JP7364973B2 - 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池 - Google Patents

二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池 Download PDF

Info

Publication number
JP7364973B2
JP7364973B2 JP2023031845A JP2023031845A JP7364973B2 JP 7364973 B2 JP7364973 B2 JP 7364973B2 JP 2023031845 A JP2023031845 A JP 2023031845A JP 2023031845 A JP2023031845 A JP 2023031845A JP 7364973 B2 JP7364973 B2 JP 7364973B2
Authority
JP
Japan
Prior art keywords
secondary battery
mixture
sheet
less
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023031845A
Other languages
English (en)
Other versions
JP2023129371A (ja
Inventor
貴哉 山田
雅彦 山田
純平 寺田
花英 藤原
健太郎 平賀
献偉 随
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JP2023129371A publication Critical patent/JP2023129371A/ja
Application granted granted Critical
Publication of JP7364973B2 publication Critical patent/JP7364973B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本開示は、二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池に関する。
リチウムイオン二次電池において、電極活物質や導電助剤などの粉体成分に結着剤及び溶媒を混合して、得られたスラリーを塗工、乾燥することによって、二次電池用シートを作製することが一般的に行われている。
他方、ポリテトラフルオロエチレン樹脂はフィブリル化しやすい重合体であり、これをフィブリル化することで結着剤として使用することも行われている。
特許文献1には、活性材料とポリテトラフルオロエチレン混合バインダ材とを含む混合物を、ジェットミルによって高せん断処理することにより、ポリテトラフルオロエチレンをフィブリル化する電極の作製方法が開示されている。
特許文献2には、ポリテトラフルオロエチレン樹脂を使用して、ペーストの押し出し成形で電極を形成することが開示されている。
非特許文献1には、陽極活物質、固体電解質及びポリテトラフロロエチレン及びキシレンを含有する組成物によって、陽極を形成することが開示されている。
特表2017-517862号公報 国際公開2021/043493
NATURE ENERGY 5,299-308(2020)
本開示は、良好な性質を有する二次電池用合剤、その合剤を含有する二次電池用合剤シート及び、その二次電池用合剤シートを使用した二次電池を提供することを目的とする。
また、本開示は、微細な繊維構造を有するポリテトラフルオロエチレン樹脂を含有する二次電池用シートを製造する方法を提供することを目的とする。
本開示は固体電解質及び/又は電極活物質、並びに、結着剤を含有する二次電池用合剤であって、
結着剤は、フィブリル性樹脂であり、
フィブリル性樹脂は、最大フィブリル径が90nm以上、フィブリル径の中央値が100nm以下の繊維状構造を有することを特徴とする二次電池用合剤である。
本開示は、固体電解質及び/又は電極活物質、並びに、結着剤を含有する二次電池用合剤であって、
結着剤は、フィブリル性樹脂であり、
フィブリル性樹脂は、フィブリル径の第3四分位が35nm以上、フィブリル径の中央値が100nm以下の繊維状構造を有することを特徴とする二次電池用合剤でもある。
上記二次電池用合剤は、リチウムイオン二次電池用であることが好ましい。
上記二次電池用合剤は、固体電解質及び/又は電極活物質、並びに、及び結着剤を含有する原料組成物を使用して得られたものであって、
原料組成物は、結着剤が粉末状のポリテトラフルオロエチレン樹脂であることが好ましい。
上記粉末状のフィブリル性樹脂は、水分含有量が500ppm以下であることが好ましい。
上記粉末状のポリテトラフルオロエチレン樹脂は、標準比重が2.12~2.20であることが好ましい。
上記粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が450μm以上のポリテトラフルオロエチレン樹脂を50質量%以上含むことが好ましい。
上記粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が450μm以上のポリテトラフルオロエチレン樹脂を80質量%以上含むことが好ましい。
本開示の二次電池用合剤は、更に、正極活物質を含むことが好ましい。
上記二次電池用合剤は、固体二次電池用であることが好ましい。
本開示は、上述した二次電池用合剤を含む二次電池用合剤シートでもある。
本開示は、上記二次電池用合剤シートを含む電極でもある。
本開示は、固体電解質及び/又は電極活物質、並びに、結着剤を含む原料組成物を混合しながら、剪断力を付与する工程(1)、
前記工程(1)によって得られた二次電池用合剤をバルク状に成形する工程(2)及び
前記工程(2)によって得られたバルク状の二次電池用合剤をシート状に圧延する工程(3)
を有する二次電池用合剤シートの製造方法であって、
前記原料組成物は、結着剤が粉末状のフィブリル性樹脂であり、
得られた二次電池用合剤シートにおいて、前記フィブリル性樹脂は、最大フィブリル径が90nm以上、フィブリル径の中央値が100nm以下の繊維状構造を有することを特徴とする二次電池用合剤シートの製造方法でもある。
本開示によって、良好な性能を有する二次電池用合剤シートを得ることができる。
以下、本開示を詳細に説明する。
本開示は、二次電池において好適に使用することができる二次電池用合剤及びこれを含有する合剤シートを提供する。
本開示の二次電池用合剤及びこれを含有する合剤シートにおいては、フィブリル性樹脂を結着剤として使用するものである。従来の二次電池用合剤においては、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体等の、溶媒に溶解する樹脂を結着剤として使用し、これを含有するスラリーの塗布・乾燥によって、二次電池用合剤を作成する方法が一般的であった。
粒子状態のポリテトラフルオロエチレン樹脂(以下これをPTFEと記す)等のようなフィブリル性樹脂にせん断応力を与えると、容易にフィブリル化することが知られている。このようなフィブリル化する性質を利用して、フィブリル性樹脂を結着剤として使用することができる。すなわち、フィブリル性樹脂がその他の粉体成分等に絡みつくことで、粉体成分を結着させ、これによって粉体成分を成形する際のバインダーとして作用することができる。
しかし、フィブリル性樹脂を結着剤として使用する場合でも、フィブリル化が充分でなければ、二次電池用合剤として使用した際に良好な性能を発揮することはできない。本開示においては、この点についての検討を行い、最大フィブリル径が90nm以上の繊維状構造を有するようなフィブリル化を生じさせることを特徴とするものである。なお、最大フィブリル径は、フィブリル化した樹脂について、フィブリル径を測定した中で最大値となる値を意味する。より具体的には、実施例に記載された方法によって測定された値である。
このような最大フィブリル径を有することによって、支持体を用いなくても扱えるような柔軟かつ機械特性に優れたシートを得ることができるという点で好ましい効果が得られる。
上記最大フィブリル径は、90nm以上であることがより好ましく、100nm以上であることが更に好ましく、110nm以上であることが特に好ましい。上記最大フィブリル径の上限は特に限定されないが、例えば、400nm以下とすることができる。
本開示の第二の二次電池用合剤は、フィブリル径の第3四分位が35nm以上であるものである。フィブリル径の第3四分位は、フィブリル径を測定した中で値を大きさの順に並べたとき、下位75%を含む値である。上記フィブリル径の第3四分位は、実施例に記載した測定方法で測定した値である。
上記フィブリル径の第3四分位は、35nm以上であることがより好ましく、40nm以上であることが更に好ましい。上記最大フィブリル径の上限は特に限定されないが、例えば、65nm以下とすることができる。
本開示の二次電池用合剤は、上記フィブリル径の中央値が100nm以下であることが好ましい。このような範囲とすることで、フィブリル化したPTFEが二次電池用合剤の結着剤として、固体電解質の劣化を少なくすることができ、良好な性能を発揮することができるものである。
更に、本開示の二次電池用合剤において、平均フィブリル間距離は0.25μm以上であってよく、10μm以下であって良い。
平均フィブリル間距離とは、x-y平面に存在するフィブリル間の距離の平均値を意味し、平均フィブリル間距離の測定は、走査型電子顕微鏡(SEM)の画像より判断する。これらの値を満たすものとすることで、良好な可撓性という点において好ましい。
本開示の二次電池用合剤において、平均ノード面積が0.5μm以上であって良く、2.0μm以下であってよい。
ノードの面積は、SEM写真から測定できる。しかし、さらに厳密にこれらの値を定める必要がある場合には、画像処理を行うとよい。例えば、画像解析ソフト(例えば、ナノシステム株式会社製" NanoHunter NS2K-Pro")を用いて、それぞれノード面積を求めることもできる。
なお、ノードの面積は、サンプル面内の少なくとも150μm×100μm相当の領域を測定して定めることが好ましい。
本開示では、フィブリル性樹脂は、せん断応力を与えると、容易にフィブリル化するような樹脂のことを示す。このようなフィブリル性樹脂を結着剤として使用することで、フィブリル化した樹脂がその他の粉体成分等に絡みつくことで、粉体成分を結着させ、これによって粉体成分を成形する際のバインダーとして作用することができる。例えば、フィブリル性樹脂として、LCP、セルロース、アクリル樹脂、超高分子量ポリエチレン、PTFEなどが挙げられ、なかでも、PTFEが、化学的安定性、熱的安定性、加工性の点で好適である。なお、本開示において粉体成分とは、二次電池用合剤を構成するその他の粉体成分を意味し、具体的には、固体電解質及び/又は電極活物質であることが好ましい。
本開示において、上記PTFE樹脂としては特に限定されず、ホモポリマーであってもよいし、フィブリル化させることのできる共重合体であってもよい。
