WO2019054119A1 - 複合半透膜及びその製造方法 - Google Patents

複合半透膜及びその製造方法 Download PDF

Info

Publication number
WO2019054119A1
WO2019054119A1 PCT/JP2018/030437 JP2018030437W WO2019054119A1 WO 2019054119 A1 WO2019054119 A1 WO 2019054119A1 JP 2018030437 W JP2018030437 W JP 2018030437W WO 2019054119 A1 WO2019054119 A1 WO 2019054119A1
Authority
WO
WIPO (PCT)
Prior art keywords
semipermeable membrane
composite semipermeable
skin layer
polyfunctional
porous support
Prior art date
Application number
PCT/JP2018/030437
Other languages
English (en)
French (fr)
Inventor
倫次 宮部
井上 真一
友葉 岡▲崎▼
知哉 小川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020207010415A priority Critical patent/KR102551961B1/ko
Priority to CN201880058948.9A priority patent/CN111050891A/zh
Priority to EP18857259.8A priority patent/EP3682964A4/en
Priority to US16/645,642 priority patent/US20200261860A1/en
Publication of WO2019054119A1 publication Critical patent/WO2019054119A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/40Details relating to membrane preparation in-situ membrane formation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities

Definitions

  • the present invention relates to a composite semipermeable membrane comprising a skin layer and a porous support for supporting the same, and a method for producing the same.
  • a composite semipermeable membrane is suitable for the production of ultrapure water, desalination of brackish water or seawater, etc., and is a contamination source contained in contaminations or the like that are causes of pollution such as dyeing drainage and electrodeposition paint drainage.
  • the active substance can be removed and recovered to contribute to the closing of the drainage.
  • it can be used for advanced treatment such as concentration of active ingredients in food applications and removal of harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields and shale gas fields.
  • the composite semipermeable membrane is called RO (reverse osmosis) membrane, NF (nanofiltration) membrane, FO (forward osmosis) membrane depending on its filtration performance and treatment method, and ultrapure water production, seawater desalination, removal of brine It can be used for salt treatment, waste water reuse treatment, etc.
  • a skin layer containing a polyamide-based resin formed by reacting a polyfunctional amine component and a polyfunctional acid halide component is formed on the surface of a porous support
  • Composite semipermeable membranes can be mentioned.
  • the composite semipermeable membrane is required to have stable water separation performance.
  • water eg, sewage
  • the contaminants eg, microorganisms
  • the quality of raw water varies widely in wastewater treatment etc., and the number of times of cleaning tends to increase.
  • a solution containing an oxidizing agent is often used for cleaning the composite semipermeable membrane, but cleaning the composite semipermeable membrane with a solution containing the oxidizing agent degrades the composite semipermeable membrane and the water treatment performance fluctuates significantly. There was a problem.
  • Patent Document 1 a composite semipermeable membrane having oxidation resistance (chlorine resistance), for example, a composite semipermeable membrane using piperazine as a multifunctional amine component is known (Patent Document 1).
  • Patent Document 1 Although the composite semipermeable membrane of Patent Document 1 is excellent in oxidant resistance (chlorine resistance), there is a problem that the salt rejection rate is low.
  • Patent Document 2 discloses a semipermeable composite membrane having a porous support membrane and an ultrathin film composed mainly of a crosslinked polypiperazine amide obtained by an interfacial reaction.
  • a technique has been proposed in which the ultrathin film is brought into contact with a chlorine-containing aqueous solution at pH 1.0 to 10 at normal pressure.
  • An object of the present invention is to provide a composite semipermeable membrane excellent in oxidizing agent resistance (chlorine resistance) and salt blocking property and a method for producing the same.
  • the present invention is a composite semipermeable membrane in which a skin layer containing a polyamide resin obtained by polymerizing a polyfunctional amine component and a polyfunctional acid halide component is formed on the surface of a porous support,
  • the polyfunctional amine component comprises an alicyclic diamine
  • FT-IR Fastier transform infrared spectroscopy
  • the skin layer is a very thin film, and it is very difficult to specify its thickness, the relationship between the thickness of the skin layer and the water separation performance of the composite semipermeable membrane has been studied so far. It was not.
  • the inventor of the present invention has found that, instead of the thickness of the skin layer, the C of the amide group of the polyamide based resin which is the material for forming the skin layer obtained by the transmission method of FT-IR (Fourier transform infrared spectroscopy).
  • the absorption peak intensity derived from O stretching vibration was employed as an index, and it was found that there is a correlation between the absorption peak intensity and the salt rejection of the composite semipermeable membrane.
  • the composite semipermeable membrane having the skin layer having the absorption peak intensity of 0.03 or more is very excellent in the salt blocking property as compared with the conventional composite semipermeable membrane.
  • the absorption peak intensity of the skin layer of the conventional composite semipermeable membrane is about 0.01 to 0.02.
  • the absorption peak intensity is preferably 0.1 or less from the viewpoint of securing practical water permeability.
  • the alicyclic diamine is preferably a heteroalicyclic diamine in which the hetero atom constituting the ring is nitrogen, from the viewpoint of being excellent in oxidation resistance (chlorine resistance), and piperazine is more preferable. preferable.
  • the polyamide resin is preferably chlorinated in the range of 0.1 to 7% from the viewpoint of improving the salt blocking property.
  • the polyfunctional acid halide component is preferably trimesic acid trichloride from the viewpoint of improving the salt blocking property.
  • a skin layer containing a polyamide resin is brought into contact with the surface of the porous support by bringing an amine solution containing a polyfunctional amine component into contact with an organic solution containing a polyfunctional acid halide component on the porous support.
  • a process for producing a composite semipermeable membrane comprising the steps of:
  • the polyfunctional amine component comprises an alicyclic diamine
  • the amine solution relates to a method for producing a composite semipermeable membrane characterized in that it contains 3% by weight or more of the polyfunctional amine component.
  • a composite semipermeable membrane having a skin layer having an absorption peak intensity of 0.03 or more can be manufactured.
  • the skin layer of the composite semipermeable membrane of the present invention is formed using an alicyclic diamine as a polyfunctional amine component, and the absorption peak intensity is 0.03 or more. Not only is excellent in oxidation resistance (chlorine resistance), but also has excellent salt blocking properties as compared with conventional composite semipermeable membranes.
  • the composite semipermeable membrane of the present invention is used, the operation amount of water treatment becomes easy because the amount of water permeation hardly changes even if the washing is repeated with the solution containing the oxidizing agent.
  • a skin layer containing a polyamide resin is formed on the surface of a porous support, and the skin layer is transparent to FT-IR (Fourier transform infrared spectroscopy).
  • FT-IR Fastier transform infrared spectroscopy
