WO2022050251A1 - 二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池 - Google Patents

二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池 Download PDF

Info

Publication number
WO2022050251A1
WO2022050251A1 PCT/JP2021/031851 JP2021031851W WO2022050251A1 WO 2022050251 A1 WO2022050251 A1 WO 2022050251A1 JP 2021031851 W JP2021031851 W JP 2021031851W WO 2022050251 A1 WO2022050251 A1 WO 2022050251A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode mixture
secondary battery
sheet
active material
less
Prior art date
Application number
PCT/JP2021/031851
Other languages
English (en)
French (fr)
Inventor
貴哉 山田
雅彦 山田
穣輝 山崎
純平 寺田
花英 藤原
健太郎 平賀
献偉 随
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN202180055681.XA priority Critical patent/CN116018695A/zh
Priority to KR1020237010805A priority patent/KR20230058152A/ko
Priority to EP21864309.6A priority patent/EP4210127A1/en
Priority to JP2022546325A priority patent/JP7560764B2/ja
Publication of WO2022050251A1 publication Critical patent/WO2022050251A1/ja
Priority to US18/176,102 priority patent/US20230207821A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • an electrode mixture by applying a slurry obtained by mixing a binder and a solvent to an electrode active material and a conductive auxiliary agent and drying the mixture. It is done in.
  • the polytetrafluoroethylene resin is a polymer that is easily fibrillated, and it is also used as a binder by fibrillating it.
  • Patent Document 1 discloses a method for producing an electrode for fibrillating polytetrafluoroethylene by subjecting a mixture containing an active material and a polytetrafluoroethylene mixed binder material to a high shear treatment with a jet mill.
  • the present disclosure provides an electrode mixture for a secondary battery having good properties, an electrode mixture sheet for a secondary battery containing the electrode mixture, and a secondary battery using the electrode mixture sheet.
  • the purpose is to do.
  • Another object of the present disclosure is to provide a method for producing an electrode mixture sheet containing a polytetrafluoroethylene resin having a fine fiber structure.
  • the present disclosure is an electrode mixture for a secondary battery containing an electrode active material and a binder.
  • the binder is a polytetrafluoroethylene resin
  • the polytetraluoloethylene resin is an electrode mixture for a secondary battery characterized by having a fibrous structure having a fibril diameter (median value) of 70 nm or less.
  • the electrode mixture for the secondary battery is preferably for a lithium ion battery.
  • the above-mentioned electrode mixture for a secondary battery is an electrode mixture for a secondary battery obtained by using a raw material composition containing an electrode active material and a binder, and the raw material composition is a binder. It is preferably a powdery polytetrafluoroethylene resin.
  • the raw material composition preferably contains substantially no liquid medium.
  • the powdery polytetrafluoroethylene resin preferably has a water content of 500 ppm or less.
  • the powdery polytetrafluoroethylene resin preferably has a standard specific gravity of 2.11 to 2.20.
  • the powdered polytetrafluoroethylene resin preferably contains 50% by mass or more of the polytetrafluoroethylene resin having a secondary particle diameter of 500 ⁇ m or more.
  • the powdered polytetrafluoroethylene resin preferably contains 80% by mass or more of the polytetrafluoroethylene resin having a secondary particle diameter of 500 ⁇ m or more.
  • the present disclosure is also an electrode mixture sheet for a secondary battery containing the electrode mixture for a secondary battery.
  • the electrode mixture sheet for a secondary battery is for a negative electrode, and the electrode active material preferably contains silicon as a constituent element.
  • the electrode mixture sheet for a secondary battery is for a positive electrode, and the density is preferably 3.00 g / cc or more.
  • the electrode mixture sheet for a secondary battery is for a negative electrode, and the density is preferably 1.3 g / cc or more.
  • the raw material composition does not substantially contain a liquid medium.
  • the electrode mixture of the present disclosure has an advantage that no solvent is used in the production. That is, in the conventional electrode mixture forming method, a slurry in which powder as an electrode mixture component is dispersed is prepared by using a solvent in which a binder is dissolved, and the electrode mixture is applied and dried by applying and drying the slurry. It was common to prepare. In this case, a solvent that dissolves the binder is used.
  • the solvent capable of dissolving polyvinylidenefluoride which is a binder resin generally used in the past, is limited to a specific solvent such as N-methylpyrrolidone. Therefore, it is necessary to use an expensive solvent, which causes an increase in cost.
  • the fibril diameter is preferably 65 nm or less. It should be noted that if fibrilization is promoted too much, flexibility tends to be lost.
  • the lower limit is not particularly limited, but from the viewpoint of strength, it is preferably, for example, 15 nm or more, and more preferably 20 nm or more.
  • the method for obtaining PTFE having the above-mentioned fibril diameter (median value) is not particularly limited, but for example, Step of applying shearing force while mixing a raw material composition containing an electrode active material and a binder (1)
  • the electrode mixture obtained in the step (1) is formed into a bulk shape (2) and the bulk electrode mixture obtained in the step (2) is rolled into a sheet (3).
  • the method can be mentioned.
  • the step (1) by setting the mixing condition of the raw material composition to 1000 rpm or less, it is possible to proceed with the fibrillation of PTFE while maintaining the flexibility, and the shear stress to be given can be increased.
  • the fibril diameter (median value) of PTFE can be 70 nm or less.
  • the PTFE powder is fibrillated, and this is entangled with a powder component such as an electrode active material, whereby an electrode mixture can be produced.
  • a powder component such as an electrode active material
  • the PTFE is not particularly limited, and may be a homopolymer or a copolymer that can be fibrillated, but a homopolymer is more preferable.
  • examples of the fluorine atom-containing monomer as a comonomer include chlorotrifluoroethylene, hexafluoropropylene, fluoroalkylethylene, perfluoroalkylethylene, fluoroalkyl / fluorovinyl ether and the like.
  • the average primary particle size is the transmission rate of projected light at 550 nm with respect to the unit length of the aqueous dispersion whose polymer concentration is adjusted to 0.22% by mass using the aqueous dispersion of PTFE obtained by polymerization, and the transmission type.
  • a calibration curve with an average primary particle diameter determined by measuring the directional diameter in an electron micrograph can be created, the permeability of the aqueous dispersion to be measured can be measured, and the calibration curve can be determined based on the calibration curve. ..
  • the positive electrode active material is not particularly limited as long as it can electrochemically occlude and release alkali metal ions, but for example, a material containing an alkali metal and at least one transition metal is preferable. Specific examples include an alkali metal-containing transition metal composite oxide, an alkali metal-containing transition metal phosphoric acid compound, and a conductive polymer. Among them, as the positive electrode active material, an alkali metal-containing transition metal composite oxide that produces a high voltage is particularly preferable. Examples of the alkali metal ion include lithium ion, sodium ion, potassium ion and the like. In a preferred embodiment, the alkali metal ion can be a lithium ion. That is, in this embodiment, the alkali metal ion secondary battery is a lithium ion secondary battery.
  • alkali metal-containing transition metal composite oxide examples include, for example.
  • Formula: Ma Mn 2-b M 1 b O 4 (In the formula, M is at least one metal selected from the group consisting of Li, Na and K; 0.9 ⁇ a; 0 ⁇ b ⁇ 1.5; M 1 is Fe, Co, Ni, Alkali metal / manganese represented by (at least one metal selected from the group consisting of Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si and Ge).
  • MCoO 2 , MMnO 2 , MNiO 2 , MMn 2 O 4 , MNi 0.8 Co 0.15 Al 0.05 O 2 or MNi 1/3 Co 1/3 Mn 1/3 O 2 and the like are preferable, and the compound represented by the following general formula (3) is preferable.
  • the transition metal of the lithium-containing transition metal phosphoric acid compound is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu or the like, and specific examples thereof include, for example, LiFePO 4 , Li 3 Fe 2 (PO 4 ). 3. Iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of the transition metal atoms that are the main constituents of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn. , Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si and the like substituted with other elements.
  • the lithium-containing transition metal phosphoric acid compound preferably has an olivine-type structure.
  • positive electrode active materials include MFePO 4 , MNi 0.8 Co 0.2 O 2 , M 1.2 Fe 0.4 Mn 0.4 O 2 , MNi 0.5 Mn 1.5 O 2 , and MV 3 .
  • examples thereof include O 6 and M 2 MnO 3 (in the formula, M is at least one metal selected from the group consisting of Li, Na and K) and the like.
  • the positive electrode active material such as M 2 MnO 3 and MNi 0.5 Mn 1.5 O 2 is used when the secondary battery is operated at a voltage exceeding 4.4 V or a voltage of 4.6 V or higher. , It is preferable in that the crystal structure does not collapse.
  • M 2 MnO 3 and MM 6 O 2 are at least one metal selected from the group consisting of Li, Na and K, and M 6 is Co, Ni. , Mn, Fe, and other transition metals) and solid solution materials.
  • a manganese-containing solid solution material in which LiNiO 2 or LiCoO 2 is solid-dissolved based on Li 2 MnO 3 such as Li 1.2 Mn 0.5 Co 0.14 Ni 0.14 O 2 has a high energy density. It is preferable because it can provide an alkali metal ion secondary battery.
  • lithium phosphate in the positive electrode active material because the continuous charging characteristics are improved.
  • the use of lithium phosphate is not limited, it is preferable to use the above-mentioned positive electrode active material in combination with lithium phosphate.
  • the lower limit of the amount of lithium phosphate used is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.5% by mass, based on the total of the positive electrode active material and lithium phosphate. % Or more, and the upper limit is preferably 10% by mass or less, more preferably 8% by mass or less, and further preferably 5% by mass or less.
