ポリマーを含むリチウムイオン二次電池負極用スラリー組成物であって、前記粒子状結着剤と前記水溶性ポリマーからなる厚さ200μmの複合フィルムを電解液中で膨潤させた後の破断強度が20MPa以上90MPa以下である。

Description

リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池に関するものである。
 小型で軽量、且つエネルギー密度が高く、繰り返し充放電が可能なリチウムイオン二次電池などの電気化学素子は、環境対応からも今後の需要の拡大が見込まれている。リチウムイオン二次電池は、エネルギー密度が大きく携帯電話やノート型パーソナルコンピュータなどの分野で利用されている。また、電気化学素子は、用途の拡大や発展に伴い、低抵抗化、大容量化等、より一層の性能向上が求められている。
 例えば、リチウムイオン二次電池の容量をさらに大きくするためには、負極活物質に、従来用いられている黒鉛質材料に替えて、その理論容量の格段の大きさからSiや酸化珪素(SiOx)などのシリコン系活物質が用いられつつある。この場合に、特許文献1においては、所定の結着剤を用いることにより活物質を複合化することなく電極の密着強度の低下を抑制している。
国際公開第2011/037142号
 また、負極活物質にシリコン系活物質を用いる場合に、リチウムイオンの吸蔵量が多いがゆえの電極の膨らみを抑制することが求められ、さらにこの負極活物質を用いて製造されるリチウムイオン二次電池は、特に初期サイクル劣化を抑制する等、良好なサイクル特性を有することが求められる。
 本発明の目的は、電極の膨らみを抑制することができ、かつ、得られるリチウムイオン二次電池のサイクル特性に優れるリチウムイオン二次電池負極用スラリー組成物、このリチウムイオン二次電池負極用スラリー組成物を用いたリチウムイオン二次電池負極の製造方法及びこのリチウムイオン二次電池負極を用いたリチウムイオン二次電池を提供することである。
 本発明者は、鋭意検討の結果、所定の粒子状結着剤及び水溶性ポリマーを含有させることにより上記目的を達成できることを見出し、本発明を完成するに至った。
 即ち、本発明によれば、
(1) 負極活物質、粒子状結着剤および水溶性ポリマーを含むリチウムイオン二次電池負極用スラリー組成物であって、前記粒子状結着剤と前記水溶性ポリマーからなる厚さ200μmの複合フィルムを電解液中で膨潤させた後の破断強度が20MPa以上90MPa以下であるリチウムイオン二次電池負極用スラリー組成物、
(2)前記粒子状結着剤と前記水溶性ポリマーからなる厚さ200μmの複合フィルムの光透過濃度が0.28以下である(1)記載のリチウムイオン二次電池負極用スラリー組成物、
(3) 前記粒子状結着剤はスチレン単量体単位、ブタジエン単量体単位および酸単量体単位を含み、前記酸単量体単位の粒子状結着剤100重量部中の含有割合が5~50重量部である(1)または(2)記載のリチウムイオン二次電池負極用スラリー組成物、
(4) 前記粒子状結着剤の添加量に対する前記水溶性ポリマーの添加割合が0.4~2.0である(1)~(3)の何れかに記載のリチウムイオン二次電池負極用スラリー組成物、
(5) セルロースファイバーを前記粒子状結着剤に対して0.1~10重量%含有する(1)~(4)の何れかに記載のリチウムイオン二次電池負極用スラリー組成物、
(6) 前記負極活物質は、炭素系負極活物質とシリコン系負極活物質とを含む、(1)~(5)の何れかに記載のリチウムイオン二次電池負極用スラリー組成物、
(7) (1)~(6)の何れかに記載のリチウムイオン二次電池負極用スラリー組成物を用いてリチウムイオン二次電池負極を製造するリチウムイオン二次電池負極の製造方法であって、前記負極活物質及び前記水溶性ポリマーを混練して固練り物を得る固練り工程と、前記固練り物に溶媒、前記粒子状結着剤及び前記水溶性ポリマーを添加して混合することによりリチウムイオン二次電池負極用スラリー組成物を得るスラリー製造工程と、前記リチウムイオン二次電池負極用スラリー組成物を、集電体上に塗布、乾燥することにより負極活物質層を形成する負極活物質層形成工程とを含むリチウムイオン二次電池負極の製造方法、
(8) (7)に記載のリチウムイオン二次電池負極の製造方法により得られるリチウムイオン二次電池負極を備えるリチウムイオン二次電池
が提供される。
 本発明によれば、電極の膨らみを抑制することができ、かつ、得られるリチウムイオン二次電池のサイクル特性に優れるリチウムイオン二次電池負極用スラリー組成物、このリチウムイオン二次電池負極用スラリー組成物を用いたリチウムイオン二次電池負極の製造方法及びこのリチウムイオン二次電池負極を用いたリチウムイオン二次電池が提供される。
 以下、本発明のリチウムイオン二次電池負極用スラリー組成物について説明する。本発明のリチウムイオン二次電池負極用スラリー組成物(以下、「負極用スラリー組成物」ということがある。)は、負極活物質、粒子状結着剤および水溶性ポリマーを含むリチウムイオン二次電池負極用スラリー組成物であって、前記粒子状結着剤と前記水溶性ポリマーからなる厚み200μmの複合フィルムを電解液中で膨潤させた後の破断強度が20MPa以上90MPa以下である。
 本発明のリチウムイオン二次電池負極用スラリー組成物は、前記の如く、用いる粒子状結着剤および水溶性ポリマーを、所定厚みの複合フィルムにして電解液に膨潤させた後の破断強度が所定範囲となるように選択することにより、前記負極用スラリー組成物を用いて得られるリチウムイオン二次電池内における活物質の膨張由来の、負極極板の極板変形を抑えることができる。このため、前記負極用スラリー組成物を用いて得られるリチウムイオン二次電池の初期膨らみ、及びサイクル後膨らみは抑制され、ひいては、初期サイクル劣化、サイクル特性を向上させることができる。また導電パスの切断を防ぐことができるためレート特性を向上させることができる。
 電解液に膨潤させた後の複合フィルムの破断強度が前記所定範囲となるようにするためには、膨潤前の複合フィルムの破断強度、水溶性ポリマーの電解液膨潤度及び粒子状結着剤の電解液膨潤度のそれぞれを特定範囲となるようにする。
 膨潤前の複合フィルムの破断強度は、水溶性ポリマー及び粒子状結着剤の、それぞれを単独でフィルムにした場合の各破断強度、水溶性ポリマー中での粒子状結着剤の分散性、粒子状結着剤と水溶性ポリマーとの比率により制御されうる。
 さらに、水溶性ポリマーのフィルム破断強度は、水溶性ポリマーの1%水溶液粘度により制御されうる。粒子状結着剤のフィルム破断強度は粒子状結着剤のゲル量により制御されうる。水溶性ポリマー中の粒子状結着剤の分散性は、粒子状結着剤の粒子径、及び粒子状結着剤中の酸単量体の含有割合により制御されうる。
 前記各制御因子の詳細は後述する。
 また、水溶性ポリマー中の粒子状結着剤の分散性を間接的に測定する測定方法として複合フィルムの光透過濃度が挙げられる。
 (負極活物質)
 本発明の負極用スラリー組成物に用いられる負極活物質は、特に制限されないが、活物質自体の膨らみが抑制される観点と、高容量化の観点から、炭素系負極活物質とシリコン系負極活物質とを含むことが好ましい。
 炭素系負極活物質としては、特に限定されるものではないが、リチウムが挿入可能な炭素を主骨格とする活物質が好ましい。具体的には、炭素質材料と黒鉛質材料が挙げられる。炭素質材料とは一般的に炭素前駆体を2000℃以下(当該処理温度の下限は、特に限定されないが、例えば500℃以上とすることができる)で熱処理(炭素化)された黒鉛化の低い(結晶性の低い)炭素材料を示し、黒鉛質材料とは易黒鉛性炭素を2000℃以上(当該処理温度の上限は、特に限定されないが、例えば5000℃以下とすることができる)で熱処理することによって得られた黒鉛に近い高い結晶性を有する黒鉛質材料を示す。
 炭素質材料としては、熱処理温度によって炭素の構造を容易に変える易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素が挙げられる。
 易黒鉛性炭素としては石油や石炭から得られるタールピッチを原料とした炭素材料が挙げられ、例えば、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。MCMBとはピッチ類を400℃前後で加熱する過程で生成したメソフェーズ小球体を分離抽出した炭素微粒子である。メソフェーズピッチ系炭素繊維とは、前記メソフェーズ小球体が成長、合体して得られるメソフェーズピッチを原料とする炭素繊維である。熱分解気相成長炭素繊維とは、(1)アクリル高分子繊維などを熱分解する方法、(2)ピッチを紡糸して熱分解する方法、(3)鉄などのナノ粒子を触媒として用いて炭化水素を気相熱分解する触媒気相成長(触媒CVD)法により得られた炭素繊維である。
 難黒鉛性炭素としては、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)などが挙げられる。
 黒鉛質材料としては天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 炭素系負極活物質の中でも黒鉛質材料が好ましい。黒鉛質材料を用いることで、負極の活物質層の密度が高い負極の作製が容易となる。
 炭素系負極活物質の体積平均粒子径は、後述する負極スラリー組成物の作製が容易となる観点から、好ましくは0.1~100μm、より好ましくは0.5~50μm、特に好ましくは1~30μmである。
 炭素系負極活物質の比表面積は、炭素系負極活物質表面の活性点が増えることにより、リチウムイオン二次電池の出力特性に優れる観点から、好ましくは0.3~20.0m2/g、より好ましくは1.0~15.0m2/g、特に好ましくは4.0~10.0m2/gである。
 シリコン系負極活物質としては、特に限定されるものではないが、リチウムと合金化反応可能な、シリコンを主成分とする活物質が好ましい。具体的には、Si、SiO、SiO2、SiOx等が挙げられる。また、負極活物質自体の膨らみが抑制される点から、シリコン系負極活物質としてSiO及びSiO2の少なくとも一方と、Siとから形成されるSiOx(0.01≦x<2)を用いるのが好ましい。ここで、SiOxとは、SiO2非晶相の中にナノレベルのSi結晶が析出した構造を有する非化学量論比である一酸化珪素の総称を表す。該化合物は例えば特開2002-47404号公報やJournal of Power Sources 170(2007)456-459などによってその製法や特性が公知となっている。該化合物の製造方法としても特に限定されるものではなく、SiO2とSi(金属珪素)との混合物を加熱して生成した一酸化珪素ガスを冷却・析出する方法、さらにはSiOを加熱処理することでSiとSiO2の不均化反応を進行させて得る方法などをあげることができる。
 シリコン系負極活物質は、導電性カーボンとの複合化により充電時におけるシリコン自体の膨らみを緩和することができるとともに導電パスを形成させる観点から、導電性カーボンと複合化されていることが好ましい。複合化の方法としては、特に限定されるものではなく、シリコン系負極活物質を炭素源となる化合物を用いて、CVD法(化学蒸着法)、PVD(物理蒸着法)によってコーティングすることにより複合化する方法、導電性カーボンとシリコン系負極活物質とを含む混合物を造粒することにより複合化する方法、導電性カーボン源となるポリマー等の有機物をシリコン系負極活物質表面に吸着させ、そのまま加熱処理を施し、有機物を炭化させる方法等が挙げられる。
 CVD法(化学蒸着法)の好ましい例としては、SiOxを、少なくとも有機物ガス及び/又は蒸気を含む雰囲気下900~1400℃、好ましくは1000~1400℃、より好ましくは1050~1300℃、更に好ましくは1100~1200℃の温度域で熱処理することにより、SiOxを珪素と二酸化珪素の複合体に不均化を促進すると共に、その表面を化学蒸着する方法;シリコン系負極活物質をあらかじめ不活性ガス雰囲気下900~1400℃、好ましくは1000~1400℃、より好ましくは1100~1300℃で熱処理を施して不均化してなる珪素複合物等の好ましくは0.1~50μmの粒度まで粉砕したものをあらかじめ不活性ガス気流下で800~1400℃で加熱したものを、少なくとも有機物ガス及び/又は蒸気を含む雰囲気下、800~1400℃、好ましくは900~1300℃、より好ましくは1000~1200℃の温度域で熱処理して表面を化学蒸着する方法;シリコン系負極活物質をあらかじめ500~1200℃、好ましくは500~1000℃、より好ましくは500~900℃の温度域で有機物ガス及び/又は蒸気で化学蒸着処理したものを、不活性ガス雰囲気下900~1400℃、好ましくは1000~1400℃、より好ましくは1100~1300℃の温度域で熱処理を施して不均化する方法等が挙げられる。
 導電性カーボンとシリコン系負極活物質とを含む混合物を造粒する方法の好ましい例としては、特開2002-216751号公報に開示される粉砕圧着法などをあげることができる。
 また、負極活物質においては、導電パスが形成され、導電性が良好となる観点から、負極活物質に含まれる炭素系負極活物質100重量部に対して1~100重量部のシリコン系負極活物質が含まれることが好ましい。負極活物質中に含まれるシリコン系負極活物質の量が多すぎると、リチウムイオン二次電池としたときの電池の寿命が低下する。また、負極活物質中に含まれるシリコン系負極活物質の量が少なすぎると、リチウムイオン二次電池としたときの電池容量が低下する。