  • the polyamide resin is obtained by polymerizing a polyfunctional amine component and a polyfunctional acid halide component.
  • alicyclic diamines are used as the polyfunctional amine component.
  • the alicyclic diamine is not particularly limited.
  • diaminocyclohexane such as 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, and 1,4-diaminocyclohexane
  • piperazine substituted by an alkyl group having 1 to 2 carbon atoms
  • Piperazine eg, 2-methylpiperazine, 2-ethylpiperazine, 2,5-dimethylpiperazine, 2,5-diethylpiperazine, etc.
  • 4-aminomethylpiperazine eg, 2-methylpiperazine, 2-ethylpiperazine, 2,5-dimethylpiperazine, 2,5-diethylpiperazine, etc.
  • the heteroalicyclic diamine whose hetero atom which comprises rings, such as a compound represented, is nitrogen is mentioned.
  • n is an integer of 1 to 3.
  • hydrogen bonded to a carbon atom constituting a ring has 1 to 2 carbon atoms
  • It may be substituted by an alkyl group.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, 3,5-diamino
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, 3,5-diamino
  • examples thereof include benzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N, N'-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidol, and xylylenediamine. These may be used alone or in combination of two or more.
  • aliphatic polyfunctional amines examples include ethylenediamine, propylenediamine, tris (2-aminoethyl) amine, and N-phenyl-ethylenediamine. These may be used alone or in combination of two or more.
  • the said alicyclic diamine and the said aromatic or aliphatic polyfunctional amine it is preferable to use 85 weight% or more of the said alicyclic diamine in the whole polyfunctional amine component, More preferably, it is 90 weight% It is the above, More preferably, it is 95 weight% or more.
  • the polyfunctional acid halide component is a polyfunctional acid halide having two or more reactive carbonyl groups.
  • Polyfunctional acid halides include aromatic, aliphatic and alicyclic polyfunctional acid halides.
  • aromatic polyfunctional acid halides include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalenedicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, and chlorosulfonylbenzene.
  • Dicarboxylic acid dichloride etc. are mentioned.
  • aliphatic polyfunctional acid halides examples include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide, and azide. Poil halide etc. are mentioned.
  • alicyclic polyfunctional acid halides include cyclopropane tricarboxylic acid trichloride, cyclobutane tetracarboxylic acid tetrachloride, cyclopentane tricarboxylic acid trichloride, cyclopentane tetracarboxylic acid tetrachloride, cyclohexane tricarboxylic acid trichloride, and tetrahydrofuran.
  • Examples thereof include tetracarboxylic acid tetrachloride, cyclopentanedicarboxylic acid dichloride, cyclobutanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
  • polyfunctional acid halides may be used alone or in combination of two or more.
  • an aromatic polyfunctional acid halide it is preferable to use an aromatic polyfunctional acid halide.
  • a polymer such as polyvinyl alcohol, polyvinyl pyrrolidone, or polyacrylic acid; a polyhydric alcohol such as sorbitol or glycerin may be coated.
  • the porous support for supporting the skin layer is not particularly limited as long as it can support the skin layer.
  • materials for forming the porous support include various materials such as polysulfone, polyarylethersulfone such as polyethersulfone, polyimide, poly (vinylidene fluoride) and the like, but chemical, mechanical and thermal ones are particularly preferable. Polysulfone and polyarylether sulfone are preferably used in view of their stability.
  • the thickness of such porous support is usually, but not necessarily limited to, about 25 to 125 ⁇ m, preferably about 40 to 75 ⁇ m.
  • the porous support may be reinforced by backing with a base material such as woven fabric or non-woven fabric.
  • the porous support may have a symmetric structure or an asymmetric structure, but an asymmetric structure is preferable from the viewpoint of achieving both the support function of the skin layer and the liquid permeability.
  • the average pore diameter of the skin layer-forming side surface of the porous support is preferably 0.01 to 0.5 ⁇ m.
  • an epoxy resin porous sheet may be used as the porous support.
  • the average pore diameter of the porous epoxy resin sheet is preferably 0.01 to 0.4 ⁇ m.
  • the method for forming the skin layer containing the polyamide resin on the surface of the porous support is not particularly limited, and any known method can be used.
  • an interfacial condensation method, a phase separation method, a thin film coating method and the like can be mentioned.
  • a skin layer is formed by contacting an amine solution containing a polyfunctional amine component with an organic solution containing a polyfunctional acid halide component to form a skin layer, and the skin layer And a method of directly forming a skin layer of a polyamide based resin on the porous support by the interfacial polymerization on the porous support.
  • the details of the conditions and the like of the interfacial condensation method are described in JP-A-58-24303, JP-A-1-180208 and the like, and those known techniques can be appropriately adopted.
  • an amine solution coating layer composed of an amine solution containing the alicyclic diamine is formed on a porous support, and then an organic solution containing a polyfunctional acid halide component is brought into contact with the amine solution coating layer. It is preferable to form a skin layer by interfacial polymerization.
  • Examples of the solvent of the amine solution include water; alcohols such as ethylene glycol, isopropyl alcohol, and ethanol; and mixed solvents of these alcohols and water.
  • the concentration of the polyfunctional amine component in the amine solution is 3% by weight or more, preferably 5% by weight or more, more preferably 7% by weight or more, and still more preferably 9% by weight or more It is. If the concentration of the polyfunctional amine component is less than 3% by weight, it is not possible to form a skin layer having an absorption peak intensity of 0.03 or more. On the other hand, when the concentration of the polyfunctional amine component in the amine solution is too high, the absorption peak intensity of the obtained skin layer becomes too high, and the permeation resistance tends to be increased and the water permeability tends to be lowered. Therefore, the concentration of the polyfunctional amine component is preferably 11% by weight or less, more preferably 10% by weight or less.
  • the concentration of the polyfunctional acid halide component in the organic solution is not particularly limited, but is preferably 0.1 to 5% by weight, more preferably 0.1 to 3% by weight, and still more preferably 0.1 ⁇ 2 wt%.
  • concentration of the polyfunctional acid halide component is less than 0.1% by weight, it becomes difficult to form a skin layer having an absorption peak intensity of 0.03 or more.
  • concentration of the polyfunctional acid halide component exceeds 5% by weight, the unreacted polyfunctional acid halide component tends to remain easily, or the absorption peak intensity of the obtained skin layer becomes too large, resulting in permeation resistance. And the permeability tends to decrease.
  • the organic solvent used in the organic solution is not particularly limited as long as it has low solubility in water, does not degrade the porous support, and dissolves the polyfunctional acid halide component, and examples thereof include cyclohexane, heptane, and octane. And saturated hydrocarbons such as nonane, and halogen-substituted hydrocarbons such as 1,1,2-trichlorotrifluoroethane. It is preferably a saturated hydrocarbon having a boiling point of 300 ° C. or less, more preferably 200 ° C. or less, a naphthenic solvent, or an isoparaffinic solvent.
