WO2019022204A1 - コンタクトプローブおよびプローブユニット - Google Patents

コンタクトプローブおよびプローブユニット Download PDF

Info

Publication number
WO2019022204A1
WO2019022204A1 PCT/JP2018/028136 JP2018028136W WO2019022204A1 WO 2019022204 A1 WO2019022204 A1 WO 2019022204A1 JP 2018028136 W JP2018028136 W JP 2018028136W WO 2019022204 A1 WO2019022204 A1 WO 2019022204A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
pipe member
pipe
plunger
holder
Prior art date
Application number
PCT/JP2018/028136
Other languages
English (en)
French (fr)
Inventor
浩平 広中
一也 相馬
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to US16/633,597 priority Critical patent/US11422156B2/en
Priority to SG11202000654VA priority patent/SG11202000654VA/en
Priority to CN201880048520.6A priority patent/CN110945366B/zh
Priority to JP2019532867A priority patent/JP7413018B2/ja
Publication of WO2019022204A1 publication Critical patent/WO2019022204A1/ja
Priority to PH12020500161A priority patent/PH12020500161A1/en
Priority to US17/848,603 priority patent/US11656246B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0466Details concerning contact pieces or mechanical details, e.g. hinges or cams; Shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes

Definitions

  • the present invention relates to a contact probe and a probe unit.
  • the probe unit includes a plurality of probes and a probe holder in which a hole for accommodating the probe is formed (see, for example, Patent Document 1).
  • a signal probe for inputting / outputting an electric signal to / from the semiconductor integrated circuit, a power feeding probe for supplying power, and a grounding probe for supplying an earth potential are used as the above-mentioned probes.
  • the outer diameter of the signal probe, the power feed probe, and the ground probe may differ depending on their functions.
  • an insulating block is provided which is a hole corresponding to the diameter of each probe and which is a hole forming a part of the above-described hole corresponding to the arrangement of the probe.
  • the arrangement of various probes can be changed by arranging the insulating block corresponding to the arrangement of the external connection electrodes of the semiconductor integrated circuit to be used.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a contact probe and a probe unit capable of simplifying the configuration of the probe holder in a probe holder capable of changing the arrangement of the contact probe. Do.
  • a contact probe has a cylindrical pipe member and a hollow portion, and the inner periphery of at least one end of the pipe member in the longitudinal direction
  • An inner conductor having a collar fixed to the side and a flange portion abutting on a step formed by the pipe member and the collar, which is extendable along the longitudinal direction and penetrating the pipe member; Equipped with
  • the contact probe according to the present invention is characterized in that, in the above invention, the pipe member has an insulating pipe formed using an insulating material.
  • the pipe member further includes a conductive coating layer provided on the inner periphery and the outer periphery of the insulating pipe.
  • the pipe member is formed using a conductive material.
  • the pipe member may be formed between an outer peripheral pipe and an inner peripheral pipe having a double pipe structure, the outer peripheral pipe and the inner peripheral pipe. And insulating members respectively provided at both end portions in the axial direction, and an air layer is formed by the outer peripheral pipe, the inner peripheral pipe, and the insulating member.
  • the collar is formed using a conductive material.
  • the collar is provided at each end of the pipe member.
  • a signal probe for inputting / outputting a signal to / from a predetermined circuit structure, a feed probe for supplying power to the predetermined circuit structure, and a ground potential to the predetermined circuit structure
  • a conductive probe holder which can be inserted through the probe for signal supply, the probe for signal, the probe for power supply, and the probe for earth, and in which a plurality of holes each having the same hole shape are formed
  • the signal probe, the power feeding probe, and the grounding probe have a cylindrical pipe member and a hollow portion on the inner peripheral side of at least one end of the pipe member in the longitudinal direction. It has a collar that is fixed, and a flange that abuts on a step that is formed by the pipe member and the collar. And a has an inner conductor passing through the pipe member, respectively, the pipe members of each probe is characterized by having the same outer diameter.
  • adjacent holes adjacent to each other communicate with each other, and at least the outer peripheral surface of the pipe member has conductivity.
  • the pipe members of the respective probes, which respectively penetrate the fitted holes, are in contact with each other at the communicating portions of the holes.
  • the present invention it is possible to simplify the configuration of the probe holder in the probe holder which can change the arrangement of the contact probe.
  • FIG. 1 is a schematic view showing an entire configuration of a probe unit according to a first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view showing a detailed structure of a probe holder and a probe that constitute a probe unit according to Embodiment 1 of the present invention.
  • FIG. 3 is a partial cross-sectional view showing the configuration of the probe unit at the time of inspection of the semiconductor integrated circuit according to the first embodiment of the present invention.
  • FIG. 4 is a partial cross-sectional view showing a detailed structure of a probe holder and a probe constituting a probe unit according to a second embodiment of the present invention.
  • FIG. 1 is a schematic view showing an entire configuration of a probe unit according to a first embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional view showing a detailed structure of a probe holder and a probe that constitute a probe unit according to Embodiment 1 of the present invention.
  • FIG. 3 is a partial cross-sectional view showing
  • FIG. 5 is a partial cross-sectional view showing a configuration in the case where a cap is attached to a probe constituting a probe unit according to a second embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view showing a configuration of a cap according to a first modification of the second embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional view showing a configuration of a cap according to a second modification of the second embodiment of the present invention.
  • FIG. 8 is a partial cross-sectional view showing the configuration of a cap according to Variation 3 of Embodiment 2 of the present invention.
  • FIG. 9 is a partial cross-sectional view showing a detailed structure of a probe holder and a probe that constitute a probe unit according to Embodiment 3 of the present invention.
  • FIG. 10 is a partial cross-sectional view showing a detailed structure of a probe holder and a probe that constitute a probe unit according to a fourth embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional view showing a detailed structure of a probe holder and a probe constituting a probe unit according to a fifth embodiment of the present invention.
  • FIG. 12 is a top view showing a configuration of a probe holder constituting a probe unit according to Modification 1 of Embodiment 5 of the present invention.
  • FIG. 13 is a perspective sectional view showing a configuration of a probe holder constituting a probe unit according to a first modification of the fifth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing a configuration of a probe holder constituting a probe unit according to Modification 2 of Embodiment 5 of the present invention.
  • the probe unit according to the first embodiment of the present invention is for performing input / output of electric signals, power supply and ground potential supply to a predetermined circuit structure such as a semiconductor integrated circuit, and in particular, a stable ground potential.
  • a predetermined circuit structure such as a semiconductor integrated circuit, and in particular, a stable ground potential.
  • the configuration is such that a grounding probe for supplying a ground potential and a probe holder formed of a conductive material are electrically connected.
  • FIG. 1 is a schematic view showing the structure of a probe unit according to an embodiment of the present invention.
  • the probe unit according to the first embodiment is provided on a circuit board 2 provided with a circuit for generating a signal to be supplied to the semiconductor integrated circuit 1 and the like, and disposed on the circuit board 2
  • a probe holder 3 provided with a hole (not shown in FIG. 1) and a contact probe 4 (hereinafter, the contact probe is simply referred to as a probe) accommodated in the hole of the probe holder 3 are provided.
  • a holder member 5 for restraining the occurrence of positional deviation of the semiconductor integrated circuit 1 at the time of use is disposed on the circuit board 2 and on the outer periphery of the probe holder 3.
  • the circuit board 2 includes an inspection circuit for inspecting the electrical characteristics of the semiconductor integrated circuit 1 to be inspected. Further, the circuit board 2 has a configuration in which an electrode (not shown in FIG. 1) for electrically connecting the built-in circuit to the probe 4 is disposed on the contact surface with the probe holder 3.
  • the probe holder 3 is for accommodating the probe 4.
  • the probe holder 3 includes a holder substrate formed of a conductive material such as metal.
  • the holder substrate has a structure in which a hole (holder hole) is formed in a region corresponding to the arrangement place of the probe 4 and the probe 4 is accommodated in the hole.
  • the probe 4 is for electrically connecting between the circuit provided in the circuit board 2 and the semiconductor integrated circuit 1. Probes 4 are roughly divided into three patterns in accordance with the type of signal supplied to semiconductor integrated circuit 1, etc. Specifically, a signal probe for inputting / outputting electric signals to / from semiconductor integrated circuit 1 And a power supply probe for supplying power to the semiconductor integrated circuit 1 and a ground probe for supplying a ground potential to the semiconductor integrated circuit 1.
  • a signal probe for inputting / outputting electric signals to / from semiconductor integrated circuit 1
  • a power supply probe for supplying power to the semiconductor integrated circuit 1
  • a ground probe for supplying a ground potential to the semiconductor integrated circuit 1.
  • the term “signal probe,” “earth probe,” and “power feed probe” will be collectively referred to as “probe”, and each name will be used to refer to each.
  • FIG. 2 is a partial cross-sectional view showing the detailed configuration of the probe holder and the probe.
  • a first member 31 located on the upper surface side of FIG. 2 and a second member 32 located on the lower surface side are stacked.
  • the first member 31 and the second member 32 are fixed by an adhesive such as a resin or screwing.
  • the coaxial structure means a coaxial structure in which the central axis of the signal probe and the central axis of the inner surface of the hole coincide with each other. The configuration of the probe holder 3 will be described later.
  • the signal probe 6 contacts a first plunger 61 in contact with an inspection signal electrode of the semiconductor integrated circuit 1 when the inspection of the semiconductor integrated circuit 1 is performed, and a second plunger 61 in contact with an electrode of the circuit board 2 provided with an inspection circuit.
  • a coil spring 63 provided between the first plunger 61 and the second plunger 62 for telescopically connecting the two first plungers 61 and the second plunger 62, and the first plunger 61 and the second plunger
  • a first pipe member 64 for accommodating a part of the coil 62 and a coil spring 63 is provided, and collars 65 respectively provided at both ends of the first pipe member 64.
  • the first plunger 61, the second plunger 62 and the coil spring 63 have the same axis.
  • the first plunger 61 is formed using, for example, a conductive material such as metal.
  • the first plunger 61 has a tapered distal end 61a, a flange 61b extending from the proximal end of the distal end 61a and having a diameter larger than that of the distal end 61a, and a distal end of the flange 61b.
  • a boss 61c is coaxially extended from an end different from the end connected to the portion 61a and has a smaller diameter than the diameter of the flange 61b.
  • the tip portion 61a has a crown shape.
  • a stepped portion is formed by the tip portion 61a and the flange portion 61b. Also in the following configuration, the tip end portion and the flange portion form a stepped portion.
  • the second plunger 62 is formed using, for example, a conductive material such as metal.
  • the second plunger 62 has a tapered distal end 62a, a flange 62b extending from the proximal end of the distal end 62a and having a diameter larger than that of the distal end 62a, and a distal end of the flange 62b.
  • the boss 62c extends from an end different from the end connected to the part 62a and has a diameter substantially the same as the diameter of the boss 61c, and extends from an end different from the end connected to the flange 62b of the boss 62c.
  • a proximal end 62d having a diameter slightly smaller than the diameter of 62c coaxially.
  • the second plunger 62 can move in the axial direction by the expansion and contraction action of the coil spring 63, and is urged in the direction of the circuit board 2 by the elastic force of the coil spring 63 to contact the electrodes of the circuit board
  • the distal end portion 61a of the first plunger 61 may have a conical shape, and the distal end portion 62a of the second plunger 62 may have a crown shape.
  • the tip portions 61a and 62a can be changed in shape depending on the contact object.
  • the coil spring 63 a wire made of metal, resin, or a material in which the surface of the metal is coated with resin is used.
  • the coil spring 63 is a close-contact wound portion 63a wound on the first plunger 61 side with an inner diameter substantially the same as the diameter of the boss 61c, while the second plunger 62 has an inner diameter greater than the diameter of the proximal end 62d and a predetermined pitch
  • the coarsely wound portion 63b is wound around.
  • the end of the tight wound portion 63a is, for example, press-fit into the boss portion 61c and abuts on the flange portion 61b.
  • the end of the roughly wound portion 63b is press-fit into the boss portion 62c and abuts on the flange portion 62b.
  • the configuration in which the first plunger and the second plunger are connected to the coil spring corresponds to the inner conductor in the probe.
  • the first pipe member 64 has a cylindrical shape through which the first plunger 61, the second plunger 62, and the coil spring 63 can be inserted.
  • the first pipe member 64 includes an impedance correction member 641 for correcting the value of the characteristic impedance in the signal probe 6, an inner peripheral plating 642 provided on the inner periphery of the impedance correction member 641, and an outer periphery of the impedance correction member 641. And the outer peripheral side plating 643 provided on the
  • the impedance correction member 641 is a cylindrical dielectric material having a predetermined dielectric constant, and is an insulating member for correcting the value of the characteristic impedance of the signal probe 6. Specifically, the impedance correction member 641 adjusts the dielectric constant of the dielectric material and the outer diameter of the cylindrical shape to obtain a characteristic impedance of the signal probe 6, for example, 50 ⁇ which is generally adopted. It has been corrected to match.
  • the impedance correction member 641 is formed using, for example, an insulating material such as polytetrafluoroethylene.
  • the inner plating 642 is a conductive coating layer provided on the inner periphery of the impedance correction member 641.
  • the inner circumferential side plating 642 has a first plating 642 a provided on the inner circumference of the impedance correction member 641 and a second plating 642 b covering the first plating 642 a.
  • the first plating 642a is formed using, for example, nickel.
  • the second plating 642 b is formed using, for example, gold.
  • the outer peripheral side plating 643 is a conductive coating layer provided on the outer periphery of the impedance correction member 641.
  • the outer peripheral side plating 643 has a first plating 643 a provided on the outer periphery of the impedance correction member 641 and a second plating 643 b covering the first plating 643 a.
  • the first plating 643a is formed using, for example, nickel.
  • the second plating 643 b is formed using, for example, gold.
  • a conductive layer is formed on the first pipe member 64 by such a plating process.
  • the collar 65 is formed of, for example, a conductive material such as metal, and has a hollow cylindrical shape.
  • the diameter of the outer periphery of the collar 65 is a diameter that can be press-fit or fixed to the inner periphery of the first pipe member 64. Further, the diameter of the inner periphery (hollow part) of the collar 65 is equal to or slightly larger than the diameter of the tip end portion of the first plunger 61 or the second plunger 62 which is inserted.
  • the collars 65 are respectively provided at both ends of the first pipe member 64 and form a step with the inner peripheral surface of the first pipe member 64.
  • the flange portion 61 b of the first plunger 61 and the flange portion 62 b of the second plunger 62 are prevented from coming off the first pipe member 64 by coming into contact with the steps.
  • the collar 65 is press-fitted and fixed to the inner periphery of the first pipe member 64, or fixed to the inner periphery of the first pipe member 64 by soldering or an adhesive.
  • the feed probe 7 contacts the feed electrode of the semiconductor integrated circuit 1 when testing the semiconductor integrated circuit 1, and the second plunger contacts the electrode of the circuit board 2 provided with the test circuit.
  • a coil spring 73 provided between the first plunger 71 and the second plunger 72 for telescopically connecting the two first plungers 71 and the second plunger 72, the first plunger 71 and the second plunger 72 And a collar 75 provided at each end of the second pipe member 74.
  • the second pipe member 74 accommodates a portion of the second pipe member 74 and accommodates the coil spring 73.
  • the first plunger 71, the second plunger 72 and the coil spring 73 have the same axis.
  • the first plunger 71 is formed using, for example, a conductive material such as metal.
  • the first plunger 71 has a tapered distal end portion 71a, a flange portion 71b extending from the proximal end side of the distal end portion 71a and having a diameter larger than that of the distal end portion 71a, and a distal end of the flange portion 71b.
  • a boss 71c is coaxially extended from an end different from the end connected to the portion 71a and has a smaller diameter than the diameter of the flange 71b.
  • the tip portion 71a has a crown shape.
  • the second plunger 72 is formed using a conductive material such as metal, for example.
  • the second plunger 72 has a tapered distal end 72a, a flange 72b extending from the proximal end of the distal end 72a and having a diameter larger than that of the distal end 72a, and a tip of the flange 72b.
  • the boss 72c extends from an end different from the end connected to the part 72a and has a diameter substantially the same as the diameter of the boss 71c, and extends from an end different from the end connected to the flange 72b of the boss 72c.
  • a proximal end 72d having a diameter slightly smaller than the diameter of 72c coaxially.