 その他、本発明では、目的を逸脱しない範囲で、炭素系負極活物質およびシリコン系負極活物質以外の公知の負極活物質を添加してもよい。例えば、リチウム合金を形成する単体金属及び合金として、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Sn、Sr、Zn等の金属や該金属を含有する化合物、それらの酸化物、硫化物、窒化物、珪化物、炭化物、燐化物があげられる。さらに、LixTiyz4で示されるリチウムチタン複合酸化物(0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、ZnおよびNb)があげられる。これらは2種類以上用いてもよい。
 (粒子状結着剤)
 粒子状結着剤は、本発明の負極用スラリー組成物を用いて集電体上に負極活物質層を形成することにより製造した負極において、負極活物質に含まれる成分が負極活物質層から脱離しないように保持しうる成分である。なお、粒子状結着剤は、非水溶性である。ここで、粒子状結着剤が「非水溶性」であるとは、25℃において、その化合物0.5gを100gの水に溶解した際に、不溶分が90重量%以上となることをいう。
 本発明の負極用スラリー組成物に用いる粒子状結着剤は、特に制限はないが、スチレン単量体単位、1,3-ブタジエン単量体単位及び酸単量体単位を含むことが好ましい。
 酸単量体単位としては、例えば、エチレン性不飽和カルボン酸単量体単位が挙げられる。エチレン性不飽和カルボン酸単量体としては、たとえば、アクリル酸、メタクリル酸などのエチレン性不飽和モノカルボン酸;イタコン酸、マレイン酸、フマル酸、無水マレイン酸、無水シトラコン酸などのエチレン性不飽和多価カルボン酸およびそれらの無水物;フマル酸モノブチル、マレイン酸モノブチル、マレイン酸モノ2-ヒドロキシプロピルなどのエチレン性不飽和多価カルボン酸の部分エステル化物;などが挙げられる。これらのなかでも、アクリル酸、メタクリル酸、イタコン酸を用いることが好ましく、アクリル酸、メタクリル酸を用いることがより好ましい。
 酸単量体単位の含有量は、負極用バインダー組成物に含まれる全単量体単位100重量部に対して、5~50重量部、好ましくは7.5~48重量部、より好ましくは10~45重量部である。酸単量体単位の含有量が多すぎると負極の密着性が低下し、得られるリチウムイオン二次電池のサイクル特性が低下する。また、酸単量体単位の含有量が少なすぎると複合フィルムの破断強度が低下し、その結果負極の膨らみが増大し、得られるリチウムイオン二次電池のサイクル特性が低下する。
 本発明に用いる粒子状結着剤は、本発明の効果を有する範囲において、スチレン単量体単位、1,3-ブタジエン単量体単位及び酸単量体単位以外の単量体単位を含んでいてもよい。このような単量体単位を導くモノマーは、共役ジエン系モノマー、その他共重合可能である公知のモノマーであれば特に限定されるものではない。
 共役ジエン系モノマーとしては、例えばイソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、ピペリレンなどが挙げられ、好ましくはイソプレン、2,3-ジメチル-1,3-ブタジエンなどである。
 その他、共重合可能なモノマーの具体例としては、α-メチルスチレン、β-メチルスチレン、p-t-ブチルスチレン、クロロスチレンなどのスチレン系モノマー;アクリロニトリル、メタアクリロニトリルなどのニトリル基含有モノマー;アクリルアミド、N-メチロールアクリルアミド、N-ブトキシメチルアクリルアミドなどのアクリルアミド系モノマー;メタクリルアミド、N-メチロールメタクリルアミド、N-ブトキシメチルメタクリルアミドなどのメタクリルアミド系モノマー;アクリル酸グリシジル、メタクリル酸グリシジル、アリルグリシジルエーテルなどのグリシジル基含有モノマー;スチレンスルホン酸ナトリウム、アクリルアミドメチルプロパンスルホン酸などのスルホン酸基含有モノマー;メタクリル酸ジメチルアミノエチル、メタクリル酸ジエチルアミノエチルなどのアミノ基含有メタクリル酸系モノマー;メトキシポリエチレングリコールモノメタクリレートなどのアルコキシ基含有メタクリル酸系モノマー;(メタ)アクリル酸-2,2,2-トリフルオロエチル、(メタ)アクリル酸-β-(パーフルオロオクチル)エチル、(メタ)アクリル酸-2,2,3,3-テトラフルオロプロピル、(メタ)アクリル酸-2,2,3,4,4,4-ヘキサフルオロブチル、(メタ)アクリル酸-1H,1H,9H-パーフルオロ-1-ノニル、(メタ)アクリル酸-1H,1H,11H-パーフルオロウンデシル、(メタ)アクリル酸パーフルオロオクチル、(メタ)アクリル酸-3-[4-〔1-トリフルオロメチル-2、2-ビス〔ビス(トリフルオロメチル)フルオロメチル〕エチニルオキシ〕ベンゾオキシ] -2-ヒドロキシプロピル等の(メタ)アクリル酸パーフルオロアルキルエステルなどのフッ素含有アクリル酸系モノマー、またはフッ素含有メタクリル酸系物モノマー;マレイン酸モノオクチル、マレイン酸モノブチル、イタコン酸モノオクチル等の不飽和ジカルボン酸モノエステル;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、およびアクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、アクリル酸-2-メトキシエチル、アクリル酸-2-エトキシエチル、ベンジルアクリレート等のアクリル酸エステル;などのアクリル酸アルキルエステル;アクリル酸2-(パーフルオロブチル)エチル、アクリル酸2-(パーフルオロペンチル)エチルなどのアクリル酸2-(パーフルオロアルキル)エチル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、およびメタクリル酸t-ブチル、メタクリル酸-2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、ベンジルメタクリレートなどのメタクリル酸アルキルエステル;アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、マレイン酸-ジ-2-ヒドロキシエチル、マレイン酸ジ-4-ヒドロキシブチル、イタコン酸ジ-2-ヒドロキシプロピル等の水酸基含有モノマーなどが挙げられる。その他架橋、反応性官能基を有する、共重合可能なモノマーを添加することもできる。なお、本発明において、「(メタ)アクリル」は、「アクリル」又は「メタアクリル」を意味する。
 該モノマーの具体例としては、高分子ラテックス(新高分子文庫26)(高分子刊行会、第一版)P131~P134に列挙された公知のモノマーをあげることができる。これらの中でも、好ましい例としてはスチレン系モノマーやニトリル基含有モノマー、ポリカルボン酸モノマー、アルコキシ基含有メタクリル酸系モノマー、フッ素含有アクリル酸系モノマーなどが挙げられる。
 上記の共役ジエン系モノマーや、その他共重合可能である公知のモノマーは2種類以上併用して用いてもよい。
 粒子状結着剤の製造方法は特に限定されず、例えば、スチレン、1,3-ブタジエン及び酸単量体、さらには前記の各種共重合可能なモノマー成分を、好ましくは乳化剤の存在下、重合開始剤を添加し、溶媒中で乳化重合することにより製造できる。なお、乳化重合の際に、他の添加剤を配合することもできる。得られる重合体(ラテックス)の個数平均粒子径は、得られる負極の強度および柔軟性が良好となる観点から、50~500nmが好ましく、80~400nmがさらに好ましい。
 このとき、溶媒としては、特に制限されないが、水が好ましく用いられる。必要に応じて、2種以上の溶媒を混合して用いてもよく、溶媒として水が含まれる場合には、全溶媒に対する水の量は好ましくは50重量%以上、より好ましくは80重量%以上、さらに好ましくは90重量%以上である。なお、水を溶媒として用いる場合には、必要に応じてアルコールなどの親水性溶媒を全溶媒に対して5重量%以下で添加してもよい。
 また、乳化剤としては、特に限定されないが、ドデシルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、ドデシルジフェニルエーテルジスルホン酸ナトリウム、コハク酸ジアルキルエステルスルホン酸ナトリウムなどが挙げられ、不飽和結合を有するいわゆる反応性乳化剤であってもよい。中でもドデシルジフェニルエーテルジスルホン酸ナトリウムは、製造時における汎用性に富み、泡立ち等も少ない観点で好ましい。これらは2種類以上併用して用いてもよい。
 乳化剤の添加量は、特に制限されず、安定に重合反応が進行し、溶媒に分散した粒子状結着剤を得ることができる観点から、例えば、原料であるスチレン、1,3-ブタジエン、酸単量体及びその他の共重合可能なモノマー合計100重量部に対して、好ましくは0.1~10.0重量部、より好ましくは0.15~5重量部、特に好ましくは0.2~2.5重量部である。
 重合開始剤としては、過硫酸ナトリウム(NaPS)、過硫酸アンモニウム(APS)、過硫酸カリウム(KPS)が挙げられ、中でも過硫酸カリウム(KPS)や過硫酸アンモニウムが好ましく、過硫酸カリウム(KPS)がより好ましい。重合開始剤として過硫酸カリウム(KPS)を用いることで、得られるリチウムイオン二次電池のサイクル特性の低下を抑制することができる。
 重合開始剤の添加量は、特に制限されず、負極用スラリー組成物の増粘を防止し、安定したスラリー組成物を得ることができる観点から、例えば、原料であるスチレン、1,3-ブタジエン、酸単量体及びその他の共重合可能なモノマー合計100重量部に対して、好ましくは0.5~2.5重量部、より好ましくは0.6~2.0重量部、特に好ましくは0.7~1.5重量部である。
 他の添加剤としては、分子量調整剤、または連鎖移動剤をあげることができ、例えば、n-ヘキシルメルカプタン、n-オクチルメルカプタン、t-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-ステアリルメルカプタン等のアルキルメルカプタン;ジメチルキサントゲンジサルファイド、ジイソプロピルキサントゲンジサルファイド等のキサントゲン化合物;ターピノレンや、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラメチルチウラムモノスルフィド等のチウラム系化合物;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のフェノール系化合物;アリルアルコール等のアリル化合物;ジクロルメタン、ジブロモメタン、四臭化炭素等のハロゲン化炭化水素化合物;チオグリコール酸、チオリンゴ酸、2-エチルヘキシルチオグリコレート、ジフェニルエチレン、α-メチルスチレンダイマーなどが挙げられる。
 これらのなかでも、副反応抑制という観点から、アルキルメルカプタン、t-ドデシルメルカプタンが好ましく、t-ドデシルメルカプタンがより好ましく使用できる。これら2種以上組み合わせて使用してもよい。
 このとき、添加剤の添加量は、特に制限されず、例えば、原料であるスチレン、1,3-ブタジエン、酸単量体及びその他の共重合可能なモノマー合計100重量部に対して、好ましくは0~5重量部、より好ましくは0~2.0重量部である。
 上記重合時に、界面活性剤を使用してもよい。界面活性剤は、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤のいずれであってもよい。アニオン性界面活性剤の具体例としては、ナトリウムラウリルサルフェート、アンモニウムラウリルサルフェート、ナトリウムドデシルサルフェート、アンモニウムドデシルサルフェート、ナトリウムオクチルサルフェート、ナトリウムデシルサルフェート、ナトリウムテトラデシルサルフェート、ナトリウムヘキサデシルサルフェート、ナトリウムオクタデシルサルフェートなどの高級アルコールの硫酸エステル塩;ドデシルベンゼンスルホン酸ナトリウム、ラウリルベンゼンスルホン酸ナトリウム、ヘキサデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩;ラウリルスルホン酸ナトリウム、ドデシルスルホン酸ナトリウム、テトラデシルスルホン酸ナトリウムなどの脂肪族スルホン酸塩;などが挙げられる。これらは2種類以上用いてもよい。該界面活性剤の添加量は、原料であるスチレン、1,3-ブタジエン、酸単量体及びその他の共重合可能なモノマー合計100重量部に対して、好ましくは0.5~10重量部、より好ましくは1~5重量部である。
 さらに、重合の際に、水酸化ナトリウム、アンモニアなどのpH調整剤;分散剤、キレート剤、酸素捕捉剤、ビルダー、粒子径調節のためのシードラテックスなどの各種添加剤を適宜使用してもよい。
