WO2009107747A1 - 配線基板およびプローブカード - Google Patents

配線基板およびプローブカード Download PDF

Info

Publication number
WO2009107747A1
WO2009107747A1 PCT/JP2009/053602 JP2009053602W WO2009107747A1 WO 2009107747 A1 WO2009107747 A1 WO 2009107747A1 JP 2009053602 W JP2009053602 W JP 2009053602W WO 2009107747 A1 WO2009107747 A1 WO 2009107747A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
wiring
ceramic substrate
probe
thin film
Prior art date
Application number
PCT/JP2009/053602
Other languages
English (en)
French (fr)
Inventor
風間 俊男
浩志 中山
真也 宮地
恒平 鈴木
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2010500750A priority Critical patent/JPWO2009107747A1/ja
Priority to EP09714184.0A priority patent/EP2249167A4/en
Priority to KR1020107019053A priority patent/KR101232691B1/ko
Priority to CN200980105563.4A priority patent/CN101946183B/zh
Priority to US12/735,929 priority patent/US8378705B2/en
Publication of WO2009107747A1 publication Critical patent/WO2009107747A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • H05K3/4605Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated made from inorganic insulating material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/467Adding a circuit layer by thin film methods

Definitions

  • the present invention relates to a wiring board and a probe card that includes the wiring board and is used for electrical characteristic inspection of a semiconductor wafer.
  • wafer level test In the semiconductor inspection process, electrical property inspection is performed by contacting a conductive probe in the state of the semiconductor wafer before dicing, and defective products are detected (wafer level test).
  • a probe card containing a large number of probes is used to transmit inspection signals to the semiconductor wafer.
  • the probe In the wafer level test, the probe is contacted individually for each die while scanning the die on the semiconductor wafer with a probe card.
  • hundreds to tens of thousands of dies are formed on the semiconductor wafer, so one semiconductor It took a considerable amount of time to test the wafer, increasing the number of dies and increasing the cost.
  • FIG. 16 is a diagram schematically showing a configuration example of a probe card applied in the above-described full wafer level test.
  • a probe card 401 shown in FIG. 1 includes a probe head 403 that accommodates a plurality of probes 402 provided corresponding to the arrangement pattern of electrodes on a semiconductor wafer, and a space for converting the interval between fine wiring patterns in the probe head 403.
  • a transformer 404 an interposer 405 that relays the wiring w from the space transformer 404, a leaf spring 406 that holds the probe head, a wiring board 407 that connects the wiring w relayed by the interposer 405 to the inspection device, and a wiring board
  • the connector 408 is provided on the side of the inspection apparatus that generates the inspection signal, and the reinforcing member 409 reinforces the wiring board 407.
  • the thermal expansion coefficient (3.4 ⁇ 10 ⁇ 6 / ° C.) of a semiconductor wafer containing silicon as a main component is equal to the thermal expansion coefficient (12 ⁇ 10 ⁇ 6 of a wiring board containing a resin such as glass epoxy or polyimide as a main component. Remarkably smaller than ⁇ 17 ⁇ 10 ⁇ 6 / ° C.).
  • the conventional probe card by applying a material having a thermal expansion coefficient larger than the thermal expansion coefficient of the semiconductor wafer and smaller than the thermal expansion coefficient of the wiring board as the material of the space transformer, The difference between the expansion coefficient and the thermal expansion coefficient of the wiring board is alleviated, and the positional deviation between the tip of the probe and the electrode of the semiconductor wafer when performing electrical characteristic inspection in a wide temperature environment (about 25 to 125 ° C). Is prevented from occurring.
  • the space transformer takes time to manufacture because the internal wiring is formed, and it has to be expensive because it needs to be stacked several times.
  • a wiring board that can constitute a probe card without using a space transformer wiring with a fine pitch of about 100 ⁇ m is possible, and has a thermal expansion coefficient close to that of silicon. A wiring board was long-awaited.
  • the present invention has been made in view of the above, and provides a wiring board capable of fine pitch wiring and having a thermal expansion coefficient close to that of silicon, and a probe card including the wiring board.
  • the purpose is to do.
  • a wiring board according to the present invention includes a ceramic substrate having a thermal expansion coefficient of 3.0 ⁇ 10 ⁇ 6 to 5.0 ⁇ 10 ⁇ 6 / ° C., One or a plurality of thin film wiring sheets laminated on one surface of the ceramic substrate.
  • the wiring board according to the present invention is characterized in that, in the above invention, the ceramic substrate has a through hole penetrating in the thickness direction.
  • the wiring board according to the present invention is characterized in that, in the above-mentioned invention, a plurality of zero insertion force type connectors each electrically connected to the thin film wiring sheet are further provided.
  • the wiring board according to the present invention is characterized in that, in the above invention, the wiring board further comprises one or more metals laminated on the other surface of the ceramic substrate and having a smaller thermal expansion coefficient than the ceramic substrate.
