WO2022163330A1 - 電気化学素子電極用導電材ペースト、電気化学素子電極用スラリー組成物、電気化学素子用電極及び電気化学素子、並びに電気化学素子電極用導電材ペーストの製造方法 - Google Patents

電気化学素子電極用導電材ペースト、電気化学素子電極用スラリー組成物、電気化学素子用電極及び電気化学素子、並びに電気化学素子電極用導電材ペーストの製造方法 Download PDF

Info

Publication number
WO2022163330A1
WO2022163330A1 PCT/JP2022/000424 JP2022000424W WO2022163330A1 WO 2022163330 A1 WO2022163330 A1 WO 2022163330A1 JP 2022000424 W JP2022000424 W JP 2022000424W WO 2022163330 A1 WO2022163330 A1 WO 2022163330A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
conductive material
electrochemical element
material paste
water
Prior art date
Application number
PCT/JP2022/000424
Other languages
English (en)
French (fr)
Inventor
祐輔 足立
健矢 園部
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2022578207A priority Critical patent/JPWO2022163330A1/ja
Priority to EP22745557.3A priority patent/EP4287308A1/en
Priority to CN202280011017.XA priority patent/CN116941074A/zh
Priority to KR1020237024419A priority patent/KR20230135579A/ko
Priority to US18/260,334 priority patent/US20240063395A1/en
Publication of WO2022163330A1 publication Critical patent/WO2022163330A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a conductive material paste for electrochemical element electrodes, a slurry composition for electrochemical element electrodes, an electrode for electrochemical elements, an electrochemical element, and a method for producing a conductive material paste for electrochemical element electrodes.
  • Electrochemical devices such as lithium ion secondary batteries, lithium ion capacitors, and electric double layer capacitors are small, lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications.
  • the electrode for an electrochemical device includes, for example, a current collector and an electrode mixture layer formed by drying a slurry composition for an electrochemical device electrode on the current collector.
  • fibrous conductive carbon such as carbon nanotubes (hereinafter sometimes abbreviated as "CNT") has been used as a conductive material for forming electrode mixture layers.
  • CNT carbon nanotubes
  • the fibrous conductive carbon and the dispersant are premixed in order to obtain an electrode mixture layer in which the fibrous conductive carbon is well dispersed.
  • a technique has been proposed in which a conductive material paste for an electrochemical element electrode is prepared, and the resulting conductive material paste and an electrode active material are combined to prepare a slurry composition for an electrochemical element electrode (for example, Patent Documents 1 and 2 reference).
  • the present invention provides a conductive material paste for an electrochemical element electrode that can prepare a slurry composition that has excellent viscosity stability and allows the electrochemical element to exhibit excellent cycle characteristics, and the conductive material for the electrochemical element electrode.
  • the object is to provide a method for producing a paste.
  • Another object of the present invention is to provide a slurry composition for an electrochemical element electrode, which has excellent viscosity stability and allows the electrochemical element to exhibit excellent cycle characteristics.
  • Another object of the present invention is to provide an electrode for an electrochemical device that allows the electrochemical device to exhibit excellent cycle characteristics.
  • Another object of the present invention is to provide an electrochemical device having excellent cycle characteristics.
  • the inventor of the present invention conducted intensive studies with the aim of solving the above problems. Then, the inventors of the present invention, when preparing a conductive material paste in which fibrous conductive carbon as a conductive material is dispersed in a dispersion medium containing water, a predetermined amount of a compound having a triazine skeleton and a predetermined amount of water-soluble By using a polymer, the viscosity stability of the slurry composition prepared using the conductive material paste is ensured, and the electrode provided with the electrode mixture layer formed from the slurry composition is excellent in electrochemical elements. The present inventors have found that they can exhibit excellent cycle characteristics, and have completed the present invention.
  • an object of the present invention is to advantageously solve the above-mentioned problems, and a conductive material paste for electrochemical element electrodes of the present invention comprises fibrous conductive carbon, a compound having a triazine skeleton, a water-soluble polymer,
  • the amount of the compound containing coalescence and water and having a triazine skeleton is 1 part by mass or more and 50 parts by mass or less per 100 parts by mass of the fibrous conductive carbon
  • the amount of the water-soluble polymer is It is characterized by being 1 part by mass or more and 50 parts by mass or less per 100 parts by mass of fibrous conductive carbon.
  • the conductive material paste contains fibrous conductive carbon, a compound having a triazine skeleton, a water-soluble polymer, and water, and the amounts of the compound having a triazine skeleton and the water-soluble polymer are within the ranges described above.
  • the conductive material paste By using the conductive material paste, it is possible to produce a slurry composition with excellent viscosity stability and an electrode that allows the electrochemical device to exhibit excellent cycle characteristics.
  • the term "water-soluble polymer” refers to a polymer having an insoluble content of less than 1.0% by mass when 0.5 g of the polymer is dissolved in 100 g of water at a temperature of 25°C.
  • the fibrous conductive carbon preferably contains carbon nanotubes. If CNTs are used as the fibrous conductive carbon, the cycle characteristics of the electrochemical device can be further improved.
  • the BET specific surface area of the fibrous conductive carbon is preferably 10 m 2 /g or more and 400 m 2 /g or less. If the BET specific surface area of the fibrous conductive carbon is within the above range, the viscosity stability of the slurry composition and the cycle characteristics of the electrochemical device can be further improved. In addition, while suppressing viscosity change when the conductive material paste is stored for a long time (that is, ensuring the dispersion stability of the conductive material paste), the electrode mixture layer formed from the slurry composition is firmly attached to the current collector. (ie, the peel strength of the electrode can be increased).
  • the "BET specific surface area" of fibrous conductive carbon refers to the BET specific surface area determined by the nitrogen adsorption method, and can be measured according to ASTM D3037-81.
  • the average length of the fibrous conductive carbon is preferably 1.0 ⁇ m or more and 60.0 ⁇ m or less. If the average length of the fibrous conductive carbon is within the above range, the viscosity stability of the slurry composition and the cycle characteristics of the electrochemical device can be further improved. Moreover, the peel strength of the electrode can be improved while improving the dispersion stability of the conductive material paste.
  • the "average length" of the fibrous conductive carbon is obtained by measuring the length of 20 randomly selected fibrous conductive carbons on a scanning electron microscope (SEM) image, It can be obtained by calculating the average value.
  • the aspect ratio of the fibrous conductive carbon is preferably 50 or more and 1,000 or less. If the aspect ratio of the fibrous conductive carbon is within the range described above, the viscosity stability of the slurry composition and the cycle characteristics of the electrochemical device can be further improved. Moreover, the dispersion stability of the conductive material paste can be improved.
  • the "aspect ratio" of fibrous conductive carbon is obtained by measuring the length and diameter of 20 randomly selected fibrous conductive carbons on the SEM image, and calculating the ratio of the diameter to the length. It can be obtained by calculating the average value of (length/diameter).
  • the water-soluble polymer contains 1 carboxylic acid group-containing monomer unit per 100% by mass of the total monomer units of the water-soluble polymer. It is preferable to contain 50 mass % or less more than mass %.
  • the viscosity stability of the slurry composition and the cycle characteristics of the electrochemical device can be further improved by using a water-soluble polymer having a carboxylic acid group-containing monomer unit content within the above range.
  • the dispersion stability of the conductive material paste can be improved.
  • the phrase "comprising a monomer unit” means that "the polymer obtained using the monomer contains a repeating unit derived from the monomer”. means.
  • the content of monomer units in the polymer can be measured using nuclear magnetic resonance (NMR) methods such as 1 H-NMR and 13 C-NMR.
  • the compound having the triazine skeleton has a molecular weight of 500 or less.
  • the viscosity stability of the slurry composition can be further improved by using a compound having a triazine skeleton whose molecular weight is equal to or less than the above value.
  • the dispersion stability of the conductive material paste can be enhanced.
  • the compound having a triazine skeleton may have at least one functional group selected from the group consisting of an amino group, a hydroxyl group, a cyano group, and a thiol group. preferable. If the compound having a triazine skeleton has at least one of the functional groups described above, the viscosity stability of the slurry composition can be further improved.
  • a slurry composition for an electrochemical element electrode of the present invention comprises an electrode active material and any of the It is characterized by containing a conductive material paste.
  • a slurry composition containing an electrode active material and any of the conductive material pastes described above has excellent viscosity stability, and when an electrode is produced using the slurry composition, the electrochemical device exhibits excellent cycle characteristics. be able to.
  • the electrode active material preferably contains an active material containing silicon. If an active material containing silicon (silicon-based negative electrode active material) is used as the electrode active material, the capacity of the electrochemical device provided with the resulting electrode (negative electrode) can be increased.
  • Another object of the present invention is to advantageously solve the above problems, and an electrode for an electrochemical device of the present invention is formed using any of the slurry compositions for an electrochemical device electrode described above. It is characterized by comprising an electrode mixture layer. According to the electrode provided with the electrode mixture layer formed using any of the slurry compositions described above, the electrochemical device can exhibit excellent cycle characteristics.
  • Another object of the present invention is to advantageously solve the above-described problems, and an electrochemical device of the present invention is characterized by comprising the electrode for an electrochemical device described above.
  • An electrochemical device having the electrodes described above has excellent cycle characteristics.
  • Another object of the present invention is to advantageously solve the above-described problems, and a method for producing a conductive material paste for electrochemical element electrodes according to the present invention comprises fibrous conductive carbon, the fibrous conductive A compound having a triazine skeleton of 1 part by mass or more and 50 parts by mass or less per 100 parts by mass of carbon, a water-soluble polymer of 1 part by mass or more and 50 parts by mass or less per 100 parts by mass of the fibrous conductive carbon, and water are mixed. It is characterized by including steps.
  • the fibrous conductive carbon, the compound having a triazine skeleton, the water-soluble polymer, and the water are mixed so that the amounts of the compound having a triazine skeleton and the water-soluble polymer are within the ranges described above.
  • a conductive material paste is prepared by mixing, the conductive material paste can be used to produce a slurry composition with excellent viscosity stability and an electrode that can exhibit excellent cycle characteristics in an electrochemical element.
  • the mixing step includes preparing a premix containing the fibrous conductive carbon, the compound having a triazine skeleton, and the water. and adding said water-soluble polymer to said premix.
  • a conductive material paste for an electrochemical element electrode that can prepare a slurry composition that has excellent viscosity stability and can exhibit excellent cycle characteristics in an electrochemical element, and the conductive material for an electrochemical element electrode.
  • a method of manufacturing a paste can be provided.
  • an electrochemical device having excellent cycle characteristics can be provided.
  • the conductive material paste for electrochemical element electrodes of the present invention is used as a material for producing a slurry composition for electrochemical element electrodes.
  • the conductive material paste for electrochemical element electrodes of the present invention can be prepared using the method for producing the conductive material paste for electrochemical element electrodes of the present invention.
  • the slurry composition for electrochemical element electrodes of the present invention is prepared using the conductive material paste for electrochemical element electrodes of the present invention.
  • the electrode for an electrochemical device of the present invention includes an electrode mixture layer formed using the slurry for an electrochemical device electrode of the present invention.
  • the electrochemical device of the present invention comprises the electrode for an electrochemical device of the present invention.
  • the conductive material paste of the present invention is a composition in which fibrous conductive carbon, a compound having a triazine skeleton, and a water-soluble polymer are dispersed and/or dissolved in a dispersion medium containing water.
  • the conductive material paste may optionally contain components (other components) other than the fibrous conductive carbon, the compound having a triazine skeleton, the water-soluble polymer, and the dispersion medium.
  • the conductive material paste does not normally contain electrode active materials (positive electrode active material, negative electrode active material).
  • the amount of the compound having a triazine skeleton is 1 to 50 parts by mass and the amount of the water-soluble polymer is 1 to 50 parts by mass per 100 parts by mass of the fibrous conductive carbon. is.
  • the conductive material paste of the present invention produces the above effects.
  • the water-soluble polymer contained in the conductive material paste functions as a dispersant that adsorbs and disperses fibrous conductive carbon in a dispersion medium such as water.
  • the slurry composition prepared by mixing the conductive material paste and the electrode active material is stored for a long period of time, the slurry composition may increase in viscosity. This thickening is considered to be caused by detachment of the water-soluble polymer from the fibrous conductive carbon surface.
  • the slurry composition when the slurry composition is stored for a long period of time, at least part of the water-soluble polymer adsorbed on the surface of the fibrous conductive carbon desorbs from the fibrous conductive carbon and adsorbs to the electrode active material.
  • many regions from which the water-soluble polymer is detached exist on the surface of the fibrous conductive carbon.
  • the area of the fibrous conductive carbon surface from which the water-soluble polymer has been detached forms a network structure with other components (binder, thickener, etc.) in the slurry composition due to hydrophobic interaction. It is believed that the network structure causes thickening of the slurry composition.
  • the conductive material paste of the present invention contains a compound having a triazine skeleton in addition to fibrous conductive carbon as a conductive material and a water-soluble polymer as a dispersant.
  • a compound having this triazine skeleton the water-soluble polymer is more strongly adsorbed to the surface of the fibrous conductive carbon through the compound, and detachment of the water-soluble polymer from the surface of the fibrous conductive carbon is suppressed. It is presumed that the increase in viscosity of the slurry composition over time can be suppressed.
  • the compounding ratio of the water-soluble polymer to the fibrous conductive carbon and the compounding ratio of the compound having a triazine skeleton to the fibrous conductive carbon are each a predetermined value or more.
  • the fibrous conductive carbon can be well dispersed in the slurry composition and the good dispersion state can be ensured for a long period of time.
  • the blending ratio of the water-soluble polymer to the fibrous conductive carbon and the blending ratio of the compound having a triazine skeleton to the fibrous conductive carbon are each less than a predetermined value.
  • the conductive path formation failure in the electrode mixture layer due to excessive dispersion of the fibrous conductive carbon is less likely to occur.
  • the compounding ratio of the water-soluble polymer to the fibrous conductive carbon and the compounding ratio of the compound having a triazine skeleton to the fibrous conductive carbon are each within a predetermined range, the conductive material of the present invention can be obtained. It is believed that the electrode obtained using the paste enables the electrochemical device to exhibit excellent cycle characteristics.
  • the fibrous conductive carbon is not particularly limited as long as it functions as a conductive material capable of forming a conductive path in the electrode mixture layer.
  • Examples include CNT, carbon nanohorn, vapor-grown carbon fiber, and polymer fiber.
  • Examples include milled carbon fibers obtained by crushing after firing. These can be used individually by 1 type or in combination of 2 or more types. Among these, CNTs are preferable from the viewpoint of further improving the cycle characteristics of the electrochemical device.
  • CNTs may be single-walled carbon nanotubes or multi-walled carbon nanotubes. As CNTs, single-walled CNTs and multi-walled CNTs may be used in combination.
  • the fibrous conductive carbon preferably has a BET specific surface area of 10 m 2 /g or more, more preferably 25 m 2 /g or more, even more preferably 40 m 2 /g or more, and 400 m 2 /g or more. g or less, more preferably 350 m 2 /g or less, and even more preferably 300 m 2 /g or less.
  • a BET specific surface area of 10 m 2 /g or more conductive paths are well formed in the electrode mixture layer, and the cycle characteristics of the electrochemical device can be further improved.
  • the BET specific surface area of the fibrous conductive carbon is 400 m 2 /g or less, it is possible to further improve the viscosity stability of the slurry composition while increasing the dispersion stability of the conductive material paste and the peel strength of the electrode. can.
  • the fibrous conductive carbon preferably has an average length of 1.0 ⁇ m or more, more preferably 1.5 ⁇ m or more, still more preferably 2.0 ⁇ m or more, and 60 ⁇ m or less. It is preferably 55 ⁇ m or less, more preferably 50 ⁇ m or less. If the fibrous conductive carbon has an average length of 1.0 ⁇ m or more, conductive paths are well formed in the electrode mixture layer, and the cycle characteristics of the electrochemical device can be further improved. On the other hand, if the fibrous conductive carbon has an average length of 60 ⁇ m or less, it is possible to further improve the viscosity stability of the slurry composition while enhancing the dispersion stability of the conductive material paste and the peel strength of the electrode.
  • the fibrous conductive carbon preferably has an aspect ratio of 50 or more, more preferably 60 or more, still more preferably 80 or more, preferably 1,000 or less, and 900 or less. It is more preferably 800 or less. If the fibrous conductive carbon has an aspect ratio of 50 or more, conductive paths are well formed in the electrode mixture layer, and the cycle characteristics of the electrochemical device can be further improved. On the other hand, if the fibrous conductive carbon has an aspect ratio of 1,000 or less, it is possible to further improve the viscosity stability of the slurry composition while enhancing the dispersion stability of the conductive material paste.
  • the fibrous conductive carbon is not particularly limited, and is synthesized using a known method for synthesizing fibrous conductive carbon such as an arc discharge method, a laser ablation method, or a chemical vapor deposition method (CVD method). can be used.
  • a known method for synthesizing fibrous conductive carbon such as an arc discharge method, a laser ablation method, or a chemical vapor deposition method (CVD method).
  • CVD method chemical vapor deposition method
  • a compound having a triazine skeleton is not particularly limited as long as it is a compound having one or more triazine rings (eg, 1,3,5-triazine ring).
  • the compound having a triazine skeleton preferably has a molecular weight of 500 or less, more preferably 400 or less, even more preferably 300 or less. If the molecular weight of the compound having a triazine skeleton is 500 or less, it is presumed that the compound can easily approach and adsorb to the surface of the fibrous conductive carbon. The viscosity stability of the composition can be further improved. Although the lower limit of the molecular weight of the compound having a triazine skeleton is not particularly limited, it is preferably 85 or more.
  • the compound having a triazine skeleton preferably has at least one selected from the group consisting of an amino group, a hydroxyl group, a cyano group, and a thiol group, from the viewpoint of further improving the viscosity stability of the slurry composition. More preferably, it has at least one selected from the group consisting of an amino group, a hydroxyl group, and a cyano group, more preferably at least one of an amino group and a hydroxyl group, and particularly preferably an amino group.