  • the second plunger 72 can move in the axial direction by the expansion and contraction action of the coil spring 73, is urged in the direction of the circuit board 2 by the elastic force of the coil spring 73, and contacts the electrodes of the circuit board 2.
  • the shape of the tip portions 71a and 72a is not limited as in the case of the tip portions 61a and 62a described above, and the shape can be changed depending on the contact object.
  • the coil spring 73 As the coil spring 73, a wire made of metal, resin, or a material in which the surface of the metal is coated with resin is used.
  • the coil spring 73 is a tight wound portion 73a wound on the first plunger 71 side with an inner diameter substantially the same as the diameter of the boss portion 71c, while the second plunger 72 side has a predetermined pitch with an inner diameter larger than the diameter of the proximal end 72d.
  • the coarsely wound portion 73b is wound around.
  • the end of the tight wound portion 73a is, for example, press-fit into the boss portion 71c and abuts on the flange portion 71b.
  • the end of the roughly wound portion 73b is press-fit into the boss portion 72c and abuts on the flange portion 72b.
  • the second pipe member 74 has a cylindrical shape through which the first plunger 71, the second plunger 72, and the coil spring 73 can be inserted.
  • the second pipe member 74 includes an insulating member 741 formed using an insulating material, an inner peripheral plating 742 provided on the inner periphery of the insulating member 741, and an outer peripheral plating 743 provided on the outer periphery of the insulating member 741. Have.
  • the insulating member 741 is formed of an insulating material in a cylindrical shape. Specifically, the insulating member 741 is formed using, for example, an insulating material such as ceramic or polytetrafluoroethylene.
  • the inner plating 742 has a first plating 742 a provided on the inner circumference of the insulating member 741 and a second plating 742 b covering the first plating 742 a.
  • the first plating 742a is formed using, for example, nickel.
  • the second plating 742 b is formed using, for example, gold.
  • the outer peripheral plating 743 includes a first plating 743 a provided on the outer periphery of the insulating member 741 and a second plating 743 b covering the first plating 743 a.
  • the first plating 743a is formed using, for example, nickel.
  • the second plating 743b is formed using, for example, gold.
  • the collar 75 is formed of, for example, a conductive material such as metal, and has a hollow cylindrical shape.
  • the diameter of the outer periphery of the collar 75 is a diameter that can be press-fitted or fixed to the inner periphery of the second pipe member 74. Further, the diameter of the inner periphery of the collar 75 is equal to or slightly larger than the diameter of the tip end portion of the first plunger 71 or the second plunger 72 which is inserted.
  • the collars 75 are respectively provided at both ends of the second pipe member 74 and form a step with the inner peripheral surface of the second pipe member 74.
  • the flange portion 71 b of the first plunger 71 and the flange portion 72 b of the second plunger 72 are prevented from coming off the second pipe member 74 by coming into contact with the steps.
  • the earthing probe 8 is a first plunger 81 in contact with the feeding electrode of the semiconductor integrated circuit 1 when the semiconductor integrated circuit 1 is inspected, and a second plunger in contact with the electrode of the circuit board 2 provided with the inspection circuit. And a coil spring 83 provided between the first plunger 81 and the second plunger 82 for telescopically connecting the two first plungers 81 and the second plunger 82, and the first plunger 81 and the second plunger 82.
  • a third pipe member 84 accommodating a part of the coil spring 83 and collars 85 respectively provided at both ends of the third pipe member 84.
  • the first plunger 81, the second plunger 82 and the coil spring 83 have the same axis.
  • the first plunger 81 is formed, for example, using a conductive material such as metal.
  • the first plunger 81 has a tapered distal end 81a, a flange 81b extending from the proximal end of the distal end 81a and having a diameter larger than that of the distal end 81a, and a distal end of the flange 81b.
  • a boss 81c coaxially extends from an end different from the end connected to the portion 81a and has a smaller diameter than the diameter of the flange 81b.
  • the tip 81a has a crown shape.
  • the second plunger 82 is formed, for example, using a conductive material such as metal.
  • the second plunger 82 has a tapered distal end 82a, a flange 82b extending from the proximal end of the distal end 82a and having a diameter larger than that of the distal end 82a, and the distal end of the flange 82b.
  • the boss 82c extends from an end different from the end connected to the end 82a and has a diameter substantially the same as the diameter of the boss 81c, and extends from an end different from the end connected to the flange 82b of the boss 82c.
  • a proximal end 82d having a diameter slightly smaller than the diameter of 82c coaxially.
  • the second plunger 82 can move in the axial direction by the expansion and contraction action of the coil spring 83, and is urged in the direction of the circuit board 2 by the elastic force of the coil spring 83 to contact the electrode of the circuit board 2.
  • the shape of the distal end portions 81a and 82a is not limited as in the case of the distal end portions 61a and 62a described above, and the shape can be changed depending on the contact object.
  • the coil spring 83 uses a wire made of metal, resin, or a material in which the surface of the metal is coated with resin.
  • the coil spring 83 is a close-contact wound portion 83a wound on the first plunger 81 side with an inner diameter substantially the same as the diameter of the boss 81c, while the second plunger 82 has an inner diameter larger than the diameter of the proximal end 82d and a predetermined pitch
  • the coarsely wound portion 83b is wound around.
  • the end of the tight wound portion 83a is, for example, press-fit into the boss portion 81c and abuts on the flange portion 81b.
  • the end of the roughly wound portion 83b is press-fit into the boss portion 82c and abuts on the flange portion 82b.
  • the third pipe member 84 has a cylindrical shape through which the first plunger 81, the second plunger 82, and the coil spring 83 can be inserted.
  • the third pipe member 84 is formed using a conductive material such as metal.
  • the outer circumferential surface and the inner circumferential surface of the third pipe member 84 may be plated.
  • the collar 85 is formed of, for example, a conductive material such as metal, and has a hollow cylindrical shape.
  • the collar 85 has a diameter at which the outer periphery thereof can be press-fit or fixed to the inner periphery of the third pipe member 84. Further, the collar 85 has a diameter equal to or slightly larger than the diameter of the tip end portion of the first plunger 81 or the second plunger 82 which is formed by the inner circumference.
  • the collars 85 are respectively provided at both ends of the third pipe member 84 and form a step with the inner peripheral surface of the third pipe member 84.
  • the flange portion 81 b of the first plunger 81 and the flange portion 82 b of the second plunger 82 are prevented from coming off the third pipe member 84 by coming into contact with the steps.
  • the diameters of the outer peripheries of the first pipe member 64, the second pipe member 74, and the third pipe member 84 are the same as one another.
  • the probe holder 3 is formed by laminating the first member 31 and the second member 32.
  • the first member 31 and the second member 32 are formed using a conductive material such as metal, for example.
  • holder holes 33 and 34 which are holes for accommodating the plurality of probes 4, are formed in the same number in the first member 31 and the second member 32, and the holder holes 33 and 34 for accommodating the probes 4 are The axes of each other are formed to coincide with each other.
  • the holder holes 33 and 34 are formed at positions covering all wiring patterns that can be taken in the semiconductor integrated circuit 1 to be inspected.
  • the first member 31 and the second member 32 are applicable as long as they are materials having conductivity. From the viewpoint of strength as a probe holder, it is preferably formed using a metal material (including an alloy).
  • the holder holes 33 and 34 both have stepped hole shapes with different diameters along the penetration direction. That is, the holder hole 33 includes a small diameter portion 33a having an opening on the upper surface side of the first member 31, and a large diameter portion 33b having a diameter larger than that of the small diameter portion 33a.
  • the small diameter portion 33a is smaller than the diameter of the outer periphery of the above-described pipe members (pipe members 64, 74, 84) and larger than the diameter of the tip portion (tip portions 61a, 71a, 81a) of the first plunger.
  • the large diameter portion 33b is equal to the diameter of the outer periphery of the pipe member (pipe members 64, 74, 84), or a diameter smaller than the inner diameter of the pipe member within a press-fitable range, or the positional deviation of the probe 4 in the probe holder 3. Within the allowable range of the outer diameter of the pipe member.
  • the holder hole 34 includes a small diameter portion 34a having an opening at the lower end surface of the probe holder 3 and a large diameter portion 34b having a diameter larger than that of the small diameter portion 34a.
  • the small diameter portion 34a is smaller than the diameter of the outer periphery of the above-described pipe members (pipe members 64, 74, 84) and larger than the diameter of the tip portion (tip portions 62a, 72a, 82a) of the second plunger.
  • the large diameter portion 34b is preferably equivalent to the large diameter portion 33b, and is equal to the diameter of the outer periphery of the pipe member (pipe members 64, 74, 84) or smaller than the inner diameter of the pipe member within a press-fittable range. Within the diameter or the tolerance of displacement of the probe 4 in the probe holder 3, it is larger than the outer diameter of the pipe member.
  • FIG. 3 is a partial cross-sectional view showing the configuration of the probe unit at the time of inspection of the semiconductor integrated circuit according to the first embodiment of the present invention.
  • the earthing probe 8 in the present embodiment not only supplies the potential from the circuit board 2 to the semiconductor integrated circuit 1 through the electrodes 100c and 200c, but also receives the potential from the probe holder 3 and thus the semiconductor integrated circuit 1 Are configured to supply a ground potential. That is, as shown also in FIG. 2, the inner surfaces of the holder holes 33 and 34 accommodating the grounding probe 8 have a configuration in which the outer surface of the grounding probe 8, specifically, the third pipe member 84 is in direct contact. . Then, as described above, since the probe holder 3 is formed of a conductive material, the grounding probe 8 and the probe holder 3 are electrically connected. Therefore, since the internal charge can freely move back and forth between the ground probe 8 and the probe holder 3, the potential supplied by the ground probe 8 and the potential of the probe holder 3 have the same value. .
  • Each of the signal probes 6 receives an electrical signal generated in the circuit board 2 from the electrode 200a, and outputs the received electrical signal to the semiconductor integrated circuit 1 through the electrode 100a.
  • an electrical signal is received from the second plunger 62, flows through the inner circumferential plating 642 through the collar 65 on the second plunger 62 side, and thereafter, is passed through the collar 65 on the first plunger 61 side. 1 Plunge into the plunger 61.
  • the proximal end 62d is brought into contact with the tight wound portion 63a, after flowing from the proximal end 62d to the tight wound portion 63a, it may flow from the tight wound portion 63a into the first plunger 61.
  • the power supply probe 7 receives power for power generation generated in the circuit board 2 from the electrode 200 b of the circuit board 2, and receives the received power via the electrode 100 b of the semiconductor integrated circuit 1 to the semiconductor integrated circuit 1. I input and output.
  • an electrical signal is received from the second plunger 72, flows through the inner circumferential plating 742 through the collar 75 on the second plunger 72 side, and thereafter, is passed through the collar 75 on the first plunger 71 side. 1 Plunger into plunger 71.
  • the proximal end 72d is brought into contact with the tight wound portion 73a, after flowing from the proximal end 72d to the tight wound portion 73a, it may flow into the first plunger 71 from the tight wound portion 73a.
  • the ratio of signal reflection occurring at the connection point due to the difference in characteristic impedance may increase as the electrical length of the signal probe 6 (the length of the propagation path with respect to the period of the electrical signal) increases.
  • the probe unit according to the present embodiment as the speed of the semiconductor integrated circuit 1 is increased, that is, the frequency is increased, the ratio of signal reflection of the electric signal is increased. Therefore, when producing a probe unit corresponding to the semiconductor integrated circuit 1 driven at a high frequency, the value of the characteristic impedance of the signal probe 6 is matched with that of the semiconductor integrated circuit 1, that is, so-called impedance matching is performed accurately. Is important.
  • a plurality of holes formed by the holder holes 33 and 34 are formed in the probe holder 3, and the signal probe 6, the power feeding probe 7, and the grounding probe 8 are arranged in the holes. It is possible. Thereby, it is possible to change the arrangement of the signal probe 6, the power feeding probe 7 and the grounding probe 8 for each hole. Under the present circumstances, it is possible by removing the 1st member 31 from the 2nd member 32, for example, accommodating the probe of a predetermined
  • the hole of the same shape may be formed in the position where the probe holder 3 can be disposed, so the arrangement of the contact probe can be changed with a simple holder configuration.
  • the impedance correction member has been adhered and fixed to the holder hole by an adhesive or the like, but in the first embodiment, the adhesion process is unnecessary, and the work process in assembling the probe unit is reduced. be able to. Moreover, since the impedance member is not included as the configuration of the holder hole, the occurrence of crushing or breakage of the holder hole can be suppressed.
  • the collar 65 is press-fit onto the inner circumference of the first pipe member 64.
  • it can be fixed to the inner periphery of the first pipe member 64 by soldering.
  • the collar 75 may be press-fitted and fixed to the inner periphery of the second pipe member 74, In addition to being fixed to the inner periphery of the second pipe member 74 by an adhesive, it can be fixed to the inner periphery of the second pipe member 74 by soldering.
  • the outer peripheral side plating 643 is formed on the outer periphery of the first pipe member 64, the outer periphery of the first pipe member 64 via the conductive probe holder 3 The whole can be set to the ground potential. As a result, a part of the hole of the probe holder 3 can be in communication, and the adjustment width of the thickness of the impedance correction member 641 can be secured.
  • the conduction path of the electric signal is through the second pipe member 74.
  • the probe concerning this Embodiment 1 can take out easily the 1st plunger inside a pipe member, a 2nd plunger, and a coiled spring by removing one collar. Thereby, when repairing the probe, it is possible to easily replace the first plunger, the second plunger and the coil spring.
  • the holder holes 33 and 34 for holding any of the probes are described as being independently provided, but some of the adjacent holder holes are in communication with each other. It is also good.
  • the large diameter portions 33b of the holder holes 33 adjacent to each other and the large diameter portions 34b of the holder holes 34 may communicate with each other, the large diameter portions 33b of the holder holes 33 communicate with each other, and the holder holes 34 May be independent of each other.
  • FIG. 4 is a partial cross-sectional view showing a detailed structure of a probe holder and a probe constituting a probe unit according to a second embodiment of the present invention.
  • Embodiment 1 mentioned above demonstrated the structure which equips the both ends of a pipe member with a collar, it does not restrict to this.
  • the collar is provided only on the first plunger side.
  • the probe unit according to the second embodiment includes a circuit board 2 having a circuit for generating a signal to be supplied to the semiconductor integrated circuit 1 and the like, and a probe unit disposed on the circuit board 2 and having predetermined holes (shown in FIG. 1). And a probe (signal probe 6A, power feeding probe 7A, and grounding probe 8A) accommodated in the hole of the probe holder 3A.
  • the signal probe 6A is the same as the signal probe 6 except that the collar 65 on the second plunger 62 side is not provided in the configuration of the signal probe 6 described above.
  • the power supply probe 7A is the same as the power supply probe 7 described above except that the collar 75 on the second plunger 72 side of the power supply probe 7 is not provided.
  • the earthing probe 8A is the same as the earthing probe 8 described above except that the collar 85 on the second plunger 82 side of the earthing probe 8 is not provided.
  • the probe holder 3A includes a holder substrate 35 formed of a conductive material such as metal and an insulating substrate 36 provided on one surface of the holder substrate 35.
  • a hole (holder hole) is formed in a region corresponding to the arrangement location of the probe, and the probe is accommodated in the hole.
  • the probe holder 3A is formed by laminating the holder substrate 35 and the insulating substrate 36.
  • the holder substrate 35 is formed using, for example, a conductive material such as metal.
  • the insulating substrate 36 is formed using, for example, an insulating material such as polyetheretherketone (PEEK), polyimide (PI), and polyethersulfone (PES).
  • PEEK polyetheretherketone
  • PI polyimide
  • PES polyethersulfone
  • the holder substrate 35 may be made of any conductive material other than metal. From the viewpoint of strength as a probe holder, it is preferably formed using a metal material (including an alloy).
  • the holder holes 37 and 38 which are holes for accommodating a plurality of probes, are formed in the same number each, and the holder holes 37 and 38 for accommodating the probes have their axes aligned with each other. It is formed as.
  • the holder holes 37 and 38 are formed at positions covering all wiring patterns that can be taken in the semiconductor integrated circuit 1 to be inspected.
  • the holder holes 37 both have stepped hole shapes that differ in diameter along the penetration direction. That is, the holder hole 37 has a small diameter portion 37a having an opening on the upper surface side of the holder substrate 35, and an opening on the lower surface side of the holder substrate 35 on the side where the insulating substrate 36 is disposed. It consists of the large diameter part 37b whose diameter is larger than that.
  • the small diameter portion 37a is smaller than the diameter of the outer periphery of the above-described pipe members (pipe members 64, 74, 84) and larger than the diameter of the tip portion (tip portions 61a, 71a, 81a) of the first plunger.