 粒子状結着剤のゲル量は、好ましくは70~98%、より好ましくは80~97%、特に好ましくは85~96%である。ここで、ゲル量は粒子状結着剤の全固形分のうち、テトラヒドロフランに不溶な固形分の重量比を表した値である。具体的には上記共重合体ラテックスの水分散液を、50%湿度、23~25℃の環境下で3日間乾燥させ、さらに120℃の熱風オーブンで1h乾燥させた後に得られる、厚み3±0.3mmのフィルムを用いてゲル量を求めることができる。即ち、該フィルムを3~5mm角に裁断して、約1gを精秤して得られたフィルム片の重量をW0とする。また、このフィルム片を、100gのテトラヒドロフラン(THF)に23~25℃の環境下、24時間浸漬し、THFから引き揚げたフィルム片を105℃で3時間真空乾燥した後に、計測した不溶分の重量をW1とする。そして、下記式にしたがってゲル量(%)を算出することができる。
 ゲル量(%)=W1/W0×100
 該ゲル量は、粒子状結着剤を構成するスチレンーブタジエン共重合ラテックスの重合温度や分子量調整剤および連鎖移動剤の添加量、種類、さらにはその他添加される共重合可能なモノマーの組成、量によって制御されうる。
 ゲル量が大きすぎると負極作成時に均質的な塗膜を得にくくなる傾向にあり、その結果サイクル特性が低下する傾向にある。また、ゲル量が小さすぎると得られる負極が電解液に膨潤しやすくなり、極板が膨れる傾向にある。
 <電解液膨潤度>
 電解液膨潤度は、粒子状結着剤を含む水分散体を用意し、この水分散体を50%湿度、23~25℃の環境下で乾燥させて、厚み3±0.3mmに成膜し、直径12mmに裁断することにより得られるフィルムを用いて求めることができる。
 即ち、裁断により得られたフィルム片の重量を精秤し、W0とする。このフィルム片を、50gの電解液(組成:濃度1.0MのLiPF6溶液(溶媒はエチレンカーボネート/エチルメチルカーボネート=3/7(体積比)の混合溶媒、添加剤としてビニレンカーボネート2重量%(溶媒比)を添加)に、60℃の環境下で72時間浸漬し、膨潤させ、その後、引き揚げたフィルム片(膨潤後)を軽く拭いた後、計測した重量をW1とする。
 そして、下記式にしたがって膨潤度(重量%)を算出することができる。
 膨潤度(%)=(W1/W0)×100
 該電解液膨潤度は、粒子状結着剤のゲル量、及びアクリル酸エステル単量体の組成によって制御されうる。
 電解液膨潤度は、好ましくは110~450%、より好ましくは120~300%である。電解液膨潤度が大きすぎると電解液に膨潤させた後の複合フィルムの破断強度が低下する傾向にあり、その結果サイクル後の膨らみ特性等の電池特性が低下する傾向にある。また、電解液膨潤度が小さすぎると、粒子状結着剤の皮膜がリチウムイオン二次電池内におけるリチウムイオンの移動を妨げるためレート特性が悪化する。
 (水溶性ポリマー)
 本発明の負極用スラリー組成物は、水溶性ポリマーを含む。本発明に用いる水溶性ポリマーとは、25℃において、ポリマー0.5gを100gの水に溶解した際に、不溶分が10重量%未満のポリマーをいう。
 水溶性ポリマーの具体例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマー、ならびにこれらのアンモニウム塩またはアルカリ金属塩、アルギン酸プロピレングリコールエステルなどのアルギン酸エステル、ならびにアルギン酸ナトリウムなどのアルギン酸塩、ポリアクリル酸、およびポリアクリル酸(またはメタクリル酸)ナトリウムなどのポリアクリル酸(またはメタクリル酸)のリチウム塩、ポリビニルアルコール、変性ポリビニルアルコール、ポリビニルピロリドン、ポリカルボン酸塩、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、キトサン誘導体などが挙げられる。なお、本発明において、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味する。
 これらの水溶性ポリマーは、それぞれ単独でまたは2種以上を組み合わせて使用できる。これらの中でも、セルロース系ポリマーが好ましく、カルボキシメチルセルロースまたはそのアンモニウム塩もしくはアルカリ金属塩が特に好ましい。(以下、カルボキシメチルセルロース(塩)ということがある。)これらの水溶性ポリマーの添加量は、本発明の効果を損ねない範囲であれば格別な限定はないが、粒子状結着剤150重量部に対して、好ましくは60~300重量部、より好ましくは70~300重量部、さらに好ましくは80~250重量部、特に好ましくは100~200重量部である。水溶性ポリマーの添加量が多すぎると、得られるリチウムイオン二次電池の抵抗が高くなり、レート特性が悪化する。また、水溶性ポリマーの添加量が少なすぎると、負極用スラリー組成物の塗料特性が十分でなく、塗布し難くなる。
 ここで、水溶性ポリマーとしてカルボキシメチルセルロース(塩)を用いる場合、用いるカルボキシメチルセルロース(塩)のエーテル化度は、好ましくは0.4以上、より好ましくは0.7以上であり、好ましくは1.5以下、より好ましくは1.0以下である。エーテル化度が0.4以上のカルボキシメチルセルロース(塩)を用いることで、負極用スラリー組成物を集電体上などに塗布する際の作業性を良好とすることができる。エーテル化度が0.4未満であると、カルボキシメチルセルロース(塩)の分子内および分子間の水素結合が強固なために水溶性ポリマーがゲル状物となりうる。そして、負極用スラリー組成物を調製する際に、増粘効果が得られにくくなり、負極用スラリー組成物の調製時の作業性が悪化する虞がある。
 なお、カルボキシメチルセルロース(塩)のエーテル化度とは、カルボキシメチルセルロース(塩)を構成する無水グルコース1単位当たり、カルボキシルメチル基などの置換基により置換された水酸基の数の平均値をいい、0より大きく3未満の値を取り得る。エーテル化度が大きくなればなるほどカルボキシメチルセルロース(塩)1分子中の水酸基の割合が減少し(即ち、置換基の割合が増加し)、エーテル化度が小さいほどカルボキシメチルセルロース(塩)1分子中の水酸基の割合が増加する(即ち、置換基の割合が減少する)ということを示している。このエーテル化度(置換度)は、特開2011-34962号公報に記載の方法により求めることができる。
 また、カルボキシメチルセルロース(塩)の1重量%水溶液の粘度は、好ましくは500mPa・s以上、より好ましくは1000mPa・s以上であり、好ましくは10000mPa・s以下、より好ましくは9000mPa・s以下である。1重量%水溶液とした際の該水溶液の粘度が500mPa・s以上のカルボキシメチルセルロース(塩)を用いることで、負極用スラリー組成物に適度に粘性を持たせることができる。従って、該負極用スラリー組成物を集電体上などに塗布する際の作業性を良好とすることができる。さらに1重量%水溶液の粘度は、カルボキシメチルセルロース自身のフィルム強度と相関があり、後述する複合フィルムの破断強度を向上させることできる。また、1重量%水溶液の粘度が10000mPa・s以下のカルボキシメチルセルロース(塩)を用いることで、負極用スラリー組成物の粘性が高くなりすぎず、負極用スラリー組成物を集電体上などに塗布する際の作業性を良好とすることができ、また、負極用スラリー組成物を用いて得られる負極活物質層と集電体との密着性を向上させることができる。なお、カルボキシメチルセルロース(塩)の1重量%水溶液の粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。
 (複合フィルム)
 本発明の負極用スラリー組成物に含まれる上記粒子状結着剤及び上記水溶性ポリマーからなる厚さ200μmの複合フィルムの光透過濃度は、0.28以下であることが好ましい。
 ここで、複合フィルムの光透過濃度は、透過濃度計(グレタグ・マクベス社製)においてホワイトフィルターを用いることによって測定することができる。
 複合フィルムの光透過濃度が0.28より大きいと、水溶性ポリマー中の粒子状結着剤の分散性が悪いことを示唆する。このとき複合フィルム中での粒子状結着剤の分散不良に伴う欠陥が生まれやすくなる。その結果、欠陥に応力が集中して破断することとなり、膨潤前の複合フィルムの破断強度が各々の材料のフィルム破断強度より低下する傾向にある。
 ひいては得られるリチウムイオン二次電池の充放電サイクル中に極板内での膨らみを抑制できずサイクル特性が低下する。
 また、負極用スラリー組成物に含まれる上記粒子状結着剤及び上記水溶性ポリマーからなる複合フィルムの破断強度は65~200MPa、好ましくは67~190MPa、より好ましくは70~180MPaである。ここで、破断強度は、複合フィルムを乾燥後、所定の形に打ち抜いた試験片を用いて、引っ張り試験を行うことにより求めることができる。
 複合フィルムの破断強度が上記範囲より大きいと、極板が固くなるため、捲回できなくなる。即ち、リチウムイオン二次電池の作製が困難となる。また、複合フィルムの破断強度が上記範囲より小さいと、負極の膨らみが増大し、得られるリチウムイオン二次電池のサイクル特性が低下する。
 また、負極用スラリー組成物に含まれる上記粒子状結着剤及び上記水溶性ポリマーからなる複合フィルムを電解液中で膨潤させた後の破断強度は20~90MPa、好ましくは23~90MPa、より好ましくは28~90MPaである。ここで、複合フィルムを電解液中で膨潤させた後の破断強度は、上記複合フィルムの破断強度と同様に測定することができる。
 また、電解液としては、後述のリチウムイオン二次電池に用いる電解液を用いることができる。
 電解液中に膨潤させた後の複合フィルムの破断強度が大きすぎると、極板が固くなるため、捲回できなくなる。即ち、リチウムイオン二次電池の作製が困難となる。また、電解液中に膨潤させた後の複合フィルムの破断強度が小さすぎると、負極の膨らみが増大し、得られるリチウムイオン二次電池のサイクル特性が低下する。
 (セルロースファイバー)
 本発明の負極用スラリー組成物において、微細化されたセルロースファイバーを用いることが好ましい。微細化されたセルロースファイバーは、実際には後述するセルロースファイバー分散液の形態で用いられ、二次電池の電極形成にあたり、分散液より水を除去するとセルロースファイバーが網目状の構造を形成することにより、電極活物質または導電助剤を含む電極層を電極集電体上に結着させるための有用なバインダーとしての役割を担うものである。
 本発明においては、セルロース原料を粉砕し、微細化されたセルロースファイバーを用いる。セルロースの粉砕方法は限定されないが、本発明の目的に合う繊維径にまで微細化するには、高圧ホモジナイザー、グラインダー(石臼式摩砕機)、あるいはビーズミルなどの媒体撹拌ミルといった、強いせん断力が得られる方法が好ましい。また、これらの中でも高圧ホモジナイザーを用いて微細化することが好ましく、例えば特開2005-270891号公報に開示されるような湿式粉砕法、すなわち、セルロースを分散させた水分散液を、一対のノズルから高圧でそれぞれ噴射して衝突させることにより、セルロースを粉砕するものであって、例えばスターバーストシステム((株)スギノマシン製の高圧粉砕装置)を用いることにより実施できる。
 前述の高圧ホモジナイザーを用いてセルロースファイバーを微細化する際、微細化や均質化の程度は、高圧ホモジナイザーの超高圧チャンバーへ圧送する圧力と、超高圧チャンバーに通過させる回数(処理回数)、及び水分散液中のセルロース濃度に依存することとなる。
 圧送圧力(処理圧力)は、好ましくは50~250MPaであり、より好ましくは100~245MPaである。圧送圧力が小さすぎると、セルロースファイバーの微細化が不十分となり、微細化により期待される効果が得られない。
 また、微細化処理時の水分散液中のセルロース濃度は好ましくは0.1~30重量%、より好ましくは0.5~10重量%である。水分散液中のセルロース濃度が低すぎると生産性が著しく低く、水分散液中のセルロース濃度が高すぎると粉砕効率が低くなり、所望の微細化されたセルロースファイバーが得られない。
 微細化の処理回数は、前記水分散液中のセルロース濃度にもよるが、セルロース濃度が0.1~1重量%の場合には処理回数は10~50パス程度で十分に微細化されるが、1~10重量%では50~200パス程度必要となる。また、セルロース濃度が高すぎる場合は、数百回以上の処理回数が必要となり、工業的観点から非現実的である。
 本発明に用いられる微細化されたセルロースファイバーの微細化の評価は、例えばレーザー回折/散乱式粒度分布測定器を用いることができる。本発明においては、前述の湿式粉砕法などによって得られたセルロースフアイバーの水分散液の体積粒度分布を測定したとき、体積累計50%における粒子径(メジアン径)が好ましくは0.01~40μm、特に好ましくは0.05~10μmであるセルロースファイバーを用いることが好ましい。粒子径が小さすぎると、セルロースファイバーが短繊維化されすぎることにより添加効果が得られず、すなわち、次いで得られる負極用スラリー組成物を用いて得られるリチウムイオン二次電池負極において、電極集電体と、電極活物質及び導電助剤を含む電極層の結着性の改善につながらない。また、粒子径が40μmより大きいと、セルロースファイバーの微細化が不十分なものとなり、すなわち、前記電極層の均一性が不十分となるために、期待した効果が得られない。