  • a compound having a triazine skeleton is used to more favorably adsorb a water-soluble polymer onto the surface of fibrous conductive carbon via the compound, and from the viewpoint of further improving the viscosity stability of the slurry composition, sulfone It preferably does not have an acid group, and more preferably does not have any of a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group (these may be collectively referred to as "acidic groups").
  • compounds having a triazine skeleton include compounds represented by the following formula (I).
  • A represents an amino group, hydroxyl group, cyano group, thiol group, sulfonic acid group, carboxylic acid group, phosphoric acid group, or an organic group having at least one of them.
  • multiple A's in formula (I) are independent and may be the same or different.
  • a in formula (I) is preferably an amino group, a hydroxyl group, a cyano group, or an organic group having at least one of them.
  • An amino group, a hydroxyl group, or a cyano group is more preferable, an amino group or a hydroxyl group is still more preferable, and an amino group is particularly preferable.
  • triaminotriazine 2,4,6-triamino-1, 2,4,6-triamino-1, 2,4,6-triamino-1, 3,5-triazine (hereinafter sometimes abbreviated as "triaminotriazine") and cyanuric acid are preferred, and triaminotriazine is more preferred.
  • the compound having a triazine skeleton can be used singly or in combination of two or more.
  • the compounding amount of the above-described compound having a triazine skeleton is required to be 1 part by mass or more and 50 parts by mass or less per 100 parts by mass of fibrous conductive carbon. It is preferably at least 3 parts by mass, more preferably at least 3 parts by mass, still more preferably at least 7.5 parts by mass, preferably at most 40 parts by mass, and at most 30 parts by mass. is more preferred. If the amount of the compound having a triazine skeleton is less than 1 part by mass per 100 parts by mass of the fibrous conductive carbon, the viscosity stability of the slurry composition cannot be ensured, and the dispersion stability of the conductive material paste is poor. decreases. On the other hand, if the amount of the compound having a triazine skeleton is more than 50 parts by mass per 100 parts by mass of the fibrous conductive carbon, the cycle characteristics of the electrochemical device deteriorate.
  • the above-mentioned compound having a triazine skeleton can also function as a foaming agent. That is, when a short circuit occurs between the electrodes inside the electrochemical element and the temperature rises, the compound having a triazine skeleton can foam to generate a nonflammable gas.
  • the non-combustible gas destroys the electrode structure and cuts the conductive paths to suppress the generation of Joule heat, and dilutes the combustible gas to delay the spread of fire. Therefore, if the amount of the compound having a triazine skeleton in the conductive material paste is 1 part by mass or more per 100 parts by mass of the fibrous conductive carbon, the safety of the electrochemical device can be sufficiently improved.
  • the water-soluble polymer is a polymer that can function as a dispersant capable of dispersing the fibrous conductive carbon described above in a dispersion medium containing water. Examples of the water-soluble polymer that can be used in the present invention are described below, but the water-soluble polymer that can be used in the present invention is not limited thereto.
  • the water-soluble polymer preferably contains carboxylic acid group-containing monomer units. Since the water-soluble polymer contains a carboxylic acid group-containing monomer unit, it can be easily dissolved in a dispersion medium containing water, and can satisfactorily exhibit its function as a dispersant.
  • the water-soluble polymer may contain monomer units (other monomer units) other than the carboxylic acid group-containing monomer units.
  • Carboxylic acid group-containing monomers capable of forming carboxylic acid group-containing monomer units include monocarboxylic acids and derivatives thereof, dicarboxylic acids and acid anhydrides thereof, and derivatives thereof.
  • Monocarboxylic acids include acrylic acid, methacrylic acid, crotonic acid and the like.
  • Monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid and the like.
  • Dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, and the like.
  • Dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoro maleate.
  • Examples include maleic acid monoesters such as alkyls.
  • Acid anhydrides of dicarboxylic acids include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • an acid anhydride that produces a carboxylic acid group by hydrolysis can also be used. These can be used individually by 1 type or in combination of 2 or more types. Among these, monocarboxylic acids are preferred, and acrylic acid is more preferred.
  • the content of the carboxylic acid group-containing monomer units in the water-soluble polymer is preferably 1% by mass or more, preferably 2% by mass, based on 100% by mass of the total monomer units of the water-soluble polymer. % or more, more preferably 5% by mass or more, even more preferably 10% by mass or more, particularly preferably 25% by mass or more, and 50% by mass or less. is preferably 45% by mass or less, more preferably 40% by mass or less, and particularly preferably 35% by mass or less. If the content of the carboxylic acid group-containing monomer unit in the water-soluble polymer is 1% by mass or more, it is possible to further improve the viscosity stability of the slurry composition while increasing the dispersion stability of the conductive material paste. can. On the other hand, if the content of the carboxylic acid group-containing monomer unit in the water-soluble polymer is 50% by mass or less, the cycle characteristics of the electrochemical device can be further improved.
  • Examples of other monomer units include, but are not limited to, sulfonic acid group-containing monomer units, phosphoric acid group-containing monomer units, hydroxyl group-containing monomer units, and amide group-containing monomer units.
  • the water-soluble polymer may contain one type of other monomer unit alone, or may contain two or more types thereof.
  • sulfonic acid group-containing monomers capable of forming sulfonic acid group-containing monomer units include vinylsulfonic acid, methylvinylsulfonic acid, (meth)allylsulfonic acid, styrenesulfonic acid, (meth)acrylic acid- 2-ethyl sulfonate, 2-acrylamido-2-methylpropanesulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and salts thereof (sodium salts). These can be used individually by 1 type or in combination of 2 or more types.
  • "(meth)allyl” means allyl and/or methallyl.
  • Phosphate group-containing monomers capable of forming phosphate group-containing monomer units include, for example, 2-(meth)acryloyloxyethyl phosphate, methyl 2-(meth)acryloyloxyethyl phosphate, phosphorus Ethyl acid-(meth)acryloyloxyethyl can be mentioned. These can be used individually by 1 type or in combination of 2 or more types.
  • "(meth)acryloyl” means acryloyl and/or methacryloyl.
  • hydroxyl-containing monomers capable of forming hydroxyl-containing monomer units include N-hydroxymethylacrylamide, N-hydroxyethylacrylamide, N-hydroxypropylacrylamide, N-hydroxymethylmethacrylamide, and N-hydroxyethylmethacrylamide.
  • Hydroxyl group-containing (meth)acrylamide monomers such as amides and N-hydroxypropyl methacrylamide; 2-hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl acrylate, 2-hydroxymethyl methacrylate , 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate and other hydroxyl group-containing (meth)acrylate monomers; These can be used individually by 1 type or in combination of 2 or more types.
  • "(meth)acryl” means acryl and/or methacryl
  • “(meth)acrylate” means acrylate and/or methacrylate.
  • a monomer unit having both an amide group and a hydroxyl group is included in the "hydroxyl group-containing monomer unit" and is not included in the "amide group-containing monomer unit".
  • a monomer having both a group and a hydroxyl group is included in the "hydroxyl group-containing monomer” and is not included in the "amide group-containing monomer”.
  • amide group-containing monomers capable of forming amide group-containing monomer units include N-vinylacetamide, (meth)acrylamide, dimethyl(meth)acrylamide, diethyl(meth)acrylamide, N-methoxymethyl (meth)acrylamide, ) acrylamide, dimethylaminopropyl (meth)acrylamide. These can be used individually by 1 type or in combination of 2 or more types.
  • the water-soluble polymer contains, as other monomer units, a sulfonic acid group-containing monomer unit. It preferably contains styrenesulfonic acid units and sodium styrenesulfonate units.
  • the content of the other monomer units in the water-soluble polymer is preferably 50% by mass or more, preferably 55% by mass or more, based on 100% by mass of the total monomer units of the water-soluble polymer. is more preferably 60% by mass or more, particularly preferably 65% by mass or more, preferably 99% by mass or less, more preferably 98% by mass or less, It is more preferably 95% by mass or less, particularly preferably 90% by mass or less. If the content of other monomer units in the water-soluble polymer is 50% by mass or more, the cycle characteristics of the electrochemical device can be further improved. On the other hand, if the content of other monomer units in the water-soluble polymer is 99% by mass or less, it is possible to further improve the viscosity stability of the slurry composition while increasing the dispersion stability of the conductive material paste. can.
  • the weight average molecular weight of the water-soluble polymer is preferably 100 or more, more preferably 500 or more, preferably 500,000 or less, more preferably 100,000 or less, and 50 ,000 or less, and particularly preferably 40,000 or less.
  • the weight average molecular weight of the water-soluble polymer is 100 or more, the viscosity stability of the slurry composition can be further improved while enhancing the dispersion stability of the conductive material paste and the peel strength of the electrode.
  • the weight average molecular weight of the water-soluble polymer is 500,000 or less, it is possible to further improve the viscosity stability of the slurry composition while enhancing the dispersion stability of the conductive material paste.
  • the "weight average molecular weight" of the polymer can be measured using the method described in Examples.
  • the method for preparing the water-soluble polymer is not particularly limited.
  • a water-soluble polymer is prepared, for example, by polymerizing a monomer composition containing one or more monomers in an aqueous solvent.
  • the content ratio of each monomer in the monomer composition can be determined according to the content ratio of desired monomer units in the polymer.
  • the polymerization mode is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method and an emulsion polymerization method can be used.
  • any reaction such as ionic polymerization, radical polymerization, living radical polymerization, various types of condensation polymerization, and addition polymerization can be used.
  • known emulsifiers and polymerization initiators can be used as necessary.
  • the amount of the above-described water-soluble polymer must be 1 part by mass or more and 50 parts by mass or less per 100 parts by mass of fibrous conductive carbon. It is preferably 1 part or more, more preferably 3 parts by mass or more, still more preferably 10 parts by mass or more, preferably 40 parts by mass or less, and more preferably 30 parts by mass or less. . If the blending amount of the water-soluble polymer per 100 parts by mass of the fibrous conductive carbon is less than 1 part by mass, the viscosity stability of the slurry composition cannot be ensured, and the dispersion stability of the conductive material paste is poor. descend. On the other hand, when the blending amount of the water-soluble polymer is more than 50 parts by mass per 100 parts by mass of the fibrous conductive carbon, the peel strength of the electrode and the cycle characteristics of the electrochemical device are deteriorated.
  • the dispersion medium is not particularly limited as long as it contains water, and may be a mixture of water and an organic solvent.
  • organic solvents include, but are not limited to, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, and amyl alcohol.
  • alcohols such as; acetone, methyl ethyl ketone, ketones such as cyclohexanone; esters such as ethyl acetate, butyl acetate; ethers such as diethyl ether, dioxane, tetrahydrofuran; N,N-dimethylformamide, N-methyl-2-pyrrolidone amide-based organic solvents such as (NMP); aromatic hydrocarbons such as toluene, xylene, chlorobenzene, ortho-dichlorobenzene, and para-dichlorobenzene;
  • an organic solvent can be used individually by 1 type or in combination of 2 or more types.
  • conductive material paste may contain are not particularly limited, and conductive materials other than fibrous conductive carbon (carbon black, etc.), and electrode active ingredients described later in the section "Slurry composition for electrochemical element electrodes". Ingredients other than substances are included. In addition, another component can be used individually by 1 type or in combination of 2 or more types.
  • the conductive material paste of the present invention described above can be produced using the method for producing a conductive material paste of the present invention. Specifically, in the method for producing a conductive material paste of the present invention, fibrous conductive carbon, a compound having a triazine skeleton of 1 part by mass or more and 50 parts by mass or less per 100 parts by mass of fibrous conductive carbon, and fibrous conductive A step of mixing 1 part by mass or more and 50 parts by mass or less of a water-soluble polymer with respect to 100 parts by mass of soluble carbon, water, and other components used as necessary is carried out.
  • the above-described mixing is preferably performed through a step of preparing a premix containing fibrous conductive carbon, a compound having a triazine skeleton, and water, and a step of adding a water-soluble polymer to the premix.
  • a step of preparing a premix containing fibrous conductive carbon, a compound having a triazine skeleton, and water and a step of adding a water-soluble polymer to the premix.
  • the mixing of various components is not particularly limited, and can be performed using a known mixing device.
  • mixing devices include dispersers, homomixers, planetary mixers, kneaders, ball mills, and bead mills.
  • the slurry composition of the present invention contains the conductive material paste and the electrode active material described above, and optionally contains optional components such as a thickener and a binder.
  • the slurry composition of the present invention contains fibrous conductive carbon, a compound having a triazine skeleton, a water-soluble polymer, and a dispersion medium containing water, and if necessary, a thickener and a binder.
  • Optional components such as adhesives are included.
  • the slurry composition containing the conductive material paste described above has excellent viscosity stability, and according to the electrode provided with the electrode mixture layer formed from the slurry composition, the electrochemical element exhibits excellent cycle characteristics. can be demonstrated.
  • the electrode active material (positive electrode active material, negative electrode active material) to be blended in the electrode slurry is not particularly limited, and known electrode active materials can be used.
  • negative electrode active materials used in lithium-ion secondary batteries are not particularly limited, but include carbon-based negative electrode active materials, metal-based negative electrode active materials, and negative electrode active materials combining these materials.
  • the carbon-based negative electrode active material refers to an active material having carbon as a main skeleton and capable of inserting lithium (also referred to as “doping”).
  • Examples of carbon-based negative electrode active materials include carbonaceous materials and graphite quality materials.
  • Examples of the carbonaceous material include graphitizable carbon and non-graphitizable carbon having a structure close to an amorphous structure represented by glassy carbon.
  • graphitizable carbon includes, for example, carbon materials made from tar pitch obtained from petroleum or coal. Specific examples include coke, mesocarbon microbeads (MCMB), mesophase pitch-based carbon fibers, and pyrolytic vapor growth carbon fibers.
  • Non-graphitic carbons include, for example, phenolic resin sintered bodies, polyacrylonitrile-based carbon fibers, pseudoisotropic carbons, furfuryl alcohol resin sintered bodies (PFA), and hard carbons.
  • examples of graphite materials include natural graphite and artificial graphite.
  • artificial graphite for example, artificial graphite obtained by heat-treating carbon containing graphitizable carbon mainly at 2800 ° C. or higher, graphitized MCMB obtained by heat-treating MCMB at 2000 ° C. or higher, mesophase pitch-based carbon fiber at 2000 ° C.
  • Graphitized mesophase pitch-based carbon fibers heat-treated as described above may be used.
  • the metal-based negative electrode active material is an active material containing a metal, and usually contains an element capable of intercalating lithium in its structure, and the theoretical electric capacity per unit mass when lithium is intercalated is 500 mAh / g or more.
  • the metal-based active material for example, lithium metal, elemental metals capable of forming a lithium alloy (eg, Ag, Al, Ba, Bi, Cu, Ga, Ge, In, Ni, P, Pb, Sb, Si, Sn , Sr, Zn, Ti, etc.) and alloys thereof, as well as their oxides, sulfides, nitrides, silicides, carbides, phosphides, and the like.
  • active materials containing silicon are preferable as the metal-based negative electrode active materials. This is because the use of the silicon-based negative electrode active material can increase the capacity of the lithium ion secondary battery.
  • Silicon-based negative electrode active materials include, for example, silicon (Si), alloys containing silicon, SiO, SiO x , and composites of Si-containing materials and conductive carbon obtained by coating or combining Si-containing materials with conductive carbon. etc.
  • the proportion of the silicon-based negative electrode active material in the negative electrode active material is preferably 1% by mass or more, more preferably 3% by mass or more, and more preferably 20% by mass, based on 100% by mass of the entire negative electrode active material. It is preferably 15% by mass or less, more preferably 15% by mass or less. If the ratio of the silicon-based negative electrode active material is 1% by mass or more, the capacity of the lithium ion secondary battery, which is an electrochemical device, can be sufficiently increased, and if it is 20% by mass or less, the cycle characteristics can be further improved. can.
  • the particle size of the electrode active material is not particularly limited, and may be the same as that of conventionally used electrode active materials. Also, the amount of the electrode active material in the slurry composition is not particularly limited, and can be within the conventionally used range. And an electrode active material can be used individually by 1 type or in combination of 2 or more types.
  • Optional components that can be included in the slurry composition include, for example, thickeners, binders, reinforcing materials, antioxidants, and electrolytic solution additives that have the function of suppressing decomposition of the electrolytic solution. These arbitrary components can be used individually by 1 type or in combination of 2 or more types.
  • the slurry composition preferably contains a thickener and a binder.
  • thickeners include, but are not limited to, carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, polymethacrylic acid, polyacrylic acid, acrylamide/acrylic acid/N-hydroxyethylacrylamide ternary A copolymer is mentioned. These can be used individually by 1 type or in combination of 2 or more types. Moreover, these can be used in either an unneutralized state or a neutralized state. Among these, a terpolymer of acrylamide/acrylic acid/N-hydroxyethylacrylamide is preferred.
  • the thickener preferably has a weight average molecular weight of 500,000 or more, more preferably 800,000 or more, and preferably 10,000,000 or less. The following are more preferable. If the weight average molecular weight of the thickener is 500,000 or more, the peel strength of the electrode can be increased, and if it is 10,000,000 or less, the cycle characteristics of the electrochemical device can be further improved.
  • the amount of the thickener mentioned above is preferably 0.2 parts by mass or more, and preferably 0.4 parts by mass or more, per 100 parts by mass of the electrode active material. More preferably, it is 5.0 parts by mass or less, and more preferably 4.0 parts by mass or less. If the amount of the thickening agent per 100 parts by mass of the electrode active material is 0.2 parts by mass or more, the cycle characteristics of the electrochemical device can be further improved. The capacity of the element can be improved.
  • the binder is not particularly limited, for example, a water-insoluble (that is, not water-soluble) polymer is preferably used.
  • water-insoluble polymers include fluorine-containing resins such as polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and styrene-butadiene copolymer (SBR). These can be used individually by 1 type or in combination of 2 or more types.
  • the amount of the binder described above is preferably 0.1 parts by mass or more and 2.0 parts by mass or less per 100 parts by mass of the electrode active material. If the amount of the binder compounded per 100 parts by mass of the electrode active material is within the range described above, it is possible to further improve the cycle characteristics of the electrochemical device while increasing the peel strength of the electrode.
  • the mixing method is not particularly limited. can be done.
  • the mixing ratio of the electrode active material and the conductive material paste may be appropriately set according to the desired mixing ratio of the electrode active material and the fibrous conductive carbon.
  • the amount of the fibrous conductive carbon compounded is preferably 0.001 parts by mass or more, more preferably 0.005 parts by mass or more, per 100 parts by mass of the electrode active material. 0.0 parts by mass or less, and more preferably 0.8 parts by mass or less.