  • a substance having a composition different from that attached to the surface of the positive electrode active material may be used.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide and other oxides, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate and calcium sulfate.
  • Sulfates such as aluminum sulfate
  • carbonates such as lithium carbonate, calcium carbonate, magnesium carbonate, carbon and the like.
  • These surface-adhering substances are, for example, dissolved or suspended in a solvent, impregnated or added to the positive electrode active material, and then dried, and the surface-adhering substance precursor is dissolved or suspended in the solvent to form the positive electrode. It can be adhered to the surface of the positive electrode active material by a method of impregnating the active material and then reacting by heating or the like, a method of adding to the positive electrode active material precursor and firing at the same time, or the like. In addition, when carbon is attached, a method of mechanically attaching carbonaceous material later in the form of activated carbon or the like can also be used.
  • the amount of the surface adhering substance is preferably 0.1 ppm or more, more preferably 1 ppm or more, further preferably 10 ppm or more, and the upper limit is preferably 20% or less, more preferably 0.1 ppm or more, more preferably 1 ppm or more, more preferably 10 ppm or more, in terms of mass with respect to the positive electrode active material. Is used at 10% or less, more preferably 5% or less.
  • the surface-adhering substance can suppress the oxidation reaction of the electrolytic solution on the surface of the positive electrode active material, and can improve the battery life. If the amount of adhesion is too small, the effect is not sufficiently exhibited, and if it is too large, resistance may increase because it inhibits the entry and exit of lithium ions.
  • Examples of the shape of the particles of the positive electrode active material include lumps, polyhedra, spheres, elliptical spheres, plates, needles, and columns as conventionally used. Further, the primary particles may be aggregated to form secondary particles.
  • the tap density of the positive electrode active material is preferably 0.5 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and further preferably 1.0 g / cm 3 or more.
  • the tap density of the positive electrode active material is lower than the above lower limit, the amount of the dispersion medium required for forming the positive electrode active material layer increases, and the required amount of the conductive material and the binder increases, so that the positive electrode to the positive electrode active material layer is formed.
  • the filling rate of the active material is restricted, and the battery capacity may be restricted.
  • the tap density is the powder filling density (tap density) g / cm 3 when 5 to 10 g of positive electrode active material powder is placed in a 10 ml glass graduated cylinder and tapped 200 times with a stroke of about 20 mm. Ask as.
  • the median diameter d50 is measured by a known laser diffraction / scattering type particle size distribution measuring device.
  • LA-920 manufactured by HORIBA is used as the particle size distribution meter
  • a 0.1 mass% sodium hexametaphosphate aqueous solution is used as the dispersion medium used for the measurement, and the measured refractive index is set to 1.24 after ultrasonic dispersion for 5 minutes. Is measured.
  • the average primary particle diameter of the positive electrode active material is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, still more preferably 0. It is 2 ⁇ m or more, and the upper limit is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, still more preferably 3 ⁇ m or less, and most preferably 2 ⁇ m or less. If it exceeds the above upper limit, it is difficult to form spherical secondary particles, which adversely affects the powder filling property and greatly reduces the specific surface area, so that there is a high possibility that the battery performance such as output characteristics will deteriorate. In some cases. On the contrary, if it is less than the above lower limit, problems such as inferior reversibility of charge / discharge may occur because the crystal is usually underdeveloped.
  • the average primary particle size of the positive electrode active material is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph with a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles, and the average value is taken. Be done.
  • the BET specific surface area of the positive electrode active material is preferably 0.1 m 2 / g or more, more preferably 0.2 m 2 / g or more, still more preferably 0.3 m 2 / g or more, and the upper limit is preferably 50 m 2 / g. It is g or less, more preferably 40 m 2 / g or less, still more preferably 30 m 2 / g or less. If the BET specific surface area is smaller than this range, the battery performance tends to deteriorate, and if it is large, the tap density does not easily increase, and a problem may easily occur in the coatability at the time of forming the positive electrode active material layer.
  • the particles of the positive electrode active material are mainly secondary particles.
  • the particles of the positive electrode active material preferably contain 0.5 to 7.0% by volume of fine particles having an average particle size of secondary particles of 40 ⁇ m or less and an average primary particle size of 1 ⁇ m or less.
  • a general method is used as a method for producing an inorganic compound.
  • various methods can be considered for producing a spherical or elliptical spherical active material.
  • a raw material for a transition metal is dissolved or pulverized and dispersed in a solvent such as water, and the pH is adjusted while stirring.
  • a method of obtaining an active material by preparing and recovering a spherical precursor, drying the precursor as necessary, adding a Li source such as LiOH, Li 2 CO 3 , or LiNO 3 and firing at a high temperature can be mentioned. ..
  • the content of the positive electrode active material is preferably 50 to 99.5% by mass, more preferably 80 to 99% by mass in the positive electrode mixture in terms of high battery capacity.
  • the content of the positive electrode active material is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more.
  • the upper limit is preferably 99% by mass or less, more preferably 98% by mass or less. If the content of the positive electrode active material in the positive electrode mixture is low, the electric capacity may be insufficient. On the contrary, if the content is too high, the strength of the positive electrode may be insufficient.
  • the negative electrode active material is not particularly limited, and for example, lithium metal, artificial graphite, graphite carbon fiber, resin calcined carbon, thermally decomposed gas phase growth carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin calcined carbon, Selected from polyacenes, pitch-based carbon fibers, vapor-grown carbon fibers, those containing carbonaceous materials such as natural graphite and refractory carbon, silicon-containing compounds such as silicon and silicon alloys, Li 4 Ti 5 O 12 and the like. Any one of them, or a mixture of two or more kinds can be mentioned. Among them, those containing at least a part of carbonaceous material and silicon-containing compounds can be particularly preferably used.
  • the negative electrode active material used in the present disclosure preferably contains silicon as a constituent element. By including silicon as a constituent element, a high-capacity battery can be manufactured.
  • silicon-containing particles examples include silicon particles, particles having a structure in which silicon fine particles are dispersed in a silicon-based compound, silicon oxide particles represented by the general formula SiOx (0.5 ⁇ x ⁇ 1.6), or these. Mixtures are preferred. By using these, a negative electrode mixture for a lithium ion secondary battery having higher initial charge / discharge efficiency, high capacity, and excellent cycle characteristics can be obtained.
  • the silicon oxide in the particles having a structure in which the silicon nanoparticles are dispersed in silicon oxide is preferably silicon dioxide. It can be confirmed by a transmission electron microscope that the silicon nanoparticles (crystals) are dispersed in the amorphous silicon oxide.
  • the BET specific surface area of the silicon-containing particles is preferably 0.5 to 100 m 2 / g, more preferably 1 to 20 m 2 / g.
  • the BET specific surface area is 0.5 m 2 / g or more, there is no possibility that the adhesiveness when applied to the electrode is deteriorated and the battery characteristics are deteriorated. Further, when it is 100 m 2 / g or less, the ratio of silicon dioxide on the particle surface becomes large, and there is no possibility that the battery capacity will decrease when used as a negative electrode material for a lithium ion secondary battery.
  • the content of the negative electrode active material is preferably 40% by mass or more, more preferably 50% by mass or more, and particularly preferably 60% by mass or more in the electrode mixture in order to increase the volume of the obtained electrode mixture.
  • the upper limit is preferably 99% by mass or less, more preferably 98% by mass or less.
  • the obtained electrode mixture is in a state where the electrode active material, the binder, etc. are simply mixed and has no fixed shape.
  • Specific mixing methods include W-type mixer, V-type mixer, drum-type mixer, ribbon mixer, conical screw-type mixer, single-screw kneader, double-screw kneader, mix muller, stirring mixer, and planeta.
  • a method of mixing using a Lee mixer or the like can be mentioned.
  • the PTFE powder is fibrillated by applying a shearing force.
  • excessive shear stress may promote fibril formation too much and impair flexibility.
  • weak shear stress may not be sufficient in terms of strength.
  • the fibril diameter (median value) is achieved by performing the steps of applying shear stress to the appropriate PTFE during mixing and rolling to promote fibrillation, rolling the resin and rolling it into a sheet shape.
  • the positive electrode may be manufactured by a conventional method. For example, a method of laminating the electrode mixture sheet and the current collector via an adhesive and vacuum drying may be mentioned.
  • the rolled sheet obtained earlier is roughly crushed by folding it in two, formed into a bulk shape again, and then rolled into a sheet shape using a metal roll on a flat plate to form fibril.
  • the process of accelerating was repeated four times.
  • it was further rolled to obtain a positive electrode mixture sheet having a thickness of 500 ⁇ m.
  • the positive electrode mixture sheet was cut into 5 cm ⁇ 5 cm, put into a roll press machine, and rolled.
  • a load of 10 kN was repeatedly applied to adjust the thickness. The gap was adjusted so that the final thickness of the positive electrode mixture layer was 101 ⁇ m.
  • the initial rolling rate was the largest at 52%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