  • the large diameter portion 37b is equal to the diameter of the outer periphery of the pipe member (pipe members 64, 74, 84), or a diameter smaller than the inner diameter of the pipe member within a press-fitable range, or the displacement of the probe in the probe holder 3A. Within the allowable range, it is larger than the outer diameter of the pipe member.
  • the holder hole 38 has a hole shape having an opening at the lower end surface of the probe holder 3A.
  • the holder hole 38 is smaller than the diameter of the outer periphery of the above-mentioned pipe members (pipe members 64, 74, 84) and larger than the diameter of the tip portion (tip portions 62a, 72a, 82a) of the second plunger.
  • the large diameter portion 37 b and the holder hole 38 form a stepped portion.
  • the flange portion 62b of the second plunger 62 is prevented from coming off the probe holder 3A by abutting on the step.
  • the operation of the plunger and the coil spring at the time of inspection of the semiconductor integrated circuit is the same as that of the first embodiment described above.
  • the proximal end of the second plunger is in contact with the closely wound portion of the coil spring.
  • the electrical signal flowing through the probe unit flows from the second plunger into the first plunger via the tight winding portion.
  • an electrical signal flowing into the second plunger 62 flows from the proximal end 62d to the tight wound portion 63a and then flows into the first plunger 61 from the tight wound portion 63a.
  • the electric signal may flow from the second plunger 62 to the inner plating 642 of the first pipe member 64 so that the flange portion 62b and the inner plating 642 of the first pipe member 64 contact with each other. Good.
  • the signal probe 6A, the power feeding probe 7A, and the grounding probe 8A all have no collar on the second plunger side. For this reason, in the probe alone, the first plunger, the second plunger, and the coil spring may fall off the pipe member. In order to prevent detachment from the pipe member, it is preferable to use a cap when handling each probe alone.
  • FIG. 5 is a partial cross-sectional view showing a configuration in the case where a cap is attached to a probe constituting a probe unit according to a second embodiment of the present invention.
  • the cap 300 to the probe 6A for signals is demonstrated in FIG. 5, the same cap is attached also to the probe 7A for electric power feeding, and the probe 8A for earth
  • the cap 300 is provided with a receiving portion 301 having a hole shape for receiving a part of the tip portion 62a of the second plunger 62, and a projecting portion 302 projecting cylindrically along the inner peripheral surface of the receiving portion 301. ing.
  • the protrusion 302 has an inner diameter the same as the diameter of the accommodation portion 301, and an outer diameter the same as the inner diameter of the first pipe member 64 or a size capable of being press-fit.
  • the cap 300 is attached to the opening on the second plunger 62 side of the first pipe member 64 to prevent the second plunger 62 from falling off the first pipe member 64.
  • the protrusion 302 enters the gap between the tip 62 a and the first pipe member 64 and abuts on the flange 62 b, whereby the tip of the tip 62 a interferes with the bottom of the housing 301.
  • the cap 300 is held by the first pipe member 64 by press-fitting the protrusion 302 into the first pipe member 64.
  • a plurality of holes formed by the holder holes 37 and 38 are formed in the probe holder 3A, and the signal probe 6A, the power feeding probe 7A and the grounding probe 8A are disposed in the holes. It is possible. As a result, it is possible to change the arrangement of the signal probe 6A, the power supply probe 7A, and the grounding probe 8A for each hole.
  • the hole of the same shape may be formed at the position where the probe holder 3A can be disposed, so the arrangement of the contact probe can be changed with a simple holder configuration.
  • a step is formed by the large diameter portion 37b and the holder hole 38, and this step has a function of preventing the second plunger from coming off.
  • the cap by attaching the cap to each probe, the first plunger, the second plunger and the coil spring are not detached from the pipe member, so that the handling of the probe alone becomes easy.
  • FIG. 6 is a partial cross-sectional view showing a configuration of a cap according to a first modification of the second embodiment of the present invention.
  • the protrusion 302 of the cap 300 is described as being held by the first pipe member 64 by press-fitting into the first pipe member 64.
  • the cap 310 1 Hold the pipe member 64.
  • FIG. 6 illustrates an example in which the cap 310 is attached to the signal probe 6A, the same cap is attached to the power feeding probe 7A and the grounding probe 8A.
  • the cap 310 has a first receiving portion 311a having a hole shape for receiving a portion of the tip portion 62a of the second plunger 62, and a second receiving portion 311b having a hole shape for receiving a portion of the first pipe member 64. And a housing portion 311 is formed.
  • the second housing portion 311 b has the same outer diameter as the inner diameter of the first pipe member 64 or has a size capable of being press-fitted.
  • the cap 310 is attached to an opening on the second plunger 62 side of the first pipe member 64 to prevent the second plunger 62 from falling off the first pipe member 64. At this time, for example, the first pipe member 64 is press-fit into the cap 310, and the cap 310 holds the first pipe member 64.
  • FIG. 7 is a partial cross-sectional view showing a configuration of a cap according to a second modification of the second embodiment of the present invention.
  • the caps 300 and 310 are described as holding one probe, but in the second modification, the cap 320 holds a plurality of probes.
  • the cap 320 has a first receiving portion 311 a having a hole shape for receiving a portion of the tip end portion 62 a of the second plunger 62 and a second receiving portion 311 b having a hole shape for receiving a portion of the first pipe member 64. And two housing portions 311 each having the
  • the cap 320 prevents the second plunger 62 from falling out of the first pipe member 64 by holding the first pipe member 64 in each accommodation portion 311.
  • FIG. 8 is a partial cross-sectional view showing the configuration of a cap according to Variation 3 of Embodiment 2 of the present invention.
  • the cap 320 is described as holding the end of the first pipe member 64 on the second plunger 62 side.
  • the cap 330 is the third modification. The end of the first pipe member 64 on the first plunger 61 side is held.
  • the cap 330 has a first receiving portion 331 a having a hole shape for receiving a portion of the tip portion 61 a of the first plunger 61 and a second receiving portion 331 b having a hole shape for receiving a portion of the first pipe member 64. And two housing portions 331 each having the
  • each accommodation portion 331 holds the end of the first pipe member 64 on the side of the first plunger 61, whereby the second plunger 62 faces upward, and the second plunger 62 drops out of the first pipe member 64. To prevent that.
  • the signal probe 6A is attached to the caps 320 and 330, but similar caps are attached to the power supply probe 7A and the grounding probe 8A. Further, the caps may hold a plurality of types of probes, for example, the caps 320 and 330 hold the signal probe 6A and the power supply probe 7A.
  • FIG. 9 is a partial cross-sectional view showing a detailed structure of a probe holder and a probe that constitute a probe unit according to Embodiment 3 of the present invention.
  • the collar is provided only on the first plunger side, and the circuit board 2 is stacked in advance.
  • the probe unit according to the third embodiment includes a circuit board 2 having a circuit for generating a signal to be supplied to the semiconductor integrated circuit 1 and the like, and is disposed on the circuit board 2 and has predetermined holes (shown in FIG. 1). And a probe (signal probe 6A, power feeding probe 7A, and grounding probe 8A) accommodated in the hole of the probe holder 3B.
  • a probe signal probe 6A, power feeding probe 7A, and grounding probe 8A
  • the probe holder 3B includes a holder substrate 35 formed of a conductive material such as metal. That is, the probe holder 3B does not have the insulating substrate 36 of the above-described probe holder 3A.
  • the axial length of the holder hole 37 can be appropriately changed according to the axial length of the plunger or the coil spring.
  • the circuit board 2 is attached to the holder substrate 35 in advance in the probe holder 3B.
  • the second plunger (second plungers 62, 72, 82) of each probe comes out of the probe holder 3B by contacting the electrodes (electrodes 200a, 200b, 200c) of the circuit board 2. Is prevented.
  • the operations of the plunger and the coil spring at the time of inspection of the semiconductor integrated circuit are the same as in the second embodiment described above.
  • the electrical signal flowing through the probe unit flows from the second plunger into the first plunger via the tight winding portion.
  • an electrical signal flowing into the second plunger 62 flows from the proximal end 62d to the tight wound portion 63a and then flows into the first plunger 61 from the tight wound portion 63a.
  • a plurality of holder holes 37 are formed in the probe holder 3B, and the signal probe 6A, the power feeding probe 7A and the grounding probe 8A can be arranged in the holder hole 37. is there.
  • the hole of the same shape may be formed at the position where the probe holder 3B can be disposed, so the arrangement of the contact probe can be changed with a simple holder configuration.
  • the second plunger is prevented from coming off by attaching the circuit board 2 to the probe holder 3B.
  • FIG. 10 is a partial cross-sectional view showing a detailed structure of a probe holder and a probe that constitute a probe unit according to a fourth embodiment of the present invention.
  • impedance correction is performed by air in the signal probe.
  • the probe unit according to the fourth embodiment includes a circuit board 2 having a circuit for generating a signal to be supplied to the semiconductor integrated circuit 1 and the like, and a probe unit disposed on the circuit board 2 and having predetermined holes (shown in FIG. 1). And a probe (signal probe 6B, power feeding probe 7 and grounding probe 8) accommodated in the hole of the probe holder 3.
  • a probe signal probe 6B, power feeding probe 7 and grounding probe 8 accommodated in the hole of the probe holder 3.
  • the signal probe 6 ⁇ / b> B is a first pipe member that accommodates the first plunger 61, the second plunger 62, the coil spring 63, and part of the first plunger 61 and the second plunger 62 and also accommodates the coil spring 63. 64A and collars 65 respectively provided at both ends of the first pipe member 64A.
  • the signal probe 6B is different from the above-described signal probe 6 only in the first pipe member. Hereinafter, the configuration of the first pipe member 64A will be described.
  • the first pipe member 64A has a cylindrical shape through which the first plunger 61, the second plunger 62, and the coil spring 63 can be inserted.
  • the first pipe member 64A includes a metal pipe 644 consisting of an outer pipe and an inner pipe having a double pipe structure formed of metal, and an insulating pipe 645 provided at both ends of the metal pipe 644; A plating 646 is provided between the metal pipe 644 and the insulating pipe 645.
  • the metal pipe 644 is formed using nickel, copper, an alloy containing nickel or copper as a main component, or the like.
  • the metal pipe 644 may be obtained by plating the surface of a pipe-like member.
  • the insulating pipe 645 is produced using an insulating material such as ceramic.
  • the first plunger 61, the second plunger 62, and the coil spring 63 are inserted into the hollow space formed by the inner peripheral side pipe.
  • the first pipe member 64A includes a hollow space (hereinafter referred to as an outer peripheral side hollow space) formed between the inner peripheral pipe and the outer peripheral pipe of the metal pipe 644, the insulating pipe 645 and the plating 646.
  • the air layer S in which both ends of the outer peripheral side hollow space are closed is formed.
  • the air layer S corrects the characteristic impedance of the signal probe 6B to, for example, 50 ⁇ generally adopted.
  • the collars 65 are respectively provided at both ends of the first pipe member 64A, and form a step with the inner circumferential surface of the first pipe member 64A.
  • the flange portion 61b of the first plunger 61 and the flange portion 62b of the second plunger 62 are prevented from coming off the first pipe member 64A by abutting on the step.
  • the characteristic impedance it is possible to adjust the characteristic impedance by adjusting the axial length d 1 of the insulating pipe 645 to adjust the volume and the air layer S, the formation position.
  • the length d 1 is preferably in the axial direction of the collar 65 less than the length d 2.
  • a dielectric for impedance adjustment may be provided between the insulating pipes 645.
  • the operation of the plunger and the coil spring at the time of inspection of the semiconductor integrated circuit is the same as that of the first embodiment described above.
  • the electric signal flowing through the signal probe 6 B is received from the second plunger 62, flows through the plating 646 or the metal pipe 644 through the collar 65 on the second plunger 62 side, and then the first plunger 61. It flows into the first plunger 61 through the side collar 65.
  • the proximal end 62d is brought into contact with the tight wound portion 63a, after flowing from the proximal end 62d to the tight wound portion 63a, it may flow from the tight wound portion 63a into the first plunger 61.
  • a plurality of holes formed by the holder holes 33 and 34 are formed in the probe holder 3, and the signal probe 6 B and the power supply probe 7 are provided in the holes. And the grounding probe 8 can be arranged. Thereby, it is possible to change the arrangement of the signal probe 6B, the power feeding probe 7 and the grounding probe 8 with respect to each hole.
  • the hole of the same shape may be formed at the position where the probe holder 3 can be disposed, so the arrangement of the contact probe can be changed with a simple holder configuration.
  • the impedance correction of the signal probe 6B can be performed by the air layer S.
  • FIG. 11 is a partial cross-sectional view showing a detailed structure of a probe holder and a probe constituting a probe unit according to a fifth embodiment of the present invention.
  • the probe holder 3 holds the adjacent probes so as to be in contact with each other.
  • the probe unit according to the fifth embodiment includes a circuit board 2 having a circuit for generating a signal to be supplied to the semiconductor integrated circuit 1 and the like, and a probe unit disposed on the circuit board 2 and having predetermined holes (shown in FIG. 1). And a probe (signal probe 6, power feeding probe 7 and grounding probe 8) accommodated in the hole of the probe holder 3.
  • a probe signal probe 6, power feeding probe 7 and grounding probe 8 accommodated in the hole of the probe holder 3.
  • the probe holder 3C is formed by laminating the first member 31 and the second member 32. Further, in the first member 31 and the second member 32, holder holes 33 and 34, which are holes for accommodating a plurality of probes, are formed in the same number. In the fifth embodiment, adjacent large diameter portions of the large diameter portions (33b and 34b) of the respective holder holes are in contact with each other, and the contact portions are in communication with each other.
  • the pipe member accommodated in the holder hole is in contact with a part of the outer peripheral surface of the pipe member of the adjacent probe. Since at least the outer peripheral surface of the pipe member of each probe has conductivity, in FIG. 11, the power supply probe 7 directly contacts the grounding probe 8 and the signal probe 6 is connected to the power supply probe 7. It is electrically connected to the grounding probe 8 via As a result, the entire outer surface of the pipe member of each probe is at the ground potential.
  • each probe held by the probe holder 3C is electrically connected to the grounding probe 8. Therefore, the entire outer surface of the pipe member of each probe can be made to have the ground potential more reliably.
  • FIG. 12 is a top view showing a configuration of a probe holder constituting a probe unit according to Modification 1 of Embodiment 5 of the present invention.
  • FIG. 13 is a perspective sectional view showing a configuration of a probe holder constituting a probe unit according to a first modification of the fifth embodiment of the present invention, wherein the large diameter portion 33b is orthogonal to the axis of the holder hole 33 It is a perspective sectional view which makes a passing plane the cutting plane.
  • This modification 1 is a configuration in which the large diameter portions of the adjacent holder holes are in contact with each other as in the fifth embodiment described above, and a part of the large diameter portions are in communication with each other. It is arranged in a shape.
  • the first member 31 has a rhombus surrounded by four large diameter portions 33b.
  • a columnar portion 39 is formed. The contact between the rhombic columnar part 39 and the pipe member of each probe makes it possible to position the probe or to suppress the inclination of the axis of the probe with respect to the axis of the holder hole.
  • FIG. 14 is a cross-sectional view showing a configuration of a probe holder constituting a probe unit according to Modification 2 of Embodiment 5 of the present invention, and a cross-sectional view taken along line AA of FIG.
  • Probe holder 3D concerning this modification 2 has the rhombus columnar part 39a which cut out a part of rhombus columnar part 39 mentioned above.
  • the probe holder 3D is formed by laminating the first member 31A and the second member 32A.
  • a rhombic columnar portion 39a surrounded by is formed.
  • the rhombic columnar portion 39a is formed by cutting the central portion in the axial direction with respect to the rhombic columnar portion 39 described above.
  • the first and second plungers and the coil spring are used to form the inner conductor, but the stepped shape in which the pipe member and the collar abut on the stepped portion is used. None, the inner conductor may be formed by a configuration different from the first and second plungers and the coil spring, as long as the configuration can be extended and contracted in the longitudinal direction.
  • the pipe member has a cylindrical shape, and the shape viewed from the direction orthogonal to the longitudinal direction is an annular shape, but it has a hollow angular shape. May be
  • the plating layers are formed on the surface of the pipe members (the first pipe members 64 and 64A and the second pipe member 74).
  • the plating 646 is described as being formed, depending on the fixing manner of the pipe member to the holder hole and the fixing manner of the collar to the pipe member (the fixing manner of the insulating pipe in the fourth embodiment), the plating layer It may be the composition which does not have. For example, when the collar is fixed to the pipe member by pressing the collar into the pipe member, the plating layer may not be provided.
  • the configuration of the power supply probe may be applied to the signal probe.
  • the present invention may include various embodiments and the like not described herein, and various design changes and the like may be made without departing from the technical concept specified by the claims. Is possible.
  • the contact probe and the probe unit according to the present invention are suitable for simplifying the configuration of the probe holder in the probe holder which can change the arrangement of the contact probe.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Connecting Device With Holders (AREA)