  • the amount of the fibrous conductive carbon per 100 parts by mass of the electrode active material is 0.005 parts by mass or more, the cycle characteristics of the electrochemical device can be further improved, and if it is 1.0 parts by mass or less, It is possible to improve the capacity of the electrochemical device.
  • the electrode of the present invention comprises an electrode mixture layer obtained using the slurry composition of the present invention described above. More specifically, the electrode of the present invention generally comprises an electrode mixture layer on a current collector, and the electrode mixture layer is made of the dried slurry composition of the present invention. Therefore, the electrode mixture layer contains an electrode active material, fibrous conductive carbon, and a compound having a triazine skeleton, and optionally contains optional components such as a thickener and a binder. The preferred abundance ratio of each component in the electrode mixture layer is the same as the preferred abundance ratio of each component in the slurry composition. Since the electrode of the present invention includes the electrode mixture layer formed using the slurry composition of the present invention, the electrochemical device can exhibit excellent cycle characteristics.
  • the current collector is made of a material that is electrically conductive and electrochemically durable.
  • a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used. These materials can be used singly or in combination of two or more.
  • the current collector for the positive electrode is preferably a current collector made of aluminum (such as aluminum foil), and the current collector for the negative electrode is preferably a current collector made of copper (such as copper foil).
  • the method of manufacturing the electrode of the present invention is not particularly limited.
  • the electrode of the present invention can be produced by applying the slurry composition of the present invention described above to at least one surface of a current collector and drying it to form an electrode mixture layer.
  • the production method includes a step of applying a slurry composition to at least one surface of a current collector (application step), and drying the slurry composition applied to at least one surface of the current collector. and a step of forming an electrode mixture layer on the current collector (drying step).
  • the method for applying the slurry composition onto the current collector is not particularly limited, and known methods can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the slurry composition may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the electrode mixture layer obtained by drying.
  • the method for drying the slurry composition on the current collector is not particularly limited, and known methods can be used. drying method. By drying the slurry composition on the current collector in this manner, an electrode mixture layer can be formed on the current collector, and an electrode comprising the current collector and the electrode mixture layer can be obtained.
  • the electrode mixture layer may be pressurized using a mold press or a roll press.
  • the pressure treatment can improve the peel strength of the electrode.
  • the electrochemical device of the present invention comprises the electrode of the present invention described above. Since the electrochemical device of the present invention includes the electrode of the present invention, it has excellent cycle characteristics.
  • the electrochemical device of the present invention is, for example, a nonaqueous secondary battery, preferably a lithium ion secondary battery.
  • This lithium ion secondary battery includes a positive electrode, a negative electrode, an electrolytic solution, and a separator. At least one of the positive electrode and the negative electrode is the electrode of the present invention. That is, in this lithium ion secondary battery, the positive electrode may be the electrode of the present invention and the negative electrode may be an electrode other than the electrode of the present invention, and the positive electrode may be an electrode other than the electrode of the present invention and the negative electrode may be the electrode of the present invention. and both the positive electrode and the negative electrode may be the electrodes of the present invention.
  • Electrodes that do not correspond to the electrodes of the present invention are not particularly limited, and known electrodes can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt for example, is used as the supporting electrolyte.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable, because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • one electrolyte may be used alone, or two or more electrolytes may be used in combination at an arbitrary ratio.
  • lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted depending on the type of supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Examples include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), carbonates such as butylene carbonate (BC) and methyl ethyl carbonate (EMC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethylsulfoxide and the like are preferably used. A mixture of these solvents may also be used.
  • carbonates are preferably used because they have a high dielectric constant and a wide stable potential range, and a mixture of ethylene carbonate and ethyl methyl carbonate is more preferably used.
  • concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate, for example, it is preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. is more preferred.
  • known additives such as fluoroethylene carbonate and ethyl methyl sulfone may be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, those described in JP-A-2012-204303 can be used. Among these, the film thickness of the entire separator can be made thin, and as a result, the ratio of the electrode active material in the lithium ion secondary battery can be increased to increase the capacity per volume. Microporous membranes made of resins of the system (polyethylene, polypropylene, polybutene, polyvinyl chloride) are preferred.
  • the lithium-ion secondary battery according to the present invention can be produced, for example, by stacking a positive electrode and a negative electrode with a separator interposed therebetween, winding or folding this according to the shape of the battery, if necessary, and placing it in a battery container. It can be produced by injecting an electrolytic solution into the container and sealing it. In order to prevent an increase in internal pressure of the secondary battery and the occurrence of overcharge/discharge, etc., a fuse, an overcurrent protection element such as a PTC element, an expanded metal, a lead plate, or the like may be provided as necessary.
  • the shape of the lithium-ion secondary battery may be, for example, coin-shaped, button-shaped, sheet-shaped, cylindrical, rectangular, or flat.
  • ⁇ Weight average molecular weight> Each of the water-soluble polymer and the thickener was used as a polymer to be measured, and the weight-average molecular weight of these polymers was measured by gel permeation chromatography (GPC) in the following procedure. First, the polymer to be measured was added to about 5 mL of the eluent so that the solid content concentration was about 0.5 g/L, and slowly dissolved at room temperature. After visually confirming the dissolution of the polymer, the mixture was gently filtered with a 0.45 ⁇ m filter to prepare a sample for measurement. Then, by creating a calibration curve using the standard substance, the weight average molecular weight was calculated as a value converted to the standard substance. In addition, the measurement conditions are as follows.
  • the conductive material paste was left to stand and stored in an environment of 25° C. for one week, and the viscosity ⁇ 2 after storage was measured in the same manner as the viscosity ⁇ 1.
  • the ratio of ⁇ 2 to ⁇ 1 ( ⁇ 2/ ⁇ 1) was defined as the paste viscosity ratio and evaluated according to the following criteria. The closer the paste viscosity ratio is to 1.0, the more the increase in the viscosity of the conductive material paste is suppressed.
  • Paste viscosity ratio is less than 1.1
  • the viscosity ⁇ 3 immediately after preparation of the slurry composition was measured using a Brookfield viscometer under conditions of a temperature of 25° C. and a spindle rotation speed of 60 rpm, 60 seconds after the start of spindle rotation. After the measurement of ⁇ 3, the slurry composition was allowed to stand and stored in an environment of 25° C. for one week, and the viscosity ⁇ 4 after storage was measured in the same manner as the viscosity ⁇ 3.
  • the ratio of ⁇ 4 to ⁇ 3 was defined as the slurry viscosity ratio and evaluated according to the following criteria.
  • the value of the slurry viscosity ratio closer to 1.0 indicates that the viscosity increase of the slurry composition is suppressed.
  • D Slurry viscosity ratio 1.5 or more ⁇ peel Strength>
  • the negative electrode was cut into a rectangular test piece having a width of 1 cm and a length of 10 cm. The obtained test piece was fixed with the negative electrode mixture layer surface facing upward.
  • the lithium ion secondary battery was allowed to stand at a temperature of 25° C. for 5 hours after the injection of the electrolyte. Next, the battery was charged to a cell voltage of 3.65 V at a temperature of 25° C. and a constant current method of 0.2 C, and then subjected to aging treatment at a temperature of 60° C. for 12 hours. Then, the battery was discharged to a cell voltage of 3.00 V by a constant current method at a temperature of 25° C.
  • CC-CV charging upper limit cell voltage 4.35V
  • CC discharge was performed to 3.00V by a 0.2C constant current method. This charge/discharge at 0.2C was repeated three times.
  • the battery was charged to 4.35 V (cutoff condition: 0.02 C) by a constant voltage constant current (CC-CV) method at a charging rate of 0.2 C.
  • CC-CV constant voltage constant current
  • Example 1 ⁇ Preparation of water-soluble polymer> 900 parts of ion-exchanged water was put into a 1.5 L glass flask equipped with a stirring blade, heated to 40° C., and the inside of the flask was replaced with nitrogen gas at a flow rate of 100 mL/min. Next, 75 parts of sodium styrenesulfonate as a sulfonic acid group-containing monomer, 25 parts of acrylic acid as a carboxylic acid group-containing monomer, and 2.5 parts of thioglycerol were mixed and injected into the flask. .
  • aqueous dispersion of a particulate binder water-insoluble, SBR.
  • a particulate binder water-insoluble, SBR.
  • multilayer CNT BET specific surface area: 200 m 2 /g, average length: 30 ⁇ m, aspect ratio: 300
  • An appropriate amount of ion-exchanged water as a dispersion medium was stirred with a disper (3000 rpm, 60 minutes), and then mixed at a peripheral speed of 8 m/s for 30 minutes using a bead mill using zirconia beads
  • the viscosity stability of this negative electrode slurry composition was evaluated. Table 1 shows the results.
  • ⁇ Production of negative electrode> The negative electrode slurry composition obtained as described above was coated on a copper foil (current collector) having a thickness of 18 ⁇ m with a comma coater so that the film thickness after drying was 105 ⁇ m and the coating amount was 10 mg/cm 2 . I applied it so that it would be.
  • the copper foil coated with the negative electrode slurry composition was transported at a speed of 0.5 m/min through an oven at a temperature of 75°C for 2 minutes and then through an oven at a temperature of 120°C for 2 minutes to obtain a copper foil.
  • the negative electrode slurry composition on the foil was dried to obtain a negative electrode raw fabric.
  • This negative electrode original fabric was rolled by a roll press to obtain a negative electrode having a negative electrode mixture layer with a thickness of 80 ⁇ m.
  • the peel strength of this negative electrode was evaluated.
  • Table 1 shows the results.
  • ⁇ Production of positive electrode> In a planetary mixer, 95 parts of LiCoO 2 having a spinel structure as a positive electrode active material, 3 parts of PVDF (polyvinylidene fluoride) as a positive electrode binder in terms of solid content, 2 parts of acetylene black as a conductive material, and 20 parts of N-methylpyrrolidone as a solvent were added and mixed to obtain a positive electrode slurry composition.
  • the positive electrode slurry composition thus obtained was applied onto a 20 ⁇ m-thick aluminum foil (current collector) using a comma coater so that the film thickness after drying would be approximately 100 ⁇ m.
  • the aluminum foil coated with the positive electrode slurry composition was transported at a speed of 0.5 m/min through an oven at a temperature of 60°C for 2 minutes and then through an oven at a temperature of 120°C for 2 minutes to obtain aluminum.
  • the positive electrode slurry composition on the foil was dried to obtain a positive electrode blank.
  • This positive electrode material was rolled by a roll press to obtain a positive electrode having a positive electrode mixture layer with a thickness of 70 ⁇ m.
  • a single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 ⁇ m; manufactured by dry method; porosity 55%) was prepared. This separator was cut into a square of 5 cm ⁇ 5 cm and used for manufacturing the following lithium ion secondary battery.
  • An aluminum packaging material exterior was prepared as the exterior of the battery. The positive electrode was cut into a square of 4 cm ⁇ 4 cm, and placed so that the surface on the side of the current collector was in contact with the exterior of the aluminum packaging material. Next, the square separator was placed on the surface of the positive electrode mixture layer of the positive electrode.
  • the negative electrode was cut into a square of 4.2 cm ⁇ 4.2 cm, and this was placed on a separator so that the surface on the negative electrode mixture layer side faced the separator.
  • Example 2 In the preparation of the conductive material paste, the water-soluble polymer, A binder, a thickener, a conductive material paste, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared and subjected to various evaluations. Table 1 shows the results.
  • Example 4 In the preparation of the conductive material paste, the water-soluble polymer was prepared in the same manner as in Example 1, except that the amount of the water-soluble polymer was changed to 1 part (Example 4) and 50 parts (Example 5), respectively. , a binder, a thickener, a conductive material paste, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared, and various evaluations were performed. Table 1 shows the results.
  • Example 6 In preparing the conductive material paste, the same procedure as in Example 1 was performed except that single-walled CNTs (BET specific surface area: 200 m 2 /g, average length: 30 ⁇ m, aspect ratio: 300) were used instead of multi-walled CNTs. , a water-soluble polymer, a binder, a thickener, a conductive material paste, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator and a lithium ion secondary battery were prepared, and various evaluations were performed. Table 1 shows the results.
  • Example 7-12 In preparing the conductive material paste, the water-soluble polymer, the binder, the thickener, the conductive material paste, and the negative electrode were prepared in the same manner as in Example 1, except that multi-layer CNTs having the following properties were used. A slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared, and various evaluations were performed. Tables 1 and 2 show the results.
  • Example 7 BET specific surface area: 10 m 2 /g, average length: 30 ⁇ m, aspect ratio: 300
  • Example 8 BET specific surface area: 400 m 2 /g, average length: 30 ⁇ m, aspect ratio: 300
  • Example 9 BET specific surface area: 200 m 2 /g, average length: 1 ⁇ m, aspect ratio: 300
  • Example 10 BET specific surface area: 200 m 2 /g, average length: 60 ⁇ m, aspect ratio: 300
  • Example 11 BET specific surface area: 200 m 2 /g, average length: 30 ⁇ m, aspect ratio: 50
  • Example 12 BET specific surface area: 200 m 2 /g, average length: 30 ⁇ m, aspect ratio: 1,000
  • Example 13 In the preparation of the water-soluble polymer, a water-soluble polymer, a binder, a thickening An agent, a conductive material paste, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared and subjected to various evaluations. Table 2 shows the results.
  • Example 14 In the preparation of the water-soluble polymer, the water-soluble polymer, the binder, the thickening An agent, a conductive material paste, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared and subjected to various evaluations. Table 2 shows the results.
  • Example 15 A water-soluble polymer, a binder, a thickener, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and lithium ions were prepared in the same manner as in Example 1, except that a conductive material paste prepared as follows was used. A secondary battery was prepared and various evaluations were performed. Table 2 shows the results.
  • ⁇ Preparation of conductive material paste 100 parts of multilayer CNT (BET specific surface area: 200 m 2 /g, average length: 30 ⁇ m, aspect ratio: 300) as fibrous conductive carbon, 7.5 parts of triaminotriazine as a compound having a triazine skeleton, 10 parts of the water-soluble polymer aqueous solution (solid content equivalent) obtained in the same manner as in Example 1 and an appropriate amount of ion-exchanged water as a dispersion medium were stirred with a disper (3000 rpm, 60 minutes). Then, using a bead mill using zirconia beads with a diameter of 1 mm, the mixture was mixed at a peripheral speed of 8 m/s for 30 minutes to produce a conductive material paste (solid concentration: 6.0%).
  • Example 16 A water-soluble polymer was prepared in the same manner as in Example 1, except that the amount of acrylic acid was changed to 20 parts and 80 parts of acrylamide was used in place of 75 parts of sodium styrenesulfonate in the preparation of the water-soluble polymer. , a binder, a thickener, a conductive material paste, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared, and various evaluations were performed. Table 2 shows the results.
  • Example 17 In the preparation of the water-soluble polymer, in the same manner as in Example 1, except that the amount of acrylic acid was changed to 20 parts, and 80 parts of N-hydroxyethylacrylamide was used instead of 75 parts of sodium styrenesulfonate.
  • a water-soluble polymer, a binder, a thickener, a conductive material paste, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared and subjected to various evaluations. Table 2 shows the results.
  • Example 18 A water-soluble polymer, a binder, a thickener, a conductive material paste, and a negative electrode slurry were prepared in the same manner as in Example 1, except that cyanuric acid was used instead of triaminotriazine in preparing the conductive material paste. A composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared, and various evaluations were performed. Table 3 shows the results.
  • Example 19 In the preparation of the conductive material paste, the water-soluble polymer, the binder, A thickener, a conductive material paste, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery were prepared, and various evaluations were performed. Table 3 shows the results.
  • Example 6 (Comparative Example 6) Prepare a binder, a thickener, a negative electrode slurry composition, a negative electrode, a positive electrode, a separator, and a lithium ion secondary battery in the same manner as in Example 1, except that a conductive material paste prepared as follows is used. and made various evaluations. Table 3 shows the results.
  • ⁇ Preparation of conductive material paste > 100 parts of multi-layered CNT (BET specific surface area: 200 m 2 /g, average length: 30 ⁇ m, aspect ratio: 300) as fibrous conductive carbon, and 25 parts of the compound of the following formula (III) (compound (III)) , and an appropriate amount of ion-exchanged water as a dispersion medium were stirred with a disper (3000 rpm, 60 minutes). Then, using a bead mill using zirconia beads with a diameter of 1 mm, the mixture was mixed at a peripheral speed of 8 m/s for 30 minutes to produce a conductive material paste (solid concentration: 6.0%).
  • Carbon indicates fibrous conductive carbon
  • Triazine compound refers to a compound having a triazine skeleton
  • MWCNT refers to multi-walled carbon nanotubes
  • SWCNT indicates single-walled carbon nanotubes
  • AA indicates an acrylic acid unit
  • SS indicates a sodium styrene sulfonate unit
  • AAm indicates an acrylamide unit
  • HEAAm denotes an N-hydroxyethylacrylamide unit
  • X indicates a method for producing a conductive material paste in which a compound having a triazine skeleton is added first and a water-soluble polymer is added later
  • Y indicates a manufacturing method of a conductive material paste in which a compound having a triazine skeleton and a water-soluble polymer are added at the same time.
  • an implementation containing fibrous conductive carbon, a compound having a triazine skeleton, a water-soluble polymer, and water, and the blending amounts of the compound having a triazine skeleton and the water-soluble polymer are each within a predetermined range. It can be seen that by using the conductive material pastes of Examples 1 to 19, negative electrode slurry compositions with excellent viscosity stability and electrochemical devices with excellent cycle characteristics can be obtained. Moreover, in Examples 1 to 19, it can be seen that the conductive material paste has excellent dispersion stability, the electrode has excellent peel strength, and heat generation can be sufficiently suppressed even when the electrochemical element is internally short-circuited.
  • a conductive material paste for an electrochemical element electrode that can prepare a slurry composition that has excellent viscosity stability and can exhibit excellent cycle characteristics in an electrochemical element, and the conductive material for an electrochemical element electrode.
  • a method of manufacturing a paste can be provided.
  • an electrochemical device having excellent cycle characteristics can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、粘度安定性に優れ、且つ電気化学素子に優れたサイクル特性を発揮させ得るスラリー組成物を調製可能な電気化学素子電極用導電材ペーストの提供を目的とする。本発明の導電材ペーストは、繊維状導電性カーボン、トリアジン骨格を有する化合物、水溶性重合体、及び水を含み、前記トリアジン骨格を有する化合物の配合量が、前記繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下であり、前記水溶性重合体の配合量が、前記繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下である。