良好な性質を有する二次電池用電極合剤、また、その電極合剤を含有する二次電池用電極合剤シート、また、その二次電池用電極合剤シートを使用した二次電池を提供する。また、微細な繊維構造を有するポリテトラフルオロエチレン樹脂を含有する電極合剤シートを製造する方法を提供する。 電極活物質及び結着剤を含有する二次電池用電極合剤であって、結着剤は、ポリテトラフルオロエチレン樹脂であり、ポリテトラルオロエチレン樹脂は、フィブリル径(中央値)が70nm以下の繊維状構造を有することを特徴とする二次電池用電極合剤である。また、その電極合剤を含有する二次電池用電極合剤シートである。

Description

二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池
本開示は、二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池に関する。
リチウムイオン二次電池において、電極活物質及び導電助剤に対して、結着剤及び溶媒を混合して得られたスラリーを塗工、乾燥することによって、電極合剤を作製することが一般的に行われている。
他方、ポリテトラフルオロエチレン樹脂はフィブリル化しやすい重合体であり、これをフィブリル化することで結着剤として使用することも行われている。
特許文献1には、活性材料とポリテトラフルオロエチレン混合バインダ材とを含む混合物を、ジェットミルによって高せん断処理することにより、ポリテトラフルオロエチレンをフィブリル化する電極の作製方法が開示されている。
特表2017-517862号公報
本開示は、良好な性質を有する二次電池用電極合剤、また、その電極合剤を含有する二次電池用電極合剤シート、また、その電極合剤シートを使用した二次電池を提供することを目的とする。
また、本開示は、微細な繊維構造を有するポリテトラフルオロエチレン樹脂を含有する電極合剤シートを製造する方法を提供することを目的とする。
本開示は、電極活物質及び結着剤を含有する二次電池用電極合剤であって、
結着剤は、ポリテトラフルオロエチレン樹脂であり、
ポリテトラルオロエチレン樹脂は、フィブリル径(中央値)が70nm以下の繊維状構造を有することを特徴とする二次電池用電極合剤である。
上記二次電池用電極合剤は、リチウムイオン電池用とすることが好ましい。
上記二次電池用電極合剤は、電極活物質及び結着剤を含有する原料組成物を使用して得られた二次電池用電極合剤であって、原料組成物は、結着剤が粉末状のポリテトラフルオロエチレン樹脂であることが好ましい。
上記原料組成物は、実質的に液体媒体を含有しないことが好ましい。
上記粉末状のポリテトラフルオロエチレン樹脂は、水分含有量が500ppm以下であることが好ましい。
上記粉末状のポリテトラフルオロエチレン樹脂は、標準比重が2.11~2.20であることが好ましい。
上記粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が500μm以上のポリテトラフルオロエチレン樹脂を50質量%以上含むことが好ましい。
上記粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が500μm以上のポリテトラフルオロエチレン樹脂を80質量%以上含むことが好ましい。
本開示は、上記二次電池用電極合剤を含む二次電池用電極合剤シートでもある。
上記二次電池用電極合剤シートは、負極用であり、電極活物質は、ケイ素を構成元素に含むことが好ましい。
上記二次電池用電極合剤シートは、正極用であり、密度が3.00g/cc以上であることが好ましい。
上記二次電池用電極合剤シートは、負極用であり、密度が1.3g/cc以上であることが好ましい。
本開示は、電極活物質及び結着剤を含む原料組成物を混合しながら、剪断力を付与する工程(1)
前記工程(1)によって得られた電極合剤をバルク状に成形する工程(2)及び
前記工程(2)によって得られたバルク状の電極合剤をシート状に圧延する工程(3)
を有する二次電池用電極合剤シートの製造方法であって、結着剤は、粉末状のポリテトラフルオロエチレン樹脂であることを特徴とする二次電池用電極合剤シートの製造方法でもある。
本開示は、上記二次電池用電極合剤シートを有する二次電池でもある。
本開示においては、柔軟性および性能に優れた電極を得るための電極合剤を得ることができる。このため、初期容量が高く、抵抗が低く、ガス発生の少ない電池とすることができる。更に、本開示の製造方法においては、柔軟性に優れた電極および性能に優れた電池を作るための電極合剤シートを製造することができる。
実施例5で使用した負極合剤シートの断面の状態を示す走査型電子顕微鏡写真である。
以下、本開示を詳細に説明する。
本開示は、二次電池に使用する電極合剤を提供するものである。特に、電解液を使用するタイプの二次電池において好適に使用することができる電極合剤を提供する。
本開示の電極合剤においては、ポリテトラフルオロエチレン樹脂(PTFE)を結着剤として使用するものである。従来の二次電池用電極合剤においては、ポリビニリデンフルオライド等の溶媒に溶解する樹脂を結着剤として使用し、これを含有するスラリーの塗布・乾燥によって、電極合剤を作成する方法が一般的であった。
粉末状態のPTFEにせん断応力を与えると、容易にフィブリル化することが知られている。このようなフィブリル化する性質を利用して、PTFEを結着剤として使用することができる。すなわち、フィブリル化したPTFEがその他の粉体成分等に絡みつくことで、粉体成分を結着させ、これによって、PTFEは粉体成分を成形する際のバインダーとして作用することができる。
しかし、フィブリル化したPTFEを結着剤として使用する場合でも、フィブリル化が充分でなければ、電極合剤として使用した際に良好な性能を発揮することはできない。本開示においては、この点についての検討を行い、PTFEが、フィブリル径(中央値)が70nm以下の繊維状構造を有するように、微細なフィブリル化加工を行うことによって、フィブリル化したPTFEが電極合剤用の結着剤として良好な性能を発揮することができるものである。
すなわち、本開示は、PTFEを結着剤として使用するに際して、微細な繊維構造を有するものとすることで、良好な性質を有する電極合剤を得ることができることを見出し、これによって本開示を完成したものである。
本開示の電極合剤は、電極活物質及び結着剤を含有する原料組成物を使用して得られるものであり、結着剤は粉末状のPTFEであることが好ましい。原料として、PTFE水分散液ではなく、PTFE粉体を使用することにより、電極合剤中に原料由来の水分が少なく、水分の混在による問題を生じることがなく、これによって、電池性能を向上させることができるという利点もある。
更に、上記原料組成物は、実質的に液体媒体を含有しないことが好ましい。このように、本開示の電極合剤は、製造において溶媒を使用しないという利点を有する。すなわち、従来の電極合剤形成方法は、結着剤が溶解した溶媒を使用して、電極合剤成分である粉体を分散させたスラリーを調製し、当該スラリーの塗布・乾燥によって電極合剤を調製することが一般的であった。この場合、結着剤を溶解する溶媒を使用する。しかし、従来一般に使用されてきたバインダー樹脂であるポリビニリデンフルオライドを溶解することができる溶媒は、N-メチルピロリドン等の特定の溶媒に限定される。このため、高価な溶剤の使用が必要となり、コストアップの原因となってしまう。
本開示の電極合剤は、フィブリル径(中央値)が70nm以下の繊維状構造を有するPTFEを構成要素として有するものである。本開示においては、フィブリル径(中央値)が70nm以下である点が重要である。このようにフィブリル径が細いPTFEが電極合剤中に存在し、これが電極合剤を構成する成分の粉体同士を結着させる作用と柔軟性を奏することによって、本発明の目的を達成するものである。
上記フィブリル径(中央値)は、以下の方法によって測定した値である。
(1)走査型電子顕微鏡(S-4800型 日立製作所製)を用いて、電極合剤シートの拡大写真(7000倍)を撮影し画像を得る。
(2)この画像に水平方向に等間隔で2本の線を引き、画像を三等分する。
(3)上方の直線上にある全てのPTFE繊維について、PTFE繊維1本あたり3箇所の直径を測定し、平均した値を当該PTFE繊維の直径とする。測定する3箇所は、PTFE繊維と直線との交点、交点からそれぞれ上下に0.5μmずつずらした場所を選択する。(未繊維化のPTFE一次粒子は除く)。
(4)上記(3)の作業を、下方の直線上にある全てのPTFE繊維に対して行う。
(5)1枚目の画像を起点に画面右方向に1mm移動し、再度撮影を行い、上記(3)及び(4)によりPTFE繊維の直径を測定する。これを繰り返し、測定した繊維数が80本を超えた時点で終了とする。
(6)上記測定した全てのPTFE繊維の直径の中央値をフィブリル径の大きさとした。
上記フィブリル径(中央値)は、65nm以下であることが好ましい。なお、フィブリル化を進めすぎると、柔軟性が失われる傾向にある。下限は特に限定されるものではないが、強度の観点から、例えば、15nm以上であることが好ましく、20nm以上であることが更に好ましい。
上記フィブリル径(中央値)を有するPTFEを得る方法としては特に限定されるものではないが、例えば、
電極活物質及び結着剤を含む原料組成物を混合しながら、剪断力を付与する工程(1)
前記工程(1)によって得られた電極合剤をバルク状に成形する工程(2)及び
前記工程(2)によって得られたバルク状の電極合剤をシート状に圧延する工程(3)によって行う方法を挙げることができる。
このような方法において、例えば、工程(1)においては原料組成物の混合条件を1000rpm以下とすることにより、柔軟性を維持しながらもPTFEのフィブリル化を進行させることができ、与えるせん断応力をコントロールすることで、PTFEのフィブリル径(中央値)を70nm以下とすることができる。
また、工程(3)のあとに、得られた圧延シートに、より大きい荷重を加えて、さらに薄いシート状に圧延する工程(4)を有することも好ましい。また、工程(4)を繰り返すことも好ましい。
また、工程(3)又は工程(4)のあとに、得られた圧延シートを粗砕したのち再度バルク状に成形し、シート状に圧延する工程(5)を有することによってもフィブリル径を調整することができる。工程(5)は、例えば、1回以上12回以下繰り返すことが好ましい。
すなわち、せん断力をかけることによって、PTFE粉体をフィブリル化し、これが電極活物質等の粉体成分と絡み合うことによって、電極合剤を製造することができる。なお、当該製造方法については後述する。
本開示において、上記PTFEとしては特に限定されず、ホモポリマーであってもよいし、フィブリル化させることのできる共重合体であってもよいが、ホモポリマーがより好ましい。
共重合体の場合、コモノマーであるフッ素原子含有モノマーとしては、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルエチレン、パーフルオロアルキルエチレン、フルオロアルキル・フルオロビニルエーテル等を挙げることができる。
なお、上記「PTFE粉体」とは、液体媒体と混在した分散状態ではなく、粉体としての固体状態を意味するものである。このような状態のものを利用し、液体媒体が存在しない状態のPTFEを使用して電極合剤を製造することで、本開示の目的が好適に達成できる。
本開示の電極合剤を調製する際の原料となる粉末形状のPTFEは、水分含有量が500ppm以下であることが好ましい。
水分含有量が500ppm以下であることによって、初期特性としてガス発生の少ない二次電池を作製できるという点で好ましい。
上記水分含有量は、300ppm以下であることが更に好ましい。
本開示の電極合剤を調製する際の原料となる粉末形状のPTFEは、標準比重が2.11~2.20であることが好ましい。標準比重が当該範囲内のものであることによって、強度の高い電極合剤シートを作製できるという点で利点を有する。上記標準比重の下限は、2.12以上であることがより好ましい。上記標準比重の上限は、2.19以下であることがより好ましく、2.18以下であることが更に好ましい。
標準比重〔SSG〕は、ASTM D-4895-89に準拠して試料を作製し、得られた試料の比重を水置換法によって測定する。
