JP7350049B2 - 単層カーボンナノチューブとptfeとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池 - Google Patents

単層カーボンナノチューブとptfeとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池 Download PDF

Info

Publication number
JP7350049B2
JP7350049B2 JP2021210533A JP2021210533A JP7350049B2 JP 7350049 B2 JP7350049 B2 JP 7350049B2 JP 2021210533 A JP2021210533 A JP 2021210533A JP 2021210533 A JP2021210533 A JP 2021210533A JP 7350049 B2 JP7350049 B2 JP 7350049B2
Authority
JP
Japan
Prior art keywords
secondary battery
ion secondary
lithium ion
electrode
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021210533A
Other languages
English (en)
Other versions
JP2022103140A (ja
Inventor
花英 藤原
貴哉 山田
千紘 篠田
純平 寺田
雅彦 山田
穣輝 山崎
ミハイル ルドルフォビッチ プレデチェンスキー
オレグ フィリポヴィッチ ボブレノック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
MCD Technologies SARL
Original Assignee
Daikin Industries Ltd
MCD Technologies SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, MCD Technologies SARL filed Critical Daikin Industries Ltd
Publication of JP2022103140A publication Critical patent/JP2022103140A/ja
Application granted granted Critical
Publication of JP7350049B2 publication Critical patent/JP7350049B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2203Oxides; Hydroxides of metals of lithium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2262Oxides; Hydroxides of metals of manganese
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2289Oxides; Hydroxides of metals of cobalt
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2293Oxides; Hydroxides of metals of nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本開示は、単層カーボンナノチューブとPTFEとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池に関する。
フィブリル化したポリテトラフルオロエチレン(PTFE)を、非水電解液を含むリチウムイオン電池の電極における結着剤として使用することが検討されている。(特許文献1)。
また、導電性素材として、単層カーボンナノチューブを負極に使用することが検討されている(特許文献2)。
また、噴霧乾燥によって 導電性素材をPTFEと混合した均一混合粉末を得ることも開示されている(特許文献3~5)。
特表2017-517862号公報 国際公開第2018/146865号 特開平6-316784号公報 特開2008-140809号公報 国際公開第2020/170797号
本開示は、電池性能を向上させ得る結着剤を提供することを目的とする。
また、本開示は、PTFEを使用する電極において、電極の低抵抗化及び高強度化を図ることができるような結着剤を提供することを目的とする。
本開示は、ポリテトラフルオロエチレン樹脂と単層カーボンナノチューブとを含有する混合粉末からなり、上記ポリテトラフルオロエチレン樹脂と単層カーボンナノチューブとの重量比が、99.9:0.1~80:20であるリチウムイオン二次電池用結着剤である。
上記PTFEは、標準比重が2.11~2.20であることが好ましい。
上記単層カーボンナノチューブの平均繊維長が、100μm未満であることが好ましい。
上記単層カーボンナノチューブの平均外径が、2.5nm以下であることが好ましい。
上記単層カーボンナノチューブのG/D比が、2以上であることが好ましい。
上記リチウムイオン二次電池用結着剤は、水分含有量が1000ppm以下であることが好ましい。
上記リチウムイオン二次電池用結着剤は、元素分析により測定される炭素に対するフッ素の元素比(F/C比)が0.40以上3.00以下であることが好ましい。
本開示は、上記リチウムイオン二次電池用結着剤と電極活物質とを含有し、液体媒体を実質的に含有しない粉末形状であるリチウムイオン二次電池用電極作製用組成物でもある。
上記電極活物質が正極活物質であることが好ましい。
本開示は、上記リチウムイオン二次電池用電極作製用組成物からなるリチウムイオン二次電池用電極合剤でもある。
本開示は、上記リチウムイオン二次電池用電極合剤を用いたリチウムイオン二次電池用電極でもある。
上記リチウムイオン二次電池用電極は、フィブリル径(中央値)が20nm以上の繊維状構造であるポリテトラフルオロエチレン樹脂を有することが好ましい。
本開示は、上記リチウムイオン二次電池用電極を有するリチウムイオン二次電池でもある
本開示は、ポリテトラフルオロエチレン樹脂と単層カーボンナノチューブとを含有する混合粉末からなり、上記ポリテトラフルオロエチレン樹脂と単層カーボンナノチューブとの重量比が、99.9:0.1~80:20であるリチウムイオン二次電池用結着剤の製造方法であって、分散溶媒に水を用いて、PTFE分散液と単層カーボンナノチューブ分散液とを均一混合した後に乾燥させて、混合粉末とするリチウムイオン二次電池用結着剤の製造方法でもある。
上記乾燥方法が噴霧乾燥であることが好ましい。
本開示は、上記リチウムイオン二次電池用結着剤を用い、電極活物質粉末と混合して、液体媒体を実質的に含有しない粉末形状であるリチウムイオン二次電池用電極作製用組成物を調製し、得られたリチウムイオン二次電池用電極作製用組成物を使用し、粉末形状であるリチウムイオン二次電池用電極作製用組成物に対して剪断応力を与えることによってシート化する、リチウムイオン二次電池用電極の製造方法でもある。
前記シート化が、溶剤含有量がリチウムイオン二次電池用電極作製用組成物に対して10質量%以下にて行われることが好ましい。
本開示においては、電池性能を向上させ得る結着剤を提供することができる。
また、本開示においては、PTFEを使用する電極において、電極の電気抵抗値を低くし、強度を上げることができるような結着剤を提供することができる。
以下、本開示を詳細に説明する。
本開示の結着剤は、ポリテトラフルオロエチレン樹脂(PTFE)と単層カーボンナノチューブとを含有する混合粉末からなる。
粉末状態のPTFEにせん断応力を与えると、容易にフィブリル化することが知られている。このようなフィブリル化する性質を利用して、PTFEを結着剤として使用することができる。すなわち、フィブリル化したPTFEがその他の粉末成分等に絡みつくことで、粉末成分を結着させ、これによって、PTFEは粉末成分を成形する際のバインダーとして作用することができる。
従来の二次電池用電極合剤においては、ポリビニリデンフルオライド(PVdF)等の溶媒に溶解する樹脂を結着剤として使用し、電極合剤成分である粉末を分散させたスラリー等を調製し、これを含有するスラリーの塗布・乾燥によって、電極合剤を作成する方法が一般的であった。また、PTFEを用いる場合でも、PTFEディスパージョンを用いて電極合剤を作成する方法が一般的であった。
しかし、PVdFスラリーやPTFEディスパージョンを用いると、乾燥工程が必要なため、コスト・時間がかかる。また、溶媒もしくは水を使うため、電極への水分の混入が考えられ、電池性能が低下してしまうことがある。更に、従来一般に使用されてきたバインダー樹脂であるPVdFを溶解することができる溶媒は、N-メチルピロリドン等の特定の溶媒に限定される。このため、高価な溶剤の使用が必要となり、コストアップの原因となってしまう。
本開示の結着剤は、PTFEと単層カーボンナノチューブとを含有する混合粉末からなり、電極合剤原料として、PTFEディスパージョンではなく、PTFE粉末を使用することにより、電極合剤中に原料由来の水分が少なく、水分の混在による問題を生じることがなく、これによって、水分と活物質の接触が減ることで電池性能を向上させることができるという利点がある。
また、単層カーボンナノチューブを用いることで電極の低抵抗化や高強度化が期待されるが、乾式電極とする場合に、PTFEと単層カーボンナノチューブとをそれぞれ粉末として混合しただけでは、単層カーボンナノチューブの分散性が余り良くなく、均一に分散せず、偏在することとなるために、低抵抗化や高強度化の効果が得られないことがある。このため、PTFE及び単層カーボンナノチューブを、液体媒体中で均一に混合して粉末化することで、混合粉末を製造し、これを電極合剤に使用することが好ましい。
本開示は、ポリテトラフルオロエチレン樹脂及び単層カーボンナノチューブが混合された粉末である結着剤を用いることを特徴とする。
以下に、このような結着剤及び結着剤に配合される成分について詳述する。
(ポリテトラフルオロエチレン樹脂(PTFE))
本開示において、上記PTFEとしては特に限定されず、ホモポリマーであってもよいし、フィブリル化させることのできる共重合体であってもよいが、ホモポリマーがより好ましい。
共重合体の場合、コモノマーであるフッ素原子含有モノマーとしては、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルエチレン、パーフルオロアルキルエチレン、フルオロアルキル・フルオロビニルエーテル等を挙げることができる。
本開示に使用するPTFEは、標準比重が2.11~2.20であることが好ましい。標準比重が当該範囲内のものであることによって、強度の高い電極合剤シートを作製できるという点で利点を有する。上記標準比重の下限は、2.12以上であることがより好ましい。上記標準比重の上限は、2.19以下であることがより好ましく、2.18以下であることが更に好ましい。
標準比重〔SSG〕は、ASTM D-4895-89に準拠して試料を作製し、得られた試料の比重を水置換法によって測定する。
本開示に使用するPTFEは、コアシェル構造を有していてもよい。コアシェル構造を有するPTFEとしては、例えば、粒子中に高分子量のポリテトラフルオロエチレンのコアと、より低分子量のポリテトラフルオロエチレンまたは変性ポリテトラフルオロエチレンのシェルとを含むポリテトラフルオロエチレンが挙げられる。このようなポリテトラフルオロエチレンとしては、例えば、特表2005-527652号公報に記載されるポリテトラフルオロエチレン等が挙げられる。
上述したような各パラメータを満たす粉末形状のPTFEは、従来の製造方法により得ることができる。例えば、国際公開第2015-080291号や国際公開第2012-086710号等に記載された製造方法に倣って製造すればよい。
(導電助剤)
本開示の結着剤は、導電助剤として単層カーボンナノチューブを含有する。単層カーボンナノチューブ(SWCNT)は、一次元材料として知られる特別な種類の炭素材料である。単層カーボンナノチューブはグラフェンのシートからなり、1原子分の厚さの壁を有する中空の管を形成するように巻かれている。そのような化学構造および大きさを有することにより、単層カーボンナノチューブは優れた機械的、電気的、熱的および光学的特性を示す。
本開示の結着剤は、単層カーボンナノチューブを含有することから、本開示の結着剤を用いて電極合剤を調製することによって、低抵抗の電極合剤を形成することができる。したがって、従来の電極合剤と同じ抵抗を有する電極合剤を形成する場合には、アセチレンブラックや多層カーボンナノチューブなどの導電助剤の総量を減少させ、活物質量を増加させることができるので、エネルギー密度の高い電気化学デバイスを実現することができる。
更に、単層カーボンナノチューブを含有する結着剤を用いて電極合剤を調製することによって、電極の高強度化を図ることができる。
単層カーボンナノチューブの平均外径は、2.5nm以下であることが好ましい。より好ましくは1.0~2.5nmであり、更に好ましくは1.1~2.0nmであり、特に好ましくは1. 2~1.8nmである。単層カーボンナノチューブの平均外径は、紫外可視近赤外分光法(UV-Vis-NIR)により得られた単層カーボンナノチ ューブの光吸収スペクトル、ラマンスペクトル、または透過型電子顕微鏡(TEM)画像から求めることができる。
単層カーボンナノチューブの平均繊維長は、100μm未満であることが好ましい。より好ましくは0.1~50μmであり、更に好ましくは0.5~20μmであり、特に好ましくは1~10μmである。単層カーボンナノチューブの平均繊維長は、原子間力顕微鏡(AFM)を用いて、単層カーボンナノチューブのAFM像を得て、又は透過型電子顕微鏡(TEM)を用いて、単層カーボンナノチューブのTEM画像を得て、各単層カーボンナノチューブの長さを測定し、長さの合計値を、測定した単層カーボンナノチューブの個数で除することにより求めることができる。