Description

電気化学素子電極用導電材ペースト、電気化学素子電極用スラリー組成物、電気化学素子用電極及び電気化学素子、並びに電気化学素子電極用導電材ペーストの製造方法
 本発明は、電気化学素子電極用導電材ペースト、電気化学素子電極用スラリー組成物、電気化学素子用電極及び電気化学素子、並びに電気化学素子電極用導電材ペーストの製造方法に関するものである。
 リチウムイオン二次電池、リチウムイオンキャパシタ及び電気二重層キャパシタなどの電気化学素子は、小型で軽量、且つ、エネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。ここで、電気化学素子用の電極は、例えば、集電体と、当該集電体上に電気化学素子電極用スラリー組成物を乾燥して形成される電極合材層とを備えている。
 近年、電極合材層の形成に、導電材としてカーボンナノチューブ(以下、「CNT」と略記する場合がある。)などの繊維状導電性カーボンが用いられている。ここで繊維状導電性カーボンを用いた電極合材層の形成に際しては、繊維状導電性カーボンが良好に分散した電極合材層を得るべく、繊維状導電性カーボンと分散剤とを予混合して電気化学素子電極用導電材ペーストとし、得られた導電材ペーストと電極活物質とを合わせて電気化学素子電極用スラリー組成物を調製する技術が提案されている(例えば、特許文献1~2参照)。
特開2020-11872号公報 国際公開第2012/133030号
 しかしながら、上記従来の技術においては、導電材ペーストを用いて得られるスラリー組成物の物性を高めつつ電気化学素子の素子特性を向上させることが求められていた。具体的には、上記従来の技術には、スラリー組成物を長期間保管した場合の粘度変化を抑制(即ち、スラリー組成物の粘度安定性を確保)しつつ、電気化学素子に優れたサイクル特性を発揮させることを求められていた。
 そこで、本発明は、粘度安定性に優れ、且つ電気化学素子に優れたサイクル特性を発揮させ得るスラリー組成物を調製可能な電気化学素子電極用導電材ペースト、及び当該電気化学素子電極用導電材ペーストを製造する方法の提供を目的とする。
 また、本発明は、粘度安定性に優れ、且つ電気化学素子に優れたサイクル特性を発揮させ得る電気化学素子電極用スラリー組成物の提供を目的とする。
 そして、本発明は、電気化学素子に優れたサイクル特性を発揮させ得る電気化学素子用電極の提供を目的とする。
 さらに、本発明は、サイクル特性に優れる電気化学素子の提供を目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、水を含む分散媒中に導電材としての繊維状導電性カーボンが分散してなる導電材ペーストの調製に際し、所定量のトリアジン骨格を有する化合物、及び所定量の水溶性重合体を用いることで、導電材ペーストを用いて調製されるスラリー組成物の粘度安定性を確保しつつ、当該スラリー組成物から形成される電極合材層を備える電極により、電気化学素子に優れたサイクル特性を発揮させうることを見出し、本発明を完成させるに至った。
 すなわち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子電極用導電材ペーストは、繊維状導電性カーボン、トリアジン骨格を有する化合物、水溶性重合体、及び水を含み、前記トリアジン骨格を有する化合物の配合量が、前記繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下であり、前記水溶性重合体の配合量が、前記繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下であることを特徴とする。このように、繊維状導電性カーボンと、トリアジン骨格を有する化合物と、水溶性重合体と、水とを含み、トリアジン骨格を有する化合物と水溶性重合体の配合量がそれぞれ上述した範囲内である導電材ペーストを用いれば、粘度安定性に優れるスラリー組成物、及び電気化学素子に優れたサイクル特性を発揮させうる電極を作製することができる。
 なお、本発明において、「水溶性重合体」とは、温度25℃において重合体0.5gを100gの水に溶解した際に、不溶分が1.0質量%未満となる重合体を指す。
 ここで、本発明の電気化学素子電極用導電材ペーストは、前記繊維状導電性カーボンがカーボンナノチューブを含むことが好ましい。繊維状導電性カーボンとしてCNTを用いれば、電気化学素子のサイクル特性を更に向上させることができる。
 そして、本発明の電気化学素子電極用導電材ペーストは、前記繊維状導電性カーボンのBET比表面積が10m/g以上400m/g以下であることが好ましい。繊維状導電性カーボンのBET比表面積が上述した範囲内であれば、スラリー組成物の粘度安定性及び電気化学素子のサイクル特性を更に向上させることができる。また導電材ペーストを長期間保管した場合の粘度変化を抑制(すなわち、導電材ペーストの分散安定性を確保)しつつ、スラリー組成物から形成される電極合材層を集電体に対して強固に密着させることができる(すなわち、電極のピール強度を高めることができる)。
 なお、本発明において、繊維状導電性カーボンの「BET比表面積」とは、窒素吸着法によるBET比表面積を指し、ASTM D3037-81に準拠して測定することができる。
 さらに、本発明の電気化学素子電極用導電材ペーストは、繊維状導電性カーボンの平均長さが1.0μm以上60.0μm以下であることが好ましい。繊維状導電性カーボンの平均長さが上述した範囲内であれば、スラリー組成物の粘度安定性及び電気化学素子のサイクル特性を更に向上させることができる。また、導電材ペーストの分散安定性を高めつつ、電極のピール強度を向上させることができる。
 なお、本発明において、繊維状導電性カーボンの「平均長さ」は、走査型電子顕微鏡(SEM)画像上で、無作為に選択した20本の繊維状導電性カーボンについて長さを測定し、平均値を算出することで求めることができる。
 くわえて、本発明の電気化学素子電極用導電材ペーストは、繊維状導電性カーボンのアスペクト比が50以上1,000以下であることが好ましい。繊維状導電性カーボンのアスペクト比が上述した範囲内であれば、スラリー組成物の粘度安定性及び電気化学素子のサイクル特性を更に向上させることができる。また、導電材ペーストの分散安定性を向上させることができる。
 なお、本発明において、繊維状導電性カーボンの「アスペクト比」は、SEM画像上で、無作為に選択した20本の繊維状導電性カーボンについて長さ及び直径を測定し、直径と長さと比(長さ/直径)の平均値を算出することで求めることができる。
 ここで、本発明の電気化学素子電極用導電材ペーストは、前記水溶性重合体が、カルボン酸基含有単量体単位を、前記水溶性重合体の全単量体単位を100質量%として1質量%以上50質量%以下含むことが好ましい。カルボン酸基含有単量体単位の含有割合が上述した範囲内である水溶性重合体を用いれば、スラリー組成物の粘度安定性及び電気化学素子のサイクル特性を更に向上させることができる。また、導電材ペーストの分散安定性を向上させることができる。
 なお、本発明において、重合体が「単量体単位を含む」とは、「その単量体を用いて得た重合体中に当該単量体由来の繰り返し単位が含まれている」ことを意味する。
 また、本発明において、重合体中の単量体単位の含有割合は、H-NMR及び13C-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。
 そして、本発明の電気化学素子電極用導電材ペーストは、前記トリアジン骨格を有する化合物の分子量が500以下であることが好ましい。分子量が上述した値以下のトリアジン骨格を有する化合物を用いれば、スラリー組成物の粘度安定性を更に向上させることができる。また、導電材ペーストの分散安定性を高めることができる。
 さらに、本発明の電気化学素子電極用導電材ペーストは、前記トリアジン骨格を有する化合物が、アミノ基、水酸基、シアノ基、及びチオール基からなる群から選択される少なくとも一つの官能基を有することが好ましい。トリアジン骨格を有する化合物が上述した官能基の少なくとも何れかを有すれば、スラリー組成物の粘度安定性を更に向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子電極用スラリー組成物は、電極活物質と、上述した何れかの電気化学素子電極用導電材ペーストを含むことを特徴とする。電極活物質と上述した何れかの導電材ペーストを含むスラリー組成物は、粘度安定性に優れ、そして当該スラリー組成物を用いて電極を作製すれば、電気化学素子に優れたサイクル特性を発揮させることができる。
 ここで、本発明の電気化学素子電極用スラリー組成物は、前記電極活物質がケイ素を含有する活物質を含むことが好ましい。電極活物質としてケイ素を含有する活物質(シリコン系負極活物質)を用いれば、得られる電極(負極)を備える電気化学素子の容量を高めることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用電極は、上述した何れかの電気化学素子電極用スラリー組成物を用いて形成した電極合材層を備えることを特徴とする。上述した何れかのスラリー組成物を用いて形成した電極合材層を備える電極によれば、電気化学素子に優れたサイクル特性を発揮させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子は、上述した電気化学素子用電極を備えることを特徴とする。上述した電極を備える電気化学素子は、サイクル特性に優れる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子電極用導電材ペーストの製造方法は、繊維状導電性カーボンと、前記繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下のトリアジン骨格を有する化合物と、前記繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下の水溶性重合体と、水を混合する工程を含むことを特徴とする。このように、繊維状導電性カーボンと、トリアジン骨格を有する化合物と、水溶性重合体と、水とを、トリアジン骨格を有する化合物と水溶性重合体の配合量がそれぞれ上述した範囲内となるよう混合して導電材ペーストを調製すれば、当該導電材ペーストを用いて、粘度安定性に優れるスラリー組成物、及び電気化学素子に優れたサイクル特性を発揮させうる電極を作製することができる。
 ここで、本発明の電気化学素子電極用導電材ペーストは、前記混合する工程が、前記繊維状導電性カーボンと、前記トリアジン骨格を有する化合物と、前記水とを含む予混合物を調製する工程と、前記予混合物に前記水溶性重合体を添加する工程を含むことが好ましい。上述した手順で導電材ペーストを調製すれば、スラリー組成物の粘度安定性を更に向上させることができる。
 本発明によれば、粘度安定性に優れ、且つ電気化学素子に優れたサイクル特性を発揮させ得るスラリー組成物を調製可能な電気化学素子電極用導電材ペースト、及び当該電気化学素子電極用導電材ペーストを製造する方法を提供することができる。
 また、本発明によれば、粘度安定性に優れ、且つ電気化学素子に優れたサイクル特性を発揮させ得る電気化学素子電極用スラリー組成物を提供することができる。
 そして、本発明によれば、電気化学素子に優れたサイクル特性を発揮させ得る電気化学素子用電極を提供することができる。
 さらに、本発明によれば、サイクル特性に優れる電気化学素子を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の電気化学素子電極用導電材ペーストは、電気化学素子電極用スラリー組成物を製造する際の材料として用いられる。なお、本発明の電気化学素子電極用導電材ペーストは、本発明の電気化学素子電極用導電材ペーストの製造方法を用いて調製することができる。そして、本発明の電気化学素子電極用スラリー組成物は、本発明の電気化学素子電極用導電材ペーストを用いて調製される。加えて、本発明の電気化学素子用電極は、本発明の電気化学素子電極用スラリーを用いて形成された電極合材層を備える。また、本発明の電気化学素子は、本発明の電気化学素子用電極を備える。
(電気化学素子電極用導電材ペースト)
 本発明の導電材ペーストは、繊維状導電性カーボン、トリアジン骨格を有する化合物、及び水溶性重合体が水を含む分散媒中に分散及び/又は溶解してなる組成物である。ここで、導電材ペーストは、任意に、繊維状導電性カーボン、トリアジン骨格を有する化合物、水溶性重合体、及び分散媒以外の成分(その他の成分)を含有しうる。なお、導電材ペーストには、通常、電極活物質(正極活物質、負極活物質)は含まれない。
 そして、本発明の導電材ペーストは、繊維状導電性カーボン100質量部当たり、トリアジン骨格を有する化合物の配合量が1~50質量部であり、水溶性重合体の配合量が1~50質量部である。このような導電材ペーストを用いれば、粘度安定性に優れるスラリー組成物、及び電気化学素子に優れたサイクル特性を発揮させうる電極を作製することができる。
 本発明の導電材ペーストが上記効果を奏する理由は明らかではないが、本発明者の検討によれば以下の通りと推察される。
 まず、導電材ペースト中に含まれる水溶性重合体は、水などの分散媒中において繊維状導電性カーボンに吸着し分散させる分散剤として機能する。しかしながら、導電材ペーストと電極活物質を混合して調製したスラリー組成物を長期間保管すると、スラリー組成物が増粘してしまうことがある。この増粘は、繊維状導電性カーボン表面からの水溶性重合体の脱離に起因すると考えられる。より具体的には、スラリー組成物を長期間保管すると、繊維状導電性カーボン表面に吸着していた水溶性重合体の少なくとも一部が、繊維状導電性カーボンから脱離して電極活物質に吸着し、結果として繊維状導電性カーボン表面において水溶性重合体が脱離した領域が多く存在することになる。そして水溶性重合体が脱離した繊維状導電性カーボン表面の領域は、疎水性相互作用によりスラリー組成物中の他の成分(結着材や増粘剤など)とネットワーク構造を形成し、このネットワーク構造によりスラリー組成物の増粘が引き起こされると考えられる。
 これに対し、本発明の導電材ペーストは、導電材としての繊維状導電性カーボン、分散剤としての水溶性重合体に加え、トリアジン骨格を有する化合物を含む。このトリアジン骨格を有する化合物を用いることで、当該化合物を介して水溶性重合体が一層強固に繊維状導電性カーボン表面に吸着し繊維状導電性カーボン表面からの水溶性重合体の脱離が抑制されるためと推察されるが、スラリー組成物の経時増粘を抑制することができると考えられる。
 また、本発明の導電材ペーストは、繊維状導電性カーボンに対する水溶性重合体の配合量比、及び繊維状導電性カーボンに対するトリアジン骨格を有する化合物の配合量比がそれぞれ所定の値以上であるため、スラリー組成物中で繊維状導電性カーボンを良好に分散させつつ、当該良好な分散状態を長期間確保することができる。その一方で、本発明の導電材ペーストは、繊維状導電性カーボンに対する水溶性重合体の配合量比、及び繊維状導電性カーボンに対するトリアジン骨格を有する化合物の配合量比がそれぞれ所定の値以下であるため、繊維状導電性カーボンの過分散による電極合材層中の導電パス形成不良が生じにくい。このように、繊維状導電性カーボンに対する水溶性重合体の配合量比、及び繊維状導電性カーボンに対するトリアジン骨格を有する化合物の配合量比がそれぞれ所定の範囲内であるため、本発明の導電材ペーストを用いて得られる電極は、電気化学素子に優れたサイクル特性を発揮させることができると考えられる。
<繊維状導電性カーボン>
 繊維状導電性カーボンとしては、電極合材層中で導電パスを形成しうる導電材として機能するものであれば特に限定されないが、例えば、CNT、カーボンナノホーン、気相成長炭素繊維、ポリマー繊維を焼成後に破砕して得られるミルドカーボン繊維が挙げられる。これらは一種単独で、又は、二種以上を組み合わせて用いることができる。そしてこれらの中でも、電気化学素子のサイクル特性を更に向上させる観点から、CNTが好ましい。
 なお、CNTは、単層カーボンナノチューブであっても、多層カーボンナノチューブであってもよい。またCNTとしては、単層CNTと多層CNTを組み合わせて使用してもよい。
<<BET比表面積>>
 繊維状導電性カーボンは、BET比表面積が、10m/g以上であることが好ましく、25m/g以上であることがより好ましく、40m/g以上であることが更に好ましく、400m/g以下であることが好ましく、350m/g以下であることがより好ましく、300m/g以下であることが更に好ましい。繊維状導電性カーボンのBET比表面積が10m/g以上であれば、電極合材層中において導電パスが良好に形成され、電気化学素子のサイクル特性を更に向上させることができる。一方、繊維状導電性カーボンのBET比表面積が400m/g以下であれば、導電材ペーストの分散安定性及び電極のピール強度を高めつつ、スラリー組成物の粘度安定性を更に向上させることができる。