  • the organic solvents may be used alone or in combination of two or more.
  • additives may be added to the amine solution or the organic solution for the purpose of facilitating membrane formation or improving the performance of the resulting composite semipermeable membrane.
  • the additive include surfactants such as sodium dodecyl benzene sulfonate, sodium dodecyl sulfate, and sodium lauryl sulfate, sodium hydroxide which removes hydrogen halide generated by polymerization, trisodium phosphate, triethylamine and the like.
  • the heating temperature is more preferably 70 to 200 ° C., particularly preferably 100 to 150 ° C.
  • the heating time is preferably about 30 seconds to 10 minutes, and more preferably about 40 seconds to 7 minutes.
  • the absorption peak intensity is preferably 0.1 or less, more preferably 0.09 or less, from the viewpoint of securing practical water permeability.
  • the reagent used for the chlorination treatment is not particularly limited, and examples thereof include: chlorine gas, alkali metal salts of hypochlorite such as sodium chloride powder, sodium hypochlorite, chlorine dioxide, chloramine B, chloramine T, harazone, dichlorodimethylhydantoin, Chlorinated isocyanuric acid and salts thereof and the like can be mentioned. It is preferable to use an aqueous solution of sodium hypochlorite having a pH of 1 to 10 from the viewpoint of ease of chlorination of polyamide resin and handleability.
  • hypochlorite such as sodium chloride powder, sodium hypochlorite, chlorine dioxide, chloramine B, chloramine T, harazone, dichlorodimethylhydantoin, Chlorinated isocyanuric acid and salts thereof and the like can be mentioned. It is preferable to use an aqueous solution of sodium hypochlorite having a pH of 1 to 10 from the viewpoint of ease of chlorination of polyamide resin and handleability
  • the method of chlorination treatment is not particularly limited.
  • a method of immersing the skin layer in the treatment liquid a method of applying or spraying the treatment liquid on the skin layer, a method of pressurizing and passing the treatment liquid to the skin layer, etc. It can be mentioned.
  • the method of passing the treatment liquid under pressure through the skin layer is preferable.
  • the concentration of the aqueous solution of sodium hypochlorite is about 5 to 100 ppm (preferably 5 to 40 ppm), and the operating pressure at the time of pressure passing is 0.5 to It is about 2.0 MPa.
  • the polyamide resin in the skin layer is preferably chlorinated at a chlorination rate of 0.1 to 7%, more preferably 0.5 to 4.0%, by chlorination treatment. Preferably, it is 1.0 to 3.0%. If the chlorination rate is less than 0.1%, the effect of improving the salt inhibition by chlorination can not be sufficiently obtained. On the other hand, when the chlorination rate exceeds 7%, the salt rejection rate tends to decrease.
  • the composite semipermeable membrane in order to improve the salt blocking property, the water permeability, the oxidation resistance and the like of the composite semipermeable membrane, conventionally known various treatments may be performed.
  • a dry semi-permeable composite membrane may be used from the viewpoint of excellent processability and storage stability.
  • the composite semipermeable membrane of the present invention is not limited in its shape. That is, any conceivable membrane shape is possible, such as a flat membrane or a spiral element.
  • the salt rejection ratio was calculated in advance by using the correlations (calibration curves) of NaCl concentration and aqueous solution conductivity and using them.
  • Salt inhibition rate (%) ⁇ 1- (NaCl concentration in permeate [mg / L]) / (NaCl concentration in feed solution [mg / L]) ⁇ ⁇ 100
  • the produced composite semipermeable membrane was immersed in cyclohexanone to dissolve the porous polysulfone support, and the skin layer containing the polyamide resin was isolated.
  • a resin such as polyvinyl alcohol may be applied to the surface of the skin layer in advance in order to prevent the skin layer from cracking and tearing.
  • the isolated skin layer was washed three times with cyclohexanone and once with ethanol.
  • the skin layer was laminated on the PET film so as to cover the hole having a diameter of 1 cm provided in the PET film (thickness: about 180 ⁇ m) with the skin layer, and the skin layer was dried at room temperature for 30 minutes to prepare a measurement sample .
  • a measurement sample is attached to a Fourier transform infrared spectrophotometer (PerkinElmer, Spectrum TWO), and scanning is performed in a range of 700 to 4000 cm -1 by a transmission method of FT-IR (Fourier transform infrared spectroscopy).
  • Chlorination ratio (%) ⁇ (Cl element ratio ⁇ Na element ratio) / (N element ratio / 2) ⁇ ⁇ 100
  • Example 1 An aqueous amine solution containing 7% by weight of piperazine, 0.15% by weight of sodium dodecyl sulfate, 1.48% by weight of sodium hydroxide and 6% by weight of camphorsulfonic acid is coated on a porous polysulfone support (asymmetric membrane), Thereafter, the aqueous solution coating layer was formed by removing excess aqueous amine solution. Next, the surface of the aqueous solution coating layer was immersed for 10 seconds in an acid chloride solution in which 0.42% by weight of trimesic acid trichloride (TMC) was dissolved in an isoparaffinic solvent (IP 1016, manufactured by Idemitsu Kosan Co., Ltd.).
  • TMC trimesic acid trichloride
  • Example 2 The composite semipermeable membrane prepared in Example 1 is set in a cell for flat membrane evaluation, pH 7.5, an aqueous solution containing 20 ppm of sodium hypochlorite is applied at 1.5 MPa to the feed side and the permeate side of the composite semipermeable membrane. Differential pressure was applied to make contact for 30 minutes to chlorinate the polyamide resin in the skin layer.
  • Example 3 A composite semipermeable membrane was produced in the same manner as in Example 2 except that the piperazine concentration in the aqueous amine solution was changed to 3% by weight.
  • Example 4 A composite semipermeable membrane was produced in the same manner as in Example 2 except that the piperazine concentration in the aqueous amine solution was changed to 9% by weight.
  • Example 5 A composite semipermeable membrane was produced in the same manner as in Example 2 except that the concentration of sodium hypochlorite was changed to 80 ppm.
  • Comparative Example 1 A composite semipermeable membrane was produced in the same manner as in Example 2 except that the piperazine concentration in the aqueous amine solution was changed to 1.5% by weight.
  • Comparative example 2 A composite semipermeable membrane was produced in the same manner as in Example 1 except that the piperazine concentration in the aqueous amine solution was changed to 1.5% by weight. Then, the produced composite semipermeable membrane was immersed in an aqueous solution containing pH 7.5 and 700 ppm of sodium hypochlorite at normal pressure for 5 minutes to chlorinate the polyamide resin in the skin layer.
  • the composite semipermeable membrane of the present invention is suitable for the production of ultrapure water, desalination of brackish water or seawater, etc., and is included in contamination due to pollution such as dyeing drainage and electrodeposition paint drainage. It is possible to remove and recover the contaminated sources or effective substances and contribute to the closing of the drainage. In addition, it can be used for advanced treatment such as concentration of active ingredients in food applications and removal of harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields and shale gas fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、耐酸化剤性(耐塩素性)と塩阻止性に優れる複合半透膜及びその製造方法を提供することを目的とする。本発明の複合半透膜は、多官能アミン成分と多官能酸ハライド成分とを重合して得られるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されており、前記多官能アミン成分は、脂環式ジアミンを含み、前記スキン層は、FT-IR(フーリエ変換赤外分光法)の透過法によって得られる、アミド基のC=O伸縮振動に由来する吸収ピーク強度が0.03以上であることを特徴とする。

