WO2021193304A1 - プローブユニット - Google Patents

プローブユニット Download PDF

Info

Publication number
WO2021193304A1
WO2021193304A1 PCT/JP2021/010922 JP2021010922W WO2021193304A1 WO 2021193304 A1 WO2021193304 A1 WO 2021193304A1 JP 2021010922 W JP2021010922 W JP 2021010922W WO 2021193304 A1 WO2021193304 A1 WO 2021193304A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
hole
holes
probe unit
unit according
Prior art date
Application number
PCT/JP2021/010922
Other languages
English (en)
French (fr)
Inventor
毅 井沼
高橋 秀志
一也 相馬
崇 仁平
佑哉 廣中
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to US17/911,827 priority Critical patent/US20230138105A1/en
Priority to JP2022510012A priority patent/JPWO2021193304A1/ja
Priority to CN202180022852.9A priority patent/CN115335708A/zh
Priority to KR1020227030337A priority patent/KR20220136403A/ko
Publication of WO2021193304A1 publication Critical patent/WO2021193304A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07314Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06716Elastic
    • G01R1/06722Spring-loaded
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06772High frequency probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures

Definitions

  • the present invention relates to a probe unit that houses a contact probe that inputs and outputs signals to and from a predetermined circuit structure.
  • a contact probe for electrical connection between the inspection target and a signal processing device that outputs an inspection signal.
  • a probe unit including a probe holder for accommodating a plurality of the contact probes are used.
  • Patent Document 1 discloses a technique of providing an air layer around a contact probe to match characteristic impedance.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a probe unit capable of adjusting the characteristic impedance of the entire contact probe.
  • the probe unit includes a plurality of first contact probes that come into contact with the electrodes to be contacted on one end side in the longitudinal direction, and an external probe unit.
  • a first contact probe connected to a ground and a probe holder for holding the first and second contact probes, and the first contact probe is inserted and held in the probe holder.
  • a hollow portion, a second hollow portion through which the second contact probe is inserted and held, and a through hole provided around the first hollow portion are formed, and the probe holder is formed with the through hole. It is characterized by forming a hole and having a conductive portion that electrically connects the through hole and the second contact probe.
  • the probe unit according to the present invention is characterized in that, in the above invention, the conductive portion is provided on the through hole and the surface forming the open end of the through hole.
  • the probe unit according to the present invention is characterized in that, in the above invention, the through hole has a stepped hole shape having a partially different diameter.
  • the probe unit according to the present invention is characterized in that, in the above invention, the through hole has a stepped hole shape in which the positions of the central axes are different from each other.
  • the probe unit according to the present invention is characterized in that, in the above invention, the probe holder is composed of one member.
  • the probe unit according to the present invention is characterized in that, in the above invention, the probe holder is formed by laminating a plurality of members in the penetrating direction of the first hollow portion.
  • the through hole is formed by a through hole formed in each of the plurality of members, and the diameter of the through hole is partially formed in at least one member. It is characterized by having different stepped hole shapes.
  • the through hole is formed by a through hole formed in each of the plurality of members, and the position of the central axis of the through hole is located in at least one member. It is characterized by having different stepped hole shapes.
  • through holes forming the through holes are formed in the plurality of members, respectively, and the through holes are formed in adjacent members in the stacking direction of the members. At least a part of the through holes to be formed is characterized in that they overlap each other when viewed from the through holes.
  • the probe unit according to the present invention is characterized in that, in the above invention, the through hole has an elongated hole shape when viewed from the penetration direction.
  • FIG. 1 is a partial cross-sectional view showing the configuration of a main part of the probe unit according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating the arrangement of through holes of the probe unit according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a state at the time of inspection of a semiconductor integrated circuit using the probe holder according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating the arrangement of through holes of the probe unit according to the first modification of the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating the arrangement of through holes of the probe unit according to the second modification of the first embodiment of the present invention.
  • FIG. 6 is a diagram illustrating the arrangement of through holes of the probe unit according to the third modification of the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view illustrating the configuration of a main part of the through hole of the probe unit according to the fourth modification of the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating the configuration of a main part of the through hole of the probe unit according to the fifth modification of the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view illustrating the configuration of a main part of the through hole of the probe unit according to the modified example 6 of the first embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional view showing the configuration of a main part of the probe unit according to the second embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional view showing the configuration of a main part of the probe unit according to the third embodiment of the present invention.
  • FIG. 1 is a partial cross-sectional view showing the configuration of a main part of the probe unit according to the first embodiment of the present invention.
  • the probe unit 1 shown in FIG. 1 is a device used when inspecting the electrical characteristics of a semiconductor integrated circuit which is an inspection target, and is used for inspecting a semiconductor integrated circuit (semiconductor integrated circuit 100 described later) and a semiconductor integrated circuit. It is a device that electrically connects to a circuit board (a circuit board 200 described later) that outputs a signal.
  • the probe unit 1 is a conductive signal contact probe 2A (hereinafter, simply referred to as a signal) that contacts a semiconductor integrated circuit 100 and a circuit board 200, which are two different contact bodies at both ends in the longitudinal direction, and conducts a signal for inspection.
  • a signal conductive signal contact probe 2A
  • Ground probe 2B connected to an external ground electrode
  • signal probe 2A signal probe 2A
  • ground probe 2B ground probe 2B in a predetermined pattern. Therefore, it has a probe holder 3 for accommodating and holding the probe.
  • the probe unit 1 is provided around the probe holder 3 and includes a holder member that suppresses misalignment of the semiconductor integrated circuit during inspection. You may.
  • the signal probe 2A is formed of a conductive material, and includes a first plunger 21 that contacts an electrode into which an inspection signal of the semiconductor integrated circuit is input when inspecting the semiconductor integrated circuit, and an inspection circuit.
  • a spring provided between a second plunger 22 that contacts an electrode that outputs an inspection signal of a circuit board and a first plunger 21 and a second plunger 22 to flexibly connect the first plunger 21 and the second plunger 22. It includes a member 23.
  • the first plunger 21, the second plunger 22, and the spring member 23 constituting the signal probe 2A have the same axis. In the signal probe 2A shown in FIG. 1, the first plunger 21, the longitudinal axis of the second plunger 22 and the spring member 23 (center axis) coincides with the axis N P.
  • the signal probe 2A softens the impact on the connection electrode of the semiconductor integrated circuit by expanding and contracting the spring member 23 when the semiconductor integrated circuit is contacted, and applies a load to the semiconductor integrated circuit and the circuit board.
  • the side in contact with the electrode of the semiconductor integrated circuit is referred to as the distal end side
  • the side opposite to the semiconductor integrated circuit side in the axial direction is referred to as the proximal end side.
  • the first plunger 21 can move in the axial direction by the expansion and contraction action of the spring member 23, and is urged in the direction of approaching the semiconductor integrated circuit by the elastic force of the spring member 23 at the time of inspection, and becomes an electrode of the semiconductor integrated circuit. Contact. Further, the second plunger 22 can be moved in the axial direction by the expansion / contraction action of the spring member 23, and is urged in the direction of approaching the circuit board by the elastic force of the spring member 23, and comes into contact with the electrodes of the circuit board.
  • the spring member 23 has a close contact winding portion 23a on the first plunger 21 side, and a coarse winding portion 23b on the second plunger 22 side.
  • the end of the close contact winding portion 23a is connected to the first plunger 21.
  • the end of the rough winding portion 23b is connected to the second plunger 22.
  • the first plunger 21, the second plunger 22, and the spring member 23 are joined by fitting and / or soldering by the winding force of the spring.
  • the ground probe 2B has the same configuration as the signal probe 2A. Specifically, the ground probe 2B is formed by using a conductive material, and has a first plunger 21 that contacts the ground electrode of the semiconductor integrated circuit when inspecting the semiconductor integrated circuit, and a ground of the circuit board. It is provided with a second plunger 22 that comes into contact with the electrode for use, and a spring member 23 that is provided between the first plunger 21 and the second plunger 22 and that connects the first plunger 21 and the second plunger 22 flexibly.
  • the first plunger 21, the second plunger 22, and the spring member 23 constituting the ground probe 2B have the same axis. In ground probe 2B shown in FIG. 1, the first plunger 21, the longitudinal axis of the second plunger 22 and the spring member 23 (center axis) coincides with the axis N P.
  • the probe holder 3 is formed by laminating the first member 31, the second member 32, the third member 33, and the fourth member 34, which are formed by using an insulating material such as resin, machinable ceramic, or silicon.
  • the probe holder 3 shown in FIG. 1 is laminated in the order of the third member 33, the first member 31, the second member 32, and the fourth member 34 from the upper side of the drawing.
  • the first member 31 to the fourth member 34 are fixed by a known method such as screwing or bonding.
  • the probe holder 3 is formed with a hollow portion 35 that forms a space for accommodating a plurality of signal probes 2A and a hollow portion 36 that forms a space for accommodating a plurality of ground probes 2B. Further, in the probe holder 3, a plurality of through holes 37 are formed around the signal probe 2A.
  • the surface of the first member 31 that forms the surface of the first member 31 is plated.
  • a conductive material is used for the plating process. Therefore, the first conductive film 31a and the second conductive film 31b are formed on the surface of the first member 31.
  • the first conductive film 31a is formed on a surface other than the hollow portion 35, including the portion where the through hole 37 is formed.
  • the second conductive film 31b is formed on the surface of the formed portion of the hollow portion 35.
  • the first conductive film 31a and the second conductive film 31b are separated from each other to ensure insulation. In the example shown in FIG. 1, the film is separated by excising a part of the film.
  • the second member 32 to the fourth member 34 are plated on the surfaces other than the portion forming the inner peripheral surface of the hollow portion 35.
  • a first conductive film 32a and a second conductive film 32b are formed on the surface of the second member 32.
  • a first conductive film 33a and a second conductive film 33b are formed on the surface of the third member 33.
  • a first conductive film 34a and a second conductive film 34b are formed on the surface of the fourth member 34.
  • the first conductive films 32a to 34a are formed on a surface other than the hollow portion 35, including the formed portion of the through hole 37. Further, the second conductive films 32b to 34b are formed on the surface of the formed portion of the hollow portion 35.
  • At least a part of the first conductive films 31a to 34a constitutes a conductive portion. Therefore, in the probe holder 3 formed by laminating the first member 31 to the fourth member 34, a conductive film is present at the boundary between the members and the outer surface.
  • the hollow portion 35 is formed so that the axes of the through holes formed in the first member 31 to the fourth member 34 are aligned with each other. Second conductive films 31b to 34b are formed on the inner peripheral surface of the hollow portion 35, and the conductive inner peripheral surface is formed. The hollow portion 35 extends in the stacking direction of the first member 31 to the fourth member 34.
  • the hollow portion 36 is formed so that the axes of the through holes formed in the first member 31 to the fourth member 34 are aligned with each other.
  • the first conductive films 31a to 34a are formed on the inner peripheral surface, and the conductive inner peripheral surface is formed.
