WO2019031245A1 - 付加硬化型シリコーン組成物及びシリコーンゴム硬化物 - Google Patents

付加硬化型シリコーン組成物及びシリコーンゴム硬化物 Download PDF

Info

Publication number
WO2019031245A1
WO2019031245A1 PCT/JP2018/027884 JP2018027884W WO2019031245A1 WO 2019031245 A1 WO2019031245 A1 WO 2019031245A1 JP 2018027884 W JP2018027884 W JP 2018027884W WO 2019031245 A1 WO2019031245 A1 WO 2019031245A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
parts
addition
silicone composition
Prior art date
Application number
PCT/JP2018/027884
Other languages
English (en)
French (fr)
Inventor
諒 芦田
首藤 重揮
英典 水嶋
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020207004647A priority Critical patent/KR20200035056A/ko
Priority to EP18843288.4A priority patent/EP3666828B1/en
Priority to US16/637,220 priority patent/US20200165455A1/en
Priority to CN201880051508.0A priority patent/CN110892023B/zh
Publication of WO2019031245A1 publication Critical patent/WO2019031245A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to an addition-curable silicone composition which can give a cured silicone rubber having excellent flame retardancy and is excellent in storage stability.
  • Silicone rubber is used in various fields because it has excellent heat resistance, weather resistance, electrical properties and the like.
  • silicone rubber is flammable and does not burn easily when the flame is brought close, but has the property of continuing to burn once it is ignited. Therefore, various developments have been attempted to improve the flame retardancy of silicone rubber.
  • Patent Document 1 by blending an aluminum hydroxide powder and a zinc carbonate powder in an addition reaction-curable liquid silicone rubber composition, it is excellent in moldability and the like, and excellent in flame retardancy and electrical characteristics. It is described to give silicone rubber moldings. Further, in Patent Document 2, a silicone rubber composition containing carbon black and aluminum hydroxide as a flame retardancy improving material is excellent in flowability, moldability and curability, and is also silicone rubber having flame retardancy. It is stated that giving. However, when a basic inorganic filler such as aluminum hydroxide or zinc carbonate is added to the liquid silicone rubber composition, the hydrosilyl group contained in the cross-linking material will dehydrogenate over time and cause thickening. There was a problem.
  • a basic inorganic filler such as aluminum hydroxide or zinc carbonate
  • Patent Document 3 an organopolysiloxane resin, an inorganic filler such as silica, and an iron oxide fine powder are blended in a liquid addition-curable silicone rubber composition, and the heating loss of the organohydrogenpolysiloxane is controlled. Methods for improving flame retardancy are described.
  • Patent Document 4 describes that addition of a triazole-based compound and an isocyanate-based compound to a silicone rubber composition provides an addition of a cured silicone rubber having high flame retardancy without impairing the physical properties of the base silicone rubber. Curable silicone rubber compositions are described. However, these silicone rubber compositions have not yet obtained sufficient flame retardancy.
  • the present invention has been made in view of the above circumstances, and can provide a silicone rubber having excellent flame retardancy, and addition with excellent storage stability in which thickening due to dehydrogenation does not occur over time
  • An object of the present invention is to provide a curable silicone composition.
  • an addition-curable silicone rubber composition containing a silicon-bonded alkenyl-containing organopolysiloxane, an organohydrogenpolysiloxane, and a hydrosilylation catalyst containing a silicon-bonded alkenyl-containing organopolysiloxane, an organohydrogenpolysiloxane, and a hydrosilylation catalyst.
  • a highly flame-retardant silicone rubber cured product can be obtained by combining and adding talc fine powder and 1,2,3-benzotriazole or its derivative in a specific compounding amount respectively.
  • the flame retardancy improving effect is insufficient (in particular, according to the UL 94 standard).
  • a silicone rubber having a flame retardancy equivalent to V-0 can not be obtained
  • excellent flame retardancy can be obtained by combining talc fine powder with 1,2,3-benzotriazole or a derivative thereof. It has been found that it is possible to provide a silicone rubber having properties (in particular, a silicone rubber having a flame retardancy corresponding to V-0 in the UL 94 standard), and the present invention has been achieved. Furthermore, it has been found that the silicone rubber composition has excellent storage stability.
  • the present invention provides the following components (A) to (E), (A) 100 parts by mass of organopolysiloxane liquid at 25 ° C. having two or more alkenyl groups bonded to a silicon atom in one molecule, (B) Organohydrogenpolysiloxane having two or more hydrogen atoms bonded to silicon atoms in one molecule: The number of hydrogen atoms bonded to silicon atoms contained in the component (B) is the component (A) 1 to 10 per one alkenyl group bonded to a silicon atom contained in the (C) Platinum group metal catalyst: amount of catalyst, (D) fine powder of talc: 10 to 100 parts by mass, and (E) 1,2,3-benzotriazole or a derivative thereof: an amount of 2 to 500 mol per mol of platinum group metal atom of the component (C) There are provided an addition-curable silicone composition containing the same and a silicone rubber obtained by curing the composition.
  • the silicone composition of the present invention can provide a silicone rubber having a flame retardancy corresponding to V-0 in the UL 94 standard. Further, the silicone composition hardly thickens with time and has high storage stability.
  • the component (A) is an organopolysiloxane liquid at 25 ° C., having two or more alkenyl groups bonded to a silicon atom in one molecule.
  • Examples of the molecular structure of the component (A) include linear, cyclic, branched and the like, but the main chain basically consists of repeating diorganosiloxane units and both molecular chain terminals are tri Preferred are linear diorganopolysiloxanes blocked with organosiloxy groups.
  • the silicon atom to which the alkenyl group is bonded in the molecule of the organopolysiloxane has a molecular chain terminal (ie, a triorganosiloxy group (M Units))) and the middle of the molecular chain (ie, a difunctional diorganosiloxane unit (D unit) or a trifunctional monoorganosilsesquioxane unit (T unit) located at the end of the molecular chain)
  • M Units triorganosiloxy group
  • D unit difunctional diorganosiloxane unit
  • T unit trifunctional monoorganosilsesquioxane unit located at the end of the molecular chain
  • One or both of the silicon atoms present in may be used.
  • a well-known compound can be used for (A) component, Especially preferably, it is a linear diorganopolysiloxane which has an alkenyl group couple
  • alkenyl group examples include those having 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms, and vinyl, allyl, propenyl, butenyl, pentenyl, hexenyl, cyclohexenyl and heptenyl And the like, with a vinyl group being particularly preferred.
  • the amount of the alkenyl group contained in the component (A) is preferably 0.001 to 10% with respect to the total (total number) of monovalent hydrocarbon groups bonded to the silicon atom, and particularly preferably 0.01 to 10%. It is preferably about 5%.
  • Examples of the monovalent organic group other than the alkenyl group bonded to the silicon atom of the organopolysiloxane include, independently of one another, monovalent hydrocarbon groups having 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms. .
  • alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclohexyl and heptyl; aryls such as phenyl, tolyl, xylyl and naphthyl; benzyl And aralkyl groups such as phenethyl group and the like, with preference given to methyl group.
  • the viscosity at 25 ° C. of the component (A) is preferably in the range of 100 to 500,000 mPa ⁇ s, and particularly preferably in the range of 1,000 to 200,000 mPa ⁇ s. When the viscosity is in this range, the handling workability of the resulting composition is good, and the mechanical properties of the resulting cured silicone rubber are good.
  • the viscosity of the component (A) is a value measured by a rotational viscometer described in JIS K 7117-1: 1999.
  • organopolysiloxane examples include trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer of molecular chain both ends, trimethylsiloxy group-blocked methylvinylpolysiloxane of molecular chain both ends, trimethylsiloxy group-blocked dimethyl siloxane of molecular chain both ends ⁇ Methylvinylsiloxane ⁇ Methylphenylsiloxane copolymer, Dimethylvinylsiloxy-terminated dimethylpolysiloxane with molecular chain, Dimethylvinylsiloxy-terminated methylvinylpolysiloxane with molecular chain, Dimethylvinylsiloxy-terminated dimethylsiloxane with molecular chain ⁇ Methyl vinyl siloxane copolymer, Dimethyl vinylsiloxy group blocked dimethyl siloxane terminal ⁇ Methyl vinyl siloxane cop
  • Component (B) is an organohydrogenpolysiloxane having at least two hydrogen atoms (SiH groups) bonded to a silicon atom in one molecule, which undergoes a hydrosilylation reaction with an alkenyl group in component (A) to cause a crosslinking agent Acts as a curing agent.
  • the organohydrogenpolysiloxane may be any known compound but preferably contains substantially no hydroxyl group bonded to a silicon atom (ie, silanol group) in the molecule.
  • the organohydrogenpolysiloxane may be used alone or in combination of two or more.
  • the SiH group refers to a hydrosilyl group.
  • R 1 a H b SiO (4-a-b) / 2 (1)
  • R 1 's are each independently an unsubstituted or substituted, preferably a monovalent hydrocarbon group having 1 to 10 carbon atoms, provided that they have an aliphatic unsaturated bond such as an alkenyl group Absent.
  • unsubstituted or substituted monovalent hydrocarbon group for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, And alkyl groups such as octyl group, nonyl group and decyl group, aryl groups such as phenyl group, tolyl group, xylyl group and naphthyl group, aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group, etc. .
  • a is a positive number of 0.7 to 2.1
  • b is a positive number of 0.001 to 1.0
  • a + b is a number satisfying the range of 0.8 to 3.0.
  • a is a positive number of 1.0 to 2.0
  • b is a positive number of 0.01 to 1.0
  • a + b is a number satisfying the range of 1.5 to 2.5. .
  • the organohydrogenpolysiloxane has at least 2 (usually 2 to 200), preferably 3 or more (eg 3 to 100), more preferably 4 to 50 SiH groups in one molecule. .
  • the SiH group may be located at the molecular chain end, in the middle of the molecular chain, or may be located at both of them.
  • the molecular structure of the organohydrogenpolysiloxane may be any of linear, cyclic, branched and three-dimensional network structure.
  • the number (or degree of polymerization) of silicon atoms in one molecule is usually 2 to 300, preferably 3 to 150, more preferably 4 to 100.
  • the degree of polymerization can be determined, for example, as a polystyrene-equivalent number average degree of polymerization (number average molecular weight) in GPC (gel permeation chromatography) analysis using toluene as a developing solvent.
  • GPC gel permeation chromatography
  • the viscosity at 25 ° C. of the component (B) is usually 0.1 to 1,000 mPa ⁇ s, preferably 0.5 to 500 mPa ⁇ s, and preferably liquid at 25 ° C.
  • the viscosity is a value measured by a rotational viscometer described in JIS K 7117-1: 1999.