共重合体の場合、コモノマーであるフッ素原子含有モノマーとしては、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルエチレン、パーフルオロアルキルエチレン、フルオロアルキル・フルオロビニルエーテル等を挙げることができる。
なお、上記「PTFE粉体」とは、液体媒体と混在した分散状態ではなく、粉体としての固体状態を意味するものである。このような状態のものを利用し、液体媒体が存在しない状態のPTFEを使用して二次電池用合剤を製造することで、本開示の目的が好適に達成できる。
本開示の二次電池用合剤を製造するために使用する原料としての上記粉末形状のPTFEは、水分含有量が500ppm以下であることが好ましい。
水分含有量が500ppm以下であることによって、固体電解質の劣化を低減させるという点で好ましい。
上記水分含有量は、300ppm以下であることが更に好ましい。
上記粉末形状のPTFEは、標準比重が2.12~2.20であることが好ましい。標準比重が当該範囲内のものであることによって、強度の高い二次電池用合剤シートを作製できるという点で利点を有する。上記標準比重の下限は、2.13以上であることがより好ましい。上記標準比重の上限は、2.19以下であることがより好ましく、2.18以下であることが更に好ましい。
標準比重〔SSG〕はASTM D-4895-89に準拠して試料を作製し、得られた試料の比重を水置換法によって測定する。
本開示の二次電池用合剤を製造するために使用する原料としての上記粉末状のPTFEは、二次粒子径が450μm以上のポリテトラフルオロエチレン樹脂を50質量%以上含むことが好ましく、80質量%以上含むことがより好ましい。二次粒子径が450μm以上のPTFEが当該範囲内のものであることによって、強度の高い合剤シートを作製できるという利点を有する。
二次粒子径が450μm以上のPTFEを用いることで、より抵抗が低く、靭性に富んだ合剤シートを得ることができる。
上記粉末状のPTFEの平均二次粒子径の下限は、450μmであることがより好ましく、500μmであることが更に好ましい。上記二次粒子径の上限は、700μm以下であることがより好ましく、600μm以下であることが更に好ましい。二次粒子径は例えばふるい分け法などで求めることができる。
本開示の二次電池用合剤を製造するために使用する原料としての上記粉末状のPTFEは、より高強度でかつ均質性に優れる二次電池用合剤シートが得られることから、平均一次粒子径が150nm以上であることが好ましい。より好ましくは、180nm以上であり、更に好ましくは210nm以上であり、特に好ましくは220nm以上である。
上記粉末状のPTFEの平均一次粒子径が大きいほど、成形性が優れる。上限は特に限定されないが500nmであってよい。重合工程における生産性の観点からは、350nmであることが好ましい。
上記平均一次粒子径は、重合により得られたPTFEの水性分散液を用い、ポリマー濃度を0.22質量%に調整した水性分散液の単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決定された平均一次粒子径との検量線を作成し、測定対象である水性分散液について、上記透過率を測定し、上記検量線をもとに決定できる。
本開示の二次電池用合剤を製造するために使用する原料としての上記粉末状のPTFEは、コアシェル構造を有していてもよい。コアシェル構造を有するPTFEとしては、例えば、粒子中に高分子量のポリテトラフルオロエチレンのコアと、より低分子量のポリテトラフルオロエチレンまたは変性ポリテトラフルオロエチレンのシェルとを含むポリテトラフルオロエチレンが挙げられる。このような変性ポリテトラフルオロエチレンとしては、例えば、特表2005-527652号公報に記載されるポリテトラフルオロエチレン等が挙げられる。
上述したような各パラメータを満たす粉末形状のPTFEは、従来の製造方法により得ることができる。例えば、国際公開第2015-080291号や国際公開第2012-086710号等に記載された製造方法に倣って製造すればよい。
本開示において、二次電池用合剤中、結着剤の含有量の下限は、好ましくは0.2質量%以上であり、より好ましくは0.3質量%以上である。0.5質量%を超えることが更に好ましい。結着剤の含有量の上限は、二次電池用合剤中、好ましくは10質量%以下であり、より好ましくは7質量%以下であり、特に好ましくは6質量%以下であり、更に好ましくは4質量%以下であり、より更に好ましくは1.7質量%以下であり、最も好ましくは1.0質量%以下である。結着剤が上記範囲内であれば、電極抵抗の上昇を押さえながら、ハンドリング性に優れた自立性のあるシートの成形が可能である。
本開示の二次電池用合剤は、固体電池用の電極に用いられるものであっても電解液を含む電池用の電極に用いられるものであってもよい。さらには、固体電池における固体電解質層に用いられるものであってもよい。これらの用途に応じて、合剤を構成する成分を組み合わせ、これに対して上述したパラメータを満たすようなフィブリル化を生じさせることよって、本開示の目的を達成する。
電極が固体電池用の電極である場合は、二次電池用合剤は、更に電極活物質及び固体電解質を含有するものであり、電解液を含有する電池用の電極である場合は、電極活物質を含有するものである。必要に応じて電極助剤、その他の成分を含有するものであってもよい。以下、電極を構成するための各成分について詳述する。
(電極活物質)
本開示の二次電池用合剤シートを正極用シートとして使用する場合、二次電池用合剤シートには正極活物質を配合する。上記正極活物質は、固体電池の正極活物質として公知の正極活物質を適用可能である。特に、リチウムイオンを吸蔵・放出可能な正極活物質を用いることが好ましい。
上記正極活物質としては、電気化学的にアルカリ金属イオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、アルカリ金属と少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、アルカリ金属含有遷移金属複合酸化物、アルカリ金属含有遷移金属リン酸化合物、導電性高分子等が挙げられる。
なかでも、正極活物質としては、特に、高電圧を産み出すアルカリ金属含有遷移金属複合酸化物が好ましい。上記アルカリ金属イオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等が挙げられる。好ましい態様において、アルカリ金属イオンは、リチウムイオンであり得る。即ち、この態様において、アルカリ金属イオン二次電池は、リチウムイオン二次電池である。
上記アルカリ金属含有遷移金属複合酸化物としては、例えば、
式:MMn2-b
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるアルカリ金属・マンガンスピネル複合酸化物、
式:MNi1-ccO
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるアルカリ金属・ニッケル複合酸化物、または、
式:MCo1-d
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)
で表されるアルカリ金属・コバルト複合酸化物が挙げられる。上記において、Mは、好ましくは、Li、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaであり、さらに好ましくはLiである。
なかでも、エネルギー密度が高く、高出力な二次電池を提供できる点から、MCoO、MMnO、MNiO、MMn、MNi0.8Co0.15Al0.05、またはMNi1/3Co1/3Mn1/3等が好ましく、下記一般式(3)で表される化合物であることが好ましい。
MNiCoMn (3)
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、MはFe、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeからなる群より選択される少なくとも1種を示し、(h+i+j+k)=1.0、0≦h≦1.0、0≦i≦1.0、0≦j≦1.5、0≦k≦0.2である。)
上記アルカリ金属含有遷移金属リン酸化合物としては、例えば、下記式(4)
(PO (4)
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、MはV、Ti、Cr、Mn、Fe、Co、Ni及びCuからなる群より選択される少なくとも1種を示し、0.5≦e≦3、1≦f≦2、1≦g≦3)で表される化合物が挙げられる。上記において、Mは、好ましくは、Li、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaであり、さらに好ましくはLiである。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の元素で置換したもの等が挙げられる。
上記リチウム含有遷移金属リン酸化合物としては、オリビン型構造を有するものが好ましい。
その他の正極活物質としては、MFePO、MNi0.8Co0.2、M1.2Fe0.4Mn0.4、MNi0.5Mn1.5、MV、MMnO(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属である。)等が挙げられる。特に、MMnO、MNi0.5Mn1.5等の正極活物質は、4.4Vを超える電圧や、4.6V以上の電圧で二次電池を作動させた場合であって、結晶構造が崩壊しない点で好ましい。従って、上記に例示した正極活物質を含む正極材を用いた二次電池等の電気化学デバイスは、高温で保管した場合でも、残存容量が低下しにくく、抵抗増加率も変化しにくい上、高電圧で作動させても電池性能が劣化しないことから、好ましい。
その他の正極活物質として、MMnOとMM(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体材料等も挙げられる。
上記固溶体材料としては、例えば、一般式M[Mn(1-y) ]Oで表わされるアルカリ金属マンガン酸化物である。ここで式中のMは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、Mは、M及びMn以外の少なくとも一種の金属元素からなり、例えば、Co,Ni,Fe,Ti,Mo,W,Cr,ZrおよびSnからなる群から選択される一種または二種以上の元素を含んでいる。また、式中のx、y、zの値は、1<x<2、0≦y<1、1.5<z<3の範囲である。中でも、Li1.2Mn0.5Co0.14Ni0.14のようなLiMnOをベースにLiNiOやLiCoOを固溶したマンガン含有固溶体材料は、高エネルギー密度を有するアルカリ金属イオン二次電池を提供できる点から好ましい。
また、正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好ましい。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は上記正極活物質とリン酸リチウムの合計に対し、下限が、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、上限が、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。
