JP5252134B2 - 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池 - Google Patents

二次電池電極形成用水性組成物、二次電池用電極、及び二次電池 Download PDF

Info

Publication number
JP5252134B2
JP5252134B2 JP2012545962A JP2012545962A JP5252134B2 JP 5252134 B2 JP5252134 B2 JP 5252134B2 JP 2012545962 A JP2012545962 A JP 2012545962A JP 2012545962 A JP2012545962 A JP 2012545962A JP 5252134 B2 JP5252134 B2 JP 5252134B2
Authority
JP
Japan
Prior art keywords
ethylenically unsaturated
group
weight
electrode
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012545962A
Other languages
English (en)
Other versions
JPWO2012133030A1 (ja
Inventor
大 稲垣
浩一郎 宮嶋
順幸 諸石
真吾 池田
一成 春田
幸子 成廣
隆明 小池
安紀子 仁科
隆明 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2012545962A priority Critical patent/JP5252134B2/ja
Application granted granted Critical
Publication of JP5252134B2 publication Critical patent/JP5252134B2/ja
Publication of JPWO2012133030A1 publication Critical patent/JPWO2012133030A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池電極形成用水性組成物、及びその組成物を用いて得られる電極、並びにその電極を用いて得られる二次電池に関する。
近年、デジタルカメラや携帯電話のような小型携帯型電子機器が広く用いられるようになってきた。これらの電子機器には、容積を最小限にし、かつ重量を軽くすることが常に求められてきており、搭載される電池においても、小型、軽量かつ大容量の電池の実現が求められている。また、自動車搭載用等の電池においても、従来の鉛蓄電池に代えて、大型二次電池の実現が望まれている。
そのような要求に応えるため、リチウムイオン二次電池、アルカリ二次電池などの二次電池の開発、例えば、電極の形成に使用される合材インキの開発が活発に行われている。また、合材層の下地層の形成に使用される下地層形成用組成物にも関心が集まりつつある。
電極の形成に使用される合材インキや下地層形成用組成物に求められる重要特性としては、活物質や導電助剤が分散されたときの均一性が挙げられる。これは合材インキや下地層形成用組成物中の活物質や導電助剤の分散状態が、合材層中の活物質や導電助剤の分布状態や下地層中の導電助剤の分布状態に関連しているため、電極物性ひいては電池性能に影響するからである。
そのため、活物質や導電助剤の分散は重要な課題である。とりわけ導電性に優れた炭素材料(導電助剤)は、ストラクチャーや比表面積が大きいため凝集力が強く、合材インキ中であれ、下地層形成用組成物中であれ、均一に混合・分散することが困難である。そして、導電助剤である炭素材料の分散性や粒度の制御が不十分な場合、均一な導電ネットワークが形成されないために電極の内部抵抗の低減が図れず、その結果、電極材料の性能を十分に引き出せないという問題が生じている。
また、導電助剤だけでなく、合材インキ中の活物質の分散が不十分であると、そのような合材インキから形成される合材層中に部分的凝集が生じる。この部分的凝集は電極上に抵抗分布を生じさせ、この結果、電池として使用した際の電流集中が生じて、部分的な発熱および劣化が促進される等の不具合が生じることがある。
また、合材インキや下地層形成用組成物には、集電体として機能する金属箔表面に塗工可能とするための適度な流動性が求められる。さらに、表面ができるだけ平坦で厚みが均一な合材層や下地層を形成するために、合材インキや下地層形成用組成物には、適度な粘性も求められる。
合材インキから形成された合材層や下地層形成用組成物から形成された下地層は、形成された後、基材である金属箔ごと所望の大きさ・形状の切片に切り分けられたり、打ち抜かれたりする。そこで、切り分け加工や打ち抜き加工によって、傷つかない堅さと割れたり剥がれたりしない柔らかさとが、合材層や下地層には要求される。
さらに、合材層や下地層は電池中では電解液中にさらされるため、合材層や下地層の崩壊、集電体からの剥離が生じる恐れがある。そこで、電解液中での耐溶出性も合材層や下地層には要求される。
特許文献1〜4には、活物質と導電材とを混合し、この混合物をセルロース系増粘剤水溶液とともに混練した後、さらに4フッ化ポリエチレン、ラテックス系などの水性バインダーを加え、さらに混練して合材インキを得る旨が開示されている。しかし、これらの合材インキは、分散状態が不十分であり柔軟性に乏しく、所望の電極が作製できないため、良好な電池性能が得られないなどの問題があった。
また、これらの問題を解決するため、合材インキの作製時に、従来の材料に加えて分散剤を用いる方法も開発されている(特許文献5〜8参照)。しかし、それら分散剤の使用においても合材インキの良好な分散状態は不十分であり、所望の電極、および二次電池が得られないことが多いため、特に導電助剤をさらに均一に分散させた合材インキが望まれている。また、特に水系媒体を使用した場合は、これらの従来の課題の解決が困難であった。
特開平2−158055号公報 特開平9−082364号公報 特開2003−142102号公報 特開2010−165493号公報 特許第3213944号 特許第4656366号 特許第4468306号 WO2010/013786号公報
本発明の目的は、電極形成用組成物における活物質や導電助剤の分散性、レオロジー特性を改善させること、並びに、電極形成用組成物から形成される層について、集電体への密着性、塗膜の強度、塗膜の柔軟性、耐電解液溶出性を改善させること、さらには電池サイクル試験性能を向上させることである。
本発明は、電極活物質や導電助剤の分散性に優れるアニオン性分散剤(A)を用いることで、前記課題を解決すものである。
[1] 電極活物質もしくは導電助剤である炭素材料の少なくとも一方と、アニオン性分散剤(A)と、水とを含有する二次電池電極形成用水性組成物であって、
アニオン性分散剤(A)が、アニオン性部位としてカルボン酸もしくはスルホン酸の少なくとも一方を有し、酸価が100〜600mgKOH/gであり、水酸基価が0〜400mgKOH/gであり、重量平均分子量が5000以上である、二次電池電極形成用水性組成物。
[2] アニオン性分散剤(A)が下記単量体を共重合して得られる共重合体である、上記[1]に記載の組成物。
芳香環を有するエチレン性不飽和単量体(a1):10〜80重量%
カルボキシル基を有するエチレン性不飽和単量体(a2):20〜75重量%
前記(a1)〜(a2)以外のエチレン性不飽和単量体(a3):0〜70重量%
(但し、前記(a1)〜(a3)の合計を100重量%とする。)
[3] 更に、セルロース系増粘剤(B)を含む、上記[1]または[2]に記載の組成物。
[4] 更に、バインダー組成物(C)を含む、上記[1]〜[3]のいずれか一項に記載の組成物。
[5] バインダー組成物(C)が架橋型樹脂微粒子を含む、上記[4]に記載の組成物。
[6] 架橋型樹脂微粒子が、下記単量体を水中にて界面活性剤の存在下、ラジカル重合開始剤によって乳化重合してなる樹脂微粒子である、上記[5]に記載の組成物。
(C1)単官能または多官能アルコキシシリル基を有するエチレン性不飽和単量体(c1)、および1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)からなる群より選ばれる少なくとも1つの単量体:0.1〜5重量%
(C2)前記単量体(c1)〜(c2)以外のエチレン性不飽和単量体(c3):95〜99.9重量%
(但し、前記(c1)〜(c3)の合計を100重量%とする。)
[7] エチレン性不飽和単量体(c3)が下記組成である、上記[6]に記載の組成物。
単官能または多官能エポキシ基を有するエチレン性不飽和単量体(c4)、単官能または多官能アミド基を有するエチレン性不飽和単量体(c5)、および単官能または多官能水酸基を有するエチレン性不飽和単量体(c6)からなる群より選ばれる少なくとも1つの単量体:0.1〜20重量%
前記単量体(c1)、(c2)、(c4)〜(c6)以外のエチレン性不飽和単量体(c7):75〜99.8重量%
(但し、前記(c1)〜(c3)の合計を100重量%とする。)
[8] エチレン性不飽和単量体(c7)が下記組成である、上記[7]に記載の組成物。
炭素数8〜18のアルキル基を有するエチレン性不飽和単量体(c8)、および環状構造を有するエチレン性不飽和単量体(c9)からなる群より選ばれる少なくとも1つの単量体:30〜95重量%
前記(c1)〜(c6)、(c8)、(c9)以外のエチレン性不飽和単量体:0〜69.8重量%
(但し、前記(c1)〜(c3)の合計を100重量%とする。)
[9] バインダー組成物(C)が、未架橋のエポキシ基含有化合物、未架橋のアミド基含有化合物、未架橋の水酸基含有化合物、および未架橋のオキサゾリン基含有化合物からなる群より選ばれる少なくとも1つの未架橋の化合物(D)をさらに含む、上記[5]〜[8]のいずれか一項に記載の組成物。
[10] セルロース系増粘剤(B)がヒドロキシアルキルセルロースである、上記[1]〜[9]のいずれか一項に記載の組成物。
[11] 集電体と、上記[1]〜[10]に記載の組成物から形成される合材層もしくは電極下地層の少なくとも一層とを具備する、二次電池用電極。
[12] 正極と負極と電解液とを具備する二次電池であって、前記正極もしくは前記負極の少なくとも一方が上記[11]に記載の二次電池用電極である、二次電池。
[13] 正極と負極と電解液とを具備する二次電池であって、前記正極もしくは前記負極の少なくとも一方が上記[11]に記載の二次電池用電極である、リチウム二次電池。
本発明の好ましい実施態様によれば、レオロジー特性、分散状態に優れた電極形成用組成物を得ることができる。更に、この電極形成用組成物で合材層や下地層を作製することにより、集電体への密着性、塗膜の強度、塗膜の柔軟性、耐電解液溶出性が改善され、電池サイクル試験性能を向上させることができる。
二次電池用の電極は、種々の方法で得ることができる。例えば、金属箔等の集電体の表面に、(1)活物質と液状媒体とを含有するインキ状組成物(以下、合材インキという)や、(2)活物質と導電助剤と液状媒体とを含有する合材インキや、(3)活物質とバインダーと液状媒体とを含有する合材インキや、(4)活物質と導電助剤とバインダーと液状媒体とを含有する合材インキを用いて合材層を形成し、電極を得ることができる。
あるいは、金属箔の集電体の表面に、導電助剤と液状媒体とを含有する下地層形成用組成物を用いて電極下地層を形成し、該下地層上に上記の合材インキ(1)〜(4)やその他の合材インキ用いて合材層を形成して、電極を得ることもできる。
いずれの場合であっても、活物質や導電助剤の分散状態及び、電極の合材層や下地層の耐電解液溶出性が電池性能を左右することは上述したとおりである。アニオン性分散剤(A)は、活物質の凝集を緩和したり、導電助剤である炭素材料に対しても分散剤として機能したりする。従って、本発明の二次電池電極形成用水性組成物は、活物質を必須とする合材インキとしても、活物質を必須とはしない下地層形成用組成物としても活用できる。
<アニオン性分散剤(A)>
まず本発明におけるアニオン性分散剤(A)について説明する。以下、分散剤(A)と表記する場合がある。本発明におけるアニオン性分散剤(A)は、アニオン性部位としてカルボン酸もしくはスルホン酸の少なくとも一方を有し、酸価が100〜600mgKOH/gであり、水酸基価が0〜400mgKOH/gであり、重量平均分子量が5000以上である、樹脂型分散剤である。
スルホン酸を有するアニオン性分散剤(A)としては、スルホン酸を有する樹脂であれば特に限定されないが、例えば、芳香族スルホン酸のホルマリン縮合物を用いることができる。芳香族スルホン酸のホルマリン縮合物とは、例えば、ベンゼンスルホン酸、アルキルベンゼンスルホン酸、ナフタレンスルホン酸(またはそれらのアルカリ金属塩)をホルマリンで縮合したものである。
また、本発明におけるアニオン性分散剤(A)としては、芳香環を有するエチレン性不飽和単量体(a1)と、カルボキシル基を有するエチレン性不飽和単量体(a2)と、(a1)及び(a2)以外のエチレン性不飽和単量体(a3)とを共重合して得られる樹脂型分散剤を用いることもできる。ここで、単量体(a1)は任意成分である。
本発明におけるアニオン性分散剤(A)を構成するエチレン性不飽和単量体は、特に断らない限り、1分子中に1つのエチレン性不飽和基を有する単量体を示す。
<単量体(a1)について>
芳香環を有するエチレン性不飽和単量体(a1)としては、芳香環を有する単量体であれば特に限定されないが、スチレン、α−メチルスチレンもしくはベンジル(メタ)アクリレートを例示することができる。
<単量体(a2)について>
カルボキシル基を有するエチレン性不飽和単量体(a2)は、カルボキシル基を有する単量体であれば特に限定されないが、マレイン酸、フマル酸、イタコン酸、シトラコン酸、または、これらのアルキルもしくはアルケニルモノエステル、フタル酸β−(メタ)アクリロキシエチルモノエステル、イソフタル酸β−(メタ)アクリロキシエチルモノエステル、テレフタル酸β−(メタ)アクリロキシエチルモノエステル、コハク酸β−(メタ)アクリロキシエチルモノエステル、アクリル酸、メタクリル酸、クロトン酸、けい皮酸等を例示することができる。特にメタクリル酸、アクリル酸が好ましい。
<単量体(a3)について>
次に、前記(a1)〜(a2)以外のその他の単量体(a3)について説明する。
(メタ)アクリレート系化合物としては、アルキル系(メタ)アクリレート、アルキレングリコール系(メタ)アクリレートがある。
更に具体的に例示すると、アルキル系(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート等の炭素数1〜22のアルキル(メタ)アクリレートがあり、極性の調節を目的とする場合には好ましくは炭素数2〜10、さらに好ましくは炭素数2〜8のアルキル基を有するアルキル基含有アクリレートまたは対応するメタクリレートが挙げられる。
また、アルキレングリコール系(メタ)アクリレートとしては、例えば、ジエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等の、末端に水酸基を有し、ポリオキシアルキレン鎖を有するモノアクリレートまたは対応するモノメタアクリレート等や、メトキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート等の、末端にアルコキシ基を有し、ポリオキシアルキレン鎖を有するモノアクリレートまたは対応するモノメタアクリレート等や、フェノキシエチレングリコール(メタ)アクリレート等の、末端にフェノキシまたはアリールオキシ基を有するポリオキシアルキレン系アクリレートまたは対応するメタアクリレートが挙げられる。
上記以外の水酸基含有不飽和化合物としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、4−ヒドロキシビニルベンゼンなどが挙げられる。