<<平均長さ>>
 繊維状導電性カーボンは、平均長さが、1.0μm以上であることが好ましく、1.5μm以上であることがより好ましく、2.0μm以上であることが更に好ましく、60μm以下であることが好ましく、55μm以下であることがより好ましく、50μm以下であることが更に好ましい。繊維状導電性カーボンの平均長さが1.0μm以上であれば、電極合材層中において導電パスが良好に形成され、電気化学素子のサイクル特性を更に向上させることができる。一方、繊維状導電性カーボンの平均長さが60μm以下であれば、導電材ペーストの分散安定性及び電極のピール強度を高めつつ、スラリー組成物の粘度安定性を更に向上させることができる。
<<アスペクト比>>
 繊維状導電性カーボンは、アスペクト比が、50以上であることが好ましく、60以上であることがより好ましく、80以上であることが更に好ましく、1,000以下であることが好ましく、900以下であることがより好ましく、800以下であることが更に好ましい。繊維状導電性カーボンのアスペクト比が50以上であれば、電極合材層中において導電パスが良好に形成され、電気化学素子のサイクル特性を更に向上させることができる。一方、繊維状導電性カーボンのアスペクト比が1,000以下であれば、導電材ペーストの分散安定性を高めつつ、スラリー組成物の粘度安定性を更に向上させることができる。
 繊維状導電性カーボンは、特に限定されることなく、アーク放電法、レーザーアブレーション法、化学的気相成長法(CVD法)などの既知の繊維状導電性カーボンの合成方法を用いて合成したものを使用することができる。
<トリアジン骨格を有する化合物>
 トリアジン骨格を有する化合物は、一つ又は複数のトリアジン環(例えば、1,3,5-トリアジン環)を有する化合物であれば特に限定されない。
 ここで、トリアジン骨格を有する化合物は、分子量が、500以下であることが好ましく、400以下であることがより好ましく、300以下であることが更に好ましい。トリアジン骨格を有する化合物の分子量が500以下であれば、当該化合物が容易に繊維状導電性カーボン表面へ接近し吸着しうるためと推察されるが、導電材ペーストの分散安定性を高めつつ、スラリー組成物の粘度安定性を更に向上させることができる。
 なおトリアジン骨格を有する化合物の分子量下限は、特に限定されないが85以上であることが好ましい。
 また、トリアジン骨格を有する化合物は、スラリー組成物の粘度安定性を更に向上させる観点から、アミノ基、水酸基、シアノ基、及びチオール基からなる群から選択される少なくとも一つを有することが好ましく、アミノ基、水酸基、及びシアノ基からなる群から選択される少なくとも一つを有することがより好ましく、アミノ基と水酸基の少なくとも一方を有することが更に好ましく、アミノ基を有することが特に好ましい。
 一方で、トリアジン骨格を有する化合物は、当該化合物を介して水溶性重合体をより一層良好に繊維状導電性カーボンの表面に吸着させ、スラリー組成物の粘度安定性を更に向上させる観点から、スルホン酸基を有さないことが好ましく、スルホン酸基、カルボン酸基、及びリン酸基(これらをまとめて「酸性基」と称する場合がある。)の全てを有さないことがより好ましい。
 より具体的に、トリアジン骨格を有する化合物としては、下記式(I)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(I)中、Aは、アミノ基、水酸基、シアノ基、チオール基、スルホン酸基、カルボン酸基、リン酸基、又はそれらの少なくとも何れかを有する有機基を表す。なお、式(I)中に複数存在するAは、それぞれ独立であり、同一であっても異なっていてもよい。
 ここで、式(I)中のAは、スラリー組成物の粘度安定性を更に向上させる観点から、アミノ基、水酸基、シアノ基、又はそれらの少なくとも何れかを有する有機基であることが好ましく、アミノ基、水酸基、又はシアノ基であることがより好ましく、アミノ基又は水酸基であることが更に好ましく、アミノ基であることが特に好ましい。
 そして、トリアジン骨格を有する化合物としては、導電材ペーストの分散安定性及び電極のピール強度を高めつつ、スラリー組成物の粘度安定性を更に向上させる観点から、2,4,6-トリアミノ-1,3,5-トリアジン(以下、「トリアミノトリアジン」と略記する場合がある。)、シアヌル酸が好ましく、トリアミノトリアジンがより好ましい。
 なお、トリアジン骨格を有する化合物は、一種単独で、又は、二種以上を組み合わせて用いることができる。
 ここで、本発明の導電材ペーストにおいて、上述したトリアジン骨格を有する化合物の配合量は、繊維状導電性カーボン100質量部当たり、1質量部以上50質量部以下であることが必要であり、2質量部以上であることが好ましく、3質量部以上であることがより好ましく、7.5質量部以上であることが更に好ましく、40質量部以下であることが好ましく、30質量部以下であることがより好ましい。繊維状導電性カーボン100質量部当たりのトリアジン骨格を有する化合物の配合量が1質量部未満であると、スラリー組成物の粘度安定性を確保することができず、また導電材ペーストの分散安定性が低下する。一方、繊維状導電性カーボン100質量部当たりのトリアジン骨格を有する化合物の配合量が50質量部超であると、電気化学素子のサイクル特性が低下する。
 また、上述したトリアジン骨格を有する化合物は発泡剤としても機能しうる。すなわち、電気化学素子内部で電極間の短絡が生じて高温となった場合、トリアジン骨格を有する化合物は、発泡して不燃性ガスを生じさせることができる。この不燃性ガスにより、電極構造を破壊しつつ導電パスを切断してジュール熱の発生を抑制し、また可燃性ガスを希釈して延焼を遅延させることができる。したがって、導電材ペーストにおけるトリアジン骨格を有する化合物の配合量が、繊維状導電性カーボン100質量部当たり1質量部以上であれば、電気化学素子の安全性を十分に高めることができる。
<水溶性重合体>
 水溶性重合体は、水を含む分散媒中で上述した繊維状導電性カーボンを分散させ得る分散剤として機能しうる重合体である。以下、本発明において使用しうる水溶性重合体について例を挙げて説明するが、本発明で用いる水溶性重合体はこれに限定されるものではない。
<<組成>>
 水溶性重合体は、カルボン酸基含有単量体単位を含むことが好ましい。水溶性重合体がカルボン酸基含有単量体単位を含むことで、水を含む分散媒に容易に溶解しうり、分散剤としての機能を良好に発現しうる。なお、水溶性重合体は、カルボン酸基含有単量体単位以外の単量体単位(その他の単量体単位)を含んでいてもよい。
[カルボン酸基含有単量体単位]
 カルボン酸基含有単量体単位を形成しうるカルボン酸基含有単量体としては、モノカルボン酸及びその誘導体や、ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボン酸基含有単量体としては、加水分解によりカルボン酸基を生成する酸無水物も使用できる。
 これらは一種単独で、又は、二種以上を組み合わせて用いることができる。そしてこれらの中でも、モノカルボン酸が好ましく、アクリル酸がより好ましい。
 そして、水溶性重合体中におけるカルボン酸基含有単量体単位の含有割合は、当該水溶性重合体の全単量体単位を100質量%として、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることが更に好ましく、10質量%以上であることがより一層好ましく、25質量%以上であることが特に好ましく、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることが更に好ましく、35質量%以下であることが特に好ましい。水溶性重合体中のカルボン酸基含有単量体単位の含有割合が1質量%以上であれば、導電材ペーストの分散安定性を高めつつ、スラリー組成物の粘度安定性を更に向上させることができる。一方、水溶性重合体中のカルボン酸基含有単量体単位の含有割合が50質量%以下であれば、電気化学素子のサイクル特性を更に向上させることができる。
[その他の単量体単位]
 その他の単量体単位としては、特に限定されないが、スルホン酸基含有単量体単位、リン酸基含有単量体単位、水酸基含有単量体単位、アミド基含有単量体単位が挙げられる。なお、水溶性重合体は、その他の単量体単位を一種単独で含んでいてもよく、二種以上含んでいてもよい。
 スルホン酸基含有単量体単位を形成しうるスルホン酸基含有単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸、及びこれらの塩(ナトリム塩)が挙げられる。これらは一種単独で、又は二種以上を組み合わせて用いることができる。
 なお、本発明において、「(メタ)アリル」とは、アリル及び/又はメタリルを意味する。
 リン酸基含有単量体単位を形成しうるリン酸基含有単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルが挙げられる。これらは一種単独で、又は二種以上を組み合わせて用いることができる。
 なお、本発明において、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。
 水酸基含有単量体単位を形成しうる水酸基含有単量体としては、例えば、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-ヒドロキシプロピルアクリルアミド、N-ヒドロキシメチルメタクリルアミド、N-ヒドロキシエチルメタクリルアミド、N-ヒドロキシプロピルメタクリルアミドなどのヒドロキシル基含有(メタ)アクリルアミド単量体;2-ヒドロキシメチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシメチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレートなどのヒドロキシル基含有(メタ)アクリレート単量体;が挙げられる。これらは一種単独で、又は二種以上を組み合わせて用いることができる。
 なお、本発明において、「(メタ)アクリル」は、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。
 また、本発明において、アミド基及び水酸基の双方を有する単量体単位は、「水酸基含有単量体単位」に含まれ、「アミド基含有単量体単位」には含まれないものとし、アミド基及び水酸基の双方を有する単量体は、「水酸基含有単量体」に含まれ、「アミド基含有単量体」には含まれないものとする。
 アミド基含有単量体単位を形成しうるアミド基含有単量体としては、例えば、N-ビニルアセトアミド、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、ジメチルアミノプロピル(メタ)アクリルアミドが挙げられる。これらは一種単独で、又は二種以上を組み合わせて用いることができる。
 ここで、水溶性重合体は、スラリー組成物の粘度安定性を更に高めつつ電気化学素子のサイクル特性を更に向上させる観点から、その他の単量体単位として、スルホン酸基含有単量体単位を含むことが好ましく、スチレンスルホン酸単位、スチレンスルホン酸ナトリウム単位を含むことがより好ましい。
 そして、水溶性重合体中におけるその他の単量体単位の含有割合は、当該水溶性重合体の全単量体単位を100質量%として、50質量%以上であることが好ましく、55質量%以上であることがより好ましく、60質量%以上であることが更に好ましく、65質量%以上であることが特に好ましく、99質量%以下であることが好ましく、98質量%以下であることがより好ましく、95質量%以下であることが更に好ましく、90質量%以下であることが特に好ましい。水溶性重合体中のその他の単量体単位の含有割合が50質量%以上であれば、電気化学素子のサイクル特性を更に向上させることができる。一方、水溶性重合体中のその他の単量体単位の含有割合が99質量%以下であれば、導電材ペーストの分散安定性を高めつつ、スラリー組成物の粘度安定性を更に向上させることができる。
<<重量平均分子量>>
 水溶性重合体は、重量平均分子量が、100以上であることが好ましく、500以上であることがより好ましく、500,000以下であることが好ましく、100,000以下であることがより好ましく、50,000以下であることが更に好ましく、40,000以下であることが特に好ましい。水溶性重合体の重量平均分子量が100以上であれば、導電材ペーストの分散安定性及び電極のピール強度を高めつつ、スラリー組成物の粘度安定性を更に向上させることができる。一方、水溶性重合体の重量平均分子量が500,000以下であれば、導電材ペーストの分散安定性を高めつつ、スラリー組成物の粘度安定性を更に向上させることができる。
 なお、本発明において、重合体の「重量平均分子量」は、実施例に記載の方法を用いて測定することができる。
<<調製方法>>
 水溶性重合体の調製方法は特に限定されない。水溶性重合体は、例えば、一種又は二種以上の単量体を含む単量体組成物を水系溶媒中で重合しすることにより調製される。なお、単量体組成物中の各単量体の含有割合は、重合体中の所望の単量体単位の含有割合に準じて定めることができる。
 なお、重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合、各種縮合重合、付加重合などいずれの反応も用いることができる。そして、重合に際しては、必要に応じて既知の乳化剤や重合開始剤を使用することができる。
<<配合量>>
 ここで、本発明の導電材ペーストにおいて、上述した水溶性重合体の配合量は、繊維状導電性カーボン100質量部当たり、1質量部以上50質量部以下であることが必要であり、2質量部以上であることが好ましく、3質量部以上であることがより好ましく、10質量部以上であることが更に好ましく、40質量部以下であることが好ましく、30質量部以下であることがより好ましい。繊維状導電性カーボン100質量部当たりの水溶性重合体の配合量が1質量部未満であると、スラリー組成物の粘度安定性を確保することができず、また導電材ペーストの分散安定性が低下する。一方、繊維状導電性カーボン100質量部当たりの水溶性重合体の配合量が50質量部超であると、電極のピール強度及び電気化学素子のサイクル特性が低下する。
<分散媒>
 分散媒としては、水を含有していれば特に限定されず、水と有機溶媒の混合物であってもよい。有機溶媒としては、特に限定されることなく、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、ノナノール、デカノール、アミルアルコールなどのアルコール類;アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類;酢酸エチル、酢酸ブチルなどのエステル類;ジエチルエーテル、ジオキサン、テトラヒドロフランなどのエーテル類;N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)などのアミド系有機溶媒;トルエン、キシレン、クロロベンゼン、オルトジクロロベンゼン、パラジクロロベンゼンなどの芳香族炭化水素類;などが挙げられる。なお、有機溶媒は、一種単独で、又は二種以上を組み合わせて用いることができる。
<その他の成分>
 導電材ペーストが含み得るその他の成分としては、特に限定されず、繊維状導電性カーボン以外の導電材(カーボンブラックなど)、そして「電気化学素子電極用スラリー組成物」の項で後述する電極活物質以外の成分が挙げられる。なお、その他の成分は、一種単独で、又は二種以上を組み合わせて用いることができる。
(電気化学素子電極用導電材ペーストの製造方法)
 上述した本発明の導電材ペーストは、本発明の導電材ペーストの製造方法を用いて製造することができる。具体的に、本発明の導電材ペーストの製造方法では、繊維状導電性カーボンと、繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下のトリアジン骨格を有する化合物と、繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下の水溶性重合体と、水と、必要に応じて用いられるその他の成分を混合する工程を実施する。
 そして、上述した混合は、繊維状導電性カーボンと、トリアジン骨格を有する化合物と、水を含む予混合物を調製する工程と、予混合物に水溶性重合体を添加する工程を経て行うことが好ましい。このように、まず繊維状導電性カーボンとトリアジン骨格を有する化合物とを水の存在下で混合し、次いで得られた予混合物に水溶性重合体を添加すれば、繊維状導電性カーボン表面に対してまずはトリアジン骨格を有する化合物を吸着させ、当該化合物を介して更に水溶性重合体を良好に吸着させることができるためと推察されるが、導電材ペーストの分散安定性を高めつつ、スラリー組成物の粘度安定性を更に向上させることができる。