  • organohydrogenpolysiloxane 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris (hydrogendimethylsiloxy) methylsilane, tris (hydrogendimethyl) Siloxy) phenylsilane, methyl hydrogen cyclopolysiloxane, methyl hydrogen siloxane ⁇ dimethyl siloxane cyclic copolymer, molecular chain both ends trimethylsiloxy group blocked methyl hydrogen polysiloxane, molecular chain both ends trimethylsiloxy group blocked dimethyl siloxane ⁇ methyl Hydrogen siloxane copolymer, trimethylsiloxy group blocked dimethyl siloxane ⁇ methyl hydrogen siloxane ⁇ methyl phenyl siloxane copolymer, both molecular chain both terminal trime Lucyloxy group-blocked dimethylsiloxane / methylhydrogensiloxane
  • Component (B) is compounded in such a manner that the number of silicon-bonded hydrogen atoms in component (B) relative to one silicon-bonded alkenyl group in component (A) is 1 to 10, preferably 1.5 to 5 The ratio is within the range of If the amount of the component (B) is less than the above lower limit, the composition may not be sufficiently cured. Moreover, when it exceeds the said upper limit, there exists a possibility that the heat resistance of the silicone rubber cured material obtained may deteriorate extremely.
  • the platinum group metal-based catalyst may be a conventionally known catalyst as an addition reaction catalyst.
  • platinum based catalysts palladium based catalysts, and ruthenium based catalysts can be mentioned.
  • platinum-based catalysts are preferable.
  • platinum black, second platinum chloride, chloroplatinic acid, reaction product of chloroplatinic acid and monohydric alcohol, complex of chloroplatinic acid and olefins, platinum bisacetoacetate and the like are mentioned.
  • the compounding quantity of this platinum group metal type catalyst should just be the catalyst quantity for promoting the addition reaction of above-mentioned (A) component and (B) component.
  • the addition amount is about 1 to 1,000 ppm, particularly about 1 to 500 ppm, based on the total mass of the components (A) and (B) as platinum group metal (in terms of mass).
  • the addition amount is too small, the curability decreases, and when the addition amount is too large, it is economically disadvantageous.
  • Talc fine powder is an inorganic powder (non-reinforcing filler) known as a heat resistance improver and the like. Although the addition of only talc fine powder to the addition reaction-curable silicone composition is insufficient in the flame retardancy improving effect, it can not provide a silicone rubber having a flame retardancy equivalent to V-0 in the UL 94 standard. By blending in combination with the (E) benzotriazole or benzotriazole derivative described later, a silicone rubber having excellent flame retardancy (for example, flame retardancy corresponding to V-0 in the UL 94 standard) is provided. Furthermore, it is possible to provide a composition excellent in storage stability without causing thickening due to dehydrogenation over time.
  • the talc fine powder preferably has a median diameter of 0.1 to 50 ⁇ m by a laser diffraction method, and more preferably 5 to 40 ⁇ m. If the median diameter is larger than the above upper limit value, mechanical properties of the silicone composition may be deteriorated, and if smaller than the above lower limit value, the viscosity of the silicone composition may be increased to deteriorate the workability.
  • One of the talc fine powders having the median diameter may be used alone, or two or more thereof may be used in combination.
  • the fine powder of talc may be one which has not been surface-treated, but preferably is fine powder of surface-treated with an organosilicon compound described later.
  • the talc fine powder surface-treated with the organosilicon compound has an improved affinity to the silicone resin, so the viscosity of the composition is lowered and the handling workability is improved.
  • the surface treatment method of talc fine powder is not particularly limited, but for example, the above-mentioned untreated talc fine powder and organosilicon compound are put in a machine kneading apparatus or a fluidized bed sealed under normal pressure, and, if necessary, It can be mixed at room temperature (25 ° C.) or heat treatment (under heating) in the presence of an inert gas.
  • water or a catalyst such as a hydrolysis promoter
  • the surface-treated talc fine powder can be produced by drying.
  • the compounding amount of the organosilicon compound may be not less than the amount calculated from the coating area of the surface treatment agent, and usually 0.1 to 20 parts by mass, preferably 100 parts by mass of the untreated fine talc powder. It can be 0.1 to 15 parts by mass, more preferably 0.1 to 10 parts by mass.
  • organosilicon compounds include silazanes such as hexamethyldisilazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane And alkoxysilanes such as butyltrimethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, vinyltriethoxysilane, vinyltrimethoxysilane, trimethylmethoxysilane, triethylmethoxysilane, vinyltris (methoxyethoxy) silane, chloropropyltrimethoxysilane, Chlorosilanes such as trimethylchlorosilane and dimethyldichlorosilane; silane coupling agents such as trimethylsilanol and hydroxypentamethyldisiloxane; or polymethylsiloxane; Gano
  • the compounding amount of the component (D) is 10 to 100 parts by mass, preferably 20 to 90 parts by mass, more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the component (A).
  • the compounding amount of the component (D) is less than the above lower limit value, sufficient flame retardancy improvement effect can not be obtained, and when it is more than the above upper limit value, the viscosity of the silicone composition becomes high, and the workability is deteriorated.
  • the component (E) is 1,2,3-benzotriazole or a derivative thereof and acts as a flame retarder. Even though only 1,2,3-benzotriazole or its derivative can not be added to the addition-curable silicone composition, sufficient flame retardancy can not be imparted, but it is combined with the (D) fine talc powder described above Thereby, it is possible to provide a silicone rubber having excellent flame retardancy (that is, V-0 flame retardancy according to UL 94 standard).
  • the benzotriazole derivative is a compound in which a hydrogen atom bonded to a carbon atom or a nitrogen atom in benzotriazole is replaced with a monovalent organic group.
  • a compound in which a substituted or unsubstituted monovalent hydrocarbon group is bonded to at least one carbon atom of benzotriazole, or a nitrogen atom of benzotriazole via a carbonyl group, an amide bond, an ester bond, or the like For example, compounds in which a substituted or unsubstituted monovalent hydrocarbon group, an alkoxysilylalkyl group or an organosiloxysilylalkyl group is bonded are included.
  • the 1,2,3-benzotriazole or a derivative thereof is preferably represented by the following formula (2).
  • R 1 's are each independently a hydrogen atom or a substituted or unsubstituted C 1 -C 10, preferably C 1 -C 6 monovalent hydrocarbon group.
  • the monovalent hydrocarbon group include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl and cyclohexyl groups, and the like.
  • R 1 is preferably a hydrogen atom, and particularly preferably all of R 1 are hydrogen atoms.
  • R 2 may have a hydrogen atom or a hetero atom, and may be substituted or unsubstituted monovalent hydrocarbon having 1 to 20 carbon atoms, preferably 1 to 14 carbon atoms, and more preferably 1 to 10 carbon atoms It may be an alkoxysilyl group or an organosiloxysilyl group at the end.
  • monovalent hydrocarbon groups include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl and cyclohexyl groups, and the like.
  • the group having a hetero atom includes a group having an ether bond or a carbonyl group, and is, for example, a monovalent hydrocarbon group having a keto group, an amido group, a carboxy group and the like.
  • compounds in which the monovalent hydrocarbon group is bonded to the nitrogen atom of benzotriazole via a keto group an amido group or a carboxy group
  • a compound having an alkoxysilyl group or an organosiloxysilyl group at the end a compound in which an alkoxysilylalkyl group or an organosiloxysilylalkyl group is bonded to a nitrogen atom of benzotriazole via a keto group, an amido group or a carboxy group can be mentioned.
  • Examples of the group having a keto group, an amido group or a carboxy group include groups represented by the following formulas (3) to (5).
  • R 3 and R 3 ′ independently of each other represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms such as an alkyl group, or — (CH 2 ) p — Si (OR 4 ) 3
  • R 4 is an alkyl group having 1 to 4 carbon atoms or a SiR 5 3 group
  • R 5 is an alkyl group having 1 to 3 carbon atoms
  • R 4 is preferably a methyl group.
  • p is an integer of 1 to 6, and preferably an integer of 1 to 3.
  • Examples of the monovalent hydrocarbon group include the groups described above.
  • the benzotriazole derivative having a group represented by the above formula (3), (4) or (5) is represented by the following formulas (3 ′) to (5 ′).
  • R 1 , R 3 and R 3 ′ are as described above. More preferably, all R 1 s are hydrogen atoms.
  • R 3 is preferably — (CH 2 ) p —Si (OR 4 ) 3 .
  • R 3 ' is preferably a hydrogen atom.
  • R 4 and p are as described above, preferably R 4 is a methyl group, and p is an integer of 1 to 3.
  • Component (E) is particularly preferably 1,2,3-benzotriazole in which both R 1 and R 2 in the above formula (2) are hydrogen atoms, or the above formulas (3 ′) to (5 ′) It is a benzotriazole derivative shown by either of. More preferably, the benzotriazole derivative is a compound represented by the following structure. (Wherein, R 4 and p are as described above, preferably R 4 is a methyl group, p is an integer of 1 to 3 and particularly preferably p is 3)
  • Component (E) is compounded in an amount of 2 to 500 mol, preferably 2.5 to 300 mol, more preferably 3 to 200 mol, particularly preferably 1 mol of the platinum group metal atom of component (C). Is an amount of 4 to 100 moles.
  • amount of the component (E) is less than the above lower limit value, sufficient flame retardancy improvement effect can not be obtained, and when it exceeds the above upper limit value, the silicone rubber may not be cured.
  • the silicone composition of the present invention preferably further comprises (F) a reinforcing filler.
  • a reinforcing filler reinforcing silica fine powder is preferable.
  • the fine reinforcing silica powder is not particularly limited as to the type of silica, and it may be one which is conventionally used as a rubber reinforcing agent in a composition which gives silicone rubber.
  • the reinforcing silica fine powder preferably has a specific surface area of 50 m 2 / g or more as measured by BET method.
  • precipitated silica (wet silica), fumed silica (dry silica), pyrogenic silica and the like having a specific surface area of 50 to 400 m 2 / g, especially 100 to 350 m 2 / g as measured by the BET method are preferably used. Fumed silica is particularly preferable from the viewpoint of improving the rubber strength.
  • the reinforcing fine silica powder may be hydrophobized with a surface treatment agent such as an organosilicon compound.
  • the organic silicon compound include (usually hydrolyzable) such as chlorosilane, alkoxysilane, organosilazane and the like.
  • the fine silica powder may be previously hydrophobized with a surface treatment agent in the form of powder prior to mixing with the resin, or the alkenyl group-containing organopolysiloxane of component (A).
  • the surface treatment agent may be added at the time of kneading with the silica fine powder to perform surface hydrophobization treatment.
  • the method of surface treatment may be according to known techniques.