Description

複合半透膜及びその製造方法
 本発明は、スキン層とこれを支持する多孔性支持体とを含む複合半透膜及びその製造方法に関する。かかる複合半透膜は、超純水の製造、かん水または海水の脱塩などに好適であり、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化に寄与することができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。また、油田やシェールガス田などにおける排水処理に用いることができる。
 複合半透膜はその濾過性能や処理方法に応じてRO(逆浸透)膜、NF(ナノ濾過)膜、FO(正浸透)膜と呼ばれ、超純水製造、海水淡水化、かん水の脱塩処理、排水の再利用処理などに用いることができる。
 工業的に利用される複合半透膜としては、例えば、多官能アミン成分と多官能酸ハライド成分とを反応させてなるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜が挙げられる。
 前記複合半透膜には、安定した水分離性能を有することが求められる。汚染物質を含む水(例えば、下水)を複合半透膜で処理すると、汚染物質(例えば、微生物)がスキン層表面に吸着し、次第に透水量が低下する傾向にある。そのため、定期的に複合半透膜を洗浄処理することが必要である。特に近年では、廃水処理などにおいて原水の水質が多岐にわたっており、洗浄回数が増加する傾向にある。
 複合半透膜の洗浄処理には酸化剤を含む溶液がよく用いられるが、酸化剤を含む溶液で複合半透膜を洗浄処理すると複合半透膜が劣化し、水処理性能が大きく変動するという問題があった。
 耐酸化剤性(耐塩素性)を有する複合半透膜としては、例えば、多官能アミン成分としてピペラジンを用いた複合半透膜が知られている(特許文献1)。
 しかし、特許文献1の複合半透膜は、耐酸化剤性(耐塩素性)に優れるが、塩阻止率が低いという問題があった。
 当該問題を解決するために、特許文献2では、多孔性支持膜と、界面反応によって得られる架橋ポリピペラジンアミドを主成分としてなる超薄膜とを有する半透性複合膜を製造する際に、該超薄膜をpH1.0~10の塩素含有水溶液に常圧で接触させる技術が提案されている。
 特許文献2の方法によれば、前記複合半透膜の塩阻止性はある程度向上するが、満足できるものではなく、塩阻止性がより優れる複合半透膜の開発が望まれていた。
米国特許第4769148号明細書 特開昭63-123406号公報
 本発明は、耐酸化剤性(耐塩素性)と塩阻止性に優れる複合半透膜及びその製造方法を提供することを目的とする。
 本発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す複合半透膜及びその製造方法により上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、多官能アミン成分と多官能酸ハライド成分とを重合して得られるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜であって、
 前記多官能アミン成分は、脂環式ジアミンを含み、
 前記スキン層は、FT-IR(フーリエ変換赤外分光法)の透過法によって得られる、アミド基のC=O伸縮振動に由来する吸収ピーク強度が0.03以上であることを特徴とする複合半透膜、に関する。
 多官能アミン成分として脂環式ジアミンを用いてスキン層を形成することにより、耐酸化剤性(耐塩素性)に優れる複合半透膜が得られる。
 また、前記スキン層は非常に薄い膜であり、その厚みを特定することは非常に困難であっため、これまで前記スキン層の厚みと前記複合半透膜の水分離性能との関係は検討されていなかった。今回、本発明者は、前記スキン層の厚みの代わりに、FT-IR(フーリエ変換赤外分光法)の透過法によって得られる、前記スキン層の形成材料であるポリアミド系樹脂のアミド基のC=O伸縮振動に由来する吸収ピーク強度を指標として採用し、前記吸収ピーク強度と前記複合半透膜の塩阻止率との間に相関関係があることを見出した。そして、前記吸収ピーク強度が0.03以上であるスキン層を有する複合半透膜は、従来の複合半透膜に比べて塩阻止性が非常に優れることを見出した。なお、従来の複合半透膜のスキン層の前記吸収ピーク強度は、0.01~0.02程度である。
 前記吸収ピーク強度は、実用的な透水性を確保する観点から、0.1以下であることが好ましい。
 また、前記脂環式ジアミンは、耐酸化剤性(耐塩素性)に優れる観点から、環を構成するヘテロ原子が窒素である複素脂環式ジアミンであることが好ましく、ピペラジンであることがより好ましい。
 また、前記ポリアミド系樹脂は、塩阻止性を向上させる観点から、塩素化率0.1~7%の範囲で塩素化されていることが好ましい。
 また、前記多官能酸ハライド成分は、塩阻止性を向上させる観点から、トリメシン酸トリクロライドであることが好ましい。
 また、本発明は、多官能アミン成分を含むアミン溶液と多官能酸ハライド成分を含む有機溶液とを多孔性支持体上で接触させて、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する工程を含む複合半透膜の製造方法であって、
 前記多官能アミン成分は、脂環式ジアミンを含み、
 前記アミン溶液は、前記多官能アミン成分を3重量%以上含むことを特徴とする複合半透膜の製造方法、に関する。
 前記本発明の製造方法により、前記吸収ピーク強度が0.03以上であるスキン層を有する複合半透膜を製造することができる。
 本発明の複合半透膜のスキン層は、多官能アミン成分として脂環式ジアミンを用いて形成されており、しかも前記吸収ピーク強度が0.03以上であるため、本発明の複合半透膜は、耐酸化剤性(耐塩素性)に優れるだけでなく、従来の複合半透膜に比べて塩阻止性が非常に優れている。本発明の複合半透膜を用いると、酸化剤を含む溶液で洗浄を繰り返しても透水量が変動しにくいため、水処理の運転操作が容易になる。
 以下、本発明の実施の形態について説明する。本発明の複合半透膜は、ポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されているものであり、前記スキン層は、FT-IR(フーリエ変換赤外分光法)の透過法によって得られる、アミド基のC=O伸縮振動に由来する吸収ピーク強度が0.03以上である。
 前記ポリアミド系樹脂は、多官能アミン成分と多官能酸ハライド成分とを重合して得られる。
 本発明においては、多官能アミン成分として脂環式ジアミンを使用する。脂環式ジアミンは特に制限されないが、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、及び1,4-ジアミノシクロヘキサン等のジアミノシクロヘキサン;ピペラジン、炭素数1~2のアルキル基で置換されたピペラジン(例えば、2-メチルピペラジン、2-エチルピペラジン、2,5-ジメチルピペラジン、2,5-ジエチルピペラジン等)、4-アミノメチルピペラジン、及び下記構造式(1)~(3)で表される化合物等の環を構成するヘテロ原子が窒素である複素脂環式ジアミンが挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。これらのうち、複素脂環式ジアミンを用いることが好ましく、より好ましくはピペラジンである。
 