上記導電性高分子としては、p-ドーピング型の導電性高分子やn-ドーピング型の導電性高分子が挙げられる。導電性高分子としては、ポリアセチレン系、ポリフェニレン系、複素環ポリマー、イオン性ポリマー、ラダー及びネットワーク状ポリマー等が挙げられる。
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸させ、又は添加した後、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、上記正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での固体電解質の酸化反応を抑制することができ、電池寿命を向上させることができる。その付着量が少なすぎる場合、その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する
場合がある。
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
正極活物質のタップ密度は、好ましくは0.5g/cm以上、より好ましくは0.8g/cm以上、更に好ましくは1.0g/cm以上である。該正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における固体電解質を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm以下、より好ましくは3.7g/cm以下、更に好ましくは3.5g/cm以下である。
なお、本開示では、タップ密度は、正極活物質粉体5~10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/cmとして求める。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは0.5μm以上、更に好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、また、好ましくは30μm以下、より好ましくは27μm以下、更に好ましくは25μm以下、最も好ましくは22μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引いたり等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ上記正極活物質を2種類以上混合することで、正極作成時の充填性を更に向上させることができる。
なお、本開示では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、上記正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、更に好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本開示では、上記正極活物質の平均一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、好ましくは0.1m/g以上、より好ましくは0.2m/g以上、更に好ましくは0.3m/g以上であり、上限は好ましくは50m/g以下、より好ましくは40m/g以下、更に好ましくは30m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
なお、本開示では、BET比表面積は、表面積計(例えば、大倉理研社製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
本開示の二次電池が、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池として使用される場合、高出力が要求されるため、上記正極活物質の粒子は二次粒子が主体となることが好ましい。
上記正極活物質の粒子は、二次粒子の平均粒子径が40μm以下で、かつ、平均一次粒子径が1μm以下の微粒子を、0.5~7.0体積%含むものであることが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより、電解質との接触面積が大きくなり、二次電池用シートと電解質との間でのリチウムイオンの拡散をより速くすることができ、その結果、電池の出力性能を向上させることができる。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の2種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoOとLiNi0.33Co0.33Mn0.33等の三元系との組み合わせ、LiCoOとLiMn若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiFePOとLiCoO若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
上記正極活物質の含有量は、電池容量が高い点で、正極合剤中50~99.5質量%が好ましく、60~99質量%がより好ましく、69~96.7質量%がより好ましい。
また、正極活物質の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極合剤中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の電子・イオン伝導や強度が不足する場合がある。
本開示の二次電池用合剤シートを負極用シートとして使用する場合、二次電池用合剤シートには負極活物質を配合する。上記負極活物質としては特に限定されず、例えば、リチウム金属、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び、難黒鉛化性炭素等の炭素質材料を含むもの、ケイ素及びケイ素合金等のシリコン含有化合物、LiTi12等から選択されるいずれか、又は2種類以上の混合物等を挙げることができる。なかでも、炭素質材料を少なくとも一部に含むものや、シリコン含有化合物を特に好適に使用することができる。
上記負極活物質の含有量は、電池容量が高い点で、負極合剤中50~99.5質量%が好ましく、60~99質量%がより好ましく、69~96.7質量%がより好ましい。
また、負極活物質の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。負極合剤中の負極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると負極の電子・イオン伝導や強度が不足する場合がある。
(固体電解質)
固体電解質としては、硫化物系固体電解質、酸化物系固体電解質のいずれも使用することができる。
(硫化物系固体電解質)
硫化物系固体電解質としては、例えば、下記式(1)で示される組成を満たすリチウムイオン伝導性無機固体電解質が挙げられる。
Lia1b1c1d1e1 (1)
式中、Mは、B、Zn、Sn、Si、Cu、Ga、Sb、Al、Ti及びGeから選択される元素を示す。Aは、I、Br、Cl及びFから選択される元素を示す。a1~e1は各元素の組成比を示し、a1:b1:c1:d1:e1は1~12:0~5:1:2~12:0~10を満たす。a1は1~9が好ましく、1.5~7.5がより好ましい。b1は0~3が好ましく、0~1がより好ましい。d1は2.5~10が好ましく、3.0~8.5がより好ましい。e1は0~5が好ましく、0~3がより好ましい。
本開示において、硫化物系固体電解質は、リチウムを含有するものであることが好ましい。リチウムを含有する硫化物系固体電解質は、リチウムイオンをキャリアとして使用する固体電池に使用されるものであり、高エネルギー密度を有する電気化学デバイスという点で特に好ましいものである。
各元素の組成比は、下記のように、硫化物系無機固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
硫化物系無機固体電解質は、非結晶(ガラス)であっても結晶化(ガラスセラミックス化)していてもよく、一部のみが結晶化していてもよい。例えば、Li、P及びSを含有するLi-P-S系ガラス、又はLi、P及びSを含有するLi-P-S系ガラスセラミックスを用いることができる。
硫化物系無機固体電解質は、例えば硫化リチウム(LiS)、硫化リン(例えば五硫化二燐(P))、単体燐、単体硫黄、硫化ナトリウム、硫化水素、ハロゲン化リチウム(例えばLiI、LiBr、LiCl)及び上記Mで表される元素の硫化物(例えばSiS、SnS、GeS)の中の少なくとも2つ以上の原料の反応により製造することができる。
具体的な硫化物系無機固体電解質の例として、原料の組み合わせ例を下記に示す。例えば、LiS-P-LiCl、LiS-P-HS、LiS-P-HS-LiCl、LiS-LiI-P、LiS-LiI-LiO-P、LiS-LiBr-P、LiS-LiO-P、LiS-LiPO-P、LiS-P-P、LiS-P-SiS、LiS-P-SiS-LiCl、LiS-P-SnS、LiS-P-Al、LiS-GeS、LiS-GeS-ZnS、LiS-Ga、LiS-GeS-Ga、LiS-GeS-P、LiS-GeS-Sb、LiS-GeS-Al、LiS-SiS、LiS-Al、LiS-SiS-Al、LiS-SiS-P、LiS-SiS-P-LiI、LiS-SiS-LiI、LiS-SiS-LiSiO、LiS-SiS-LiPO、Li10GeP12などが挙げられる。ただし、各原料の混合比は問わない。
特に、硫化物系固体電解質は、下記式(A)で示される組成を満たす硫化物系固体電解質であることが好ましい。
aLiS-bX-cLiX-(1-a-b-c)P (A)
(但し、0.6≦a≦0.86、0≦b≦0.333、0≦c≦0.3、0.05≦b+c≦0.4、XはGe、Sn、Ti又はSi、XはCl、Br又はIを表す。但し、b又はcのいずれかは0ではない)
上記式(A)で示される硫化物系固体電解質の例として、具体的には、0.714LiS-0.143SnS-0.143P(Li10SnP12(LSPS))、0.625LiS-0.25LiCl-0.125P(LiPSCl(LPSCl))、0.715LiS-0.143GeS2-0.142P(Li10GeP12(LGPS))等から選択されるいずれか、又は2種類以上の混合物を使用することができる。
硫化物系固体電解質の平均粒子径は、0.1μm以上、20μm以下であることが好ましい。下限としては、0.2μm以上であることがより好ましく、0.3μm以上であることが更に好ましい。上限としては、18μm以下であることがより好ましく、15μm以下であることが更に好ましい。
硫化物系固体電解質の平均粒径が、0.1μm未満であると、粉体のハンドリングが困難となる場合がある。一方、硫化物系固体電解質の平均粒径が、20μmを超えると、プレス成形性が悪化する場合がある。
なお、硫化物系固体電解質粒子の平均粒子径の測定は、以下の手順で行う。