Abstract

本発明にかかるコンタクトプローブは、円筒状のパイプ部材と、中空部を有し、パイプ部材の長手方向の少なくとも一方の端部の内周側に固定されるカラーと、パイプ部材とカラーとにより形成される段部に当接するフランジ部を有し、長手方向に沿って伸縮自在であり、パイプ部材を貫通する内部導体と、を備える。

Description

コンタクトプローブおよびプローブユニット
 本発明は、コンタクトプローブおよびプローブユニットに関するものである。
 従来、半導体集積回路の電気特性検査に関する技術分野において、半導体集積回路の外部接触用電極に対応して複数のコンタクトプローブ(以下、単にプローブという)を配設したプローブユニットに関する技術が知られている。かかるプローブユニットは、複数のプローブと、プローブを収容する孔部が形成されたプローブホルダとを備える(例えば、特許文献1参照)。
 プローブユニットでは、上述したプローブとして、半導体集積回路に対して電気信号を入出力するための信号用プローブと、電力を供給する給電用プローブと、アース電位を供給するアース用プローブとが用いられる。信号用プローブ、給電用プローブおよびアース用プローブは、その機能により外径が異なる場合がある。特許文献1では、プローブホルダにおいて、各プローブの径に応じた孔であって、上述した孔部の一部をなす孔を、プローブの配置に対応させて形成した絶縁ブロックが設けられる。プローブホルダでは、使用する半導体集積回路の外部接続用電極の配置に対応した絶縁ブロックを配設することによって、各種プローブの配置を変更することが可能である。
特開2016-70863号公報
 しかしながら、特許文献1が開示する技術では、使用する半導体集積回路の外部接続用電極の配置が異なる場合、その都度、対応する孔を形成した絶縁ブロックを用意しなければならなかった。この結果、使用し得る半導体集積回路の外部接続用電極の配置パターンが増えるほど、絶縁ブロックの数も増えてしまう。
 本発明は、上記に鑑みてなされたものであって、コンタクトプローブの配置を変更可能なプローブホルダにおいて、プローブホルダの構成を簡易にすることができるコンタクトプローブおよびプローブユニットを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるコンタクトプローブは、円筒状のパイプ部材と、中空部を有し、前記パイプ部材の長手方向の少なくとも一方の端部の内周側に固定されるカラーと、前記パイプ部材と前記カラーとにより形成される段部に当接するフランジ部を有し、長手方向に沿って伸縮自在であり、前記パイプ部材を貫通する内部導体と、を備える。
 また、本発明にかかるコンタクトプローブは、上記の発明において、前記パイプ部材は、絶縁性材料を用いて形成される絶縁パイプを有することを特徴とする。
 また、本発明にかかるコンタクトプローブは、上記の発明において、前記パイプ部材は、前記絶縁パイプの内周および外周に設けられる導電性の被膜層をさらに有することを特徴とする。
 また、本発明にかかるコンタクトプローブは、上記の発明において、前記パイプ部材は、導電性材料を用いて形成されることを特徴とする。
 また、本発明にかかるコンタクトプローブは、上記の発明において、前記パイプ部材は、二重管構造をなす外周側パイプおよび内周側パイプと、前記外周側パイプと前記内周側パイプとの間であって、軸方向の両端部にそれぞれ設けられる絶縁部材と、を有し、前記外周側パイプ、前記内周側パイプおよび前記絶縁部材によって空気層が形成されることを特徴とする。
 また、本発明にかかるコンタクトプローブは、上記の発明において、前記カラーは、導電性材料を用いて形成されることを特徴とする。
 また、本発明にかかるコンタクトプローブは、上記の発明において、前記カラーは、前記パイプ部材の両端部にそれぞれ設けられることを特徴とする。
 また、本発明にかかるプローブユニットは、所定回路構造に対する信号の入出力を行う信号用プローブと、前記所定回路構造に対して電力を供給する給電用プローブと、前記所定回路構造に対してアース電位を供給するアース用プローブと、前記信号用プローブ、前記給電用プローブおよび前記アース用プローブを挿通可能であり、それぞれが互いに同じ孔形状をなす複数の孔部が形成される導電性のプローブホルダと、を備え、前記信号用プローブ、前記給電用プローブおよび前記アース用プローブは、円筒状のパイプ部材と、中空部を有し、前記パイプ部材の長手方向の少なくとも一方の端部の内周側に固定されるカラーと、前記パイプ部材と前記カラーとにより形成される段部に当接するフランジ部を有し、長手方向に沿って伸縮自在であり、前記パイプ部材を貫通する内部導体と、をそれぞれ有し、各プローブのパイプ部材は、同一の外径を有することを特徴とする。
 また、本発明にかかるプローブユニットは、上記の発明において、前記プローブホルダは、隣り合う前記孔部同士が、一部で連通し、前記パイプ部材は、少なくとも外周面が導電性を有し、隣り合う前記孔部をそれぞれ貫通する各プローブの前記パイプ部材は、前記孔部の連通部分において接触していることを特徴とする。
 本発明によれば、コンタクトプローブの配置を変更可能なプローブホルダにおいて、プローブホルダの構成を簡易にすることができるという効果を奏する。
図1は、本発明の実施の形態1にかかるプローブユニットの全体構成を示す模式図である。 図2は、本発明の実施の形態1にかかるプローブユニットを構成するプローブホルダおよびプローブの詳細な構造を示す部分断面図である。 図3は、本発明の実施の形態1にかかる半導体集積回路の検査時におけるプローブユニットの構成を示す部分断面図である。 図4は、本発明の実施の形態2にかかるプローブユニットを構成するプローブホルダおよびプローブの詳細な構造を示す部分断面図である。 図5は、本発明の実施の形態2にかかるプローブユニットを構成するプローブにキャップを取り付けた場合の構成を示す部分断面図である。 図6は、本発明の実施の形態2の変形例1にかかるキャップの構成を示す部分断面図である。 図7は、本発明の実施の形態2の変形例2にかかるキャップの構成を示す部分断面図である。 図8は、本発明の実施の形態2の変形例3にかかるキャップの構成を示す部分断面図である。 図9は、本発明の実施の形態3にかかるプローブユニットを構成するプローブホルダおよびプローブの詳細な構造を示す部分断面図である。 図10は、本発明の実施の形態4にかかるプローブユニットを構成するプローブホルダおよびプローブの詳細な構造を示す部分断面図である。 図11は、本発明の実施の形態5にかかるプローブユニットを構成するプローブホルダおよびプローブの詳細な構造を示す部分断面図である。 図12は、本発明の実施の形態5の変形例1にかかるプローブユニットを構成するプローブホルダの構成を示す上面図である。 図13は、本発明の実施の形態5の変形例1にかかるプローブユニットを構成するプローブホルダの構成を示す斜視断面図である。 図14は、本発明の実施の形態5の変形例2にかかるプローブユニットを構成するプローブホルダの構成を示す断面図である。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、図面の記載において、同一の部分には同一の符号を付している。以下の説明において参照する各図は、本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎず、従って、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
(実施の形態1)
 本発明の実施の形態1にかかるプローブユニットは、半導体集積回路等の所定の回路構造に対して電気信号の入出力、電力供給およびアース電位供給を行うためのものであり、特に安定したアース電位供給を行うため、アース電位供給を行うアース用プローブと、導電性材料で形成されたプローブホルダとを電気的に接続させた構成を有する。
 図1は、本発明の一実施の形態にかかるプローブユニットの構造を示す模式図である。図1に示すように、本実施の形態1にかかるプローブユニットは、半導体集積回路1に供給する信号の生成等を行う回路を備えた回路基板2と、回路基板2上に配置され、所定の孔部(図1では図示省略)を備えたプローブホルダ3と、プローブホルダ3の孔部内に収容されるコンタクトプローブ4(以下、コンタクトプローブを単にプローブという)とを備える。また、使用の際に半導体集積回路1の位置ずれが生じるのを抑制するためのホルダ部材5が回路基板2上かつプローブホルダ3の外周に配置されている。
 回路基板2は、検査対象の半導体集積回路1の電気的特性を検査するための検査回路を備える。また、回路基板2は、内蔵する回路をプローブ4に対して電気的に接続するための電極(図1では図示省略)をプローブホルダ3との接触面上に配置した構成を有する。
 プローブホルダ3は、プローブ4を収容するためのものである。具体的には、プローブホルダ3は、金属等の導電性材料によって形成されたホルダ基板を備える。そして、ホルダ基板は、プローブ4の配設場所に対応した領域に孔部(ホルダ孔)が形成され、かかる孔部にプローブ4を収容する構造を有する。
 プローブ4は、回路基板2内に備わる回路と、半導体集積回路1との間を電気的に接続するためのものである。プローブ4は、半導体集積回路1に対して供給する信号の種類等に応じて3パターンに大別され、具体的には、半導体集積回路1に対して電気信号を入出力するための信号用プローブと、半導体集積回路1に対して電力を供給する給電用プローブと、半導体集積回路1に対してアース電位を供給するアース用プローブと、を有する。なお、以下においては信号用プローブ、アース用プローブおよび給電用プローブを総称する際にプローブと称し、個々について言及する際にはそれぞれの名称を用いることとする。
 図2は、プローブホルダとプローブの詳細な構成について示す部分断面図である。図2に示すように、プローブホルダ3は、図2の上面側に位置する第1部材31と下面側に位置する第2部材32とが積層されてなる。第1部材31および第2部材32は、樹脂などの接着材や、ねじ止めなどによって固着されている。なお、本明細書におけるコアキシャル構造とは、信号用のプローブの中心軸と、孔部の内面の中心軸とが一致した同軸構造のことをいう。プローブホルダ3の構成については、後述する。
 次に、プローブの構造について説明する。以下、信号用プローブ6、給電用プローブ7、アース用プローブ8の順で、各プローブの構成について説明を行う。
 信号用プローブ6は、半導体集積回路1の検査を行なうときにその半導体集積回路1の検査信号用電極に接触する第1プランジャ61と、検査回路を備えた回路基板2の電極に接触する第2プランジャ62と、第1プランジャ61と第2プランジャ62との間に設けられて2つの第1プランジャ61および第2プランジャ62を伸縮自在に連結するコイルばね63と、第1プランジャ61および第2プランジャ62の一部を収容するとともに、コイルばね63を収容する第1パイプ部材64と、第1パイプ部材64の両端部にそれぞれ設けられるカラー65と、を備える。第1プランジャ61、第2プランジャ62およびコイルばね63は同一の軸線を有している。信号用プローブ6は、半導体集積回路1をコンタクトさせた際に、コイルばね63が軸線方向に伸縮することによって半導体集積回路1の接続用電極への衝撃を和らげるとともに、半導体集積回路1および回路基板2に荷重を加える。
 第1プランジャ61は、例えば金属などの導電性材料を用いて形成される。第1プランジャ61は、先細な先端形状をなす先端部61aと、先端部61aの基端側から延び、先端部61aの径と比して大きい径を有するフランジ部61bと、フランジ部61bの先端部61aに連なる側と異なる端部から延び、フランジ部61bの径と比して小さい径を有するボス部61cと、を同軸上に有する。先端部61aは、クラウン形状をなしている。第1プランジャ61では、先端部61aとフランジ部61bとによって段部が形成されている。以下の構成においても、先端部とフランジ部とは、段部を形成している。
 第2プランジャ62は、例えば金属などの導電性材料を用いて形成される。第2プランジャ62は、先細な先端形状を有する先端部62aと、先端部62aの基端側から延び、先端部62aの径と比して大きい径を有するフランジ部62bと、フランジ部62bの先端部62aに連なる側と異なる端部から延び、ボス部61cの径と略同一の径を有するボス部62cと、ボス部62cのフランジ部62bに連なる側と異なる端部から延び、ボス部61c、62cの径と比して若干小さい径を有する基端部62dと、を同軸上に有する。この第2プランジャ62は、コイルばね63の伸縮作用によって軸線方向に移動が可能であり、コイルばね63の弾性力によって回路基板2方向に付勢され、回路基板2の電極と接触する。
 なお、第1プランジャ61の先端部61aが錐状をなしていてもよいし、第2プランジャ62の先端部62aがクラウン形状をなしていてもよい。先端部61a、62aは、接触対象によってその形状を変更することが可能である。
 コイルばね63は、金属や樹脂、または金属の表面に樹脂が被覆された材料などによって形成された線材が用いられる。コイルばね63は、第1プランジャ61側がボス部61cの径と略同一の内径で巻回された密着巻き部63aである一方、第2プランジャ62側が基端部62dの径以上の内径で所定ピッチに巻回された粗巻き部63bである。密着巻き部63aの端部は、例えばボス部61cに圧入されて、フランジ部61bに当接している。一方、粗巻き部63bの端部は、ボス部62cに圧入され、フランジ部62bに当接している。
 なお、本明細書において、第1プランジャおよび第2プランジャをコイルばねに連結させた構成が、プローブにおける内部導体に相当する。
 第1パイプ部材64は、第1プランジャ61、第2プランジャ62およびコイルばね63を挿通可能な円筒状をなしている。第1パイプ部材64は、信号用プローブ6における特性インピーダンスの値を補正するためのインピーダンス補正部材641と、インピーダンス補正部材641の内周に設けられる内周側メッキ642と、インピーダンス補正部材641の外周に設けられる外周側メッキ643とを有する。
 インピーダンス補正部材641は、所定の誘電率を有する誘電材料を円筒形状に形成したものであって、信号用プローブ6における特性インピーダンスの値を補正するための絶縁部材である。具体的には、インピーダンス補正部材641は、誘電材料が有する誘電率と、円筒形状の外径とを調整することによって、信号用プローブ6における特性インピーダンスを、例えば、一般的に採用されている50Ωと一致するよう補正している。インピーダンス補正部材641は、例えばポリテトラフルオロエチレンなどの絶縁性材料を用いて形成される。