 なお、本発明に用いられる微細化されたセルロースファイバーは、繊維径について特に制限するものでは無いが、好ましくは0.001~10μm、より好ましくは0.01~1μmのものである。また、アスペクト比(L/D)についても特に制限されるものでは無いが、好ましくは10~100,000であり、より好ましくは100~10,000である。
 また本発明に用いられる微細化されたセルロースファイバーは、前述の湿式粉砕法よって得られたセルロースファイバーの水分散液の形態にて、負極用スラリー組成物の調製に用いることができる。
 負極用スラリー組成物中の微細化されたセルロースファイバーの量は、通常、該粒子状結着剤の固形分合計量100重量部に対して、好ましくは0.1~10重量部、より好ましくは0.1~5重量部、さらに好ましくは0.1~3重量部である。
 セルロースファイバーの添加量が多すぎると、得られるリチウムイオン二次電池の抵抗が高くなり、レート特性が悪化する。また、セルロースファイバーの添加量が少なすぎると、得られる負極活物質層と集電体とのピール強度が十分でないため、電極の作製が困難となる。
 (負極用スラリー組成物)
 本発明の負極用スラリー組成物は、負極活物質、粒子状結着剤、水溶性ポリマー、および必要に応じ用いられる水などの溶媒等を混合することにより得ることができる。
 混合方法は特に限定はされないが、例えば、撹拌式、振とう式、および回転式などの混合装置を使用した方法が挙げられる。また、ホモジナイザー、ボールミル、サンドミル、ロールミル、プラネタリーミキサーおよび遊星式混練機などの分散混練装置を使用した方法が挙げられる。
 また、負極活物質及び水溶性ポリマーを混練して後述の固練り物を得た後に、固練り物に溶媒及び粒子状結着剤を添加して混合することによりリチウムイオン二次電池負極用スラリー組成物を得てもよい。
 [固練り工程]
  固練り工程は、前記の、負極活物質及び水溶性ポリマーを混練して固練り物を得る工程であり、粉体である負極活物質に、水溶性ポリマーと溶媒の一部を混合して練合を行なう際の初期段階を意味し、溶媒及び粒子状結着剤、をさらに追加してスラリー状態に仕上げるスラリー製造工程の前の段階を言う。この時点における負極活物質と水溶性ポリマーは流動性のない固まりの状態、即ち、「固練り物」である。固練り工程の段階では、十分なせん断力を付与して均質な混合分散を行なう必要があり、不十分だと均質な混合分散が行なわれず、分散不良を発生させる要因となる。
 水溶性ポリマーは固練り工程及びスラリー製造工程に分割して添加させることが好ましい。固練り工程における水溶性ポリマーの添加量は、特に限定されないが、負極活物質100重量部当たり、好ましくは0.3重量部以上、より好ましくは0.4重量部以上であり、好ましくは1.5重量部以下、より好ましくは1重量部以下である。また、固練り物の固形分濃度は、好ましくは55~70%、より好ましくは57~68%である。固練りの条件を上記範囲内にすることにより、該固練り物に高いせん断力を付与することができ、スラリー製造工程時に負極活物質、水溶性ポリマーが好適に分散した負極用スラリー組成物を得ることができる。固練りに用いる混合機としては、特に限定されないが、高固形分濃度の負極用スラリー組成物に高いせん断を好適にかけることができるプラネタリーミキサーが好ましい。
  また、固練り時間は、好ましくは30分以上、より好ましくは40分以上であり、好ましくは120分以下、より好ましくは100分以下である。固練り時間を30分以上とすることで、シリコン系負極活物質を良好に分散させることができ、良好な極板構造を得ることができるため、本発明の製造方法により製造される負極用スラリー組成物を用いて得られるリチウムイオン二次電池のレート特性を確保することができる。また、固練り時間を120分以下とすることで、水溶性ポリマーの分子鎖が切断されることによる負極用スラリー組成物の低粘度化を抑制でき、それ故負極用スラリー組成物中での各成分の偏在を防止できる。
 [スラリー製造工程]
  また、スラリー製造工程において、水溶性ポリマー、粒子状結着剤及び溶媒を添加する。スラリー製造工程における水溶性ポリマーの添加量は、特に限定されないが、負極活物質100重量部当たり、好ましくは0.3重量部以上、より好ましくは0.4重量部以上であり、好ましくは1.5重量部以下、より好ましくは1重量部以下である。水溶性ポリマーの添加量を上記範囲にすることにより、スラリーの粘度を調整することができる。粒子状結着剤の添加量は、特に限定されないが、負極活物質100重量部当たり、好ましくは0.5重量部以上、より好ましくは0.8重量部以上、特に好ましくは1重量部以上であり、好ましくは5重量部以下、より好ましくは3重量部以下である。粒子状結着剤の添加量を負極活物質100重量部当たり0.5重量部以上とすることにより、負極活物質同士や、集電体との結着性を高め、サイクル特性を向上させることができる。また、粒子状結着剤の添加量を5重量部以下とすることにより、本発明の製造方法により製造された負極用スラリー組成物を用いて得た負極をリチウムイオン二次電池に適用した際に、粒子状結着剤によるリチウムイオンの移動の阻害を抑制し、リチウムイオン二次電池のレート特性を向上させることができる。また、粒子状結着剤の添加量を3重量部以下とすることにより、粒子状結着剤の凝集を防ぎ、得られる負極用スラリー組成物中の粒子分散性が良好となる。
 該負極用スラリー組成物の固形分濃度は、好ましくは35重量%以上であり、より好ましくは40重量%以上であり、好ましくは60重量%以下であり、より好ましくは55重量%以下である。負極用スラリー組成物の固形分濃度が低すぎると、粘度が下がり、各成分の負極用スラリー組成物中での偏在により各種特性を確保することができない。また、負極用スラリー組成物の固形分濃度が高すぎると、ハンドリング性が悪く集電体上に均一な厚さに塗布することができない。なお、この固形分濃度の調整は、粒子状結着剤の水分散液のみで行ってもよいし、例えば、粒子状結着剤の水分散液と、別途添加した水とを用いて行ってもよい。
 (リチウムイオン二次電池負極)
 本発明のリチウムイオン二次電池負極は、負極用スラリー組成物を塗布、乾燥してなる負極活物質層および集電体を有する電極である。負極の製造方法は、特に限定されないが、集電体の少なくとも片面、好ましくは両面に負極用スラリー組成物を塗布、加熱乾燥して負極活物質層を形成する方法である。
 負極用スラリー組成物を集電体へ塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、コンマダイレクトコート、スライドダイコート、およびハケ塗り法などの方法が挙げられる。乾燥方法としては例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法が挙げられる。乾燥時間は通常1~60分であり、乾燥温度は通常40~180℃である。活物質層は、複数回塗布、乾燥を繰り返すことにより形成しても良い。
 集電体は、電気導電性を有しかつ電気化学的に耐久性のある材料であれば特に制限されないが、耐熱性を有するため金属材料が好ましく、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。
 集電体の形状は特に制限されないが、シート状のものが好ましい。集電体は、負極活物質層との接着強度を高めるため、予め粗面化処理して使用するのが好ましい。粗面化方法としては、機械的研磨法、電解研磨法、化学研磨法などが挙げられる。機械的研磨法においては、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤーブラシ等が使用される。また、負極活物質層の接着強度や導電性を高めるために、集電体表面に中間層を形成してもよい。
 集電体に負極活物質層を形成した後に、プレス加工等の加圧処理を行うことが好ましい。プレス加工は、例えば、金属ロール、弾性ロール、加熱ロールによるロールプレス機やシートプレス機等を用いて行なう。プレス温度は、活物質層の塗工膜を乾燥させる温度よりも低い温度とする限り、室温で行っても良いし又は加温して行っても良いが、通常は室温(室温の目安としては15~35℃である。)で行う。
 ロールプレス機によるプレス加工(ロールプレス)は、ロングシート状の負極板を連続的にプレス加工できるので好ましい。ロールプレスを行う場合には定位プレス、定圧プレスいずれを行っても良い。
 (リチウムイオン二次電池)
 本発明のリチウムイオン二次電池は、正極、負極、セパレータ及び電解液を備え、負極として、上記リチウムイオン二次電池負極を備える。
 (正極)
 正極としては、正極活物質、正極用の結着剤、正極の作製に用いる溶媒、必要に応じて用いられる増粘剤、導電助剤等を含む正極用スラリーを集電体の表面に塗布し、乾燥させることにより、集電体の表面に正極活物質層を形成することにより得ることができる。
 集電体は、上述のリチウムイオン二次電池負極に用いることができる集電体と同様の集電体を用いることができる。
 正極活物質としては、リチウムイオンを可逆的にドープ・脱ドープ可能な金属酸化物が挙げられる。かかる金属酸化物としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、燐酸鉄リチウム等を挙げることができる。なお、上記にて例示した正極活物質は適宜用途に応じて単独で使用してもよく、複数種混合して使用してもよい。
 正極用の結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などの樹脂;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体等が挙げられる。なお、結着剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 電極の作製に用いる溶媒としては、水及び有機溶媒のいずれを使用してもよい。有機溶媒としては、例えば、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のアシロニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;N-メチルピロリドン、N,N-ジメチルホルムアミド等のアミド類;などが挙げられるが、中でもN-メチルピロリドン(NMP)が好ましい。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。中でも、溶媒としては水を用いることが好ましい。
 水を溶媒とした場合の増粘剤としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロースおよびヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩並びにアルカリ金属塩;(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類;ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが挙げられる。
 導電助剤としては、アセチレンブラック、ケッチェンブラック、カーボンブラック、気相成長カーボン繊維、カーボンナノチューブ等の導電性カーボンを使用することができる。また、黒鉛などの炭素粉末、各種金属のファイバーや箔などを使用することもできる。
 溶媒の量は、正極用スラリーの粘度が塗布に好適な粘度になるように調整すればよい。具体的には、正極用スラリーの固形分の濃度が、好ましくは30~90重量%、より好ましくは40~80重量%となる量に調整して用いられる。
 正極用スラリーを集電体の表面に塗布する方法は特に限定されない。例えば、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、およびハケ塗り法などの方法が挙げられる。
 乾燥方法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、(遠)赤外線や電子線などの照射による乾燥法などが挙げられる。乾燥時間は通常1~60分であり、乾燥温度は通常40~180℃である。
 また、集電体の表面に正極用スラリーを塗布及び乾燥した後で、必要に応じて、例えば金型プレス又はロールプレスなどを用い、正極活物質層に加圧処理を施すことが好ましい。加圧処理により、正極活物質層の空隙率を低くすることができる。空隙率は、好ましくは5~30%、より好ましくは7~20%である。空隙率が低すぎると、高い体積容量が得難くなり、正極活物質層が集電体から剥がれ易くなる。また、空隙率が高すぎると、十分な充電効率及び十分な放電効率が得られなくなる。
 さらに、正極活物質層が硬化性の重合体を含む場合は、正極活物質層の形成後に重合体を硬化させることが好ましい。
 (セパレータ)
 セパレータとしては、通常、気孔部を有する多孔性基材を用いる。上述の二次電池多孔膜を用いない場合のセパレータの例を挙げると、(a)気孔部を有する多孔性セパレータ、(b)片面または両面に高分子コート層が形成された多孔性セパレータ、(c)無機セラミック粉末を含む多孔質の樹脂コート層が形成された多孔性セパレータ、などが挙げられる。これらの例としては、ポリプロピレン系、ポリエチレン系、ポリオレフィン系、またはアラミド系多孔性セパレータ、ポリビニリデンフルオリド、ポリエチレンオキシド、ポリアクリロニトリルまたはポリビニリデンフルオリドヘキサフルオロプロピレン共重合体などの固体高分子電解質用またはゲル状高分子電解質用の高分子フィルム;ゲル化高分子コート層がコートされたセパレータ;無機フィラーと無機フィラー用分散剤とからなる多孔膜層がコートされたセパレータ;などが挙げられる。