上記以外の窒素含有不飽和化合物としては、例えばアクリルアミド系不飽和化合物が挙げられ、(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、N−メトキシメチル−(メタ)アクリルアミド等のモノアルキロール(メタ)アクリルアミドや、N,N−ジ(メチロール)アクリルアミド、N−メチロール−N−メトキシメチル(メタ)アクリルアミド、N,N−ジ(メトキシメチル)アクリルアミド等のジアルキロール(メタ)アクリルアミド等を例示できる。
更にその他の不飽和化合物としては、例えばパーフルオロアルキル基含有ビニルモノマーとして、パーフルオロメチルメチル(メタ)アクリレート、パーフルオロエチルメチル(メタ)アクリレート、2−パーフルオロブチルエチル(メタ)アクリレート、2−パーフルオロヘキシルエチル(メタ)アクリレート等の炭素数1〜20のパーフルオロアルキル基を有するパーフルオロアルキルアルキル(メタ)アクリレート類や;パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、パーフルオロオクチルエチレン、パーフルオロデシルエチレン等のパーフルオロアルキルアルキレン類等が挙げられ、また、シラノール基含有ビニル化合物として、ビニルトリクロルシラン、ビニルトリス(βメトキシエトキシ)シラン、ビニルトリエトキシシラン、γ−(メタ)アクリロキシプロピルトリメトキシシラン等が挙げられ、さらにはそれらの誘導体などを挙げることができ、これらの群から複数用いることができる。
脂肪酸ビニル化合物としては、酢酸ビニル、酪酸ビニル、プロピオン酸ビニル、ヘキサン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル等が挙げられる。
アルキルビニルエーテル化合物としては、ブチルビニルエーテル、エチルビニルエーテル等が挙げられる。
α−オレフィン化合物としては、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン等が挙げられる。
ビニル化合物としては、酢酸アリル、アリルアルコール、アリルベンゼン、シアン化アリル等のアリル化合物、シアン化ビニル、ビニルシクロヘキサン、ビニルメチルケトン、スチレン、α−メチルスチレン、2−メチルスチレン、クロロスチレン等が挙げられる。
エチニル化合物としては、アセチレン、エチニルベンゼン、エチニルトルエン、1−エチニル−1−シクロヘキサノール等が挙げられる。これらは単独もしくは2種類以上を併用して使用することもできる。
<単量体(a1)〜(a3)の構成比>
本発明で用いられるアニオン性分散剤(A)中の共重合体を構成するエチレン性不飽和単量体の比率は、単量体(a1)〜(a3)の合計を100重量%とした場合に、
芳香環を有するエチレン性不飽和単量体(a1)が10〜80重量%、
カルボキシル基を有するエチレン性不飽和単量体(a2)が20〜75重量%、
前記(a1)〜(a2)以外のその他の単量体(a3)が0〜70重量%であることが好ましい。
更に好ましくは、
芳香環を有するエチレン性不飽和単量体(a1)が10〜60重量%、
カルボキシル基を有するエチレン性不飽和単量体(a2)が40〜75重量%、
前記(a1)〜(a2)以外のその他の単量体(a3)が0〜50重量%である。
<分散剤の酸価>
アニオン性分散剤(A)は、カルボキシル基もしくはスルホン酸基を有する単量体を重合もしくは縮合して製造されるが、アニオン性分散剤(A)の分子全体におけるアニオン性官能基を有する単量体の構成比率を酸価で表すと下記のようであることが好ましい。即ち、使用するアニオン性分散剤(A)の酸価が、100mgKOH/g以上600mgKOH/g以下の範囲であることが好ましく、更には300mgKOH/g以上600mgKOH/g以下の範囲であることが好ましい。
アニオン性分散剤(A)の酸価が上記した範囲よりも低いと分散体の分散安定性が低下し、粘度が増加する傾向がある。また、酸価が上記した範囲より高いと、顔料表面に対するアニオン性分散剤(A)の付着力が低下し、分散体の保存安定性が低下する傾向がある。
なお、酸価は、JIS K 0070の電位差滴定法に準拠して測定した酸価(mgKOH/g)を固形分換算した値である。
<分散剤の水酸基価>
アニオン性分散剤(A)の水酸基価は、0mgKOH/g以上400mgKOH/g以下であることが望ましく、更には、0mgKOH/g以上250mgKOH/g以下であることが好ましい。水酸基価が400mgKOH/g以上であると、水媒体中での分子間の相互作用が強くなり、分散剤溶液の粘度が必要以上高くなるため、導電性炭素または活物質の分散性が悪化する場合がある。
<分散剤の分子量>
アニオン性分散剤(A)の重量平均分子量は5000以上が好ましい。更に好ましくは30000以上である。また、その上限値は1500000以下が好ましく、800000以下がさらに好ましい。重量平均分子量が5000未満の場合、電極活物質もしくは導電助剤である炭素材料の分散不良を引き起こす可能性があり、30000未満の場合、電解液溶出性の悪化を引き起こす可能性がある。
<分散剤の製造方法>
アニオン性分散剤(A)は、種々の製造方法で得ることができる。例えば、上記単量体(a1)〜(a3)を、水と共沸し得る有機溶剤中で重合する。その後、水に代表される水性液状媒体と中和剤とを加えてスルホン酸基またはカルボキシル基の少なくとも一部を中和し、共沸可能な溶剤を留去して、アニオン性分散剤(A)の水溶液ないし水性分散液を得ることができる。
重合時の有機溶剤としては、水と共沸するものであれば良いが、得られる分散剤樹脂に対し溶解性の高いものが良く、好ましくはエタノール、1−プロパノール、2−プロパノール、1−ブタノールであり、さらに好ましくは1−ブタノールである。
あるいは、親水性有機溶剤中で上記単量体を重合した後、水と中和剤を加えて中和・水性化することで(親水性有機溶剤は留去しない)、親水性有機溶剤と水とを含む水性液状媒体に、アニオン性分散剤(A)が溶解ないし分散した液を得ることができる。
この場合、用いられる親水性有機溶剤としては、得られる分散剤樹脂に対し溶解性の高いものが良く、好ましくはグリコールエーテル類、ジオール類、さらに好ましくは(ポリ)アルキレングリコールモノアルキルエーテル、炭素数3〜6のアルカンジオール類が良い。
上記製造工程で中和に使用される中和剤としては、例えば、アンモニア水、ジメチルアミノエタノール、ジエタノールアミン、トリエタノールアミン等の各種有機アミン、水酸化ナトリウム、水酸化リチウム、水酸化カリウム等のアルカリ金属の水酸化物等の無機アルカリ剤等を使用することができる。
<中和剤について>
アニオン系分散剤には中和剤を添加することもできる。アニオン性分散剤の酸性官能基の一部若しくは全部を中和することで、酸性官能基の塩は水媒体中で解離しやすくなり、より電荷を帯びやすくなる。そのため、中和したアニオン性分散剤が吸着した導電性炭素表面、正負極活物質表面は電荷を帯び、その反発によりさらに分散性が向上する。
この中和に用いる塩基としては、例えば、アンモニア、LiOH、NaOH、及びKOH等の無機塩基、並びに、プロピルアミン、イソアミルアミン、ヘキシルアミン、2−エチルヘキシルアミン、3−エトキシプロピルアミン、2−エチルヘキシロキシプロピルアミン、3−ラウリロキシプロピルアミン、3−アミノプロパノール、ジメチルアミン、ジイソプロピルアミン、2−ピペリジンエタノール、トリメチルアミン、エタノールアミン、ジメチルエタノールアミン、メチルジエタノールアミン、トリエタノールアミン、及びトリエチルアミン等の有機塩基(アミン化合物)が挙げられる。ジメチルエタノールアミン、アンモニア、NaOHが好ましく、さらに好ましくは、アンモニアもしくはNaOHである。
また、酸性官能基を有するアニオン性分散剤に対して用いる塩基の量は、使用するアニオン性分散剤が有する酸性性官能基の0.1〜10当量が好ましく、更に好ましくは0.8〜1.2当量である。
<分散剤としての機能について>
芳香環を有するエチレン性不飽和単量体(a1)由来の芳香環が、後述する活物質や炭素材料への主たる吸着部位となると推測している。他の単量体に含まれるカルボキシル基やスルホン酸基は、分散剤樹脂もしくはその中和物を水性液状媒体に溶解ないし分散させる機能を担うものと思われる。そして、活物質や炭素材料に、芳香環を介して分散剤樹脂が作用(例えば吸着)し、中和されることで、イオン化されたカルボキシル基やスルホン酸基の電荷反発により、活物質や炭素材料の水性液状媒体中における分散状態を安定に保つことができるようになるものと考察される。
<セルロース系増粘剤(B)>
セルロース系増粘剤(B)としては、特に限定はされないが、例えば、カルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース(HPC)、エチルヒドロキシエチルセルロース(EHEC)、ヒドロキシメチルエチルセルロース、ヒドロキシヒドロキシプロピルメチルセルロース、メチルセルロース(MC)、ヒドロキシアルキルメチルセルロース等が挙げられる。
パルプ中のセルロースは、無水グルコース単量体単位が結合されている多糖類であり、1グルコース単量体単位中に3個のヒドロキシ基を持つ。このヒドロキシ基の1つもしくは複数に置換する置換基は、特に限定されずに選択することができるが、水溶性のセルロース系増粘剤(B)であるためには親水性の置換基であることが好ましい。好ましくは、カルボキシアルキル基とヒドロキシアルキル基であり、特に好ましくは、ヒドロキシアルキル基である。
セルロース中のヒドロキシ基に置換する置換基数は、特に限定はされないが、1グルコース単量体単位が有する3個のヒドロキシ基のうち、0.5個以上置換されていることが好ましい。また、セルロース系増粘剤(B)の平均重合度は特に制限されずに選択することができる。
<分散剤(A)とセルロース系増粘剤(B)と併用の効果>
分散剤(A)の効果のひとつとして、添加した分散剤(A)が炭素材料表面、活物質材料表面に作用(例えば吸着)することにより、炭素材料表面および活物質材料表面の溶剤に対する濡れが促進され、炭素材料や活物質材料の凝集を解して、分散状態やレオロジー特性を改善するものと考えられる。
また、分散剤(A)はセルロース系増粘剤(B)と併用した場合、分散剤(A)による分散性やレオロジー特性と、セルロース系増粘剤(B)による増粘効果が、それぞれ損なわれることなく機能し、さらに高い分散安定性を発揮することができる。このとき、分散剤(A)の方が炭素材料表面、活物質材料表面に作用(例えば吸着)しやすいため、分散性改善効果とレオロジー特性改善効果を発揮し、セルロース系増粘剤(B)は主に増粘効果を発揮するものと考えられる。
また、セルロース系増粘剤(B)はアニオン性とノニオン性のどちらであっても分散剤(A)と併用して使用できるが、合材インキの分散性改善効果とレオロジー特性改善効果を考慮した場合、ノニオン性のセルロース系増粘剤(B)の方がより好ましい。これは、ノニオン性セルロース系増粘剤(B)の方が、炭素材料表面や活物質材料表面への作用、ひいては分散効果が低いため、分散剤(A)と併用すると、さらに機能分離して作用するためと思われる。
また、電荷を有する分散剤(A)は親水性が高く、セルロース系増粘剤(B)と相溶性が良い。そのため合材インキの乾燥過程で分散剤(A)とセルロース系増粘剤(B)とが相分離することなく、合材インキ塗膜を形成することができ、このため、塗膜中の材料の混合はより均一になって塗膜はより強固となるものと考えられる。その結果、合材層の強度は強くなり、合材層を厚くした際のひび割れが改善(柔軟性が向上)するものと思われる。
<バインダー組成物(C)>
次に、バインダー組成物(C)について説明する。本発明では、架橋型樹脂微粒子を含むことが好ましい。架橋型樹脂微粒子とは、内部架橋構造(三次元架橋構造)を有する樹脂微粒子を示し、粒子内部で架橋していることが重要である。架橋型樹脂微粒子が架橋構造をとることにより耐電解液溶出性を向上させることができ、粒子内部の架橋を調整することでその効果を高めることができる。また、架橋型樹脂微粒子が特定の官能基を含有することにより、集電体、または電極との密着性に寄与することができる。さらには架橋構造や官能基の量を調整することで、可とう性に優れた二次電池電極形成用組成物を得ることができる。また、さらに架橋剤を添加し、粒子同士の架橋(粒子間架橋)を利用することでバインダーの可とう性を調整することもできる。この場合は、架橋剤成分の電解液への漏出や電極作製時のバラツキが生じる場合もあるため、架橋剤は耐電解液性を損なわない程度に用いる必要がある。
本発明の電極形成用組成物に用いる架橋型樹脂微粒子としては、例えば、エチレン性不飽和単量体を水中にて界面活性剤の存在下、ラジカル重合開始剤によって乳化重合して得られる樹脂微粒子が挙げられる。このような架橋型樹脂微粒子は、下記単量体(C1)および(C2)を下記割合で含むエチレン性不飽和単量体を乳化重合して得ることが好ましい。
(C1)単官能または多官能アルコキシシリル基を有するエチレン性不飽和単量体(c1)、および1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)からなる群より選ばれる少なくとも1つの単量体:0.1〜5重量%
(C2)前記単量体(c1)〜(c2)以外のエチレン性不飽和単量体(c3):95〜99.9重量%
(但し、前記(c1)〜(c3)の合計を100重量%とする。)
架橋型樹脂微粒子を構成するエチレン性不飽和単量体のうち(c1)、(c3)は、特に断らない限り、1分子中に1つのエチレン性不飽和基を有する単量体のことを示す。
<単量体群(C1)について>
単量体群(C1)に含まれる単量体の有する官能基(アルコキシシリル基、エチレン性不飽和基)は、自己架橋型反応性官能基であり、主に粒子合成中における粒子内部架橋を形成する効果がある。粒子の内部架橋を十分に行うことで、耐電解液性を向上させることができる。したがって、単量体群(C1)に含まれる単量体を使用することで架橋型樹脂微粒子とすることができる。また、粒子架橋を十分に行うことで、耐電解液性を向上させることができる。
単官能または多官能アルコキシシリル基を有するエチレン性不飽和単量体(c1)としては、例えば、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルトリブトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシメチルトリメトキシシラン、γ−アクリロキシメチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルメチルジメトキシシランなどがあげられる。
1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)としては、例えば、(メタ)アクリル酸アリル、(メタ)アクリル酸1−メチルアリル、(メタ)アクリル酸2−メチルアリル、(メタ)アクリル酸1−ブテニル、(メタ)アクリル酸2−ブテニル、(メタ)アクリル酸3−ブテニル、(メタ)アクリル酸1,3−メチル−3−ブテニル、(メタ)アクリル酸2−クロルアリル、(メタ)アクリル酸3−クロルアリル、(メタ)アクリル酸o−アリルフェニル、(メタ)アクリル酸2−(アリルオキシ)エチル、(メタ)アクリル酸アリルラクチル、(メタ)アクリル酸シトロネリル、(メタ)アクリル酸ゲラニル、(メタ)アクリル酸ロジニル、(メタ)アクリル酸シンナミル、ジアリルマレエート、ジアリルイタコン酸、(メタ)アクリル酸ビニル、クロトン酸ビニル、オレイン酸ビニル、リノレン酸ビニル、(メタ)アクリル酸2−(2’−ビニロキシエトキシ)エチルなどのエチレン性不飽和基含有(メタ)アクリル酸エステル類;ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸トリエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール、トリ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸ペンタエリスリトール、ジアクリル酸1,1,1−トリスヒドロキシメチルエタン、トリアクリル酸1,1,1−トリスヒドロキシメチルエタン、1,1,1−トリスヒドロキシメチルプロパントリアクリル酸などの多官能(メタ)アクリル酸エステル類;ジビニルベンゼン、アジピン酸ジビニルなどのジビニル類;イソフタル酸ジアリル、フタル酸ジアリル、マレイン酸ジアリルなどのジアリル類などがあげられる。