上記粉末状のPTFEは、二次粒子径が500μm以上のPTFEを50質量%以上含むことが好ましく、80質量%以上含むことがより好ましい。二次粒子径が500μm以上のPTFEが当該範囲内のものであることによって、強度の高い電極合剤シートを作製できるという利点を有する。
二次粒子径が500μm以上のPTFEを用いることで、より抵抗が低く、靭性に富んだ電極合剤シートを得ることができる。
上記粉末状のPTFEの二次粒子径の下限は、300μmであることがより好ましく、350μmであることが更に好ましい。上記二次粒子径の上限は、700μm以下であることがより好ましく、600μm以下であることが更に好ましい。二次粒子径は、例えば、ふるい分け法などで求めることができる。
上記粉末状のPTFEは、より高強度でかつ均質性に優れる電極合剤シートが得られることから、平均一次粒子径が150nm以上であることが好ましい。より好ましくは、180nm以上であり、更に好ましくは210nm以上であり、特に好ましくは220nm以上である。
PTFEの平均一次粒子径が大きいほど、その粉末を用いて押出成形をする際に、押出圧力の上昇を抑えられ、成形性にも優れる。上限は特に限定されないが500nmであってよい。重合工程における生産性の観点からは、350nmであることが好ましい。
上記平均一次粒子径は、重合により得られたPTFEの水性分散液を用い、ポリマー濃度を0.22質量%に調整した水性分散液の単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決定された平均一次粒子径との検量線を作成し、測定対象である水性分散液について、上記透過率を測定し、上記検量線を基に決定できる。
本開示に使用するPTFEは、コアシェル構造を有していてもよい。コアシェル構造を有するPTFEとしては、例えば、粒子中に高分子量のポリテトラフルオロエチレンのコアと、より低分子量のポリテトラフルオロエチレンまたは変性ポリテトラフルオロエチレンのシェルとを含むポリテトラフルオロエチレンが挙げられる。このようなポリテトラフルオロエチレンとしては、例えば、特表2005-527652号公報に記載されるポリテトラフルオロエチレン等が挙げられる。
上述したような各パラメータを満たす粉末形状のPTFEは、従来の製造方法により得ることができる。例えば、国際公開第2015-080291号や国際公開第2012-086710号等に記載された製造方法に倣って製造すればよい。
本開示の二次電池用電極合剤は、電極活物質及び結着剤等を含有するものである。結着剤の含有量は、二次電池用電極合剤中0.2~10質量%であることが好ましく、0.3~6.0質量%であることがより好ましい。結合剤が上記範囲内であれば、電極抵抗の上昇を押さえながら、ハンドリング性に優れた自立性のあるシートの成形が可能である。
また、本開示の二次電池用電極合剤は、必要に応じて、導電助剤を含有するものであってもよい。
以下、電極活物質、導電助剤等について説明する。
(電極活物質)
まず、正極活物質としては、電気化学的にアルカリ金属イオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、アルカリ金属と少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、アルカリ金属含有遷移金属複合酸化物、アルカリ金属含有遷移金属リン酸化合物、導電性高分子等が挙げられる。
なかでも、正極活物質としては、特に、高電圧を産み出すアルカリ金属含有遷移金属複合酸化物が好ましい。上記アルカリ金属イオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等が挙げられる。好ましい態様において、アルカリ金属イオンは、リチウムイオンであり得る。即ち、この態様において、アルカリ金属イオン二次電池は、リチウムイオン二次電池である。
上記アルカリ金属含有遷移金属複合酸化物としては、例えば、
式:MMn2-b
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるアルカリ金属・マンガンスピネル複合酸化物、
式:MNi1-ccO
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるアルカリ金属・ニッケル複合酸化物、または、
式:MCo1-d
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるアルカリ金属・コバルト複合酸化物が挙げられる。
上記において、Mは、好ましくは、Li、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaであり、さらに好ましくはLiである。
なかでも、エネルギー密度が高く、高出力な二次電池を提供できる点から、MCoO、MMnO、MNiO、MMn、MNi0.8Co0.15Al0.05、またはMNi1/3Co1/3Mn1/3等が好ましく、下記一般式(3)で表される化合物であることが好ましい。
MNiCoMn    (3)
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、MはFe、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeからなる群より選択される少なくとも1種を示し、(h+i+j+k)=1.0、0≦h≦1.0、0≦i≦1.0、0≦j≦1.5、0≦k≦0.2である。)
上記アルカリ金属含有遷移金属リン酸化合物としては、例えば、下記式(4)
(PO   (4)
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、MはV、Ti、Cr、Mn、Fe、Co、Ni及びCuからなる群より選択される少なくとも1種を示し、0.5≦e≦3、1≦f≦2、1≦g≦3)で表される化合物が挙げられる。
上記において、Mは、好ましくは、Li、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaであり、さらに好ましくはLiである。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の元素で置換したもの等が挙げられる。
上記リチウム含有遷移金属リン酸化合物としては、オリビン型構造を有するものが好ましい。
その他の正極活物質としては、MFePO、MNi0.8Co0.2、M1.2Fe0.4Mn0.4、MNi0.5Mn1.5、MV、MMnO(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属である。)等が挙げられる。特に、MMnO、MNi0.5Mn1.5等の正極活物質は、4.4Vを超える電圧や、4.6V以上の電圧で二次電池を作動させた場合であって、結晶構造が崩壊しない点で好ましい。従って、上記に例示した正極活物質を含む正極材を用いた二次電池等の電気化学デバイスは、高温で保管した場合でも、残存容量が低下しにくく、抵抗増加率も変化しにくい上、高電圧で作動させても電池性能が劣化しないことから、好ましい。
その他の正極活物質として、MMnOとMM(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体材料等も挙げられる。
上記固溶体材料としては、例えば、一般式Mx[Mn(1-y) ]Oで表わされるアルカリ金属マンガン酸化物である。ここで式中のMは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、Mは、M及びMn以外の少なくとも一種の金属元素からなり、例えば、Co,Ni,Fe,Ti,Mo,W,Cr,ZrおよびSnからなる群から選択される一種または二種以上の元素を含んでいる。また、式中のx、y、zの値は、1<x<2、0≦y<1、1.5<z<3の範囲である。中でも、Li1.2Mn0.5Co0.14Ni0.14のようなLiMnOをベースにLiNiOやLiCoOを固溶したマンガン含有固溶体材料は、高エネルギー密度を有するアルカリ金属イオン二次電池を提供できる点から好ましい。
また、正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好ましい。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は上記正極活物質とリン酸リチウムの合計に対し、下限が、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、上限が、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。
上記導電性高分子としては、p-ドーピング型の導電性高分子やn-ドーピング型の導電性高分子が挙げられる。導電性高分子としては、ポリアセチレン系、ポリフェニレン系、複素環ポリマー、イオン性ポリマー、ラダー及びネットワーク状ポリマー等が挙げられる。
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて、該正極活物質に含浸させ、又は添加した後、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により、正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、上記正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。その付着量が少なすぎる場合、その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
正極活物質のタップ密度は、好ましくは0.5g/cm以上、より好ましくは0.8g/cm以上、更に好ましくは1.0g/cm以上である。該正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm以下、より好ましくは3.7g/cm以下、更に好ましくは3.5g/cm以下である。
なお、本開示では、タップ密度は、正極活物質粉体5~10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/cmとして求める。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は、好ましくは0.3μm以上、より好ましくは0.5μm以上、更に好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、また、好ましくは30μm以下、より好ましくは27μm以下、更に好ましくは25μm以下、最も好ましくは22μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引いたり等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ上記正極活物質を2種類以上混合することで、正極作成時の充填性を更に向上させることができる。
なお、本開示では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、上記正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、更に好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本開示では、上記正極活物質の平均一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、好ましくは0.1m/g以上、より好ましくは0.2m/g以上、更に好ましくは0.3m/g以上であり、上限は好ましくは50m/g以下、より好ましくは40m/g以下、更に好ましくは30m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
なお、本開示では、BET比表面積は、表面積計(例えば、大倉理研社製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
本開示の二次電池が、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池として使用される場合、高出力が要求されるため、上記正極活物質の粒子は二次粒子が主体となることが好ましい。