 (電解液)
 電解液としては、例えば、非水系の溶媒に支持電解質としてリチウム塩を溶解したものが使用できる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどのリチウム塩が挙げられる。特に溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liは好適に用いられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 支持電解質の量は、電解液に対して、好ましくは1~30重量%、より好ましくは5~20重量%である。支持電解質の量が少なすぎても多すぎてもイオン導電度は低下し、二次電池の充電特性及び放電特性が低下する可能性がある。
 電解液に使用する溶媒としては、支持電解質を溶解させるものであれば特に限定されない。溶媒としては、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)等のアルキルカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが用いられる。特に高いイオン伝導性が得易く、使用温度範囲が広いため、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びメチルエチルカーボネートが好ましい。なお、溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、電解液には必要に応じて添加剤を含有させてもよい。添加剤としては、例えばビニレンカーボネート(VC)などのカーボネート系の化合物が好ましい。なお、添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 また、上記以外の電解質としては、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質;硫化リチウム、LiI、Li3Nなどの無機固体電解質;などを挙げることができる。
 (リチウムイオン二次電池の製造方法)
 本発明のリチウムイオン二次電池の製造方法は、特に限定されない。例えば、負極と正極とをセパレータを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口してもよい。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電の防止をしてもよい。電池の形状は、例えば、ラミネートセル型、コイン型、ボタン型、シート型、円筒型、角形、扁平型などいずれであってもよい。
 本発明によれば、電極の膨らみを抑制することができ、かつ、得られるリチウムイオン二次電池のサイクル特性に優れるリチウムイオン二次電池負極用スラリー組成物が提供される。
 以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨及び均等の範囲を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において量を表す「%」及び「部」は、特に断らない限り、重量基準である。
 実施例及び比較例において、初期膨らみ、初期サイクル劣化、サイクル後膨らみ、サイクル特性及びレート特性の評価はそれぞれ以下のように行った。
 (初期膨らみ)
 実施例および比較例において作製したリチウムイオン二次電池を24時間静地させた後に4.2V、0.5Cの充電を行った後のセルの厚み(d1)を測定し、リチウムイオン二次電池の作製直後のセルの厚み(d0)に対する変化率(Δd1=d1/d0×100(%))を求めた。この値が小さいほど初期膨らみが抑制されたことを示す。また、変化率が小さい方から順にA,B,C,Dとしてゾーン評価を行い、表1に示した。
 (初期サイクル劣化)
 実施例および比較例で作製したリチウムイオン二次電池を、注液後、5時間静置させ、0.2Cの定電流法によって、4.2Vに充電し、3.0Vまで放電する充放電の操作を行った。さらに、25℃環境下で4.2V、0.5Cの充放電レートにて100サイクル充放電の操作を行った。そのとき1サイクル目の容量、すなわち初期放電容量をC1、および30サイクル時の放電容量C2を測定した。初期サイクル劣化として、充放電サイクル特性=C2/C1×100(%)で示す容量変化率を求め、以下の基準により判定した。結果を表1に示した。この値が高いほど初期サイクル劣化が抑制されることを示す。
 A:90%以上
 B:85%以上90%未満
 C:80%以上85%未満
 D:80%未満
 (サイクル後膨らみ)
 実施例および比較例で作製したリチウムイオン二次電池を、注液後、5時間静置させ、0.2Cの定電流法によって、4.2Vに充電し、3.0Vまで放電する充放電の操作を行った。さらに、4.2V、0.5Cの充放電レートにて100サイクル充放電の操作を行った。その後、放電後のセルを解体して負極を取り出し、負極(集電体を除く)の厚み(d2)を測定した。そして、リチウムイオン二次電池の作製前のセルの厚み(d0)に対する変化率(サイクル後膨らみ特性=d2/d0×100(%))を求め、以下の基準により判定した。評価結果を表1に示した。この値が小さいほどサイクル後膨らみが抑制されたことを示す。
 A:10%未満
 B:10%以上15%未満
 C:15%以上20%未満
 D:20%以上
 (サイクル特性)
 実施例および比較例で作製したリチウムイオン二次電池を、注液後、5時間静置させ、0.2Cの定電流法によって、4.2Vに充電し、3.0Vまで放電する充放電の操作を行った。さらに、25℃環境下で4.2V、0.5Cの充放電レートにて100サイクル充放電の操作を行った。そのとき1サイクル目の容量、すなわち初期放電容量をC1、および100サイクル時の放電容量C2を測定した。高温サイクル特性として、充放電サイクル特性=C2/C1×100(%)で示す容量変化率を求め、以下の基準により判定した。結果を表1に示した。この値が高いほどサイクル特性に優れることを示す。
 A:80%以上
 B:75%以上80%未満
 C:70%以上75%未満
 D:70%未満
 (レート特性)
 実施例および比較例で作製したリチウムイオン二次電池を、注液後、5時間静置させ、0.2Cの定電流法によって、4.2Vに充電し、3.0Vまで放電する充放電の操作を行った。さらに、4.2V、0.2Cレートで充電を行い、0.2Cおよび1.5Cレートで放電を行った。そのとき、各放電レート時の放電容量を、C0.2、C1.5、と定義し、放電レート特性=C1.5時の放電容量/C0.2時の放電容量×100(%)で示す容量変化率を求め、以下の基準により判定した。この値が大きいほど放電レート特性に優れることを示す。評価結果を表1に示した。
 A:80%以上
 B:75%以上80%未満
 C:70%以上75%未満
 D:70%未満
 また、以下の実施例および比較例において、複合フィルムの光透過濃度、複合フィルムの破断強度及び電解液に膨潤させた後の複合フィルムの破断強度は次のように測定した。
 (複合フィルムの光透過濃度)
 各実施例及び各比較例で用いる粒子状結着剤の40%分散液及び水溶性ポリマーの1%溶液を、各実施例及び各比較例で、負極用スラリー組成物に配合する固形分比率と同じ固形分比率でディスパー(プライミクス製)にて、1000rpmで20min攪拌し、さらに自転・公転ミキサー(泡取り練太郎、シンキー社製)を用いて1min×3回の脱泡行い、混合液を得た。
 ここで光透過濃度及び破断強度を測定する際の複合フィルムの組成物には、粒子状結着剤、水溶性ポリマー及び溶媒以外の成分を加えてはならない。また光透過濃度を測定する場合において、粒子状結着剤及び水溶性ポリマーを各々2種以上併用する場合は、最も配合割合の高いものを選択して使用した。そしてその選択した各々の組成物を負極用スラリー組成物に配合する固形分比率と同じ固形分比率で複合フィルム組成物を得た。複合フィルムの破断強度及び電解液で膨潤させた後の複合フィルムの破断強度を測定する場合において、粒子状結着剤及び水溶性ポリマーを2種以上併用する場合は、各々の組成物を全て含めて、負極用スラリーで使用する固形分比率と同じ固形分比率で複合フィルムを作製した。
 この混合液を厚さが約200μmとなるように型に流し込み、23℃、湿度50%の高温恒湿室にて乾燥させ、さらにオーブンにて120℃、20分間乾燥させることにより複合フィルムを得た。
 この複合フィルムの厚さが200μmである場合の光透過濃度を、透過濃度計TD904(グレタグ・マクベス社製)にてホワイトフィルターを用いて測定した。
 該複合フィルムの光透過濃度は、複合フィルムの厚み、粒子状結着剤および水溶性ポリマーの透過率、粒子状結着剤と水溶性ポリマーとの比率、及び水溶性ポリマー中での粒子状結着剤の分散性により制御されうる。水溶性ポリマー中の粒子状結着剤の分散性は、粒子状結着剤の粒子径、及び粒子状結着剤中の酸単量体の含有割合により制御されうる。
 (複合フィルムの破断強度)
 光透過濃度の測定に用いる複合フィルムの作製方法と同様に厚さ200μmの複合フィルムを作製した。次に、複合フィルムを所定の型(JIS 3号)を用いて、所定の形に打ち抜き試験片を作製した。この試験片について、後述の電解液に膨潤させる前に、引っ張り試験機(STROGRAPH-VG1-E、東陽精機製作所製)を用いて50mm/minの速度で引っ張り試験を行い、破断強度を測定した。
 該複合フィルムの破断強度は、複合フィルムの厚み、粒子状結着剤のゲル量、水溶性ポリマー中での粒子状結着剤の分散性、水溶性ポリマーの1%粘度、粒子状結着剤と水溶性ポリマーとの比率により制御されうる。
 (電解液に膨潤させた後の複合フィルムの破断強度)
 光透過濃度の測定に用いる複合フィルムの作製方法と同様に複合フィルムを作製した。その後、複合フィルムを電解液(濃度1.0MのLiPF6溶液(溶媒はEC/EMC=3/7(体積比)の混合溶媒、添加剤としてビニレンカーボネート2重量%(溶媒比)))に60℃、72時間浸漬させることにより複合フィルムを電解液に膨潤させた。その後、上記複合フィルムの破断強度の測定と同様に、引っ張り試験を行い、電解液に膨潤させた後の複合フィルムの破断強度を測定した。
 該電解液に膨潤させた後の複合フィルムの破断強度は、複合フィルムの厚み、膨潤前の複合フィルムの破断強度、水溶性ポリマー及び粒子状結着剤の膨潤度により制御されうる。
 (実施例1)
 (粒子状結着剤の合成)
 攪拌機付き5MPa耐圧容器に、スチレン24部、1,3-ブタジエン35部、酸単量体としてメタクリル酸(以下、「MAA」ということがある。)40部、水酸基含有モノマーとしてアクリル酸-2-ヒドロキシエチル(以下、「HEA」ということがある。)1部、分子量調整剤としてt-ドデシルメルカプタン0.3部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム1.5部、イオン交換水150部、及び重合開始剤として過硫酸カリウム1部を入れ、十分に攪拌した後、55℃に加温して重合を開始した。モノマー消費量が95.0%になった時点で冷却し反応を停止した。
 該重合体を含んだ水分散液に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後、30℃以下まで冷却し、粒子状結着剤の水分散液を得た。ここで粒子状結着剤の数平均粒子径は145nmであった。また粒子状結着剤のフィルムを作成し、ゲル量を測定したところ95%であり、電解液膨潤度を測定したところ140%だった。
(負極用スラリー組成物の固練り工程)
 ディスパー付きのプラネタリーミキサーに、負極活物質として人造黒鉛(比表面積:4m2/g、体積平均粒子径:24.5μm)95部及びカーボンをコートしたSiOx(x=1.1、体積平均粒子径:5μm)5部を加えて10rpmの回転速度で15分乾式混合した。さらに前記乾式混合物に、水溶性ポリマーとしてカルボキシメチルセルロースのナトリウム塩(以下、「CMC」ということがある。)の1%水溶液(日本製紙ケミカル株式会社製「MAC800LC」 1%粘度 6700mPa・s)を固形分相当で0.6部加えた。これらの混合物をイオン交換水で固形分濃度60%に調整した後、25℃で45rpmの回転速度で60分固練り混合した。
 (負極用スラリー組成物のスラリー製造工程)
 次に、カルボキシメチルセルロースのナトリウム塩の1%水溶液(日本製紙ケミカル株式会社製「MAC800LC」 1%粘度 6700mPa・s)を固形分相当で0.4部及びイオン交換水で固形分濃度52%に調整した後、さらに25℃で40rpmの回転速度で15分混合しスラリー混合液を得た。
 次いで、上記の混合液に、粒子状結着剤の水分散液を固形分相当で1.5部入れ、さらに最終固形分濃度が50%となるようにイオン交換水を入れ、さらに10分間混合した。これを減圧下で脱泡処理して、負極用スラリー組成物を得た。