単層カーボンナノチューブのラマン分光分析(波長532nm)によって測定されるG/D比は、2以上であることが好ましい。より好ましくは2~250であり、更に好ましくは5~250であり、特に好ましくは10~220であり、最も好ましくは40~180である。G/D比とは、単層カーボンナノチューブのラマンスペクトルのGバンドとDバンドとの強度比(G/D)である。単層カーボンナノチューブのG/D比が高いほど、単層カーボンナノチューブの結晶性が高く、不純物カーボンや欠陥のあるカーボンナノチューブが少ないことを意味する。
上記導電助剤とポリテトラフルオロエチレン樹脂を混合させる際、必要に応じて添加される材料としては、導電材、分散剤、増粘剤等が挙げられる。例えば、増粘剤としては、カルボキシメチルセルロース(CMC)やメチルセルロース(MC)等のセルロース類を好適に用いることができる。
これらの、導電助剤及びPTFE以外の成分を使用する場合、このような成分の配合量は、結着剤全量に対して、5.0質量%以下の割合であることが好ましい。上記その他の成分を、5.0質量%を超えて配合すると、本発明の目的を充分に達成できない場合がある。
(結着剤)
本開示の結着剤は、ポリテトラフルオロエチレン樹脂及び単層カーボンナノチューブを含有する混合粉末からなる。
上記混合粉末は、ポリテトラフルオロエチレン樹脂及び単層カーボンナノチューブが均一混合された組成物が粉末形状となったものであることが特に好適である。なお、「均一混合」と記載しているが、粉末粒子において、実質的に偏在が少ない状態でポリテトラフルオロエチレン樹脂及び単層カーボンナノチューブが混在していればよい。
なお、上記混合粉末として、PTFEと単層カーボンナノチューブとをそれぞれ粉末として混合したものを用いるようにしてもよい。
上記結着剤は、PTFE及び単層カーボンナノチューブを重量比で、99.9:0.1~50:50の割合で含有することが好ましい。上記混合割合において、好ましくは99.5:0.5~80:20であり、より好ましくは99:1~90:10である。
上記結着剤の製造方法は特に限定されず、任意の方法で製造することができるが、なかでも、ポリテトラフルオロエチレン樹脂と単層カーボンナノチューブとを液体媒体の存在下で混合させる工程(A)を有する製造方法によって製造されたものであることが好ましい。この場合、ポリテトラフルオロエチレン樹脂の液体分散体中に粉末である単層カーボンナノチューブを添加して混合する方法、ポリテトラフルオロエチレン樹脂の液体分散体と単層カーボンナノチューブの液体分散体とを混合する方法等を挙げることができる。
上記工程(A)においては、ポリテトラフルオロエチレン樹脂、単層カーボンナノチューブ及び液体媒体を必須とする分散体を使用する。このような分散体は、ポリテトラフルオロエチレン樹脂及び単層カーボンナノチューブの合計量が、ポリテトラフルオロエチレン樹脂、単層カーボンナノチューブ及び液体媒体の合計量に対して、1~60重量%であることが好ましい。上記下限は、2重量%であることがより好ましく、3重量%であることが更に好ましい。上記上限は、50重量%であることがより好ましく、30重量%であることが更に好ましい。
液体媒体中でこれらを混合することで、高い均一性でポリテトラフルオロエチレン樹脂と単層カーボンナノチューブとを混合できる点で好ましい。このような混合における液体媒体は、水であることが好ましい。
この場合、原料として使用するPTFEは、乳化重合によって得られた水分散体を使用することが好ましい。
特に、分散溶媒に水を用いて、PTFE分散液と単層カーボンナノチューブ分散液とを均一混合した後に乾燥させて、混合粉末とする結着剤の製造方法が好適である。
上記結着剤の原料として使用される上記PTFEは、より高強度でかつ均質性に優れる電極合剤シートが得られることから、平均一次粒子径が150nm以上であることが好ましい。より好ましくは、180nm以上であり、更に好ましくは210nm以上であり、特に好ましくは220nm以上である。
PTFEの平均一次粒子径が大きいほど、その粉末を用いて押出成形をする際に、押出圧力の上昇を抑えられ、成形性にも優れる。上限は特に限定されないが500nmであってよい。重合工程における生産性の観点からは、上限は350nmであることが好ましい。
上記平均一次粒子径は、重合により得られたPTFEの水性分散液を用い、ポリマー濃度を0.22質量%に調整した水性分散液の単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決定された平均一次粒子径との検量線を作成し、測定対象である水性分散液について、上記透過率を測定し、上記検量線を基に決定できる。
上記工程(A)によって液体媒体中で混合したポリテトラフルオロエチレン樹脂と単層カーボンナノチューブの混合物は、次いで、噴霧乾燥によって乾燥すること(工程(B))で、液体媒体を除去したものであることが好ましい。噴霧乾燥は、液体及び固体の混合物を気体中に噴霧して急速に乾燥させ、乾燥粉末を製造する手法である。これによって、PTFEと単層カーボンナノチューブが均一に混合した粉末状態の結着剤を得ることができる。噴霧乾燥は、一般的に広く知られた手法であり、公知の任意の装置によって、一般的な手法で行うことができる。上記工程(B)は、公知の一般的な装置を利用した一般的な方法で行うことができる。
また、上記工程(A)によって液体媒体中で混合したポリテトラフルオロエチレン樹脂と単層カーボンナノチューブの混合物は、濾過により、液体媒体を除去した後、濾過物を乾燥することにより、混合粉末を得るようにしても良い。濾過・乾燥は、一般的に広く知られた手法であり、公知の任意の装置によって、一般的な手法で行うことができる。
本開示の結着剤は、水分含有量が1000ppm以下であることが好ましい。
水分含有量が1000ppm以下であることによって、初期特性としてガス発生の少ない二次電池を作製できるという点で好ましい。
上記水分含有量は、500ppm以下であることが更に好ましい。
[含有水分量測定]
粉末のPTFEの水分量は、ボートタイプ水分気化装置を有するカールフィッシャー水分計(ADP-511/MKC-510N 京都電子工業(株)製)を使用し、水分気化装置で210℃に加熱して、気化させた水分を測定した。キャリアガスとして、窒素ガスを流量200mL/minで流し、測定時間を30minとした。また、カールフィッシャー試薬としてケムアクアを使用した。サンプル量は1.5gとした。
[炭素に対するフッ素の元素比(F/C比)]
本開示の結着剤は、炭素に対するフッ素の元素比(F/C比)が0.40以上3.00以下であることが好ましく、0.50以上2.50以下であることがより好ましい。このような範囲内にあることで、強度が高く、電極抵抗が低い電極を製造できるという点で好ましい。なお、元素分析は通常の一般的な方法で測定された値である。具体的にはF/C比は、例えば、MICRO CORDER JM10(J Science Lab社製)を使用し、サンプル量は2mg、燃焼炉950℃、還元炉550℃、ヘリウム流量200mL/min、酸素流量15~25mL/minの条件でCHN同時測定を行い、4回測定した値の平均値から求めることができる。
F/C比 = 平均F(wt%)/平均C(wt%)
(電極作製用組成物)
電極作製用組成物は、電極合剤において必須とされる成分をすべて含有した組成物を意味する。すなわち、上述した結着剤に対して、電極活物質等のその他の電極合剤成分を混合した状態の組成物を意味する。本開示においては、上述した結着剤及び電極活物質を含有し、実質的に液体媒体の使用量を低減させるか全く使用せず、また、スラリーを調製せず、粉体である電極作製用組成物に対して、後述するように、剪断応力を与えることによって電極合剤又は電極合剤シートを製造する方法が好ましい。
上記電極作製用組成物は、実質的に液体媒体を含有しないことが好ましい。このように、本開示の電極作製用組成物は、製造において溶媒を使用しないという利点を有する。
また、電極活物質を、事前にPTFEと単層カーボンナノチューブと均一に混合し、粉末状にしようとすると、単層カーボンナノチューブの分散性が悪く、均一に分散せず、偏在することとなるために、低抵抗化や高強度化の効果が得られないという問題を生じる場合がある。このため、本開示においては、電極活物質を含有せず、ポリテトラフルオロエチレン樹脂及び単層カーボンナノチューブが均一混合された組成物が粉末形状となった混合粉末を結着剤とすることで、特に良好な結果を得ることができる。
(電極活物質)
上記電極活物質のうち、正極活物質としては、電気化学的にアルカリ金属イオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、アルカリ金属と少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、アルカリ金属含有遷移金属複合酸化物、アルカリ金属含有遷移金属リン酸化合物、導電性高分子等が挙げられる。
なかでも、正極活物質としては、特に、高電圧を産み出すアルカリ金属含有遷移金属複合酸化物が好ましい。上記アルカリ金属イオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等が挙げられる。好ましい態様において、アルカリ金属イオンは、リチウムイオンであり得る。即ち、この態様において、アルカリ金属イオン二次電池は、リチウムイオン二次電池である。
上記アルカリ金属含有遷移金属複合酸化物としては、例えば、
式:MMn2-b
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるアルカリ金属・マンガンスピネル複合酸化物、
式:MNi1-ccO
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるアルカリ金属・ニッケル複合酸化物、または、
式:MCo1-d
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)
で表されるアルカリ金属・コバルト複合酸化物が挙げられる。上記において、Mは、好ましくは、Li、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaであり、さらに好ましくはLiである。
なかでも、エネルギー密度が高く、高出力な二次電池を提供できる点から、MCoO、MMnO、MNiO、MMn、MNi0.8Co0.15Al0.05、またはMNi1/3Co1/3Mn1/3等が好ましく、下記一般式(3)で表される化合物であることが好ましい。
MNiCoMn (3)
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、MはFe、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeからなる群より選択される少なくとも1種を示し、(h+i+j+k)=1.0、0≦h≦1.0、0≦i≦1.0、0≦j≦1.5、0≦k≦0.2である。)
上記アルカリ金属含有遷移金属リン酸化合物としては、例えば、下記式(4)
(PO (4)
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、MはV、Ti、Cr、Mn、Fe、Co、Ni及びCuからなる群より選択される少なくとも1種を示し、0.5≦e≦3、1≦f≦2、1≦g≦3)で表される化合物が挙げられる。上記において、Mは、好ましくは、Li、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaであり、さらに好ましくはLiである。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の元素で置換したもの等が挙げられる。
上記リチウム含有遷移金属リン酸化合物としては、オリビン型構造を有するものが好ましい。
その他の正極活物質としては、MFePO、MNi0.8Co0.2、M1.2Fe0.4Mn0.4、MNi0.5Mn1.5、MV、MMnO(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属である。)等が挙げられる。特に、MMnO、MNi0.5Mn1.5等の正極活物質は、4.4Vを超える電圧や、4.6V以上の電圧で二次電池を作動させた場合であって、結晶構造が崩壊しない点で好ましい。従って、上記に例示した正極活物質を含む正極材を用いた二次電池等の電気化学デバイスは、高温で保管した場合でも、残存容量が低下しにくく、抵抗増加率も変化しにくい上、高電圧で作動させても電池性能が劣化しないことから、好ましい。
その他の正極活物質として、MMnOとMM(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体材料等も挙げられる。
上記固溶体材料としては、例えば、一般式Mx[Mn(1-y) ]Oで表わされるアルカリ金属マンガン酸化物である。ここで式中のMは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、Mは、M及びMn以外の少なくとも一種の金属元素からなり、例えば、Co,Ni,Fe,Ti,Mo,W,Cr,ZrおよびSnからなる群から選択される一種または二種以上の元素を含んでいる。また、式中のx、y、zの値は、1<x<2、0≦y<1、1.5<z<3の範囲である。中でも、Li1.2Mn0.5Co0.14Ni0.14のようなLiMnOをベースにLiNiOやLiCoOを固溶したマンガン含有固溶体材料は、高エネルギー密度を有するアルカリ金属イオン二次電池を提供できる点から好ましい。
また、正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好ましい。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は上記正極活物質とリン酸リチウムの合計に対し、下限が、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、上限が、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。
上記導電性高分子としては、p-ドーピング型の導電性高分子やn-ドーピング型の導電性高分子が挙げられる。導電性高分子としては、ポリアセチレン系、ポリフェニレン系、複素環ポリマー、イオン性ポリマー、ラダー及びネットワーク状ポリマー等が挙げられる。