単量体(c1)または単量体(c2)中のアルコキシシリル基またはエチレン性不飽和基は、主に重合中にそれぞれが自己縮合、または重合して粒子に架橋構造を導入することを目的としているが、その一部が重合後にも粒子内部や表面に残存していてもよい。残存したアルコキシシリル基、またはエチレン性不飽和基は、バインダー組成物の粒子間架橋に寄与する。特にアルコキシシリル基は集電体への密着性向上に寄与する効果があるため好ましい。
本発明では、単量体群(C1)に分類される単量体は、乳化重合に使用するエチレン性不飽和単量体全体(合計100重量%)中で0.1〜5重量%使用することを特徴とし、好ましくは0.5〜3重量%である。単量体群(C1)に分類される単量体が、0.1重量%未満であると粒子の架橋が十分でなくなり、耐電解液性が悪くなる。また、5重量%を超えると、乳化重合する際の重合安定性に問題を生じるか、重合できたとしても保存安定性に問題を生じる。
<単量体群(C2)について>
バインダー組成物に用いる架橋型樹脂微粒子は、上述した単量体(c1)及び単量体(c2)に加えて、単量体群(C2)として、単量体(c1)及び(c2)以外の、エチレン性不飽和基を有する単量体(c3)を同時に乳化重合することで得ることができる。
単量体(c3)としては、単量体(c1)及び(c2)以外であって、エチレン性不飽和基を有する単量体であれば特に限定されないが、例えば、単官能または多官能エポキシ基を有するエチレン性不飽和単量体(c4)、単官能または多官能アミド基を有するエチレン性不飽和単量体(c5)、および単官能または多官能水酸基を有するエチレン性不飽和単量体(c6)からなる群より選ばれる少なくとも1つの単量体、および、単量体(c1)、(c2)、(c4)〜(c6)以外の、エチレン性不飽和基を有する単量体(c7)を使用することができる。
単量体(c4)〜(c6)を使用することにより、エポキシ基、アミド基、または水酸基を架橋型樹脂微粒子の粒子内や表面に残存させることができ、これにより集電体への密着性などの物性を向上させることができる。単量体(c4)〜(c6)は、粒子合成後でもその官能基が粒子内部や表面に残存しやすく、少量でも集電体への密着性効果が大きい。また、その一部が架橋反応に使用されてもよく、これらの官能基の架橋度合いを調整することで、耐電解液性と密着性のバランスをとることができる。
単官能または多官能エポキシ基を有するエチレン性不飽和単量体(c4)としては、例えば、グリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレートなどがあげられる。
単官能または多官能アミド基を有する単量体エチレン性不飽和(c5)としては、例えば、(メタ)アクリルアミドなどの第一アミド基含有エチレン性不飽和単量体;N−メチロールアクリルアミド、N,N−ジ(メチロール)アクリルアミド、N−メチロール−N−メトキシメチル(メタ)アクリルアミドなどのアルキロール(メタ)アクリルアミド類;N−メトキシメチル−(メタ)アクリルアミド、N−エトキシメチル−(メタ)アクリルアミド、N−プロポキシメチル−(メタ)アクリルアミド、N−ブトキシメチル−(メタ)アクリルアミド、N−ペントキシメチル−(メタ)アクリルアミドなどのモノアルコキシ(メタ)アクリルアミド類;N,N−ジ(メトキシメチル)アクリルアミド、N−エトキシメチル−N−メトキシメチルメタアクリルアミド、N,N−ジ(エトキシメチル)アクリルアミド、N−エトキシメチル−N−プロポキシメチルメタアクリルアミド、N,N−ジ(プロポキシメチル)アクリルアミド、N−ブトキシメチル−N−(プロポキシメチル)メタアクリルアミド、N,N−ジ(ブトキシメチル)アクリルアミド、N−ブトキシメチル−N−(メトキシメチル)メタアクリルアミド、N,N−ジ(ペントキシメチル)アクリルアミド、N−メトキシメチル−N−(ペントキシメチル)メタアクリルアミドなどのジアルコキシ(メタ)アクリルアミド類;N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジエチルアミノプロピルアクリルアミドなどのジアルキルアミノ(メタ)アクリルアミド類;N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミドなどのジアルキル(メタ)アクリルアミド類;ダイアセトン(メタ)アクリルアミドなどのケト基含有(メタ)アクリルアミド類などがあげられる。
単官能または多官能水酸基を有するエチレン性不飽和単量体(c6)としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、2−(メタ)アクリロイロキシエチル−2−ヒドロキシエチルフタル酸、グリセロールモノ(メタ)アクリレート、4−ヒドロキシビニルベンゼン、1−エチニル−1−シクロヘキサノール、アリルアルコールなどがあげられる。
単量体(c4)〜(c6)に分類される単量体の官能基は、その一部が粒子重合中に反応し、粒子内架橋に使われても構わない。本発明では、単量体(c4)〜(c6)に分類される単量体は、乳化重合に使用するエチレン性不飽和単量体全体(合計100重量%)中で0.1〜20重量%使用することを特徴とし、好ましくは1〜15重量%であり、特に好ましくは2〜10重量%である。単量体(c4)〜(c6)が0.1重量%未満であると、重合後の粒子内部や表面に残存している官能基の量が少なくなり、集電体への密着性向上に十分寄与できない。また、20重量%を超えると、乳化重合する際の重合安定性に問題を生じるか、重合できたとしても保存安定性に問題を生じる。
単量体(c7)としては、単量体(c1)、(c2)、(c4)〜(c6)以外であって、エチレン性不飽和基を有する単量体であれば特に限定されないが、例えば、炭素数8〜18のアルキル基を有するエチレン性不飽和単量体(c8)、環状構造を有するエチレン性不飽和単量体(c9)などがあげられる。単量体(c7)として、該単量体(c8)および/または単量体(c9)を乳化重合に使用する場合には(単量体(c7)としてそれら以外の単量体を含んでいてもよい)、該単量体(c8)および(c9)が、エチレン性不飽和基を有する単量体全体((c1)、(c2)、(c4)〜(c6)および(c7))中に合計で30〜95重量%含まれることが好ましい。単量体(c8)や単量体(c9)を使用することで粒子合成時の粒子安定性や耐電解液性に優れるため好ましい。30重量%未満であると耐電解液性に悪影響をおよぼす場合があり、95重量%を超えると粒子合成時の安定性に悪影響をおよぼすか、合成できたとしても粒子の経時安定性が損なわれる場合がある。
炭素数8〜18のアルキル基を有するエチレン性不飽和単量体(c8)としては、例えば、2−エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレートなどがあげられる。
環状構造を有するエチレン性不飽和単量体(c9)としては、脂環式エチレン性不飽和単量体や芳香族エチレン性不飽和単量体などがあげられる。脂環式エチレン性不飽和単量体としては、例えば、シクロヘキシル(メタ)アクリレート、イソボニル(メタ)アクリレートなどがあげられ、芳香族エチレン性不飽和単量体としては、例えば、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、スチレン、α−メチルスチレン、2−メチルスチレン、クロロスチレン、アリルベンゼン、エチニルベンゼンなどがあげられる。
単量体(c7)に分類される、上記単量体(c8)、単量体(c9)以外の単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘプチル(メタ)アクリレートなどのアルキル基含有エチレン性不飽和単量体;(メタ)アクリロニトリルなどのニトリル基含有エチレン性不飽和単量体;パーフルオロメチルメチル(メタ)アクリレート、パーフルオロエチルメチル(メタ)アクリレート、2−パーフルオロブチルエチル(メタ)アクリレート、2−パーフルオロヘキシルエチル(メタ)アクリレート、2−パーフルオロオクチルエチル(メタ)アクリレート、2−パーフルオロイソノニルエチル(メタ)アクリレート、2−パーフルオロノニルエチル(メタ)アクリレート、2−パーフルオロデシルエチル(メタ)アクリレート、パーフルオロプロピルプロピル(メタ)アクリレート、パーフルオロオクチルプロピル(メタ)アクリレート、パーフルオロオクチルアミル(メタ)アクリレート、パーフルオロオクチルウンデシル(メタ)アクリレートなどの炭素数1〜20のパーフルオロアルキル基を有するパーフルオロアルキル基含有エチレン性不飽和単量体;パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、パーフルオロオクチルエチレン、パーフルオロデシルエチレンなどのパーフルオロアルキル、アルキレン類などのパーフルオロアルキル基含有エチレン性不飽和化合物;ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、プロポキシポリエチレングリコール(メタ)アクリレート、n−ブトキシポリエチレングリコール(メタ)アクリレート、n−ペンタキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、プロポキシポリプロピレングリコール(メタ)アクリレート、n−ブトキシポリプロピレングリコール(メタ)アクリレート、n−ペンタキシポリプロピレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、ポリテトラメチレングリコール(メタ)アクリレート、メトキシポリテトラメチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、ヘキサエチレングリコール(メタ)アクリレート、メトキシヘキサエチレングリコール(メタ)アクリレートなどのポリエーテル鎖を有するエチレン性不飽和化合物;ラクトン変性(メタ)アクリレートなどのポリエステル鎖を有するエチレン性不飽和化合物;(メタ)アクリル酸ジメチルアミノエチルメチルクロライド塩、トリメチル−3−(1−(メタ)アクリルアミド−1,1−ジメチルプロピル)アンモニウムクロライド、トリメチル−3−(1−(メタ)アクリルアミドプロピル)アンモニウムクロライド、およびトリメチル−3−(1−(メタ)アクリルアミド−1,1−ジメチルエチル)アンモニウムクロライドなどの四級アンモニウム塩基含有エチレン性不飽和化合物;酢酸ビニル、酪酸ビニル、プロピオン酸ビニル、ヘキサン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニルなどの脂肪酸ビニル系化合物;ブチルビニルエーテル、エチルビニルエーテルなどのビニルエーテル系エチレン性不飽和単量体;1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセンなどのα−オレフィン系エチレン性不飽和単量体;酢酸アリル、シアン化アリルなどのアリル単量体;シアン化ビニル、ビニルシクロヘキサン、ビニルメチルケトンなどのビニル単量体;アセチレン、エチニルトルエンなどのエチニル単量体などがあげられる。
また、単量体(c7)に分類される、上記単量体(c8)、単量体(c9)以外の単量体としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸、または、これらのアルキルもしくはアルケニルモノエステル、フタル酸β−(メタ)アクリロキシエチルモノエステル、イソフタル酸β−(メタ)アクリロキシエチルモノエステル、テレフタル酸β−(メタ)アクリロキシエチルモノエステル、コハク酸β−(メタ)アクリロキシエチルモノエステル、アクリル酸、メタクリル酸、クロトン酸、けい皮酸などのカルボキシル基含有エチレン性不飽和単量体;ターシャリーブチル(メタ)アクリレートなどのターシャリーブチル基含有エチレン性不飽和単量体;ビニルスルホン酸、スチレンスルホン酸などのスルホン酸基含有エチレン性不飽和単量体;(2−ヒドロキシエチル)メタクリレートアッシドホスフェートなどのリン酸基含有エチレン性不飽和単量体;ダイアセトン(メタ)アクリルアミド、アクロレイン、N−ビニルホルムアミド、ビニルメチルケトン、ビニルエチルケトン、アセトアセトキシエチル(メタ)アクリレート、アセトアセトキシプロピル(メタ)アクリレート、アセトアセトキシブチル(メタ)アクリレートなどのケト基含有エチレン性不飽和単量体(1分子中に1つのエチレン性不飽和基と、ケト基とを有する単量体)などがあげられる。
単量体(c7)として、ケト基含有エチレン性不飽和単量体を使用する場合、架橋剤としてケト基と反応しうるヒドラジド基を2個以上有する多官能ヒドラジド化合物をバインダー組成物に混合すると、ケト基とヒドラジド基との架橋により強靱な塗膜を得ることができる。この塗膜は優れた耐電解液性、結着性を有する。さらに、充放電の繰り返しや、発熱による高温環境下における耐性と可とう性とを両立することができるため、充放電サイクルにおける放電容量低下の低減された長寿命の非水系二次電池を得ることができる。
また、単量体(c7)の中でもカルボキシル基、ターシャリーブチル基(熱によりターシャリーブタノールが脱離してカルボキシル基になる。)、スルホン酸基、およびリン酸基を有するエチレン性不飽和単量体を共重合して得られた樹脂微粒子は、重合後にも粒子内や表面に前記官能基が残存し、集電体への密着性などの物性を向上させる効果があると同時に、合成時の凝集を防いだり、合成後の粒子安定性を保持したりする場合あるため好ましく使用することができる。
カルボキシル基、ターシャリーブチル基、スルホン酸基、およびリン酸基は、その一部が重合中に反応し、粒子内架橋に使われても構わない。カルボキシル基、ターシャリーブチル基、スルホン酸基、およびリン酸基を含む単量体を用いる場合には、乳化重合に使用するエチレン性不飽和単量体全体(合計100重量%)中に0.1〜10重量%含まれることが好ましく、さらには1〜5重量%含まれることがより好ましい。これらの官能基を含む単量体が0.1重量%未満であると、粒子の安定性が悪くなる場合がある。また10重量%を超えると、バインダー組成物の親水性が強くなりすぎて耐電解液性が悪くなる場合がある。さらにこれらの官能基は、乾燥時に反応して粒子内や粒子間の架橋に使われても構わない。
例えばカルボキシル基は、重合中および乾燥時にエポキシ基と反応して樹脂微粒子に架橋構造を導入できる。同様に、ターシャリーブチル基も一定温度以上の熱が加わるとターシャリーブチルアルコールが生成するとともにカルボキシル基が形成されるため、前記と同様にエポキシ基と反応することができる。
これらの単量体(c7)は、粒子の重合安定性やガラス転移温度、さらには成膜性や塗膜物性を調整するために、上記にあげたような単量体を2種以上併用して用いることができる。また、例えば(メタ)アクリロニトリルなどを併用することでゴム弾性が発現する効果がある。
<架橋型樹脂微粒子の製造方法>
架橋型樹脂微粒子は、従来既知の乳化重合方法により合成することができる。
<乳化重合で用いられる乳化剤>
乳化重合の際に用いられる乳化剤としては、エチレン性不飽和基を有する反応性乳化剤やエチレン性不飽和基を有しない非反応性乳化剤など、従来公知のものを任意に使用することができる。
エチレン性不飽和基を有する反応性乳化剤はさらに大別して、アニオン系、非イオン系のノニオン系のものが例示できる。特にエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤を用いると、共重合体の分散粒子径が微細となるとともに粒度分布が狭くなるため、二次電池電極用バインダーとして使用した際に耐電解液性を向上することができ好ましい。このエチレン性不飽和基を有するアニオン系反応性乳化剤若しくはノニオン性反応性乳化剤は、1種を単独で使用しても、複数種を混合して用いてもよい。