 内周側メッキ642は、インピーダンス補正部材641の内周に設けられる導電性の被膜層である。内周側メッキ642は、インピーダンス補正部材641の内周に設けられる第1メッキ642aと、第1メッキ642aを被覆する第2メッキ642bとを有する。第1メッキ642aは、例えばニッケルを用いて形成される。第2メッキ642bは、例えば金を用いて形成される。
 外周側メッキ643は、インピーダンス補正部材641の外周に設けられる導電性の被膜層である。外周側メッキ643は、インピーダンス補正部材641の外周に設けられる第1メッキ643aと、第1メッキ643aを被覆する第2メッキ643bとを有する。第1メッキ643aは、例えばニッケルを用いて形成される。第2メッキ643bは、例えば金を用いて形成される。
 なお、第1パイプ部材64では、二層のメッキ処理が施されているが、一層であってもよいし、三層以上の複数の層であってもよい。第1パイプ部材64には、このようなメッキ処理による導電層が形成される。
 カラー65は、例えば金属などの導電性材料を用いて形成され、中空円柱状をなしている。カラー65は、外周のなす径が、第1パイプ部材64の内周に圧入または固定可能な径である。また、カラー65は、内周(中空部)のなす径が、第1プランジャ61または第2プランジャ62のうち挿通されるプランジャの先端部の径と同等か、または若干大きい径である。カラー65は、第1パイプ部材64の両端部にそれぞれ設けられ、第1パイプ部材64の内周面とにより段部を形成する。第1プランジャ61のフランジ部61b、および第2プランジャ62のフランジ部62bは、この段部に当接することにより、第1パイプ部材64から抜け落ちることが防止される。カラー65は、第1パイプ部材64の内周に圧入して固定するか、はんだ付け、または接着剤によって第1パイプ部材64の内周に固着される。
 給電用プローブ7は、半導体集積回路1の検査を行なうときにその半導体集積回路1の給電用電極に接触する第1プランジャ71と、検査回路を備えた回路基板2の電極に接触する第2プランジャ72と、第1プランジャ71と第2プランジャ72との間に設けられて2つの第1プランジャ71および第2プランジャ72を伸縮自在に連結するコイルばね73と、第1プランジャ71および第2プランジャ72の一部を収容するとともに、コイルばね73を収容する第2パイプ部材74と、第2パイプ部材74の両端部にそれぞれ設けられるカラー75と、を備える。第1プランジャ71、第2プランジャ72およびコイルばね73は同一の軸線を有している。
 第1プランジャ71は、例えば金属などの導電性材料を用いて形成される。第1プランジャ71は、先細な先端形状をなす先端部71aと、先端部71aの基端側から延び、先端部71aの径と比して大きい径を有するフランジ部71bと、フランジ部71bの先端部71aに連なる側と異なる端部から延び、フランジ部71bの径と比して小さい径を有するボス部71cと、を同軸上に有する。先端部71aは、クラウン形状をなしている。
 第2プランジャ72は、例えば金属などの導電性材料を用いて形成される。第2プランジャ72は、先細な先端形状を有する先端部72aと、先端部72aの基端側から延び、先端部72aの径と比して大きい径を有するフランジ部72bと、フランジ部72bの先端部72aに連なる側と異なる端部から延び、ボス部71cの径と略同一の径を有するボス部72cと、ボス部72cのフランジ部72bに連なる側と異なる端部から延び、ボス部71c、72cの径と比して若干小さい径を有する基端部72dと、を同軸上に有する。この第2プランジャ72は、コイルばね73の伸縮作用によって軸線方向に移動が可能であり、コイルばね73の弾性力によって回路基板2方向に付勢され、回路基板2の電極と接触する。
 なお、先端部71a、72aは、上述した先端部61a、62aと同様に、その形状は限定されず、接触対象によってその形状を変更することが可能である。
 コイルばね73は、金属や樹脂、または金属の表面に樹脂が被覆された材料などによって形成された線材が用いられる。コイルばね73は、第1プランジャ71側がボス部71cの径と略同一の内径で巻回された密着巻き部73aである一方、第2プランジャ72側が基端部72dの径以上の内径で所定ピッチに巻回された粗巻き部73bである。密着巻き部73aの端部は、例えばボス部71cに圧入されて、フランジ部71bに当接している。一方、粗巻き部73bの端部は、ボス部72cに圧入され、フランジ部72bに当接している。
 第2パイプ部材74は、第1プランジャ71、第2プランジャ72およびコイルばね73を挿通可能な円筒状をなしている。第2パイプ部材74は、絶縁性材料を用いて形成される絶縁部材741と、絶縁部材741の内周に設けられる内周側メッキ742と、絶縁部材741の外周に設けられる外周側メッキ743とを有する。
 絶縁部材741は、絶縁性材料を円筒形状に形成したものである。具体的には、絶縁部材741は、例えば、セラミックやポリテトラフルオロエチレンなどの絶縁性材料を用いて形成される。
 内周側メッキ742は、絶縁部材741の内周に設けられる第1メッキ742aと、第1メッキ742aを被覆する第2メッキ742bとを有する。第1メッキ742aは、例えばニッケルを用いて形成される。第2メッキ742bは、例えば金を用いて形成される。
 外周側メッキ743は、絶縁部材741の外周に設けられる第1メッキ743aと、第1メッキ743aを被覆する第2メッキ743bとを有する。第1メッキ743aは、例えばニッケルを用いて形成される。第2メッキ743bは、例えば金を用いて形成される。
 なお、第2パイプ部材74では、二層のメッキ処理が施されているが、一層であってもよいし、三層以上の複数の層であってもよい。
 カラー75は、例えば金属などの導電性材料を用いて形成され、中空円柱状をなしている。カラー75は、外周のなす径が、第2パイプ部材74の内周に圧入または固定可能な径である。また、カラー75は、内周のなす径が、第1プランジャ71または第2プランジャ72のうち挿通されるプランジャの先端部の径と同等か、または若干大きい径である。カラー75は、第2パイプ部材74の両端部にそれぞれ設けられ、第2パイプ部材74の内周面とにより段部を形成する。第1プランジャ71のフランジ部71b、および第2プランジャ72のフランジ部72bは、この段部に当接することにより、第2パイプ部材74から抜け落ちることが防止される。
 アース用プローブ8は、半導体集積回路1の検査を行なうときにその半導体集積回路1の給電用電極に接触する第1プランジャ81と、検査回路を備えた回路基板2の電極に接触する第2プランジャ82と、第1プランジャ81と第2プランジャ82との間に設けられて2つの第1プランジャ81および第2プランジャ82を伸縮自在に連結するコイルばね83と、第1プランジャ81および第2プランジャ82の一部を収容するとともに、コイルばね83を収容する第3パイプ部材84と、第3パイプ部材84の両端部にそれぞれ設けられるカラー85と、を備える。第1プランジャ81、第2プランジャ82およびコイルばね83は同一の軸線を有している。
 第1プランジャ81は、例えば金属などの導電性材料を用いて形成される。第1プランジャ81は、先細な先端形状をなす先端部81aと、先端部81aの基端側から延び、先端部81aの径と比して大きい径を有するフランジ部81bと、フランジ部81bの先端部81aに連なる側と異なる端部から延び、フランジ部81bの径と比して小さい径を有するボス部81cと、を同軸上に有する。先端部81aは、クラウン形状をなしている。
 第2プランジャ82は、例えば金属などの導電性材料を用いて形成される。第2プランジャ82は、先細な先端形状を有する先端部82aと、先端部82aの基端側から延び、先端部82aの径と比して大きい径を有するフランジ部82bと、フランジ部82bの先端部82aに連なる側と異なる端部から延び、ボス部81cの径と略同一の径を有するボス部82cと、ボス部82cのフランジ部82bに連なる側と異なる端部から延び、ボス部81c、82cの径と比して若干小さい径を有する基端部82dと、を同軸上に有する。この第2プランジャ82は、コイルばね83の伸縮作用によって軸線方向に移動が可能であり、コイルばね83の弾性力によって回路基板2方向に付勢され、回路基板2の電極と接触する。
 なお、先端部81a、82aは、上述した先端部61a、62aと同様に、その形状は限定されず、接触対象によってその形状を変更することが可能である。
 コイルばね83は、金属や樹脂、または金属の表面に樹脂が被覆された材料などによって形成された線材が用いられる。コイルばね83は、第1プランジャ81側がボス部81cの径と略同一の内径で巻回された密着巻き部83aである一方、第2プランジャ82側が基端部82dの径以上の内径で所定ピッチに巻回された粗巻き部83bである。密着巻き部83aの端部は、例えばボス部81cに圧入されて、フランジ部81bに当接している。一方、粗巻き部83bの端部は、ボス部82cに圧入され、フランジ部82bに当接している。
 第3パイプ部材84は、第1プランジャ81、第2プランジャ82およびコイルばね83を挿通可能な円筒状をなしている。第3パイプ部材84は、金属などの導電性材料を用いて形成される。第3パイプ部材84の外周面および内周面には、メッキ処理が施されてもよい。
 カラー85は、例えば金属などの導電性材料を用いて形成され、中空円柱状をなしている。カラー85は、外周のなす径が、第3パイプ部材84の内周に圧入または固定可能な径である。また、カラー85は、内周のなす径が、第1プランジャ81または第2プランジャ82のうち挿通されるプランジャの先端部の径と同等か、または若干大きい径である。カラー85は、第3パイプ部材84の両端部にそれぞれ設けられ、第3パイプ部材84の内周面とにより段部を形成する。第1プランジャ81のフランジ部81b、および第2プランジャ82のフランジ部82bは、この段部に当接することにより、第3パイプ部材84から抜け落ちることが防止される。
 本実施の形態1では、第1パイプ部材64、第2パイプ部材74、第3パイプ部材84は、外周のなす径が、互いに同じである。
 プローブホルダ3は、上述したように、第1部材31と第2部材32とが積層されてなる。第1部材31および第2部材32は、例えば金属などの導電性材料を用いて形成されている。また、第1部材31および第2部材32には、複数のプローブ4を収容するための孔部であるホルダ孔33および34が同数ずつ形成され、プローブ4を収容するホルダ孔33および34は、互いの軸線が一致するように形成されている。ホルダ孔33および34は、検査を行う半導体集積回路1において取られ得るすべての配線パターンを網羅する位置に形成される。なお、第1部材31および第2部材32は、金属のほか、導電性を有する材料であれば適用可能である。プローブホルダとしての強度の観点から、金属材料(合金を含む)を用いて形成されることが好ましい。
 ホルダ孔33および34は、ともに貫通方向に沿って径が異なる段付き孔形状を有する。すなわち、ホルダ孔33は、第1部材31の上面側に開口を有する小径部33aと、小径部33aよりも径が大きい大径部33bとからなる。小径部33aは、上述したパイプ部材(パイプ部材64、74、84)の外周のなす径よりも小さく、第1プランジャの先端部(先端部61a、71a、81a)の径よりも大きい。大径部33bは、パイプ部材(パイプ部材64、74、84)の外周のなす径と同等か、圧入可能な範囲でパイプ部材の内径よりも小さい径、またはプローブホルダ3におけるプローブ4の位置ずれの許容範囲内で、パイプ部材の外径よりも大きい。
 他方、ホルダ孔34は、プローブホルダ3の下端面に開口を有する小径部34aと、この小径部34aよりも径が大きい大径部34bとからなる。小径部34aは、上述したパイプ部材(パイプ部材64、74、84)の外周のなす径よりも小さく、第2プランジャの先端部(先端部62a、72a、82a)の径よりも大きい。大径部34bは、大径部33bと同等であることが好ましく、パイプ部材(パイプ部材64、74、84)の外周のなす径と同等か、圧入可能な範囲でパイプ部材の内径よりも小さい径、またはプローブホルダ3におけるプローブ4の位置ずれの許容範囲内で、パイプ部材の外径よりも大きい。
 次に、本実施の形態にかかるプローブユニットの、半導体集積回路の検査時の電気的な作用について説明する。図3は、本発明の実施の形態1にかかる半導体集積回路の検査時におけるプローブユニットの構成を示す部分断面図である。
 まず、アース用プローブ8における電気的作用について説明する。本実施の形態におけるアース用プローブ8は、電極100c、200cを介して回路基板2からの電位を半導体集積回路1に供給するのみならず、プローブホルダ3からの電位をも受けて半導体集積回路1に対してアース電位を供給するように構成されている。すなわち、図2にも示すように、アース用プローブ8を収容するホルダ孔33、34の内面は、アース用プローブ8の外周面、具体的には第3パイプ部材84と直接接触する構成を有する。そして、上述のようにプローブホルダ3は導電性材料によって形成されることから、アース用プローブ8とプローブホルダ3とは電気的に接続されることとなる。従って、アース用プローブ8とプローブホルダ3との間では内部電荷が自由に行き来することが可能となることから、アース用プローブ8が供給する電位と、プローブホルダ3の電位とは等しい値となる。
 次に、信号用プローブ6における電気的作用について説明する。信号用プローブ6は、それぞれ回路基板2内で生成された電気信号を電極200aから受け取り、受け取った電気信号を、電極100aを介して半導体集積回路1に対して入出力する。信号用プローブ6において、電気信号は、第2プランジャ62から受け取り、第2プランジャ62側のカラー65を介して内周側メッキ642を流れ、その後、第1プランジャ61側のカラー65を介して第1プランジャ61に流れ込む。基端部62dを密着巻き部63aに接触するようにすれば、基端部62dから密着巻き部63aに流れた後、この密着巻き部63aから第1プランジャ61に流れ込むこともある。
 次に、給電用プローブ7における電気的作用について説明する。給電用プローブ7は、回路基板2内で生成された給電用の電力を、回路基板2の電極200bから受け取り、この受け取った電力を、半導体集積回路1の電極100bを介して半導体集積回路1に対して入出力する。給電用プローブ7において、電気信号は、第2プランジャ72から受け取り、第2プランジャ72側のカラー75を介して内周側メッキ742を流れ、その後、第1プランジャ71側のカラー75を介して第1プランジャ71に流れ込む。基端部72dを密着巻き部73aに接触するようにすれば、基端部72dから密着巻き部73aに流れた後、この密着巻き部73aから第1プランジャ71に流れ込むこともある。