硫化物系固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザー回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
硫化物固体電解質の平均粒径の調整方法は、特に限定されるものではないが、例えば、以下のようにして行う。公知の粉砕機又は分級機が用いられる。例えば、乳鉢、サンドミル、ボールミル、ジェットミル又はふるいなどが好適に用いられる。固体電解質の性質によるが、粉砕時には水又はエタノール等の溶媒を添加して行ってもよい。所望の粒子径とするためには分級を行うことが好ましい。分級は、特に限定はなく、篩、風力分級機などを用いて行うことができる。
硫化物系固体電解質の二次電池用合剤中の固形成分における含有量は、二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮したとき、固形成分100質量%において、電極においては3質量%以上であることが好ましく、4質量%以上であることがより好ましく、5質量%以上であることが特に好ましい。上限としては、同様の観点から、99質量%以下であることが好ましく、90質量%以下であることがより好ましく、80質量%以下であることが特に好ましい。
また、正極と負極の間に配置される固体電解質層においては50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.8質量%以下であることがより好ましく、99.7質量%以下であることが特に好ましい。
上記硫化物系固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。なお、本明細書において固形分(固形成分)とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。典型的には、後述の分散媒体以外の成分を指す。
(酸化物系固体電解質)
上記酸化物系固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族又は第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
具体的な化合物例としては、例えば、LixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦、0≦zd≦2、0≦ad≦、1≦md≦7、3≦nd≦15)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.51Li0.34TiO2.94、La0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。また、LLZに対して元素置換を行ったセラミックス材料も知られている。例えば、LLZに対して、Mg(マグネシウム)とA(Aは、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)から構成される群より選択される少なくとも1つの元素)との少なくとも一方の元素置換を行ったLLZ系セラミックス材料も挙げられる。また、Li、P及びOを含むリン化合物も望ましい。例えば、リン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
具体例として、例えば、LiO-Al-SiO-P-TiO-GeO、LiO-Al-SiO-P-TiO等が挙げられる。
上記酸化物系固体電解質は、リチウムを含有するものであることが好ましい。リチウムを含有する酸化物系固体電解質は、リチウムイオンをキャリアとして使用する固体電池に使用されるものであり、高エネルギー密度を有する電気化学デバイスという点で特に好ましいものである。
上記酸化物系固体電解質は、結晶構造を有する酸化物であることが好ましい。結晶構造を有する酸化物は、良好なLiイオン伝導性という点で特に好ましいものである。
結晶構造を有する酸化物としては、ペロブスカイト型(La0.51Li0.34TiO2.94など)、NASICON型(Li1.3Al0.3Ti1.7(POなど)、ガーネット型(LiLaZr12(LLZ)など)等が挙げられる。なかでも、NASICON型が好ましい。
酸化物系固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.03μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、酸化物系固体電解質粒子の平均粒子径の測定は、以下の手順で行う。酸化物系固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザー回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
(導電助剤)
上記導電助剤としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、ニードルコークス、カーボンナノチューブ、フラーレン、VGCF等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
導電助剤は、電極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.5質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
(その他の成分)
二次電池用合剤シートは、更に、熱可塑性樹脂を含んでいてもよい。
熱可塑性樹脂としては、ポリフッ化ビニリデンや、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリエチレンオキシドなどが挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
電極活物質に対する熱可塑性樹脂の割合は、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.10質量%以上であり、また、通常3.0質量%以下、好ましくは2.5質量%以下、より好ましくは2.0質量%以下の範囲である。熱可塑性樹脂を添加することで、電極の機械的強度を向上させることができる。この範囲を上回ると、二次電池用合剤に占める活物質の割合が低下し、電池の容量が低下する問題や活物質間の抵抗が増大する問題が生じる場合がある。
本開示の二次電池用合剤は、特に、リチウムイオン固体二次電池に好適である。
また、硫化物系固体二次電池に好適である。
本開示の二次電池用合剤は、固体二次電池に使用するにあたっては、通常、シート状の形態で使用される。
本開示の二次電池用合剤シートは、正極用シートとすることもできるし、負極用シートとすることもできる。更に、固体電解質層用シートとすることもできる。これらのうち、電極用シートとする場合は、更に、活物質粒子を含有するものである。活物質粒子は、正極活物質、負極活物質とすることができる。本開示の二次電池用シートは、正極活物質を使用した正極用シートとしてより好適に使用することができる。また、電極シートとする場合、必要に応じて、導電助剤を含有するものであってもよい。
(非水電解液)
本開示の二次電池用合剤を、非水電解液を有する電池において使用する場合、非水電解液は、特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチルラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の公知の溶媒の1種もしくは2種以上が使用できる。電解質も従来公知のものがいずれも使用でき、LiClO、LiAsF、LiPF、LiBF、LiCl、LiBr、CHSOLi、CFSOLi、炭酸セシウム等を用いることができる。
(製造方法)
本開示の二次電池用合剤シートの製造方法は、上述した各成分を混合して得られた原料組成物を使用し、これをシート化するものであることが好ましい。シート化においては、乾燥工程が省けるため、液体媒体の使用量を低減させるか全く使用せずに、スラリーを調製せずに粉体である原料組成物に対して剪断応力を与えることによって行う方法が好ましい。また、装置の負荷を軽減するために、潤滑剤として溶剤を少量添加してもよい。溶剤は有機溶剤が望ましく、含有溶剤量としては、原料組成物に対して10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましい。
本開示の二次電池用合剤シートは、
固体電解質及び/又は電極活物質、並びに、結着剤を含む原料組成物を混合しながら、剪断力を付与する工程(1)、
前記工程(1)によって得られた二次電池用合剤をバルク状に成形する工程(2)及び
前記工程(2)によって得られたバルク状の二次電池用合剤をシート状に圧延する工程(3)
を有する二次電池用合剤シートの製造方法によっても得ることができる。
上記工程(1)において原料組成物を混合しながら、剪断力を付与した段階では、得られる二次電池用合剤は、固体電解質、結着剤等が単に混ざっているだけで定まった形のない状態で存在している。具体的な混合方法としては、W型混合機、V型混合機、ドラム型混合機、リボン混合機、円錐スクリュー型混合機、1軸混練機、2軸混練機、ミックスマラー、撹拌ミキサー、プラネタリーミキサー、ヘンシェルミキサー、高速ミキサーなどを用いて混合する方法が挙げられる。
上記工程(1)において、混合条件は、回転数と混合時間を適宜設定すればよい。例えば、回転数は、15000rpm以下とすることが好適である。好ましくは10rpm以上、より好ましくは1000rpm以上、更に好ましくは3000rpm以上であり、また、好ましくは12000rpm以下、より好ましくは11000rpm以下、更に好ましくは10000rpmの範囲である。上記の範囲を下回ると、混合に時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度の劣る電極合剤シートとなるおそれがある。
上記工程(1)において、30℃以上で行うのが好ましく、60℃以上がより好ましい。
また上記工程(1)の前に原料組成物を混合して分散させる工程(A)を含むことが好ましい。上記工程(A)ではできるだけ小さな剪断力で混合することが好ましい。
上記工程(A)において、混合条件は、回転数と混合時間を適宜設定すればよい。例えば、回転数は、1000rpm以下とすることが好ましい。また、より好ましくは500rpm以下である。下限は好ましくは10rpm以上、より好ましくは15rpm以上、更に好ましくは20rpm以上であり、上記の範囲を下回ると、混合に時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度の劣る電極合剤シートとなるおそれがある。また、室温以下で混練することでフィブリル化を抑制しながら原料組成物を分散することができる。
上記工程(A)において、混合温度を19℃以下で行うことが好ましい。
このような温度範囲を取ることで、より短い時間で所望のシート状へと加工を行うことができるものである。
PTFEは、約19℃及び約30℃で2つの転移温度を有する。19℃未満では、PTFEは形状を維持した状態で容易に混合することができる。しかし、19℃を超えると、PTFE粒子の構造が緩くなり、機械的せん断に対してより敏感になる。30℃を超える温度では、より高度なフィブリル化が生じるようになる。