  • each holder hole is composed of a small-diameter portion having an opening on the end surface of the probe holder 3 and a large-diameter portion having a diameter larger than this small-diameter portion.
  • a step portion is formed at the boundary between the first member 31 and the third member 33 and at the boundary between the second member 32 and the fourth member 34, respectively.
  • the shape of each holder hole is determined according to the configuration of the signal probe 2A and the ground probe 2B to be accommodated.
  • the first plunger 21 of the signal probe 2A has a function of retaining the signal probe 2A from the probe holder 3 by abutting the flange on the wall surface of the third member 33. Further, the second plunger 22 has a function of retaining the signal probe 2A from the probe holder 3 by abutting the flange on the wall surface of the fourth member 34.
  • the first plunger 21 of the gland probe 2B has a function of retaining the gland probe 2B from the probe holder 3 by abutting the flange on the wall surface of the third member 33. Further, the second plunger 22 has a function of retaining the ground probe 2B from the probe holder 3 by abutting the flange on the wall surface of the fourth member 34.
  • the through holes 37 are formed so that the axes of the through holes formed in the first member 31 to the fourth member 34 are aligned with each other. That is, the through hole 37 is provided from the surface on the distal end side to the surface on the proximal end side of the signal probe 2A in the probe holder 3. In the through hole 37 shown in FIG. 1, the central axis of each through hole overlaps with the axis NT. In the through hole 37, the shape of the opening in the direction orthogonal to the penetrating direction forms a circle.
  • the first conductive films 31a to 34a are formed on the inner peripheral surface of the through hole 37, and the conductive inner peripheral surface is formed.
  • the through holes 37 form a cylindrical hollow space, and one or a plurality of through holes 37 are formed around the signal probe 2A.
  • FIG. 2 is a diagram illustrating the arrangement of through holes of the probe unit according to the embodiment of the present invention.
  • the diameter of the through holes of the through holes 37 are the same and the shortest distance between each through-hole 37 and the shaft N P is the same distance d 1 from one another. That is, the center of a circle passing through the centers of all the through holes 37 (broken line in FIG. 2) overlaps the center of the signal probe 2A (axis N P).
  • the through-hole group consisting of all through-holes 37 has a coaxial structure with respect to the signal probe 2A.
  • the arrangement position of the through hole 37 is such that the characteristic impedance when the signal probe 2A and the ground probe 2B are regarded as one transmission path is a preset value (for example, 50 ⁇ ). , The number, the size of each through hole formed by the through hole 37, and the like are determined.
  • FIG. 3 is a diagram showing a state at the time of inspection of the semiconductor integrated circuit 100 in the probe unit 1.
  • the first plunger 21 contacts the electrode 101 for the inspection signal of the semiconductor integrated circuit 100
  • the second plunger 22 contacts the electrode 201 for the inspection signal of the circuit board 200.
  • the ground probe 2B the first plunger 21 contacts the ground electrode 102 of the semiconductor integrated circuit 100
  • the second plunger 22 contacts the ground electrode 202 of the circuit board 200.
  • the spring member 23 is in a compressed state due to the contact load from the semiconductor integrated circuit 100.
  • the inspection signal supplied from the circuit board 200 to the semiconductor integrated circuit 100 at the time of inspection is, for example, from the electrode 201 of the circuit board 200 to the second plunger 22 of the signal probe 2A and the close contact winding portion 23a (or the second conductive film).
  • the electrode 101 of the semiconductor integrated circuit 100 is reached via the first plunger 21.
  • the conduction path of the electric signal can be minimized. Therefore, it is possible to prevent a signal from flowing through the rough winding portion 23b during inspection and reduce resistance and inductance.
  • the path passing through the second plunger 22, the second conductive film, and the first plunger 21 can transmit a signal without passing through the spring member 23.
  • first plunger 21 of the ground probe 2B comes into contact with the first conductive film 33a or 31a.
  • second plunger 22 of the ground probe 2B comes into contact with the first conductive film 34a or 32a.
  • the spring member 23 of the ground probe 2B comes into contact with the first conductive film 31a or 32a.
  • the ratio of signal reflection generated at the connection point due to the difference in characteristic impedance increases as the speed of the semiconductor integrated circuit 100 increases, that is, the frequency increases. Therefore, when manufacturing the probe unit 1 corresponding to the semiconductor integrated circuit 100 driven at a high frequency, the impedance adjustment is performed with high accuracy so that the characteristic impedance value of the signal probe 2A matches that of the semiconductor integrated circuit 100. Is important.
  • the signal probe 2A is inherently restricted in that its outer diameter is suppressed to 1 mm or less and that it has a complicated shape composed of the first plunger 21, the second plunger 22, and the spring member 23. This is because it is difficult to change the shape to a shape suitable for impedance matching from the viewpoint of design and manufacturing.
  • the value of the characteristic impedance is set by arranging the through holes 37 around the first plunger 21, the second plunger 22, and the spring member 23, instead of changing the structure of the signal probe 2A.
  • the configuration to adjust is adopted.
  • the conventional structure of the signal probe 2A can be diverted.
  • the same probe as the conventional ground probe 2B can be used as the signal probe 2A.
  • the signal probe 2A does not have to be changed to a shape suitable for impedance matching, the degree of freedom of the probe shape to be used can be improved.
  • the signal probe 2A is provided with a through hole 37 extending from the front end side surface to the proximal end side surface of the signal probe 2A in the probe holder 3 around the signal probe 2A.
  • the value of the characteristic impedance of the tip portion and the base end portion can be adjusted. Specifically, the value of the characteristic impedance can be adjusted by adjusting the number of through holes arranged, the diameter of the through holes of the through holes, and the arrangement of the through holes (distance to the signal probe 2A). Further, by surrounding the signal probe 2A with a plurality of through holes 37, it is possible to reduce the influence of external factors such as noise, and it is possible to reduce the energy loss due to the energy outflow to the outside.
  • a through hole 37 is arranged around the signal probe 2A so as to be connected to the external ground via the ground probe 2B.
  • the characteristic impedance of the tip end portion and the base end portion of the signal probe 2A can be adjusted by the through hole 37 indirectly connected to the external ground.
  • the ground position in the direction orthogonal to the axial direction with respect to the signal probe 2A can be adjusted.
  • the high frequency characteristics are excellent as compared with the case where the plating treatment is not applied.
  • the degree of freedom in arranging the ground probe 2B can be improved.
  • the first conductive films 33a and 34a may be connected to an external ground.
  • a plurality of through-holes an example has been described to be arranged with a symmetry with respect to the axis N P of the signal probe may be asymmetric arrangement.
  • the through holes may be arranged non-uniformly.
  • a non-uniform to the distance in the circumferential direction of a circle about a point on the axis N P of the signal probe may be a non-uniform at different points, the shortest distance (above from the axis N P The distances d 1 ) may be unequal in that they differ from each other, or both.
  • the second conductive films 31b to 34b are formed on the surface of the hollow portion 35 to form the conductive through holes, but the second conductive film is formed. Instead, it may be an insulating inner peripheral surface.
  • FIG. 4 is a diagram illustrating the arrangement of through holes of the probe unit according to the first modification of the first embodiment of the present invention.
  • the probe unit according to the first modification has a different size of some through holes in the probe holder 3 described above. Since the other configurations are the same as those of the probe unit 1, the description thereof will be omitted.
  • the through hole 37A is an example that oppose each other through the axis N P.
  • the through holes 37A are formed so that the axes of the through holes formed in the first member 31 to the fourth member 34 are aligned with each other.
  • the through hole 37A forms a cylindrical hollow space.
  • the shape of the opening in the direction orthogonal to the penetrating direction forms a circle.
  • the through hole 37A has a conductive film (for example, the above-mentioned first conductive films 31a to 34a) formed on the inner peripheral surface thereof, and the inner peripheral surface has conductivity.
  • the diameter of the through hole of the through hole 37A is larger than the diameter of the through hole of the through hole 37.
  • each through-hole is arranged at a position that passes through the circle around the axis N P signal probe 2A (broken line in FIG. 4). Further, the shortest distance d 2 between the through hole 37A and the shaft N P is shorter than the shortest distance d 1 between the through hole 37 and the shaft N P.
  • through holes 37 and 37A having different sizes are arranged around the signal probe 2A so as to be connected to the external ground via the ground probe 2B. Also in the first modification, as in the first embodiment, the characteristic impedances of the tip end portion and the base end portion of the signal probe 2A can be adjusted by the through holes 37 and 37A indirectly connected to the external ground. ..
  • FIG. 5 is a diagram illustrating the arrangement of through holes of the probe unit according to the second modification of the first embodiment of the present invention.
  • the probe unit according to the second modification has a different size and arrangement of some through holes in the probe holder 3 described above. Since the other configurations are the same as those of the probe unit 1, the description thereof will be omitted.
  • the through hole 37A is an example that oppose each other through the axis N P.
  • through holes 37 and 37A having different sizes are arranged around the signal probe 2A so as to be connected to the external ground via the ground probe 2B. Also in the second modification, as in the first embodiment, the characteristic impedances of the tip end portion and the base end portion of the signal probe 2A can be adjusted by the through holes 37 and 37A indirectly connected to the external ground. ..
  • FIG. 6 is a diagram illustrating the arrangement of through holes of the probe unit according to the third modification of the first embodiment of the present invention.
  • the probe unit according to the modified example 3 has a different size and arrangement of some through holes in the probe holder 3 described above. Since the other configurations are the same as those of the probe unit 1, the description thereof will be omitted.
  • through holes 37B are formed around the signal probe 2A.
  • 6 shows an example in which four sets of through-holes 37B are arranged opposite to each other via a shaft N P.
  • the through hole 37B has an elongated hole shape when viewed from the through direction.
  • Through hole 37B is the center of gravity of each through-hole is arranged at a position that passes through the circle around the axis N P signal probe 2A (broken line in FIG. 6).
  • a conductive film (for example, the above-mentioned first conductive films 31a to 34a) is formed on the inner peripheral surface, and the inner peripheral surface has conductivity.
  • a plurality of through holes 37B are arranged around the signal probe 2A so as to be connected to the external ground via the ground probe 2B. Also in the third modification, the characteristic impedance of the tip end portion and the base end portion of the signal probe 2A can be adjusted by the through hole 37B indirectly connected to the external ground, as in the first embodiment.
  • the opening shape of the through hole of the through hole 37B is an elongated hole, the range surrounding the signal probe 2A by the through hole 37B is larger than that of the through holes 37 and 37A.
  • the degree of freedom in adjusting the characteristic impedance is increased, and as a result, the high frequency characteristics of the probe unit can be improved.
  • the energy loss due to the outflow of energy to the outside can be further reduced.
  • FIG. 7 is a cross-sectional view illustrating the configuration of a main part of the through hole of the probe unit according to the fourth modification of the first embodiment of the present invention.
  • the probe unit according to the modified example 4 has a different shape of the through hole in the probe holder 3 described above. Since the other configurations are the same as those of the probe unit 1, the description thereof will be omitted.
  • the through hole according to the modified example 4 is formed by communicating the through holes formed in the first member 31 to the fourth member 34 with each other.
  • a conductive film (for example, the first conductive films 31a to 34a described above) is formed on the inner peripheral surface of the through hole, and the conductive inner peripheral surface is formed.
  • Through holes have partially different diameters. Specifically, for example, the diameter to Q 1 through hole 37a formed in the third member 33, and the diameter Q 2 of the through-hole 37b formed in the first member 31 is different.