上記正極活物質の粒子は、二次粒子の平均粒子径が40μm以下で、かつ、平均一次粒子径が1μm以下の微粒子を、0.5~7.0体積%含むものであることが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより、電解液との接触面積が大きくなり、電極合剤と電解液との間でのリチウムイオンの拡散をより速くすることができ、その結果、電池の出力性能を向上させることができる。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の2種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoOとLiNi0.33Co0.33Mn0.33等の三元系との組み合わせ、LiCoOとLiMn若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiFePOとLiCoO若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
上記正極活物質の含有量は、電池容量が高い点で、正極合剤中50~99.5質量%が好ましく、80~99質量%がより好ましい。
また、正極活物質の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極合剤中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
負極活物質としては特に限定されず、例えば、リチウム金属、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素等の炭素質材料を含むもの、ケイ素及びケイ素合金等のシリコン含有化合物、LiTi12等から選択されるいずれか、又は2種類以上の混合物等を挙げることができる。なかでも、炭素質材料を少なくとも一部に含むものや、シリコン含有化合物を特に好適に使用することができる。
本開示において用いる負極活物質は、ケイ素を構成元素に含むことが好適である。ケイ素を構成元素に含むものとすることで、高容量な電池を作製することができる。
ケイ素を含む粒子としては、ケイ素粒子、ケイ素の微粒子がケイ素系化合物に分散した構造を有する粒子、一般式SiOx(0.5≦x≦1.6)で表される酸化ケイ素粒子、又はこれらの混合物が好ましい。これらを使用することで、より初回充放電効率が高く、高容量でかつサイクル特性に優れたリチウムイオン二次電池用負極合剤が得られる。
本開示における酸化ケイ素とは、非晶質のケイ素酸化物の総称であり、不均化前の酸化ケイ素は、一般式SiOx(0.5≦x≦1.6)で表される。xは0.8≦x<1.6が好ましく、0.8≦x<1.3がより好ましい。この酸化ケイ素は、例えば、二酸化ケイ素と金属ケイ素との混合物を加熱して生成した一酸化ケイ素ガスを冷却・析出して得ることができる。
ケイ素の微粒子がケイ素系化合物に分散した構造を有する粒子は、例えば、ケイ素の微粒子をケイ素系化合物と混合したものを焼成する方法や、一般式SiOxで表される不均化前の酸化ケイ素粒子を、アルゴン等不活性な非酸化性雰囲気中、400℃以上、好適には800~1,100℃の温度で熱処理し、不均化反応を行うことで得ることができる。特に後者の方法で得た材料は、ケイ素の微結晶が均一に分散されるため好適である。上記のような不均化反応により、ケイ素ナノ粒子のサイズを1~100nmとすることができる。なお、ケイ素ナノ粒子が酸化ケイ素中に分散した構造を有する粒子中の酸化ケイ素については、二酸化ケイ素であることが望ましい。なお、透過電子顕微鏡によってシリコンのナノ粒子(結晶)が無定形の酸化ケイ素に分散していることを確認することができる。
ケイ素を含む粒子の物性は、目的とする複合粒子により適宜選定することができる。例えば、平均粒径は0.1~50μmが好ましく、下限は0.2μm以上がより好ましく、0.5μm以上がさらに好ましい。上限は30μm以下がより好ましく、20μm以下がさらに好ましい。なお、本発明における平均粒径とは、レーザー回折法による粒度分布測定における重量平均粒径で表すものである。
ケイ素を含む粒子のBET比表面積は、0.5~100m2/gが好ましく、1~20m2/gがより好ましい。BET比表面積が0.5m2/g以上であれば、電極に塗布した際の接着性が低下して電池特性が低下するおそれがない。また100m2/g以下であれば、粒子表面の二酸化ケイ素の割合が大きくなり、リチウムイオン二次電池用負極材として用いた際に電池容量が低下するおそれがない。
上記ケイ素を含む粒子を炭素被覆することで導電性を付与し、電池特性の向上が見られる。導電性を付与するための方法として、黒鉛等の導電性のある粒子と混合する方法、上記ケイ素を含む粒子の表面を炭素被膜で被覆する方法、及びその両方を組み合わせる方法等が挙げられる。炭素被膜で被覆する方法が好ましく、被覆する方法としては化学蒸着(CVD)する方法がより好ましい。
上記負極活物質の含有量は、得られる電極合剤の容量を増やすために、電極合剤中40質量%以上が好ましく、より好ましくは50質量%以上、特に好ましくは60質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。
(導電助剤)
上記導電助剤としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、ニードルコークス、カーボンナノチューブ、フラーレン、VGCF等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
導電助剤は、電極合剤中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
(その他の成分)
電極合剤は、更に、熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂としては、フッ化ビニリデンや、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリエチレンオキシドなどが挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
電極活物質に対する熱可塑性樹脂の割合は、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.10質量%以上であり、また、通常3.0質量%以下、好ましくは2.5質量%以下、より好ましくは2.0質量%以下の範囲である。熱可塑性樹脂を添加することで、電極の機械的強度を向上させることができる。また、この範囲を上回ると、電極合剤に占める電極活物質の割合が低下し、電池の容量が低下する問題や活物質間の抵抗が増大する問題が生じる場合がある。
本開示の電極合剤において、結着剤の含有量は、電極合剤中の結着剤の割合として、通常0.1質量%以上、好ましくは0.5質量%以上、更に好ましくは1.0質量%以上であり、また、通常50質量%以下、好ましくは40質量%以下、更に好ましくは30質量%以下、最も好ましくは10質量%以下である。結着剤の割合が低すぎると、電極合剤活物質を十分保持できずに電極合剤シートの機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
本開示の電極合剤は、二次電池用の電極合剤として使用することができる。特に、本開示の電極合剤は、リチウムイオン二次電池に好適である。
本開示の電極合剤は、二次電池に使用するにあたっては、通常、シート状の形態で使用される。
以下に、電極合剤を含む電極合剤シートの具体的な製造方法の一例を示す。
本開示の電極合剤シートは、
電極活物質及び結着剤、必要に応じて導電助剤を含む原料組成物を混合しながら、剪断力を付与する工程(1)
前記工程(1)によって得られた電極合剤をバルク状に成形する工程(2)及び
前記工程(2)によって得られたバルク状の電極合剤をシート状に圧延する工程(3)
を有する二次電池用電極合剤シートの製造方法によって得ることができる。
上記工程(1)において原料組成物を混合しながら、剪断力を付与した段階では、得られる電極合剤は、電極活物質、結着剤等が単に混ざっているだけで定まった形のない状態で存在している。具体的な混合方法としては、W型混合機、V型混合機、ドラム型混合機、リボン混合機、円錐スクリュー型混合機、1軸混練機、2軸混練機、ミックスマラー、撹拌ミキサー、プラネタリーミキサーなどを用いて混合する方法が挙げられる。
上記工程(1)において、混合条件は、回転数と混合時間を適宜設定すればよい。例えば、回転数は、1000rpm以下とすることが好適である。好ましくは10rpm以上、より好ましくは15rpm以上、更に好ましくは20rpm以上であり、また、好ましくは900rpm以下、より好ましくは800rpm以下、更に好ましくは700rpmの範囲である。上記の範囲を下回ると、混合に時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度および柔軟性の劣る電極合剤シートとなるおそれがある。
上記工程(2)において、バルク状に成形するとは、電極合剤を1つの塊とするものである。
バルク状に成形する具体的な方法として、押出成形、プレス成形などが挙げられる。
また、「バルク状」とは、特に形状が特定されるものではなく、1つの塊状になっている状態であればよく、ロッド状、シート状、球状、キューブ状等の形態が含まれる。上記塊の大きさは、その断面の直径または最小の一辺が10000μm以上であることが好ましい。より好ましくは20000μm以上である。
上記工程(3)における具体的な圧延方法としては、ロールプレス機、平板プレス機、カレンダーロール機などを用いて圧延する方法が挙げられる。
また、工程(3)のあとに、得られた圧延シートに、より大きい荷重を加えて、さらに薄いシート状に圧延する工程(4)を有することも好ましい。工程(4)を繰り返すことも好ましい。このように、圧延シートを一度に薄くするのではなく、段階に分けて少しずつ圧延することで柔軟性がより良好となる。
工程(4)の回数としては、2回以上10回以下が好ましく、3回以上9回以下がより好ましい。
具体的な圧延方法としては、例えば、2つあるいは複数のロールを回転させ、その間に圧延シートを通すことによって、より薄いシート状に加工する方法等が挙げられる。
また、フィブリル径を調整する観点で、工程(3)または工程(4)のあとに、圧延シートを粗砕したのち再度バルク状に成形し、シート状に圧延する工程(5)を有することも好ましい。工程(5)を繰り返すことも好ましい。工程(5)の回数としては、1回以上12回以下が好ましく、2回以上11回以下がより好ましい。
工程(5)において、圧延シートを粗砕してバルク状に成形する具体的な方法として、圧延シートを折りたたむ方法、あるいはロッドもしくは薄膜シート状に成形する方法、チップ化する方法などが挙げられる。本開示において、「粗砕する」とは、次工程でシート状に圧延するために、工程(3)又は工程(4)で得られた圧延シートの形態を別の形態に変化させることを意味するものであり、単に圧延シートを折りたたむような場合も含まれる。
また、工程(5)の後に、工程(4)を行うようにしてもよく、繰り返し行ってもよい。
また、工程(2)ないし、(3)、(4)、(5)において1軸延伸もしくは2軸延伸を行っても良い。
また、工程(5)での粗砕程度によってもフィブリル径(中央値)を調整することができる。
上記工程(3)、(4)又は(5)において、圧延率は、好ましくは10%以上、更に好ましくは20%以上であり、また、好ましくは80%以下、より好ましくは65%以下、更に好ましくは50%以下の範囲である。上記の範囲を下回ると、圧延回数の増大とともに時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度および柔軟性の劣る電極合剤シートとなるおそれがある。
なお、ここでいう圧延率とは、試料の圧延加工前の厚みに対する加工後の厚みの減少率を指す。圧延前の試料は、バルク状の原料組成物であっても、シート状の原料組成物であってもよい。試料の厚みとは、圧延時に荷重をかける方向の厚みを指す。