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸させ、又は添加した後、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸させ、又は添加した後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、上記正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。その付着量が少なすぎる場合、その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
正極活物質のタップ密度は、好ましくは0.5g/cm以上、より好ましくは0.8g/cm以上、更に好ましくは1.0g/cm以上である。該正極活物質のタップ密度が上記下限を下回ると、正極活物質層形成時に、必要な導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉末を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm以下、より好ましくは3.7g/cm以下、更に好ましくは3.5g/cm以下である。
なお、本開示では、タップ密度は、正極活物質粉末5~10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉末充填密度(タップ密度)g/cmとして求める。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは0.5μm以上、更に好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、また、好ましくは30μm以下、より好ましくは27μm以下、更に好ましくは25μm以下、最も好ましくは22μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたす等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ上記正極活物質を2種類以上混合することで、正極作成時の充填性を更に向上させることができる。
なお、本開示では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、上記正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、更に好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると、球状の二次粒子を形成し難く、粉末充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本開示では、平均一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、好ましくは0.1m/g以上、より好ましくは0.2m/g以上、更に好ましくは0.3m/g以上であり、上限は好ましくは50m/g以下、より好ましくは40m/g以下、更に好ましくは30m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなる問題を生ずる場合がある。
なお、本開示では、BET比表面積は、表面積計(例えば、大倉理研社製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
本開示の二次電池が、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池として使用される場合、高出力が要求されるため、上記正極活物質の粒子は二次粒子が主体となることが好ましい。
上記正極活物質の粒子は、二次粒子の平均粒子径が40μm以下で、かつ、平均一次粒子径が1μm以下の微粒子を、0.5~7.0体積%含むものであることが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより、電解液との接触面積が大きくなり、電極合剤と電解液との間でのリチウムイオンの拡散をより速くすることができ、その結果、電池の出力性能を向上させることができる。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の2種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoOとLiNi0.33Co0.33Mn0.33等の三元系との組み合わせ、LiCoOとLiMn若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiFePOとLiCoO若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせ等が挙げられる。
上記正極活物質の含有量は、電池容量が高い点で、正極合剤中50~99.5質量%が好ましく、80~99質量%がより好ましい。
また、正極活物質の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。正極合剤層中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の強度が不足する場合がある。
負極活物質としては特に限定されず、例えば、リチウム金属、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び、難黒鉛化性炭素等の炭素質材料を含むもの、ケイ素及びケイ素合金等のシリコン含有化合物、LiTi12等から選択されるいずれか、又は2種類以上の混合物等を挙げることができる。なかでも、炭素質材料を少なくとも一部に含むものや、シリコン含有化合物を特に好適に使用することができる。
本開示において用いる負極活物質は、ケイ素を構成元素に含むことが好適である。ケイ素を構成元素に含むものとすることで、高容量な電池を作製することができる。
ケイ素を含む材料としては、ケイ素粒子、ケイ素の微粒子がケイ素系化合物に分散した構造を有する粒子、一般式SiOx(0.5≦x≦1.6)で表される酸化ケイ素粒子、又はこれらの混合物が好ましい。これらを使用することで、より初回充放電効率が高く、高容量でかつサイクル特性に優れたリチウムイオン二次電池用負極合剤が得られる。
本開示における酸化ケイ素とは、非晶質のケイ素酸化物の総称であり、不均化前の酸化ケイ素は、一般式SiOx(0.5≦x≦1.6)で表される。xは0.8≦x<1.6が好ましく、0.8≦x<1.3がより好ましい。この酸化ケイ素は、例えば、二酸化ケイ素と金属ケイ素との混合物を加熱して生成した一酸化ケイ素ガスを冷却・析出して得ることができる。
ケイ素の微粒子がケイ素系化合物に分散した構造を有する粒子は、例えば、ケイ素の微粒子をケイ素系化合物と混合したものを焼成する方法や、一般式SiOxで表される不均化前の酸化ケイ素粒子を、アルゴン等不活性な非酸化性雰囲気中、400℃以上、好適には800~1,100℃の温度で熱処理し、不均化反応を行うことで得ることができる。特に後者の方法で得た材料は、ケイ素の微結晶が均一に分散されるため好適である。上記のような不均化反応により、ケイ素ナノ粒子のサイズを1~100nmとすることができる。なお、ケイ素ナノ粒子が酸化ケイ素中に分散した構造を有する粒子中の酸化ケイ素については、二酸化ケイ素であることが望ましい。なお、透過電子顕微鏡によってシリコンのナノ粒子(結晶)が無定形の酸化ケイ素に分散していることを確認することができる。
ケイ素を含む粒子の物性は、目的とする複合粒子により適宜選定することができる。例えば、平均粒径は0.1~50μmが好ましく、下限は0.2μm以上がより好ましく、0.5μm以上がさらに好ましい。上限は30μm以下がより好ましく、20μm以下がさらに好ましい。なお、本開示における平均粒径とは、レーザー回折法による粒度分布測定における重量平均粒径で表すものである。
ケイ素を含む粒子のBET比表面積は、0.5~100m2/gが好ましく、1~20m2/gがより好ましい。BET比表面積が0.5m2/g以上であれば、電極に塗布した際の接着性が低下して電池特性が低下するおそれがない。また100m2/g以下であれば、粒子表面の二酸化ケイ素の割合が大きくなり、リチウムイオン二次電池用負極材として用いた際に電池容量が低下するおそれがない。
上記ケイ素を含む粒子を炭素被覆することで導電性を付与し、電池特性の向上が見られる。導電性を付与するための方法として、黒鉛等の導電性のある粒子と混合する方法、上記ケイ素を含む粒子の表面を炭素被膜で被覆する方法、及びその両方を組み合わせる方法等が挙げられる。炭素被膜で被覆する方法が好ましく、被覆する方法としては化学蒸着(CVD)する方法がより好ましい。
上記負極活物質の含有量は、得られる電極合剤の容量を増やすために、電極合剤中40質量%以上が好ましく、より好ましくは50質量%以上、特に好ましくは60質量%以上である。また上限は、好ましくは99質量%以下、より好ましくは98質量%以下である。
(その他の成分)
上記電極作製用組成物は、更に、熱可塑性樹脂を含んでいてもよい。熱可塑性樹脂としては、フッ化ビニリデンや、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリエチレンオキシドなどが挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
電極活物質に対する熱可塑性樹脂の割合は、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.10質量%以上であり、また、通常3.0質量%以下、好ましくは2.5質量%以下、より好ましくは2.0質量%以下の範囲である。熱可塑性樹脂を添加することで、電極の機械的強度を向上させることができる。また、この範囲を上回ると、電極合剤に占める電極活物質の割合が低下し、電池の容量が低下する問題や活物質間の抵抗が増大する問題が生じる場合がある。
上記電極作製用組成物は、更に、導電助剤を含んでいてもよい。上記導電助剤としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、ニードルコークス、カーボンナノチューブ、フラーレン、VGCF等の無定形炭素等の炭素材料等が挙げられる。特にアセチレンブラックが好ましい。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。市販のカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、#5500等(東海カーボン社製、ファーネスブラック)、プリンテックスL等(デグサ社製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRA等、Conductex SC ULTRA、Conductex 975ULTRA等、PUER BLACK100、115、205等(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000、LITX-50、LITX-200等(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、Super-P Li(IMERYS社製)、ケッチェンブラックEC-300J、EC-600JD(アクゾ社製)、デンカブラックHS-100、Li-100、FX-35(デンカ株式会社製、アセチレンブラック)等が挙げられる。市販のVGCFとしてはVGCF―H(昭和電工社製)等が挙げられる。市販のカーボンナノチューブとしては、FT7000(CNano社製)等が挙げられる。
電極シートを製造するに際して、更に、導電助剤を追加混合して使用するものであっても差し支えない。
また、本開示の目的を達成する範囲で、上記単層カーボンナノチューブを含むようにしてもよい。
なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
本開示の電極作製用組成物は、例えば、上記粉末状の結着剤と電極活物質粉末と必要に応じて導電助剤とから、液体媒体を実質的に含有しない粉末形状である電極作製用組成物を調製する工程(1)によって得られる。このように、電極活物質分散液を使用することなく、電極作製用組成物を調製することが好ましい。
(電極の製造方法)
本開示の電極の製造方法は、上述した各成分を混合して得られた電極作製用組成物を使用し、これをシート化するものであることが好ましい。シート化においては、乾燥工程が省けるため、液体媒体の使用量を低減させるか全く使用せずに、スラリーを調製せずに粉体である電極作製用組成物に対して剪断応力を与えることによって行う方法が好ましい。また、装置の負荷を軽減するために、潤滑剤とし溶剤を少量添加してもよい。溶剤は有機溶剤が望ましく、含有溶剤量としては、電極作製用組成物に対し10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましい。
粉末状態のPTFEにせん断力を与えると、容易にフィブリル化することが知られている。このようなフィブリル化する性質を利用して、PTFEを結着剤として使用することができる。すなわち、フィブリル化したPTFEがその他の粉体成分等に絡みつくことで、粉体成分を結着させ、これによって、PTFEは粉体成分を成形する際のバインダーとして作用することができる。
なお、フィブリル化したPTFEを結着剤として使用する場合でも、フィブリル化が充分でなければ、電極合剤として使用した際に良好な性能を発揮することはできない。好ましくは、フィブリル径(中央値)(以下、単に「フィブリル径」と記す)が20nm以上の繊維状構造を有するような、微細なフィブリル化加工を行うことによって、フィブリル化したPTFEが電極合剤用の結着剤として良好な性能を発揮することができるものである。
上記電極作製用組成物は、実質的に液体媒体を含有しないことが好ましい。
下記製造方法によって得られた電極において、フィブリル径が20nm以上の繊維状構造を有するPTFEを構成要素として有するものであることが好ましい。本開示においてはフィブリル径が20nm以上であることが好ましい。すなわち、このようにフィブリル径が細いPTFEが電極中に存在し、これが電極を構成する成分の粉体同士を結着させる作用と柔軟性を奏する点で好ましいものである。