このため、PTFE樹脂をフィブリル性樹脂として使用する場合、上記工程(A)は、19℃以下、好ましくは0℃~19℃の温度で実施することが好ましい。
すなわち、このような工程(A)においては、フィブリル化を生じさせることなく、混合して均質化することが好ましい。そして、その後の工程(1)~(5)によってフィブリル化することが好ましい。
上記工程(2)において、バルク状に成形するとは、二次電池用合剤を1つの塊とするものである。
バルク状に成形する具体的な方法として、押出成形、プレス成形などが挙げられる。
また、「バルク状」とは、特に形状が特定されるものではなく、1つの塊状になっている状態であればよく、ロッド状、シート状、球状、キューブ状等の形態が含まれる。上記塊の大きさは、その断面の直径または最小の一辺が10000μm以上であることが好ましい。より好ましくは20000μm以上である。
上記工程(3)における具体的な圧延方法としては、ロールプレス機、平板プレス機、カレンダーロール機などを用いて圧延する方法が挙げられる。
また、工程(3)のあとに、得られた圧延シートに、より大きい荷重を加えて、さらに薄いシート状に圧延する工程(4)を有することも好ましい。工程(4)を繰り返すことも好ましい。このように、圧延シートを一度に薄くするのではなく、段階に分けて少しずつ圧延することで柔軟性がより良好となる。
工程(4)の回数としては、2回以上10回以下が好ましく、3回以上9回以下がより好ましい。
具体的な圧延方法としては、例えば、2つあるいは複数のロールを回転させ、その間に圧延シートを通すことによって、より薄いシート状に加工する方法等が挙げられる。
また、フィブリル径を調整する観点で、工程(3)または工程(4)のあとに、圧延シートを粗砕したのち再度バルク状に成形し、シート状に圧延する工程(5)を有することも好ましい。工程(5)を繰り返すことも好ましい。工程(5)の回数としては、1回以上12回以下が好ましく、2回以上11回以下がより好ましい。
工程(5)において、圧延シートを粗砕してバルク状に成形する具体的な方法として、圧延シートを折りたたむ方法、あるいはロッドもしくは薄膜シート状に成形する方法、チップ化する方法などが挙げられる。本開示において、「粗砕する」とは、次工程でシート状に圧延するために、工程(3)又は工程(4)で得られた圧延シートの形態を別の形態に変化させることを意味するものであり、単に圧延シートを折りたたむような場合も含まれる。
また、工程(5)の後に、工程(4)を行うようにしてもよく、繰り返し行ってもよい。
また、工程(2)ないし、(3)、(4)、(5)において1軸延伸もしくは2軸延伸を行っても良い。
また、工程(5)での粗砕程度によってもフィブリル径(中央値)を調整することができる。
上記工程(3)、(4)又は(5)において、圧延率は、好ましくは10%以上、更に好ましくは20%以上であり、また、好ましくは80%以下、より好ましくは65%以下、更に好ましくは50%以下の範囲である。上記の範囲を下回ると、圧延回数の増大とともに時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度および柔軟性の劣る二次電池用合剤シートとなるおそれがある。
なお、ここでいう圧延率とは、試料の圧延加工前の厚みに対する加工後の厚みの減少率を指す。圧延前の試料は、バルク状の原料組成物であっても、シート状の原料組成物であってもよい。試料の厚みとは、圧延時に荷重をかける方向の厚みを指す。
上述したように、PTFE粉末は、せん断力をかけることでフィブリル化する。そして、フィブリル径(中央値)が100nm以下の繊維状構造を有するものとするには、過度なせん断応力では、フィブリル化が促進しすぎてしまい、柔軟性が損なわれることがある。また、弱いせん断応力では強度の面で充分ではないことがある。このため、混合時や圧延時に、適度なPTFEにせん断応力を与えてフィブリル化を促進し、樹脂を圧延してシート状に延ばす、という工程を上記範囲でおこなうことによって、フィブリル径(中央値)が100nmの繊維状構造を有するものとすることができる。
上記工程(3)、(4)又は(5)において、圧延率は、好ましくは10%以上、更に好ましくは20%以上であり、また、好ましくは80%以下、より好ましくは65%以下、更に好ましくは50%以下の範囲である。上記の範囲を下回ると、圧延回数の増大とともに時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度および柔軟性の劣る電極合剤シートとなるおそれがある。
なお、ここでいう圧延率とは、試料の圧延加工前の厚みに対する加工後の厚みの減少率を指す。圧延前の試料は、バルク状の原料組成物であっても、シート状の原料組成物であってもよい。試料の厚みとは、圧延時に荷重をかける方向の厚みを指す。
工程(2)~(5)は30℃以上で行うのが好ましく、60℃以上がより好ましい。
上述したように、PTFE粉末は、せん断力をかけることでフィブリル化する。そして、フィブリル径(中央値)が100nm以下の繊維状構造を有するものとするには、過度なせん断応力では、フィブリル化が促進しすぎてしまい、柔軟性が損なわれることがある。また、弱いせん断応力では強度の面で充分ではないことがある。このため、混合時や圧延時に、適度なPTFEにせん断応力を与えてフィブリル化を促進し、樹脂を圧延してシート状に延ばす、という工程を上記範囲でおこなうことによって、フィブリル径(中央値)が100nmの繊維状構造を有するものとすることができる。
本開示の二次電池用合剤シートは、上記の通り、正極用シート、負極用シートのいずれとすることもできる。正極用合剤シート又は負極用シートとする場合、上記二次電池用合剤シートの製造において、固体電解質及び結着剤と共に、正極活物質又は負極活物質を混合するようにすればよい。
以下、正極及び負極について説明する。
(正極)
本開示において、正極は、集電体と、上記正極用シートとから構成されることが好適である。
正極用集電体の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特にアルミニウム又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔が好ましい。なお、金属箔は適宜メッシュ状に形成してもよい。
金属箔の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。金属箔がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、金属箔がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極合剤シートの電気接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
正極の製造は、常法によればよい。例えば、上記正極用シートと集電体とを接着剤を介して積層し、乾燥する方法等が挙げられる。
正極用シートの密度は、好ましくは2.0g/cm以上、より好ましくは2.1g/cm以上、更に好ましくは2.3g/cm以上であり、また、好ましくは4.0g/cm以下、より好ましくは3.9g/cm以下、更に好ましくは3.8g/cm以下の範囲である。この範囲を上回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。下回ると硬く割れやすい活物質の含有量が低く、容量の低い電池となってしまう場合がある。
正極の厚さは特に限定されないが、高容量かつ高出力の観点から、集電体の厚さを差し引いた合剤シートの厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
また、上記正極の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(負極)
本開示において、負極は、集電体と、上記負極用シートとから構成されることが好適である。
負極用集電体の材質としては、銅、ニッケル、チタン、タンタル、ステンレス鋼等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特に銅、ニッケル、又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔が好ましい。なお、金属箔は適宜メッシュ状に形成してもよい。金属箔の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。金属箔がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、金属箔がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
負極の製造は、常法によればよい。例えば、上記負極用シートと集電体とを接着剤を介して積層し、乾燥する方法等が挙げられる。
負極用シートの密度は、好ましくは1.3g/cm以上、より好ましくは1.4g/cm以上、更に好ましくは1.5g/cm以上であり、また、好ましくは2.0g/cm以下、より好ましくは1.9g/cm以下、更に好ましくは1.8g/cm以下の範囲である。この範囲を上回ると、集電体と活物質との界面付近への固体電解質の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
負極の厚さは特に限定されないが、高容量かつ高出力の観点から、集電体の金属箔厚さを差し引いた合剤シートの厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
(二次電池)
本開示は、上記二次電池用合剤シートを用いた二次電池でもある。
当該二次電池は、リチウムイオン電池であることが好ましい。また、当該二次電池は、固体電池であっても、液体電解質を含有する二次電池であってもよい。
本開示の二次電池は、正極として上述した本開示の二次電池用合剤シートを備える二次電池である。ここで、負極、及び、固体電解質層については、特に限定されるものではなく、公知の任意のものを使用することができる。
以下、本開示に係る二次電池に用いられるセパレータ及び電池ケースについて、詳細に説明する。
本開示の二次電池の製造方法は、例えば、まず、上記正極、固体電解質層シート、負極を順に積層し、プレスすることにより二次電池としてもよい。
本開示の二次電池用合剤シートを使用することにより、系内の水分が少ない状態で二次電池の製造を行うことができ、良好な性能を有する二次電池とすることができ、好適である。
(電解液を使用する二次電池)
本開示の二次電池用合剤シートを使用して製造された電極は、電解液を使用する各種二次電池における正極又は負極として使用することができる。上記二次電池は、非水電解液を使用する電池であり、リチウムイオン電池を挙げることができる。
(電解液)
上記非水電解液としては、公知の電解質塩を公知の電解質塩溶解用有機溶媒に溶解したものが使用できる。