Figure JPOXMLDOC01-appb-I000001

(上記構造式(3)において、nは1~3の整数である。また、前記構造式(1)~(3)において、環を構成する炭素原子に結合する水素は炭素数1~2のアルキル基で置換されていてもよい。)
 多官能アミン成分としては、前記脂環式ジアミンのみを使用することが好ましいが、本発明の効果を損なわない範囲で下記のような芳香族又は脂肪族の多官能アミンを併用してもよい。
 芳香族多官能アミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、及びキシリレンジアミン等が挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。
 脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2-アミノエチル)アミン、及びN-フェニル-エチレンジアミン等が挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。
 前記脂環式ジアミンと前記芳香族又は脂肪族の多官能アミンを併用する場合は、多官能アミン成分全体中に前記脂環式ジアミンを85重量%以上用いることが好ましく、より好ましくは90重量%以上であり、さらに好ましくは95重量%以上である。
 多官能酸ハライド成分とは、反応性カルボニル基を2個以上有する多官能酸ハライドである。
 多官能酸ハライドとしては、芳香族、脂肪族、及び脂環式の多官能酸ハライドが挙げられる。
 芳香族多官能酸ハライドとしては、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライド、及びクロロスルホニルベンゼンジカルボン酸ジクロライド等が挙げられる。
 脂肪族多官能酸ハライドとしては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、及びアジポイルハライド等が挙げられる。
 脂環式多官能酸ハライドとしては、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、及びテトラハイドロフランジカルボン酸ジクロライド等が挙げられる。
 これら多官能酸ハライドは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能酸ハライドを用いることが好ましい。また、多官能酸ハライド成分の少なくとも一部に3価以上の多官能酸ハライドを用いて、架橋構造を形成するのが好ましい。これらの観点から、特に、トリメシン酸トリクロライドを用いることが好ましい。
 また、ポリアミド系樹脂を含むスキン層の性能を向上させるために、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などのポリマー;ソルビトール、グリセリンなどの多価アルコールなどをコーティングしてもよい。
 スキン層を支持する多孔性支持体は、スキン層を支持しうるものであれば特に限定されない。多孔性支持体の形成材料としては、例えば、ポリスルホン、ポリエーテルスルホンのようなポリアリールエーテルスルホン、ポリイミド、ボリフッ化ビニリデンなど種々のものをあげることができるが、特に化学的、機械的、熱的に安定である点からポリスルホン、ポリアリールエーテルスルホンが好ましく用いられる。かかる多孔性支持体の厚さは、通常約25~125μm、好ましくは約40~75μmであるが、必ずしもこれらに限定されるものではない。なお、多孔性支持体は織布、不織布等の基材による裏打ちにて補強されていてもよい。
 前記多孔性支持体は、対称構造でも非対称構造でもよいが、スキン層の支持機能と通液性を両立させる観点から、非対称構造が好ましい。なお、多孔性支持体のスキン層形成側面の平均孔径は0.01~0.5μmであることが好ましい。
 また、多孔性支持体として、エポキシ樹脂多孔シートを用いてもよい。エポキシ樹脂多孔シートの平均孔径は0.01~0.4μmであることが好ましい。
 ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する方法は特に制限されず、あらゆる公知の手法を用いることができる。例えば、界面縮合法、相分離法、薄膜塗布法などが挙げられる。界面縮合法とは、具体的に、多官能アミン成分を含有するアミン溶液と、多官能酸ハライド成分を含有する有機溶液とを接触させて界面重合させることによりスキン層を形成し、該スキン層を多孔性支持体上に載置する方法や、多孔性支持体上での前記界面重合によりポリアミド系樹脂のスキン層を多孔性支持体上に直接形成する方法である。かかる界面縮合法の条件等の詳細は、特開昭58-24303号公報、特開平1-180208号公報等に記載されており、それらの公知技術を適宜採用することができる。
 本発明においては、前記脂環式ジアミンを含むアミン溶液からなるアミン溶液被覆層を多孔性支持体上に形成し、次いで多官能酸ハライド成分を含有する有機溶液と前記アミン溶液被覆層とを接触させて界面重合させることによりスキン層を形成する方法が好ましい。
 アミン溶液の溶媒としては、例えば、水;エチレングリコール、イソプロピルアルコール、及びエタノールなどのアルコール;これらアルコールと水との混合溶媒などが挙げられる。
 前記界面重合法において、アミン溶液中の多官能アミン成分の濃度は3重量%以上であり、好ましくは5重量%以上であり、より好ましくは7重量%以上であり、さらに好ましくは9重量%以上である。多官能アミン成分の濃度が3重量%未満の場合には、前記吸収ピーク強度が0.03以上であるスキン層を形成することができない。一方、アミン溶液中の多官能アミン成分の濃度が高くなりすぎると、得られたスキン層の前記吸収ピーク強度が大きくなりすぎ、透過抵抗が大きくなって透水性が低下する傾向にある。そのため、多官能アミン成分の濃度は11重量%以下であることが好ましく、より好ましくは10重量%以下である。
 前記有機溶液中の多官能酸ハライド成分の濃度は特に制限されないが、0.1~5重量%であることが好ましく、より好ましくは0.1~3重量%であり、さらに好ましくは0.1~2重量%である。多官能酸ハライド成分の濃度が0.1重量%未満の場合には、前記吸収ピーク強度が0.03以上であるスキン層を形成し難くなる。一方、多官能酸ハライド成分の濃度が5重量%を超える場合には、未反応多官能酸ハライド成分が残留しやすくなったり、得られたスキン層の前記吸収ピーク強度が大きくなりすぎ、透過抵抗が大きくなって透水性が低下する傾向にある。
 前記有機溶液に用いられる有機溶媒としては、水に対する溶解度が低く、多孔性支持体を劣化させず、多官能酸ハライド成分を溶解するものであれば特に限定されず、例えば、シクロヘキサン、ヘプタン、オクタン、及びノナン等の飽和炭化水素、1,1,2-トリクロロトリフルオロエタン等のハロゲン置換炭化水素などを挙げることができる。好ましくは沸点が300℃以下、さらに好ましくは沸点が200℃以下の飽和炭化水素、ナフテン系溶媒、又はイソパラフィン系溶媒である。有機溶媒は1種単独で用いてもよく、2種以上の混合溶媒として用いてもよい。
 前記アミン溶液又は有機溶液には、製膜を容易にしたり、得られる複合半透膜の性能を向上させるための目的で各種の添加剤を加えることができる。前記添加剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、及びラウリル硫酸ナトリウム等の界面活性剤、重合により生成するハロゲン化水素を除去する水酸化ナトリウム、リン酸三ナトリウム、及びトリエチルアミン等の塩基性化合物、アシル化触媒、特開平8-224452号公報記載の溶解度パラメータが8~14(cal/cm1/2の化合物などが挙げられる。