  • a through hole having a stepped hole shape is arranged around the signal probe 2A, and the external ground is connected to the external ground via the ground probe 2B.
  • the same effect as that of the above can be obtained, and the characteristic impedance can be adjusted according to the shape of the signal probe 2A.
  • FIG. 8 is a cross-sectional view illustrating the configuration of a main part of the through hole of the probe unit according to the fifth modification of the first embodiment of the present invention.
  • the probe unit according to the modified example 5 has a different shape of the through hole in the probe holder 3 described above. Since the other configurations are the same as those of the probe unit 1, the description thereof will be omitted.
  • the through hole according to the modified example 5 is formed by communicating the through holes formed in the first member 31 to the fourth member 34 with each other.
  • a conductive film (for example, the first conductive films 31a to 34a described above) is formed on the inner peripheral surface of the through hole, and the conductive inner peripheral surface is formed.
  • the shaft positions of the through holes are partially different. Specifically, for example, the central axis N 1 of the through hole 37c formed in the third member 33 and the central axis N 2 of the through hole 37d formed in the first member 31 are different in position. Further, the diameter Q 3 of the through hole 37c, the diameter Q 4 of the through-hole 37d, the same diameter.
  • the through hole according to the modified example 5 is formed by a through hole in which the position of the central axis is partially different. At this time, when the through holes are viewed from the stacking direction of the first member 31 to the fourth member 34, at least a part of the through holes formed in the adjacent members in the stacking direction of the members overlap each other. Through holes are formed by communicating through holes formed in each member with each other at least in part.
  • a through hole having a stepped hole shape in which the axis of a part of the through hole is deviated is arranged around the signal probe 2A, and the external gland is connected to the gland probe 2B via the gland probe 2B.
  • the same effect as that of the first embodiment can be obtained, and the characteristic impedance can be adjusted according to the shape of the signal probe 2A.
  • FIG. 9 is a cross-sectional view illustrating the configuration of a main part of the through hole of the probe unit according to the modified example 6 of the first embodiment of the present invention.
  • the probe unit according to the modified example 6 has a different shape of the through hole in the probe holder 3 described above. Since the other configurations are the same as those of the probe unit 1, the description thereof will be omitted.
  • the through hole according to the modified example 6 is formed by communicating the through holes formed in the first member 31 to the fourth member 34 with each other.
  • a conductive film (for example, the first conductive films 31a to 34a described above) is formed on the inner peripheral surface of the through hole, and the conductive inner peripheral surface is formed.
  • the diameter of the through hole and the position of the shaft are partially different. Specifically, for example, the diameter Q 5 of the through hole 37e formed in the third member 33 and the diameter Q 6 of the through hole 37f formed in the first member 31 are different. Further, the center axis N 1 of the through hole 37e, and the central axis N 2 of the through hole 37f, the position is different.
  • a through hole having a stepped hole shape in which the diameter of a part of the through hole is different and the axis is deviated is arranged around the signal probe 2A, and the ground is different from the external ground.
  • the configurations of the through holes according to the modified examples 1 to 6 may be appropriately combined and configured.
  • at least a part of the shape and arrangement of each signal probe arranged in the same probe holder may be different.
  • FIG. 10 is a partial cross-sectional view showing the configuration of a main part of the probe unit according to the second embodiment of the present invention.
  • the probe unit according to the second embodiment includes a probe holder 3A instead of the probe holder 3 described above. Since the other configurations are the same as those of the probe unit 1, the description thereof will be omitted.
  • the probe holder 3A is composed of a single member formed by using an insulating material such as resin, machinable ceramic, or silicon.
  • the probe holder 3A is formed with a hollow portion 35 that forms a space for accommodating a plurality of signal probes 2A and a hollow portion (the hollow portion 36 described above) that forms a space for accommodating a plurality of ground probes 2B.
  • the hollow portions 35 and 36 have a hole shape having a diameter that allows the contact probe to be inserted and removed and prevented from coming off. Further, in the probe holder 3A, a plurality of through holes 38 are formed around the signal probe 2A.
  • the surface of the probe holder 3A is plated.
  • a conductive material is used for the plating process. Therefore, the first conductive film 3a and the second conductive film 3b are formed on the surface of the probe holder 3A.
  • the first conductive film 3a is formed on a surface other than the hollow portion 35 including the formed portion of the through hole 38. Further, the second conductive film 3b is formed on the surface of the formed portion of the hollow portion 35.
  • the first conductive film 3a and the second conductive film 3b are separated from each other to ensure insulation.
  • the through hole 38 is a through hole in which the shape of the opening in the direction orthogonal to the through hole forms a circle and the diameters are partially different.
  • the through holes 38 have a first hole portion 38a formed on one surface side (the side on which the first plunger 21 extends in FIG. 10) and the other surface side (the second plunger 22 in FIG. 10).
  • the diameter of the openings of the first hole 38a and the second hole 38b is larger than the diameter of the opening of the third hole 38c.
  • the first conductive film 3a is formed on the inner peripheral surface of the through hole 38, and the conductive inner peripheral surface is formed.
  • the central axes of the first hole 38a, the second hole 38b, and the third hole 38c are linearly connected.
  • a plurality of through holes 38 are formed around the signal probe 2A by forming a columnar hollow space having a stepped portion having a partially different diameter. Eight through holes 38 are formed around one signal probe 2A, for example, as in the first embodiment.
  • a through hole 38 is arranged around the signal probe 2A so as to be connected to the external ground via the ground probe 2B.
  • the characteristic impedance of the tip end portion and the base end portion of the signal probe 2A can be adjusted by the through hole 38 indirectly connected to the external ground.
  • the ground position in the direction orthogonal to the axial direction with respect to the signal probe 2A can be adjusted.
  • the characteristic impedance can be adjusted according to the shape of the signal probe 2A.
  • FIG. 11 is a partial cross-sectional view showing the configuration of a main part of the probe unit according to the third embodiment of the present invention.
  • the probe unit according to the third embodiment includes a probe holder 4 instead of the probe holder 3 described above. Since the other configurations are the same as those of the probe unit 1, the description thereof will be omitted.
  • the probe holder 4 is formed by laminating a first member 41 and a second member 42 formed by using an insulating material such as resin, machinable ceramic, or silicon.
  • the probe holder 4 shown in FIG. 11 is laminated in the order of the first member 41 and the second member 42 from the upper side of the figure.
  • the first member 41 and the second member 42 are fixed by a known method such as screwing or bonding.
  • the probe holder 4 is formed with a hollow portion 35 that forms a space for accommodating a plurality of signal probes 2A and a hollow portion (not shown) that forms a space for accommodating a plurality of ground probes 2B. Further, in the probe holder 4, a plurality of through holes 43 are formed around the signal probe 2A.
  • the surface of the first member 41 that forms the surface of the first member 41 is plated.
  • a conductive material is used for the plating process. Therefore, the first conductive film 41a and the second conductive film 41b are formed on the surface of the first member 41.
  • the first conductive film 41a is formed on a surface other than the hollow portion 35, including the portion where the through hole 43 is formed. Further, the second conductive film 41b is formed on the surface of the formed portion of the hollow portion 35.
  • the first conductive film 41a and the second conductive film 41b are separated from each other to ensure insulation.
  • the second member 42 is plated on the surface forming the surface of the second member 42.
  • a first conductive film 42a and a second conductive film 42b are formed on the surface of the second member 42.
  • the first conductive film 42a is formed on a surface other than the hollow portion 35, including the portion where the through hole 43 is formed.
  • the second conductive film 42b is formed on the surface of the formed portion of the hollow portion 35.
  • the first conductive film 42a and the second conductive film 42b are separated from each other to ensure insulation. Therefore, in the probe holder 4 formed by laminating the first member 41 and the second member 42, a conductive film is present at the boundary between the members and the outer surface.
  • the hollow portion 35 is formed so that the axes of the through holes formed in the first member 41 and the second member 42 are aligned with each other.
  • the second conductive films 41b and 42b are formed on the inner peripheral surface, and the conductive inner peripheral surface is formed.
  • the through hole 43 is a through hole having a stepped shape in which the shape of the opening in the direction orthogonal to the through direction is circular and the position of the central axis is partially different.
  • the through holes 43 are formed on one surface side of the probe holder 4 (the side on which the first plunger 21 extends in FIG. 11) and the other surface side (in FIG. 11). It has a second hole portion 43b formed on the side on which the second plunger 22 extends) and a third hole portion 43c provided between the first hole portion 43a and the second hole portion 43b.
  • the diameters of the openings of the first hole 43a, the second hole 43b, and the third hole 43c are the same as each other.
  • the first hole portion 43a, a central axis N T1, N T2 of the second hole portion 43 b, and the central axis N T3 of the third hole portion 43c, the position each other to the extent that adjacent holes portions are communicated are different .
  • the first conductive films 41a and 42a are formed on the inner peripheral surface of the through hole 43, and the conductive inner peripheral surface is formed.
  • the through holes 43 form a stepped columnar hollow space, and a plurality of through holes 43 are formed around the signal probe 2A.
  • a plurality of through holes 43 are formed around the signal probe 2A.
  • eight through holes 43 are formed around one signal probe 2A as in the first embodiment.
  • the through hole 43 is arranged around the signal probe 2A so as to be connected to the external ground via the ground probe 2B.
  • the characteristic impedance of the tip end portion and the base end portion of the signal probe 2A can be adjusted by the through hole 43 indirectly connected to the external ground.
  • the ground position in the direction orthogonal to the axial direction with respect to the signal probe 2A can be adjusted.
  • the characteristic impedance can be adjusted according to the shape of the signal probe 2A.
  • the configuration of the contact probe described here is just an example, and it is possible to apply various types of conventionally known probes.
  • the load is not limited to the one composed of the plunger and the coil spring as described above, but a probe having a pipe member, a pogo pin, a solid conductive member, a conductive pipe, or a wire is bent in an arch shape to load. It may be a wire probe for obtaining a wire, a connection terminal (connector) for connecting electrical contacts to each other, or a combination of these probes as appropriate.
  • the probe holders according to the above-described first to third embodiments and the modified examples thereof include those formed by laminating four or two members and examples formed by one member, but three.
  • a member or five or more members may be laminated to form a structure.
  • the conductive film is not formed on the entire surface of the member of the probe holder 3, but is partially formed.
  • the pattern may be formed in.
  • the conductive film may be formed on the portion forming the through hole and the outer surface of the member (for example, the third member 33 and the fourth member 34 shown in FIG. 1) forming the open end of the through hole. good.
  • the conductive film is electrically connected to the ground probe 2B at least at the time of inspection.
  • the present invention may include various embodiments not described here, and various design changes and the like may be made within a range that does not deviate from the technical idea specified by the claims. Is possible.
  • the probe unit according to the present invention is suitable for adjusting the characteristic impedance of the entire contact probe.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Leads Or Probes (AREA)
  • Surgical Instruments (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本発明にかかるプローブユニットは、長手方向の一方の端部側で接触対象の電極とそれぞれ接触する複数の第1のコンタクトプローブと、外部のグランドに接続する第2のコンタクトプローブと、第1および第2のコンタクトプローブを保持するプローブホルダと、を備え、プローブホルダには、第1のコンタクトプローブを挿通して保持する第1の中空部と、第2のコンタクトプローブを挿通して保持する第2の中空部と、第1の中空部の周囲に設けられるスルーホールと、が形成され、プローブホルダは、スルーホールを構成するとともに、該スルーホールと第2のコンタクトプローブとを電気的に接続する導電部を有する。