 なお各種成分の混合は、特に限定されず、既知の混合装置を用いて行うことができる。このような混合装置としては、例えば、ディスパー、ホモミキサー、プラネタリーミキサー、ニーダー、ボールミル、ビーズミルなどが挙げられる。
(電気化学素子電極用スラリー組成物)
 本発明のスラリー組成物は、上述した導電材ペースト及び電極活物質を含み、必要に応じて増粘剤、結着材などの任意成分を含む。換言すると、本発明のスラリー組成物は、繊維状導電性カーボンと、トリアジン骨格を有する化合物と、水溶性重合体と、水を含有する分散媒とを含み、必要に応じて増粘剤、結着材などの任意成分を含む。
 このように、上述した導電材ペーストを含むスラリー組成物は粘度安定性に優れ、また当該スラリー組成物から形成される電極合材層を備える電極によれば、電気化学素子に優れたサイクル特性を発揮させることができる。
<電極活物質>
 電極用スラリーに配合する電極活物質(正極活物質、負極活物質)としては、特に限定されることなく、既知の電極活物質を用いることができる。
 例えばリチウムイオン二次電池に用いられる負極活物質としては、特に限定されないが、炭素系負極活物質、金属系負極活物質、及びこれらを組み合わせた負極活物質などが挙げられる。
 ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいい、炭素系負極活物質としては、例えば炭素質材料と黒鉛質材料とが挙げられる。
 そして、炭素質材料としては、例えば、易黒鉛性炭素や、ガラス状炭素に代表される非晶質構造に近い構造を持つ難黒鉛性炭素などが挙げられる。
 ここで、易黒鉛性炭素としては、例えば、石油又は石炭から得られるタールピッチを原料とした炭素材料が挙げられる。具体例を挙げると、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維などが挙げられる。
 また、難黒鉛性炭素としては、例えば、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)、ハードカーボンなどが挙げられる。
 さらに、黒鉛質材料としては、例えば、天然黒鉛、人造黒鉛などが挙げられる。
 ここで、人造黒鉛としては、例えば、易黒鉛性炭素を含んだ炭素を主に2800℃以上で熱処理した人造黒鉛、MCMBを2000℃以上で熱処理した黒鉛化MCMB、メソフェーズピッチ系炭素繊維を2000℃以上で熱処理した黒鉛化メソフェーズピッチ系炭素繊維などが挙げられる。
 また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)及びその合金、並びに、それらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが用いられる。これらの中でも、金属系負極活物質としては、ケイ素を含有する活物質(シリコン系負極活物質)が好ましい。シリコン系負極活物質を用いることにより、リチウムイオン二次電池を高容量化することができるからである。
 シリコン系負極活物質としては、例えば、ケイ素(Si)、ケイ素を含む合金、SiO、SiO、Si含有材料を導電性カーボンで被覆又は複合化してなるSi含有材料と導電性カーボンとの複合化物などが挙げられる。
 そして、シリコン系負極活物質が、負極活物質中に占める割合は、負極活物質全体を100質量%として、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。シリコン系負極活物質の割合が1質量%以上であれば電気化学素子であるリチウムイオン二次電池の容量を十分に高めることができ、20質量%以下であればサイクル特性を更に向上させることができる。
 なお、電極活物質の粒径は、特に限定されることなく、従来使用されている電極活物質と同様とすることができる。
 また、スラリー組成物中の電極活物質の量も、特に限定されず、従来使用されている範囲内とすることができる。
 そして、電極活物質は、一種単独で、又は二種以上を組み合わせて用いることができる。
<任意成分>
 スラリー組成物に含まれ得る任意成分としては、例えば、増粘剤、結着材、補強材、酸化防止剤、電解液の分解を抑制する機能を有する電解液添加剤が挙げられる。これらの任意成分は、一種単独で、又は二種以上を組み合わせて用いることができる。
 上述した任意成分の中でも、スラリー組成物は、増粘剤、結着材を含むことが好ましい。
<<増粘剤>>
 増粘剤としては、特に限定されないが、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース、ポリビニルアルコール、ポリメタクリル酸、ポリアクリル酸、アクリルアミド/アクリル酸/N-ヒドロキシエチルアクリルアミドの三元共重合体が挙げられる。これらは一種単独で、又は二種以上を組み合わせて用いることができる。また、これらは未中和状態、あるいは、中和状態のいずれでも用いることが可能である。これらの中でも、アクリルアミド/アクリル酸/N-ヒドロキシエチルアクリルアミドの三元共重合体が好ましい。
 ここで、増粘剤は、重量平均分子量が500,000以上であることが好ましく、800,000以上であることがより好ましく、10,000,000以下であることが好ましく、8,000,000以下であることがより好ましい。増粘剤の重量平均分子量が500,000以上であれば、電極のピール強度を高めることができ、10,000,000以下であれば、電気化学素子のサイクル特性を更に向上させることができる。
 そして、本発明のスラリー組成物において、上述した増粘剤の配合量は、電極活物質100質量部当たり、0.2質量部以上であることが好ましく、0.4質量部以上であることがより好ましく、5.0質量部以下であることが好ましく、4.0質量部以下であることがより好ましい。電極活物質100質量部当たりの増粘剤の配合量が0.2質量部以上であれば、電気化学素子のサイクル特性を更に高めることができ、5.0質量部以下であれば、電気化学素子の容量を向上させることができる。
<<結着材>>
 結着材としては、特に限定されないが、例えば、非水溶性の(すなわち、水溶性でない)重合体が好ましく用いられる。非水水溶性の重合体としては、例えば、ポリフッ化ビニリデン(PVDF)等のフッ素含有樹脂、ポリアクリロニトリル(PAN)、スチレン-ブタジエン共重合体(SBR)が挙げられる。これらは一種単独で、又は二種以上を組み合わせて用いることができる。
 そして、本発明のスラリー組成物において、上述した結着材の配合量は、電極活物質100質量部当たり、0.1質量部以上2.0質量部以下であることが好ましい。電極活物質100質量部当たりの結着材の配合量が上述した範囲内であれば、電極のピール強度を高めつつ、電気化学素子のサイクル特性を更に向上させることができる。
<スラリー組成物の調製方法>
 上述した成分を混合してスラリー組成物を得るに際し、混合方法には特に制限は無く、例えば、「電気化学素子電極用導電材ペーストの製造方法」の項で上述した既知の混合装置を用いることができる。
 なお、電極活物質と導電材ペーストの混合比は、電極活物質と繊維状導電性カーボンの所期の配合比に応じて適宜設定すればよい。スラリー組成物中において、繊維状導電性カーボンの配合量は、電極活物質100質量部当たり、0.001質量部以上であることが好ましく、0.005質量部以上であることがより好ましく、1.0質量部以下であることが好ましく、0.8質量部以下であることがより好ましい。電極活物質100質量部当たりの繊維状導電性カーボンの配合量が0.005質量部以上であれば、電気化学素子のサイクル特性を更に高めることができ、1.0質量部以下であれば、電気化学素子の容量を向上させることができる。
(電気化学素子用電極)
 本発明の電極は、上述した本発明のスラリー組成物を使用して得られる電極合材層を備える。より具体的には、本発明の電極は、通常、電極合材層を集電体上に備え、電極合材層は本発明のスラリー組成物の乾燥物からなる。そのため、電極合材層は、電極活物質と、繊維状導電性カーボンと、トリアジン骨格を有する化合物とを含み、必要に応じて増粘剤、結着材などの任意成分を含む。なお、電極合材層中における各成分の好適な存在比は、スラリー組成物中の各成分の好適な存在比と同じである。
 そして、本発明の電極は、上述した本発明のスラリー組成物を用いて形成した電極合材層を備えているので、電気化学素子に優れたサイクル特性を発揮させることができる。
<集電体>
 集電体は、電気導電性を有し、かつ、電気化学的に耐久性のある材料からなる。集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。これらの材料は、一種単独で、又は二種以上を組み合わせて用いることができる。そして正極の集電体としては、アルミニウムからなる集電体(アルミニウム箔など)が好ましく、負極の集電体としては、銅からなる集電体(銅箔など)が好ましい。
<電極の製造方法>
 本発明の電極を製造する方法は特に限定されない。例えば、本発明の電極は、上述した本発明のスラリー組成物を、集電体の少なくとも一方の面に塗布し、乾燥して電極合材層を形成することで製造することができる。より詳細には、当該製造方法は、スラリー組成物を集電体の少なくとも一方の面に塗布する工程(塗布工程)と、集電体の少なくとも一方の面に塗布されたスラリー組成物を乾燥して集電体上に電極合材層を形成する工程(乾燥工程)とを含む。
<<塗布工程>>
 スラリー組成物を集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、スラリー組成物を集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる電極合材層の厚みに応じて適宜に設定しうる。
<<乾燥工程>>
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に電極合材層を形成し、集電体と電極合材層とを備える電極を得ることができる。
 なお、乾燥工程の後、金型プレス又はロールプレスなどを用い、電極合材層に加圧処理を施してもよい。加圧処理により、電極のピール強度を向上させることができる。
(電気化学素子)
 本発明の電気化学素子は、上述した本発明の電極を備える。そして、本発明の電気化学素子は、本発明の電極を備えているため、サイクル特性に優れている。なお、本発明の電気化学素子は、例えば非水系二次電池であり、リチウムイオン二次電池であることが好ましい。
 ここで、以下では、本発明の電気化学素子の一例としてのリチウムイオン二次電池の構成について説明する。このリチウムイオン二次電池は、正極、負極、電解液、セパレータを備える。そして正極と負極の少なくとも一方が、本発明の電極である。即ち、このリチウムイオン二次電池において、正極が本発明の電極であり負極が本発明の電極以外の電極であってもよく、正極が本発明の電極以外の電極であり負極が本発明の電極であってもよく、正極と負極の双方が本発明の電極であってもよい。
<本発明の電極以外の電極>
 本発明の電極に該当しない電極としては、特に限定されず既知の電極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましく、エチレンカーボネートとエチルメチルカーボネートとの混合物を用いることが更に好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5~15質量%することが好ましく、2~13質量%とすることがより好ましく、5~10質量%とすることが更に好ましい。また、電解液には、既知の添加剤、例えばフルオロエチレンカーボネートやエチルメチルスルホンなどを添加してもよい。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<リチウムイオン二次電池の製造方法>
 本発明に従うリチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。リチウムイオン二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 そして、実施例及び比較例において、水溶性重合体及び増粘剤の重量平均分子量、導電材ペーストの分散安定性、スラリー組成物の粘度安定性、負極のピール強度、並びにリチウムイオン二次電池のサイクル特性及び内部短絡時の発熱抑制は、それぞれ以下の方法を使用して評価した。
<重量平均分子量>
 水溶性重合体、増粘剤のそれぞれを測定対象の重合体とし、それらの重合体の重量平均分子量を、ゲル浸透クロマトグラフィ(GPC)により下記の手順で測定した。まず、溶離液約5mLに、測定対象の重合体の固形分濃度が約0.5g/Lとなるように加えて、室温で緩やかに溶解させた。目視で重合体の溶解を確認後、0.45μmフィルターにて穏やかにろ過を行い、測定用試料を調製した。そして、標準物質で検量線を作成することにより、標準物質換算値としての重量平均分子量を算出した。なお、測定条件は、以下のとおりである。
<<測定条件>>
 カラム:昭和電工社製、製品名Shodex OHpak(SB-G,SB-807HQ,SB-806MHQ)
 溶離液:0.1M トリス緩衝液 (0.1M 塩化カリウム添加)
 流速:0.5mL/分
 試料濃度:0.05g/L(固形分濃度)
 注入量:200μL
 カラム温度:40℃
 検出器:示差屈折率検出器RI(東ソー社製、製品名「RI-8020」)
 標準物質:単分散プルラン(昭和電工社製)
<分散安定性>
 導電材ペーストの作製直後の粘度η1を、B型粘度計を用いて、温度25℃、スピンドル回転速度60rpmの条件で、スピンドル回転開始後60秒間経過時に測定した。η1測定後の導電材ペーストを25℃の環境にて1週間静置して保管し、粘度η1と同様にして保管後の粘度η2を測定した。η1に対するη2の比(η2/η1)をペースト粘度比とし、下記基準で評価した。ペースト粘度比の値が1.0に近い程、導電材ペーストの粘度上昇が抑制されることを示す。
 A:ペースト粘度比が1.1未満
 B:ペースト粘度比が1.1以上1.5未満
 C:ペースト粘度比が1.5以上2.0未満
 D:ペースト粘度比が2.0以上
<粘度安定性>
 スラリー組成物の作製直後の粘度η3を、B型粘度計を用いて、温度25℃、スピンドル回転速度60rpmの条件で、スピンドル回転開始後60秒間経過時に測定した。η3測定後のスラリー組成物を25℃の環境にて1週間静置して保管し、粘度η3と同様にして保管後の粘度η4を測定した。このη3に対するη4の比(η4/η3)をスラリー粘度比とし、下記基準で評価した。スラリー粘度比の値が1.0に近い程、スラリー組成物の粘度上昇が抑制されることを示す。
 A:スラリー粘度比が1.1未満
 B:スラリー粘度比が1.1以上1.3未満
 C:スラリー粘度比が1.3以上1.5未満
 D:スラリー粘度比が1.5以上
<ピール強度>
 負極を、幅1cm×長さ10cmの矩形に切り出し試験片とした。得られた試験片を、負極合材層面を上にして固定した。固定した試験片の負極合材層の表面にセロハンテープ(JIS Z1522に規定されるもの)を貼り付けた後、試験片の一端からセロハンテープを50mm/分の速度で180°方向に引き剥がしたときの応力を測定した。同様の測定を合計5回行い、その平均値をピール強度とし、下記基準で評価した。
 A:ピール強度が10N/m以上
 B:ピール強度が8N/m以上10N/m未満
 C:ピール強度が4N/m以上8N/m未満
 D:ピール強度が4N/m未満
<サイクル特性>
 リチウムイオン二次電池を、電解液注液後、25℃の環境下で24時間静置させた。次いで、0.1Cの定電流法によりセル電圧4.35Vまで充電し、セル電圧2.75Vまで放電する充放電の操作を行い、初期容量C0を測定した。さらに、45℃の環境下で1.0Cの定電流法によってセル電圧4.35Vまで充電し、セル電圧2.75Vまで充電モードと同定電流法で放電する充放電を繰り返し、100サイクル後の容量C1を測定した。そして、容量維持率(%)=C1/C0×100を算出し、下記基準で評価した。容量維持率が高いほど、リチウムイオン二次電池がサイクル特性に優れることを示す。
 A:容量維持率が96%以上
 B:容量維持率が90%以上96%未満
 C:容量維持率が80%以上90%未満
 D:容量維持率が80%未満
<内部短絡時の発熱抑制>
 リチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にてセル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.35V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施した。その後、25℃の雰囲気下で、0.2Cの充電レートにて定電圧定電流(CC-CV)方式で4.35V(カットオフ条件:0.02C)まで充電した。その後、リチウムイオン二次電池の中央付近に、直径3mm、長さ10cmの鉄製の釘を5m/分の速度で貫通させることにより、強制的に短絡させた。この強制的な短絡を、同一の操作でそれぞれ作製した5つのリチウムイオン二次電池(試験体)について行い、破裂も発火も生じない試験体の数により、下記の基準で評価した。破壊も発火も生じない試験体の数が多いほど、リチウムイオン二次電池が内部短絡時の発熱抑制に優れることを示す。