 続いて、インピーダンス補正部材641を用いて信号用プローブ6における特性インピーダンスの補正を行うことによる利点について説明する。一般に、交流信号を扱う電子回路においては、インピーダンスの異なる配線同士が接続する箇所において、異なるインピーダンス間の比に応じた量だけ信号が反射し、信号の伝搬が妨げられることが知られている。このことは使用する半導体集積回路1と信号用プローブ6との関係においても同様であって、半導体集積回路1の特性インピーダンスと、信号用プローブ6における特性インピーダンスとが大きく異なる値を有する場合には、電気信号の損失が発生するとともに、電気信号が歪む。
 また、特性インピーダンスの相違に起因して接続箇所において生じる信号反射の割合は、信号用プローブ6の電気的な長さ(電気信号の周期に対する伝搬経路の長さ)が大きくなるにつれて大きくなることが知られている。すなわち、本実施の形態にかかるプローブユニットの場合は、半導体集積回路1の高速化、すなわち高周波数化に伴って電気信号の信号反射の割合が大きくなる。従って、高周波数で駆動する半導体集積回路1に対応したプローブユニットを作製する際には、信号用プローブ6の特性インピーダンスの値を半導体集積回路1のものと一致させる、いわゆるインピーダンス整合を精度良く行うことが重要となる。
 以上説明した実施の形態1では、プローブホルダ3には、ホルダ孔33、34による孔部が複数個形成され、孔部には信号用プローブ6、給電用プローブ7およびアース用プローブ8を配置することが可能である。これにより、各孔部に対し、信号用プローブ6、給電用プローブ7およびアース用プローブ8の配置変更を行うことが可能である。この際、例えば、第1部材31を第2部材32から取り外し、所定のホルダ孔34に所定の種別のプローブを収容し、再び第1部材31を第2部材32に取り付けることにより可能である。本実施の形態1によれば、プローブホルダ3には、配置され得る位置に同じ形状の孔部を形成すればよいので、簡易なホルダ構成でコンタクトプローブの配置を変更することができる。
 また、従来、インピーダンス補正部材は、接着剤等によってホルダ孔に接着固定されていたが、本実施の形態1では、その接着工程が不要であり、プローブユニットの組み付けの際の作業工程を削減することができる。また、ホルダ孔の構成としてインピーダンス部材を含まないため、ホルダ孔の潰れや破損の発生を抑制することができる。
 また、本実施の形態1にかかる信号用プローブ6は、第1パイプ部材64の内周に内周側メッキ642が形成されているため、カラー65を、第1パイプ部材64の内周に圧入して固定する、または接着剤によって第1パイプ部材64の内周に固着することに加え、はんだ付けによって第1パイプ部材64の内周に固着することができる。給電用プローブ7についても同様に、第2パイプ部材74の内周に内周側メッキ742が形成されているため、カラー75を、第2パイプ部材74の内周に圧入して固定するか、接着剤によって第2パイプ部材74の内周に固着することに加え、はんだ付けによって第2パイプ部材74の内周に固着することができる。
 また、本実施の形態1にかかる信号用プローブ6は、第1パイプ部材64の外周に外周側メッキ643が形成されているため、導電性のプローブホルダ3を介して第1パイプ部材64の外周全体をグランド電位とすることができる。これにより、プローブホルダ3の孔部の一部が連通した構成とすることが可能であり、インピーダンス補正部材641の厚さの調整幅を確保することができる。
 また、本実施の形態1にかかる給電用プローブ7は、第2パイプ部材74の内周に内周側メッキ742が形成されているため、電気信号の導通経路を、第2パイプ部材74を介する経路と、コイルばね73を介する経路との二つの経路とすることができる。これにより、給電用プローブ7の許容電流を増大することができる。
 また、本実施の形態1にかかるプローブは、一方のカラーを取り外すことによって、パイプ部材内部の第1プランジャ、第2プランジャおよびコイルばねを簡単に取り出すことができる。これにより、プローブを修理する際、第1プランジャ、第2プランジャおよびコイルばねの交換を容易に行うことができる。
 なお、本実施の形態1では、各プローブのいずれかを保持するホルダ孔33、34が、それぞれ独立して設けられているものとして説明したが、隣り合うホルダ孔の一部が連通していてもよい。例えば、隣り合うホルダ孔33の大径部33b同士、およびホルダ孔34の大径部34b同士が連通していてもよいし、ホルダ孔33の大径部33b同士が連通し、かつホルダ孔34が互いに独立していてもよい。
(実施の形態2)
 図4は、本発明の実施の形態2にかかるプローブユニットを構成するプローブホルダおよびプローブの詳細な構造を示す部分断面図である。上述した実施の形態1では、パイプ部材の両端にカラーを備える構成を説明したが、これに限らない。本実施の形態2では、カラーを第1プランジャ側にのみ設ける。
 本実施の形態2にかかるプローブユニットは、半導体集積回路1に供給する信号の生成等を行う回路を備えた回路基板2と、回路基板2上に配置され、所定の孔部(図1では図示省略)を備えたプローブホルダ3Aと、プローブホルダ3Aの孔部内に収容されるプローブ(信号用プローブ6A、給電用プローブ7Aおよびアース用プローブ8A)とを備える。
 信号用プローブ6Aは、上述した信号用プローブ6の構成において、第2プランジャ62側のカラー65を有しない点以外は、信号用プローブ6と同じである。同様に、給電用プローブ7Aは、給電用プローブ7の第2プランジャ72側のカラー75を有しない点以外、上述した給電用プローブ7と同様である。アース用プローブ8Aは、アース用プローブ8の第2プランジャ82側のカラー85を有しない点以外、上述したアース用プローブ8と同様である。
 プローブホルダ3Aは、金属等の導電性材料によって形成されたホルダ基板35と、ホルダ基板35の一方の面に設けられる絶縁基板36とを備える。そして、プローブホルダ3Aは、プローブの配設場所に対応した領域に孔部(ホルダ孔)が形成され、かかる孔部にプローブを収容する構造を有する。
 プローブホルダ3Aは、ホルダ基板35と絶縁基板36とが積層されてなる。ホルダ基板35は、例えば金属などの導電性材料を用いて形成されている。絶縁基板36は、例えばポリエーテルエーテルケトン(Polyether ether ketone:PEEK)、ポリイミド(polyimide:PI)、ポリエーテルサルフォン(polyethersulfone:PES)などの絶縁性材料を用いて形成されている。なお、ホルダ基板35は、金属のほか、導電性を有する材料であれば適用可能である。プローブホルダとしての強度の観点から、金属材料(合金を含む)を用いて形成されることが好ましい。
 ホルダ基板35と絶縁基板36には、複数のプローブを収容するための孔部であるホルダ孔37および38が同数ずつ形成され、プローブを収容するホルダ孔37および38は、互いの軸線が一致するように形成されている。ホルダ孔37および38は、検査を行う半導体集積回路1において取られ得るすべての配線パターンを網羅する位置に形成される。
 ホルダ孔37は、ともに貫通方向に沿って径が異なる段付き孔形状を有する。すなわち、ホルダ孔37は、ホルダ基板35の上面側に開口を有する小径部37aと、ホルダ基板35の下面側であって、絶縁基板36が配設される側に開口を有し、小径部37aよりも径が大きい大径部37bとからなる。小径部37aは、上述したパイプ部材(パイプ部材64、74、84)の外周のなす径よりも小さく、第1プランジャの先端部(先端部61a、71a、81a)の径よりも大きい。大径部37bは、パイプ部材(パイプ部材64、74、84)の外周のなす径と同等か、圧入可能な範囲でパイプ部材の内径よりも小さい径、またはプローブホルダ3Aにおけるプローブの位置ずれの許容範囲内で、パイプ部材の外径よりも大きい。
 他方、ホルダ孔38は、プローブホルダ3Aの下端面に開口を有する孔形状をなしている。ホルダ孔38は、上述したパイプ部材(パイプ部材64、74、84)の外周のなす径よりも小さく、第2プランジャの先端部(先端部62a、72a、82a)の径よりも大きい。
 本実施の形態2では、大径部37bとホルダ孔38とにより段部が形成される。例えば、第2プランジャ62のフランジ部62bは、この段部に当接することにより、プローブホルダ3Aから抜け落ちることが防止される。
 以上のような構成のプローブユニットにおいて、半導体集積回路の検査時のプランジャおよびコイルばねの動作は、上述した実施の形態1と同様である。本実施の形態2では、例えば、第2プランジャの基端部がコイルばねの密着巻き部に接触するものとする。本実施の形態2において、プローブユニットを流れる電気信号は、第2プランジャから密着巻き部を経由して第1プランジャに流れ込む。例えば信号用プローブ6Aでは、第2プランジャ62に流れ込んだ電気信号が、基端部62dから密着巻き部63aに流れた後、この密着巻き部63aから第1プランジャ61に流れ込む。なお、フランジ部62bと第1パイプ部材64の内周側メッキ642とが接触するようにして、電気信号が第2プランジャ62から第1パイプ部材64の内周側メッキ642に流れるようにしてもよい。
 信号用プローブ6A、給電用プローブ7Aおよびアース用プローブ8Aは、ともに第2プランジャ側にカラーを有していない。このため、プローブ単体では、第1プランジャ、第2プランジャおよびコイルばねが、パイプ部材から抜け落ちてしまう場合がある。パイプ部材からの抜けを防止するため、各プローブを単体で取り扱う場合には、キャップを用いることが好ましい。
 図5は、本発明の実施の形態2にかかるプローブユニットを構成するプローブにキャップを取り付けた場合の構成を示す部分断面図である。図5では、信号用プローブ6Aにキャップ300を取り付けた例を説明するが、給電用プローブ7Aおよびアース用プローブ8Aにも同様のキャップが取り付けられる。
 キャップ300には、第2プランジャ62の先端部62aの一部を収容する穴形状をなす収容部301と、収容部301の内周面に沿って筒状に突出する突出部302とが設けられている。突出部302は、内径が収容部301の径と同じであり、外径が第1パイプ部材64の内径と同じか、または圧入可能な大きさである。
 キャップ300は、第1パイプ部材64の第2プランジャ62側の開口に取り付けられて、第2プランジャ62が第1パイプ部材64から抜け落ちることを防止する。この際、突出部302が、先端部62aと第1パイプ部材64との間の隙間に進入してフランジ部62bに当接することによって、先端部62aの先端が、収容部301の底部に干渉することを防止している。キャップ300は、突出部302が第1パイプ部材64に圧入することによって第1パイプ部材64に保持される。
 以上説明した実施の形態2において、プローブホルダ3Aには、ホルダ孔37、38による孔部が複数個形成され、孔部には信号用プローブ6A、給電用プローブ7Aおよびアース用プローブ8Aを配置することが可能である。これにより、各孔部に対し、信号用プローブ6A、給電用プローブ7Aおよびアース用プローブ8Aの配置変更を行うことが可能である。本実施の形態2によれば、プローブホルダ3Aには、配置され得る位置に同じ形状の孔部を形成すればよいので、簡易なホルダ構成でコンタクトプローブの配置を変更することができる。
 また、本実施の形態2では、プローブホルダ3Aにおいて、大径部37bとホルダ孔38とにより段部を形成して、この段部が第2プランジャの抜け止め機能を有している。このような構成により、信号用プローブ6A、給電用プローブ7Aおよびアース用プローブ8Aの各プローブにおいて、第2プランジャ側のカラーが不要となるため、部品点数を削減することができる。
 また、本実施の形態2では、各プローブにキャップを取り付けることによって、第1プランジャ、第2プランジャおよびコイルばねがパイプ部材から離脱することがないため、プローブ単体での取り扱いが容易になる。
(実施の形態2の変形例1)
 図6は、本発明の実施の形態2の変形例1にかかるキャップの構成を示す部分断面図である。上述した実施の形態2では、キャップ300の突出部302が第1パイプ部材64に圧入することによって第1パイプ部材64に保持されるものとして説明したが、本変形例1では、キャップ310が第1パイプ部材64を保持する。なお、図6では、信号用プローブ6Aにキャップ310を取り付けた例を説明するが、給電用プローブ7Aおよびアース用プローブ8Aにも同様のキャップが取り付けられる。
 キャップ310には、第2プランジャ62の先端部62aの一部を収容する穴形状をなす第1収容部311aと、第1パイプ部材64の一部を収容する穴形状をなす第2収容部311bとを有する収容部311が形成されている。第2収容部311bは、外径が第1パイプ部材64の内径と同じか、または圧入可能な大きさである。
 キャップ310は、第1パイプ部材64の第2プランジャ62側の開口に取り付けられて、第2プランジャ62が第1パイプ部材64から抜け落ちることを防止する。この際、例えば、第1パイプ部材64がキャップ310に圧入されキャップ310が第1パイプ部材64を保持する。
(実施の形態2の変形例2)
 図7は、本発明の実施の形態2の変形例2にかかるキャップの構成を示す部分断面図である。上述した実施の形態2や変形例1では、キャップ300、310が、一つのプローブを保持しているものとして説明したが、本変形例2では、キャップ320が複数のプローブを保持する。
 キャップ320には、第2プランジャ62の先端部62aの一部を収容する穴形状をなす第1収容部311aと、第1パイプ部材64の一部を収容する穴形状をなす第2収容部311bとを有する収容部311が二つ形成されている。
 キャップ320では、各収容部311に第1パイプ部材64を保持させることによって、第2プランジャ62が第1パイプ部材64から抜け落ちることを防止する。
(実施の形態2の変形例3)
 図8は、本発明の実施の形態2の変形例3にかかるキャップの構成を示す部分断面図である。上述した実施の形態2の変形例2では、キャップ320が、第1パイプ部材64の第2プランジャ62側の端部を保持しているものとして説明したが、本変形例3では、キャップ330が、第1パイプ部材64の第1プランジャ61側の端部を保持する。
 キャップ330には、第1プランジャ61の先端部61aの一部を収容する穴形状をなす第1収容部331aと、第1パイプ部材64の一部を収容する穴形状をなす第2収容部331bとを有する収容部331が二つ形成されている。
 キャップ330では、各収容部331が、第1パイプ部材64の第1プランジャ61側の端部を保持することによって、第2プランジャ62が上向きとなり、第2プランジャ62が第1パイプ部材64から抜け落ちることを防止する。
 なお、本変形例2、3では、キャップ320、330が二つの信号用プローブ6Aを保持する例を説明したが、三つ以上のプローブを保持するようにすることも可能である。