Description

プローブユニット
 本発明は、所定回路構造に対して信号入出力を行うコンタクトプローブを収容するプローブユニットに関するものである。
 従来、半導体集積回路や液晶パネルなどの検査対象の導通状態検査や動作特性検査を行う際には、検査対象と検査用信号を出力する信号処理装置との間の電気的な接続を図るコンタクトプローブと、このコンタクトプローブを複数収容するプローブホルダとを備えたプローブユニットが用いられる。
 一般に、高周波数の電気信号を入出力する場合には、挿入損失(インサーションロス)と呼ばれる信号の損失が生じる。プローブユニットにおいて、高精度に高速動作させるには、使用する周波数領域において、このインサーションロスを低減することが重要である。例えば、特許文献1には、コンタクトプローブの周囲に空気層を設けて特性インピーダンス整合する技術が開示されている。
特開2012-98219号公報
 しかしながら、特許文献1が開示する技術では、コンタクトプローブの中央部のインピーダンスは調整できるものの、先端部や基端部の特性インピーダンスは調整できていない。
 本発明は、上記に鑑みてなされたものであって、コンタクトプローブ全体の特性インピーダンスを調整することができるプローブユニットを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係るプローブユニットは、長手方向の一方の端部側で接触対象の電極とそれぞれ接触する複数の第1のコンタクトプローブと、外部のグランドに接続する第2のコンタクトプローブと、前記第1および第2のコンタクトプローブを保持するプローブホルダと、を備え、前記プローブホルダには、前記第1のコンタクトプローブを挿通して保持する第1の中空部と、前記第2のコンタクトプローブを挿通して保持する第2の中空部と、前記第1の中空部の周囲に設けられるスルーホールと、が形成され、前記プローブホルダは、前記スルーホールを構成するとともに、該スルーホールと前記第2のコンタクトプローブとを電気的に接続する導電部を有する、ことを特徴とする。
 また、本発明に係るプローブユニットは、上記の発明において、前記導電部は、前記スルーホールと、該スルーホールの開口端を形成する表面とに設けられることを特徴とする。
 また、本発明に係るプローブユニットは、上記の発明において、前記スルーホールは、径が部分的に異なる段付きの孔形状をなすことを特徴とする。
 また、本発明に係るプローブユニットは、上記の発明において、前記スルーホールは、中心軸の位置が互いに異なる段付きの孔形状をなすことを特徴とする。
 また、本発明に係るプローブユニットは、上記の発明において、前記プローブホルダは、一つの部材からなることを特徴とする。
 また、本発明に係るプローブユニットは、上記の発明において、前記プローブホルダは、複数の部材を、前記第1の中空部の貫通方向に積層してなることを特徴とする。
 また、本発明に係るプローブユニットは、上記の発明において、前記スルーホールは、前記複数の部材にそれぞれ形成される貫通孔によって形成され、少なくとも一つの部材において、前記貫通孔の径が部分的に異なる段付きの孔形状をなすことを特徴とする。
 また、本発明に係るプローブユニットは、上記の発明において、前記スルーホールは、前記複数の部材にそれぞれ形成される貫通孔によって形成され、少なくとも一つの部材において、前記貫通孔の中心軸の位置が互いに異なる段付きの孔形状をなすことを特徴とする。
 また、本発明に係るプローブユニットは、上記の発明において、前記複数の部材には、前記スルーホールを構成する貫通孔がそれぞれ形成され、前記スルーホールは、前記部材の積層方向で隣り合う部材に形成される貫通孔の少なくとも一部が、当該貫通孔の貫通方向からみて互いに重なることを特徴とする。
 また、本発明に係るプローブユニットは、上記の発明において、前記スルーホールは、貫通方向からみた開口の形状が、長穴形状をなすことを特徴とする。
 本発明によれば、コンタクトプローブ全体の特性インピーダンスを調整することができるという効果を奏する。
図1は、本発明の実施の形態1にかかるプローブユニットの要部の構成を示す部分断面図である。 図2は、本発明の実施の形態1にかかるプローブユニットのスルーホールの配置を説明する図である。 図3は、本発明の実施の形態1にかかるプローブホルダを用いた半導体集積回路の検査時の状態を示す図である。 図4は、本発明の実施の形態1の変形例1にかかるプローブユニットのスルーホールの配置を説明する図である。 図5は、本発明の実施の形態1の変形例2にかかるプローブユニットのスルーホールの配置を説明する図である。 図6は、本発明の実施の形態1の変形例3にかかるプローブユニットのスルーホールの配置を説明する図である。 図7は、本発明の実施の形態1の変形例4にかかるプローブユニットのスルーホールの要部の構成を説明する断面図である。 図8は、本発明の実施の形態1の変形例5にかかるプローブユニットのスルーホールの要部の構成を説明する断面図である。 図9は、本発明の実施の形態1の変形例6にかかるプローブユニットのスルーホールの要部の構成を説明する断面図である。 図10は、本発明の実施の形態2にかかるプローブユニットの要部の構成を示す部分断面図である。 図11は、本発明の実施の形態3にかかるプローブユニットの要部の構成を示す部分断面図である。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示してあるに過ぎず、従って、本発明は各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。
(実施の形態1)
 図1は、本発明の実施の形態1にかかるプローブユニットの要部の構成を示す部分断面図である。図1に示すプローブユニット1は、検査対象物である半導体集積回路の電気特性検査を行う際に使用する装置であって、半導体集積回路(後述する半導体集積回路100)と半導体集積回路へ検査用信号を出力する回路基板(後述する回路基板200)との間を電気的に接続する装置である。
 プローブユニット1は、長手方向の両端で互いに異なる二つの被接触体である半導体集積回路100および回路基板200に接触し、検査用の信号を導通する導電性の信号用コンタクトプローブ2A(以下、単に「信号用プローブ2A」という)と、外部のグランド電極に接続するグランド用コンタクトプローブ2B(以下、単に「グランド用プローブ2B)という)と、信号用プローブ2Aおよびグランド用プローブ2Bを所定のパターンにしたがって収容して保持するプローブホルダ3と、を有する。なお、プローブユニット1は、プローブホルダ3の周囲に設けられ、検査の際に半導体集積回路の位置ずれが生じるのを抑制するホルダ部材を備えてもよい。
 信号用プローブ2Aは、導電性材料を用いて形成され、半導体集積回路の検査を行うときにその半導体集積回路の検査信号が入力される電極に接触する第1プランジャ21と、検査回路を備えた回路基板の検査信号を出力する電極に接触する第2プランジャ22と、第1プランジャ21と第2プランジャ22との間に設けられて第1プランジャ21および第2プランジャ22を伸縮自在に連結するバネ部材23とを備える。信号用プローブ2Aを構成する第1プランジャ21、第2プランジャ22およびバネ部材23は同一の軸線を有している。図1に示す信号用プローブ2Aでは、第1プランジャ21、第2プランジャ22およびバネ部材23の各長手軸(中心軸)が、軸NPと一致する。
 信号用プローブ2Aは、半導体集積回路をコンタクトさせた際に、バネ部材23が伸縮することによって半導体集積回路の接続用電極への衝撃を和らげるとともに、半導体集積回路および回路基板に荷重を加える。なお、以下では、信号用プローブ2Aにおいて、半導体集積回路の電極に接触する側を先端側、半導体集積回路側に対して軸線方向で反対となる側を基端側とする。また、プランジャ単体で先端側および基端側を規定する場合、半導体集積回路と接触するプランジャにおいて、半導体集積回路側を先端側、半導体集積回路側に対して軸線方向で反対となる側を基端側とする。また、回路基板と接触するプランジャにおいて、回路基板側を先端側、回路基板側に対して軸線方向で反対となる側を基端側とする。
 第1プランジャ21は、バネ部材23の伸縮作用によって軸線方向に移動が可能であり、検査時において、バネ部材23の弾性力によって半導体集積回路に近付く方向に付勢され、半導体集積回路の電極と接触する。また、第2プランジャ22は、バネ部材23の伸縮作用によって軸線方向に移動が可能であり、バネ部材23の弾性力によって回路基板に近付く方向に付勢され、回路基板の電極と接触する。
 バネ部材23は、第1プランジャ21側が密着巻き部23aである一方、第2プランジャ22側が粗巻き部23bである。密着巻き部23aの端部は、第1プランジャ21に連結している。一方、粗巻き部23bの端部は、第2プランジャ22に連結している。また、第1プランジャ21および第2プランジャ22とバネ部材23とは、バネの巻き付き力によって嵌合および/または半田付けによって接合されている。
 グランド用プローブ2Bは、信号用プローブ2Aと同様の構成を有している。具体的に、グランド用プローブ2Bは、導電性材料を用いて形成され、半導体集積回路の検査を行うときにその半導体集積回路のグランド用の電極に接触する第1プランジャ21と、回路基板のグランド用の電極に接触する第2プランジャ22と、第1プランジャ21と第2プランジャ22との間に設けられて第1プランジャ21および第2プランジャ22を伸縮自在に連結するバネ部材23とを備える。グランド用プローブ2Bを構成する第1プランジャ21および第2プランジャ22、ならびにバネ部材23は同一の軸線を有している。図1に示すグランド用プローブ2Bでは、第1プランジャ21、第2プランジャ22およびバネ部材23の各長手軸(中心軸)が、軸NPと一致する。
 プローブホルダ3は、樹脂、マシナブルセラミック、シリコンなどの絶縁性材料を用いて形成される第1部材31、第2部材32、第3部材33、第4部材34を積層してなる。図1に示すプローブホルダ3は、図の上側から、第3部材33、第1部材31、第2部材32、第4部材34の順に積層される。第1部材31~第4部材34とは、ネジ止めや接着等の公知の方法によって固定される。
 プローブホルダ3には、複数の信号用プローブ2Aを収容する空間を形成する中空部35と、複数のグランド用プローブ2Bを収容する空間を形成する中空部36とが形成される。また、プローブホルダ3には、信号用プローブ2Aの周囲に複数のスルーホール37が形成される。