エチレン性不飽和基を有するアニオン系反応性乳化剤の一例として、以下にその具体例を例示するが、使用可能な乳化剤はこれらに限定されるものではない。
乳化剤としては、アルキルエーテル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンKH−05、KH−10、KH−20、株式会社ADEKA製アデカリアソープSR−10N、SR−20N、花王株式会社製ラテムルPD−104など);スルフォコハク酸エステル系(市販品としては、例えば、花王株式会社製ラテムルS−120、S−120A、S−180P、S−180A、三洋化成株式会社製エレミノールJS−2など);アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンH−2855A、H−3855B、H−3855C、H−3856、HS−05、HS−10、HS−20、HS−30、株式会社ADEKA製アデカリアソープSDX−222、SDX−223、SDX−232、SDX−233、SDX−259、SE−10N、SE−20N、など);(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製アントックスMS−60、MS−2N、三洋化成工業株式会社製エレミノールRS−30など);リン酸エステル系(市販品としては、例えば、第一工業製薬株式会社製H−3330PL、株式会社ADEKA製アデカリアソープPP−70など)などがあげられる。
ノニオン系反応性乳化剤としては、例えばアルキルエーテル系(市販品としては、例えば、株式会社ADEKA製アデカリアソープER−10、ER−20、ER−30、ER−40、花王株式会社製ラテムルPD−420、PD−430、PD−450など);アルキルフェニルエーテル系もしくはアルキルフェニルエステル系(市販品としては、例えば、第一工業製薬株式会社製アクアロンRN−10、RN−20、RN−30、RN−50、株式会社ADEKA製アデカリアソープNE−10、NE−20、NE−30、NE−40など);(メタ)アクリレート硫酸エステル系(市販品としては、例えば、日本乳化剤株式会社製RMA−564、RMA−568、RMA−1114など)などがあげられる。
官能基含有架橋型樹脂微粒子を乳化重合により得るに際しては、前記したエチレン性不飽和基を有する反応性乳化剤とともに、必要に応じエチレン性不飽和基を有しない非反応性乳化剤を併用することができる。非反応性乳化剤は、非反応性アニオン系乳化剤と非反応性ノニオン系乳化剤とに大別することができる。
非反応性ノニオン系乳化剤の例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテルなどのポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアルキルフェニルエーテル類;ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタントリオレエートなどのソルビタン高級脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウレートなどのポリオキシエチレンソルビタン高級脂肪酸エステル類;ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレートなどのポリオキシエチレン高級脂肪酸エステル類;オレイン酸モノグリセライド、ステアリン酸モノグリセライドなどのグリセリン高級脂肪酸エステル類;ポリオキシエチレン・ポリオキシプロピレン・ブロックコポリマー、ポリオキシエチレンジスチレン化フェニルエーテルなどを例示することができる。
また、非反応性アニオン系乳化剤の例としては、オレイン酸ナトリウムなどの高級脂肪酸塩類;ドデシルベンゼンスルホン酸ナトリウムなどのアルキルアリールスルホン酸塩類;ラウリル硫酸ナトリウムなどのアルキル硫酸エステル塩類;ポリエキシエチレンラウリルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルエーテル硫酸エステル塩類;ポリオキシエチレンノニルフェニルエーテル硫酸ナトリウムなどのポリオキシエチレンアルキルアリールエーテル硫酸エステル塩類;モノオクチルスルホコハク酸ナトリウム、ジオクチルスルホコハク酸ナトリウム、ポリオキシエチレンラウリルスルホコハク酸ナトリウムなどのアルキルスルホコハク酸エステル塩およびその誘導体類;ポリオキシエチレンジスチレン化フェニルエーテル硫酸エステル塩類などを例示することができる。
乳化剤の使用量は、必ずしも限定されるものではなく、架橋型樹脂微粒子が最終的に二次電池電極用バインダーとして使用される際に求められる物性にしたがって適宜選択できる。例えば、エチレン性不飽和単量体の合計100重量部に対して、乳化剤は通常0.1〜30重量部であることが好ましく、0.3〜20重量部であることがより好ましく、0.5〜10重量部の範囲内であることがさらに好ましい。
乳化重合に際しては、水溶性保護コロイドを併用することもできる。水溶性保護コロイドとしては、例えば、部分ケン化ポリビニルアルコール、完全ケン化ポリビニルアルコール、変性ポリビニルアルコールなどのポリビニルアルコール類;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース塩などのセルロース誘導体;グアガムなどの天然多糖類などがあげられ、これらは、単独でも複数種併用の態様でも利用できる。水溶性保護コロイドの使用量としては、エチレン性不飽和単量体の合計100重量部当り0.1〜5重量部であり、さらに好ましくは0.5〜2重量部である。
<乳化重合で用いられる水性媒体>
乳化重合に際して用いられる水性媒体としては、水があげられ、親水性の有機溶剤も本発明の目的を損なわない範囲で使用することができる。
<乳化重合で用いられる重合開始剤>
重合開始剤としては、ラジカル重合を開始する能力を有するものであれば特に制限はなく、公知の油溶性重合開始剤や水溶性重合開始剤を使用することができる。
油溶性重合開始剤としては特に限定されず、例えば、ベンゾイルパーオキサイド、tert−ブチルパーオキシベンゾエート、tert−ブチルハイドロパーオキサイド、tert−ブチルパーオキシ(2−エチルヘキサノエート)、tert−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、ジ−tert−ブチルパーオキサイドなどの有機過酸化物;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2,4−ジメチルバレロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、1,1’−アゾビス−シクロヘキサン−1−カルボニトリルなどのアゾビス化合物などをあげることができる。これらは1種類または2種類以上を混合して使用することができる。これら重合開始剤は、エチレン性不飽和単量体100重量部に対して、0.1〜10.0重量部の量を用いるのが好ましい。
特に水溶性重合開始剤が好ましく、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、2,2’−アゾビス(2−メチルプロピオンアミジン)ジハイドロクロライドなど、従来既知のものを好適に使用することができる。
また、乳化重合を行うに際して、所望により重合開始剤とともに還元剤を併用することができる。これにより、乳化重合速度を促進したり、低温において乳化重合を行ったりすることが容易になる。このような還元剤としては、例えば、アスコルビン酸、エルソルビン酸、酒石酸、クエン酸、ブドウ糖、ホルムアルデヒドスルホキシラートなどの金属塩などの還元性有機化合物、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウムなどの還元性無機化合物、塩化第一鉄、ロンガリット、二酸化チオ尿素などを例示できる。これら還元剤は、全エチレン性不飽和単量体100重量部に対して、0.05〜5.0重量部の量を用いるのが好ましい。
<乳化重合の条件>
なお、重合開始剤によらずとも、光化学反応や、放射線照射などによっても重合を行うことができる。重合温度は各重合開始剤の重合開始温度以上とする。例えば、過酸化物系重合開始剤では、通常70℃程度とすればよい。重合時間は特に制限されないが、通常2〜24時間である。
<反応に用いられるその他の材料>
さらに必要に応じて、緩衝剤として、酢酸ナトリウム、クエン酸ナトリウム、重炭酸ナトリウムなどが、また、連鎖移動剤としてのオクチルメルカプタン、チオグリコール酸2−エチルヘキシル、チオグリコール酸オクチル、ステアリルメルカプタン、ラウリルメルカプタン、t−ドデシルメルカプタンなどのメルカプタン類が適量使用できる。
架橋型樹脂微粒子の重合にカルボキシル基含有エチレン性不飽和単量体などの酸性官能基を有する単量体を使用した場合、重合前や重合後に塩基性化合物で中和してもよい。中和する際、アンモニアもしくはトリメチルアミン、トリエチルアミン、ブチルアミンなどのアルキルアミン類;2−ジメチルアミノエタノール、ジエタノールアミン、トリエタノールアミン、アミノメチルプロパノールなどのアルコールアミン類;モルホリンなどの塩基で中和することができる。ただし、乾燥性に効果が高いのは揮発性の高い塩基であり、好ましい塩基はアミノメチルプロパノール、アンモニアである。
<架橋型樹脂微粒子のガラス転移温度>
また、架橋型樹脂微粒子のガラス転移温度(以下、Tgともいう)は、−30〜70℃が好ましく、−20〜30℃がさらに好ましい。Tgが−30℃未満の場合、バインダーが過度に電極活物質を覆い、インピーダンスが高くなりやすい。また、Tgが70℃を超えると、バインダーの柔軟性、粘着性が乏しくなり、電極活物質の集電材への接着性、電極の成形性が劣る場合がある。なお、ガラス転移温度は、DSC(示差走査熱量計)を用いて求めた値である。
DSC(示差走査熱量計)によるガラス転移温度の測定は以下のようにして行うことができる。架橋型樹脂微粒子を乾固した樹脂約2mgをアルミニウムパン上で秤量し、該試験容器をDSC測定ホルダーにセットし、10℃/分の昇温条件にて得られるチャートの吸熱ピークを読み取る。このときのピーク温度をガラス転移温度とする。
<架橋型樹脂微粒子の粒子構造>
また、架橋型樹脂微粒子の粒子構造を多層構造、いわゆるコアシェル粒子にすることもできる。例えば、コア部、またはシェル部に官能基を有する単量体を主に重合させた樹脂を局在化させたり、コアとシェルによってTgや組成に差を設けたりすることにより、硬化性、乾燥性、成膜性、バインダーの機械強度を向上させることができる。
<架橋型樹脂微粒子の粒子径>
架橋型樹脂微粒子の平均粒子径は、電極活物質の結着性や粒子の安定性の点から、10〜500nmであることが好ましく、30〜250nmであることがより好ましい。また、1μmを超えるような粗大粒子が多く含有されるようになると粒子の安定性が損なわれるので、1μmを超える粗大粒子は多くとも5重量%以下であることが好ましい。なお、平均粒子径とは、体積平均粒子径のことを表し、動的光散乱法により測定できる。
動的光散乱法による平均粒子径の測定は、以下のようにして行うことができる。架橋型樹脂微粒子分散液は固形分に応じて200〜1000倍に水希釈しておく。該希釈液約5mlを測定装置[(株)日機装製 マイクロトラック]のセルに注入し、サンプルに応じた溶剤(例として水)および樹脂の屈折率条件を入力後、測定を行う。この時得られた体積粒子径分布データ(ヒストグラム)のピークを平均粒子径とする。
<重合した樹脂微粒子に添加する未架橋の化合物(D)>
バインダー組成物は、架橋型樹脂微粒子に加えて、さらに、未架橋のエポキシ基含有化合物、未架橋のアミド基含有化合物、未架橋の水酸基含有化合物、および未架橋のオキサゾリン基含有化合物からなる群より選ばれる少なくとも1つの未架橋の化合物(D)[以下、化合物(D)と表記する場合がある]とを含むことが好ましい。
化合物(D)である「未架橋の官能基含有化合物」とは、単量体群(C1)に分類される単量体のように架橋型樹脂微粒子の内部架橋構造(三次元架橋構造)を形成する化合物とは異なり、樹脂微粒子が乳化重合(ポリマー形成)された後に添加される(樹脂微粒子の内部架橋形成に関与しない)化合物のことのことをいう。すなわち、「未架橋」とは、架橋型樹脂微粒子の内部架橋構造(三次元架橋構造)の形成に関与していないことを意味する。
架橋型樹脂微粒子が架橋構造をとることにより耐電解液性が確保され、また、化合物(D)を使用することで、化合物(D)中のエポキシ基、アミド基、水酸基、およびオキサゾリン基から選ばれる少なくとも1つの官能基が、集電体、または電極との密着性に寄与することができる。さらには架橋構造や官能基の量を調整することで、可とう性に優れた二次電池電極用バインダー組成物を得ることができる。
なお、架橋型樹脂微粒子は、粒子内部で架橋していることが必要である。粒子内部の架橋を適度に調整することによって、耐電解液性を確保することができる。さらに、官能基含有架橋型樹脂微粒子に未架橋の化合物(D)を添加することで、エポキシ基、アミド基、水酸基またはオキサゾリン基が集電体に作用し、集電体や電極への密着性を効果的に向上させることができる。化合物(D)に含まれる上記官能基は、長期保存時や電極作製時の熱によっても安定であるため、少量の使用でも集電体への密着性効果が大きい。さらには保存安定性にも優れている。化合物(D)は、バインダーの可とう性や耐電解液性を調整する目的で架橋型樹脂微粒子中の官能基と反応してもよいが、官能基含有架橋型樹脂微粒子中の官能基との反応のために化合物(D)中の官能基が使われすぎると、集電体または電極と相互作用し得る官能基が少なくなってしまう。このため、架橋型樹脂微粒子と化合物(D)との反応は、集電体または電極への密着性を損なわない程度である必要がある。また、化合物(D)に含まれる上記官能基の一部が架橋反応に用いられる場合[化合物(D)が多官能化合物の場合]には、これらの官能基の架橋度合いを調整することで、耐電解液性と密着性のバランスをとることができる。
<未架橋のエポキシ基含有化合物>
未架橋のエポキシ基含有化合物としては、例えば、グリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレートなどのエポキシ基含有エチレン性不飽和単量体;前記エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂;エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ジグリシジルアニリン、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン、1,3−ビス(N,N’−ジグリシジルアミノメチル)シクロヘキサンなどの多官能エポキシ化合物;ビスフェノールA−エピクロロヒドリン型エポキシ樹脂、ビスフェノールF−エピクロロヒドリン型エポキシ樹脂などのエポキシ系樹脂などがあげられる。
エポキシ基含有化合物の中でも特にビスフェノールA−エピクロロヒドリン型エポキシ樹脂、ビスフェノールF−エピクロロヒドリン型エポキシ樹脂などのエポキシ系樹脂や、エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。エポキシ系樹脂は、ビスフェノール骨格を有することで耐電解液性を向上させ、また、骨格に含まれる水酸基により集電体密着性を向上させるという相乗効果が期待できる。また、エポキシ基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内により多くのエポキシ基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。
<未架橋のアミド基含有化合物>