  • the untreated fine silica powder and the treating agent are put in a machine kneader or a fluidized bed sealed under normal pressure, and mixed as needed at room temperature or heat treatment (under heating) in the presence of an inert gas.
  • a catalyst such as a hydrolysis promoter
  • the treated silica fine powder can be produced by drying.
  • the compounding amount of the treatment agent may be equal to or more than the amount calculated from the coating area of the treatment agent.
  • a surface treating agent As a surface treating agent, what was described as a surface treating agent of the (D) talc fine powder is mentioned. As a surface treatment agent, silazanes are particularly preferable.
  • the compounding amount of the component (F) is 1 to 100 parts by mass, preferably 5 to 60 parts by mass, and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the component (A). If it is less than the above lower limit, sufficient reinforcing effect can not be obtained, and if it exceeds the above upper limit, the viscosity of the silicone composition becomes too high, and the workability and the processability deteriorate.
  • the silicone composition of the present invention in addition to the above components (A) to (F), other optional components can be blended as long as the object of the present invention is not impaired.
  • the other components may be used alone or in combination of two or more.
  • the flame retardancy improvement materials other than (D) component and (E) components such as carbon black, titanium dioxide, iron oxide, are mentioned.
  • the compounding amount of the flame retardancy improver other than the component (D) and the component (E) is preferably 0 to 10 parts by mass, particularly 0.1 to 5 parts by mass with respect to 100 parts by mass of the component (A). .
  • an organopolysiloxane containing one silicon-bonded hydrogen atom in one molecule and no other functional group, and one silicon-bonded alkenyl group in one molecule Organopolysiloxanes containing no other functional group, nonfunctional organopolysiloxanes containing neither a silicon-bonded hydrogen atom nor a silicon-bonded alkenyl group nor any other functional group (so-called dimethyl silicone oil), an organic solvent, A creep hardening inhibitor, a plasticizer, a thixotropic agent, a pigment, a dye, a fungicide and the like can be blended. The amounts of these additives may be adjusted appropriately as long as the effects of the present invention are not impaired.
  • the preparation method of the addition reaction type silicone composition of the present invention is not particularly limited, but the composition is divided into two liquids and stored so that curing does not progress, and the two liquids are used at the time of use (immediately before curing). Are preferably mixed and cured. In such a case, if the components (A), (B) and (C) are blended in the same manner, crosslinking may proceed even at room temperature, and the composition may be thickened or gelled, so (B) and (C) The components are preferably separated.
  • a portion of the component (A), a portion of the component (D), and a component (C), and optionally a mixture of the component (F) (hereinafter referred to as the material A), the remainder of the component (A)
  • the components (B), the rest of the component (D), and the component (E), and optionally a mixture of the component (F) (hereinafter referred to as material B) are separately prepared and cured immediately before curing.
  • blend reaction control agents such as acetylene alcohol
  • the silicone composition of the present invention is liquid at 25 ° C. Preferably, it has a viscosity of 1,000 mPa ⁇ s to 5,000,000 mPa ⁇ s at 25 ° C.
  • the viscosity at 25 ° C. is 10,000 mPa ⁇ s to 10,000,000 mPa ⁇ s.
  • the viscosity can be measured, for example, with a viscosity / viscoelasticity measuring apparatus (HAKKE MARS 40, manufactured by Thermo Fisher Scientific Co., Ltd.).
  • the molding and curing method of the addition-curable silicone composition is not particularly limited, and may be in accordance with conventionally known methods.
  • an optimum means suitable for the purpose may be selected from injection molding, transfer molding, injection molding, compression molding and the like.
  • the composition can be cured by heating, for example, at 80 to 230 ° C., preferably 100 to 180 ° C.
  • the heating time is preferably about 30 seconds to 3 hours, particularly about 1 minute to 1 hour.
  • secondary vulcanization post cure
  • the thickness of the cured silicone rubber is not particularly limited, but it is preferably 0.5 to 10 mm, particularly 1 to 6 mm.
  • the cured silicone rubber obtained by curing the silicone composition of the present invention has particularly excellent flame retardancy in the above thickness.
  • a silicone rubber cured product having a thickness of 0.5 mm or more, preferably 1 mm or more can have a flame retardancy of V-0 in the flame retardancy test based on the UL94 standard.
  • the flame resistance test based on the UL94 standard is, for example, using a strip-like cured silicone rubber having a thickness of 1 mm as a test piece, burning a burner flame to the lower end of the vertically supported test piece, and burning the test piece
  • the flame retardant performance is determined by the speed at which it moves (vertical combustion test).
  • V-0 means that the flame contact is performed twice and the flame duration after the end of flame contact is within 10 seconds for both the first and second times, and the flame duration after the second flame end
  • the total of the flame-free combustion time of the five test pieces is within 50 seconds.
  • the silicone composition of the present invention can provide silicone rubber having excellent flame retardancy, and is excellent in storage stability, so it can be used for electrical appliances, cable terminal parts, automobile materials, etc. which are required to have flame retardancy. It is useful.
  • an average degree of polymerization shows the number average degree of polymerization of polystyrene conversion in gel permeation chromatography (GPC) analysis which used toluene as a development solvent.
  • D Talc fine powder
  • D1 Talc fine powder having a median diameter of 30 ⁇ m (manufactured by Nippon Talc Co., Ltd .: trade name PAOG-R)
  • D2 Surface-treated talc fine powder
  • 100 parts of talc fine powder PAOG-R (Nippon Talc Co., Ltd., median diameter: 30 ⁇ m) is charged into a Henschel mixer and then 5 parts of methyltrimethoxysilane (Shin-Etsu Chemical Co., Ltd .: trade name KBM-13) while stirring After spraying, heat treatment was performed at 150 ° C. for 2 hours to obtain surface-treated talc (D2).
  • Example 1 (Preparation of material A) 100 parts of organopolysiloxane (A1), 5 parts of organopolysiloxane (A2), and 70 parts of fine talc powder (D1) were mixed and stirred for 15 minutes. Next, 0.60 parts of platinum catalyst (C) was added and stirred for 10 minutes.
  • the viscosity immediately after preparation and the viscosity measured after being sealed and placed in a dryer at 70 ° C. for 2 weeks were measured.
  • the viscosity was measured by HAKKE MARS 40 manufactured by Thermo Fisher Scientific Co., Ltd. at a shear rate of 0.9 s ⁇ 1 at 25 ° C. The results are shown in Table 1.
  • Preparation Example 1 60 parts of organopolysiloxane (A1), 8 parts of hexamethyldisilazane, 2 parts of water, and 40 parts of silica fine powder (F) (Aerosil 300, manufactured by Nippon Aerosil Co., Ltd.) having a specific surface area of 300 m 2 / g by BET method The mixture was placed in a kneader and mixed at room temperature for 1 hour. Thereafter, the temperature was raised to 150 ° C. and mixing was continued for 2 hours.
  • organopolysiloxane (A1) 8 parts of hexamethyldisilazane, 2 parts of water, and 40 parts of silica fine powder (F) (Aerosil 300, manufactured by Nippon Aerosil Co., Ltd.) having a specific surface area of 300 m 2 / g by BET method
  • F silica fine powder
  • Example 2 Preparation of material A
  • 19 parts of organopolysiloxane (A1) and 30 parts of fine talc powder (D1) were added to 130 parts of the base compound (I) obtained in Preparation Example 1 and stirred for 15 minutes.
  • 0.60 parts of platinum catalyst (C) was added and stirred for 10 minutes.
  • Example 3 Example 2 was repeated except that talc fine powder (D1) was changed to surface-treated talc (D2) in Example 2 and blended in the same mass part, and a silicone composition was prepared to obtain a cured silicone rubber sheet.
  • Example 4 In Example 2, talc fine powder (D1) is replaced with surface-treated talc (D2) and compounded in the same mass part, and further, a 10% ethanol solution (E1) of 1,2,3-benzotriazole is benzotriazole described below Example 2 was repeated except that 0.08 parts by mass of derivative (E2) was used (8.1 mol per 1 platinum atom when mixing materials A and B at a mass ratio of 1: 1), and the silicone composition was repeated. It prepared and obtained the silicone rubber hardened material sheet.
  • Example 5 In Example 4, 4.7 parts by mass of the benzotriazole derivative (E2) was added (475.0 mol per 1 mol of platinum atom when mixing the material A and the material B at a mass ratio of 1: 1). The same procedure as in Example 4 was repeated to prepare a silicone composition to obtain a cured silicone rubber sheet.
  • E2 benzotriazole derivative
  • Example 1 was repeated except that talc fine powder (D) was not blended in Example 1, and a silicone composition was prepared to obtain a cured silicone rubber sheet.
  • Comparative Example 2 A silicone composition was prepared by repeating Example 2 except that talc fine powder (D) was not blended in Example 2, to obtain a cured silicone rubber sheet.
  • Example 2 was repeated except that a 10% solution (E) of 1,2,3-benzotriazole in ethanol was not blended in Example 2, to prepare a silicone composition and obtain a cured silicone rubber sheet.
  • Example 2 Comparative Example 4 In Example 2, 3.8 parts of 50% ethanol solution (E) of 1,2,3-benzotriazole instead of 10% ethanol solution (E) of 1,2,3-benzotriazole (materials A and B) The silicone composition was prepared in the same manner as in Example 2 except that 550 parts by weight of 1 atom of platinum was added at the time of mixing in a weight ratio of 1: 1. Although heating was performed under the same conditions as Example 1, it did not cure.
  • Example 2 instead of talc fine powder (D), aluminum hydroxide fine powder (manufactured by Showa Denko KK; trade name Hygilite H-32) is blended in the same mass parts, and carbon black (electrochemical) is further added to material B
  • a silicone composition was prepared by repeating Example 2 except that 0.5 part of manufactured by Kogyo Co., Ltd .; trade name: Denka black) was added, to obtain a silicone rubber cured product sheet.
  • the silicone composition of the present invention is excellent in storage stability over time, and is excellent in flame retardancy by blending talc fine powder and benzotriazole or a derivative thereof in combination (that is, in UL 94 standard). It is possible to provide a silicone rubber having V-0 flame resistance).
  • the addition-type silicone composition of the present invention is excellent in storage stability and gives a silicone rubber having excellent flame retardancy.
  • the silicone composition is useful in appliances, cable end parts, and automotive materials where flame retardancy is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】 本発明は、上記事情を鑑みなされたものであり、優れた難燃性を有するシリコーンゴムを与えることができ、且つ、経時で脱水素反応による増粘が起きない、保存安定性に優れた付加硬化型シリコーン組成物を提供することを目的とする。 【解決手段】 下記(A)~(E)成分、 (A)ケイ素原子に結合したアルケニル基を1分子中に2個以上有する、25℃で液状のオルガノポリシロキサン:100質量部、 (B)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:該(B)成分中に含まれるケイ素原子に結合した水素原子の個数が、前記(A)成分中に含まれるケイ素原子に結合したアルケニル基1個当たり、1~10個となる量、 (C)白金族金属系触媒:触媒量、 (D)タルク微粉末:10~100質量部、及び (E)1,2,3-ベンゾトリアゾール又はその誘導体:(C)成分の白金族金属原子1モルに対し2~500モルとなる量 を含有する付加硬化型シリコーン組成物。