 第1部材31には、該第1部材31の表面をなす面に、メッキ処理が施される。メッキ処理には、導電性の材料が用いられる。このため、第1部材31の表面には、第1導電性皮膜31aおよび第2導電性皮膜31bが形成される。なお、第1導電性皮膜31aは、スルーホール37の形成部分を含む、中空部35以外の表面に形成される。また、第2導電性皮膜31bは、中空部35の形成部分の表面に形成される。第1導電性皮膜31aと第2導電性皮膜31bとは、互いに離間しており、絶縁が確保される。図1に示す例では、皮膜の一部を切除することによって皮膜を分けている。
 第2部材32~第4部材34には、第1部材31と同様に、中空部35の内周面を形成する部分を除く面に、メッキ処理が施される。第2部材32の表面には、第1導電性皮膜32aおよび第2導電性皮膜32bが形成される。第3部材33の表面には、第1導電性皮膜33aおよび第2導電性皮膜33bが形成される。第4部材34の表面には、第1導電性皮膜34aおよび第2導電性皮膜34bが形成される。第1導電性皮膜32a~34aは、スルーホール37の形成部分を含む、中空部35以外の表面に形成される。また、第2導電性皮膜32b~34bは、中空部35の形成部分の表面に形成される。第1導電性皮膜31a~34aは、少なくとも一部が、導電部を構成する。
 このため、第1部材31~第4部材34を積層してなるプローブホルダ3では、各部材間の境界、及び外表面において、導電性皮膜が存在する。
 中空部35は、第1部材31~第4部材34に形成される貫通孔の互いの軸線を一致させて形成される。中空部35には、内周面に第2導電性皮膜31b~34bが形成されており、導電性の内周面が形成される。中空部35は、第1部材31~第4部材34の積層方向に延びる。
 中空部36は、第1部材31~第4部材34に形成される貫通孔の互いの軸線を一致させて形成される。中空部36は、内周面に第1導電性皮膜31a~34aが形成されており、導電性の内周面が形成される。
 中空部35、36の形成位置は、半導体集積回路の配線パターンに応じて定められる。中空部35、36は、ともに貫通方向に沿って径が異なる段付き孔形状をなしている。すなわち、各ホルダ孔は、プローブホルダ3の端面に開口を有する小径部と、この小径部よりも径が大きい大径部とからなる。図1に示すプローブホルダ3は、第1部材31と第3部材33との境界、第2部材32と第4部材34との境界において、それぞれ段部が形成される。各ホルダ孔の形状は、収容する信号用プローブ2Aやグランド用プローブ2Bの構成に応じて定められる。
 信号用プローブ2Aの第1プランジャ21は、第3部材33の壁面にフランジが当接することにより、信号用プローブ2Aのプローブホルダ3からの抜止機能を有する。また、第2プランジャ22は、第4部材34の壁面にフランジが当接することにより、信号用プローブ2Aのプローブホルダ3からの抜止機能を有する。
 グランド用プローブ2Bの第1プランジャ21は、第3部材33の壁面にフランジが当接することにより、グランド用プローブ2Bのプローブホルダ3からの抜止機能を有する。また、第2プランジャ22は、第4部材34の壁面にフランジが当接することにより、グランド用プローブ2Bのプローブホルダ3からの抜止機能を有する。
 スルーホール37は、第1部材31~第4部材34に形成される貫通孔の互いの軸線を一致させて形成される。すなわち、スルーホール37は、プローブホルダ3における信号用プローブ2Aの先端側の表面から基端側の表面に亘り設けられている。図1に示すスルーホール37は、各貫通孔の中心軸が軸NTと重なる。スルーホール37は、貫通方向と直交する方向の開口の形状が円をなす。スルーホール37は、内周面に第1導電性皮膜31a~34aが形成されており、導電性の内周面が形成される。
 スルーホール37は、円柱状の中空空間を形成し、信号用プローブ2Aの周囲に一つまたは複数個形成される。本実施の形態1では、一つの信号用プローブ2Aの周囲に、八個のスルーホール37が形成される例を説明する。図2は、本発明の一実施の形態にかかるプローブユニットのスルーホールの配置を説明する図である。例えば、信号用プローブ2Aの配設位置(軸NP)を中心に、等間隔で八個のスルーホール37が設けられる。図2において、各スルーホール37の貫通孔の径は同一であり、かつ、各スルーホール37と軸NPとの間の最短距離は、互いに同じ距離d1である。すなわち、すべてのスルーホール37の中心を通過する円(図2の破線)の中心は、信号用プローブ2Aの中心(軸NP)と重なる。すべてのスルーホール37からなるスルーホール群は、信号用プローブ2Aに対して同軸構造をとる。
 本実施の形態1では、信号用プローブ2Aおよびグランド用プローブ2Bを一つの伝送経路としてみたときの特性インピーダンスが、予め設定された値(例えば50Ω)となるように、スルーホール37の配設位置や、個数、スルーホール37が形成する各貫通孔の大きさ等が決定される。
 図3は、プローブユニット1における半導体集積回路100の検査時の状態を示す図である。検査時において、信号用プローブ2Aは、第1プランジャ21が、半導体集積回路100の検査信号用の電極101と接触し、第2プランジャ22が、回路基板200の検査信号用の電極201と接触する。他方、グランド用プローブ2Bは、第1プランジャ21が、半導体集積回路100のグランド用の電極102と接触し、第2プランジャ22が、回路基板200のグランド用の電極202と接触する。半導体集積回路100の検査時には、半導体集積回路100からの接触荷重により、バネ部材23は圧縮された状態となる。
 検査時に回路基板200から半導体集積回路100に供給される検査用信号は、例えば、回路基板200の電極201から信号用プローブ2Aの第2プランジャ22、密着巻き部23a(または第2導電性皮膜)、第1プランジャ21を経由して半導体集積回路100の電極101へ到達する。このように、信号用プローブ2Aでは、第1プランジャ21と第2プランジャ22が密着巻き部23aを介して導通するため、電気信号の導通経路を最小にすることができる。したがって、検査時に粗巻き部23bに信号が流れるのを防止し、抵抗およびインダクタンスを低減することができる。この際、第2プランジャ22、第2導電性皮膜、第1プランジャ21を経由する経路は、バネ部材23を介さずに信号を伝送することができる。
 また、グランド用プローブ2Bの第1プランジャ21は、第1導電性皮膜33aまたは31aに接触する。一方、グランド用プローブ2Bの第2プランジャ22は、第1導電性皮膜34aまたは32aに接触する。さらに、グランド用プローブ2Bのバネ部材23は、第1導電性皮膜31aまたは32aに接触する。
 一般に、交流信号を扱う電子回路においては、インピーダンスの異なる配線同士が接続する箇所において、異なるインピーダンス間の比に応じた量だけ信号が反射し、信号の伝搬が妨げられることが知られている。このことは使用する半導体集積回路100と信号用プローブ2Aとの関係においても同様であって、半導体集積回路100の特性インピーダンスと、信号用プローブ2Aにおける特性インピーダンスとが大きく異なる値を有する場合には、電気信号の損失が発生するとともに、電気信号の波形が歪む。
 また、特性インピーダンスの相違に起因して接続箇所において生じる信号反射の割合は、半導体集積回路100の高速化、すなわち高周波数化に伴って大きくなる。従って、高周波数で駆動する半導体集積回路100に対応したプローブユニット1を作製する際には、信号用プローブ2Aの特性インピーダンスの値を半導体集積回路100のものと一致させる、インピーダンス調整を精度良く行うことが重要となる。
 しかしながら、インピーダンス整合を行う観点から信号用プローブ2Aの形状等を変化させることは容易ではない。信号用プローブ2Aは、その外径が1mm以下に抑制されるとともに第1プランジャ21、第2プランジャ22およびバネ部材23によって構成される複雑な形状を有する等の制限が本来的に与えられることから、インピーダンス整合に適した形状に変更することは設計上および製造上の観点から困難となるためである。
 従って、本実施の形態では、信号用プローブ2Aの構造を変更するのではなく、第1プランジャ21、第2プランジャ22およびバネ部材23の周囲にスルーホール37を配置することによって特性インピーダンスの値を調整する構成を採用している。かかる構成を採用することで、信号用プローブ2Aの構造については従来のものを流用することが可能となる。例えば、信号用プローブ2Aとして従来のグランド用プローブ2Bと同じプローブを用いることができる。
 また、本実施の形態では、信号用プローブ2Aをインピーダンス整合に適した形状に変更しなくてもよいため、使用するプローブ形状の自由度を向上することができる。
 さらに、本実施の形態1では、信号用プローブ2Aの周囲に、プローブホルダ3における信号用プローブ2Aの先端側の表面から基端側の表面に亘るスルーホール37を設けるによって、信号用プローブ2Aの先端部および基端部の特性インピーダンスの値を調整することができる。具体的には、スルーホールの配設数や、スルーホールの貫通孔の径、スルーホールの配置(信号用プローブ2Aに対する距離)を調整することによって、特性インピーダンスの値を調整することができる。さらに、信号用プローブ2Aを、複数のスルーホール37で取り囲むことによって、ノイズ等の外部要因による影響を受けにくくすることができるとともに、外部へのエネルギ流出によるエネルギ損失を低減できる。
 上述した実施の形態1では、信号用プローブ2Aの周囲にスルーホール37を配置し、外部のグランドとはグランド用プローブ2Bを介して接続するようにした。本実施の形態1によれば、外部のグランドと間接的に接続したスルーホール37によって、信号用プローブ2Aの先端部および基端部の特性インピーダンスを調整することができる。本実施の形態1によれば、信号用プローブ2Aの端部を含む全体的な特性インピーダンスの調整を行うことができる。また、本実施の形態1によれば、スルーホールの位置を調整することによって、信号用プローブ2Aに対する、軸線方向と直交する方向のグランド位置を調整することができる。
 また、上述した実施の形態1によれば、プローブホルダ3の外表面が導電性皮膜によって覆われているため、メッキ処理を施していない場合と比して、高周波特性に優れる。
 また、上述した実施の形態1によれば、スルーホールによって特性インピーダンスを調整できるため、グランド用プローブ2Bの配置の自由度を向上することができる。