 また、上述した変形例2、3では、信号用プローブ6Aがキャップ320、330に取り付けられた例を説明したが、給電用プローブ7Aおよびアース用プローブ8Aにも同様のキャップが取り付けられる。また、キャップ320、330が、信号用プローブ6Aと給電用プローブ7Aとを保持するなど、キャップが複数の種別のプローブを保持するようにしてもよい。
(実施の形態3)
 図9は、本発明の実施の形態3にかかるプローブユニットを構成するプローブホルダおよびプローブの詳細な構造を示す部分断面図である。本実施の形態3では、カラーを第1プランジャ側にのみ設け、回路基板2が予め積層された構成となる。
 本実施の形態3にかかるプローブユニットは、半導体集積回路1に供給する信号の生成等を行う回路を備えた回路基板2と、回路基板2上に配置され、所定の孔部(図1では図示省略)を備えたプローブホルダ3Bと、プローブホルダ3Bの孔部内に収容されるプローブ(信号用プローブ6A、給電用プローブ7Aおよびアース用プローブ8A)とを備える。以下、上述した実施の形態2の構成とは異なるプローブホルダ3Bのみ説明し、同一の構成については説明を省略する。
 プローブホルダ3Bは、金属等の導電性材料によって形成されたホルダ基板35を備える。すなわち、プローブホルダ3Bは、上述したプローブホルダ3Aの絶縁基板36を有しない構成である。なお、プランジャやコイルばねの軸線方向の長さに応じて、ホルダ孔37の軸線方向の長さを適宜変更することが可能である。
 プローブホルダ3Bには、ホルダ基板35に回路基板2が予め取り付けられている。本実施の形態3では、各プローブの第2プランジャ(第2プランジャ62、72、82)が、回路基板2の電極(電極200a、200b、200c)に接触することにより、プローブホルダ3Bから抜け落ちることが防止される。
 以上のような構成のプローブユニットにおいて、半導体集積回路の検査時のプランジャおよびコイルばねの動作は、上述した実施の形態2と同様である。本実施の形態3においても、プローブユニットを流れる電気信号は、第2プランジャから密着巻き部を経由して第1プランジャに流れ込む。例えば信号用プローブ6Aでは、第2プランジャ62に流れ込んだ電気信号が、基端部62dから密着巻き部63aに流れた後、この密着巻き部63aから第1プランジャ61に流れ込む。
 以上説明した実施の形態3において、プローブホルダ3Bには、ホルダ孔37が複数個形成され、ホルダ孔37には信号用プローブ6A、給電用プローブ7Aおよびアース用プローブ8Aを配置することが可能である。これにより、各ホルダ孔37に対し、信号用プローブ6A、給電用プローブ7Aおよびアース用プローブ8Aの配置変更を行うことが可能である。本実施の形態3によれば、プローブホルダ3Bには、配置され得る位置に同じ形状の孔部を形成すればよいので、簡易なホルダ構成でコンタクトプローブの配置を変更することができる。
 また、本実施の形態3では、プローブホルダ3Bにおいて、回路基板2を取り付けることにより第2プランジャが抜け止めされる。このような構成により、信号用プローブ6A、給電用プローブ7Aおよびアース用プローブ8Aの各プローブにおいて、第2プランジャ側のカラーが不要となるため、部品点数を削減することができる。
(実施の形態4)
 図10は、本発明の実施の形態4にかかるプローブユニットを構成するプローブホルダおよびプローブの詳細な構造を示す部分断面図である。本実施の形態4では、信号用プローブにおいて、空気によりインピーダンス補正を行う。
 本実施の形態4にかかるプローブユニットは、半導体集積回路1に供給する信号の生成等を行う回路を備えた回路基板2と、回路基板2上に配置され、所定の孔部(図1では図示省略)を備えたプローブホルダ3と、プローブホルダ3の孔部内に収容されるプローブ(信号用プローブ6B、給電用プローブ7およびアース用プローブ8)とを備える。以下、上述した実施の形態1の構成とは異なる信号用プローブ6Bのみ説明し、同一の構成については説明を省略する。
 信号用プローブ6Bは、上述した第1プランジャ61、第2プランジャ62、コイルばね63と、第1プランジャ61および第2プランジャ62の一部を収容するとともに、コイルばね63を収容する第1パイプ部材64Aと、第1パイプ部材64Aの両端部にそれぞれ設けられるカラー65と、を備える。信号用プローブ6Bは、上述した信号用プローブ6に対し、第1パイプ部材のみが異なっている。以下、この第1パイプ部材64Aの構成について説明する。
 第1パイプ部材64Aは、第1プランジャ61、第2プランジャ62およびコイルばね63を挿通可能な円筒状をなしている。第1パイプ部材64Aは、金属を用いて形成される二重管構造をなす外周側パイプと内周側パイプとからなる金属パイプ644と、金属パイプ644の両端部に設けられる絶縁パイプ645と、金属パイプ644と絶縁パイプ645との間に設けられるメッキ646とを有する。金属パイプ644は、ニッケルや銅、ニッケルまたは銅を主成分とする合金等を用いて形成される。なお、金属パイプ644は、パイプ状の部材の表面をメッキ処理したものであってもよい。絶縁パイプ645は、セラミック等の絶縁性材料を用いて生成される。
 第1パイプ部材64Aは、内周側パイプが形成する中空空間に第1プランジャ61、第2プランジャ62およびコイルばね63が挿通される。また、第1パイプ部材64Aには、金属パイプ644の内周側パイプと外周側パイプとの間に形成される中空空間(以下、外周側中空空間という)と、絶縁パイプ645およびメッキ646とにより、この外周側中空空間の両端が封鎖された空気層Sが形成される。第1パイプ部材64Aでは、この空気層Sによって、信号用プローブ6Bにおける特性インピーダンスを、例えば、一般的に採用されている50Ωと一致するよう補正している。
 カラー65は、第1パイプ部材64Aの両端部にそれぞれ設けられ、第1パイプ部材64Aの内周面とにより段部を形成する。第1プランジャ61のフランジ部61b、および第2プランジャ62のフランジ部62bは、この段部に当接することにより、第1パイプ部材64Aから抜け落ちることが防止される。
 信号用プローブ6Bにおいて、絶縁パイプ645の軸線方向の長さd1を調整して空気層Sの体積や、形成位置を調整することによって特性インピーダンスを調整することが可能である。なお、長さd1は、カラー65の軸線方向の長さd2よりも小さいことが好ましい。また、第1パイプ部材64Aにおいて、絶縁パイプ645の間に、インピーダンス調整用の誘電体を設けるようにしてもよい。
 以上のような構成のプローブユニットにおいて、半導体集積回路の検査時のプランジャおよびコイルばねの動作は、上述した実施の形態1と同様である。本実施の形態4において、信号用プローブ6Bを流れる電気信号は、第2プランジャ62から受け取り、第2プランジャ62側のカラー65を介してメッキ646または金属パイプ644を流れ、その後、第1プランジャ61側のカラー65を介して第1プランジャ61に流れ込む。基端部62dを密着巻き部63aに接触するようにすれば、基端部62dから密着巻き部63aに流れた後、この密着巻き部63aから第1プランジャ61に流れ込むこともある。
 以上説明した実施の形態4では、実施の形態1と同様に、プローブホルダ3には、ホルダ孔33、34による孔部が複数個形成され、孔部には信号用プローブ6B、給電用プローブ7およびアース用プローブ8を配置することが可能である。これにより、各孔部に対し、信号用プローブ6B、給電用プローブ7およびアース用プローブ8の配置変更を行うことが可能である。本実施の形態4によれば、プローブホルダ3には、配置され得る位置に同じ形状の孔部を形成すればよいので、簡易なホルダ構成でコンタクトプローブの配置を変更することができる。
 また、上述した実施の形態4によれば、第1パイプ部材64Aに空気層Sを形成するようにしたので、この空気層Sによって信号用プローブ6Bのインピーダンス補正を行うことができる。
(実施の形態5)
 図11は、本発明の実施の形態5にかかるプローブユニットを構成するプローブホルダおよびプローブの詳細な構造を示す部分断面図である。本実施の形態5では、プローブホルダ3が、互いに隣り合うプローブ同士が接触するように保持する。
 本実施の形態5にかかるプローブユニットは、半導体集積回路1に供給する信号の生成等を行う回路を備えた回路基板2と、回路基板2上に配置され、所定の孔部(図1では図示省略)を備えたプローブホルダ3と、プローブホルダ3の孔部内に収容されるプローブ(信号用プローブ6、給電用プローブ7およびアース用プローブ8)とを備える。以下、上述した実施の形態1の構成とは異なるプローブホルダ3Cのみ説明し、同一の構成については説明を省略する。
 プローブホルダ3Cは、上述したように、第1部材31と第2部材32とが積層されてなる。また、第1部材31および第2部材32には、複数のプローブを収容するための孔部であるホルダ孔33および34が同数ずつ形成されている。本実施の形態5では、各ホルダ孔の大径部(33bおよび34b)のうち、隣り合う大径部同士が接触し、この接触部分において連通した状態となっている。
 このため、ホルダ孔に収容されたパイプ部材は、隣り合うプローブのパイプ部材の外周面の一部が接する。各プローブのパイプ部材は、少なくとも外周面は導電性を有しているので、図11においては、給電用プローブ7が直接アース用プローブ8に接触し、信号用プローブ6は、給電用プローブ7を介してアース用プローブ8に電気的に接続している。この結果、各プローブのパイプ部材の外面全体が、グランド電位となる。
 以上説明した実施の形態5では、上述した実施の形態1と同様の効果を得ることができるとともに、プローブホルダ3Cに保持されている各プローブが、アース用プローブ8と電気的に接続されているため、一層確実に各プローブのパイプ部材の外面全体をグランド電位とすることができる。
(実施の形態5の変形例1)
 図12は、本発明の実施の形態5の変形例1にかかるプローブユニットを構成するプローブホルダの構成を示す上面図である。図13は、本発明の実施の形態5の変形例1にかかるプローブユニットを構成するプローブホルダの構成を示す斜視断面図であって、ホルダ孔33の軸線と直交し、かつ大径部33bを通過する平面を切断面とする斜視断面図である。本変形例1は、上述した実施の形態5のように、隣り合うホルダ孔の大径部同士が接しており、大径部同士の一部が連通している構成であり、ホルダ孔が格子状に配置されている。
 図12に示すように、ホルダ孔33が格子状に配置され、かつ隣り合う大径部33b同士が接している場合において、第1部材31には、四つの大径部33bによって囲まれた菱形柱状部39が形成される。この菱形柱状部39と、各プローブのパイプ部材とが接することによって、プローブが位置決めされたり、プローブの軸線が、ホルダ孔の軸線に対して傾斜することを抑制したりする。
(実施の形態5の変形例2)
 図14は、本発明の実施の形態5の変形例2にかかるプローブユニットを構成するプローブホルダの構成を示す断面図であって、図12のA-A線断面を示す断面図である。本変形例2にかかるプローブホルダ3Dは、上述した菱形柱状部39の一部を切除した菱形柱状部39aを有する。プローブホルダ3Dは、第1部材31Aおよび第2部材32Aを積層してなる。
 ホルダ孔33が格子状に配置され、かつ隣り合う大径部33b同士が接している場合において、図14に示すように、第1部材31Aおよび第2部材32Aには、四つの大径部33bによって囲まれた菱形柱状部39aが形成される。この菱形柱状部39aは、上述した菱形柱状部39に対し、軸線方向の中央部を切除することによって形成される。菱形柱状部39aにおいて、プローブホルダ3Dの上面側および下面側のみの構成とすることによって、ホルダ孔の強度を向上することができる。
 なお、上述した実施の形態1~5では、信号用プローブに対してインピーダンスを補正する構成例を説明したが、給電用プローブに対して適用することも可能である。
 また、上述した実施の形態1~5では、第1および第2プランジャならびにコイルばねによって内部導体を形成するものとして説明したが、パイプ部材とカラーとが形成する段部に当接する段付き形状をなし、長手方向に沿って伸縮可能な構成であれば、第1および第2プランジャならびにコイルばねとは異なる構成によって内部導体を形成してもよい。
 また、上述した実施の形態1~5において、パイプ部材が円筒状をなしており、長手方向と直交する方向からみた形状が円環状をなすものとして説明したが、中空角形状をなすものであってもよい。
 また、上述した実施の形態1~5において、パイプ部材を介して信号の入出力を行わない場合、すなわち、第1および第2プランジャならびにコイルばねを導通経路とする場合は、絶縁性材料を用いてカラーを形成することが可能である。
 また、上述した実施の形態1~5において、パイプ部材(第1パイプ部材64、64A、第2パイプ部材74)の表面にメッキ層(内周側メッキ642、742、外周側メッキ643、743、メッキ646)が形成されているものとして説明したが、ホルダ孔に対するパイプ部材の固定態様、およびパイプ部材に対するカラーの固定態様(実施の形態4の場合は絶縁パイプの固定態様)によっては、メッキ層を有しない構成であってもよい。例えば、パイプ部材に対してカラーを圧入することによって、パイプ部材にカラーを固定する場合は、メッキ層を有しない構成であってもよい。
 なお、信号用プローブにRF(Radio Frequency)信号用以外の信号を伝送させる場合、信号用プローブに、給電用プローブの構成を適用してもよい。
 このように、本発明はここでは記載していない様々な実施の形態等を含みうるものであり、請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。
 以上のように、本発明にかかるコンタクトプローブおよびプローブユニットは、コンタクトプローブの配置を変更可能なプローブホルダにおいて、プローブホルダの構成を簡易にするのに適している。
 1 半導体集積回路
 2 回路基板
 3、3A、3B、3C、3D プローブホルダ
 4 プローブ
 6 信号用プローブ
 7 給電用プローブ
 8 アース用プローブ
 31、31A 第1部材
 32、32A 第2部材
 33、34、37、38 ホルダ孔
 35 ホルダ基板
 36 絶縁基板
 39、39a 菱形柱状部
 61、71、81 第1プランジャ
 62、72、82 第2プランジャ
 63、73、83 コイルばね
 64、64A 第1パイプ部材
 74 第2パイプ部材
 84 第3パイプ部材
 65、75、85 カラー
 300、310、320、330 キャップ
 641 インピーダンス補正部材
 642、742 内周側メッキ
 643、743 外周側メッキ
 741 絶縁部材