電解質塩溶解用有機溶媒としては、特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの公知の炭化水素系溶媒;フルオロエチレンカーボネート、フルオロエーテル、フッ素化カーボネートなどのフッ素系溶媒の1種もしくは2種以上が使用できる。
電解質塩としては、たとえばLiClO、LiAsF、LiBF、LiPF、LiN(SOCF、LiN(SOなどがあげられ、サイクル特性が良好な点から特にLiPF、LiBF、LiN(SOCF、LiN(SOまたはこれらの組合せが好ましい。
電解質塩の濃度は、0.8モル/リットル以上、さらには1.0モル/リットル以上が必要である。上限は電解質塩溶解用有機溶媒にもよるが、通常1.5モル/リットル以下である。
(電池設計)
電極合剤群は、上記の正極と負極とをセパレータを介してなる積層構造のもの、及び上記の正極と負極とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。
(セパレータ)
上記セパレータの材質や形状は、電解液に安定であり、かつ、保液性に優れていれば特に限定されず、公知のものを使用することができる。例えば、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、PTFE、ポリエーテルスルホン、ガラスフィルター等を用いることができる。ポリプロピレン/ポリエチレン2層フィルム、ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルム等、これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
なかでも、上記セパレータは、電解液の浸透性やシャットダウン効果が良好である点で、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等であることが好ましい。
更に、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上が更に好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下が更に好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状若しくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。
例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
外装ケースの材質は用いられる電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
以下、本開示を実施例に基づいて具体的に説明する。
以下の実施例においては特に言及しない場合は、「部」「%」はそれぞれ「質量部」「質量%」を表す。
〔作製例1〕
重合開始からTFEが367g(TFEの全重合量1032gに対して35.6質量%)消費された時点で、ラジカル捕捉剤としてヒドロキノン12.0mgを水20mlに溶解した水溶液をTFEで圧入した(水性媒体に対して濃度4.0ppm)。重合はその後も継続し、TFEの重合量が重合開始から1000gになった時点でTFEの供給を止め、直ちに系内のガスを放出して常圧とし、重合反応を終了してポリテトラフルオロエチレン水性分散体(固形分31.2質量%)を得た。得られたポリテトラフルオロエチレン水性分散体を固形分濃度15%まで希釈し、攪拌機付き容器内で硝酸の存在下において静かに、攪拌しポリテトラフルオロエチレンを凝固させた。凝固したポリテトラフルオロエチレンを分離し、160℃において18時間乾燥し、粉末状のPTFE-1を得た。
〔作製例2〕
国際公開第2015‐080291号の作成例3を参考にして、粉末状のPTFE-2を作製した。
〔作製例3〕
国際公開第2012/086710号の作製例1を参考にして、粉末状のPTFE-3を作製した。
〔作製例4〕
国際第2012‐063622号の調整例1を参考にして、粉末状のPTFE-4を作製した。
作製したPTFEの物性表を表1に示す。
(実施例1)
正極活物質LiNi0.8Mn0.1Co0.1、導電助剤(カーボンブラック:Super P Li)と粉末状PTFE-1を秤量し、高速ミキサー(500rpm、1分間)で混合した。撹拌は容器を10℃に冷やして行った。その後、高速ミキサー(10000rpm、3分間)で撹拌し、混合物を得た。撹拌は容器を60℃に加温して行った。
なお、粉末状のPTFE-1は真空乾燥機にて50℃、1時間乾燥して用いた。粉末状PTFEは事前に、目開き500μmのステンレスふるいを用いてふるいにかけ、ふるい上に残ったものを用いた。組成比は表2に記載通りに調整した。
得られた混合物をバルク状に成形し、シート状に圧延した。圧延は80℃に加温し行った。
その後、先程得られた圧延シートを2つに折りたたむことにより粗砕して、再度バルク状に成形した後、平らな板の上で金属ロールを用いてシート状に圧延することで、フィブリル化を促進させる工程を四度繰り返した。その後、更に圧延することで、厚さ500μmの二次電池用合剤シートを得た。さらに、二次電池用合剤シートを切り出し、プレス機に投入し圧延をおこなった。さらに、5kNの荷重を繰り返しかけて厚みを調整した。最終的な二次電池用合剤シートの厚みは150μmになるようにギャップを調整した。初回の圧延率が最も大きく39%であった。
(実施例2)
粉末状のPTFE-3を用いて表2に記載の組成比に調整し、実施例1と同様手順でシート成形を行った。
(実施例3)
粉末状のPTFE-2を用いて表2に記載の組成比に調整し、実施例1と同様手順でシート成形を行った。
(実施例4)
粉末状のPTFE-4を用いて表2に記載の組成比に調整し、実施例1と同様手順でシート成形を行った。
(実施例5)
粉末状のPTFE-1を用いて表2に記載の組成比に調整し、実施例1と同様手順でシート成形を行った。
(実施例6)
導電助剤の代わりに硫化物系固体電解質(0.75LiS・0.25P)と正極活物質LiNi0.8Mn0.1Co0.1、粉末状PTFE-1を秤量し、粉末状のPTFE-1を用いて表2に記載の組成比に調整し、実施例1と同様手順でシート成形を行った。
(実施例7)
導電助剤の代わりに硫化物系固体電解質(0.75LiS・0.25P)と正極活物質LiNi0.8Mn0.1Co0.1、粉末状PTFE-4を秤量し、粉末状のPTFE-4を用いて表2に記載の組成比に調整し、実施例1と同様手順でシート成形を行った。
(実施例8)
硫化物系固体電解質Li10GeP12と正極活物質LiNi0.8Mn0.1Co0.1、導電助剤、粉末状PTFE-4を秤量し、粉末状のPTFE-4を用いて表2に記載の組成比に調整し、実施例1と同様手順でシート成形を行った。
(比較例1)
正極活物質LiNi0.8Mn0.1Co0.1、導電助剤(カーボンブラック:Super P Li)と粉末状PTFE-4を秤量し、高速ミキサー(10000rpm、4分間)で撹拌し、混合物を得た。撹拌は容器を60℃に加温して行った。
なお、粉末状のPTFE-4は真空乾燥機にて50℃、1時間乾燥して用いた。粉末状PTFEは事前に、目開き425μmと355μmのステンレスふるいを用いてふるいにかけ、425μmのふるいを通過し、355μmのふるいの上に残ったものを用いた。組成比は表2に記載通りに調整した。
得られた混合物をバルク状に成形し、シート状に圧延した。圧延は室温で行った。
その後、先程得られた圧延シートを2つに折りたたむことにより粗砕して、再度バルク状に成形した後、平らな板の上で金属ロールを用いてシート状に圧延することで、フィブリル化を促進させる工程を3度繰り返した。その後、更に圧延することで、厚さ500μmの二次電池用合剤シートを得た。さらに、二次電池用合剤シートを切り出し、プレス機に投入し圧延をおこなった。さらに、5kNの荷重を繰り返しかけて厚みを調整した。最終的な二次電池用合剤シートの厚みは150μmになるようにギャップを調整した。
各試験は以下の方法で行った。
[含有水分量測定]
粉末状のPTFEは真空乾燥機にて50℃、1時間乾燥して用いた。真空乾燥後のPTFEの水分量は、ボートタイプ水分気化装置を有するカールフィッシャー水分計(ADP-511/MKC-510N 京都電子工業(株)製)を使用し、水分気化装置で210℃に加熱して、気化させた水分を測定した。キャリアガスとして、窒素ガスを流量200mL/minで流し、測定時間を30分とした。また、カールフィッシャー試薬としてケムアクアを使用した。サンプル量は1.5gとした。
[PTFEのフィブリル径(最大フィブリル径、中央値、フィブリル径の第3四分位)]
(1)走査型電子顕微鏡(S-4800型 日立製作所製)を用いて、シート状固体電解質層の拡大写真(7000倍)を撮影し画像を得る。
(2)この画像に水平方向に等間隔で2本の線を引き、画像を三等分する。
(3)上方の直線上にある全てのPTFE繊維について、PTFE繊維1本あたり3箇所の直径を測定し、平均した値を当該PTFE繊維の直径とする。測定する3箇所は、PTFE繊維と直線との交点、交点からそれぞれ上下0.5μmずつずらした場所を選択する。(未繊維化のPTFE一次粒子は除く)。
(4)上記(3)の作業を、下方の直線上にある全てのPTFE繊維に対して行う。
(5)1枚目の画像を起点に画面右方向に1mm移動し、再度撮影を行い、上記(3)及び(4)によりPTFE繊維の直径を測定する。これを繰り返し、測定した繊維数が80本を超えた時点で終了とする。
(6)上記測定した全てのPTFE繊維の直径の中央値をフィブリル径の大きさとした。同様に平均値と標準偏差、第三四分位数、最大値を決定した。なお、最大値は、80本の繊維について測定したなかでの最大値を意味する。
[柔軟性評価]
作製した固体電解質シートを縦2cm、横6cmに切り取り試験片とした。直径4mmサイズの丸棒に巻き付けた後、目視で試験片を確認し、以下の基準で評価した。傷や割れが確認されない場合は○、ひび割れが確認された場合は×と評価した。
[強度測定]
デジタルフォースゲージ(イマダ製 ZTS-20N)を使用して、100mm/分の条件下、4mm幅の短冊状の電極合剤試験片にて測定した。チャック間距離は30mmとした。破断するまで変位を与え、測定した結果の最大応力を各サンプルの強度とした。試験は5回行い、平均値を強度とした。
試験結果を、表2に示す。
次いで、実施例7で作製した正極合剤シートの表面にスパッタにより金電極を作製した。
つぎに硫化物系固体電解質(0.75Li2S・0.25P2S5)とPTFE-4を98:2で混練し、200μm厚みの固体電解質シートを作製した。
作製した固体電解質シートとLi箔、絶縁シートを重ね、60kNの荷重で3分間一軸成型することにより、一体化させ、Φ10mmで打抜きハーフセルを作製した。フラットセルに作製したハーフセルを納め、45℃の槽内で12時間置いた。0.1C(0.05Cカット)で充放電を行った。
8サイクル充放電を行った結果、3サイクル目を100%とした際に8サイクル目の容量維持率は98.6%であった。
表2の結果から、実施例のシート状固体電解質層は、物性に優れたものであった。
本開示の二次電池用合剤及びそれを含有する二次電池用合剤シートは、固体二次電池の製造に使用することができる。