 なお、上述した実施の形態1において、第1導電性皮膜33a、34aが外部のグランドと接続する構成としてもよい。
 また、上述した実施の形態1では、複数のスルーホールを、信号用プローブの軸NPに対して対称性を有して配置される例について説明したが、非対称な配置としてもよい。
 また、上述した実施の形態1では、一つの信号用プローブに対して、複数のスルーホールが均等に配置される例について説明したが、非均等にスルーホールが配置されるようにしてもよい。この際、非均等とは、信号用プローブの軸NP上の一点を中心とする円の周方向の距離が異なる点で非均等であってもよいし、軸NPからの最短距離(上述した距離d1)が互いに異なる点で非均等であってもよいし、その両方であってもよい。
 また、上述した実施の形態1では、プローブホルダ3の各部材に導電性の皮膜を形成する例について説明したが、皮膜に代えて、部材の厚さと比して十分薄い導電性のプレートや、シート、フィルムなどを用いてもよい。
 また、上述した実施の形態1では、中空部35の表面に第2導電性皮膜31b~34bを形成して、導電性の貫通孔を形成するものとして説明したが、第2導電性皮膜を形成せずに、絶縁性の内周面としてもよい。
(変形例1)
 図4は、本発明の実施の形態1の変形例1にかかるプローブユニットのスルーホールの配置を説明する図である。変形例1にかかるプローブユニットは、上述したプローブホルダ3における一部のスルーホールの大きさが異なる。そのほかの構成についてはプローブユニット1と同じ構成であるため、説明を省略する。
 変形例1にかかるプローブホルダには、信号用プローブ2Aの周囲に六個のスルーホール37と、二個のスルーホール37Aとが形成される。図4では、三組のスルーホール37が軸NPを介してそれぞれ対向して配置されるとともに、スルーホール37Aが軸NPを介して対向して配置される例を示している。
 スルーホール37Aは、第1部材31~第4部材34に形成される貫通孔の互いの軸線を一致させて形成される。スルーホール37Aは、円柱状の中空空間を形成する。スルーホール37Aは、貫通方向と直交する方向の開口の形状が円をなす。スルーホール37Aは、内周面に導電性皮膜(例えば、上述した第1導電性皮膜31a~34a)が形成されており、内周面が導電性を有する。スルーホール37Aの貫通孔の径は、スルーホール37の貫通孔の径よりも大きい。
 スルーホール37、37Aは、各貫通孔の中心が、信号用プローブ2Aの軸NPを中心とする円(図4の破線)を通過する位置に配置される。また、スルーホール37Aと軸NPとの間の最短距離d2は、スルーホール37と軸NPとの間の最短距離d1よりも短い。
 本変形例1のように、信号用プローブ2Aの周囲に、互いに大きさが異なるスルーホール37、37Aを配置し、外部のグランドとはグランド用プローブ2Bを介して接続するようにした。変形例1においても、実施の形態1と同様に、外部のグランドと間接的に接続したスルーホール37、37Aによって、信号用プローブ2Aの先端部および基端部の特性インピーダンスを調整することができる。
(変形例2)
 図5は、本発明の実施の形態1の変形例2にかかるプローブユニットのスルーホールの配置を説明する図である。変形例2にかかるプローブユニットは、上述したプローブホルダ3における一部のスルーホールの大きさ、配置が異なる。そのほかの構成についてはプローブユニット1と同じ構成であるため、説明を省略する。
 変形例2にかかるプローブホルダには、信号用プローブ2Aの周囲に六個のスルーホール37と、二個のスルーホール37Aとが形成される。図5では、三組のスルーホール37が軸NPを介してそれぞれ対向して配置されるとともに、スルーホール37Aが軸NPを介して対向して配置される例を示している。
 スルーホール37、37Aは、スルーホール37と軸NPとの間の最短距離、およびスルーホール37Aと軸NPとの間の最短距離が、同じ距離d1となる位置に配置される。
 本変形例2のように、信号用プローブ2Aの周囲に、互いに大きさが異なるスルーホール37、37Aを配置し、外部のグランドとはグランド用プローブ2Bを介して接続するようにした。変形例2においても、実施の形態1と同様に、外部のグランドと間接的に接続したスルーホール37、37Aによって、信号用プローブ2Aの先端部および基端部の特性インピーダンスを調整することができる。
(変形例3)
 図6は、本発明の実施の形態1の変形例3にかかるプローブユニットのスルーホールの配置を説明する図である。変形例3にかかるプローブユニットは、上述したプローブホルダ3における一部のスルーホールの大きさ、配置が異なる。そのほかの構成についてはプローブユニット1と同じ構成であるため、説明を省略する。
 変形例3にかかるプローブホルダには、信号用プローブ2Aの周囲に八個のスルーホール37Bが形成される。図6では、四組のスルーホール37Bが軸NPを介してそれぞれ対向して配置される例を示している。
 スルーホール37Bは、貫通方向からみた開口の形状が長穴形状をなす。スルーホール37Bは、各貫通孔の重心が、信号用プローブ2Aの軸NPを中心とする円(図6の破線)を通過する位置に配置される。スルーホール37Bにおいても、内周面に導電性皮膜(例えば、上述した第1導電性皮膜31a~34a)が形成され、内周面が導電性を有する。
 本変形例3のように、信号用プローブ2Aの周囲に複数のスルーホール37Bを配置し、外部のグランドとはグランド用プローブ2Bを介して接続するようにした。変形例3においても、実施の形態1と同様に、外部のグランドと間接的に接続したスルーホール37Bによって、信号用プローブ2Aの先端部および基端部の特性インピーダンスを調整することができる。
 また、変形例3では、スルーホール37Bの貫通孔の開口形状を長穴としているため、スルーホール37、37Aと比して、スルーホール37Bによって信号用プローブ2Aを取り囲む範囲を大きくしている。このように、スルーホールの形状を円以外の形状とすることによって、特性インピーダンス調整の自由度が高まり、その結果、プローブユニットの高周波特性を向上させることができる。また、取り囲む範囲を大きくすることによって、外部へのエネルギ流出によるエネルギ損失をより低減できる。
(変形例4)
 図7は、本発明の実施の形態1の変形例4にかかるプローブユニットのスルーホールの要部の構成を説明する断面図である。変形例4にかかるプローブユニットは、上述したプローブホルダ3におけるスルーホールの形状が異なる。そのほかの構成についてはプローブユニット1と同じ構成であるため、説明を省略する。
 変形例4にかかるスルーホールは、第1部材31~第4部材34に形成される貫通孔を互いに連通させて形成される。スルーホールは、内周面に導電性皮膜(例えば、上述した第1導電性皮膜31a~34a)が形成されており、導電性の内周面が形成される。スルーホールは、部分的に径が異なる。具体的に、例えば、第3部材33に形成される貫通孔37aの径Q1と、第1部材31に形成される貫通孔37bの径Q2とが異なる。貫通孔37aの中心軸N1と、貫通孔37bの中心軸N2とは、直線状に連なる。
 本変形例4のように、信号用プローブ2Aの周囲に、段付きの孔形状をなすスルーホールを配置し、外部のグランドとはグランド用プローブ2Bを介して接続することによって、実施の形態1と同様の効果を得ることができるとともに、信号用プローブ2Aの形状に応じた特性インピーダンス調整を行うことができる。
(変形例5)
 図8は、本発明の実施の形態1の変形例5にかかるプローブユニットのスルーホールの要部の構成を説明する断面図である。変形例5にかかるプローブユニットは、上述したプローブホルダ3におけるスルーホールの形状が異なる。そのほかの構成についてはプローブユニット1と同じ構成であるため、説明を省略する。
 変形例5にかかるスルーホールは、第1部材31~第4部材34に形成される貫通孔を互いに連通させて形成される。スルーホールは、内周面に導電性皮膜(例えば、上述した第1導電性皮膜31a~34a)が形成されており、導電性の内周面が形成される。スルーホールは、部分的に軸の位置が異なる。具体的に、例えば、第3部材33に形成される貫通孔37cの中心軸N1と、第1部材31に形成される貫通孔37dの中心軸N2とは、位置が異なる。また、貫通孔37cの径Q3と、貫通孔37dの径Q4とは、同じ径である。このように、変形例5にかかるスルーホールは、中心軸の位置が部分的に異なる貫通孔によって形成される。この際、スルーホールを第1部材31~第4部材34の積層方向からみたときに、部材の積層方向で隣り合う部材に形成される貫通孔の少なくとも一部が互いに重なる。スルーホールは、各部材に形成される貫通孔同士が、少なくとも一部で連通することによって形成される。
 本変形例5のように、信号用プローブ2Aの周囲に、一部の貫通孔の軸がずれた段付きの孔形状をなすスルーホールを配置し、外部のグランドとはグランド用プローブ2Bを介して接続することによって、実施の形態1と同様の効果を得ることができるとともに、信号用プローブ2Aの形状に応じた特性インピーダンス調整を行うことができる。
(変形例6)
 図9は、本発明の実施の形態1の変形例6にかかるプローブユニットのスルーホールの要部の構成を説明する断面図である。変形例6にかかるプローブユニットは、上述したプローブホルダ3におけるスルーホールの形状が異なる。そのほかの構成についてはプローブユニット1と同じ構成であるため、説明を省略する。
 変形例6にかかるスルーホールは、第1部材31~第4部材34に形成される貫通孔を互いに連通させて形成される。スルーホールは、内周面に導電性皮膜(例えば、上述した第1導電性皮膜31a~34a)が形成されており、導電性の内周面が形成される。スルーホールは、径と、軸の位置とが部分的に異なる。具体的に、例えば、第3部材33に形成される貫通孔37eの径Q5と、第1部材31に形成される貫通孔37fの径Q6とが異なる。また、貫通孔37eの中心軸N1と、貫通孔37fの中心軸N2とは、位置が異なる。
 本変形例6のように、信号用プローブ2Aの周囲に、一部の貫通孔の径が異なり、さらに軸がずれた段付きの孔形状をなすスルーホールを配置し、外部のグランドとはグランド用プローブ2Bを介して接続することによって、実施の形態1と同様の効果を得ることができるとともに、信号用プローブ2Aの形状に応じた特性インピーダンス調整を行うことができる。
 変形例1~6にかかるスルーホールの構成を、適宜組み合わせて構成してもよい。例えば、同一のプローブホルダに配設される各信号用プローブに対し、少なくとも一部の形状や配置が異なるようにしてもよい。