Description

付加硬化型シリコーン組成物及びシリコーンゴム硬化物
 本発明は、優れた難燃性を有するシリコーンゴム硬化物を与えることができ、保存安定性に優れる付加硬化型シリコーン組成物に関する。
 シリコーンゴムは、耐熱性、耐候性、電気特性等に優れるという特性を有するため各種分野で使用されている。しかし、シリコーンゴムは可燃性であり、炎を近づけると簡単には燃焼しないものの、一度着火すると燃え続けるという性質を有する。そのため、シリコーンゴムの難燃性を向上するために様々な開発が試みられてきた。
 例えば、特許文献1には、付加反応硬化型液状シリコーンゴム組成物に、水酸化アルミニウム粉末と炭酸亜鉛粉末を配合することにより、成形性等に優れ、且つ難燃性と電気的特性に優れたシリコーンゴム成形品を与えることが記載されている。また、特許文献2には、難燃性向上材としてカーボンブラックと水酸化アルミニウムを含有するシリコーンゴム組成物が、流動性、成形性及び硬化性に優れるとともに、難燃性をも有するシリコーンゴムを与えることが記載されている。しかしながら、液状シリコーンゴム組成物に、水酸化アルミニウム、炭酸亜鉛等の塩基性の無機フィラーを配合すると、経時で架橋材に含まれているヒドロシリル基が脱水素反応を起こし、増粘してしまうという問題があった。
 特許文献3には、液状付加硬化型シリコーンゴム組成物において、オルガノポリシロキサンレジン、シリカなどの無機充填剤、及び酸化鉄微粉末を配合し、オルガノハイドロジェンポリシロキサンの加熱減量を制御することにより難燃性を向上する方法が記載されている。特許文献4には、シリコーンゴム組成物にトリアゾール系化合物とイソシアネート系化合物とを配合することにより、ベースとなるシリコーンゴムの物性を損なうことなく、なおかつ難燃性が高いシリコーンゴム硬化物を与える付加硬化性シリコーンゴム組成物が記載されている。しかし、これらのシリコーンゴム組成物では未だ十分な難燃性は得られていない。
特開平9-316335号公報 特開2004-161944号公報 特開2014-040522号公報 特開2016-094514号公報
 従って、優れた難燃性を有するシリコーンゴムを与えることが可能で、保存安定性に優れたシリコーン組成物の開発が望まれている。
 本発明は、上記事情を鑑みなされたものであり、優れた難燃性を有するシリコーンゴムを与えることができ、且つ、経時で脱水素反応による増粘が起きない、保存安定性に優れた付加硬化型シリコーン組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するため鋭意検討を行った結果、ケイ素原子結合アルケニル基含有オルガノポリシロキサンと、オルガノハイドロジェンポリシロキサンと、ヒドロシリル化触媒とを含有する付加硬化型シリコーンゴム組成物において、タルク微粉末と1,2,3-ベンゾトリアゾール又はその誘導体とを、それぞれ特定の配合量で組み合わせて添加することにより、難燃性の高いシリコーンゴム硬化物を与えることができることを見出した。
 特には、タルク微粉末のみ、または、1,2,3-ベンゾトリアゾール又はその誘導体のみを付加硬化型シリコーンゴム組成物に配合しても難燃性向上効果は不十分(特には、UL94規格におけるV-0に相当する難燃性を有するシリコーンゴムが得られない)であるが、タルク微粉末と1,2,3-ベンゾトリアゾール又はその誘導体とを組合せて配合することにより、優れた難燃性を有するシリコーンゴム(特には、UL94規格におけるV-0に相当する難燃性を有するシリコーンゴム)を提供できることを見出し、本発明を成すに至った。
 さらに、該シリコーンゴム組成物は優れた保存安定性を有することを見出した。
 即ち、本発明は 下記(A)~(E)成分、
(A)ケイ素原子に結合したアルケニル基を1分子中に2個以上有する、25℃で液状のオルガノポリシロキサン:100質量部、
(B)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:該(B)成分中に含まれるケイ素原子に結合した水素原子の個数が、前記(A)成分中に含まれるケイ素原子に結合したアルケニル基1個当たり、1~10個となる量、
(C)白金族金属系触媒:触媒量、
(D)タルク微粉末:10~100質量部、及び
(E)1,2,3-ベンゾトリアゾール又はその誘導体:(C)成分の白金族金属原子1モルに対し2~500モルとなる量
を含有する付加硬化型シリコーン組成物、及び該組成物を硬化してなるシリコーンゴムを提供する。
 本発明のシリコーン組成物はUL94規格におけるV-0に相当する難燃性を有するシリコーンゴムを与えることができる。また該シリコーン組成物は経時での増粘がほとんどなく、保存安定性が高い。
 以下、本発明につき更に詳しく説明する。 
[(A)オルガノポリシロキサン]
 (A)成分は、ケイ素原子に結合したアルケニル基を1分子中に2個以上有する、25℃で液状のオルガノポリシロキサンである。(A)成分の分子構造としては、例えば、直鎖状、環状、分岐鎖状等のものが挙げられるが、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンが好ましい。なお、三次元網状(樹脂状)構造は含まないことが好ましい。また、該オルガノポリシロキサンの分子構造が直鎖状又は分岐鎖状である場合、該オルガノポリシロキサンの分子中においてアルケニル基が結合するケイ素原子は、分子鎖末端(即ち、トリオルガノシロキシ基(M単位))にあるケイ素原子及び分子鎖途中(即ち、分子鎖非末端に位置する2官能性のジオルガノシロキサン単位(D単位)又は3官能性のモノオルガノシルセスキオキサン単位(T単位))にあるケイ素原子のどちらか一方でも両方でもよい。(A)成分は公知の化合物を使用することができるが、特に好ましくは、少なくとも分子鎖両末端のケイ素原子に結合したアルケニル基を有する直鎖状のジオルガノポリシロキサンである。
 アルケニル基としては、例えば、炭素数2~8、好ましくは炭素数2~4のものが挙げられ、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、及びヘプテニル基等が挙げられ、特にビニル基が好ましい。(A)成分中に含まれるアルケニル基の量は、ケイ素原子に結合した1価炭化水素基の全体(合計個数)に対して0.001~10%であることが好ましく、特に0.01~5%程度であることが好ましい。
 オルガノポリシロキサンが有するケイ素原子に結合するアルケニル基以外の1価の有機基としては、例えば、互いに独立に、炭素数1~12、好ましくは炭素数1~10の1価炭化水素基が挙げられる。例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、及びヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、及びナフチル基等のアリール基;ベンジル基、及びフェネチル基等のアラルキル基などが挙げられるが、特にメチル基が好ましい。
 (A)成分の25℃における粘度は、100~500,000mPa・sの範囲内であることが好ましく、特に1,000~200,000mPa・sの範囲内であることが好ましい。該粘度がこの範囲内にあると、得られる組成物の取り扱い作業性が良好であり、また、得られるシリコーンゴム硬化物の機械的特性が良好である。なお、(A)成分の粘度とはJIS K 7117-1:1999に記載の回転粘度計により測定された値である。
 上記オルガノポリシロキサンとしては、例えば、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、及び分子鎖両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体が挙げられる。これらのオルガノポリシロキサンは2種以上を併用してもよい。
[(B)オルガノハイドロジェンポリシロキサン]
 (B)成分は、ケイ素原子に結合した水素原子(SiH基)を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサンであり、(A)成分中のアルケニル基とヒドロシリル化反応し、架橋剤(硬化剤)として作用する。該オルガノハイドロジェンポリシロキサンは公知の化合物であればよいが、分子中にケイ素原子に結合した水酸基(即ち、シラノール基)を実質的に含有しないものであるのがよい。オルガノハイドロジェンポリシロキサンは、1種単独で用いても2種以上を併用してもよい。なお、本発明においてSiH基とはヒドロシリル基のことを指す。
 このオルガノハイドロジェンポリシロキサンとしては、下記平均組成式(1)で示されるものを用いることができる。
 
  R SiO(4-a-b)/2     (1)
 