 本発明においては、アミン溶液からなるアミン溶液被覆層と有機溶液との接触後、多孔性支持体上の過剰な有機溶液を除去し、多孔性支持体上の形成膜を70℃以上で加熱乾燥してスキン層を形成することが好ましい。形成膜を加熱処理することによりその機械的強度や耐熱性等を高めることができる。加熱温度は70~200℃であることがより好ましく、特に好ましくは100~150℃である。加熱時間は30秒~10分程度が好ましく、さらに好ましくは40秒~7分程度である。
 得られたスキン層は、FT-IR(フーリエ変換赤外分光法)の透過法によって得られる、アミド基のC=O伸縮振動に由来する吸収ピーク強度が0.03以上であり、好ましくは0.05以上であり、より好ましくは0.06以上である。前記吸収ピーク強度は、実用的な透水性を確保する観点から、0.1以下であることが好ましく、より好ましくは0.09以下である。
 本発明においては、塩阻止性を向上させるために、スキン層中のポリアミド系樹脂を塩素化することが好ましい。
 塩素化処理に用いる試薬は特に制限されず、例えば、塩素ガス、サラシ粉、次亜塩素酸ナトリウム等の次亜塩素酸アルカリ金属塩、二酸化塩素、クロラミンB、クロラミンT、ハラゾーン、ジクロロジメチルヒダントイン、塩素化イソシアヌル酸、及びその塩等が挙げられる。ポリアミド系樹脂の塩素化のしやすさ及び取り扱い性の観点から、pH1~10の次亜塩素酸ナトリウム水溶液を用いることが好ましい。
 塩素化処理の方法は特に制限されず、例えば、スキン層を処理液に浸漬する方法、スキン層に処理液を塗布又は噴霧する方法、及びスキン層に処理液を加圧通水する方法などが挙げられる。これらのうち、スキン層に処理液を加圧通水する方法が好ましい。処理液として次亜塩素酸ナトリウム水溶液を用いる場合、次亜塩素酸ナトリウム水溶液の濃度は5~100ppm程度(好ましくは5~40ppm)であり、加圧通水する際の操作圧力は0.5~2.0MPa程度である。
 塩素化処理により、スキン層中のポリアミド系樹脂は、塩素化率0.1~7%の範囲で塩素化されていることが好ましく、より好ましくは0.5~4.0%であり、さらに好ましくは1.0~3.0%である。塩素化率が0.1%未満の場合には、塩素化処理による塩阻止性の向上効果が十分に得られない。一方、塩素化率が7%を超える場合には、塩阻止率が低下する傾向にある。
 また、複合半透膜の塩阻止性、透水性、及び耐酸化剤性等を向上させるために、従来公知の各種処理を施してもよい。また、加工性や保存性に優れているという観点から、乾燥タイプの複合半透膜としてもよい。
 本発明の複合半透膜は、その形状になんら制限を受けるものではない。すなわち平膜状、あるいはスパイラルエレメント状など、考えられるあらゆる膜形状が可能である。
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。
 〔評価及び測定方法〕
 (透過流束及び塩阻止率の測定)
 作製した平膜状の複合半透膜を所定の形状、サイズに切断し、平膜評価用のセルにセットした。1500mg/LのNaClを含みかつNaOHを用いてpH6.5~7に調整した水溶液を25℃で膜の供給側と透過側に1.5MPaの差圧を与えて膜に30分接触させた。この操作によって得られた透過水の透過速度および電導度を測定し、透過流束(m/m・d)および塩阻止率(%)を算出した。塩阻止率は、NaCl濃度と水溶液電導度の相関(検量線)を事前に作成し、それらを用いて下式により算出した。 
 塩阻止率(%)={1-(透過液中のNaCl濃度[mg/L])/(供給液中のNaCl濃度[mg/L])}×100
 (アミド基のC=O伸縮振動に由来する吸収ピーク強度の測定)
 作製した複合半透膜をシクロヘキサノンに浸して多孔性ポリスルホン支持体を溶解し、ポリアミド系樹脂を含むスキン層を単離した。なお、スキン層を単離する際に、スキン層の割れ及び裂けを防ぐために予めポリビニルアルコール等の樹脂をスキン層表面に塗って補強してもよい。単離したスキン層をシクロヘキサノンで3回洗浄、エタノールで1回洗浄した。その後、PETフィルム(厚み:約180μm)に設けた直径1cmの穴をスキン層で覆うようにPETフィルム上にスキン層を積層し、スキン層を室温で30分乾燥して測定用サンプルを作製した。そして、フーリエ変換赤外分光光度計(PerkinElmer社製、Spectrum TWO)に測定用サンプルを取り付けて、FT-IR(フーリエ変換赤外分光法)の透過法により700~4000cm-1の範囲でスキャンし、スキン層の形成材料であるポリアミド系樹脂のアミド基のC=O伸縮振動に由来する吸収ピーク強度(1620cm-1付近)を測定した(スキャン回数16回)。
 (塩素化率の測定)
 作製した複合半透膜の元素比率をX線光電子分光分析装置(島津社製、ESCA-3200)で分析し、得られた元素比率(atm%)を用いて下式により算出した。 
 塩素化率(%)={(Cl元素比率-Na元素比率)/(N元素比率/2)}×100
 実施例1
 ピペラジン7重量%、ドデシル硫酸ナトリウム0.15重量%、水酸化ナトリウム1.48重量%、及びカンファースルホン酸6重量%を含有するアミン水溶液を多孔性ポリスルホン支持体(非対称膜)上に塗布し、その後、余分なアミン水溶液を除去することにより水溶液被覆層を形成した。次に、前記水溶液被覆層の表面を、トリメシン酸トリクロライド(TMC)0.42重量%をイソパラフィン系溶媒(出光興産社製、IP1016)に溶解させた酸クロライド溶液中に10秒間浸した。その後、前記水溶液被覆層表面の余分な溶液を除去し、60秒間風乾し、さらに120℃の熱風乾燥機中で3分間保持して、多孔性ポリスルホン支持体上にポリアミド系樹脂を含むスキン層を形成して複合半透膜を作製した。
 実施例2
 実施例1で作製した複合半透膜を平膜評価用のセルにセットし、pH7.5、次亜塩素酸ナトリウム20ppmを含む水溶液を複合半透膜の供給側と透過側に1.5MPaの差圧を与えて30分接触させてスキン層中のポリアミド系樹脂を塩素化した。
 実施例3
 アミン水溶液中のピペラジン濃度を3重量%に変更した以外は実施例2と同様の方法で複合半透膜を作製した。
 実施例4
 アミン水溶液中のピペラジン濃度を9重量%に変更した以外は実施例2と同様の方法で複合半透膜を作製した。
 実施例5
 次亜塩素酸ナトリウムの濃度を80ppmに変更した以外は実施例2と同様の方法で複合半透膜を作成した。
 比較例1
 アミン水溶液中のピペラジン濃度を1.5重量%に変更した以外は実施例2と同様の方法で複合半透膜を作製した。
 比較例2
 アミン水溶液中のピペラジン濃度を1.5重量%に変更した以外は実施例1と同様の方法で複合半透膜を作製した。そして、作製した複合半透膜をpH7.5、次亜塩素酸ナトリウム700ppmを含む水溶液中に常圧で5分浸漬してスキン層中のポリアミド系樹脂を塩素化した。
Figure JPOXMLDOC01-appb-T000002
 本発明の複合半透膜は、超純水の製造、かん水または海水の脱塩などに好適であり、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化に寄与することができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。また、油田やシェールガス田などにおける排水処理に用いることができる。