 ここで、実施例1で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は160MPa、電解液に膨潤させた後の複合フィルムの破断強度(以下、「膨潤後の破断強度」ということがある。)は67MPaであった。
 (負極の作製)
 負極スラリー組成物をコンマコーターで、厚さ15μmの銅箔の上に塗付量が9~9.5mg/cm2となるように塗布した。なお、この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。
 その後、120℃にて2分間加熱処理して負極原反を得た。該原反をロールプレス機にて密度が1.55~1.60g/cm3となるようにプレスを行い、負極を得た。
 (正極の作製)
 プラネタリーミキサーに、正極活物質としてLiCoO2を100部、導電助剤であるアセチレンブラック2部(電気化学工業(株)製HS-100)、PVDF(ポリフッ化ビニリデン、(株)クレハ化学製KF-1100)2部、さらに全固形分濃度が67%となるように2-メチルピリロドンを加えて混合し、正極スラリー組成物を調製した。
 次に、正極スラリー組成物をコンマコーターで、厚さ20μmのアルミ箔の上に塗布した。なお、この塗布は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。
 その後、120℃にて2分間加熱処理して正極原反を得た。該原反を乾燥後、ロールプレス機にてプレス後の密度が3.45~3.5g/cm3となるようにプレスを行い、正極を得た。
 (リチウムイオン二次電池の作製)
 単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意した。このセパレータを、5×5cm2の正方形
に切り抜いた。
 続いて、電池の外装として、アルミ包材外装を用意した。上記正極を、4×4cm2の正方形に切り出し、集電体側の表面がアルミ包材外装に接するように配置した。切り出した正極の正極活物質層の面上に、上記で作製した正方形のセパレータを配置した。
 さらに、上記負極を、4.2×4.2cm2の正方形に切り出し、これをセパレータ上に、負極活物質層側の表面がセパレータに向かい合うよう配置した。
 これに、電解液として濃度1.0MのLiPF6溶液(溶媒はEC/EMC=3/7(体積比)の混合溶媒、添加剤としてビニレンカーボネート2重量%(溶媒比))を充填した。さらに、アルミ包材の開口を密封するために、150℃のヒートシールをしてアルミ外装を閉口し、リチウムイオン二次電池を製造した。
 (実施例2)
 負極用スラリー組成物の調製に用いる水溶性ポリマーの種類をCMCの1%水溶液(ダイセルファインケム社製「ダイセル1380」1%粘度 1000mPa・s)とした以外は、実施例1と同様に負極用スラリー組成物の調製を行った。その後、実施例1と同様に負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、実施例2で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は88MPa、膨潤後の破断強度は32MPaであった。
 (実施例3)
 粒子状結着剤を合成する際の単量体の仕込み比をスチレン44部、1,3-ブタジエン35部、酸単量体としてアクリル酸(以下、「AA」ということがある。)20部、水酸基含有単量体としてHEAを1部とした以外は、実施例1と同様に粒子状結着剤の合成を行った。ここで粒子状結着剤の数平均粒子径は145nmであった。また粒子状結着剤のフィルムを作成し、ゲル量を測定したところ96%であり、電解液膨潤度を測定したところ140%であった。
 また、上記のようにして得られた粒子状結着剤を用いた以外は、実施例2と同様に負極用スラリー組成物の製造、負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、実施例3で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は80MPa、膨潤後の破断強度は29MPaであった。
 (実施例4)
 粒子状結着剤を合成する際の単量体の仕込み比をスチレン54部、1,3-ブタジエン35部、酸単量体としてアクリル酸10部、水酸基含有単量体としてHEAを1部とした以外は、実施例1と同様に粒子状結着剤の合成を行った。ここで粒子状結着剤の数平均粒子径は145nmであった。また粒子状結着剤のフィルムを作成し、ゲル量を測定したところ93%であり、電解液膨潤度を測定したところ140%であった。
 また、上記のようにして得られた粒子状結着剤を固形分相当で1.5部、水溶性ポリマーを固練り工程で固形分相当で0.72部、スラリー製造工程で固形分相当で0.48部用いた以外は、実施例2と同様に負極用スラリー組成物の製造、負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、実施例4で用いる粒子状結着剤1.5部とCMC1.2部(共に固形分相当)からなる複合フィルムの光透過濃度は0.15であり、この複合フィルムの破断強度は72MPa、膨潤後の破断強度は25MPaであった。
 (実施例5)
 粒子状結着剤を合成する際の単量体の仕込み比をスチレン59部、1,3-ブタジエン35部、酸単量体としてアクリル酸5部、水酸基含有単量体としてHEAを1部とした以外は、実施例1と同様に粒子状結着剤の合成を行った。ここで粒子状結着剤の数平均粒子径は145nmであった。また粒子状結着剤のフィルムを作成し、ゲル量を測定したところ88%であり、電解液膨潤度を測定したところ155%であった。
 また、上記のようにして得られた粒子状結着剤を用いた以外は、実施例2と同様に負極用スラリー組成物の製造、負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、実施例5で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.2であり、この複合フィルムの破断強度は66MPa、膨潤後の破断強度は22MPaであった。
 (実施例6)
 負極用スラリー組成物の調製に用いる水溶性ポリマーの量を固練り工程で固形分相当で1.5部、スラリー製造工程で固形分相当で0.9部とした以外は、実施例2と同様に負極用スラリー組成物の調製を行った。その後、実施例2と同様に負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、実施例6で用いる粒子状結着剤1.5部とCMC2.4部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は95MPa、膨潤後の破断強度は38MPaであった。
 (実施例7)
 スラリー製造工程でセルロースファイバー(スギノマシン社製 BINFIS-セルロース 繊維径0.02μm)を2.5部加えたこと以外は、実施例2と同様に負極用スラリー組成物の調製を行った。その後、実施例2と同様に負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、実施例7で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は88MPa 、膨潤後の破断強度は32MPaであった。
 (実施例8)
 負極用スラリー組成物の調製に用いるセルロースファイバーの量を0.1部としたこと、及び実施例3で得られた粒子状結着剤を用いた以外は、実施例2と同様に負極用スラリー組成物の調製を行った。その後、実施例2と同様に負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、実施例8で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は80MPa、膨潤後の破断強度は29MPaであった。
 (実施例9)
 負極用スラリー組成物の調製に用いる水溶性ポリマーの種類をポリアクリル酸(以下、「PAA」ということがある。)(アルドリッチ社製 分子量45万)をLiOHで中和したPAAのリチウム塩とした以外は、実施例1と同様に負極用スラリー組成物の調製を行った。その後、実施例1と同様に負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、実施例9で用いる粒子状結着剤1.5部とPAA1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は85MPa、膨潤後の破断強度は35MPaであった。
 (実施例10)
 スラリー製造工程において、固練り工程を経ないこと以外は、実施例1と同様に負極用スラリー組成物の調整を行った。即ち、ディスパー付きのプラネタリーミキサーに、負極活物質として人造黒鉛95部及びカーボンをコートしたSiOx5部を加えて10rpmの回転速度で15分乾式混合した。さらに前記乾式混合物に、CMCの1%水溶液を固形分相当で1部、粒子状結着剤の水分散液を固形分相当で1.5部、さらにイオン交換水を固形分濃度が50%となるように入れ、25℃で40rpmの回転速度で60分スラリー混合して、スラリーを製造した。その後、実施例1と同様に負極用スラリー組成物の調製を行い、実施例1と同様に負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、実施例10で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は160MPa、膨潤後の破断強度は67MPaであった。
 (比較例1)
 粒子状結着剤を合成する際の単量体の仕込み比をアクリル酸エステル単量体として、アクリル酸エチル30部、アクリル酸ブチル29.2部、酸単量体としてMAA40部、架橋剤としてエチレンジメタクリレート0.8部を使用したこと以外は、実施例1と同様に粒子状結着剤の合成を行った。ここで粒子状結着剤の数平均粒子径は120nmであった。また粒子状結着剤のフィルムを作成し、ゲル量を測定したところ2%であり、電解液膨潤度を測定したところ450%であった。
 また、上記のようにして得られた粒子状結着剤を用いた以外は、実施例1と同様に負極用スラリー組成物の製造、負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、比較例1で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は150MPa、膨潤後の破断強度は18MPaであった。
 (比較例2)
 負極用スラリー組成物の調製に用いる水溶性ポリマーの種類をCMCの1%水溶液(ダイセルファインケム社製「ダイセル1380」1%粘度 1000mPa・s)とした以外は、比較例1と同様に負極用スラリー組成物の製造、負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、比較例2で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は78MPa、膨潤後の破断強度は10MPaであった。
 (比較例3)
 粒子状結着剤を合成する際の単量体の仕込み比をスチレン61部、1,3-ブタジエン35部、酸単量体としてイタコン酸(以下、「IA」ということがある。)3部、水酸基含有単量体としてHEAを1部とした以外は、実施例1と同様に粒子状結着剤の合成を行った。ここで粒子状結着剤の数平均粒子径は145nmであった。また粒子状結着剤のフィルムを作成し、ゲル量を測定したところ90%であり、電解液膨潤度を測定したところ150%であった。
 また、上記のようにして得られた粒子状結着剤を用いた以外は、実施例2と同様に負極用スラリー組成物の製造、負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、比較例3で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.3であり、この複合フィルムの破断強度は50MPa、膨潤後の破断強度は16MPaであった。
 (比較例4)
 負極用スラリー組成物の調製に用いる水溶性ポリマーの種類をCMCの1%水溶液(第一工業製薬社製「セロゲンWS-C」1%粘度 250mPa・s)とした以外は、実施例1と同様に負極用スラリー組成物の調製を行った。その後、実施例1と同様に負極の製造及びリチウムイオン二次電池の製造を行った。
 ここで、比較例4で用いる粒子状結着剤1.5部とCMC1部(共に固形分相当)からなる複合フィルムの光透過濃度は0.1であり、この複合フィルムの破断強度は40MPa、膨潤後の破断強度は10MPaであった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように負極活物質、粒子状結着剤および水溶性ポリマーを含むリチウムイオン二次電池負極用スラリー組成物であって、前記粒子状結着剤と前記水溶性ポリマーからなる複合フィルムを電解液中で膨潤させた後の破断強度が20MPa以上90MPa以下であるリチウムイオン二次電池負極用スラリー組成物を用いて得られるリチウムイオン二次電池の初期膨らみ、初期サイクル劣化及びサイクル後膨らみは抑制され、サイクル特性及びレート特性は良好であった。