 上記式(1)中、Rは互いに独立に、非置換もしくは置換の、好ましくは炭素数1~10の1価炭化水素基であり、但し、アルケニル基等の脂肪族不飽和結合を有さない。非置換もしくは置換の1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、及びデシル基等のアルキル基、フェニル基、トリル基、キシリル基、及びナフチル基等のアリール基、ベンジル基、フェニルエチル基、及びフェニルプロピル基等のアラルキル基等が挙げられる。中でも、アルキル基又はアリール基が好ましく、より好ましくはメチル基である。また、aは0.7~2.1の正数であり、bは0.001~1.0の正数であり、かつa+bが0.8~3.0の範囲を満たす数である。好ましくは、aは1.0~2.0の正数であり、bは0.01~1.0の正数であり、且つa+bが1.5~2.5の範囲を満たす数である。
 該オルガノハイドロジェンポリシロキサンは、1分子中に少なくとも2個(通常、2~200個)、好ましくは3個以上(例えば、3~100個)、より好ましくは4~50個のSiH基を有する。該SiH基は、分子鎖末端、分子鎖途中のいずれに位置していてもよく、またこの両方に位置するものであってもよい。該オルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐鎖状、及び三次元網状構造のいずれであってもよい。1分子中のケイ素原子の数(又は重合度)は、通常2~300個、好ましくは3~150個、より好ましくは4~100個である。なお、重合度は、例えば、トルエンを展開溶媒としてGPC(ゲルパーミエーションクロマトグラフィ)分析におけるポリスチレン換算の数平均重合度(数平均分子量)として求めることができる。
 (B)成分の25℃における粘度は、通常0.1~1,000mPa・sであり、好ましくは0.5~500mPa・sであるのがよく、25℃で液状であるのが好ましい。粘度はJIS K 7117-1:1999に記載の回転粘度計により測定された値である。
 該オルガノハイドロジェンポリシロキサンとしては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、及び、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルポリシロキサン、上記各化合物において、メチル基の一部又は全部がエチル基、プロピル基等の他のアルキル基で置換されたもの、式:R SiO1/2(式中のRはアルケニル基以外の1価炭化水素基であり、前記Rと同様の基である。)で示されるシロキサン単位と式:R HSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、式:R HSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、式:RHSiO2/2で示されるシロキサン単位と式:RSiO3/2で示されるシロキサン単位もしくは式:HSiO3/2で示されるシロキサン単位からなるオルガノシロキサン共重合体が挙げられる。これらのオルガノハイドロジェンポリシロキサンは2種以上を併用してもよい。
 (B)成分の配合量は、(A)成分中のケイ素原子結合アルケニル基1個に対する(B)成分中のケイ素原子結合水素原子の個数が1~10個、好ましくは1.5~5個の範囲内となる量比である。(B)成分の量が上記下限値未満であると、組成物は十分に硬化しないおそれがある。また、上記上限値超では、得られるシリコーンゴム硬化物の耐熱性が極端に悪化するおそれがある。
[(C)白金族金属系触媒]
 白金族金属系触媒は、付加反応触媒として従来公知の触媒であればよい。例えば、白金系触媒、パラジウム系触媒、及びルテニウム系触媒などが挙げられる。中でも白金系触媒が好ましく、例えば、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と1価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等が挙げられる。なお、この白金族金属系触媒の配合量は、上記した(A)成分と(B)成分の付加反応を促進するための触媒量であればよい。通常、白金族金属(質量換算)として、(A)及び(B)成分の合計質量に対し、1~1,000ppm、特に1~500ppm程度である。添加量が少なすぎると硬化性の低下を起こし、添加量が多すぎると経済的に不利である。
[(D)タルク微粉末]
 タルク微粉末は耐熱性向上剤等として知られている無機粉末(非補強性充填剤)である。付加反応硬化型シリコーン組成物にタルク微粉末のみを配合しても難燃性向上効果は不十分であり、UL94規格におけるV-0に相当する難燃性を有するシリコーンゴムを与えることはできないが、後述する(E)ベンゾトリアゾールまたはベンゾトリアゾール誘導体と組合せて配合されることにより、優れた難燃性(例えば、UL94規格におけるV-0に相当する難燃性)を有するシリコーンゴムを与える。更には、経時で脱水素反応による増粘を起さず、保存安定性に優れた組成物を提供することができる。かかるタルク微粉末は、レーザー回折法によるメジアン径が0.1~50μmであることが好ましく、さらに5~40μmであることがより好ましい。メジアン径が上記上限値より大きいとシリコーン組成物の機械的特性の低下を引き起こすことがあり、また上記下限値より小さいとシリコーン組成物の粘度が高くなり、作業性が悪化することがある。上記メジアン径を有するタルク微粉末の1種を単独で使用してもよいし、又は2種以上を併用することもできる。
 上記タルク微粉末は、表面処理されていないものであってもよいが、好ましくは、後述する有機ケイ素化合物で表面処理されたタルク微粉末であるのがよい。有機ケイ素化合物で表面処理されたタルク微粉末はシリコーン樹脂との親和性が向上するため、組成物の粘度が低くなり、取扱い作業性が良好になる。
 タルク微粉末の表面処理方法としては特に制限されるものでないが、例えば、常圧で密閉された機械混練装置又は流動層に上記未処理のタルク微粉末と有機ケイ素化合物を入れ、必要に応じて不活性ガス存在下において室温(25℃)あるいは熱処理(加熱下)にて混合処理することができる。場合により、水又は触媒(加水分解促進剤等)を使用して表面処理を促進してもよい。混練後、乾燥することにより表面処理タルク微粉末を製造し得る。有機ケイ素化合物の配合量は、その表面処理剤の被覆面積から計算される量以上であればよく、通常、未処理のタルク微粉末100質量部に対し、0.1~20質量部、好ましくは0.1~15質量部、より好ましくは0.1~10質量部とすることができる。
 有機ケイ素化合物としては、例えば、へキサメチルジシラザン、1,1,3,3,5,5-ヘキサメチルシクロトリシラザン等のシラザン類、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、トリメチルメトキシシラン、トリエチルメトキシシラン、ビニルトリス(メトキシエトキシ)シラン、クロロプロピルトリメトキシシラン等のアルコキシシラン類、トリメチルクロロシラン、ジメチルジクロロシラン等のクロロシラン類、トリメチルシラノール及びヒドロキシペンタメチルジシロキサン等のシランカップリング剤、又はポリメチルシロキサン、オルガノハイドロジェンポリシロキサン等が挙げられる。但し、上述した(A)成分及び(B)成分とは異なる有機ケイ素化合物であるのがよい。
 (D)成分の配合量は、(A)成分100質量部に対して10~100質量部、好ましくは20~90質量部、より好ましくは30~80質量部である。(D)成分の配合量が、上記下限値よりも少ないと十分な難燃性向上の効果が得られず、また上記上限値よりも多いとシリコーン組成物の粘度が高くなり、作業性が悪化する。
[(E)1,2,3-ベンゾトリアゾール又はその誘導体]
 (E)成分は1,2,3-ベンゾトリアゾール又はその誘導体であり、難燃性向上材として作用する。1,2,3-ベンゾトリアゾール又はその誘導体のみを付加硬化型シリコーン組成物に配合しても十分な難燃性を付与することはできないが、上記した(D)タルク微粉末と組合せて配合することにより、優れた難燃性(即ち、UL94規格におけるV-0の難燃性)を有するシリコーンゴムを提供できる。なお、本発明において、ベンゾトリアゾール誘導体とは、ベンゾトリアゾールにおける炭素原子又は窒素原子に結合する水素原子が一価有機基に置きかえられている化合物である。例えば、ベンゾトリアゾールの炭素原子の少なくとも1つに置換又は非置換の一価炭化水素基が結合している化合物、又は、ベンゾトリアゾールの窒素原子に、カルボニル基、アミド結合、又はエステル結合等を介して、置換又は非置換の一価炭化水素基、アルコキシシリルアルキル基又はオルガノシロキシシリルアルキル基が結合している化合物が挙げられる。
 1,2,3-ベンゾトリアゾール又はその誘導体とは、好ましくは、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000001
 式(2)において、Rは、互いに独立に、水素原子、又は、置換又は非置換の炭素数1~10の、好ましくは炭素数1~6の1価炭化水素基である。該1価炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、及びシクロヘキシル基等のアルキル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基、シアノエチル基等が挙げられる。中でもRは水素原子であることが好ましく、特に好ましくはRの全てが水素原子である。
 Rは、水素原子、又はヘテロ原子を有していてよい、置換又は非置換の、炭素数1~20、好ましくは炭素数1~14、さらに好ましくは炭素数1~10の1価炭化水素基であり、末端にアルコキシシリル基又はオルガノシロキシシリル基を有していてもよい。1価炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、及びシクロヘキシル基等のアルキル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基、及びシアノエチル基等が挙げられる。ヘテロ原子を有する基としては、エーテル結合やカルボニル基を有する基が挙げられ、例えば、ケト基、アミド基、カルボキシ基などを有する1価炭化水素基である。例えば、上記一価炭化水素基がケト基、アミド基、又はカルボキシ基を介してベンゾトリアゾールの窒素原子に結合している化合物が挙げられる。末端にアルコキシシリル基又はオルガノシロキシシリル基を有する化合物としては、アルコキシシリルアルキル基又はオルガノシロキシシリルアルキル基がケト基、アミド基、又はカルボキシ基を介してベンゾトリアゾールの窒素原子に結合している化合物が挙げられる。
 ケト基、アミド基、又はカルボキシ基を有する基としては、例えば、下記式(3)~(5)で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
式(3)~(5)中、R及びR3’は互いに独立に、水素原子、又は炭素数1~10の、アルキル基等の1価炭化水素基、又は-(CH-Si(ORである。Rは炭素数1~4のアルキル基又はSiR 基であり、Rは炭素数1~3のアルキル基であり、Rは好ましくはメチル基である。pは1~6の整数であり、好ましくは1~3の整数である。一価炭化水素基としては上記した基が挙げられる。
 上記式(3)、(4)又は(5)で示される基を有するベンゾトリアゾール誘導体は、下記式(3’)~(5’)で表される。
Figure JPOXMLDOC01-appb-C000005

Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
上記各式において、R、R、及びR3’は上記の通りである。より好ましくは、全てのRが水素原子である。また、Rは-(CH-Si(ORが好ましい。R3’は水素原子であるのが好ましい。R及びpは上記の通りであり、好ましくはRはメチル基であり、pは1~3の整数である。
 (E)成分は、特に好ましくは、上記式(2)においてR及びRのいずれもが水素原子である1,2,3-ベンゾトリアゾール、又は、上記式(3’)~(5’)のいずれかで示されるベンゾトリアゾール誘導体である。該ベンゾトリアゾール誘導体として更に好ましくは、下記構造で表される化合物である。
Figure JPOXMLDOC01-appb-C000008
(式中、R及びpは上記の通りであり、好ましくはRはメチル基であり、pは1~3の整数であり、特に好ましくはpは3である)
 (E)成分の配合量は、(C)成分が有する白金族金属原子1モルに対し、2~500モルであり、好ましくは2.5~300モル、更に好ましくは3~200モル、とりわけ好ましくは4~100モルとなる量である。(E)成分の量が上記下限値より少ないと十分な難燃性向上の効果が得られず、上記上限値を超えるとシリコーンゴムが硬化しないことがある。
[(F)補強性充填剤]
 本発明のシリコーン組成物は、さらに(F)補強性充填剤を含有することが好ましい。補強性充填剤としては、補強性シリカ微粉末が好ましい。補強性シリカ微粉末は、シリカの種類に特に限定はなく、従来よりシリコーンゴムを与える組成物において、ゴムの補強剤として使用されるものであればよい。該補強性シリカ微粉末は、BET法による比表面積50m/g以上を有するのが好ましい。特には、BET法による比表面積が50~400m/g、とりわけ100~350m/gの、沈澱シリカ(湿式シリカ)、ヒュームドシリカ(乾式シリカ)、焼成シリカ等が好適に使用される。ゴム強度を向上する観点より、ヒュームドシリカが特に好適である。該補強性シリカ微粉末は有機ケイ素化合物などの表面処理剤で疎水化処理されていてもよい。有機ケイ素化合物としては、例えば、クロロシラン、アルコキシシラン、オルガノシラザン等の(通常、加水分解性の)が挙げられる。表面処理される場合、シリカ微粉末は、樹脂との混合前に予め粉体の状態で、表面処理剤により疎水化処理されたものでもよいし、上記(A)成分のアルケニル基含有オルガノポリシロキサンとシリカ微粉末との混練時に該表面処理剤を添加して、表面疎水化処理することもできる。
 表面処理の方法は公知技術に従えばよい。例えば、常圧で密閉された機械混練装置又は流動層に上記未処理のシリカ微粉末と処理剤を入れ、必要に応じて不活性ガス存在下において室温あるいは熱処理(加熱下)にて混合処理する。場合により、触媒(加水分解促進剤等)を使用して処理を促進してもよい。混練後、乾燥することにより処理シリカ微粉末を製造し得る。処理剤の配合量は、その処理剤の被覆面積から計算される量以上であればよい。
 表面処理剤としては、上記(D)タルク微粉末の表面処理剤として記載したものが挙げられる。表面処理剤としては、シラザン類が特に好ましい。
 (F)成分の配合量は、(A)成分100質量部に対して1~100質量部、好ましくは5~60質量部、より好ましくは10~60質量部である。上記下限値より少ないと十分な補強効果が得られず、上記上限値を超えるとシリコーン組成物の粘度が高くなりすぎて作業性、加工性が悪くなる。
 本発明のシリコーン組成物は、上記(A)~(F)成分以外にも、本発明の目的を損なわない範囲で、その他の任意の成分を配合することができる。その他の成分は、1種単独で用いても2種以上を併用してもよい。例えば、カーボンブラック、二酸化チタン、酸化鉄などの(D)成分及び(E)成分以外の難燃性向上材が挙げられる。(D)成分及び(E)成分以外の難燃性向上材の配合量は、(A)成分100質量部に対し、0~10質量部、特に0.1~5質量部であることが好ましい。
 上記以外にも、例えば、1分子中に1個のケイ素原子結合水素原子を含有し、他の官能性基を含有しないオルガノポリシロキサン、1分子中に1個のケイ素原子結合アルケニル基を含有し、他の官能性基を含有しないオルガノポリシロキサン、ケイ素原子結合水素原子もケイ素原子結合アルケニル基も他の官能性基も含有しない無官能性のオルガノポリシロキサン(いわゆるジメチルシリコーンオイル)、有機溶剤、クリープハードニング防止剤、可塑剤、チキソ性付与剤、顔料、染料、及び防かび剤などを配合することができる。これらの添加剤の配合量は、本発明の効果を損ねない限りで適宜調整されればよい。
 本発明の付加反応型シリコーン組成物の調製方法としては、特に制限されるものでないが、硬化が進行しないように組成物を2液に分けて保存し、使用時(硬化直前)にこの2液を混合して硬化させるのが好ましい。その場合、(A)成分、(B)成分及び(C)成分を同一配合すると室温でも架橋が進行し、組成物が増粘又はゲル化することがあるため、(B)成分と(C)成分は分けることが好ましい。例えば、(A)成分の一部、(D)成分の一部、及び(C)成分、並びに任意で(F)成分を混合したもの(以下、A材という)と、(A)成分の残り、(B)成分、(D)成分の残り、及び(E)成分、並びに任意で(F)成分を混合したもの(以下、B材という)とを別々に調製しておき、硬化させる直前でA材とB材を混合する。また、B材にはアセチレンアルコール等の反応制御剤を配合しておくことが好ましい。これにより、硬化を遅らせることで、A材とB材を混合する時間及び加工成型を行う時間を確保することができる。本発明のシリコーン組成物は25℃で液状である。好ましくは、25℃における粘度1,000mPa・s~5,000,000mPa・sを有する。また(F)成分を含有する場合には25℃における粘度10,000mPa・s~10,000,000mPa・sとなる。粘度測定は、例えば、粘度・粘弾性測定装置(HAKKE MARS40、サーモフィッシャーサイエンティフィック株式会社製)にて測定できる。
 付加硬化性シリコーン組成物の成形、硬化方法は特に制限されず、従来公知の方法に従えばよい。成形法としては例えば、射出成形、トランスファー成形、注入成形、及び圧縮成形等から目的にあった最適な手段を選択すればよい。硬化条件としては、該組成物は、たとえば80~230℃、好ましくは100~180℃で加熱することにより硬化させることができる。加熱時間は、30秒~3時間程度、特に1分~1時間程度が好ましい。更に、必要に応じて任意に、40~230℃で10分~24時間程度の二次加硫(ポストキュア)を行ってもよい。シリコーンゴム硬化物の厚みは特に制限されないが、0.5~10mm、特には1~6mmであるのがよい。
 本発明のシリコーン組成物を硬化して得られるシリコーンゴム硬化物は、上記厚みにおいて特に優れた難燃性を有する。特には、厚さ0.5mm以上、好ましくは1mm以上を有するシリコーンゴム硬化物にてUL94規格に基づく難燃性試験においてV-0の難燃性を有することができる。UL94規格に基づく難燃性試験とは、例えば厚さ1mmを有する短冊状のシリコーンゴム硬化物を試験片とし、垂直に支持した該試験片の下端にバーナー炎をあてて燃焼させ、その燃焼が進む速度で難燃性能を判定するものである(垂直燃焼試験)。V-0とは、接炎を2回行い、接炎終了後の有炎燃焼持続時間が1回目及び2回目共に10秒以内であること、2回目の接炎終了後の有炎燃焼持続時間と無炎燃焼時間の合計が30秒以内であること、及び、5本の試験片の有炎燃焼時間の合計が50秒以内であることである。
 本発明のシリコーン組成物は優れた難燃性を有するシリコーンゴムを提供することができ、且つ、保存安定性に優れるため、難燃性が要求される電化製品、ケーブル端末部品、自動車材料等に有用である。
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。
 なお、下記において、部は質量部を示す。また、平均重合度は、トルエンを展開溶媒としたゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度を示す。
下記実施例及び比較例で使用した(A)~(D)成分は以下の通りである。
(A)25℃で液状のオルガノポリシロキサン
 (A1)分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が30,000mPa・sのジメチルポリシロキサン
 (A2)下記式で表され、25℃での粘度700mPa・sを有する、ジメチル-ビニルメチルポリシロキサン
  MeSiO-[ViMeSiO]-[MeSiO]-SiMe
(Meはメチル基であり、Viはビニル基であり、n及びmはn/m=5/95(モル%)であり、括弧内に示されるシロキサン単位の結合順序は上記に制限されない)
(B)オルガノハイドロジェンポリシロキサン
 分子鎖両末端がトリメチルシロキシ基で封鎖され、側鎖にSiH基を有するメチルハイドロジェンポリシロキサン
 (平均重合度40、粘度18mPa・s、SiH基量0.0074mol/gの分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体)
(C)白金触媒
 白金と1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンとの錯体のトルエン溶液(白金原子1質量%)
(D)タルク微粉末
 (D1)メジアン径が30μmであるタルク微粉末(日本タルク株式会社製:商品名PAOG-R)
 (D2)表面処理タルク微粉末
 [調製例2]
 タルク微粉末PAOG-R(日本タルク株式会社製、メジアン径:30μm)100部をヘンシェルミキサーに投入後、攪拌しながらメチルトリメトキシシラン(信越化学工業社製:商品名KBM-13)を5部噴霧した後に、150℃で2時間熱処理を行い、表面処理タルク(D2)を得た。
[実施例1]
(A材の調製)
 オルガノポリシロキサン(A1)100部、オルガノポリシロキサン(A2)5部、及び、タルク微粉末(D1)70部を混合し、15分撹拌した。次いで、白金触媒(C)0.60部を添加し、10分間撹拌した。
(B材の調製)
 オルガノポリシロキサン(A1)100部、オルガノポリシロキサン(A2)5部、メチルハイドロジェンポリシロキサン(B)4.08部(A材とB材を質量比1:1で混合時、SiH基/ビニル基=2.2mol/mol)、タルク微粉末(D1)70部、及び反応制御剤としてエチニルシクロヘキサノール0.24部を混合し、15分撹拌した。次いで、1,2,3-ベンゾトリアゾールのエタノール10%溶液(E1)0.24部(A材とB材を質量比1:1で混合時、白金の原子1molに対して6.9mol)添加し、10分攪拌した。
(付加反応硬化型シリコーン組成物の調製及び硬化)
 A材とB材を質量比1:1で10分間混合し、均一な25℃で液状のシリコーン組成物を調製した。次いで、120℃、10分でプレスキュアーすることで、130mm×170mm×1.0mmのシリコーンゴム硬化物シートを作製した。該シートについて、UL-94規格に準拠した難燃性試験を行った。結果を表1に示す。
 また、A材とB材のそれぞれについて、調製直後の粘度、及び密栓して70℃の乾燥機に2週間入れた後に測定した粘度を測定した。粘度測定は、サーモフィッシャーサイエンティフィック株式会社製のHAKKE MARS40にて、25℃におけるせん断速度0.9s-1で測定した。結果を表1に示す。
[調製例1]
 オルガノポリシロキサン(A1)60部、ヘキサメチルジシラザン8部、水2部、比表面積がBET法で300m/gであるシリカ微粉末(F)(Aerosil 300、日本アエロジル社製)40部をニーダー中に投入し、室温にて1時間混合した。その後温度を150℃に昇温し、引き続き2時間混合した。次いで、室温まで降温して、該混合物にさらにオルガノポリシロキサン(A1)25部、及びオルガノポリシロキサン(A2)5部を添加して、均一になるまで混合し、ベースコンパウンド(I)を得た。
[実施例2]
(A材の調製)
 調製例1で得たベースコンパウンド(I)130部に、オルガノポリシロキサン(A1)19部、タルク微粉末(D1)30部を添加し、15分撹拌した。次いで白金触媒(C)0.60部を添加し、10分間撹拌した。
(B材の調製)
 調製例1で調製したベースコンパウンド(I)130部に、オルガノポリシロキサン(A1)15部、メチルハイドロジェンポリシロキサン(B)4.4部(A材とB材を1:1で混合時、SiH基/ビニル基=2.3mol/mol)、タルク微粉末(D1)を30部、及び反応制御剤としてエチニルシクロヘキサノール0.24部を添加し、15分撹拌した。次いで、1,2,3-ベンゾトリアゾールのエタノール10%溶液(E1)0.24部(A材とB材を質量比1:1で混合時、白金原子1molに対して6.9mol)添加し、10分攪拌した。
(付加硬化型シリコーン組成物の調製及び硬化)
 A材とB材を質量比1:1で10分間混合し、均一な25℃で液状のシリコーン組成物を調製した。実施例1と同じ方法によりシリコーンゴム硬化物シートを作製した。該シートについてUL-94に準拠した垂直難燃性試験を行った。また、実施例1と同じく、A材とB材の各々について、調製直後の粘度と70℃/2週間保管後の粘度を測定した。これらの結果を表1に示す。
[実施例3]
 実施例2においてタルク微粉末(D1)を表面処理タルク(D2)に替え同質量部で配合した他は実施例2を繰り返してシリコーン組成物を調製し、シリコーンゴム硬化物シートを得た。
[実施例4]
 実施例2において、タルク微粉末(D1)を表面処理タルク(D2)に替えて同質量部で配合し、さらに1,2,3-ベンゾトリアゾールのエタノール10%溶液(E1)を下記のベンゾトリアゾール誘導体(E2)0.08質量部(A材とB材を質量比1:1で混合時、白金原子1molに対して8.1mol)に替えた他は実施例2を繰り返してシリコーン組成物を調製し、シリコーンゴム硬化物シートを得た。
Figure JPOXMLDOC01-appb-C000009
[実施例5]
 実施例4において、ベンゾトリアゾール誘導体(E2)の添加量を4.7質量部(A材とB材を質量比1:1で混合時、白金の原子1molに対して475.0mol)にした他は実施例4を繰り返してシリコーン組成物を調製し、シリコーンゴム硬化物シートを得た。
[比較例1]
 実施例1においてタルク微粉末(D)を配合しなかった他は実施例1を繰り返して、シリコーン組成物を調製し、シリコーンゴム硬化物シートを得た。
[比較例2]
 実施例2においてタルク微粉末(D)を配合しなかった他は実施例2を繰り返して、シリコーン組成物を調製し、シリコーンゴム硬化物シートを得た。
[比較例3]
 実施例2において1,2,3-ベンゾトリアゾールのエタノール10%溶液(E)を配合しなかった他は実施例2を繰り返して、シリコーン組成物を調製し、シリコーンゴム硬化物シートを得た。
[比較例4]
 実施例2において1,2,3-ベンゾトリアゾールのエタノール10%溶液(E)の代わりに1,2,3-ベンゾトリアゾールのエタノール50%溶液(E)を3.8部(A材、B材を質量比1:1で混合時に白金の原子1molに対して550mol)配合した他は実施例2を繰り返して、シリコーン組成物を調製した。実施例1と同一の条件で加熱を行ったが硬化しなかった。
[比較例5]
 実施例2においてタルク微粉末(D)の代わりに水酸化アルミニウム微粉末(昭和電工株式会社製;商品名ハイジライトH-32)を同質量部で配合し、さらにB材にカーボンブラック(電気化学工業社製;商品名デンカブラック)を0.5部添加した他は実施例2を繰り返して、シリコーン組成物を調製し、シリコーンゴム硬化物シートを得た。
 上記実施例3~5及び比較例1~5におけるシリコーンゴム硬化物について、実施例1と同じ方法により難燃性試験を行った。また、各実施例及び比較例におけるA材及びB材の調製直後の粘度と70℃/2週間保管後の粘度を、上述した方法により測定した。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000010
 表1に示す通り、1,2,3-ベンゾトリアゾールを含みタルク微粉末を含まない付加硬化型シリコーン組成物(比較例1、2)では難燃性を向上することはできず、得られたシリコーンゴムは燃焼試験において全焼した。タルク微粉末を含み1,2,3-ベンゾトリアゾールを含まない付加硬化型シリコーン組成物(比較例3)では難燃性向上効果が不十分であり、UL94規格におけるV-0の難燃性を有するシリコーンゴムが得られなかった。また、タルク微粉末の代わりに水酸化アルミニウム微粉末を配合した比較例5の組成物は経時で粘度が上昇し、保存安定性に劣った。これに対し、本発明のシリコーン組成物は、経時での保存安定性に優れ、タルク微粉末とベンゾトリアゾール又はその誘導体とを組合せて配合することにより、優れた難燃性(即ち、UL94規格におけるV-0の難燃性)を有するシリコーンゴムを提供できる。
 本発明の付加型シリコーン組成物は保存安定性に優れ、且つ、優れた難燃性を有するシリコーンゴムを与える。該シリコーン組成物は、難燃性が要求される電化製品、ケーブル端末部品、及び自動車材料に有用である。