上記フィブリル径(中央値)は、以下の方法によって測定した値である。
(1)走査型電子顕微鏡(S-4800型 日立製作所製)を用いて、電極合剤シートの拡大写真(7000倍)を撮影し画像を得る。
(2)この画像に水平方向に等間隔で2本の線を引き、画像を三等分する。
(3)上方の直線上にある全てのPTFE繊維について、PTFE繊維1本あたり3箇所の直径を測定し、平均した値を当該PTFE繊維の直径とする。測定する3箇所は、PTFE繊維と直線との交点、交点からそれぞれ上下に0.5μmずつずらした場所を選択する。(未繊維化のPTFE一次粒子は除く)。
(4)上記(3)の作業を、下方の直線上にある全てのPTFE繊維に対して行う。
(5)1枚目の画像を起点に画面右方向に1mm移動し、再度撮影を行い、上記(3)及び(4)によりPTFE繊維の直径を測定する。これを繰り返し、測定した繊維数が80本を超えた時点で終了とする。
(6)上記測定した全てのPTFE繊維の直径の中央値をフィブリル径の大きさとした。
上記フィブリル径は、15nm以上であることが好ましく、20nm以上であることが好ましく、31nm以上がより好ましい。フィブリル化を進めすぎると、柔軟性が失われる傾向にある。また、上限は特に限定されるものではないが、柔軟性の観点から、例えば、150nm以下であることが好ましく、100nm以下がより好ましく、75nm以下が特に好ましい。
上記フィブリル径を有するPTFEを得る方法としては特に限定されるものではないが、例えば、
上記工程(1)により調製した電極作製用組成物を混合しながら剪断力を付与する工程(2)
前記工程(2)によって得られた電極合剤をバルク状に成形する工程(3)及び
前記工程(3)によって得られたバルク状の電極合剤をシート状に圧延する工程(4)によって行う方法を挙げることができる。
上記工程(2)は、上記工程(1)によって得られた電極作製用組成物を混合しながら剪断力を付与する工程である。なお、電極作製用組成物を調製するための粉末成分を混合し、混合すると同時に剪断力をかけて、PTFEをフィブリル化して、電極合剤としてもよい。
このような方法において、例えば、工程(2)においては電極作製用組成物の混合条件を2200rpm以下とすることにより、柔軟性を維持しながらもPTFEのフィブリル化を進行させることができ、与えるせん断応力をコントロールすることで、PTFEのフィブリル径を20nm以上とすることができる。
また、工程(4)のあとに、得られた圧延シートに、より大きい荷重を加えて、さらに薄いシート状に圧延する工程(5)を有することも好ましい。また、工程(5)を繰り返すことも好ましい。
また、工程(4)又は工程(5)のあとに、得られた圧延シートを粗砕したのち再度バルク状に成形し、シート状に圧延する工程(6)を有することによってもフィブリル径を調整することができる。工程(6)は、例えば1回以上12回以下繰り返すことが好ましい。
すなわち、せん断力をかけることによって、PTFE粉末をフィブリル化し、これが電極活物質等の粉末成分と絡み合うことによって、電極合剤を製造することができる。なお、当該製造方法については後述する。
本開示の電極合剤において、PTFEの含有量は、電極合剤中のPTFEの割合として、通常0.1質量%以上、好ましくは0.5質量%以上、更に好ましくは1.0質量%以上であり、また、通常50質量%以下、好ましくは40質量%以下、更に好ましくは30質量%以下、最も好ましくは10質量%以下である。PTFEの割合が低すぎると、電極活物質を十分保持できずに電極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
本開示の電極合剤における単層カーボンナノチューブの含有量は、電極合剤の質量に対して、好ましくは0.01~5.0質量%であり、より好ましくは0.01~4.0質量%であり、更に好ましくは0.01~2.5 質量%であり、特に好ましくは0.01~1.0質量%である。単層カーボンナノチューブの含有量が上記範囲内にある場合、電極作製用組成物が適度な粘度を有し、過度なせん断力を与えることなく、各成分が十分に分散した電極合剤を調製できる。したがって、得られる電極合剤シート中で、単層カーボンナノチューブの三次元ネットワークを十分に形成して、一層低抵抗の電極合剤シートを得ることができる。
また、本開示の電極合剤において、単層カーボンナノチューブ以外の導電助剤も含有する場合、その他の導電助剤の含有量は、電極合剤の質量に対して、好ましくは0.01~3質量%であり、より好ましくは0.01~2質量%であり、更に好ましくは0.01~1.5 質量%である。その他の導電助剤の含有量が上記範囲内にある場合、容量、出力特性などの電池性能において良好な結果を得ることができる。
以下に、電極合剤シートの具体的な製造方法の一例を示す。
すなわち、電極合剤シートは、
電極活物質及び結着剤から電極作製用組成物を調製する工程(1)
電極作製用組成物を混合しながら剪断力を付与する工程(2)
前記工程(2)によって得られた電極合剤をバルク状に成形する工程(3)及び
前記工程(3)によって得られたバルク状の電極合剤をシート状に圧延する工程(4)
を有する二次電池用電極合剤シートの製造方法によって得ることができる。
上記工程(2)において電極作製用組成物を混合しながら、剪断力を付与した段階では、得られる電極作製用組成物は、電極活物質、結着剤等が単に混ざっているだけで定まった形のない状態で存在している。具体的な混合方法としては、W型混合機、V型混合機、ドラム型混合機、リボン混合機、円錐スクリュー型混合機、1軸混練機、2軸混練機、ミックスマラー、撹拌ミキサー、プラネタリーミキサーなどを用いて混合する方法が挙げられる。
上記工程(2)において、混合条件は、回転数と混合時間を適宜設定すればよい。例えば、回転数は、2200rpm以下とすることが好適である。好ましくは10rpm以上、より好ましくは15rpm以上、更に好ましくは20rpm以上である。また、好ましくは2000rpm以下、より好ましくは1800rpm以下、更に好ましくは1500rpmの範囲である。上記の範囲を下回ると、混合に時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度および柔軟性の劣る電極合剤シートとなるおそれがある。
上記工程(3)において、バルク状に成形するとは、電極作製用組成物を1つの塊とするものである。
バルク状に成形する具体的な方法として、押出成形、プレス成形などが挙げられる。
また、「バルク状」とは、特に形状が特定されるものではなく、1つの塊状になっている状態であればよく、ロッド状、シート状、球状、キューブ状等の形態が含まれる。上記塊の大きさは、その断面の直径または最小の一辺が10000μm以上であることが好ましい。より好ましくは20000μm以上である。
上記工程(4)における具体的な圧延方法としては、ロールプレス機、平板プレス機、カレンダーロール機などを用いて圧延する方法が挙げられる。
また、工程(4)のあとに、得られた圧延シートに、より大きい荷重を加えて、さらに薄いシート状に圧延する工程(5)を有することも好ましい。工程(5)を繰り返すことも好ましい。このように、圧延シートを一度に薄くするのではなく、段階に分けて少しずつ圧延することで柔軟性がより良好となる。
工程(5)の回数としては、2回以上10回以下が好ましく、3回以上9回以下がより好ましい。
具体的な圧延方法としては、例えば、2つあるいは複数のロールを回転させ、その間に圧延シートを通すことによって、より薄いシート状に加工する方法等が挙げられる。圧延時には加温することが望ましい。温度範囲の下限は40℃以上が好ましく、50℃以上がより好ましく、60℃以上が更に好ましい。また上限は、300℃以下が好ましく、250℃以下がより好ましく、200℃以下が更に好ましい。加温することで、シートが軟化し、容易に圧延することができる。
また、フィブリル径を調整する観点で、工程(4)または工程(5)のあとに、圧延シートを粗砕したのち再度バルク状に成形し、シート状に圧延する工程(6)を有することも好ましい。工程(6)を繰り返すことも好ましい。工程(6)の回数としては、1回以上12回以下が好ましく、2回以上11回以下がより好ましい。
工程(6)において、圧延シートを粗砕してバルク状に成形する具体的な方法として、圧延シートを折りたたむ方法、あるいはロッドもしくは薄膜シート状に成形する方法、チップ化する方法などが挙げられる。本開示において、「粗砕する」とは、次工程でシート状に圧延するために、工程(4)又は工程(5)で得られた圧延シートの形態を別の形態に変化させることを意味するものであり、単に圧延シートを折りたたむような場合も含まれる。
また、工程(6)の後に、工程(5)を行うようにしてもよく、繰り返し行ってもよい。
また、工程(3)ないし、(4)、(5)、(6)において1軸延伸もしくは2軸延伸を行っても良い。
また、工程(6)での粗砕程度によってもフィブリル径を調整することができる。
上記工程(4)、(5)又は(6)において、圧延率は、好ましくは10%以上、更に好ましくは20%以上であり、また、好ましくは80%以下、より好ましくは65%以下、更に好ましくは50%以下の範囲である。上記の範囲を下回ると、圧延回数の増大とともに時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度および柔軟性の劣る電極合剤シートとなるおそれがある。
なお、ここでいう圧延率とは、試料の圧延加工前の厚みに対する加工後の厚みの減少率を指す。圧延前の試料は、バルク状の電極作製用組成物であっても、シート状の電極作製用組成物であってもよい。試料の厚みとは、圧延時に荷重をかける方向の厚みを指す。
上述したように、PTFE粉末は、せん断力をかけることでフィブリル化する。そして、フィブリル径が20nm以上の繊維状構造を有するものとするには、過度なせん断応力では、フィブリル化が促進しすぎてしまい、柔軟性が損なわれることがある。また、弱いせん断応力では強度の面で充分ではないことがある。このため、混合時や圧延時に、適度にPTFEにせん断応力を与えてフィブリル化を促進し、樹脂を圧延してシート状に延ばす、という工程を上記範囲でおこなうことによって、フィブリル径が20nm以上の繊維状構造を有するものとすることができる。
得られた電極合剤シートは、二次電池用の電極合剤シートとして使用することができる。負極、正極のいずれとすることもできる。特に、本開示の電極合剤シートは、正極に好適に使用できる。また、本開示の電極合剤シートは、リチウムイオン二次電池に好適である。
(正極)
本開示において、正極は、集電体と、上記正極活物質を含む電極合剤シートとから構成されることが好適である。
正極用集電体の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特にアルミニウム又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔が好ましい。なお、金属箔は適宜メッシュ状に形成してもよい。
金属箔の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。金属箔がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、金属箔がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極合剤シートの電気接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極合剤シートの厚さの比は特には限定されないが、(電解液を注液する直前の片面の正極合剤シートの厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、また、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。この範囲を上回ると、高電流密度での充放電時に集電体がジュール熱による発熱を生じる場合がある。この範囲を下回ると、正極活物質に対する集電体の体積比が増加し、電池の容量が減少する場合がある。
正極の製造は、常法によればよい。例えば、上記電極合剤シートと集電体とを接着剤を介して積層し、真空乾燥する方法等が挙げられる。
正極合剤シートの密度は、好ましくは3.00g/cm以上、より好ましくは3.10g/cm以上、更に好ましくは3.20g/cm以上であり、また、好ましくは3.80g/cm以下、より好ましくは3.75g/cm以下、更に好ましくは3.70g/cm以下の範囲である。この範囲を上回ると集電体と活物質との界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
正極合剤シートの面積は、高出力かつ高温時の安定性を高める観点から、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極合剤面積の総和が面積比で15倍以上とすることが好ましく、更に40倍以上とすることがより好ましい。電池外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極合剤面積の総和とは、負極活物質を含む合剤層に対向する正極合剤層の幾何表面積であり、集電体を介して両面に正極合剤層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
正極の厚さは特に限定されないが、高容量かつ高出力の観点から、集電体の厚さを差し引いた合剤シートの厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上であり、また、上限として、好ましくは500μm以下、より好ましくは450μm以下である。
また、上記正極の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(負極)
本開示において、負極は、集電体と、上記負極活物質を含む電極合剤シートとから構成されることが好適である。
負極用集電体の材質としては、銅、ニッケル、チタン、タンタル、ステンレス鋼等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特に銅、ニッケル、又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔が好ましい。なお、金属箔は適宜メッシュ状に形成してもよい。