Claims (8)

  1.  負極活物質、粒子状結着剤および水溶性ポリマーを含むリチウムイオン二次電池負極用スラリー組成物であって、
     前記粒子状結着剤と前記水溶性ポリマーからなる厚さ200μmの複合フィルムを電解液中で膨潤させた後の破断強度が20MPa以上90MPa以下であるリチウムイオン二次電池負極用スラリー組成物。
  2.  前記粒子状結着剤と前記水溶性ポリマーからなる厚さ200μmの複合フィルムの光透過濃度が0.28以下である請求項1記載のリチウムイオン二次電池負極用スラリー組成物。
  3.  前記粒子状結着剤はスチレン単量体単位、ブタジエン単量体単位および酸単量体単位を含み、前記酸単量体単位の粒子状結着剤100重量部中の含有割合が5~50重量部である請求項1または2記載のリチウムイオン二次電池負極用スラリー組成物。
  4.  前記粒子状結着剤の添加量に対する前記水溶性ポリマーの添加割合が0.4~2.0である請求項1~3の何れかに記載のリチウムイオン二次電池負極用スラリー組成物。
  5.  セルロースファイバーを前記粒子状結着剤に対して0.1~10重量%含有する請求項1~4の何れか一項に記載のリチウムイオン二次電池負極用スラリー組成物。
  6.  前記負極活物質は、炭素系負極活物質とシリコン系負極活物質とを含む、請求項1~5の何れか一項に記載のリチウムイオン二次電池負極用スラリー組成物。
  7.  請求項1~6の何れかに記載のリチウムイオン二次電池負極用スラリー組成物を用いてリチウムイオン二次電池負極を製造するリチウムイオン二次電池負極の製造方法であって、
     前記負極活物質及び前記水溶性ポリマーを混練して固練り物を得る固練り工程と、
     前記固練り物に溶媒、前記粒子状結着剤及び前記水溶性ポリマーを添加して混合することによりリチウムイオン二次電池負極用スラリー組成物を得るスラリー製造工程と、
     前記リチウムイオン二次電池負極用スラリー組成物を、集電体上に塗布、乾燥することにより負極活物質層を形成する負極活物質層形成工程と
    を含むリチウムイオン二次電池負極の製造方法。
  8.  請求項7に記載のリチウムイオン二次電池負極の製造方法により得られるリチウムイオン二次電池負極を備えるリチウムイオン二次電池。
PCT/JP2014/072374 2013-09-03 2014-08-27 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池 WO2015033827A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015535436A JP6358256B2 (ja) 2013-09-03 2014-08-27 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013182102 2013-09-03
JP2013-182102 2013-09-03