上述したように、PTFE粉末は、せん断力をかけることでフィブリル化する。そして、フィブリル径(中央値)が70nm以下の繊維状構造を有するものとするには、過度なせん断応力では、フィブリル化が促進しすぎてしまい、柔軟性が損なわれることがある。また、弱いせん断応力では強度の面で充分ではないことがある。このため、混合時や圧延時に、適度なPTFEにせん断応力を与えてフィブリル化を促進し、樹脂を圧延してシート状に延ばす、という工程を上記範囲でおこなうことによって、フィブリル径(中央値)が70nm以下の繊維状構造を有するものとすることができる。
本開示の電極合剤シートは、二次電池用の電極合剤シートとして使用することができる。負極、正極のいずれとすることもできる。特に、本開示の電極合剤シートは、リチウムイオン二次電池に好適である。
(正極)
本開示において、正極は、集電体と、上記正極活物質を含む電極合剤シートとから構成されることが好適である。
正極用集電体の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特にアルミニウム又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔が好ましい。なお、金属箔は適宜メッシュ状に形成してもよい。
金属箔の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。金属箔がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、金属箔がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極合剤シートの電気接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極合剤シートの厚さの比は特には限定されないが、(電解液を注液する直前の片面の正極合剤シートの厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、また、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度での充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
正極の製造は、常法によればよい。例えば、上記電極合剤シートと集電体とを接着剤を介して積層し、真空乾燥する方法等が挙げられる。
正極合剤シートの密度は、好ましくは3.00g/cm以上、より好ましくは3.10g/cm以上、更に好ましくは3.20g/cm以上であり、また、好ましくは3.80g/cm以下、より好ましくは3.75g/cm以下、更に好ましくは3.70g/cm以下の範囲である。この範囲を上回ると、集電体と活物質との界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると、活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
正極合剤シートの面積は、高出力かつ高温時の安定性を高める観点から、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極合剤面積の総和が面積比で15倍以上とすることが好ましく、更に40倍以上とすることがより好ましい。電池外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極合剤面積の総和とは、負極活物質を含む合剤層に対向する正極合剤層の幾何表面積であり、集電体を介して両面に正極合剤層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
正極の厚さは特に限定されないが、高容量かつ高出力の観点から、集電体の厚さを差し引いた合剤シートの厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
また、上記正極の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(負極)
本開示において、負極は、集電体と、上記負極活物質を含む電極合剤シートとから構成されることが好適である。
負極用集電体の材質としては、銅、ニッケル、チタン、タンタル、ステンレス鋼等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特に銅、ニッケル、又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔が好ましい。なお、金属箔は適宜メッシュ状に形成してもよい。
金属箔の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。金属箔がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、金属箔がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
負極の製造は、常法によればよい。例えば、上記電極合剤シートと集電体とを接着剤を介して積層し、真空乾燥する方法等が挙げられる。
負極合剤シートの密度は、好ましくは1.3g/cm以上、より好ましくは1.4g/cm以上、更に好ましくは1.5g/cm以上であり、また、好ましくは2.0g/cm以下、より好ましくは1.9g/cm以下、更に好ましくは1.8g/cm以下の範囲である。この範囲を上回ると、集電体と活物質との界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると、活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
負極の厚さは特に限定されないが、高容量かつ高出力の観点から、集電体の厚さを差し引いた合剤シートの厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
(二次電池)
本開示は、上記電極合剤シートを用いた二次電池でもある。本開示の二次電池は、公知の二次電池において使用される電解液、セパレータ等を使用することができる。以下、これらについて詳述する。
(電解液)
非水電解液としては、公知の電解質塩を公知の電解質塩溶解用有機溶媒に溶解したものが使用できる。
電解質塩溶解用有機溶媒としては、特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの公知の炭化水素系溶媒;フルオロエチレンカーボネート、フルオロエーテル、フッ素化カーボネートなどのフッ素系溶媒の1種もしくは2種以上が使用できる。
電解質塩としては、たとえばLiClO、LiAsF、LiBF、LiPF、LiN(SOCF、LiN(SOなどがあげられ、サイクル特性が良好な点から特にLiPF、LiBF、LiN(SOCF、LiN(SOまたはこれらの組合せが好ましい。
電解質塩の濃度は、0.8モル/リットル以上、さらには1.0モル/リットル以上が必要である。上限は電解質塩溶解用有機溶媒にもよるが、通常1.5モル/リットルである。
(セパレータ)
本開示の二次電池は、更に、セパレータを備えることが好ましい。
上記セパレータの材質や形状は、電解液に安定であり、かつ、保液性に優れていれば特に限定されず、公知のものを使用することができる。なかでも、本開示の電解液又は本開示のアルカリ金属二次電池で使用される電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。ポリプロピレン/ポリエチレン2層フィルム、ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルム等、これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
なかでも、上記セパレータは、電解液の浸透性やシャットダウン効果が良好である点で、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等であることが好ましい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、電解液電池全体としてのエネルギー密度が低下する場合がある。
更に、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上が更に好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下が更に好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状若しくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。
例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
(電池設計)
電極合剤群は、上記の正極と負極とを上記のセパレータを介してなる積層構造のもの、及び上記の正極と負極とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極合剤群の体積が電池内容積に占める割合(以下、電極合剤群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極合剤群占有率が、上記範囲を下回ると、電池容量が小さくなる場合がある。また、上記範囲を上回ると、空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
集電構造は、特に制限されないが、電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、電解液を使用した効果は特に良好に発揮される。
電極合剤群が上記の積層構造のものでは、各電極合剤層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極合剤面積が大きくなる場合には、内部抵抗が大きくなるので、電極合剤内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極合剤群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
外装ケースの材質は用いられる電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
本開示の二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
以下、本開示を実施例に基づいて具体的に説明する。
以下の実施例においては特に言及しない場合は、「部」「%」はそれぞれ「質量部」「質量%」を表す。
〔作製例1〕
国際公開第2015‐080291号の作成例2を参考にして、粉末状のPTFE-Aを作製した。
〔作製例2〕
国際公開第2015‐080291号の作成例3を参考にして、粉末状のPTFE-Bを作製した。
〔作製例3〕
国際公開第2012/086710号の作製例1を参考にして、粉末状のPTFE-Cを作製した。
〔作製例4〕
国際第2012‐063622号の調整例1を参考にして、粉末状のPTFE-Dを作製した。
作製したPTFEの物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
<正極合剤シートの作製>
正極活物質としてLi(Ni0.6Mn0.2Co0.2)O(NMC622)と、導電助剤としてカーボンブラックを秤量し、乳鉢にて200rpmで1時間撹拌し混合物を得た。
粉末状PTFE-Cは真空乾燥機にて50℃、1時間乾燥して用いた。なお、粉末状PTFEは事前に、目開き500μmのステンレスふるいを用いてふるいにかけ、ふるい上に残ったものを用いた。
その後、混合物の入った容器に結着剤として粉末状PTFEを添加し、40rpmで2時間撹拌し、混合物を得た。質量比で正極活物質:結着剤:導電助剤=95:2:3となるようにした。
得られた混合物をバルク状に成形し、シート状に圧延した。
その後、先程得られた圧延シートを2つに折りたたむことにより粗砕して、再度バルク状に成形した後、平らな板の上で金属ロールを用いてシート状に圧延することで、フィブリル化を促進させる工程を4度繰り返した。その後、更に圧延することで、厚さ約500μmの正極合剤シートを得た。さらに、正極合剤シートを5cm×5cmに切り出し、ロールプレス機に投入し圧延をおこなった。さらにフィブリル化を促進させるために2kNの荷重を繰り返しかけて厚みを調整した。ギャップを調整し最終的な正極合剤層の厚みは101μmになるように調整した。初回の圧延率が最も大きく27%であった。