Claims (9)

  1.  円筒状のパイプ部材と、
     中空部を有し、前記パイプ部材の長手方向の少なくとも一方の端部の内周側に固定されるカラーと、
     前記パイプ部材と前記カラーとにより形成される段部に当接するフランジ部を有し、長手方向に沿って伸縮自在であり、前記パイプ部材を貫通する内部導体と、
     を備えることを特徴とするコンタクトプローブ。
  2.  前記パイプ部材は、絶縁性材料を用いて形成される絶縁パイプを有する
     ことを特徴とする請求項1に記載のコンタクトプローブ。
  3.  前記パイプ部材は、前記絶縁パイプの内周および外周に設けられる導電性の被膜層をさらに有する
     ことを特徴とする請求項2に記載のコンタクトプローブ。
  4.  前記パイプ部材は、導電性材料を用いて形成される
     ことを特徴とする請求項1に記載のコンタクトプローブ。
  5.  前記パイプ部材は、
     二重管構造をなす外周側パイプおよび内周側パイプと、
     前記外周側パイプと前記内周側パイプとの間であって、軸方向の両端部にそれぞれ設けられる絶縁部材と、
     を有し、
     前記外周側パイプ、前記内周側パイプおよび前記絶縁部材によって空気層が形成される
     ことを特徴とする請求項1に記載のコンタクトプローブ。
  6.  前記カラーは、導電性材料を用いて形成される
     ことを特徴とする請求項1~5のいずれか一つに記載のコンタクトプローブ。
  7.  前記カラーは、前記パイプ部材の両端部にそれぞれ設けられる
     ことを特徴とする請求項1~6のいずれか一つに記載のコンタクトプローブ。
  8.  所定回路構造に対する信号の入出力を行う信号用プローブと、
     前記所定回路構造に対して電力を供給する給電用プローブと、
     前記所定回路構造に対してアース電位を供給するアース用プローブと、
     前記信号用プローブ、前記給電用プローブおよび前記アース用プローブを挿通可能であり、それぞれが互いに同じ孔形状をなす複数の孔部が形成される導電性のプローブホルダと、
     を備え、
     前記信号用プローブ、前記給電用プローブおよび前記アース用プローブは、
     円筒状のパイプ部材と、
     中空部を有し、前記パイプ部材の長手方向の少なくとも一方の端部の内周側に固定されるカラーと、
     前記パイプ部材と前記カラーとにより形成される段部に当接するフランジ部を有し、長手方向に沿って伸縮自在であり、前記パイプ部材を貫通する内部導体と、
     をそれぞれ有し、
     各プローブのパイプ部材は、同一の外径を有する
     ことを特徴とするプローブユニット。
  9.  前記プローブホルダは、隣り合う前記孔部同士が、一部で連通し、
     前記パイプ部材は、少なくとも外周面が導電性を有し、
     隣り合う前記孔部をそれぞれ貫通する各プローブの前記パイプ部材は、前記孔部の連通部分において接触している
     ことを特徴とする請求項8に記載のプローブユニット。
PCT/JP2018/028136 2017-07-28 2018-07-26 コンタクトプローブおよびプローブユニット WO2019022204A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/633,597 US11422156B2 (en) 2017-07-28 2018-07-26 Contact probe and probe unit
SG11202000654VA SG11202000654VA (en) 2017-07-28 2018-07-26 Contact probe and probe unit
CN201880048520.6A CN110945366B (zh) 2017-07-28 2018-07-26 接触式探针及探针单元
JP2019532867A JP7413018B2 (ja) 2017-07-28 2018-07-26 コンタクトプローブおよびプローブユニット
PH12020500161A PH12020500161A1 (en) 2017-07-28 2020-01-22 Contact probe and probe unit
US17/848,603 US11656246B2 (en) 2017-07-28 2022-06-24 Contact probe and probe unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017146975 2017-07-28
JP2017-146975 2017-07-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/633,597 A-371-Of-International US11422156B2 (en) 2017-07-28 2018-07-26 Contact probe and probe unit
US17/848,603 Continuation US11656246B2 (en) 2017-07-28 2022-06-24 Contact probe and probe unit

Publications (1)

Publication Number Publication Date
WO2019022204A1 true WO2019022204A1 (ja) 2019-01-31

Family

ID=65041112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028136 WO2019022204A1 (ja) 2017-07-28 2018-07-26 コンタクトプローブおよびプローブユニット

Country Status (7)

Country Link
US (2) US11422156B2 (ja)
JP (1) JP7413018B2 (ja)
CN (1) CN110945366B (ja)
PH (1) PH12020500161A1 (ja)
SG (1) SG11202000654VA (ja)
TW (1) TWI712801B (ja)
WO (1) WO2019022204A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148626A (ja) * 2019-03-13 2020-09-17 日本発條株式会社 コンタクトプローブおよび信号伝送方法
WO2021193304A1 (ja) * 2020-03-24 2021-09-30 日本発條株式会社 プローブユニット
JPWO2020175346A1 (ja) * 2019-02-27 2021-12-02 株式会社村田製作所 プローブ部材およびコネクタの検査構造
JP7453146B2 (ja) 2017-11-07 2024-03-19 リーノ インダストリアル インコーポレイテッド 検査プローブ組立体及び検査ソケット

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202000654VA (en) * 2017-07-28 2020-02-27 Nhk Spring Co Ltd Contact probe and probe unit
US12111343B2 (en) * 2020-08-10 2024-10-08 Xcerra Corporation Coaxial probe

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082271U (ja) * 1983-11-09 1985-06-07 株式会社アドバンテスト 同軸プロ−ブコンタクト
WO1999004274A1 (en) * 1997-07-14 1999-01-28 Nhk Spring Co., Ltd. Conductive contact
JP2005009925A (ja) * 2003-06-17 2005-01-13 Tesu Hanbai Kk スプリングプロ−ブ
JP2005127891A (ja) * 2003-10-24 2005-05-19 Yokowo Co Ltd インダクタ装荷型の検査用プローブ
JP2007178196A (ja) * 2005-12-27 2007-07-12 Nhk Spring Co Ltd 導電性接触子ホルダおよび導電性接触子ユニット
JP2007178163A (ja) * 2005-12-27 2007-07-12 Yokowo Co Ltd 検査ユニットおよびそれに用いる検査プローブ用外皮チューブ組立体
JP2010197402A (ja) * 2003-11-05 2010-09-09 Nhk Spring Co Ltd 導電性接触子ホルダ、導電性接触子ユニット
JP2016102696A (ja) * 2014-11-27 2016-06-02 株式会社ヨコオ 検査ユニット

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615105B2 (ja) * 1983-10-07 1994-03-02 三菱電機株式会社 短絡移行ア−ク溶接機
DE60002636T2 (de) * 1999-07-28 2004-03-11 Sumitomo Wiring Systems, Ltd., Yokkaichi Sensor, Vorrichtung zum Anzeigen der Drahteinführung, Inspektionsverfahren und Inspektionsapparat für die Drahtmontage
US6902416B2 (en) * 2002-08-29 2005-06-07 3M Innovative Properties Company High density probe device
JP4251855B2 (ja) * 2002-11-19 2009-04-08 株式会社ヨコオ 高周波・高速用デバイスの検査治具の製法
KR100449204B1 (ko) * 2002-11-25 2004-09-18 리노공업주식회사 고주파용 프로브의 에어 인터페이스 장치
JP4270967B2 (ja) 2003-08-20 2009-06-03 日野自動車株式会社 エンジンのブリーザ装置
JP4689196B2 (ja) * 2003-11-05 2011-05-25 日本発條株式会社 導電性接触子ホルダ、導電性接触子ユニット
JP4535828B2 (ja) * 2004-09-30 2010-09-01 株式会社ヨコオ 検査ユニットの製法
US7740508B2 (en) * 2008-09-08 2010-06-22 3M Innovative Properties Company Probe block assembly
JP5597108B2 (ja) * 2010-11-29 2014-10-01 株式会社精研 接触検査用治具
JP6082271B2 (ja) 2013-02-22 2017-02-15 ミサワホーム株式会社 ホームエネルギーマネージメントシステム
JP6436711B2 (ja) 2014-10-01 2018-12-12 日本発條株式会社 プローブユニット
JP6625869B2 (ja) * 2015-11-18 2019-12-25 株式会社日本マイクロニクス 検査プローブおよびプローブカード
SG11202000654VA (en) * 2017-07-28 2020-02-27 Nhk Spring Co Ltd Contact probe and probe unit

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6082271U (ja) * 1983-11-09 1985-06-07 株式会社アドバンテスト 同軸プロ−ブコンタクト
WO1999004274A1 (en) * 1997-07-14 1999-01-28 Nhk Spring Co., Ltd. Conductive contact
JP2005009925A (ja) * 2003-06-17 2005-01-13 Tesu Hanbai Kk スプリングプロ−ブ
JP2005127891A (ja) * 2003-10-24 2005-05-19 Yokowo Co Ltd インダクタ装荷型の検査用プローブ
JP2010197402A (ja) * 2003-11-05 2010-09-09 Nhk Spring Co Ltd 導電性接触子ホルダ、導電性接触子ユニット
JP2007178196A (ja) * 2005-12-27 2007-07-12 Nhk Spring Co Ltd 導電性接触子ホルダおよび導電性接触子ユニット
JP2007178163A (ja) * 2005-12-27 2007-07-12 Yokowo Co Ltd 検査ユニットおよびそれに用いる検査プローブ用外皮チューブ組立体
JP2016102696A (ja) * 2014-11-27 2016-06-02 株式会社ヨコオ 検査ユニット

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7453146B2 (ja) 2017-11-07 2024-03-19 リーノ インダストリアル インコーポレイテッド 検査プローブ組立体及び検査ソケット
JPWO2020175346A1 (ja) * 2019-02-27 2021-12-02 株式会社村田製作所 プローブ部材およびコネクタの検査構造
JP7556845B2 (ja) 2019-02-27 2024-09-26 株式会社村田製作所 プローブ部材およびコネクタの検査構造
JP2020148626A (ja) * 2019-03-13 2020-09-17 日本発條株式会社 コンタクトプローブおよび信号伝送方法
JP7134904B2 (ja) 2019-03-13 2022-09-12 日本発條株式会社 コンタクトプローブおよび信号伝送方法
JP2022176200A (ja) * 2019-03-13 2022-11-25 日本発條株式会社 コンタクトプローブおよび信号伝送方法
JP7404468B2 (ja) 2019-03-13 2023-12-25 日本発條株式会社 コンタクトプローブおよび信号伝送方法
WO2021193304A1 (ja) * 2020-03-24 2021-09-30 日本発條株式会社 プローブユニット
JP7556022B2 (ja) 2020-03-24 2024-09-25 日本発條株式会社 プローブユニット

Also Published As

Publication number Publication date
TW201910782A (zh) 2019-03-16
US20210156887A1 (en) 2021-05-27
US20220317155A1 (en) 2022-10-06
JP7413018B2 (ja) 2024-01-15
PH12020500161A1 (en) 2020-09-14
CN110945366B (zh) 2022-08-30
CN110945366A (zh) 2020-03-31
JPWO2019022204A1 (ja) 2020-05-28
US11656246B2 (en) 2023-05-23
US11422156B2 (en) 2022-08-23
SG11202000654VA (en) 2020-02-27
TWI712801B (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
WO2019022204A1 (ja) コンタクトプローブおよびプローブユニット
US8344747B2 (en) Probe unit
TWI422829B (zh) 檢查治具、電極構造及電極構造之製造方法
KR101593572B1 (ko) 절연 부재를 구비한 전기 커넥터
US11782074B2 (en) Probe unit
JPWO2008072699A1 (ja) 導電性接触子ホルダおよび導電性接触子ユニット
WO2019013289A1 (ja) プローブユニット
JP4989276B2 (ja) 測定システム
KR20110043480A (ko) 검사용 치구 및 접촉자
US20190004090A1 (en) Contact probe and inspection jig
JPWO2015163366A1 (ja) 点火プラグ及びソケット
JPWO2005029099A1 (ja) 電流測定装置及び試験装置と、これに用いる同軸ケーブル及び集合ケーブル
WO2019039232A1 (ja) プローブ及びその製造方法
JP2005221259A (ja) 圧力センサ
US11860190B2 (en) Probe unit with a free length cantilever contactor and pedestal
WO2021261193A1 (ja) 電流測定部品、電流測定装置及び電流測定方法
WO2012067125A1 (ja) プローブユニット
WO2021215334A1 (ja) 検査用コネクタ及び検査用ユニット
WO2020111075A1 (ja) プローブユニット
JP6441122B2 (ja) 端子ユニットおよび抵抗装置
US20230138105A1 (en) Probe unit
JP6594361B2 (ja) 通信機器
US8878545B2 (en) Test apparatus with physical separation feature
JP2012149962A (ja) コンタクトプローブ及びソケット
JP2014146990A (ja) 無線装置並びにその検査方法及び製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18837731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18837731

Country of ref document: EP

Kind code of ref document: A1