Claims (7)

  1.  下記(A)~(E)成分、
    (A)ケイ素原子に結合したアルケニル基を1分子中に2個以上有する、25℃で液状のオルガノポリシロキサン:100質量部、
    (B)ケイ素原子に結合した水素原子を1分子中に2個以上有するオルガノハイドロジェンポリシロキサン:該(B)成分中に含まれるケイ素原子に結合した水素原子の個数が、前記(A)成分中に含まれるケイ素原子に結合したアルケニル基1個当たり、1~10個となる量、
    (C)白金族金属系触媒:触媒量、
    (D)タルク微粉末:10~100質量部、及び
    (E)1,2,3-ベンゾトリアゾール又はその誘導体:(C)成分の白金族金属原子1モルに対し2~500モルとなる量
    を含有する付加硬化型シリコーン組成物。
  2.  前記タルク微粉末がレーザー回折法によるメジアン径0.1~50μmを有する、請求項1に記載の付加硬化型シリコーン組成物。
  3.  前記タルク微粉末が有機ケイ素化合物で表面処理されている、請求項1又は2に記載の付加硬化型シリコーン組成物。
  4.  さらに(F)補強性充填剤を1~100質量部含有する、請求項1~3のいずれか1項記載の付加硬化型シリコーン組成物。
  5.  (F)成分がBET法における比表面積50m/g以上を有するヒュームドシリカである、請求項4記載の付加硬化型シリコーン組成物。
  6.  請求項1~5のいずれか1項記載の付加硬化型シリコーン組成物を硬化して成るシリコーンゴム。
  7.  厚さ0.5mm以上にてUL94規格におけるV-0の難燃性を有する、請求項6記載のシリコーンゴム。
PCT/JP2018/027884 2017-08-07 2018-07-25 付加硬化型シリコーン組成物及びシリコーンゴム硬化物 WO2019031245A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207004647A KR20200035056A (ko) 2017-08-07 2018-07-25 부가 경화형 실리콘 조성물 및 실리콘 고무 경화물
EP18843288.4A EP3666828B1 (en) 2017-08-07 2018-07-25 Addition-curable silicone composition and cured silicone rubber
US16/637,220 US20200165455A1 (en) 2017-08-07 2018-07-25 Addition-curable silicone composition and cured silicone rubber
CN201880051508.0A CN110892023B (zh) 2017-08-07 2018-07-25 加成固化型有机硅组合物和硅橡胶固化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017152347A JP2019031601A (ja) 2017-08-07 2017-08-07 付加硬化型シリコーン組成物及びシリコーンゴム硬化物
JP2017-152347 2017-08-07

Publications (1)

Publication Number Publication Date
WO2019031245A1 true WO2019031245A1 (ja) 2019-02-14

Family

ID=65271205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027884 WO2019031245A1 (ja) 2017-08-07 2018-07-25 付加硬化型シリコーン組成物及びシリコーンゴム硬化物

Country Status (6)