未架橋のアミド基含有化合物としては、例えば、(メタ)アクリルアミドなどの第一アミド基含有化合物;N−メチロールアクリルアミド、N,N−ジ(メチロール)アクリルアミド、N−メチロール−N−メトキシメチル(メタ)アクリルアミドなどのアルキロール(メタ)アクリルアミド系化合物;N−メトキシメチル−(メタ)アクリルアミド、N−エトキシメチル−(メタ)アクリルアミド、N−プロポキシメチル−(メタ)アクリルアミド、N−ブトキシメチル−(メタ)アクリルアミド、N−ペントキシメチル−(メタ)アクリルアミドなどのモノアルコキシ(メタ)アクリルアミド系化合物;N,N−ジ(メトキシメチル)アクリルアミド、N−エトキシメチル−N−メトキシメチルメタアクリルアミド、N,N−ジ(エトキシメチル)アクリルアミド、N−エトキシメチル−N−プロポキシメチルメタアクリルアミド、N,N−ジ(プロポキシメチル)アクリルアミド、N−ブトキシメチル−N−(プロポキシメチル)メタアクリルアミド、N,N−ジ(ブトキシメチル)アクリルアミド、N−ブトキシメチル−N−(メトキシメチル)メタアクリルアミド、N,N−ジ(ペントキシメチル)アクリルアミド、N−メトキシメチル−N−(ペントキシメチル)メタアクリルアミドなどのジアルコキシ(メタ)アクリルアミド系化合物;N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジエチルアミノプロピルアクリルアミドなどのジアルキルアミノ(メタ)アクリルアミド系化合物;N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミドなどのジアルキル(メタ)アクリルアミド系化合物;ダイアセトン(メタ)アクリルアミドなどのケト基含有(メタ)アクリルアミド系化合物など、以上のアミド基含有エチレン性不飽和単量体;前記アミド基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂などがあげられる。
アミド基含有化合物の中でも、特にアクリルアミドなどのアミド基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。樹脂骨格内に、より多くのアミド基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。
<未架橋の水酸基含有化合物>
未架橋の水酸基含有化合物としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート4−ヒドロキシビニルベンゼン、1−エチニル−1−シクロヘキサノール、アリルアルコールなどの水酸基含有エチレン性不飽和単量体;前記水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂;エチレングリコール、ジエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールなどの直鎖脂肪族ジオール類;プロピレングリコール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、2,2−ジエチル−1,3−プロパンジオールなどの分岐鎖脂肪族ジオール類;1,4−ビス(ヒドロキシメチル)シクロヘキサンなどの環状ジオール類などがあげられる。
水酸基含有化合物の中でも、特に水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂、または環状ジオール類が好ましい。水酸基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内に、より多くの水酸基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させる効果が期待できる。また、環状ジオール類は、骨格に環状構造を有することにより、耐電解液性を向上させる効果が期待できる。
<未架橋のオキサゾリン基含有化合物>
未架橋のオキサゾリン基含有化合物としては、例えば、2’−メチレンビス(2−オキサゾリン)、2,2’−エチレンビス(2−オキサゾリン)、2,2’−エチレンビス(4−メチル−2−オキサゾリン)、2,2’−プロピレンビス(2−オキサゾリン)、2,2’−テトラメチレンビス(2−オキサゾリン)、2,2’−ヘキサメチレンビス(2−オキサゾリン)、2,2’−オクタメチレンビス(2−オキサゾリン)、2,2’−p−フェニレンビス(2−オキサゾリン)、2,2’−p−フェニレンビス(4,4’−ジメチル−2−オキサゾリン)、2,2’−p−フェニレンビス(4−メチル−2−オキサゾリン)、2,2’−p−フェニレンビス(4−フェニル−2−オキサゾリン)、2,2’−m−フェニレンビス(2−オキサゾリン)、2,2’−m−フェニレンビス(4−メチル−2−オキサゾリン)、2,2’−m−フェニレンビス(4,4’−ジメチル−2−オキサゾリン)、2,2’−m−フェニレンビス(4−フェニレンビス−2−オキサゾリン)、2,2’−o−フェニレンビス(2−オキサゾリン)、2,2’−o−フェニレンビス(4−メチル−2−オキサゾリン)、2,2’−ビス(2−オキサゾリン)、2,2’−ビス(4−メチル−2−オキサゾリン)、2,2’−ビス(4−エチル−2−オキサゾリン)、2,2’−ビス(4−フェニル−2−オキサゾリン)、さらにはオキサゾリン基含有ラジカル重合系樹脂などがあげられる。
オキサゾリン基含有化合物の中でも、特に、2’−p−フェニレンビス(2−オキサゾリン)などのフェニレンビス型オキサゾリン化合物、または、オキサゾリン基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂が好ましい。フェニレンビス型オキサゾリン化合物は、骨格内にフェニル基を有することにより耐電解液性を向上させる効果がある。また、オキサゾリン基含有エチレン性不飽和単量体を含むエチレン性不飽和単量体を重合して得られるラジカル重合系樹脂は、樹脂骨格内により多くのオキサゾリン基を有することにより集電体密着性を向上させ、また、樹脂であることにより、単量体に比べて耐電解液性を向上させることができる。
<化合物(D)の添加量、分子量>
化合物(D)は、バインダー組成物(例として架橋型樹脂微粒子)の固形分100重量部に対して0.1〜50重量部添加するのが好ましく、5〜40重量部添加するのがさらに好ましい。化合物(D)の添加量が0.1重量部未満であると、集電体への密着性に寄与する官能基の量が少なくなり、集電体への密着性向上に十分寄与できない場合がある。また、50重量部を超えると、化合物(D)の電解液への漏出など、バインダー性能への悪影響を起こす場合がある。さらに、化合物(D)は2種類以上併用することも可能である。
化合物(D)の分子量は特に限定されないが、重量平均分子量が1,000〜1,000,000であるのが好ましく、さらには5,000〜500,000がより好ましい。分子量が1,000未満であると集電体への密着性効果が十分でない場合があり、また、分子量が1,000,000を超えると化合物の粘度が高くなる場合があり、電極作製時のハンドリング性が悪くなる場合がある。なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定したポリスチレン換算の値である。さらに化合物(D)は、溶媒に溶解する化合物であっても、分散する化合物であってもよい。
<合材インキ>
本発明の二次電池電極形成用水性組成物は、合材インキや下地層形成用組成物として使用できる。まず、電極形成用組成物の好適な態様の1つである活物質を必須とする合材インキについて説明する。合材インキは、正極合材インキまたは負極合材インキがあり、合材インキは、電極活物質と、バインダー組成物(C)と、分散剤(A)と、水性液状媒体(E)からなり、さらに増粘剤、導電助剤である炭素材料を含有させることができる。
<電極活物質>
リチウムイオン二次電池用の正極活物質としては、特に限定はされないが、リチウムイオンをドーピングまたはインターカレーション可能な金属酸化物、金属硫化物等の金属化合物、および導電性高分子等を使用することができる。例えば、Fe、Co、Ni、Mn等の遷移金属の酸化物、リチウムとの複合酸化物、遷移金属硫化物等の無機化合物等が挙げられる。具体的には、MnO、V、V13、TiO等の遷移金属酸化物粉末、層状構造のニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、スピネル構造のマンガン酸リチウムなどのリチウムと遷移金属との複合酸化物粉末、オリビン構造のリン酸化合物であるリン酸鉄リチウム系材料、TiS、FeSなどの遷移金属硫化物粉末等が挙げられる。また、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子を使用することもできる。また、上記の無機化合物や有機化合物を混合して用いてもよい。
リチウムイオン二次電池用の負極活物質としては、リチウムイオンをドーピングまたはインターカレーション可能なものであれば特に限定されない。例えば、金属Li、その合金であるスズ合金、シリコン合金、鉛合金等の合金系、LiFe、LiFe、LiWO、チタン酸リチウム、バナジウム酸リチウム、ケイ素酸リチウム等の金属酸化物系、ポリアセチレン、ポリ−p−フェニレン等の導電性高分子系、ソフトカーボンやハードカーボンといった、アモルファス系炭素質材料や、高黒鉛化炭素材料等の人造黒鉛、あるいは天然黒鉛等の炭素質粉末、カーボンブラック、メソフェーズカーボンブラック、樹脂焼成炭素材料、気層成長炭素繊維、炭素繊維などの炭素系材料が挙げられる。これら負極活物質は、1種または複数を組み合わせて使用することもできる。
これら電極活物質の大きさは、0.05〜100μmの範囲内であることが好ましく、さらに好ましくは、0.1〜50μmの範囲内である。そして、合材インキ中の電極活物質の分散粒径は、0.5〜20μmであることが好ましい。ここでいう分散粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。
<導電助剤である炭素材料>
合材インキは、形成される電極の導電性をより高めるために、炭素材料を含有することが好ましい。炭素材料としては、導電性を有する炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、フラーレン等を単独で、もしくは2種類以上併せて使用することができる。導電性、入手の容易さ、およびコスト面から、カーボンブラックの使用が好ましい。
カーボンブラックとしては、気体もしくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、特にアセチレンガスを原料とするアセチレンブラックなどの各種のものを単独で、もしくは2種類以上併せて使用することができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。
カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。
カーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、20m/g以上、1500m/g以下、好ましくは50m/g以上、1500m/g以下、更に好ましくは100m/g以上、1500m/g以下のものを使用することが望ましい。比表面積が20m/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合があり、1500m/gを超えるカーボンブラックは、市販材料での入手が困難となる場合がある。
カーボンブラックの粒径は、一次粒子径で0.005〜1μmが好ましく、特に、0.01〜0.2μmが好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡などで測定された粒子径を平均したものである。
導電助剤である炭素材料の合材インキ中の分散粒径は、0.03μm以上、5μm以下に微細化することが望ましい。導電助剤としての炭素材料の分散粒径が0.03μm未満の組成物は、その作製が難しい場合がある。また、導電助剤としての炭素材料の分散粒径が2μmを超える組成物を用いた場合には、合材塗膜の材料分布のバラつき、電極の抵抗分布のバラつき等の不具合が生じる場合がある。
ここでいう分散粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。
市販のカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、#5500等(東海カーボン社製、ファーネスブラック)、プリンテックスL等(デグサ社製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRA等、Conductex SC ULTRA、Conductex 975 ULTRA等、PUER BLACK100、115、205等(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC−72R、BlackPearls2000等(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、SuperP−Li(TIMCAL社製)、ケッチェンブラックEC−300J、EC−600JD(アクゾ社製)、デンカブラック、デンカブラックHS−100、FX−35(電気化学工業社製、アセチレンブラック)等、グラファイトとしては例えば人造黒鉛や燐片状黒鉛、塊状黒鉛、土状黒鉛などの天然黒鉛が挙げられるが、これらに限定されるものではなく、2種以上を組み合わせて用いても良い。
導電性炭素繊維としては石油由来の原料から焼成して得られるものが良いが、植物由来の原料からも焼成して得られるものも用いることができる。例えば石油由来の原料で製造される昭和電工社製のVGCFなどを挙げることができる。
<水性液状媒体(E)>
水性液状媒体(E)としては、水を使用することが好ましいが、必要に応じて、例えば、集電体への塗工性向上のために、水と相溶する液状媒体を使用しても良い。水と相溶する液状媒体としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類等が挙げられ、水と相溶する範囲で使用しても良い。
<その他の添加剤>
さらに、合材インキには、成膜助剤、消泡剤、レベリング剤、防腐剤、pH調整剤、粘性調整剤などを必要に応じて配合できる。
<合材インキの諸物性>
塗工方法によるが、固形分30〜90重量%の範囲で、合材インキの粘度は100mPa・s以上、30,000mPa・s以下とするのが好ましい。また、塗工可能な粘度範囲内において、活物質はできるだけ多く含まれることが好ましく、例えば、合材インキ固形分に占める活物質の割合は、80重量%以上、99重量%以下が好ましい。また、合材インキ固形分に占める分散剤(A)の割合は、0.1〜15重量%であることが好ましい。炭素材料を含む場合、合材インキ固形分に占める炭素材料の割合は、0.1〜15重量%であることが好ましい。
<合材インキの調製方法>
合材インキは、種々の方法で得ることができる。ただし、炭素材料の使用は任意である。例えば、
(4−1) 活物質と分散剤(A)と水性液状媒体(E)とを含有する活物質の水性分散体を得た後、該水性分散体に炭素材料と架橋型樹脂微粒子を含むバインダー組成物(C)とを加え、合材インキを得ることができる。この場合、炭素材料と架橋型樹脂微粒子を含むバインダー組成物(C)は、同時に加えることもできるし、炭素材料を加えた後、バインダーを加えてもよいし、その逆であってもよい。
(4−2) 炭素材料と分散剤(A)と水性液状媒体(E)と含有する導電助剤の水性分散体を得た後、該水性分散体に活物質と架橋型樹脂微粒子を含むバインダー組成物(C)とを加え、合材インキを得ることができる。この場合、活物質とバインダー同時に加えることもできるし、活物質を加えた後、架橋型樹脂微粒子を含むバインダー組成物(C)を加えてもよいし、その逆であってもよい。
(4−3) 活物質と分散剤(A)と架橋型樹脂微粒子を含むバインダー組成物(C)と水性液状媒体(E)と含有する活物質の水性分散体を得た後、該水性分散体に炭素材料を加え、合材インキを得ることができる。