(実施の形態2)
 次に、実施の形態2について図10を参照して説明する。図10は、本発明の実施の形態2にかかるプローブユニットの要部の構成を示す部分断面図である。実施の形態2にかかるプローブユニットは、上述したプローブホルダ3に代えてプローブホルダ3Aを備える。そのほかの構成についてはプローブユニット1と同じ構成であるため、説明を省略する。
 プローブホルダ3Aは、樹脂、マシナブルセラミック、シリコンなどの絶縁性材料を用いて形成される一枚の部材からなる。プローブホルダ3Aには、複数の信号用プローブ2Aを収容する空間を形成する中空部35と、複数のグランド用プローブ2Bを収容する空間を形成する中空部(上述した中空部36)とが形成される。中空部35、36は、コンタクトプローブを抜き差し可能、かつ抜け止め可能な径の孔形状をなす。また、プローブホルダ3Aには、信号用プローブ2Aの周囲に複数のスルーホール38が形成される。
 プローブホルダ3Aには、当該プローブホルダ3Aの表面に、メッキ処理が施される。メッキ処理には、導電性の材料が用いられる。このため、プローブホルダ3Aの表面には、第1導電性皮膜3aおよび第2導電性皮膜3bが形成される。なお、第1導電性皮膜3aは、スルーホール38の形成部分を含む、中空部35以外の表面に形成される。また、第2導電性皮膜3bは、中空部35の形成部分の表面に形成される。第1導電性皮膜3aと第2導電性皮膜3bとは、互いに離間しており、絶縁が確保される。
 スルーホール38は、貫通方向と直交する方向の開口の形状が円をなし、部分的に径が異なる貫通孔である。具体的に、スルーホール38は、一方の表面側(図10では第1プランジャ21が延出する側)に形成される第1孔部38aと、他方の表面側(図10では第2プランジャ22が延出する側)に形成される第2孔部38bと、第1孔部38aと第2孔部38bとの間に設けられる第3孔部38cとを有する。第1孔部38aおよび第2孔部38bの開口の径は、第3孔部38cの開口の径よりも大きい。スルーホール38は、内周面に第1導電性皮膜3aが形成されており、導電性の内周面が形成される。なお、第1孔部38a、第2孔部38bおよび第3孔部38cの各中心軸は、直線状に連なる。
 スルーホール38は、径が部分的に異なる段付きをなす円柱状の中空空間を形成し、信号用プローブ2Aの周囲に複数個形成される。スルーホール38は、例えば、実施の形態1と同様に、一つの信号用プローブ2Aの周囲に、八個形成される。
 上述した実施の形態2では、信号用プローブ2Aの周囲にスルーホール38を配置し、外部のグランドとはグランド用プローブ2Bを介して接続するようにした。これにより、本実施の形態2によれば、外部のグランドと間接的に接続したスルーホール38によって、信号用プローブ2Aの先端部および基端部の特性インピーダンスを調整することができる。本実施の形態2によれば、信号用プローブ2Aの端部を含む全体的な特性インピーダンスの調整を行うことができる。また、本実施の形態2によれば、スルーホールの位置を調整することによって、信号用プローブ2Aに対する、軸線方向と直交する方向のグランド位置を調整することができる。
 また、実施の形態2では、スルーホール38の貫通孔の径が部分的に異なるようにしたため、信号用プローブ2Aの形状に応じた特性インピーダンス調整を行うことができる。
(実施の形態3)
 次に、実施の形態3について図11を参照して説明する。図11は、本発明の実施の形態3にかかるプローブユニットの要部の構成を示す部分断面図である。実施の形態3にかかるプローブユニットは、上述したプローブホルダ3に代えてプローブホルダ4を備える。そのほかの構成についてはプローブユニット1と同じ構成であるため、説明を省略する。
 プローブホルダ4は、樹脂、マシナブルセラミック、シリコンなどの絶縁性材料を用いて形成される第1部材41、第2部材42を積層してなる。図11に示すプローブホルダ4は、図の上側から、第1部材41、第2部材42の順に積層される。第1部材41と第2部材42とは、ネジ止めや接着等の公知の方法によって固定される。
 プローブホルダ4には、複数の信号用プローブ2Aを収容する空間を形成する中空部35と、複数のグランド用プローブ2Bを収容する空間を形成する中空部(図示せず)とが形成される。また、プローブホルダ4には、信号用プローブ2Aの周囲に複数のスルーホール43が形成される。
 第1部材41には、該第1部材41の表面をなす面に、メッキ処理が施される。メッキ処理には、導電性の材料が用いられる。このため、第1部材41の表面には、第1導電性皮膜41aおよび第2導電性皮膜41bが形成される。なお、第1導電性皮膜41aは、スルーホール43の形成部分を含む、中空部35以外の表面に形成される。また、第2導電性皮膜41bは、中空部35の形成部分の表面に形成される。第1導電性皮膜41aと第2導電性皮膜41bとは、互いに離間しており、絶縁が確保される。
 第2部材42には、第1部材41と同様に、第2部材42の表面をなす面に、メッキ処理が施される。第2部材42の表面には、第1導電性皮膜42aおよび第2導電性皮膜42bが形成される。なお、第1導電性皮膜42aは、スルーホール43の形成部分を含む、中空部35以外の表面に形成される。また、第2導電性皮膜42bは、中空部35の形成部分の表面に形成される。第1導電性皮膜42aと第2導電性皮膜42bとは、互いに離間しており、絶縁が確保される。
 このため、第1部材41および第2部材42を積層してなるプローブホルダ4では、各部材間の境界、及び外表面において、導電性皮膜が存在する。
 中空部35は、第1部材41および第2部材42に形成される貫通孔の互いの軸線を一致させて形成される。中空部35は、内周面に第2導電性皮膜41b、42bが形成されており、導電性の内周面が形成される。
 スルーホール43は、貫通方向と直交する方向の開口の形状が円をなし、中心軸の位置が部分的に異なる段付き形状をなす貫通孔である。具体的に、スルーホール43は、プローブホルダ4の一方の表面側(図11では第1プランジャ21が延出する側)に形成される第1孔部43aと、他方の表面側(図11では第2プランジャ22が延出する側)に形成される第2孔部43bと、第1孔部43aと第2孔部43bとの間に設けられる第3孔部43cとを有する。第1孔部43a、第2孔部43bおよび第3孔部43cの開口の径は、互いに同じである。また、第1孔部43a、第2孔部43bの中心軸NT1、NT2と、第3孔部43cの中心軸NT3とは、隣接する孔部同士が連通する範囲で互いに位置が異なる。スルーホール43は、内周面に第1導電性皮膜41a、42aが形成されており、導電性の内周面が形成される。
 スルーホール43は、段付きをなす円柱状の中空空間を形成し、信号用プローブ2Aの周囲に複数個形成される。スルーホール43は、例えば、実施の形態1と同様に、一つの信号用プローブ2Aの周囲に、八個のスルーホール43が形成される。
 上述した実施の形態3では、信号用プローブ2Aの周囲にスルーホール43を配置し、外部のグランドとはグランド用プローブ2Bを介して接続するようにした。これにより、本実施の形態3によれば、外部のグランドと間接的に接続したスルーホール43によって、信号用プローブ2Aの先端部および基端部の特性インピーダンスを調整することができる。本実施の形態3によれば、信号用プローブ2Aの端部を含む全体的な特性インピーダンスの調整を行うことができる。また、本実施の形態3によれば、スルーホールの位置を調整することによって、信号用プローブ2Aに対する、軸線方向と直交する方向のグランド位置を調整することができる。
 また、実施の形態3では、スルーホール43の各貫通孔において中心軸の位置が部分的に異なるようにしたため、信号用プローブ2Aの形状に応じた特性インピーダンス調整を行うことができる。
 以上説明した実施の形態1~3およびその変形例は、適宜組み合わせることが可能である。また、コンタクトプローブごとに、その構成を実施の形態および変形例1~3のスルーホールの配置または形状から個別に選択して採用することも可能である。
 なお、ここで説明したコンタクトプローブの構成はあくまでも一例に過ぎず、従来知られているさまざまな種類のプローブを適用することが可能である。例えば、上述したようなプランジャとコイルばねとで構成されるものに限らず、パイプ部材を備えるプローブ、ポゴピン、中実の導電性部材、導電性のパイプ、またはワイヤを弓状に撓ませて荷重を得るワイヤープローブや、電気接点同士を接続する接続端子(コネクタ)でもよいし、これらのプローブを適宜組み合わせてもよい。
 また、上述した実施の形態1~3およびその変形例にかかるプローブホルダは、四つまたは二つの部材を積層して構成するものや、一つの部材によって構成される例を挙げたが、三つの部材や、五つ以上の部材を積層して構成してもよい。
 また、上述した実施の形態1~3およびその変形例において、導電性皮膜は、スルーホールおよびグランド用プローブ2Bを電気的に接続できれば、プローブホルダ3の部材表面全体に形成せずに、部分的にパターン形成されるものであってもよい。例えば、導電性皮膜を、スルーホールを構成する部分と、スルーホールの開口端を構成する部材(例えば図1に示す第3部材33および第4部材34)の外表面とに形成する構成としてもよい。この際、導電性皮膜は、少なくとも検査時にグランド用プローブ2Bと電気的に接続する。
 このように、本発明はここでは記載していない様々な実施の形態等を含みうるものであり、請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。
 以上のように、本発明にかかるプローブユニットは、コンタクトプローブ全体の特性インピーダンスを調整するのに適している。
 1 プローブユニット
 2A コンタクトプローブ(信号用プローブ)
 2B コンタクトプローブ(グランド用プローブ)
 3、3A、3B プローブホルダ
 3a、31a~34a、41a、42a 第1導電性皮膜
 3b、31b~34b、41b、42b 第2導電性皮膜
 21 第1プランジャ
 22 第2プランジャ
 23 バネ部材
 23a 密着巻き部
 23b 粗巻き部
 31、41 第1部材
 32、42 第2部材
 33 第3部材
 34 第4部材
 35、36 中空部
 37、37A、37B、38、43 スルーホール
 100 半導体集積回路
 101、102、201、202 電極
 200 回路基板