Claims (7)

  1.  多官能アミン成分と多官能酸ハライド成分とを重合して得られるポリアミド系樹脂を含むスキン層が多孔性支持体の表面に形成されている複合半透膜であって、
     前記多官能アミン成分は、脂環式ジアミンを含み、
     前記スキン層は、FT-IR(フーリエ変換赤外分光法)の透過法によって得られる、アミド基のC=O伸縮振動に由来する吸収ピーク強度が0.03以上であることを特徴とする複合半透膜。
  2.  前記吸収ピーク強度は、0.1以下である請求項1に記載の複合半透膜。
  3.  前記脂環式ジアミンは、環を構成するヘテロ原子が窒素である複素脂環式ジアミンである請求項1又は2に記載の複合半透膜。
  4.  前記複素脂環式ジアミンは、ピペラジンである請求項3に記載の複合半透膜。
  5.  前記ポリアミド系樹脂は、塩素化率0.1~7%の範囲で塩素化されている請求項1~4のいずれかに記載の複合半透膜。
  6.  前記多官能酸ハライド成分は、トリメシン酸トリクロライドである請求項1~5のいずれかに記載の複合半透膜。
  7.  多官能アミン成分を含むアミン溶液と多官能酸ハライド成分を含む有機溶液とを多孔性支持体上で接触させて、ポリアミド系樹脂を含むスキン層を多孔性支持体の表面に形成する工程を含む複合半透膜の製造方法であって、
     前記多官能アミン成分は、脂環式ジアミンを含み、
     前記アミン溶液は、前記多官能アミン成分を3重量%以上含むことを特徴とする複合半透膜の製造方法。
PCT/JP2018/030437 2017-09-15 2018-08-16 複合半透膜及びその製造方法 WO2019054119A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207010415A KR102551961B1 (ko) 2017-09-15 2018-08-16 복합 반투막 및 그의 제조 방법
CN201880058948.9A CN111050891A (zh) 2017-09-15 2018-08-16 复合半透膜及其制造方法
EP18857259.8A EP3682964A4 (en) 2017-09-15 2018-08-16 SEMIPERMEABLE COMPOSITE MEMBRANE AND METHOD OF MANUFACTURING THEREOF
US16/645,642 US20200261860A1 (en) 2017-09-15 2018-08-16 Composite semipermeable membrane and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-177513 2017-09-15
JP2017177513A JP7300810B2 (ja) 2017-09-15 2017-09-15 複合半透膜及びその製造方法