Claims (14)

  1. 固体電解質及び/又は電極活物質、並びに、結着剤を含有する二次電池用合剤であって、
    結着剤は、フィブリル性樹脂であり、
    フィブリル性樹脂は、最大フィブリル径が90nm以上、フィブリル径の中央値が100nm以下の繊維状構造を有することを特徴とする二次電池用合剤。
  2. 固体電解質及び/又は電極活物質、並びに、結着剤を含有する二次電池用合剤であって、
    結着剤は、フィブリル性樹脂であり、
    フィブリル性樹脂は、フィブリル径の第3四分位が35nm以上、フィブリル径の中央値が100nm以下の繊維状構造を有することを特徴とする二次電池用合剤。
  3. リチウムイオン二次電池用である請求項1または2記載の二次電池用合剤。
  4. 固体電解質及び/又は電極活物質、並びに、結着剤を含有する原料組成物を使用して得られた二次電池用合剤であって、
    原料組成物は、結着剤が粉末状のポリテトラフルオロエチレン樹脂である請求項1または2記載の二次電池用合剤。
  5. 粉末状のポリテトラフルオロエチレン樹脂は、水分含有量が500ppm以下である請求項に記載の二次電池用合剤。
  6. 粉末状のポリテトラフルオロエチレン樹脂は、標準比重が2.12~2.20である請求項記載の二次電池用合剤。
  7. 粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が450μm以上のポリテトラフルオロエチレン樹脂を50質量%以上含む請求項記載の二次電池用合剤。
  8. 粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が450μm以上のポリテトラフルオロエチレン樹脂を80質量%以上含む請求項記載の二次電池用合剤。
  9. 電極活物質が正極活物質である請求項1または2記載の二次電池用合剤。
  10. 固体二次電池用である請求項1または2記載の二次電池用合剤。
  11. 請求項1または2記載の二次電池用合剤を含む二次電池用合剤シート。
  12. 請求項11に記載の二次電池用合剤シートを含む電極。
  13. 固体電解質及び/又は電極活物質、並びに、結着剤を含む原料組成物を混合しながら、剪断力を付与する工程(1)、
    前記工程(1)によって得られた二次電池用合剤をバルク状に成形する工程(2)及び
    前記工程(2)によって得られたバルク状の二次電池用合剤をシート状に圧延する工程(3)
    を有する二次電池用合剤シートの製造方法であって、
    前記原料組成物は、結着剤が粉末状のフィブリル性樹脂であり、
    得られた二次電池用合剤シートにおいて、前記フィブリル性樹脂は、最大フィブリル径が90nm以上、フィブリル径の中央値が100nm以下の繊維状構造を有することを特徴とする二次電池用合剤シートの製造方法。
  14. 請求項11に記載の二次電池用合剤シートを有する二次電池。
JP2023031845A 2022-03-02 2023-03-02 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池 Active JP7364973B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032059 2022-03-02
JP2022032059 2022-03-02