金属箔の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。金属箔がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、金属箔がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
負極の製造は、常法によればよい。例えば、上記電極合剤シートと集電体とを接着剤を介して積層し、真空乾燥する方法等が挙げられる。
負極合剤シートの密度は、好ましくは1.3g/cm以上、より好ましくは1.4g/cm以上、更に好ましくは1.5g/cm以上であり、また、好ましくは2.0g/cm以下、より好ましくは1.9g/cm以下、更に好ましくは1.8g/cm以下の範囲である。この範囲を上回ると集電体と活物質との界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
負極の厚さは特に限定されないが、高容量かつ高出力の観点から、集電体の厚さを差し引いた合剤シートの厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上であり、また、上限として、好ましくは500μm以下、より好ましくは450μm以下である。
本開示の電極は、電極作製用組成物を剪断加工する工程を経ることにより、フィブリル径が20nm以上となる繊維状構造のPTFEを構成要素として有するものであることが好ましい。このようにすることで、電池製造および電池性能に必要な強度を有する電極を得ることができる。
(二次電池)
本開示の電極は、各種二次電池における正極又は負極として使用することができる。上記二次電池としては、非水電解液を使用する電池が好適であり、リチウムイオン電池、電気二重層キャパシタ等を挙げることができる。なかでも、リチウムイオン電池に使用することが最も好ましい。
(非水電解液を使用する二次電池)
本開示の非水電解液を使用する二次電池は、公知の二次電池において使用される電解液、セパレータ等を使用することができる。以下、これらについて詳述する。
(電解液)
非水電解液としては、公知の電解質塩を公知の電解質塩溶解用有機溶媒に溶解したものが使用できる。
電解質塩溶解用有機溶媒としては、特に限定されるものではないが、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ-ブチロラクトン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの公知の炭化水素系溶媒;フルオロエチレンカーボネート、フルオロエーテル、フッ素化カーボネートなどのフッ素系溶媒の1種もしくは2種以上が使用できる。
電解質塩としては、たとえばLiClO、LiAsF、LiBF、LiPF、LiN(SOCF、LiN(SOなどがあげられ、サイクル特性が良好な点から特にLiPF、LiBF、LiN(SOCF、LiN(SOまたはこれらの組合せが好ましい。
電解質塩の濃度は、0.8モル/リットル以上、更には1.0モル/リットル以上が必要である。上限は電解質塩溶解用有機溶媒にもよるが、通常1.5モル/リットルである。
(電池設計)
電極合剤群は、上記の正極と負極とをセパレータを介してなる積層構造のもの、及び上記の正極と負極とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。
(セパレータ)
本開示の非水電解液を使用する二次電池は、更に、セパレータを備えることが好ましい。
上記セパレータの材質や形状は、電解液に安定であり、かつ、保液性に優れていれば特に限定されず、公知のものを使用することができる。なかでも、本開示の電解液又は本開示のアルカリ金属二次電池で使用される電解液に対し安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。ポリプロピレン/ポリエチレン2層フィルム、ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルム等、これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
なかでも、上記セパレータは、電解液の浸透性やシャットダウン効果が良好である点で、ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等であることが好ましい。
セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上が更に好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下が更に好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲より厚過ぎると、レート特性等の電池性能が低下する場合があるばかりでなく、電解液電池全体としてのエネルギー密度が低下する場合がある。
更に、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上が更に好ましく、また、通常90%以下であり、85%以下が好ましく、75%以下が更に好ましい。空孔率が、上記範囲より小さ過ぎると、膜抵抗が大きくなってレート特性が悪化する傾向がある。また、上記範囲より大き過ぎると、セパレータの機械的強度が低下し、絶縁性が低下する傾向にある。
また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲を上回ると、短絡が生じ易くなる。また、上記範囲を下回ると、膜抵抗が大きくなりレート特性が低下する場合がある。
一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状若しくは繊維形状のものが用いられる。
形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01~1μm、厚さが5~50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。
例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。
(電極合剤群占有率)
本開示の電極を使用した非水電解液を使用する二次電池は、電極合剤群の体積が電池内容積に占める割合(以下、電極合剤群占有率と称する)が、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極合剤群占有率が、上記範囲を下回ると、電池容量が小さくなる場合がある。また、上記範囲を上回ると空隙スペースが少なく、電池が高温になることによって部材が膨張したり電解質の液成分の蒸気圧が高くなったりして内部圧力が上昇し、電池としての充放電繰り返し性能や高温保存等の諸特性を低下させたり、更には、内部圧力を外に逃がすガス放出弁が作動する場合がある。
集電構造は、特に制限されないが、電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、電解液を使用した効果は特に良好に発揮される。
電極合剤群が上記の積層構造のものでは、各電極合剤層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極合剤面積が大きくなる場合には、内部抵抗が大きくなるので、電極合剤内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極合剤群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
外装ケースの材質は用いられる電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。
本開示の非水電解液を使用する二次電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレータの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
(全固体二次電池)
本開示の結着剤は、全固体二次電池にも好適に適用できる。
当該全固体二次電池は、リチウムイオン電池であることが好ましい。また、当該全固体二次電池は、硫化物系全固体二次電池であることが好ましい。
全固体二次電池は、正極、負極、並びに、当該正極及び当該負極の間に介在する固体電解質層を備える全固体二次電池であって、正極、負極及び固体電解質層に、全固体二次電池用合剤シートである、正極用シート、負極用シート又は固体電解質層シートを使用する。
本開示において、上述した結着剤と固体電解質粉末とからなる、実質的に液体媒体を含有しない全固体二次電池用組成物を調製し、この全固体二次電池用組成物より全固体二次電池用合剤シートを作製することが好ましい。
本開示において、全固体二次電池は、上述した結着剤を使用した全固体二次電池用合剤シートである、正極用シート、負極用シート又は固体電解質層シートを使用することが好ましい。なお、本開示の全固体二次電池は、正極、負極及び固体電解質層の一部に、本開示の結着剤を使用した全固体二次電池用合剤シートでないものを用いるものであっても良い。
(固体電解質)
上記全固体二次電池に使用する固体電解質は、硫化物系固体電解質であっても、酸化物系固体電解質であってもよい。特に、硫化物系固体電解質を使用する場合、柔軟性があるという利点がある。
上記硫化物系固体電解質としては、特に限定されず、LiS-P、LiS-P、LiS-P-P、LiS-SiS、LiI-LiS-SiSLiI-LiS-P、LiI-LiS-P、LiI-LiPO-P、LiI-LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPO、LiPS-LiGeS、Li3.40.6Si0.4、Li3.250.25Ge0.76、Li-xGe1-x、LiPSCl(x=0.6~0.8)、Li4+yGe1-yGa(y=0.2~0.3)、LiPSCl、LiCl、Li7-x-2yPS6-x-yCl(0.8≦x≦1.7、0<y≦-0.25x+0.5)等から選択されるいずれか、又は2種類以上の混合物を使用することができる。
上記硫化物系固体電解質は、リチウムを含有するものであることが好ましい。リチウムを含有する硫化物系固体電解質は、リチウムイオンをキャリアとして使用する固体電池に使用されるものであり、高エネルギー密度を有する電気化学デバイスという点で特に好ましいものである。
上記酸化物系固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族又は第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
具体的な化合物例としては、例えば、LixaLayaTiO〔xa=0.3~0.7、ya=0.3~0.7〕(LLT)、LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In,Snの少なくとも1種以上の元素でありxbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。)、Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In,Snの少なくとも1種以上の元素でありxcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。)、Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(ただし、1≦xd≦3、0≦yd≦2、0≦zd≦2、0≦ad≦2、1≦md≦7、3≦nd≦15)、Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。)、LixfSiyfzf(1≦xf≦5、0<yf≦3、1≦zf≦10)、Lixgygzg(1≦xg≦3、0<yg≦2、1≦zg≦10)、LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)(wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO、ペロブスカイト型結晶構造を有するLa0.51Li0.34TiO2.94、La0.55Li0.35TiO、NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(ただし、0≦xh≦1、0≦yh≦1)、ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。また、LLZに対して元素置換を行ったセラミックス材料も知られている。例えば、LLZに対して、Mg(マグネシウム)とA(Aは、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)から構成される群より選択される少なくとも1つの元素)との少なくとも一方の元素置換を行ったLLZ系セラミックス材料も挙げられる。また、Li、P及びOを含むリン化合物も望ましい。例えばリン酸リチウム(LiPO)、リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt、Au等から選ばれた少なくとも1種)等が挙げられる。また、LiAON(Aは、Si、B、Ge、Al、C、Ga等から選ばれた少なくとも1種)等も好ましく用いることができる。
具体例として、例えば、LiO-Al-SiO-P-TiO-GeO、LiO-Al-SiO-P-TiO等が挙げられる。
上記酸化物系固体電解質は、リチウムを含有するものであることが好ましい。リチウムを含有する酸化物系固体電解質は、リチウムイオンをキャリアとして使用する固体電池に使用されるものであり、高エネルギー密度を有する電気化学デバイスという点で特に好ましいものである。
上記酸化物系固体電解質は、結晶構造を有する酸化物であることが好ましい。結晶構造を有する酸化物は、良好なLiイオン伝導性という点で特に好ましいものである。
結晶構造を有する酸化物としては、ペロブスカイト型(La0.51Li0.34TiO2.94など)、NASICON型(Li1.3Al0.3Ti1.7(POなど)、ガーネット型(LiLaZr12(LLZ)など)等が挙げられる。なかでも、NASICON型が好ましい。