Publications (1)

Publication Number Publication Date
WO2015033827A1 true WO2015033827A1 (ja) 2015-03-12

Family

ID=52628304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072374 WO2015033827A1 (ja) 2013-09-03 2014-08-27 リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池

Country Status (2)

Country Link
JP (1) JP6358256B2 (ja)
WO (1) WO2015033827A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016071573A1 (en) * 2014-11-06 2016-05-12 Teknologian Tutkimuskeskus Vtt Oy Cellulose based functional composites, energy storage devices and manufacturing methods thereof
WO2016170768A1 (ja) * 2015-04-23 2016-10-27 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2017050112A (ja) * 2015-08-31 2017-03-09 日本ゼオン株式会社 非水系二次電池の製造方法
JPWO2016158823A1 (ja) * 2015-03-27 2017-10-26 株式会社クレハ 電池電極用炭素質成形体、及びその製造方法
JPWO2016163115A1 (ja) * 2015-04-10 2017-11-02 株式会社豊田自動織機 非水電解質二次電池用負極及び非水電解質二次電池
JP2017228456A (ja) * 2016-06-23 2017-12-28 株式会社デンソー 非水電解質二次電池用電極、非水電解質二次電池及び非水電解質二次電池用電極の製造方法
JPWO2017056467A1 (ja) * 2015-09-30 2018-07-19 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP2018522369A (ja) * 2015-05-13 2018-08-09 コリア フォレスト リサーチ インスティテュートKorea Forest Research Institute 3次元網構造形態の電気化学素子用電極、その製造方法およびこれを含む電気化学素子
US10388956B2 (en) 2014-03-20 2019-08-20 Kureha Corporation Carbonaceous molded article for electrodes and method of manufacturing the same
CN110192295A (zh) * 2017-01-17 2019-08-30 株式会社大赛璐 电极用浆料、电极及其制造方法、以及二次电池
JP2019537232A (ja) * 2017-03-31 2019-12-19 エルジー・ケム・リミテッド 二次電池用バインダー組成物、それを含む二次電池用電極、およびリチウム二次電池
WO2020110847A1 (ja) * 2018-11-27 2020-06-04 東亞合成株式会社 二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極
WO2021039674A1 (ja) * 2019-08-30 2021-03-04 日本ゼオン株式会社 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
CN113036133A (zh) * 2019-12-25 2021-06-25 旭化成株式会社 非水系二次电池用聚合物组合物、以及非水系二次电池
WO2024024576A1 (ja) * 2022-07-29 2024-02-01 日本ゼオン株式会社 非水系二次電池電極用複合粒子、非水系二次電池用負極、及び非水系二次電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230108124A (ko) * 2022-01-10 2023-07-18 주식회사 한솔케미칼 나노셀룰로오스 기반 이차전지 전극용 수계 바인더 및 슬러리

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004031A1 (ja) * 2002-06-26 2004-01-08 Sanyo Electric Co., Ltd. リチウム二次電池用負極及びリチウム二次電池
WO2009128319A1 (ja) * 2008-04-18 2009-10-22 株式会社豊田自動織機 リチウムイオン二次電池用負極とその製造方法
WO2010150513A1 (ja) * 2009-06-23 2010-12-29 キヤノン株式会社 電極構造体及び蓄電デバイス
WO2011037142A1 (ja) * 2009-09-25 2011-03-31 日本ゼオン株式会社 リチウムイオン二次電池負極及びリチウムイオン二次電池
WO2013042720A1 (ja) * 2011-09-20 2013-03-28 日産化学工業株式会社 セルロースファイバーをバインダーとして含有するリチウム二次電池電極形成用スラリー組成物及びリチウム二次電池用電極

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004031A1 (ja) * 2002-06-26 2004-01-08 Sanyo Electric Co., Ltd. リチウム二次電池用負極及びリチウム二次電池
WO2009128319A1 (ja) * 2008-04-18 2009-10-22 株式会社豊田自動織機 リチウムイオン二次電池用負極とその製造方法
WO2010150513A1 (ja) * 2009-06-23 2010-12-29 キヤノン株式会社 電極構造体及び蓄電デバイス
WO2011037142A1 (ja) * 2009-09-25 2011-03-31 日本ゼオン株式会社 リチウムイオン二次電池負極及びリチウムイオン二次電池
WO2013042720A1 (ja) * 2011-09-20 2013-03-28 日産化学工業株式会社 セルロースファイバーをバインダーとして含有するリチウム二次電池電極形成用スラリー組成物及びリチウム二次電池用電極

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388956B2 (en) 2014-03-20 2019-08-20 Kureha Corporation Carbonaceous molded article for electrodes and method of manufacturing the same
WO2016071573A1 (en) * 2014-11-06 2016-05-12 Teknologian Tutkimuskeskus Vtt Oy Cellulose based functional composites, energy storage devices and manufacturing methods thereof
US10396328B2 (en) 2014-11-06 2019-08-27 Teknologian Tutkimuskeskus Vtt Oy Cellulose based functional composites, energy storage devices and manufacturing methods thereof
JPWO2016158823A1 (ja) * 2015-03-27 2017-10-26 株式会社クレハ 電池電極用炭素質成形体、及びその製造方法
JPWO2016163115A1 (ja) * 2015-04-10 2017-11-02 株式会社豊田自動織機 非水電解質二次電池用負極及び非水電解質二次電池
US10559813B2 (en) 2015-04-10 2020-02-11 Kabushiki Kaisha Toyota Jidoshokki Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN107431194A (zh) * 2015-04-23 2017-12-01 日本瑞翁株式会社 锂离子二次电池电极用粘结剂组合物、锂离子二次电池电极用浆料组合物、锂离子二次电池用电极以及锂离子二次电池
JPWO2016170768A1 (ja) * 2015-04-23 2018-02-15 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
CN107431194B (zh) * 2015-04-23 2021-05-04 日本瑞翁株式会社 锂离子二次电池电极用粘结剂组合物、浆料组合物、电极以及锂离子二次电池
WO2016170768A1 (ja) * 2015-04-23 2016-10-27 日本ゼオン株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2018522369A (ja) * 2015-05-13 2018-08-09 コリア フォレスト リサーチ インスティテュートKorea Forest Research Institute 3次元網構造形態の電気化学素子用電極、その製造方法およびこれを含む電気化学素子
JP2017050112A (ja) * 2015-08-31 2017-03-09 日本ゼオン株式会社 非水系二次電池の製造方法
JPWO2017056467A1 (ja) * 2015-09-30 2018-07-19 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
US11462737B2 (en) 2015-09-30 2022-10-04 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP7020118B2 (ja) 2015-09-30 2022-02-16 日本ゼオン株式会社 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP2017228456A (ja) * 2016-06-23 2017-12-28 株式会社デンソー 非水電解質二次電池用電極、非水電解質二次電池及び非水電解質二次電池用電極の製造方法
CN110192295A (zh) * 2017-01-17 2019-08-30 株式会社大赛璐 电极用浆料、电极及其制造方法、以及二次电池
CN110192295B (zh) * 2017-01-17 2023-08-01 株式会社大赛璐 电极用浆料、电极及其制造方法、以及二次电池
US11024851B2 (en) 2017-03-31 2021-06-01 Lg Chem, Ltd. Binder composition for secondary battery, and electrode for secondary battery and lithium secondary battery which include the same
JP7034407B2 (ja) 2017-03-31 2022-03-14 エルジー エナジー ソリューション リミテッド 二次電池用バインダー組成物、それを含む二次電池用電極、およびリチウム二次電池
JP2019537232A (ja) * 2017-03-31 2019-12-19 エルジー・ケム・リミテッド 二次電池用バインダー組成物、それを含む二次電池用電極、およびリチウム二次電池
WO2020110847A1 (ja) * 2018-11-27 2020-06-04 東亞合成株式会社 二次電池電極用バインダー、二次電池電極合剤層用組成物及び二次電池電極
WO2021039674A1 (ja) * 2019-08-30 2021-03-04 日本ゼオン株式会社 非水系二次電池用バインダー組成物およびその製造方法、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、並びに非水系二次電池
US11955641B2 (en) 2019-08-30 2024-04-09 Zeon Corporation Binder composition for non-aqueous secondary battery and method of producing same, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN113036133A (zh) * 2019-12-25 2021-06-25 旭化成株式会社 非水系二次电池用聚合物组合物、以及非水系二次电池
WO2024024576A1 (ja) * 2022-07-29 2024-02-01 日本ゼオン株式会社 非水系二次電池電極用複合粒子、非水系二次電池用負極、及び非水系二次電池

Also Published As

Publication number Publication date
JPWO2015033827A1 (ja) 2017-03-02
JP6358256B2 (ja) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6358256B2 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極の製造方法及びリチウムイオン二次電池
JP6201989B2 (ja) 負極スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
KR102439002B1 (ko) 리튬 이온 이차 전지 전극용 바인더 조성물, 리튬 이온 이차 전지 전극용 슬러리 조성물, 리튬 이온 이차 전지용 전극 및 리튬 이온 이차 전지
JP6729385B2 (ja) リチウムイオン二次電池負極用ペースト組成物、リチウムイオン二次電池負極用複合粒子、リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池用負極およびリチウムイオン二次電池
JP5708301B2 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
WO2011096463A1 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極及びリチウム二次電池
KR102157157B1 (ko) 이차 전지용 부극 및 이차 전지
WO2017056466A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
JP5987471B2 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
WO2014002883A1 (ja) 負極スラリー組成物、リチウムイオン二次電池負極及びリチウムイオン二次電池
WO2012115096A1 (ja) 二次電池用負極、二次電池、負極用スラリー組成物及び二次電池用負極の製造方法
JP6428342B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
TWI709275B (zh) 鋰離子二次電池之負極用黏結劑、負極用漿體組成物及負極以及鋰離子二次電池
JP6855681B2 (ja) リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP6168059B2 (ja) リチウムイオン二次電池負極用スラリー組成物
WO2015133154A1 (ja) リチウムイオン二次電池用バインダー組成物、リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池多孔膜用スラリー組成物、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
WO2015115089A1 (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2017069108A (ja) リチウムイオン二次電池電極用スラリー組成物、リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP6874690B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2013002322A1 (ja) 二次電池負極用バインダー組成物、二次電池負極用スラリー組成物、二次電池用負極および二次電池
JP2017216129A (ja) 電気化学素子電極用組成物、電気化学素子用電極および電気化学素子、並びに電気化学素子電極用組成物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535436

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842100

Country of ref document: EP

Kind code of ref document: A1