Publications (2)

Publication Number Publication Date
JP2023129371A JP2023129371A (ja) 2023-09-14
JP7364973B2 true JP7364973B2 (ja) 2023-10-19

Family

ID=87883774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023031845A Active JP7364973B2 (ja) 2022-03-02 2023-03-02 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池

Country Status (3)

Country Link
JP (1) JP7364973B2 (ja)
TW (1) TW202347856A (ja)
WO (1) WO2023167301A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258333A (ja) 2010-06-07 2011-12-22 Asahi Glass Co Ltd 二次電池用電極コンポジットの製造方法、二次電池用電極および二次電池
WO2022086103A1 (ko) 2020-10-21 2022-04-28 주식회사 엘지에너지솔루션 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258333A (ja) 2010-06-07 2011-12-22 Asahi Glass Co Ltd 二次電池用電極コンポジットの製造方法、二次電池用電極および二次電池
WO2022086103A1 (ko) 2020-10-21 2022-04-28 주식회사 엘지에너지솔루션 이차 전지용 전극, 이를 포함하는 이차 전지 및 전극 제조 방법

Also Published As

Publication number Publication date
WO2023167301A1 (ja) 2023-09-07
TW202347856A (zh) 2023-12-01
JP2023129371A (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
WO2022050251A1 (ja) 二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池
WO2022050252A1 (ja) 全固体二次電池用合剤、全固体二次電池用合剤シート及びその製造方法並びに全固体二次電池
US20230395804A1 (en) Production method of solid-state secondary battery sheet and binder for solid-state secondary battery
US20230378471A1 (en) Binder that is composite of single-walled carbon nanotube and ptfe, and composition for producing electrode and secondary battery using same
JP7364973B2 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7485998B2 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7364972B2 (ja) 二次電池用合剤、二次電池用合剤シート、二次電池用合剤シートの製造方法及び二次電池
JP7486006B2 (ja) 固体二次電池用シートの製造方法、固体二次電池電極用結着剤、電極作製用組成物、電極合剤、及び、電極
WO2023167297A1 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
JP7485999B2 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2024004871A1 (ja) 固体二次電池用シートの製造方法、固体二次電池電極用結着剤、電極作製用組成物、電極合剤、及び、電極
JP2023129369A (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7477784B2 (ja) 非水系電解液を使用する二次電池用電極の製造方法、非水系電解液を使用する二次電池電極用結着剤、二次電池電極用結着剤、電極作製用組成物、電極合剤及び電極
JP2023129370A (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023167298A1 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
TW202410517A (zh) 固體二次電池用片之製造方法、固體二次電池電極用黏結劑、電極製作用組成物、電極合劑、及電極

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230918

R151 Written notification of patent or utility model registration

Ref document number: 7364973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151