酸化物系固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.03μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、酸化物系固体電解質粒子の体積平均粒子径の測定は、以下の手順で行う。酸化物系固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザー回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
上記全固体二次電池用合剤シートは、上記電極合剤シートの製造方法と同様にして製造すればよい。
すなわち、全固体二次電池用合剤シートは、
固体電解質及び結着剤を含む全固体二次電池用組成物を調製する工程(1)
前記原料組成物を混合しながら剪断力を付与するする工程(2)
前記工程(2)によって得られた全固体二次電池用合剤をバルク状に成形する工程(3)及び
前記工程(3)によって得られたバルク状の全固体二次電池用合剤をシート状に圧延する工程(4)
を有する全固体二次電池用合剤シートの製造方法によって得ることができる。
上記工程(2)において、混合条件は、回転数と混合時間を適宜設定すればよい。例えば、回転数は、2200rpm以下とすることが好適である。好ましくは10rpm以上、より好ましくは15rpm以上、更に好ましくは20rpm以上であり、また、好ましくは2000rpm以下、より好ましくは1800rpm以下、更に好ましくは1500rpmの範囲である。上記の範囲を下回ると、混合に時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度および柔軟性の劣る電極合剤シートとなるおそれがある。
また、工程(4)のあとに、得られた圧延シートに、より大きい荷重を加えて、さらに薄いシート状に圧延する工程(5)を有することも好ましい。工程(5)を繰り返すことも好ましい。このように、圧延シートを一度に薄くするのではなく、段階に分けて少しずつ圧延することで柔軟性がより良好となる。
工程(5)の回数としては、2回以上10回以下が好ましく、3回以上9回以下がより好ましい。
具体的な圧延方法としては、例えば、2つあるいは複数のロールを回転させ、その間に圧延シートを通すことによって、より薄いシート状に加工する方法等が挙げられる。
また、フィブリル径を調整する観点で、工程(4)または工程(5)のあとに、圧延シートを粗砕したのち再度バルク状に成形し、シート状に圧延する工程(6)を有することも好ましい。工程(6)を繰り返すことも好ましい。工程(6)の回数としては、1回以上12回以下が好ましく、2回以上11回以下がより好ましい。
工程(6)において、圧延シートを粗砕してバルク状に成形する具体的な方法として、圧延シートを折りたたむ方法、あるいはロッドもしくは薄膜シート状に成形する方法、チップ化する方法などが挙げられる。本開示において、「粗砕する」とは、次工程でシート状に圧延するために、工程(4)又は工程(5)で得られた圧延シートの形態を別の形態に変化させることを意味するものであり、単に圧延シートを折りたたむような場合も含まれる。
また、工程(6)の後に、工程(5)を行うようにしてもよく、繰り返し行ってもよい。
また、工程(3)ないし、(4)、(5)、(6)において1軸延伸もしくは2軸延伸を行っても良い。
また、工程(6)での粗砕程度によってもフィブリル径(中央値)を調整することができる。
上記工程(4)、(5)又は(6)において、圧延率は、好ましくは10%以上、更に好ましくは20%以上であり、また、好ましくは80%以下、より好ましくは65%以下、更に好ましくは50%以下の範囲である。上記の範囲を下回ると、圧延回数の増大とともに時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度および柔軟性の劣る全固体二次電池用合剤シートとなるおそれがある。
上記全固体二次電池用合剤シートは、正極用シートとすることもできるし、負極用シートとすることもできる。更に、固体電解質層用シートとすることもできる。これらのうち、電極用シートとする場合は、更に、電極活物質粒子を含有するものである。電極活物質粒子は、上記正極活物質、負極活物質とすることができる。また、必要に応じて、単層カーボンナノチューブ以外の導電助剤を含有してもよい。正極用シート又は負極用シートとする場合、上記全固体二次電池用合剤シートの製造において、固体電解質及び結着剤と共に、正極活物質又は負極活物質及び必要に応じて導電助剤を混合するようにすればよい。全固体二次電池用合剤シートは、正極活物質を使用した正極用シートとしてより好適に使用することができる。
本開示に全固体二次電池の積層構造は、正極用シート及び正極集電体を備える正極と、負極用シート及び負極集電体を備える負極と、上記正極及び上記負極に挟持される固体電解質層シートを備える。
以下、本開示に係る全固体二次電池に用いられるセパレータ及び電池ケースについて、詳細に説明する。
(セパレータ)
全固体二次電池は、正極及び負極の間にセパレータを備えていてもよい。上記セパレータとしては、例えばポリエチレン、ポリプロピレン等の多孔膜;及びポリプロピレン等の樹脂製の不織布、ガラス繊維不織布等の不織布等を挙げることができる。
(電池設計)
本開示の全固体二次電池は、さらに電池ケースを備えていてもよい。本開示に用いられる電池ケースの形状としては、上述した正極、負極、固体電解質層シート等を収納できるものであれば特に限定されるものではないが、具体的には、円筒型、角型、コイン型、ラミネート型等を挙げることができる。
本開示の全固体二次電池の製造方法は、例えば、まず、上記正極、固体電解質層シート、負極を順に積層し、プレスすることにより全固体二次電池としてもよい。
本開示の全固体二次電池用合剤シートを使用することにより、系内の水分が少ない状態で全固体二次電池の製造を行うことができ、良好な性能を有する全固体二次電池とすることができ、好適である。
以下、本開示を実施例に基づいて具体的に説明する。
以下の実施例においては特に言及しない場合は、「部」「%」はそれぞれ「質量部」「質量%」を表す。
〔作製例1〕
国際公開第2015‐080291号の作成例2を参考にして、ポリテトラフルオロエチレン水性分散体(固形分31.2質量%)PTFE-Aを得た。測定した結果、標準比重は2.16であった。
〔作製例2〕
国際公開第2015‐080291号の作成例3を参考にして、ポリテトラフルオロエチレン水性分散体(固形分30.9質量%)PTFE-Bを得た。含フッ素界面活性剤の使用量は最終ポリテトラフルオロエチレン収量に対して3290ppmであった。測定した結果、標準比重は2.15であった。
〔作製例3〕
国際公開第2012/086710号の作製例1を参考にして、変性PTFEの水性分散体PTFE-Cを得た。得られた水性分散液のポリマー濃度は30.1質量%、平均一次粒子径は0.18μmであった。測定した結果、標準比重は2.16であった。
〔作製例4〕
国際第2012‐063622号の調整例1を参考にして、PTFE粒子の水性分散体PTFE-Dを得た。測定した結果、標準比重は2.19であった。
[カーボンナノチューブ(CNT)分散体の調整]
カルボキシメチルセルロース(CMC)水溶液(固形分濃度1.5%)に秤量した単層カーボンナノチューブ(商品名「TUBALL BATT SWCNT」、OCSiAl社製、平均外径:1.6±0.4nm、平均繊維長:5μm、G/D比:86.5±7.1)または多層カーボンナノチューブ(平均外径:11nm±4nm、平均繊維長:5μm、G/D比:1.3)を添加し、超音波ホモジナイザーで撹拌を行った。超純水を添加し、更にホモジナイザーで撹拌を行う工程を3度繰り返し、カーボンナノチューブが高度に分散したCNT分散体(固形分として0.2質量%)を得た。
〔粉末の作製〕
PTFE水性分散体とCNT分散体を表1の組成比で混合させ、固形分濃度として9質量%になるように超純水を加え、溶液濃度を調整した。その後、40rpmで撹拌を行い、混合溶液を得た。
その後、混合溶液を、噴霧乾燥機(東京理化器械社製)を用いて乾燥粉末を得た。さらに真空乾燥(100℃、8時間)を行い、結着剤1~7を得た。
作製例4で得た水性分散体PTFE-Dを固形分濃度15%まで希釈し、攪拌機付き容器内で硝酸の存在下において静かに、攪拌しポリテトラフルオロエチレンを凝固させた。凝固したポリテトラフルオロエチレンを分離し、160℃において18時間乾燥し、粉末状の結着剤8を得た。
結着剤1~6の含有水分を測定した結果、すべて250ppm以下であった。
[結着剤のF/C比]
F/C比は、MICRO CORDER JM10(J Science Lab社製)を使用し、サンプル量は2mg、燃焼炉950℃、還元炉550℃、ヘリウム流量200mL/min、酸素流量15~25mL/minの条件でCHN同時測定を行い、4回測定した値の平均値とした。
(実施例1)
<正極合剤シートの作製>
正極活物質としてLi(Ni0.6Mn0.2Co0.2)O(NMC622)と、導電助剤としてLi-100を加え、ミキサーにて1500rpmで10分間撹拌し混合物を得た。混合物の入った容器に作製した結着剤1を添加し、混練機にて40rpmで2時間撹拌し、混合粉末組成物を得た。組成は質量比で正極活物質:結着剤:Li-100=96.0:2.0:2.0とした。
得られた混合粉末組成物をバルク状に成形し、シート状に圧延した。
その後、先程得られた圧延シートを2つに折りたたむことにより粗砕して、再度バルク状に成形した後、80度に加熱したホットプレートの上で金属ロールを用いてシート状に圧延することで、フィブリル化を促進させる工程を4度繰り返した。その後、更に圧延することで、約厚さ500μmの正極合剤シートを得た。さらに、正極合剤シートを5cm×5cmに切り出し、80度に加熱したロールプレス機に投入し圧延を行った。さらにフィブリル化を促進させるために2kNの荷重を繰り返しかけて厚みを調整した。ギャップを調整し最終的な正極合剤層の厚みは90μm、密度が3.20g/ccになるように調整し正極合剤シートを得た。
<正極の作製>
正極合剤シートを20μmのアルミ箔と接着させた。接着剤にはN-メチルピロリドン(NMP)にポリビニデンフルオライド(PVDF)を溶解させ、カーボンナノチューブ(CNT)を分散させたスラリーを用いた。アルミ箔に上述した接着剤を塗布し、作製したシート状正極合剤を気泡が入らないように載せ、120℃、30分にて真空乾燥させて、集電体と一体となった正極シートを作製した。
<電解液の作製>
有機溶媒として、エチレンカーボネート(EC)及びエチルメチルカーボネート(EMC)の混合溶媒(EC:EMC=30:70(体積比))をサンプル瓶に量り取り、ここにフルオロエチレンカーボネート(FEC)とビニレンカーボネート(VC)を1質量%ずつ溶解させて調製した電解液中のLiPF6塩の濃度が1.1モル/Lとなるようにし、23℃で混合することにより、電解液を得た。
<電池の作製>
上記で作製した正極シート及びポリエチレン製セパレータ、負極としてLi金属を用いて、コイン電池を製作した。詳しくは、ドライルーム内で、セパレータを正極と負極との間に挟装して、電極体電池とした。この電極体電池を、ステンレス容器からなる電池ケース(CR2032型コイン電池用部材)に収容した。電池ケースには電解液を注入した。電池ケースをカシメ機で密閉して、非水電解質リチウムイオン二次電池を得た。
[フィブリル径]
フィブリル径は、以下の方法によって測定した。
走査型電子顕微鏡(S-4800型 日立製作所製)を用いて、電極合剤シートの拡大写真(7000倍)を撮影し画像を得た。この画像に水平方向に等間隔で2本の線を引き、画像を三等分した。上方の直線上にある全てのPTFE繊維について、PTFE繊維1本あたり3箇所の直径を測定し、平均した値を当該PTFE繊維の直径とした。測定する3箇所は、PTFE繊維と直線との交点、交点からそれぞれ上下に0.5μmずつずらした場所を選択した。上記の作業を、下方の直線上にある全てのPTFE繊維に対して行った。1枚目の画像を起点に画面右方向に1mm移動し、再度撮影を行い、上記の通りPTFE繊維の直径を測定した。これを繰り返し、測定した繊維数が80本を超えた時点で終了とした。上記測定した全てのPTFE繊維の直径の中央値をフィブリル径の大きさとした。
[初期放電容量試験]
上記で製造したリチウムイオン二次電池を、25℃において、0.5Cに相当する電流で4.3Vまで定電流-定電圧充電(以下、CC/CV充電と表記する。)(0.1Cカット)した後、0.5Cの定電流で3Vまで放電し、これを1サイクルとして、3サイクル目の放電容量から初期放電容量を求めた。
比較例1の初期容量を100として比較した。
各試験は以下の方法で行った。
[強度測定]
引張試験機(島津製作所社製 オートグラフAGS-Xシリーズ AGS-0.40以上2.50以下NX)を使用して、1.0/分の条件下、4mm幅の短冊状の正極合剤シート試験片にて測定した。チャック間距離は30mmとした。破断するまで変位を与え、測定した結果の最大応力を各サンプルの強度とした。比較例1を100として比較した。
[電極抵抗測定]
正極合剤シートを、幅5.0cm×長さ10cmの正方形に切って試験片とする。抵抗率計 ロレスタGP(三菱化学社製)を用いて、正極活物質層の四端子抵抗をJIS K7194;1994に従って測定した。抵抗値が小さい程、電池の出力特性に優れることを示す。
A:10Ωcm未満
B:10~40Ωcm未満
C:40~100Ωcm未満
D:100~200Ωcm未満
E:200~以上
(実施例2~6)
表2に示す結着剤を用いた以外は実施例1と同様に非水電解質リチウムイオン二次電池を得た。
(比較例1)
多層CNTを含む結着剤7を用いた以外は実施例1と同様に非水電解質リチウムイオン二次電池を得た。
(比較例2)
カーボンナノチューブを含まない結着剤8を用いて、組成は質量比で正極活物質:PTFE:単層CNT:Li-100=96.0:1.994:0.006:2.0とした以外は実施例1と同様に非水電解質リチウムイオン二次電池を得た。
実施例2,4,5の正極シートのPTFEのフィブリル径を測定した結果、フィブリル径はそれぞれ47,38,39nmであった。
本開示の結着剤は、特に、リチウムイオン二次電池に好適に使用することができる。