Country Link
US (1) US20200165455A1 (ja)
EP (1) EP3666828B1 (ja)
JP (1) JP2019031601A (ja)
KR (1) KR20200035056A (ja)
CN (1) CN110892023B (ja)
WO (1) WO2019031245A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110591386A (zh) * 2019-09-03 2019-12-20 四川大学 一种可固化的绝缘乙烯基硅脂材料及其制备方法与用途
WO2021033545A1 (ja) * 2019-08-21 2021-02-25 信越化学工業株式会社 ミラブル型シリコーンゴム組成物、シリコーンゴム硬化物及び電力ケーブル接続用電気絶縁部材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111417687B (zh) * 2017-12-25 2022-06-03 陶氏东丽株式会社 硅橡胶组合物和使用其获得的复合材料
JP2021187877A (ja) * 2020-05-26 2021-12-13 信越化学工業株式会社 二液付加硬化型シリコーンゴム組成物
WO2024024503A1 (ja) * 2022-07-26 2024-02-01 信越化学工業株式会社 熱伝導性2液付加硬化型シリコーン組成物、硬化物及びシート

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456766A (en) * 1987-08-27 1989-03-03 Toray Industries Refractory composition
JPH09316335A (ja) 1996-05-24 1997-12-09 Toray Dow Corning Silicone Co Ltd 液状シリコーンゴム組成物およびその製造方法
JP2004161944A (ja) 2002-11-15 2004-06-10 Shin Etsu Chem Co Ltd 難燃性液状シリコーンゴム組成物
JP2006182911A (ja) * 2004-12-27 2006-07-13 Dow Corning Toray Co Ltd 難燃性シリコーンゴム用組成物、難燃性シリコーンゴム組成物および難燃性シリコーンゴム
JP2014040522A (ja) 2012-08-22 2014-03-06 Shin Etsu Chem Co Ltd シリコーンゴム硬化物の難燃性向上方法
JP2016094514A (ja) 2014-11-13 2016-05-26 信越化学工業株式会社 付加硬化性シリコーンゴム組成物
JP2016528325A (ja) * 2013-06-27 2016-09-15 ブルースター・シリコーンズ・フランス・エスアエス 電気ワイヤ又は電気ケーブルの製造に特に利用し得る熱加硫性ポリオルガノシロキサン組成物
JP2017031364A (ja) * 2015-08-05 2017-02-09 信越化学工業株式会社 付加硬化性シリコーンゴム組成物

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204526A (ja) * 1983-05-09 1984-11-19 Toray Silicone Co Ltd シリコ−ンゴム成形品の製造方法
JPS6169865A (ja) * 1984-09-12 1986-04-10 Toray Silicone Co Ltd 硬化性難燃シリコ−ン組成物
JPH0655895B2 (ja) * 1989-03-16 1994-07-27 信越化学工業株式会社 硬化性シリコーンゴム組成物
JPH04359059A (ja) * 1991-06-04 1992-12-11 Shin Etsu Chem Co Ltd 下巻き用ロール材料及び定着ロール
JP2864944B2 (ja) * 1993-04-30 1999-03-08 信越化学工業株式会社 難燃性シリコーン組成物
JPH08253685A (ja) * 1995-03-16 1996-10-01 Toray Dow Corning Silicone Co Ltd 硬化性シリコーン組成物
JPH10168317A (ja) * 1996-12-16 1998-06-23 Toray Dow Corning Silicone Co Ltd 硬化性シリコーンゴム組成物およびその製造方法
JP3829933B2 (ja) * 2002-05-16 2006-10-04 信越化学工業株式会社 難燃性シリコーン組成物
JP3846574B2 (ja) * 2002-06-18 2006-11-15 信越化学工業株式会社 耐トラッキング性シリコーンゴム組成物及びこれを用いた電力ケーブル
JP3912523B2 (ja) * 2002-11-29 2007-05-09 信越化学工業株式会社 難燃性シリコーン組成物、及びシリコーンゴム硬化物又はシリコーンゲル硬化物の難燃性向上方法
JP2006056986A (ja) * 2004-08-19 2006-03-02 Shin Etsu Chem Co Ltd 二液硬化型シリコーン組成物
JP4674701B2 (ja) * 2005-12-14 2011-04-20 信越化学工業株式会社 ノンハロゲン難燃樹脂組成物
JP2012052035A (ja) * 2010-09-01 2012-03-15 Shin-Etsu Chemical Co Ltd 付加硬化型シリコーン組成物、該組成物からなる光学素子封止材、及び該光学素子封止材の硬化物により光学素子が封止された半導体装置
JP6059472B2 (ja) * 2012-09-07 2017-01-11 東レ・ダウコーニング株式会社 硬化性シリコーン組成物および光半導体装置
JP5867383B2 (ja) * 2012-12-21 2016-02-24 信越化学工業株式会社 付加硬化型自己接着性シリコーンゴム組成物
JP6191548B2 (ja) * 2013-07-30 2017-09-06 信越化学工業株式会社 導電性シリコーンゴム組成物及び高電圧ケーブル用常温収縮ゴム部材
WO2015053412A1 (ja) * 2013-10-11 2015-04-16 東レ・ダウコーニング株式会社 硬化性シリコーン組成物および光半導体装置
JP6156256B2 (ja) * 2014-05-27 2017-07-05 信越化学工業株式会社 難燃性シリコーンゲル組成物及びその製造方法並びに半導体装置
JP6572634B2 (ja) * 2015-06-09 2019-09-11 信越化学工業株式会社 付加硬化性シリコーンゴム組成物及び硬化物
JP6463663B2 (ja) * 2015-11-02 2019-02-06 信越化学工業株式会社 接着促進剤、付加硬化型オルガノポリシロキサン樹脂組成物及び半導体装置
JP6733241B2 (ja) * 2016-03-18 2020-07-29 信越化学工業株式会社 付加硬化性シリコーンゴム組成物、その製造方法及び硬化物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456766A (en) * 1987-08-27 1989-03-03 Toray Industries Refractory composition
JPH09316335A (ja) 1996-05-24 1997-12-09 Toray Dow Corning Silicone Co Ltd 液状シリコーンゴム組成物およびその製造方法
JP2004161944A (ja) 2002-11-15 2004-06-10 Shin Etsu Chem Co Ltd 難燃性液状シリコーンゴム組成物
JP2006182911A (ja) * 2004-12-27 2006-07-13 Dow Corning Toray Co Ltd 難燃性シリコーンゴム用組成物、難燃性シリコーンゴム組成物および難燃性シリコーンゴム
JP2014040522A (ja) 2012-08-22 2014-03-06 Shin Etsu Chem Co Ltd シリコーンゴム硬化物の難燃性向上方法
JP2016528325A (ja) * 2013-06-27 2016-09-15 ブルースター・シリコーンズ・フランス・エスアエス 電気ワイヤ又は電気ケーブルの製造に特に利用し得る熱加硫性ポリオルガノシロキサン組成物
JP2016094514A (ja) 2014-11-13 2016-05-26 信越化学工業株式会社 付加硬化性シリコーンゴム組成物
JP2017031364A (ja) * 2015-08-05 2017-02-09 信越化学工業株式会社 付加硬化性シリコーンゴム組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3666828A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033545A1 (ja) * 2019-08-21 2021-02-25 信越化学工業株式会社 ミラブル型シリコーンゴム組成物、シリコーンゴム硬化物及び電力ケーブル接続用電気絶縁部材
JPWO2021033545A1 (ja) * 2019-08-21 2021-02-25
JP7476901B2 (ja) 2019-08-21 2024-05-01 信越化学工業株式会社 ミラブル型シリコーンゴム組成物、シリコーンゴム硬化物及び電力ケーブル接続用電気絶縁部材
CN110591386A (zh) * 2019-09-03 2019-12-20 四川大学 一种可固化的绝缘乙烯基硅脂材料及其制备方法与用途
CN110591386B (zh) * 2019-09-03 2020-11-24 四川大学 一种可固化的绝缘乙烯基硅脂材料及其制备方法与用途

Also Published As

Publication number Publication date
CN110892023B (zh) 2022-01-04
US20200165455A1 (en) 2020-05-28
CN110892023A (zh) 2020-03-17
EP3666828A4 (en) 2021-04-28
JP2019031601A (ja) 2019-02-28
KR20200035056A (ko) 2020-04-01
EP3666828B1 (en) 2024-10-30
EP3666828A1 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP6344333B2 (ja) 付加硬化性シリコーンゴム組成物
EP3666828B1 (en) Addition-curable silicone composition and cured silicone rubber
JP6733241B2 (ja) 付加硬化性シリコーンゴム組成物、その製造方法及び硬化物
JP6572634B2 (ja) 付加硬化性シリコーンゴム組成物及び硬化物
JP7371717B2 (ja) 付加硬化性液状シリコーンゴム組成物
JP2009173837A (ja) シリコーンゲル組成物
JP2006056986A (ja) 二液硬化型シリコーン組成物
EP3219762B1 (en) Addition-curable silicone rubber composition
JPH11152408A (ja) 高電圧電気絶縁体用シリコーンゴム組成物及びポリマー碍子
JPWO2018198830A1 (ja) 付加硬化型シリコーンゴム組成物
JP7491214B2 (ja) オイルブリード性シリコーンゴム硬化物の耐熱性を向上する方法
JP2023130798A (ja) 付加硬化型シリコーン組成物、及び難燃性シリコーンゴム
JP6245119B2 (ja) シリコーンゴム組成物及びシリコーンゴム硬化物の引裂き強度を向上させる方法
WO2021241036A1 (ja) 二液付加硬化型シリコーンゴム組成物
JP7526115B2 (ja) 耐熱性ミラブル型シリコーンゴム組成物
JP7533636B2 (ja) オイルブリード性シリコーンゴム組成物
JPWO2018092490A1 (ja) 自動車オイルフィルターシール部材用付加硬化型液状シリコーンゴム組成物及び自動車オイルフィルターシール部材
WO2023008042A1 (ja) 液状付加硬化型フルオロシリコーン組成物、シリコーンゴム、成形品
WO2023218904A1 (ja) ミラブル型シリコーンゴム組成物及びその硬化物
JP2003292782A (ja) 高電圧電気絶縁体用シリコーンゴム組成物及びポリマー碍子
JP2008150445A (ja) 液状シリコーンゴムベースの製造方法、付加硬化型液状シリコーンゴム組成物及びシリコーンゴム硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207004647

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018843288

Country of ref document: EP

Effective date: 20200309