(4−4) 炭素材料と分散剤(A)と架橋型樹脂微粒子を含むバインダー組成物(C)と水性液状媒体(E)と含有する導電助剤の水性分散体を得た後、該水性分散体に活物質を加え、合材インキを得ることができる。
(4−5) 活物質と炭素材料と分散剤(A)と架橋型樹脂微粒子を含むバインダー組成物(C)と水性液状媒体(E)をほとんど同時に混合し、合材インキを得ることができる。
上記の工程で、セルロース系増粘剤(B)は、分散剤(A)と同時に加えても良いし、別に加えても良い。
<分散機・混合機>
合材インキを得る際に用いられる装置としては、顔料分散等に通常用いられている分散機、混合機が使用できる。例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS−5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;または、その他ロールミル等が挙げられるが、これらに限定されるものではない。また、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。
例えば、メディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、または、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。また、強い衝撃で粒子が割れたり、潰れたりしやすい正極または負極活物質の場合は、メディア型分散機よりは、ロールミルやホモジナイザー等のメディアレス分散機が好ましい。
<下地層形成用組成物>
下地層形成用組成物は、少なくとも導電助剤とバインダー組成物(C)と分散剤(A)と水性液状媒体(E)とを含有する。さらに、増粘剤(B)を使用することもできる。各成分については、合材インキの場合と同様である。
電極下地層に用いる組成物の総固形分に占める導電助剤としての炭素材料の割合は、5重量%以上、95重量%以下が好ましく、10重量%以上、90重量%以下が更に好ましい。導電助剤である炭素材料が少ないと、下地層の導電性が保てない場合があり、一方、導電助剤である炭素材料が多すぎると、塗膜の耐性が低下する場合がある。また、電極下地層インキの適正粘度は、電極下地層インキの塗工方法によるが、一般には、10mPa・s以上、30,000mPa・s以下とするのが好ましい。
<電極>
合材インキを、集電体上に塗工・乾燥し、合材層を形成し、二次電池用電極を作製することができる。あるいは、下地層形成用組成物を用いて集電体上に下地層を形成した後、該下地層上に、合材層を設けて、二次電池用電極を作製することもできる。下地層上に設ける合材層は、上記した合材インキ(1)〜(4)を用いて形成してもよいし、他の合材インキを用いて形成することもできる。
<集電体>
電極に使用する集電体の材質や形状は特に限定されず、各種二次電池にあったものを適宜選択することができる。例えば、集電体の材質としては、アルミニウム、銅、ニッケル、チタン、又はステンレス等の金属や合金が挙げられる。リチウムイオン電池の場合、特に正極材料としてはアルミニウムが、負極材料としては銅が、それぞれ好ましい。また、形状としては、一般的には平板上の箔が用いられるが、表面を粗面化したものや、多孔質の発泡状のもの、穴あき箔状のもの、及びメッシュ状の集電体も使用できる。
集電体上に合材インキを塗工する方法としては、特に制限はなく公知の方法を用いることができる。具体的には、ダイコーティング法、ディップコーティング法、ロールコーティング法、ドクターコーティング法、ナイフコーティング法、スプレーコティング法、グラビアコーティング法、スクリーン印刷法または静電塗装法等が挙げる事ができ、乾燥方法としては放置乾燥、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できるが、特にこれらに限定されるものではない。また、塗布後に平版プレスやカレンダーロール等による圧延処理を行っても良い。電極合材層の厚みは、一般的には1μm以上、500μm以下であり、好ましくは10μm以上、300μm以下である。また、下地層を具備する場合には下地層の厚みは、一般的には0.1μm以上、100μm以下であり、好ましくは0.5μm以上、50μm以下である。
<二次電池>
正極もしくは負極の少なくとも一方に上記の電極を用い、二次電池を作製することができる。二次電池としては、リチウムイオン二次電池の他、アルカリ二次電池、鉛蓄電池、ナトリウム硫黄二次電池、リチウム空気二次電池等が挙げられ、それぞれの二次電池で従来から知られている、電解液やセパレーター等を適宜用いることができる。
<電解液>
リチウムイオン二次電池の場合を例にとって説明する。電解液としては、リチウムを含んだ電解質を非水系の溶剤に溶解したものを用いる。電解質としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiCFSO、Li(CFSON、LiCSO、Li(CFSOC、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN、又はLiBPh等が挙げられるがこれらに限定されない。
非水系の溶剤としては特に限定はされないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等のカーボネート類;γ−ブチロラクトン、γ−バレロラクトン、及びγ−オクタノイックラクトン等のラクトン類;テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−メトキシエタン、1,2−エトキシエタン、及び1,2−ジブトキシエタン等のグライム類;メチルフォルメート、メチルアセテート、及びメチルプロピオネート等のエステル類;ジメチルスルホキシド、及びスルホラン等のスルホキシド類;並びに、アセトニトリル等のニトリル類等が挙げられる。又これらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。
さらに上記電解液を、ポリマーマトリクスに保持しゲル状とした高分子電解質とすることもできる。ポリマーマトリクスとしては、ポリアルキレンオキシドセグメントを有するアクリレート系樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン系樹脂、及びポリアルキレンオキシドセグメントを有するポリシロキサン等が挙げられるがこれらに限定されない。
<セパレーター>
セパレーターとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びそれらに親水性処理を施したものが挙げられるが、特にこれらに限定されるものではない。
<電池構造・構成>
本発明の電極形成用組成物を用いたリチウムイオン二次電池の構造については特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレーターとから構成され、ペーパー型、円筒型、ボタン型、積層型等、使用する目的に応じた種々の形状とすることができる。
以下に、実施例により本発明をさらに具体的に説明するが、以下の実施例は本発明の権利範囲を何ら制限するものではない。なお、実施例および比較例における「部」は「重量部」を表す。
<アニオン性分散剤の合成例>
(合成例1)アニオン性分散剤(A1−1)
ガス導入管、温度計、コンデンサー及び攪拌機を備えた反応容器に、ブタノール93.4部を仕込み、窒素ガスで置換した。反応容器内を110℃に加熱して、2−エチルヘキシルアクリレート30.0部、アクリル酸70.0部及びV−601(和光純薬製)4.5部の混合物を2時間かけて滴下し、重合反応を行った。滴下終了後、さらに110℃で3時間反応させた後、V−601(和光純薬製)0.5部を添加し、さらに110℃で1時間反応を続けて、アニオン性分散剤(A1−1)の溶液を得た。アニオン性分散剤(A1−1)の重量平均分子量は約20000であった。
さらに、室温まで冷却した後、水酸化ナトリウム0.01mol/L水溶液97.2部を添加して中和した。これは、アクリル酸を100%中和する量である。さらに、水103部を添加した後、90℃以上に加熱し、ブタノールを水と共沸させてブタノールを留去した。内温が100℃に達した時点で1gサンプリングして、180℃で20分間加熱乾燥して不揮発分を測定し、この測定値に基づいて、水性化した樹脂溶液の不揮発分が20%になるように水を加えた。これより、アニオン性分散剤(A1−1)の不揮発分20%の水溶液ないし水性分散体を得た。
(合成例2〜17)
表1に示す配合組成で、合成例1と同様の方法により、アニオン性分散剤(A1−2)〜(A1−17)の水溶液ないし水性分散体を得た。
なお、表1中の省略記号の説明は以下のとおりである。
St :スチレン
BzMA:ベンジルメタクリレート
AA :アクリル酸
MAA :メタクリル酸メチル
HEMA:ヒドロキシエチルメタクリレート
MMA :メタクリル酸メチル
2EHA:2−エチルヘキシルアクリレート
BMA :メタクリル酸ブチル
<バインダー組成物の調製>
[合成例18]
バインダー組成物(C1−4)
攪拌器、温度計、滴下ロート及び還流器を備えた反応容器に、イオン交換水40部と界面活性剤としてアデカリアソープSR−10(株式会社ADEKA製)0.2部とを仕込み、これに対して、別途、メチルメタクリレート48.5部、ブチルアクリレート50部、アクリル酸1部、3−メタクリロキシプロピルトリメトキシシラン0.5部、イオン交換水53部および界面活性剤としてアデカリアソープSR−10(株式会社ADEKA製)1.8部をあらかじめ混合しておいたプレエマルジョンのうちの1%をさらに加えた。内温を70℃に昇温し十分に窒素置換した後、過硫酸カリウムの5%水溶液10部の10%を添加し重合を開始した。反応系内を70℃で5分間保持した後、内温を70℃に保ちながらプレエマルジョンの残りと過硫酸カリウムの5%水溶液の残りを3時間かけて滴下し、さらに2時間攪拌を継続した。固形分測定にて転化率が98%超えたことを確認した後、温度を30℃まで冷却した。25%アンモニア水を添加して、pHを8.5とし、さらにイオン交換水で固形分を50%に調整して樹脂微粒子水分散体を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
[合成例19〜37]
表2に示す配合組成で、合成例18と同様の方法により、樹脂微粒子水分散体であるバインダー組成物(C1−5)〜(C1−17)、(C1−1)〜(C1−3)、(C2−1)、(C3−1)及び(C4−1)を得た。ただし、バインダー組成物(C1−16)及び(C1−17)は乳化重合時に樹脂が凝集し、目的の樹脂微粒子を得ることができなかった。
なお、表2中の記号の説明は以下のとおりである。
※1:3−メタクリロキシプロピルトリメトキシシラン
※2:アリルメタクリレート
※3:グリシジルメタクリレート
※4:ダイアセトンアクリルアミド
※5:ジエチルアクリルアミド
※6:アクリルアミド
※7:N−メチロールアクリルアミド
※8:ヒドロキシエチルメタクリレート
※9:2−エチルヘキシルアクリレート
※10:ラウリルメタクリレート
※11:スチレン
※12:シクロヘキシルメタクリレート
※13:イタコン酸
※14:アクリル酸
※15:スチレンスルホン酸
※16:アシッド・ホスホオキシエチルメタクリレート
※17:メチルメタクリレート
※18:ブチルアクリレート
※19:アクリロニトリル
※20:1,3−ブタジエン
※21:アデカリアソープSR−10
アルキルエーテル系アニオン界面活性剤(株式会社ADEKA製)
※22:アデカリアソープER−20
アルキルエーテル系ノニオン界面活性剤(株式会社ADEKA製)
※23:5%過硫酸カリウム水溶液
<化合物(D)の製造[エポキシ基含有化合物の製造]>
[製造例1]
攪拌器、温度計、滴下ロート及び還流器を備えた反応容器にイソプロピルアルコール20部及び水20部を仕込み、別途、メチルメタクリレート40部、メチルアクリレート40部及びグリシジルメタクリレート20部を滴下槽1に、また、過硫酸カリウム2部をイソプロピルアルコール30部および水30部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1及び2の内容物を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認した後、温度を30℃まで冷却し、固形分50%のエポキシ基含有化合物(メチルメタクリレート/メチルアクリレート/グリシジルメタクリレート共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
<化合物(D)の製造[アミド基含有化合物の製造]>
[製造例2]
攪拌器、温度計、滴下ロート及び還流器を備えた反応容器に水90部を仕込み、別途、アクリルアミド20部を滴下槽1に、また、過硫酸カリウム2部を水90部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1及び2の内容物を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認した後、温度を30℃まで冷却し、固形分10%のアミド基含有化合物(ポリアクリルアミド)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
[製造例3]
攪拌器、温度計、滴下ロート及び還流器を備えた反応容器に水40部を仕込み、別途、2−エチルヘキシルアクリレート40部、スチレン40部及びジメチルアクリルアミド20部を滴下槽1に、また、過硫酸カリウム2部を水60部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1及び2の内容物を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認した後、温度を30℃まで冷却し、固形分50%のアミド基含有化合物(2−エチルヘキシルアクリレート/スチレン/ジメチルアクリルアミド共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
<化合物(D)の製造[水酸基含有化合物の製造]>
[製造例4]
攪拌器、温度計、滴下ロート及び還流器を備えた反応容器にイソプロピルアルコール20部及び水20部を仕込み、別途、メチルメタクリレート40部、ブチルアクリレート40部及び2−ヒドロキシエチルメタクリレート20部を滴下槽1に、また、過硫酸カリウム2部をイソプロピルアルコール30部および水30部に溶解させて滴下槽2に仕込んだ。内温を80℃に昇温し十分に窒素置換した後、滴下槽1及び2の内容物を2時間かけて滴下し、重合を行った。滴下終了後、内温を80℃に保ったまま1時間攪拌を続け、固形分測定にて転化率が98%超えたことを確認した後、温度を30℃まで冷却し、固形分50%の水酸基含有化合物(メチルメタクリレート/ブチルアクリレート/2−ヒドロキシエチルメタクリレート共重合体)溶液を得た。なお、固形分は、150℃20分焼き付け残分により求めた。
[合成例38〜44]
表3に示す配合組成で未架橋の化合物(D)を含むバインダー組成物を得た。
なお、表3中の製品名の説明は以下のとおりである。
エポキシ樹脂;製品名アデカレジンEM−1−60L、株式会社ADEKA製、エポキシ当量320、ビスフェノールA−エピクロロヒドリン型エポキシ樹脂
オキサゾリン含有アクリル・スチレン樹脂;製品名エポクロスK−2020E、株式会社日本触媒製、オキサゾリン当量550
<セルロース系増粘剤(B)>
・CMC:カルボキシメチルセルロース、水酸基価:415〜500mgKOH/g
・HEC:ヒドロキシエチルセルロース、水酸基価:600〜720mgKOH/g
<二次電池電極用炭素材料分散体>
導電助剤である炭素材料としてアセチレンブラック(デンカブラックHS−100)10部、合成例3に記載のアニオン性分散剤(A1−3)の水溶液ないし水性分散体を10部(固形分として2部)、水80部をミキサーに入れて混合し、更にサンドミルに入れて分散を行い、表4に示す組成比の二次電池電極用炭素材料分散体(1)を得た。