Claims (17)

  1. ポリテトラフルオロエチレン樹脂と単層カーボンナノチューブとを含有する混合粉末からなり、上記ポリテトラフルオロエチレン樹脂と単層カーボンナノチューブとの重量比が、99.9:0.1~80:20であるリチウムイオン二次電池用結着剤。
  2. 上記ポリテトラフルオロエチレン樹脂は、標準比重が2.11~2.20である請求項1に記載のリチウムイオン二次電池用結着剤。
  3. 上記単層カーボンナノチューブの平均繊維長が、100μm未満である請求項1又は2に記載のリチウムイオン二次電池用結着剤。
  4. 上記単層カーボンナノチューブの平均外径が、2.5nm以下である請求項1~3のいずれかに記載のリチウムイオン二次電池用結着剤。
  5. 上記単層カーボンナノチューブのG/D比が、2以上である請求項1~4のいずれかに記載のリチウムイオン二次電池用結着剤。
  6. 上記結着剤は、水分含有量が1000ppm以下である請求項1~5のいずれかに記載のリチウムイオン二次電池用結着剤。
  7. 元素分析により測定される炭素に対するフッ素の元素比(F/C比)が0.4以上3.0以下である請求項1~6いずれかに記載のリチウムイオン二次電池用結着剤。
  8. 請求項1~いずれかのリチウムイオン二次電池用結着剤と電極活物質とを含有し、液体媒体を実質的に含有しない粉末形状であるリチウムイオン二次電池用電極作製用組成物。
  9. 上記電極活物質が正極活物質である請求項記載のリチウムイオン二次電池用電極作製用組成物。
  10. 請求項8又は9リチウムイオン二次電池用電極作製用組成物からなるリチウムイオン二次電池用電極合剤。
  11. 請求項10リチウムイオン二次電池用電極合剤を用いたリチウムイオン二次電池用電極。
  12. フィブリル径(中央値)が20nm以上の繊維状構造であるポリテトラフルオロエチレン樹脂を有する請求項11記載のリチウムイオン二次電池用電極。
  13. 請求項11又は12リチウムイオン二次電池用電極を有するリチウムイオン二次電池。
  14. ポリテトラフルオロエチレン樹脂と単層カーボンナノチューブとを含有する混合粉末からなり、上記ポリテトラフルオロエチレン樹脂と単層カーボンナノチューブとの重量比が、99.9:0.1~80:20であるリチウムイオン二次電池用結着剤の製造方法であって、分散溶媒に水を用いて、ポリテトラフルオロエチレン樹脂分散液と単層カーボンナノチューブ分散液とを均一混合した後に乾燥させて、混合粉末とするリチウムイオン二次電池用結着剤の製造方法。
  15. 乾燥方法が噴霧乾燥である請求項14記載のリチウムイオン二次電池用結着剤の製造方法。
  16. 請求項1~いずれかのリチウムイオン二次電池用結着剤を用い、活物質粉末と混合して、液体媒体を実質的に含有しない粉末形状であるリチウムイオン二次電池用電極作製用組成物を調製し、得られたリチウムイオン二次電池用電極作製用組成物を使用し、粉末形状であるリチウムイオン二次電池用電極作製用組成物に対して剪断応力を与えることによってシート化する、リチウムイオン二次電池用電極の製造方法。
  17. 前記シート化が、含有溶剤量がリチウムイオン二次電池用電極作製用組成物に対して10質量%以下にて行われる、請求項16載のリチウムイオン二次電池用電極の製造方法。
JP2021210533A 2020-12-25 2021-12-24 単層カーボンナノチューブとptfeとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池 Active JP7350049B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020217235 2020-12-25
JP2020217235 2020-12-25