<正極の作製>
20μmのアルミ箔と接着させた。接着剤にはN-メチルピロリドン(NMP)にポリビニデンフルオライド(PVDF)を溶解させ、カーボンナノチューブ(CNT)を分散させたスラリーを用いた。アルミ箔に上述した接着剤を塗布し、作製したシート状正極合剤を気泡が入らないように載せ、100℃、30分にて真空乾燥させて、集電体と一体となった正極シートを作製した。
<負極の作製>
負極活物質として人造黒鉛粉末、増粘剤としてカルボキシルメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1.5質量%)、結着剤としてスチレン-ブタジエンゴム(SBR)の水性ディスパージョン(スチレン-ブタジエンゴムの濃度50質量%)、溶媒として水を加え、固形分で97.6:1.2:1.2(質量%比)にて水溶媒中でミキサーにて混合して、負極合剤スラリーを準備した。厚さ20μmの銅箔に均一に塗布、乾燥(110℃、30分)した後、プレス機により10kNの荷重をかけて、圧縮形成し、集電体と一体となった負極シートを作製した。負極合剤層の厚みは99μmであった。
<電解液の作製>
有機溶媒として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒(EC:EMC=30:70(体積比))をサンプル瓶に量り取り、ここにフルオロエチレンカーボネート(FEC)とビニレンカーボネート(VC)を1質量%ずつ溶解させて電解液を調製した。電解液中のLiPF6塩の濃度が1.0モル/Lとなるようにし、23℃で混合することにより、電解液を得た。
<電池の作製>
上記で作製した負極シート、正極シート及びポリエチレン製セパレータを、負極、セパレータ、正極の順に積層して、電池要素を作製した。
この電池要素を、アルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正極と負極の端子を突設させながら挿入した後、電解液をそれぞれ袋内に注入し、真空封止を行い、シート状のリチウムイオン二次電池を作製した。
(実施例2~4)
各々、表2に示すPTFEを用い、その他は実施例1と同様にして、リチウムイオン二次電池を作製した。
(比較例1)
<正極合剤シートの作製>
正極活物質としてNMC622と、導電助剤としてカーボンブラックを秤量し、乳鉢にて200rpmで1時間撹拌し混合物を得た。
その後、混合物の入った容器に結着剤として表2に示す粉末状PTFEを添加し、40rpmで2時間撹拌した後、ミキサーにより1400rpm、計5分間混練し、混合物を得た。固形分は質量比で正極活物質:結着剤:導電助剤=95:2:3となるようにした。
得られた混合物をバルク状に成形し、シート状に圧延した。
その後、先程得られた圧延シートを2つに折りたたむことにより粗砕して、再度バルク状に成形した後、平らな板の上で金属ロールを用いてシート状に圧延することで、フィブリル化を促進させる工程を四度繰り返した。その後、更に圧延することで、厚さ500μmの正極合剤シートを得た。さらに、正極合剤シートを5cm×5cmに切り出し、ロールプレス機に投入し圧延をおこなった。さらに、フィブリル化を促進させるため10kNの荷重を繰り返しかけて厚みを調整した。ギャップを調整し最終的な正極合剤層の厚みは101μmになるように調整した。初回の圧延率が最も大きく52%であった。
<電池の作製>
上記で作製した正極合剤シートを用い、その他は、実施例1と同様にして、リチウムイオン二次電池を作製した。
(比較例2)
表2に示すPTFEを用い、その他は比較例1と同様にして、リチウムイオン二次電池を作製した。
(実施例5)
<負極合剤シートの作製>
負極活物質として人造黒鉛粉末を25.65g、SiOを2.85g秤量し、乳鉢にて200rpmで1時間撹拌し混合物を得た。粉末状のPTFEは真空乾燥機にて50℃、1時間乾燥して用いた。なお、粉末状PTFE-Cは事前に、目開き500μmのステンレスふるいを用いてふるいにかけ、ふるい上に残ったものを用いた。
その後、混合物の入った容器に結着剤として粉末状PTFEを2.0g添加し、40rpmで2時間撹拌し、混合物を得た。得られた混合物をバルク状に成形し、シート状に圧延した。
その後、先程得られた圧延シートを2つに折りたたむことにより粗砕して、再度バルク状に成形した後、平らな板の上で金属ロールを用いてシート状に圧延することで、フィブリル化を促進させる工程を四度繰り返した。その後、更に圧延することで、厚さ500μmの負極合剤シートを得た。さらに、負極合剤シートを5cm×5cmに切り出し、ロールプレス機に投入し圧延をおこなった。さらにフィブリル化を促進させるため2kNの荷重を繰り返しかけて厚みを調整した。ギャップを調整し最終的な負極合剤層の厚みは101μmにした。初回の圧延率が最も大きく38%であった。
<負極の作製>
20μmの銅箔と接着させた。接着剤にはNMPにPVDFを溶解させ、CNTを分散させたスラリーを用いた。銅箔に上述した接着剤を塗布し、作製した負極合剤シートを気泡が入らないように載せ、100℃、30分にて真空乾燥させて、集電体と一体となった負極シートを作製した。
<正極の作製>
正極活物質としてのLi(Ni1/3Mn1/3Co1/3)O(NMC111)95質量%と、導電助剤としてアセチレンブラック3質量%と、結着剤としてのPVdF 2質量%とを、NMP溶媒中で混合して、スラリー化した。得られたスラリーを、厚さ20μmのアルミ箔に均一に塗布、乾燥( 110℃、30分)した後、プレス機により10kNの荷重をかけて、圧縮形成し、集電体と一体となった正極シートを作製した。電極合剤層の厚みは約100μmであった。
<電池の作製>
上記で作製した負極、正極を用い、その他は、実施例1と同様にして、リチウムイオン二次電池を作製した。
(実施例6~8)
各々、表3に示すPTFEを用い、その他は実施例5と同様にして、リチウムイオン二次電池を作製した。
(比較例3)
<負極合剤シートの作製>
負極活物質として人造黒鉛粉末を25.65g、SiOを2.85g秤量し、乳鉢にて200rpmで1時間撹拌し混合物を得た。
その後、混合物の入った容器に結着剤として表3に示す粉末状PTFEを2.0g添加し、1400rpm、計5分間混練し、混合物を得た。得られた混合物をバルク状に成形し、シート状に圧延した。
その後、先程得られた圧延シートを2つに折りたたむことにより粗砕して、再度バルク状に成形した後、平らな板の上で金属ロールを用いてシート状に圧延することで、フィブリル化を促進させる工程を四度繰り返した。その後、更に圧延することで、厚さ500μmの負極合剤シートを得た。さらに、負極合剤シートを5cm×5cmに切り出し、ロールプレス機に投入し圧延をおこなった。10kNの荷重を繰り返しかけて厚みを調整した。ギャップを調整し最終的な負極合剤層の厚みは101μmにした。初回の圧延率が最も大きく78%であった。
<電池の作製>
上記で作製した負極合剤シートを用い、その他は、実施例5と同様にして、リチウムイオン二次電池を作製した。
(比較例4)
表2に示すPTFEを用い、その他は比較例3と同様にして、リチウムイオン二次電池を得た。
(参考例1)
<SiO負極の作製方法 スラリー>
負極活物質として人造黒鉛粉末を25.65g、SiOを2.85g、結着剤としてポリアクリル酸2.0g、溶媒としてN-メチルピロリドン(NMP)20gをミキサーにて混合してSiO負極合剤スラリーを準備した。厚さ20μmの銅箔に均一に塗布、乾燥(110℃、30分)した後、プレス機により圧縮形成して、集電体と一体となった負極シートを作製した。電極合剤層の厚みは95μmであった。
<電池の作製>
上記で作製した負極シートを用い、その他は、実施例5と同様にして、リチウムイオン二次電池を作製した。
各試験は以下の方法で行った。
[含有水分量測定]
粉末状のPTFEは真空乾燥機にて50℃、1時間乾燥して用いた。真空乾燥後のPTFEの水分量は、ボートタイプ水分気化装置を有するカールフィッシャー水分計(ADP-511/MKC-510N 京都電子工業(株)製)を使用し、水分気化装置で210℃に加熱して、気化させた水分を測定した。キャリアガスとして、窒素ガスを流量200mL/minで流し、測定時間を30分とした。また、カールフィッシャー試薬としてケムアクアを使用した。サンプル量は1.5gとした。
[PTFEのフィブリル径(中央値)(nm)]
(1)走査型電子顕微鏡(S-4800型 日立製作所製)を用いて、電極合剤シートの拡大写真(7000倍)を撮影し画像を得る。
(2)この画像に水平方向に等間隔で2本の線を引き、画像を三等分する。
(3)上方の直線上にある全てのPTFE繊維について、PTFE繊維1本あたり3箇所の直径を測定し、平均した値を当該PTFE繊維の直径とする。測定する3箇所は、PTFE繊維と直線との交点、交点からそれぞれ上下0.5μmずつずらした場所を選択する。(未繊維化のPTFE一次粒子は除く)。
(4)上記(3)の作業を、下方の直線上にある全てのPTFE繊維に対して行う。
(5)1枚目の画像を起点に画面右方向に1mm移動し、再度撮影を行い、上記(3)及び(4)によりPTFE繊維の直径を測定する。これを繰り返し、測定した繊維数が80本を超えた時点で終了とする。
(6)上記測定した全てのPTFE繊維の直径の中央値をフィブリル径の大きさとした。
参考として、実施例5において使用した電極合剤シートの断面の状態を示す走査電子顕微鏡写真を図1に示す。
[強度測定]
引張試験機(島津製作所社製 オートグラフAGS-Xシリーズ AGS-100NX)を使用して、100mm/分の条件下、4mm幅の短冊状の電極合剤試験片にて測定した。チャック間距離は30mmとした。破断するまで変位を与え、測定した結果の最大応力を各サンプルの強度とした。表2では比較例1を100%として、表3では比較例3を100%として規格した。
[柔軟性]
作製した電極合剤シートを切り出し、2cm×10cmの試験片を作製した。直径4mmサイズの丸棒に巻き付けて、電極合剤シートを目視で確認し、以下の基準で評価した。 
〇:ひび割れが観察されなかった。
△:ひび割れが観察されたが、破断は観察されなかった。
×:破断していた。 
<電池試験>
[初期放電容量試験]
上記で製造したリチウムイオン二次電池を、板で挟み加圧した状態で、25℃において、1Cに相当する電流で4.2Vまで定電流-定電圧充電(以下、CC/CV充電と表記する。)(0.1Cカット)した後、1Cの定電流で3Vまで放電し、これを1サイクルとして、3サイクル目の放電容量から初期放電容量を求めた。表2では比較例1を100%として、表3では比較例3を100%として規格した。
[60℃2W保存試験及びガス発生量の測定]
上記で製造したリチウムイオン二次電池を、板で挟み加圧した状態で、1Cに相当する電流で4.2VまでCC/CV充電(0.1Cカット)した後、アルキメデス法により電池の体積を測定し、これを保存前体積とする。次に、60℃設定の恒温槽へ上記充電が完了した電池を投入し、2週間保持する。その後、恒温槽からそれらの電池を取り出し、常温で2時間放置した後、アルキメデス法により体積を測定し、これを保存後体積とする。保存後の体積と保存前の体積の差を求め、これをガス発生量(ml)とし表2では比較例1を100%として、表3では比較例3を100%として規格した。
(保存後体積)-(保存前体積)=ガス発生量(ml)
[抵抗の評価]
25℃における10サイクル後の放電容量の評価が終了した電池を、25℃にて、1Cの定電流で初期放電容量の半分の容量となるよう充電した。これを25℃において、10mVの交流電圧振幅を印加することで電池のインピーダンスを測定し、0.1Hzの実軸抵抗を求めた。 表2では比較例1を100%として、表3では比較例3を100%として規格した。
試験結果を、表2、3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
表2、3の結果から、実施例の電極合剤シートは、柔軟性に優れ、二次電池の物性も良好であった。
本開示の二次電池用電極合剤は、リチウムイオン二次電池の製造に使用することができる。