Claims (10)

  1.  長手方向の一方の端部側で接触対象の電極とそれぞれ接触する複数の第1のコンタクトプローブと、
     外部のグランドに接続する第2のコンタクトプローブと、
     前記第1および第2のコンタクトプローブを保持するプローブホルダと、
     を備え、
     前記プローブホルダには、
     前記第1のコンタクトプローブを挿通して保持する第1の中空部と、
     前記第2のコンタクトプローブを挿通して保持する第2の中空部と、
     前記第1の中空部の周囲に設けられるスルーホールと、
     が形成され、
     前記プローブホルダは、前記スルーホールを構成するとともに、該スルーホールと前記第2のコンタクトプローブとを電気的に接続する導電部を有する、
     ことを特徴とするプローブユニット。
  2.  前記導電部は、前記スルーホールと、該スルーホールの開口端を形成する表面とに設けられる、
     ことを特徴とする請求項1に記載のプローブユニット。
  3.  前記スルーホールは、径が部分的に異なる段付きの孔形状をなす、
     ことを特徴とする請求項1または2に記載のプローブユニット。
  4.  前記スルーホールは、中心軸の位置が互いに異なる段付きの孔形状をなす、
     ことを特徴とする請求項1~3のいずれか一つに記載のプローブユニット。
  5.  前記プローブホルダは、一つの部材からなる、
     ことを特徴とする請求項1~4のいずれか一つに記載のプローブユニット。
  6.  前記プローブホルダは、複数の部材を、前記第1の中空部の貫通方向に積層してなる、
     ことを特徴とする請求項1~4のいずれか一つに記載のプローブユニット。
  7.  前記スルーホールは、前記複数の部材にそれぞれ形成される貫通孔によって形成され、
     少なくとも一つの部材において、前記貫通孔の径が部分的に異なる段付きの孔形状をなす、
     ことを特徴とする請求項6に記載のプローブユニット。
  8.  前記スルーホールは、前記複数の部材にそれぞれ形成される貫通孔によって形成され、
     少なくとも一つの部材において、前記貫通孔の中心軸の位置が互いに異なる段付きの孔形状をなす、
     ことを特徴とする請求項6または7に記載のプローブユニット。
  9.  前記複数の部材には、前記スルーホールを構成する貫通孔がそれぞれ形成され、
     前記スルーホールは、前記部材の積層方向で隣り合う部材に形成される貫通孔の少なくとも一部が、当該貫通孔の貫通方向からみて互いに重なる、
     ことを特徴とする請求項6に記載のプローブユニット。
  10.  前記スルーホールは、貫通方向からみた開口の形状が、長穴形状をなす、
     ことを特徴とする請求項1~9のいずれか一つに記載のプローブユニット。
PCT/JP2021/010922 2020-03-24 2021-03-17 プローブユニット WO2021193304A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/911,827 US20230138105A1 (en) 2020-03-24 2021-03-17 Probe unit
JP2022510012A JPWO2021193304A1 (ja) 2020-03-24 2021-03-17
CN202180022852.9A CN115335708A (zh) 2020-03-24 2021-03-17 探针单元
KR1020227030337A KR20220136403A (ko) 2020-03-24 2021-03-17 프로브 유닛

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020053388 2020-03-24
JP2020-053388 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021193304A1 true WO2021193304A1 (ja) 2021-09-30

Family

ID=77890268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010922 WO2021193304A1 (ja) 2020-03-24 2021-03-17 プローブユニット

Country Status (6)

Country Link
US (1) US20230138105A1 (ja)
JP (1) JPWO2021193304A1 (ja)
KR (1) KR20220136403A (ja)
CN (1) CN115335708A (ja)
TW (1) TWI778549B (ja)
WO (1) WO2021193304A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507479A (ja) * 2002-06-24 2006-03-02 ナノネクサス インク ウエハレベルのスプリングを有するプローブカードアセンブリおよびパッケージの構造および製造工程
JP2010175371A (ja) * 2009-01-29 2010-08-12 Yokowo Co Ltd 検査ソケット
WO2018230627A1 (ja) * 2017-06-14 2018-12-20 日本発條株式会社 導電性接触子ユニット
WO2019022204A1 (ja) * 2017-07-28 2019-01-31 日本発條株式会社 コンタクトプローブおよびプローブユニット
US20190317129A1 (en) * 2018-04-13 2019-10-17 C.C.P. Contact Probes Co., Ltd. Insulator applied in a probe base and the probe base
WO2020111076A1 (ja) * 2018-11-27 2020-06-04 日本発條株式会社 プローブユニット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012098219A (ja) 2010-11-04 2012-05-24 Yamaichi Electronics Co Ltd 半導体装置用ソケット
JP6520179B2 (ja) * 2015-02-13 2019-05-29 日本電産リード株式会社 中継コネクタ、及び基板検査装置
JP6774590B1 (ja) * 2018-11-27 2020-10-28 日本発條株式会社 プローブユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006507479A (ja) * 2002-06-24 2006-03-02 ナノネクサス インク ウエハレベルのスプリングを有するプローブカードアセンブリおよびパッケージの構造および製造工程
JP2010175371A (ja) * 2009-01-29 2010-08-12 Yokowo Co Ltd 検査ソケット
WO2018230627A1 (ja) * 2017-06-14 2018-12-20 日本発條株式会社 導電性接触子ユニット
WO2019022204A1 (ja) * 2017-07-28 2019-01-31 日本発條株式会社 コンタクトプローブおよびプローブユニット
US20190317129A1 (en) * 2018-04-13 2019-10-17 C.C.P. Contact Probes Co., Ltd. Insulator applied in a probe base and the probe base
WO2020111076A1 (ja) * 2018-11-27 2020-06-04 日本発條株式会社 プローブユニット

Also Published As

Publication number Publication date
US20230138105A1 (en) 2023-05-04
CN115335708A (zh) 2022-11-11
JPWO2021193304A1 (ja) 2021-09-30
KR20220136403A (ko) 2022-10-07
TW202136789A (zh) 2021-10-01
TWI778549B (zh) 2022-09-21

Similar Documents

Publication Publication Date Title
JP4242199B2 (ja) Icソケット
JP6663084B2 (ja) プローブユニット
JP4689196B2 (ja) 導電性接触子ホルダ、導電性接触子ユニット
JP5607934B2 (ja) プローブユニット
WO2009107747A1 (ja) 配線基板およびプローブカード
JP6756946B1 (ja) プローブユニット
KR20020020980A (ko) 기판 검사용 검사 지그 및 그 검사 지그를 구비한기판검사장치
JP2010197402A (ja) 導電性接触子ホルダ、導電性接触子ユニット
TWI383153B (zh) 導電性觸頭及導電性觸頭單元
KR0161610B1 (ko) 반도체특성 측정용 지그와 그 제조방법 및 그 사용방법
WO2018230627A1 (ja) 導電性接触子ユニット
WO2021193304A1 (ja) プローブユニット
TWI722680B (zh) 探針單元
WO2010117080A1 (ja) プローブホルダおよびプローブユニット
JP2023160764A (ja) プローブデバイス
JPH1197846A (ja) 配線基盤及びこれを用いた配線装置
JPH10335763A (ja) 回路基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510012

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227030337

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776530

Country of ref document: EP

Kind code of ref document: A1