Publications (2)

Publication Number Publication Date
JP2022103140A JP2022103140A (ja) 2022-07-07
JP7350049B2 true JP7350049B2 (ja) 2023-09-25

Family

ID=82158235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021210533A Active JP7350049B2 (ja) 2020-12-25 2021-12-24 単層カーボンナノチューブとptfeとを複合した結着剤並びにそれを用いた電極作製用組成物及び二次電池

Country Status (7)

Country Link
US (1) US20230378471A1 (ja)
EP (1) EP4269361A1 (ja)
JP (1) JP7350049B2 (ja)
KR (1) KR20230125000A (ja)
CN (1) CN116568639A (ja)
TW (1) TW202235566A (ja)
WO (1) WO2022138940A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7477784B2 (ja) * 2022-06-30 2024-05-02 ダイキン工業株式会社 非水系電解液を使用する二次電池用電極の製造方法、非水系電解液を使用する二次電池電極用結着剤、二次電池電極用結着剤、電極作製用組成物、電極合剤及び電極

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404174A (zh) 2002-10-11 2003-03-19 清华大学 一种高能电池的活性材料
JP2008010681A (ja) 2006-06-29 2008-01-17 Equos Research Co Ltd 蓄電デバイス用電極及びその製造方法
JP2012210796A (ja) 2011-03-31 2012-11-01 Nippon Valqua Ind Ltd 繊維状ナノ物質の樹脂粒子粉末との混合方法
JP2012252824A (ja) 2011-06-01 2012-12-20 Asahi Glass Co Ltd 蓄電素子用電極の製造方法および蓄電素子
JP2015508220A (ja) 2012-02-28 2015-03-16 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ リチウム含有電池用カソード及びその無溶媒製造方法
WO2016208769A1 (ja) 2015-06-26 2016-12-29 日本碍子株式会社 空気極、金属空気電池及び空気極材料
JP2017533343A (ja) 2014-09-12 2017-11-09 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag カーボンナノチューブを含有する酸素消費電極およびその製造方法
CN110828815A (zh) 2019-11-13 2020-02-21 河北彩客化学股份有限公司 一种锂电池负极材料及其制备方法
JP6801806B1 (ja) 2019-10-24 2020-12-16 東洋インキScホールディングス株式会社 非水電解質二次電池用カーボンナノチューブ分散液およびそれを用いた樹脂組成物、合材スラリー、電極膜、非水電解質二次電池。

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316784A (ja) 1993-04-30 1994-11-15 Tanaka Kikinzoku Kogyo Kk カーボンブラックとptfeの均一混合粉末の製造方法
CN1107090C (zh) * 1994-10-19 2003-04-30 大金工业株式会社 电池用粘结剂及使用该粘结剂的电极用组合物及电池
JP5141002B2 (ja) 2006-11-30 2013-02-13 日本ゼオン株式会社 電気化学素子電極用複合粒子の製造方法
CN103201806A (zh) 2010-11-10 2013-07-10 大金工业株式会社 双电层电容器用电解液
JP4984007B1 (ja) 2010-12-21 2012-07-25 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
JPWO2013161317A1 (ja) * 2012-04-27 2015-12-24 昭和電工株式会社 多層カーボンナノチューブの精製方法
JP6218723B2 (ja) 2013-11-29 2017-10-25 ダイキン工業株式会社 二軸延伸多孔質膜
KR102342275B1 (ko) 2014-04-18 2021-12-22 맥스웰 테크놀러지스 인코포레이티드 건식 에너지 저장 장치 전극 및 이의 제조방법
CN110521029B (zh) 2017-02-09 2022-11-29 株式会社村田制作所 二次电池、电池包、电动车辆、电动工具以及电子设备
JP2020132792A (ja) 2019-02-22 2020-08-31 大陽日酸株式会社 フッ素樹脂コーティング用組成物、コーティング膜、基材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404174A (zh) 2002-10-11 2003-03-19 清华大学 一种高能电池的活性材料
JP2008010681A (ja) 2006-06-29 2008-01-17 Equos Research Co Ltd 蓄電デバイス用電極及びその製造方法
JP2012210796A (ja) 2011-03-31 2012-11-01 Nippon Valqua Ind Ltd 繊維状ナノ物質の樹脂粒子粉末との混合方法
JP2012252824A (ja) 2011-06-01 2012-12-20 Asahi Glass Co Ltd 蓄電素子用電極の製造方法および蓄電素子
JP2015508220A (ja) 2012-02-28 2015-03-16 フラウンホーファー−ゲゼルシャフト ツア フォルデルング デア アンゲヴァンテン フォルシュング エー ファウ リチウム含有電池用カソード及びその無溶媒製造方法
JP2017533343A (ja) 2014-09-12 2017-11-09 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag カーボンナノチューブを含有する酸素消費電極およびその製造方法
WO2016208769A1 (ja) 2015-06-26 2016-12-29 日本碍子株式会社 空気極、金属空気電池及び空気極材料
JP6801806B1 (ja) 2019-10-24 2020-12-16 東洋インキScホールディングス株式会社 非水電解質二次電池用カーボンナノチューブ分散液およびそれを用いた樹脂組成物、合材スラリー、電極膜、非水電解質二次電池。
CN110828815A (zh) 2019-11-13 2020-02-21 河北彩客化学股份有限公司 一种锂电池负极材料及其制备方法

Also Published As

Publication number Publication date
JP2022103140A (ja) 2022-07-07
EP4269361A1 (en) 2023-11-01
WO2022138940A1 (ja) 2022-06-30
KR20230125000A (ko) 2023-08-28
CN116568639A (zh) 2023-08-08
US20230378471A1 (en) 2023-11-23
TW202235566A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
US20230207821A1 (en) Secondary battery electrode mixture, secondary battery electrode mixture sheet and production method thereof, and secondary battery
US20230231182A1 (en) All-solid-state secondary battery mixture, all-solid-state secondary battery mixture sheet and production method thereof, and all-solid-state secondary battery
US20230395804A1 (en) Production method of solid-state secondary battery sheet and binder for solid-state secondary battery
US20230378471A1 (en) Binder that is composite of single-walled carbon nanotube and ptfe, and composition for producing electrode and secondary battery using same
WO2024004871A1 (ja) 固体二次電池用シートの製造方法、固体二次電池電極用結着剤、電極作製用組成物、電極合剤、及び、電極
JP7477784B2 (ja) 非水系電解液を使用する二次電池用電極の製造方法、非水系電解液を使用する二次電池電極用結着剤、二次電池電極用結着剤、電極作製用組成物、電極合剤及び電極
JP7269511B2 (ja) 非水系電解液を使用する二次電池用電極の製造方法及び非水系電解液を使用する二次電池電極用結着剤
JP7364973B2 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7364972B2 (ja) 二次電池用合剤、二次電池用合剤シート、二次電池用合剤シートの製造方法及び二次電池
JP7485998B2 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
TW202410517A (zh) 固體二次電池用片之製造方法、固體二次電池電極用黏結劑、電極製作用組成物、電極合劑、及電極
TW202409237A (zh) 使用非水系電解液之二次電池用電極之製造方法、使用非水系電解液之二次電池電極用黏結劑、二次電池電極用黏結劑、電極製作用組成物、電極合劑及電極

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230912

R150 Certificate of patent or registration of utility model

Ref document number: 7350049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150