 

Claims (14)

  1. 電極活物質及び結着剤を含有する二次電池用電極合剤であって、
    結着剤は、ポリテトラフルオロエチレン樹脂であり、
    ポリテトラルオロエチレン樹脂は、フィブリル径(中央値)が70nm以下の繊維状構造を有することを特徴とする二次電池用電極合剤。
  2. リチウムイオン二次電池用である請求項1記載の二次電池用電極合剤。
  3. 電極活物質及び結着剤を含有する原料組成物を使用して得られた請求項1又は2記載の二次電池用電極合剤であって、
    原料組成物は、結着剤が粉末状のポリテトラフルオロエチレン樹脂である二次電池用電極合剤。
  4. 原料組成物は、実質的に液体媒体を含有しない請求項3記載の二次電池用電極合剤。
  5. 粉末状のポリテトラフルオロエチレン樹脂は、水分含有量が500ppm以下である請求項3又は4記載の二次電池用電極合剤。
  6. 粉末状のポリテトラフルオロエチレン樹脂は、標準比重が2.11~2.20である請求項3,4又は5記載の二次電池用電極合剤。
  7. 粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が500μm以上のポリテトラフルオロエチレン樹脂を50質量%以上含む請求項3,4,5又は6記載の二次電池用電極合剤。
  8. 粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が500μm以上のポリテトラフルオロエチレン樹脂を80質量%以上含む請求項3,4,5又は6記載の二次電池用電極合剤。
  9. 請求項1~8いずれか1項に記載の二次電池用電極合剤を含む二次電池用電極合剤シート。
  10. 負極用であり、電極活物質は、ケイ素を構成元素に含む請求項9に記載の二次電池用電極合剤シート。
  11. 正極用であり、密度が3.0g/cc以上である請求項9に記載の二次電池用電極合剤シート。
  12. 負極用であり、密度が1.3g/cc以上である請求項9又は10のいずれかに記載の二次電池用電極合剤シート。
  13. 電極活物質及び結着剤を含む原料組成物を混合しながら、剪断力を付与する工程(1)
    前記工程(1)によって得られた電極合剤をバルク状に成形する工程(2)及び
    前記工程(2)によって得られたバルク状の電極合剤をシート状に圧延する工程(3)
    を有する二次電池用電極合剤シートの製造方法であって、結着剤は、粉末状のポリテトラフルオロエチレン樹脂であることを特徴とする二次電池用電極合剤シートの製造方法。
  14. 請求項9~12のいずれかに記載の二次電池用電極合剤シートを有する二次電池。

     
     
PCT/JP2021/031851 2020-09-01 2021-08-31 二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池 WO2022050251A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180055681.XA CN116018695A (zh) 2020-09-01 2021-08-31 二次电池用电极合剂、二次电池用电极合剂片及其制造方法以及二次电池
KR1020237010805A KR20230058152A (ko) 2020-09-01 2021-08-31 이차 전지용 전극 합제, 이차 전지용 전극 합제 시트 및 그 제조 방법 그리고 이차 전지
EP21864309.6A EP4210127A1 (en) 2020-09-01 2021-08-31 Electrode mixture for secondary batteries, electrode mixture sheet for secondary batteries, method of production for same, and secondary battery
JP2022546325A JP7560764B2 (ja) 2020-09-01 2021-08-31 二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池
US18/176,102 US20230207821A1 (en) 2020-09-01 2023-02-28 Secondary battery electrode mixture, secondary battery electrode mixture sheet and production method thereof, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020146852 2020-09-01
JP2020-146852 2020-09-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/176,102 Continuation US20230207821A1 (en) 2020-09-01 2023-02-28 Secondary battery electrode mixture, secondary battery electrode mixture sheet and production method thereof, and secondary battery

Publications (1)

Publication Number Publication Date
WO2022050251A1 true WO2022050251A1 (ja) 2022-03-10

Family

ID=80490975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031851 WO2022050251A1 (ja) 2020-09-01 2021-08-31 二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池

Country Status (7)

Country Link
US (1) US20230207821A1 (ja)
EP (1) EP4210127A1 (ja)
JP (1) JP7560764B2 (ja)
KR (1) KR20230058152A (ja)
CN (1) CN116018695A (ja)
TW (1) TW202224243A (ja)
WO (1) WO2022050251A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119814A1 (ja) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 電極、非水電解質二次電池、および電極の製造方法
WO2023167300A1 (ja) * 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023167299A1 (ja) * 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023182030A1 (ja) * 2022-03-24 2023-09-28 パナソニックIpマネジメント株式会社 電極、非水電解質二次電池、および電極の製造方法
WO2023223064A1 (ja) * 2022-05-19 2023-11-23 日産自動車株式会社 全固体電池
WO2024034674A1 (ja) * 2022-08-10 2024-02-15 ダイキン工業株式会社 電気化学デバイス用バインダー用ポリテトラフルオロエチレン、電気化学デバイス用バインダー、電極合剤、電極、及び、二次電池
WO2024154808A1 (ja) * 2023-01-18 2024-07-25 ダイキン工業株式会社 テトラフルオロエチレン系ポリマー、電気化学デバイス用バインダー、電極合剤、電極、及び、二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094331A (ja) * 2010-10-26 2012-05-17 Asahi Glass Co Ltd 蓄電素子用電極の製造方法、蓄電素子用電極および蓄電素子
WO2012063622A1 (ja) 2010-11-10 2012-05-18 ダイキン工業株式会社 電気二重層キャパシタ用電解液
WO2012086710A1 (ja) 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
JP2015015153A (ja) * 2013-07-04 2015-01-22 積水化学工業株式会社 電極材、マグネシウム燃料電池、及び電極材の製造方法
JP2015508220A (ja) * 2012-02-28 2015-03-16 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ リチウム含有電池用カソード及びその無溶媒製造方法
WO2015080291A1 (ja) 2013-11-29 2015-06-04 ダイキン工業株式会社 二軸延伸多孔質膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0735093B1 (en) 1994-10-19 2001-03-21 Daikin Industries, Ltd. Binder for cell and composition for electrode and cell prepared therefrom
JP5636681B2 (ja) 2010-01-22 2014-12-10 ダイキン工業株式会社 リチウム二次電池の電極用バインダー組成物
KR101277996B1 (ko) 2010-06-30 2013-06-27 다이킨 고교 가부시키가이샤 전극용 바인더 조성물
EP4016666A1 (en) 2014-04-18 2022-06-22 Tesla, Inc. Dry energy storage device electrode and methods of making the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094331A (ja) * 2010-10-26 2012-05-17 Asahi Glass Co Ltd 蓄電素子用電極の製造方法、蓄電素子用電極および蓄電素子
WO2012063622A1 (ja) 2010-11-10 2012-05-18 ダイキン工業株式会社 電気二重層キャパシタ用電解液
WO2012086710A1 (ja) 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
JP2015508220A (ja) * 2012-02-28 2015-03-16 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ リチウム含有電池用カソード及びその無溶媒製造方法
JP2015015153A (ja) * 2013-07-04 2015-01-22 積水化学工業株式会社 電極材、マグネシウム燃料電池、及び電極材の製造方法
WO2015080291A1 (ja) 2013-11-29 2015-06-04 ダイキン工業株式会社 二軸延伸多孔質膜

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023119814A1 (ja) * 2021-12-23 2023-06-29 パナソニックIpマネジメント株式会社 電極、非水電解質二次電池、および電極の製造方法
WO2023167300A1 (ja) * 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023167299A1 (ja) * 2022-03-02 2023-09-07 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP2023129370A (ja) * 2022-03-02 2023-09-14 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP2023129369A (ja) * 2022-03-02 2023-09-14 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7485999B2 (ja) 2022-03-02 2024-05-17 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7485998B2 (ja) 2022-03-02 2024-05-17 ダイキン工業株式会社 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
WO2023182030A1 (ja) * 2022-03-24 2023-09-28 パナソニックIpマネジメント株式会社 電極、非水電解質二次電池、および電極の製造方法
WO2023223064A1 (ja) * 2022-05-19 2023-11-23 日産自動車株式会社 全固体電池
WO2024034674A1 (ja) * 2022-08-10 2024-02-15 ダイキン工業株式会社 電気化学デバイス用バインダー用ポリテトラフルオロエチレン、電気化学デバイス用バインダー、電極合剤、電極、及び、二次電池
WO2024154808A1 (ja) * 2023-01-18 2024-07-25 ダイキン工業株式会社 テトラフルオロエチレン系ポリマー、電気化学デバイス用バインダー、電極合剤、電極、及び、二次電池

Also Published As

Publication number Publication date
US20230207821A1 (en) 2023-06-29
TW202224243A (zh) 2022-06-16
EP4210127A1 (en) 2023-07-12
CN116018695A (zh) 2023-04-25
JPWO2022050251A1 (ja) 2022-03-10
KR20230058152A (ko) 2023-05-02
JP7560764B2 (ja) 2024-10-03

Similar Documents

Publication Publication Date Title
WO2022050251A1 (ja) 二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池
WO2022138942A1 (ja) 固体二次電池用シートの製造方法及び固体二次電池用結着剤
JP7269511B2 (ja) 非水系電解液を使用する二次電池用電極の製造方法及び非水系電解液を使用する二次電池電極用結着剤
WO2022050252A1 (ja) 全固体二次電池用合剤、全固体二次電池用合剤シート及びその製造方法並びに全固体二次電池
JP7350049B2 (ja) 単層カーボンナノチューブとptfeとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池
JP7477784B2 (ja) 非水系電解液を使用する二次電池用電極の製造方法、非水系電解液を使用する二次電池電極用結着剤、二次電池電極用結着剤、電極作製用組成物、電極合剤及び電極
JP7364973B2 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7486006B2 (ja) 固体二次電池用シートの製造方法、固体二次電池電極用結着剤、電極作製用組成物、電極合剤、及び、電極
JP2023129370A (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
CN118786545A (en) Mixture for secondary battery, mixture sheet for secondary battery, method for producing same, and secondary battery
CN118805274A (en) Mixture for secondary battery, mixture sheet for secondary battery, method for producing same, and secondary battery
JP2023129369A (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
CN118786547A (en) Mixture for secondary battery, mixture sheet for secondary battery, method for producing same, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864309

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546325

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237010805

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202337023095

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021864309

Country of ref document: EP

Effective date: 20230403