Publications (1)

Publication Number Publication Date
WO2019054119A1 true WO2019054119A1 (ja) 2019-03-21

Family

ID=65722691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030437 WO2019054119A1 (ja) 2017-09-15 2018-08-16 複合半透膜及びその製造方法

Country Status (6)

Country Link
US (1) US20200261860A1 (ja)
EP (1) EP3682964A4 (ja)
JP (1) JP7300810B2 (ja)
KR (1) KR102551961B1 (ja)
CN (1) CN111050891A (ja)
WO (1) WO2019054119A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176049A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法
WO2023176048A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102564660B1 (ko) * 2015-07-31 2023-08-09 도레이 카부시키가이샤 분리막, 분리막 엘리먼트, 정수기 및 분리막의 제조 방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824303A (ja) 1981-08-03 1983-02-14 Teijin Ltd 耐酸化性複合半透膜
JPS63123406A (ja) 1986-11-13 1988-05-27 Toray Ind Inc 半透性複合膜の製造方法
US4769148A (en) 1987-11-18 1988-09-06 The Dow Chemical Company Novel polyamide reverse osmosis membranes
JPH01180208A (ja) 1988-01-11 1989-07-18 Toray Ind Inc 複合半透膜の製造方法およびその膜
JPH08224452A (ja) 1994-12-22 1996-09-03 Nitto Denko Corp 高透過性複合逆浸透膜の製造方法
JP2010137192A (ja) * 2008-12-15 2010-06-24 Toray Ind Inc 複合ナノろ過膜
JP2014233652A (ja) * 2013-05-31 2014-12-15 東レ株式会社 複合半透膜
WO2015114727A1 (ja) * 2014-01-28 2015-08-06 日東電工株式会社 複合分離膜とこれを用いた分離膜エレメント
JP2016093797A (ja) * 2014-11-17 2016-05-26 日東電工株式会社 複合分離膜とこれを用いた分離膜エレメント

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2087421A1 (en) * 1992-01-22 1993-07-23 Hisao Hachisuka Composite reverse osmosis membrane and novel acid chloride
US20030136727A1 (en) * 1999-05-27 2003-07-24 Hideki Yamada Composite semipermeable membrane
JP2001286741A (ja) * 2000-04-04 2001-10-16 Toray Ind Inc 逆浸透複合膜およびその製造方法
US6337018B1 (en) * 2000-04-17 2002-01-08 The Dow Chemical Company Composite membrane and method for making the same
CN104470629B (zh) * 2012-07-19 2016-12-07 陶氏环球技术有限责任公司 源自于多官能胺以及不同的多官能胺‑反应性单体的组合的膜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824303A (ja) 1981-08-03 1983-02-14 Teijin Ltd 耐酸化性複合半透膜
JPS63123406A (ja) 1986-11-13 1988-05-27 Toray Ind Inc 半透性複合膜の製造方法
US4769148A (en) 1987-11-18 1988-09-06 The Dow Chemical Company Novel polyamide reverse osmosis membranes
JPH01180208A (ja) 1988-01-11 1989-07-18 Toray Ind Inc 複合半透膜の製造方法およびその膜
JPH08224452A (ja) 1994-12-22 1996-09-03 Nitto Denko Corp 高透過性複合逆浸透膜の製造方法
JP2010137192A (ja) * 2008-12-15 2010-06-24 Toray Ind Inc 複合ナノろ過膜
JP2014233652A (ja) * 2013-05-31 2014-12-15 東レ株式会社 複合半透膜
WO2015114727A1 (ja) * 2014-01-28 2015-08-06 日東電工株式会社 複合分離膜とこれを用いた分離膜エレメント
JP2016093797A (ja) * 2014-11-17 2016-05-26 日東電工株式会社 複合分離膜とこれを用いた分離膜エレメント

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176049A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法
WO2023176048A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法

Also Published As

Publication number Publication date
CN111050891A (zh) 2020-04-21
EP3682964A1 (en) 2020-07-22
JP7300810B2 (ja) 2023-06-30
EP3682964A4 (en) 2021-06-16
KR20200053549A (ko) 2020-05-18
KR102551961B1 (ko) 2023-07-05
JP2019051480A (ja) 2019-04-04
US20200261860A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP3006976B2 (ja) 高透過性複合逆浸透膜の製造方法
JP3681214B2 (ja) 高透過性複合逆浸透膜
JP5215276B2 (ja) ポリアミド逆浸透複合膜及びその製造方法
KR102451858B1 (ko) 복합 반투막, 및 스파이럴형 분리막 엘리먼트
WO2019054119A1 (ja) 複合半透膜及びその製造方法
EP1500425A1 (en) Composite semipermeable membrane and process for producing the same
WO2015118894A1 (ja) 複合半透膜の製造方法
JP3862184B2 (ja) 複合逆浸透膜の製造方法
JPWO2002076594A1 (ja) 複合半透膜、その製造方法、及びそれを用いた水処理方法
JP6521422B2 (ja) スパイラル型分離膜エレメント
JP4563093B2 (ja) 高塩阻止率複合逆浸透膜の製造方法
JPH10165789A (ja) 乾燥複合逆浸透膜の製造方法
WO2017002699A1 (ja) 複合半透膜及びその製造方法
KR20050004788A (ko) 투과성이 개선된 반투막의 제조방법
JP3611795B2 (ja) ポリアミド系逆浸透複合膜及びその製造方法
KR20190055664A (ko) 염 제거율 및 보론 제거율이 향상된 폴리아미드 복합 멤브레인 및 이의 제조방법
JP2000237559A (ja) 高透過性複合逆浸透膜の製造法
JP3647620B2 (ja) 高透過性複合逆浸透膜の処理方法及び高透過性複合逆浸透膜
WO2023176048A1 (ja) 複合逆浸透膜及びその製造方法
JP2015147192A (ja) 複合半透膜の製造方法
KR101825632B1 (ko) 고유량 폴리아미드 복합막의 제조방법
JP2005246207A (ja) 複合半透膜の製造方法
JP2007090140A (ja) 乾燥複合半透膜の製造方法
JP2005205279A (ja) 複合半透膜の製造方法
JP2006095476A (ja) 複合逆浸透膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010415

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018857259

Country of ref document: EP

Effective date: 20200415