表4に示す配合組成で、二次電池電極用炭素材料分散体(1)と同様の方法で二次電池電極用炭素材料分散体(2)〜(29)を得た。
二次電池電極用炭素材料分散体の分散度を、グラインドゲージによる判定(JIS K5600−2−5に準ず)より求めた。評価結果を表4に示す。表中の数字は粗大粒子の大きさを示し、数値が小さいほど分散性に優れ、均一な二次電池電極形成用組成物であることを示している。
なお、表4中の省略記号の説明は以下のとおりである。
A:アセチレンブラック、デンカブラックHS−100(電気化学工業社製)
F:ファーネスブラック、Super−P Li(TIMCAL社製)
C:カーボンナノチューブ、VGCF−H(昭和電工社製)
市販分散剤A:スチレンマレイン酸樹脂、重量平均分子量5000以上、酸価約500mgKOH/g
市販分散剤B:ナフタレンスルホン酸Naホルマリン縮合樹脂、重量平均分子量5000以上、酸価約250mgKOH/g
CMC:カルボキシメチルセルロース、水酸基価:415〜500mgKOH/g
HEC:ヒドロキシエチルセルロース、水酸基価:600〜720mgKOH/g
<二次電池電極形成用組成物>
[実施例1]
二次電池電極用炭素材料分散体(1)50部(固形分で6部)と、固形分で4重量部となる量のバインダー組成物(C1−4)とを混合して二次電池電極形成用組成物を得た。
[実施例2〜24、比較例1〜9]
表5に示す組成比となるように、二次電池電極用炭素材料分散体とバインダー組成物とを混合して、実施例2〜24、比較例1〜9の二次電池電極形成用組成物を得た。
二次電池電極形成用組成物を用いて電極を作製した場合の電解液への溶出は、電池を作製した後の電極崩壊、集電体からの電極層の剥離による電池特性劣化を引き起こしてしまうため、その溶出が見られないことが望ましい。電解液溶出性の評価は次のように行なった。表5に示す二次電池電極形成用組成物を厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して厚さ5μmの二次電池電極形成用組成物塗膜を作製した。得られた塗膜をエチレンカーボネートとジエチルカーボネートを1:1(体積比)の非水系電解液溶媒に浸して60℃の環境下で3日間保管後、塗膜の状態を観察した。評価基準を下記に示し、評価結果を表5に示す。
○:「塗膜の崩壊、剥離は見られない」
△:「塗膜の部分的な崩壊、剥離が見られる」
×:「塗膜の大部分が崩壊、剥離している」
<リチウムイオン二次電池電極用合材インキ、正極、コイン型電池>
[実施例25]
正極活物質としてLiCoO90部、分散剤(A1−3)の水溶液5部(樹脂固形分として1部)、バインダー組成物(C1−4)8部(固形分として4部)及び水43.2部を混合して、固形分65重量%の正極用の二次電池電極用合材インキを作製した。合材インキの分散度を、グラインドゲージによる判定(JIS K5600−2−5に準ず)より求めた。評価結果を表6Aに示す。表中の数字は粗大粒子の大きさを示し、数値が小さいほど分散性に優れ、均一な二次電池電極用合材インキであることを示している。
次に、この正極用の二次電池電極用合材インキを集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚さが100μmとなるよう調整した。さらに、ロールプレスによる圧延処理を行い、厚さが80μmとなる正極を作製した。なお、充放電保存特性は、正極を作用極、金属リチウム箔を対極とした評価用コイン型電池を用いて、評価した。
[実施例26〜40、比較例10〜25]
表6A及び6Bに示す活物質、導電助剤である炭素材料、炭素材料分散体、二次電池電極形成用組成物、分散剤及びバインダー組成物の組み合せを変え、正極用の二次電池電極用合材インキの最終固形分が65重量%となるように水を加えた以外は実施例25と同様にして、正極用の二次電池電極用合材インキ及び正極を得て、同様に評価した。
<リチウムイオン二次電池用負極の作製>
[実施例41]
負極活物質として天然黒鉛95部、分散剤(A1−4)の水溶液2.5部(樹脂固形分として0.5部)、バインダー組成物(C1−4)4部(固形分として2部)及び水93.5部を混合して、固形分50重量%の負極用の二次電池電極用合材インキを作製した。合材インキの分散度を、グラインドゲージによる判定より求めた。評価結果を表6Cに示す。
次に、この負極用の二次電池電極用合材インキを集電体となる厚さ20μmの銅箔上にドクターブレードを用いて塗布した後、減圧加熱乾燥して電極の厚さが100μmとなるよう調整した。さらに、ロールプレスによる圧延処理を行い、厚さが80μmとなる負極を作製し、正極の場合と同様に評価した。なお、充放電保存特性は、負極を作用極、金属リチウム箔を対極とした評価用コイン型電池を用いて、評価した。
[実施例42〜44、比較例26〜32]
表6Cに示す活物質、導電助剤である炭素材料、炭素材料分散体、二次電池電極形成用組成物、分散剤及びバインダー組成物の組み合せを変え、負極用の二次電池電極用合材インキの最終固形分が50重量%となるように水を加えた以外は実施例41と同様にして、負極用の二次電池電極用合材インキ及び負極を得て、同様に評価した。
[実施例45]
正極活物質としてLiCoO90部、分散剤(A1−9)の水溶液2.5部(樹脂固形分として0.5部)、増粘剤としてCMCの3%水溶液33.3部(固形分として1部)、バインダー組成物(C1−6)7部(固形分として3.5部)及び水13.3部を混合して、固形分65重量%の正極用の二次電池電極用合材インキを作製した。組成を表7Aに示す。正極の作製、評価は実施例25と同様におこなった。
[実施例46〜52、実施例60〜70、比較例33〜40]
表7Aおよび表8Aに示す活物質、導電助剤である炭素材料、炭素材料分散体、二次電池電極形成用組成物、分散剤、増粘剤及びバインダー組成物の組み合せを変え、正極用の二次電池電極用合材インキの最終固形分が65重量%となるように水を加えた以外は実施例45と同様にして、正極用の二次電池電極用合材インキ及び正極を得て、同様に評価した。
[実施例53]
負極活物質として天然黒鉛94部、分散剤(A1−3)の水溶液2.5部(樹脂固形分として0.5部)、バインダー組成物(C1−4)5部(固形分として2.5部)、増粘剤としてCMCの2%水溶液25部(固形分として0.5部)及び水68.5部を混合して、固形分50重量%の負極用の二次電池電極用合材インキを作製した。組成を表7Bに示す。負極の作製、評価は実施例41と同様におこなった。
[実施例54〜59、実施例71〜76、比較例41〜43]
表7Bおよび表8Bに示す活物質、導電助剤である炭素材料、炭素材料分散体、二次電池電極形成用組成物、分散剤、増粘剤及びバインダー組成物の組み合せを変え、負極用の二次電池電極用合材インキの最終固形分が50重量%となるように水を加えた以外は実施例53と同様にして、負極用の二次電池電極用合材インキ及び負極を得て、同様に評価した。
なお、表6A〜6C中の省略記号の説明は以下のとおりである。
LCO:LiCoO
LFP:LiFePO
LMO:LiMn
NMC:LiNi1/3Mn1/3Co1/3
炭素材料A:アセチレンブラック、デンカブラックHS−100(電気化学工業社製)
HEC:ヒドロキシエチルセルロース
なお、表7A及び7B中の省略記号の説明は以下のとおりである。
LCO:LiCoO
LFP:LiFePO
LMO:LiMn
NMC:LiNi1/3Mn1/3Co1/3
炭素材料A:アセチレンブラック、デンカブラックHS−100(電気化学工業社製)
CMC:カルボキシメチルセルロース
HEC:ヒドロキシエチルセルロース
なお、表8A及び8B中の省略記号の説明は以下のとおりである。
LFP:LiFePO
LMO:LiMn
炭素材料A:アセチレンブラック、デンカブラックHS−100(電気化学工業社製)
炭素材料C:カーボンナノチューブ、VGCF−H(昭和電工社製)
市販分散剤A:スチレンマレイン酸樹脂
市販分散剤B:ナフタレンスルホン酸Naホルマリン縮合樹脂
CMC:カルボキシメチルセルロース
HEC:ヒドロキシエチルセルロース
PTFE:ポリテトラフルオロエチレン
<作製した合材インキ、塗膜の特性評価、電池評価の方法>
(合材インキの分散度)
二次電池電極形成用組成物の分散度と同様、グラインドゲージによる判定(JIS K5600−2−5に準ず)より求めた。
(合材インキの粘度)
スラリーの粘度測定には、レオメーター(TAインスツメント製「AR−G2」)を用い、シェアレートを0.001(1/s)〜10(1/s)で変化させた時の0.01(1/s)と1(1/s)の粘度を求めた。
0.01(1/s)の粘度について
○:10000mPa・sより大きく、50000mPa・s以下の場合
△:50000mPa・sより大きく、100000mPa・s以下の場合
×:100000mPa・sより大きい場合
1(1/s)の粘度について
○:1000mPa・sより大きく、5000mPa・s以下の場合
△:5000mPa・sより大きく、8000mPa・s以下の場合
×:8000mPa・sより大きい場合
(合材インキの沈降性)
合材インキを作製してから1日後に底部に沈降物が生じるか確認した。
○:1日後の合材インキに沈降物は全く確認されない。
×:1日後の合材インキに沈降物は僅かでも確認できる。
(塗膜の剥離強度)
上記で作製した電極(実施例25を参照)に、ナイフを用いて電極表面から集電体に達する深さまでの切込みを2mm間隔で縦横それぞれ6本の碁盤目の切込みを入れた。この切り込みに粘着テープを貼り付けて直ちに引き剥がし、活物質の脱落の程度を目視判定で判定した。評価基準を下記に示す。
○:「剥離なし(実用上問題のないレベル)」
○△:「わずかに剥離(問題はあるが使用可能レベル)」
△:「半分程度剥離」
×:「ほとんどの部分で剥離」
(塗膜の柔軟性)
上記で作製した電極を短冊状にして集電体側を直径3mmの金属棒に接するように巻きつけ、巻きつけ時に起こる電極表面のひび割れを、目視観察により判定した。ひび割れが起こらないものほど、柔軟性が良い。
○:「ひび割れなし(実用上問題のないレベル)」
○△:「ごくまれにひび割れが見られる(問題があるが、使用可能レベル)」
△:「部分的にひび割れが見られる」
×:「全体的にひび割れが見られる」
(電解液溶出性)
実施例1における電解液溶出性の評価と同様の方法により求めた。
(充放電保存特性)
上記で作製した電極を直径16mmに打ち抜いて作製した作用極と、金属リチウム箔の対極と、作用極及び対極の間に挿入されるセパレーター(多孔質ポリプロピレンフィルム)と、電解液(エチレンカーボネートとジエチルカーボネートを1:1(体積比)の割合で混合した混合溶媒にLiPFを1Mの濃度で溶解させた非水系電解液)とからなるコイン型電池を作製した。コイン型電池はアルゴンガスで置換したグロ−ブボックス内で作製した。
得られたコイン型電池について、充放電装置(北斗電工社製SM−8)を用い、充放電測定を行った。使用する活物質がLiFePOの場合は、充電電流1.0Cにて充電終止電圧4.5Vまで定電流定電圧充電を続けた。電池の電圧が4.5Vに達した後、放電電流1.0Cで放電終止電圧2.0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして100サイクルの充電・放電を繰り返した。3サイクル目の放電容量を初回放電容量(初回放電容量を放電容量維持率100%とする)とし、100サイクル後の放電容量維持率を算出した(100%に近いほど良好)。
○:「変化率が95%以上。特に優れている。」
○△:「変化率が90%以上、95%未満。全く問題なし。」
△:「変化率が85%以上、90%未満。問題はあるが使用可能なレベル。」
×:「変化率が85%未満。実用上問題あり、使用不可。」
また、使用する活物質がLiCoO、LiMn、LiNiOの場合は、充電電流1.0Cにて充電終止電圧4.2Vまで定電流定電圧充電を続けた。電池の電圧が4.2Vに達した後、放電電流1.0Cで放電終止電圧3.0Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして100サイクルの充電・放電を繰り返した。
また、使用する活物質がLiNi1/3Mn1/3Co1/3の場合は、充電電流1.0Cにて充電終止電圧4.3Vまで定電流定電圧充電を続けた。電池の電圧が4.3Vに達した後、放電電流1.0Cで放電終止電圧2.8Vに達するまで定電流放電を行った。これらの充電・放電サイクルを1サイクルとして100サイクルの充電・放電を繰り返した。
(充放電サイクル後の塗膜外観)
充放電サイクル特性評価後にセルを分解し、電極塗膜の外観を目視にて確認した。評価結果が良いほど、電極の強度に優れていることを示す。
○:「剥がれなし」
△:「僅かに剥がれ」
×:「大部分剥がれ」
表6A〜C、表7A、表7B、表8A及び8Bに示すように、本発明の二次電池電極形成用水性組成物を用いた場合、活物質、または導電助剤である炭素材料が合材インキ中で均一に分散されているため、合材インキの流動特性、電極の柔軟性、密着性のバランスが取れ、電池特性においても充放電保存特性が向上すると考えられる。
活物質または導電助剤である炭素材料が、合材インキ中での分散制御が不十分であった場合、電極とした時の均一な導電ネットワークが形成されないために、電極中で部分的凝集に起因する抵抗分布が生じてしまい、電池として使用した際の電流集中が起こるために劣化促進を引き起こしているのではないかと考察している。導電助剤である炭素材料または活物質の分散制御が不十分な場合、すなわち、アニオン性分散剤を使用しない場合やアニオン性分散剤であっても本願発明の範囲から外れるようなアニオン性分散剤を用いた場合には、電極の塗膜特性や電池特性が不十分な傾向が見られている。特に導電助剤である炭素材料の分散制御が不十分な場合、その傾向は顕著である。
更には、分散剤とバインダー組成物(特に架橋性樹脂微粒子水分散体を含むバインダー組成物)を組み合わせることにより、電極塗膜の電解液に対する耐性がより向上しているものと考えられる。
[実施例77、78、比較例44]
表9に示す二次電池電極形成用組成物を、集電体となる厚さ20μmのアルミ箔上にドクターブレードを用いて塗布した後、加熱乾燥し、厚さが5μmとなるように下地層を形成した。次いで、前記下地層上に表6Aに示す二次電池正極用合材インキを塗布した後、減圧加熱乾燥して、以下実施例25と同様にして正極を得て、同様に評価した。
表9に示すように、本発明の二次電池電極形成用組成物を下地層へ用いた場合も実施例34及び37の評価結果と同様に良好となっていることが分かる。このことは、本発明の二次電池電極形成用組成物が、集電体と合材層との密着部分を均一、かつ強固にしたためと考えられる。しかしながら、比較例6の下地層用の二次電池電極形成用組成物の分散状態、電解液への耐溶出性が不十分であり、電極とした場合においても、実施例26の評価結果と比較して劣る結果であった。このことは、集電体と合材層との密着状態がかえって不十分な状態となってしまったため、下地層を使用しない場合よりも電極として不均一な状態になってしまったためと考えられる。

Claims (8)

  1. 電極活物質もしくは導電助剤である炭素材料の少なくとも一方と、アニオン性分散剤(A)と、セルロース系増粘剤(B)と、架橋型樹脂微粒子を含むバインダー組成物(C)と、水とを含有するリチウムイオン二次電池電極形成用水性組成物であって、
    アニオン性分散剤(A)が、下記単量体を共重合して得られる共重合体であり、酸価が100〜600mgKOH/gであり、水酸基価が0〜400mgKOH/gであり、重量平均分子量が5000以上であり、前記共重合体中のカルボキシル基の少なくとも一部が中和された水性の分散剤であり、
    芳香環を有するエチレン性不飽和単量体(a1):10〜80重量%
    カルボキシル基を有するエチレン性不飽和単量体(a2):20〜75重量%
    前記(a1)及び(a2)以外のエチレン性不飽和単量体(a3):0〜70重量%