 A:破裂も発火も生じない試験体の数が4個又は5個
 B:破裂も発火も生じない試験体の数が3個
 C:破裂も発火も生じない試験体の数が2個
 D:破裂も発火も生じない試験体の数が1個又は0個
(実施例1)
<水溶性重合体の調製>
 撹拌翼付きガラス製1.5Lフラスコに、イオン交換水900部を投入して、温度40℃に加熱し、流量100mL/分の窒素ガスでフラスコ内を置換した。次に、スルホン酸基含有単量体としてのスチレンスルホン酸ナトリウム75部、カルボン酸基含有単量体としてのアクリル酸25部、及びチオグリセロール2.5部を混合して、フラスコ内に注入した。その後、焼結金属を用いて流量1.5L/分で60分間窒素バブリングを実施して脱気した後、重合促進剤としてのアスコルビン酸5.0%水溶液10部をシリンジで添加した。前記重合促進剤の添加から5分後に、重合開始剤としての過硫酸アンモニウム10%水溶液10部をシリンジでフラスコ内に添加し重合反応を開始した。重合開始剤を添加した2時間後、温度を60℃に昇温、そして2時間維持し重合反応を進めた。重合開始剤を添加した4時間後、フラスコを空気中に開放して重合反応を停止させ、水酸化リチウムの8%水溶液を添加し、温度25℃に維持しながらpH8.0まで調整し、水溶性重合体の水溶液を得た。
<結着材の調製>
 撹拌機付き5MPa耐圧容器Aに、スチレン3.15部、1,3-ブタジエン1.66部、乳化剤としてのラウリル硫酸ナトリウム0.2部、イオン交換水20部、及び重合開始剤としての過硫酸カリウム0.03部を入れ、十分に撹拌した後、60℃に加温して重合を開始させ、6時間反応させてシード粒子を得た。
 上記の反応後、75℃に加温し、スチレン56.85部、1,3-ブタジエン33.84部、イタコン酸3.5部、連鎖移動剤としてのtert-ドデシルメルカプタン0.25部、乳化剤としてのラウリル硫酸ナトリウム0.35部を入れた別の容器Bから、これらの混合物の耐圧容器Aへの添加を開始し、これと同時に、重合開始剤として過硫酸カリウム1部の耐圧容器Aへの添加を開始することで2段目の重合を開始した。
 また、2段目の重合を開始から4時間後(単量体組成物全体のうち70%添加後)、耐圧容器Aに2-ヒドロキシエチルアクリレートを1部、1時間半に亘って加えた。
 すなわち、単量体組成物全体としては、スチレン60部、1,3-ブタジエン35.5部、イタコン酸3.5部、2-ヒドロキシエチルアクリレート1部を用いた。
 2段目の重合開始から5時間半後、これら単量体組成物を含む混合物の全量添加が完了し、その後、さらに85℃に加温して6時間反応させた。重合転化率が97%になった時点で冷却し反応を停止した。この重合物を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行った。さらにその後冷却し、粒子状結着材(非水溶性、SBR)の水分散液を得た。
<増粘剤の調製>
 セプタム付き10Lフラスコに、イオン交換水770部を投入して、温度40℃に加熱し、流量100mL/分の窒素ガスでフラスコ内を置換したアクリル酸35部と、アクリルアミド40部と、N-ヒドロキシエチルアクリルアミド25部とを混合して、シリンジでフラスコ内に注入した。その後、重合促進剤としてL-アスコルビン酸ナトリウムの2.0%水溶液9.3部をシリンジで投入し、10分後に重合開始剤としての過硫酸アンモニウムの2.5%水溶液7.5部をシリンジでフラスコ内に追加した。反応開始1時間後に温度を55℃に昇温し、重合反応を進めた。4時間後、重合促進剤としてL-アスコルビン酸ナトリウムの2.0%水溶液1.2部をシリンジで投入し、10分後に重合開始剤としての過硫酸カリウムの2.5%水溶液1.25部をシリンジでフラスコ内に追加した。6時間後、反応停止剤を添加し、フラスコを空気中に開放して重合反応を停止させた。その後、水酸化リチウムの10%水溶液を用いて生成物のpHを8に調整することにより、増粘剤(アクリル酸/アクリルアミド/N-ヒドロキシエチルアクリルアミドの三元共重合体)を得た。
<導電材ぺーストの調製>
 繊維状導電性カーボンとしての多層CNT(BET比表面積:200m/g、平均長さ:30μm、アスペクト比:300)100部と、トリアジン骨格を有する化合物としてのトリアミノトリアジン7.5部と、分散媒としての適量のイオン交換水とを、ディスパーにて撹拌(3000rpm、60分)し、次いで直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/sにて30分間混合した。得られた予混合物に、上記のようにして得られた水溶性重合体の水溶液を10部(固形分相当量)添加し、さらに30分間混合することにより、導電材ペースト(固形分濃度:6.0%)を製造した。この導電材ペーストについて、分散安定性を評価した。結果を表1に示す。
<負極用スラリー組成物の調製>
 ディスパー付きのプラネタリーミキサーに、炭素系負極活物質としての人造黒鉛(体積平均粒子径:24.5μm、比表面積:3.5m/g)90部と、シリコン系負極活物質としてのSiO10部と、上記のようにして得られた増粘剤の水溶液2.0部(固形分相当量)を加え、イオン交換水で固形分濃度58%に調整し、室温下で60分混合した。混合後、当該プラネタリーミキサーに、上記のようにして得られた導電材ペーストを多層カーボンナノチューブが0.2部(固形分相当量)となるように添加し、混合した。次いでイオン交換水で固形分濃度50%に調整し、さらに上記のようにして得られた結着材の水分散液を1.0部(固形分相当量)添加して混合液を得た。得られた混合液を減圧下で脱泡処理して、流動性の良い負極用スラリー組成物を得た。この負極用スラリー組成物について、粘度安定性を評価した。結果を表1に示す。
<負極の製造>
 上記のようにして得られた負極用スラリー組成物を、コンマコーターで、厚さ18μmの銅箔(集電体)の上に、乾燥後の膜厚が105μm、塗布量が10mg/cmになるように塗布した。この負極用スラリー組成物が塗布された銅箔を、0.5m/分の速度で温度75℃のオーブン内を2分間、さらに温度120℃のオーブン内を2分間かけて搬送することにより、銅箔上の負極用スラリー組成物を乾燥させ、負極原反を得た。この負極原反をロールプレスで圧延して、負極合材層の厚みが80μmの負極を得た。この負極について、ピール強度を評価した。結果を表1に示す。
<正極の製造>
 プラネタリーミキサーに、正極活物質としてのスピネル構造を有するLiCoO:95部、正極用結着材としてのPVDF(ポリフッ化ビニリデン)を固形分相当で3部、導電材としてのアセチレンブラック2部、及び溶媒としてのN-メチルピロリドン20部を加えて混合し、正極用スラリー組成物を得た。
 得られた正極用スラリー組成物を、コンマコーターで、厚さ20μmのアルミニウム箔(集電体)上に、乾燥後の膜厚が100μm程度になるように塗布した。この正極用スラリー組成物が塗布されたアルミニウム箔を、0.5m/分の速度で温度60℃のオーブン内を2分間、さらに温度120℃のオーブン内を2分間かけて搬送することにより、アルミニウム箔上の正極用スラリー組成物を乾燥させ、正極原反を得た。この正極原反をロールプレスで圧延して、正極合材層の厚みが70μmの正極を得た。
<セパレータの用意>
 単層のポリプロピレン製セパレータ(幅65mm、長さ500mm、厚さ25μm;乾式法により製造;気孔率55%)を用意した。このセパレータを、5cm×5cmの正方形に切り抜いて、下記のリチウムイオン二次電池の製造に使用した。
<二次電池の製造>
 電池の外装として、アルミニウム包材外装を用意した。上記正極を、4cm×4cmの正方形に切り出して、集電体側の表面がアルミニウム包材外装に接するように配置した。次に、正極の正極合材層の面上に、上記正方形のセパレータを配置した。さらに、上記負極を、4.2cm×4.2cmの正方形に切り出して、これをセパレータ上に、負極合材層側の表面がセパレータに向かい合うよう配置した。その後、電解液として濃度1.0MのLiPF溶液(溶媒はエチレンカーボネート/ジエチルカーボネート=1/2(体積比)の混合溶媒、添加剤としてフルオロエチレンカーボネート及びビニレンカーボネートをそれぞれ2体積%(溶媒比)含有)を充填した。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム包材外装を閉口し、ラミネートセル型のリチウムイオン二次電池を製造した。このリチウムイオン二次電池について、サイクル特性及び内部短絡時の発熱抑制を評価した。結果を表1に示す。
(実施例2,3)
 導電材ぺーストの調製に際し、トリアミノトリアジンの量を、それぞれ1部(実施例2)、50部(実施例3)に変更した以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表1に示す。
(実施例4,5)
 導電材ぺーストの調製に際し、水溶性重合体の量を、それぞれ1部(実施例4)、50部(実施例5)に変更した以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表1に示す。
(実施例6)
 導電材ぺーストの調製に際し、多層CNTに代えて単層CNT(BET比表面積:200m/g、平均長さ:30μm、アスペクト比:300)を用いた以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表1に示す。
(実施例7~12)
 導電材ぺーストの調製に際し、それぞれ、下記の性状を有する多層CNTを用いた以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表1、2に示す。
 実施例7:BET比表面積:10m/g、平均長さ:30μm、アスペクト比:300
 実施例8:BET比表面積:400m/g、平均長さ:30μm、アスペクト比:300
 実施例9:BET比表面積:200m/g、平均長さ:1μm、アスペクト比:300
 実施例10:BET比表面積:200m/g、平均長さ:60μm、アスペクト比:300
 実施例11:BET比表面積:200m/g、平均長さ:30μm、アスペクト比:50
 実施例12:BET比表面積:200m/g、平均長さ:30μm、アスペクト比:1,000
(実施例13)
 水溶性重合体の調製に際し、スチレンスルホン酸ナトリウムの量を99部、アクリル酸の量を1部に変更した以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表2に示す。
(実施例14)
 水溶性重合体の調製に際し、スチレンスルホン酸ナトリウムの量を50部、アクリル酸の量を50部に変更した以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表2に示す。
(実施例15)
 下記のように調製した導電材ペーストを用いた以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表2に示す。
<導電材ぺーストの調製>
 繊維状導電性カーボンとしての多層CNT(BET比表面積:200m/g、平均長さ:30μm、アスペクト比:300)100部と、トリアジン骨格を有する化合物としてのトリアミノトリアジン7.5部と、実施例1と同様にして得られた水溶性重合体の水溶液10部(固形分相当量)と、分散媒としての適量のイオン交換水とを、ディスパーにて撹拌(3000rpm、60分)した。次いで、直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/sにて30分間混合し、導電材ペースト(固形分濃度:6.0%)を製造した。
(実施例16)
 水溶性重合体の調製に際し、アクリル酸の量を20部に変更し、且つスチレンスルホン酸ナトリウム75部に代えてアクリルアミド80部を用いた以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表2に示す。
(実施例17)
 水溶性重合体の調製に際し、アクリル酸の量を20部に変更し、且つスチレンスルホン酸ナトリウム75部に代えてN-ヒドロキシエチルアクリルアミド80部を用いた以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表2に示す。
(実施例18)
 導電材ぺーストの調製に際し、トリアミノトリアジンに代えてシアヌル酸を用いた以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表3に示す。
(実施例19)
 導電材ぺーストの調製に際し、トリアミノトリアジンに代えて下記式(II)の化合物(化合物(II))を用いた以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-C000002
(比較例1,2)
 導電材ぺーストの調製に際し、トリアミノトリアジンの量を、それぞれ0.1部(比較例1)、70部(比較例2)に変更した以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表3示す。
(比較例3,4)
 導電材ぺーストの調製に際し、水溶性重合体の量を、それぞれ0.1部(比較例3)、70部(比較例4)に変更した以外は、実施例1と同様にして、水溶性重合体、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表3に示す。
(比較例5)
 導電材ぺーストの調製に際し、水溶性重合体を用いなかった以外は、実施例19と同様にして、結着材、増粘剤、導電材ペースト、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表3に示す。
(比較例6)
 下記のように調製した導電材ペーストを用いた以外は、実施例1と同様にして、結着材、増粘剤、負極用スラリー組成物、負極、正極、セパレータ及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表3に示す。
<導電材ぺーストの調製>
 繊維状導電性カーボンとしての多層CNT(BET比表面積:200m/g、平均長さ:30μm、アスペクト比:300)100部と、下記式(III)の化合物(化合物(III))25部と、分散媒としての適量のイオン交換水とを、ディスパーにて撹拌(3000rpm、60分)した。次いで、直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/sにて30分間混合し、導電材ペースト(固形分濃度:6.0%)を製造した。
Figure JPOXMLDOC01-appb-C000003
 なお、以下に示す表1~3中、
「カーボン」は、繊維状導電性カーボンを示し、
「トリアジン化合物」は、トリアジン骨格を有する化合物を示し、
「MWCNT」は、多層カーボンナノチューブを示し、
「SWCNT」は、単層カーボンナノチューブを示し、
「AA」は、アクリル酸単位を示し、
「SS」は、スチレンスルホン酸ナトリウム単位を示し、
「AAm」は、アクリルアミド単位を示し、
「HEAAm」は、N-ヒドロキシエチルアクリルアミド単位を示し、
「X」は、トリアジン骨格を有する化合物を先添加し、水溶性重合体を後添加した導電材ペーストの製造方法を示し、
「Y」は、トリアジン骨格を有する化合物と水溶性重合体を同時に添加した導電材ペーストの製造方法を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1~3より、繊維状導電性カーボン、トリアジン骨格を有する化合物、水溶性重合体、及び水を含み、トリアジン骨格を有する化合物及び水溶性重合体の配合量がそれぞれ所定の範囲内である実施例1~19の導電材ペーストを用いることで、粘度安定性に優れる負極用スラリー組成物及びサイクル特性に優れる電気化学素子を得られていることが分かる。また実施例1~19では、導電材ペーストが分散安定性に優れ、電極がピール強度に優れ、そして電気化学素子が内部短絡した場合でも十分に発熱が抑制しうることが分かる。
 本発明によれば、粘度安定性に優れ、且つ電気化学素子に優れたサイクル特性を発揮させ得るスラリー組成物を調製可能な電気化学素子電極用導電材ペースト、及び当該電気化学素子電極用導電材ペーストを製造する方法を提供することができる。
 また、本発明によれば、粘度安定性に優れ、且つ電気化学素子に優れたサイクル特性を発揮させ得る電気化学素子電極用スラリー組成物を提供することができる。
 そして、本発明によれば、電気化学素子に優れたサイクル特性を発揮させ得る電気化学素子用電極を提供することができる。
 さらに、本発明によれば、サイクル特性に優れる電気化学素子を提供することができる。

Claims (14)

  1.  繊維状導電性カーボン、トリアジン骨格を有する化合物、水溶性重合体、及び水を含み、
     前記トリアジン骨格を有する化合物の配合量が、前記繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下であり、
     前記水溶性重合体の配合量が、前記繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下である、電気化学素子電極用導電材ペースト。
  2.  前記繊維状導電性カーボンがカーボンナノチューブを含む、請求項1に記載の電気化学素子電極用導電材ペースト。
  3.  前記繊維状導電性カーボンのBET比表面積が10m/g以上400m/g以下である、請求項1又は2に記載の電気化学素子電極用導電材ペースト。
  4.  前記繊維状導電性カーボンの平均長さが1.0μm以上60.0μm以下である、請求項1~3の何れかに記載の電気化学素子電極用導電材ペースト。
  5.  繊維状導電性カーボンのアスペクト比が50以上1,000以下である、請求項1~4の何れかに記載の電気化学素子電極用導電材ペースト。
  6.  前記水溶性重合体が、カルボン酸基含有単量体単位を、前記水溶性重合体の全単量体単位を100質量%として1質量%以上50質量%以下含む、請求項1~5の何れかに記載の電気化学素子電極用導電材ペースト。
  7.  前記トリアジン骨格を有する化合物の分子量が500以下である、請求項1~6の何れかに記載の電気化学素子電極用導電材ペースト。
  8.  前記トリアジン骨格を有する化合物が、アミノ基、水酸基、シアノ基、及びチオール基からなる群から選択される少なくとも一つの官能基を有する、請求項1~7の何れかに記載の電気化学素子電極用導電材ペースト。
  9.  電極活物質と、請求項1~8に何れかに記載の電気化学素子電極用導電材ペーストを含む、電気化学素子電極用スラリー組成物。
  10.  前記電極活物質がケイ素を含有する活物質を含む、請求項9に記載の電気化学素子電極用スラリー組成物。
  11.  請求項9又は10に記載の電気化学素子電極用スラリー組成物を用いて形成した電極合材層を備える、電気化学素子用電極。
  12.  請求項11に記載の電気化学素子用電極を備える、電気化学素子。
  13.  繊維状導電性カーボンと、前記繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下のトリアジン骨格を有する化合物と、前記繊維状導電性カーボン100質量部当たり1質量部以上50質量部以下の水溶性重合体と、水を混合する工程を含む、電気化学素子電極用導電材ペーストの製造方法。
  14.  前記混合する工程が、前記繊維状導電性カーボンと、前記トリアジン骨格を有する化合物と、前記水を含む予混合物を調製する工程と、前記予混合物に前記水溶性重合体を添加する工程を含む、請求項13に記載の電気化学素子電極用導電材ペーストの製造方法。
PCT/JP2022/000424 2021-01-29 2022-01-07 電気化学素子電極用導電材ペースト、電気化学素子電極用スラリー組成物、電気化学素子用電極及び電気化学素子、並びに電気化学素子電極用導電材ペーストの製造方法 WO2022163330A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022578207A JPWO2022163330A1 (ja) 2021-01-29 2022-01-07
EP22745557.3A EP4287308A1 (en) 2021-01-29 2022-01-07 Conductive material paste for electrochemical element electrodes, slurry composition for electrochemical element electrodes, electrode for electrochemical elements, electrochemical element, and method for producing conductive material paste for electrochemical element electrodes
CN202280011017.XA CN116941074A (zh) 2021-01-29 2022-01-07 电化学元件电极用导电材料糊、电化学元件电极用浆料组合物、电化学元件用电极及电化学元件、以及电化学元件电极用导电材料糊的制造方法
KR1020237024419A KR20230135579A (ko) 2021-01-29 2022-01-07 전기 화학 소자 전극용 도전재 페이스트, 전기 화학소자 전극용 슬러리 조성물, 전기 화학 소자용 전극 및 전기 화학 소자, 그리고 전기 화학 소자 전극용 도전재 페이스트의 제조 방법
US18/260,334 US20240063395A1 (en) 2021-01-29 2022-01-07 Conductive material paste for electrochemical device electrode, slurry composition for electrochemical device electrode, electrode for electrochemical device, electrochemical device, and method of producing conductive material paste for electrochemical device electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-013869 2021-01-29
JP2021013869 2021-01-29

Publications (1)

Publication Number Publication Date
WO2022163330A1 true WO2022163330A1 (ja) 2022-08-04

Family

ID=82653390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000424 WO2022163330A1 (ja) 2021-01-29 2022-01-07 電気化学素子電極用導電材ペースト、電気化学素子電極用スラリー組成物、電気化学素子用電極及び電気化学素子、並びに電気化学素子電極用導電材ペーストの製造方法

Country Status (6)

Country Link
US (1) US20240063395A1 (ja)
EP (1) EP4287308A1 (ja)
JP (1) JPWO2022163330A1 (ja)
KR (1) KR20230135579A (ja)
CN (1) CN116941074A (ja)
WO (1) WO2022163330A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061932A (ja) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd 電池用組成物
JP2010086955A (ja) * 2008-09-04 2010-04-15 Toyo Ink Mfg Co Ltd 電池電極用複合材料
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2020194625A (ja) * 2019-05-24 2020-12-03 東洋インキScホールディングス株式会社 電池用カーボンナノチューブ分散組成物の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252134B2 (ja) 2011-03-31 2013-07-31 東洋インキScホールディングス株式会社 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
JP7030270B2 (ja) 2018-07-20 2022-03-07 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061932A (ja) * 2008-09-03 2010-03-18 Toyo Ink Mfg Co Ltd 電池用組成物
JP2010086955A (ja) * 2008-09-04 2010-04-15 Toyo Ink Mfg Co Ltd 電池電極用複合材料
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2020194625A (ja) * 2019-05-24 2020-12-03 東洋インキScホールディングス株式会社 電池用カーボンナノチューブ分散組成物の製造方法

Also Published As

Publication number Publication date
KR20230135579A (ko) 2023-09-25
EP4287308A1 (en) 2023-12-06
JPWO2022163330A1 (ja) 2022-08-04
US20240063395A1 (en) 2024-02-22
CN116941074A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
KR102494519B1 (ko) 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 도전재 페이스트 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
CN108780894B (zh) 电化学元件电极用粘结剂组合物、电化学元件电极用浆料组合物、电化学元件用电极以及电化学元件
US20120315541A1 (en) Lithium-ion secondary battery
KR102489858B1 (ko) 비수계 2 차 전지 부극용 슬러리 조성물 및 그 제조 방법, 비수계 2 차 전지용 부극, 및 비수계 2 차 전지
JP7327379B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP7268600B2 (ja) 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子
JP7314802B2 (ja) 電気化学素子用添加剤、電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用電極、および電気化学素子
WO2017150048A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2019181871A1 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
WO2016208190A1 (ja) 電気化学素子電極用組成物、電気化学素子用電極および電気化学素子、並びに電気化学素子電極用組成物の製造方法
WO2018168502A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
KR20210070284A (ko) 전극 합재층용 도전성 페이스트, 전극 합재층용 슬러리, 전기 화학 소자용 전극, 및 전기 화학 소자
KR20190022523A (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
KR20210023836A (ko) 전기 화학 소자 전극용 바인더 조성물, 전기 화학 소자 전극용 슬러리 조성물, 전기 화학 소자용 전극, 및 전기 화학 소자
WO2017110654A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2019181660A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2023162897A1 (ja) 二次電池用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極、および二次電池
WO2023100726A1 (ja) 非水電解液二次電池用導電材ペースト、非水電解液二次電池負極用スラリー組成物、非水電解液二次電池用負極、および非水電解液二次電池
JP7334721B2 (ja) 二次電池用バインダー組成物、二次電池電極用導電材ペースト、二次電池電極用スラリー組成物、二次電池電極用スラリー組成物の製造方法、二次電池用電極および二次電池
WO2022163330A1 (ja) 電気化学素子電極用導電材ペースト、電気化学素子電極用スラリー組成物、電気化学素子用電極及び電気化学素子、並びに電気化学素子電極用導電材ペーストの製造方法
WO2020137403A1 (ja) 二次電池電極用炭素材料分散液、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2019181744A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用導電材ペースト組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
JP7192774B2 (ja) 電気化学素子電極用スラリー組成物、電気化学素子用電極、電気化学素子、および電気化学素子電極用スラリー組成物の製造方法
WO2024024552A1 (ja) 非水系二次電池用負極及び非水系二次電池
WO2023053926A1 (ja) 非水系二次電池用導電材ペースト、非水系二次電池負極用スラリー、非水系二次電池用負極及び非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578207

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18260334

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280011017.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022745557

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022745557

Country of ref document: EP

Effective date: 20230829