    (但し、前記(a1)〜(a3)の合計を100重量%とする。)
    アニオン性分散剤(A)の含有量が、前記組成物における全固形分を基準として0.1〜1重量%である、リチウムイオン二次電池電極形成用水性組成物。
  2. 架橋型樹脂微粒子が、下記単量体を水中にて界面活性剤の存在下、ラジカル重合開始剤によって乳化重合してなる樹脂微粒子である、請求項1に記載の組成物。
    (C1)単官能または多官能アルコキシシリル基を有するエチレン性不飽和単量体(c1)、および1分子中に2つ以上のエチレン性不飽和基を有する単量体(c2)からなる群より選ばれる少なくとも1つの単量体:0.1〜5重量%
    (C2)前記単量体(c1)〜(c2)以外のエチレン性不飽和単量体(c3):95〜99.9重量%
    (但し、前記(c1)〜(c3)の合計を100重量%とする。)
  3. エチレン性不飽和単量体(c3)が下記組成である、請求項2に記載の組成物。
    単官能または多官能エポキシ基を有するエチレン性不飽和単量体(c4)、単官能または多官能アミド基を有するエチレン性不飽和単量体(c5)、および単官能または多官能水酸基を有するエチレン性不飽和単量体(c6)からなる群より選ばれる少なくとも1つの単量体:0.1〜20重量%
    前記単量体(c1)、(c2)、(c4)〜(c6)以外のエチレン性不飽和単量体(c7):75〜99.8重量%
    (但し、前記(c1)〜(c3)の合計を100重量%とする。)
  4. エチレン性不飽和単量体(c7)が下記組成である、請求項3に記載の組成物。
    炭素数8〜18のアルキル基を有するエチレン性不飽和単量体(c8)、および環状構造を有するエチレン性不飽和単量体(c9)からなる群より選ばれる少なくとも1つの単量体:30〜95重量%
    前記(c1)〜(c6)、(c8)、(c9)以外のエチレン性不飽和単量体:0〜69.8重量%
    (但し、前記(c1)〜(c3)の合計を100重量%とする。)
  5. バインダー組成物(C)が、未架橋のエポキシ基含有化合物、未架橋のアミド基含有化合物、未架橋の水酸基含有化合物、および未架橋のオキサゾリン基含有化合物からなる群より選ばれる少なくとも1つの未架橋の化合物(D)をさらに含む、請求項1〜4のいずれか一項に記載の組成物。
  6. セルロース系増粘剤(B)がヒドロキシアルキルセルロースである、請求項1〜5のいずれか一項に記載の組成物。
  7. 集電体と、請求項1〜6に記載の組成物から形成される合材層もしくは電極下地層の少なくとも一層とを具備する、リチウムイオン二次電池用電極。
  8. 正極と負極と電解液とを具備するリチウムイオン二次電池であって、前記正極もしくは前記負極の少なくとも一方が請求項7に記載のリチウムイオン二次電池用電極である、リチウムイオン二次電池。
JP2012545962A 2011-03-31 2012-03-21 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池 Active JP5252134B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012545962A JP5252134B2 (ja) 2011-03-31 2012-03-21 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011078955 2011-03-31
JP2011078955 2011-03-31
PCT/JP2012/057143 WO2012133030A1 (ja) 2011-03-31 2012-03-21 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
JP2012545962A JP5252134B2 (ja) 2011-03-31 2012-03-21 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池

Publications (2)

Publication Number Publication Date
JP5252134B2 true JP5252134B2 (ja) 2013-07-31
JPWO2012133030A1 JPWO2012133030A1 (ja) 2014-07-28

Family

ID=46930762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012545962A Active JP5252134B2 (ja) 2011-03-31 2012-03-21 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池

Country Status (2)

Country Link
JP (1) JP5252134B2 (ja)
WO (1) WO2012133030A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2579328T3 (es) * 2011-06-15 2016-08-10 Toyo Ink Sc Holdings Co., Ltd. Composición para la formación de un electrodo de batería secundaria, electrodo de batería secundaria, y batería secundaria
JP6044300B2 (ja) * 2012-11-27 2016-12-14 東洋インキScホールディングス株式会社 非水系二次電池電極形成用導電性プライマー組成物、それを用いた非水系二次電池電極、及び非水系二次電池
JP6269013B2 (ja) * 2012-12-14 2018-01-31 東洋インキScホールディングス株式会社 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
JP6036260B2 (ja) * 2012-12-19 2016-11-30 東洋インキScホールディングス株式会社 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6036261B2 (ja) * 2012-12-19 2016-11-30 東洋インキScホールディングス株式会社 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2014194915A (ja) * 2013-02-27 2014-10-09 Nippon Shokubai Co Ltd 電池用電極組成物用バインダー
JP6186852B2 (ja) * 2013-04-30 2017-08-30 日本ゼオン株式会社 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
JP6354393B2 (ja) * 2013-07-05 2018-07-11 東洋インキScホールディングス株式会社 燃料電池用水性触媒ペースト組成物、及び燃料電池
WO2015029949A1 (ja) * 2013-08-27 2015-03-05 日産化学工業株式会社 導電性炭素材料分散剤および導電性炭素材料分散液
JP6241214B2 (ja) * 2013-11-08 2017-12-06 東洋インキScホールディングス株式会社 燃料電池電極形成用組成物、およびそれを用いた燃料電池
JP5861896B2 (ja) * 2014-03-10 2016-02-16 株式会社豊田自動織機 第1正極活物質、第2正極活物質、分散剤及び溶剤を含む組成物
WO2015146787A1 (ja) * 2014-03-28 2015-10-01 日本ゼオン株式会社 電気化学素子電極用導電性接着剤組成物及び電気化学素子電極用集電体
JP2015230884A (ja) * 2014-06-06 2015-12-21 東洋インキScホールディングス株式会社 蓄電デバイス用樹脂
JP6365011B2 (ja) * 2014-06-30 2018-08-01 東洋インキScホールディングス株式会社 蓄電デバイス下地層用樹脂微粒子、下地層形成用インキ、下地層付き集電体、蓄電デバイス用電極、蓄電デバイス。
CN107078297A (zh) * 2014-09-26 2017-08-18 应用材料公司 用于二次电池电极的高固体含量糊配方
JP6539978B2 (ja) * 2014-10-16 2019-07-10 東洋インキScホールディングス株式会社 導電性組成物、蓄電デバイス用電極、及び蓄電デバイス
JP6515574B2 (ja) * 2015-02-20 2019-05-22 日本ゼオン株式会社 非水系二次電池機能層用バインダー、非水系二次電池機能層用組成物、非水系二次電池用機能層および非水系二次電池
JP6430472B2 (ja) * 2016-01-15 2018-11-28 関西ペイント株式会社 リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペースト
US20170271717A1 (en) * 2016-03-16 2017-09-21 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
CN109428080B (zh) * 2017-08-25 2020-11-06 宁德时代新能源科技股份有限公司 负极粘结剂、负极极片与锂离子二次电池
JPWO2020170960A1 (ja) * 2019-02-21 2021-12-16 日産化学株式会社 エネルギー貯蔵デバイス電極用薄膜形成用組成物
CN112812225A (zh) * 2019-11-15 2021-05-18 荒川化学工业株式会社 锂离子电池用导电性碳材料分散剂、锂离子电池电极用浆料、锂离子电池用电极以及电池
EP4024532B1 (en) * 2019-12-03 2024-05-29 Contemporary Amperex Technology Co., Limited Secondary battery, method for preparing the same, copolymer and apparatus
JP6856812B1 (ja) * 2020-10-21 2021-04-14 第一工業製薬株式会社 電極用結着剤組成物、電極用塗工液組成物、蓄電デバイス用電極及び蓄電デバイス
KR20230135579A (ko) 2021-01-29 2023-09-25 니폰 제온 가부시키가이샤 전기 화학 소자 전극용 도전재 페이스트, 전기 화학소자 전극용 슬러리 조성물, 전기 화학 소자용 전극 및 전기 화학 소자, 그리고 전기 화학 소자 전극용 도전재 페이스트의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247292A (ja) * 2003-01-21 2004-09-02 Hitachi Chem Co Ltd バインダー樹脂、合剤スラリー、非水電解液系二次電池の電極及び非水電解液系二次電池
JP2004281055A (ja) * 2003-01-23 2004-10-07 Hitachi Chem Co Ltd カルボキシル基含有樹脂を用いた電池用バインダ樹脂組成物、合剤スラリー、電極および電池
JP2010021059A (ja) * 2008-07-11 2010-01-28 Toyo Ink Mfg Co Ltd 水系炭素材料組成物及びそれを用いた電池用組成物
JP2010055972A (ja) * 2008-08-29 2010-03-11 Unitika Ltd 二次電池電極用バインダー、それを用いてなる電極及び二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004247292A (ja) * 2003-01-21 2004-09-02 Hitachi Chem Co Ltd バインダー樹脂、合剤スラリー、非水電解液系二次電池の電極及び非水電解液系二次電池
JP2004281055A (ja) * 2003-01-23 2004-10-07 Hitachi Chem Co Ltd カルボキシル基含有樹脂を用いた電池用バインダ樹脂組成物、合剤スラリー、電極および電池
JP2010021059A (ja) * 2008-07-11 2010-01-28 Toyo Ink Mfg Co Ltd 水系炭素材料組成物及びそれを用いた電池用組成物
JP2010055972A (ja) * 2008-08-29 2010-03-11 Unitika Ltd 二次電池電極用バインダー、それを用いてなる電極及び二次電池

Also Published As

Publication number Publication date
JPWO2012133030A1 (ja) 2014-07-28
WO2012133030A1 (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5252134B2 (ja) 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
JP5880544B2 (ja) 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
JP5935820B2 (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP5760945B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2013206759A (ja) 二次電池電極形成用水性組成物、二次電池用電極、及び二次電池
JP6539978B2 (ja) 導電性組成物、蓄電デバイス用電極、及び蓄電デバイス
JP5707605B2 (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP6079386B2 (ja) 二次電池電極形成用組成物、その製造方法、二次電池電極、及び二次電池
JP6476882B2 (ja) 導電性組成物、蓄電デバイス用下地層付き集電体、蓄電デバイス用電極、及び蓄電デバイス
JP5891974B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP5954322B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP5900111B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6167723B2 (ja) 二次電池電極形成用合材インキ
JP6365011B2 (ja) 蓄電デバイス下地層用樹脂微粒子、下地層形成用インキ、下地層付き集電体、蓄電デバイス用電極、蓄電デバイス。
JP6275307B1 (ja) 水系電極用塗工液およびその利用
JP6269013B2 (ja) 蓄電デバイス電極形成用組成物、蓄電デバイス電極、及び蓄電デバイス
JP2013168323A (ja) 非水二次電池電極用バインダー樹脂組成物
JP6036261B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6036260B2 (ja) 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP6244783B2 (ja) キャパシタ電極形成用組成物、キャパシタ電極、及びキャパシタ
JP2014216432A (ja) キャパシタ用電極形成用組成物、キャパシタ用電極、及びキャパシタ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5252134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250