  • the wiring board according to the present invention is characterized in that, in the above-described invention, the wiring board further includes a thin film multilayer wiring sheet laminated on the other surface of the ceramic substrate.
  • the probe card according to the present invention electrically connects a semiconductor wafer and a circuit structure that generates a signal to be output to the semiconductor wafer by using a conductive probe that can expand and contract along the longitudinal direction.
  • a probe card wherein the wiring board according to any one of the above inventions and a plurality of the probes are arranged in correspondence with the wiring of the thin film wiring sheet, and the both ends of each probe are exposed separately. And a probe head laminated on the wiring board in a state where one end of each probe is in contact with the thin film wiring sheet.
  • a ceramic substrate having a thermal expansion coefficient of 3.0 ⁇ 10 ⁇ 6 to 5.0 ⁇ 10 ⁇ 6 / ° C. and one or more thin film wirings laminated on one surface of the ceramic substrate Therefore, a wiring board having a thermal expansion coefficient close to that of silicon and a probe card including the wiring board can be provided.
  • FIG. 1 is a plan view showing a configuration of a probe card according to Embodiment 1 of the present invention.
  • 2 is a plan view in the direction of arrow A in FIG.
  • FIG. 3 is a diagram illustrating a configuration of each main part of the probe, the probe head, and the wiring board.
  • FIG. 4 is a diagram showing another configuration example of the main part of the wiring board.
  • FIG. 5 is a diagram showing a configuration of a probe card according to a modification of the first embodiment.
  • FIG. 6 is a diagram showing a configuration of a main part of a probe card according to a modification of the first embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration of a probe card according to another modification of the first embodiment of the present invention.
  • FIG. 1 is a plan view showing a configuration of a probe card according to Embodiment 1 of the present invention.
  • 2 is a plan view in the direction of arrow A in FIG.
  • FIG. 3 is a diagram
  • FIG. 8 is a diagram showing a configuration of a probe card according to Embodiment 2 of the present invention.
  • FIG. 9 is a plan view in the direction of arrow B in FIG.
  • FIG. 10 is a diagram showing the configuration of the main part of the probe card according to Embodiment 2 of the present invention.
  • FIG. 11 is a diagram showing a configuration of a ZIF type connector provided in the probe card according to Embodiment 2 of the present invention.
  • FIG. 12 is a plan view showing a configuration of a probe card according to Embodiment 3 of the present invention.
  • FIG. 13 is a diagram showing a configuration of a ZIF type connector provided in the probe card according to Embodiment 3 of the present invention.
  • FIG. 14 is a diagram showing a configuration of a main part of a wiring board according to another embodiment of the present invention.
  • FIG. 15 is a diagram showing a configuration of a main part of a wiring board according to still another embodiment of the present invention.
  • FIG. 16 is a diagram showing a configuration of a conventional probe card.
  • FIG. 1 is a plan view showing a configuration of a probe card according to Embodiment 1 of the present invention related to Embodiment 1 of the present invention.
  • 2 is a plan view in the direction of arrow A in FIG.
  • a probe card 1 shown in these drawings is accommodated in a plurality of conductive probes 2 arranged corresponding to a test object, a disk-shaped probe head 3 accommodating the plurality of probes 2, and the probe head 3.
  • a wiring board 4 having a wiring pattern corresponding to the arrangement pattern of the probes 2 and having a disk shape larger in diameter than the probe head 3, a leaf spring 5 fixed to the wiring board 4 and holding the probe head 3, A connector 6 provided on the surface opposite to the surface on which the probe head 3 is laminated among the surfaces of the wiring board 4 and intended to connect to an inspection apparatus having a circuit structure for generating an inspection signal; and the wiring board 4 And a reinforcing member 7 for reinforcing the wiring board 4 to prevent deformation.
  • FIG. 3 shows the configuration of the probe 2 and the configuration of the main parts of the probe head 3 and the wiring board 4.
  • the probe 2 is provided between the plunger 21 and the plunger 21 whose tip is in contact with the wiring substrate 4, the plunger 22 that protrudes in a direction opposite to the plunger 21 and that contacts the electrode 101 of the semiconductor wafer 100 to be inspected.
  • a coil spring 23 that connects the plungers 21 and 22 in a telescopic manner.
  • the plungers 21 and 22 and the coil spring 23 connected to each other have the same axis.
  • the plunger 21 is provided at a distal end portion 21a having a sharp end, a boss portion 21b having a diameter smaller than the diameter of the distal end portion 21a, and a distal end portion 21a of the surface of the boss portion 21b. And a shaft portion 21c extending from the opposite surface.
  • the plunger 22 includes a distal end portion 22a having a sharp end, a flange portion 22b having a diameter larger than the diameter of the distal end portion 22a, and a distal end portion from the surface of the flange portion 22b. It has a boss portion 22c that protrudes in a direction opposite to 22a and has a diameter smaller than the diameter of the flange portion 22b.
  • the side attached to the plunger 21 is the rough winding part 23a
  • the side attached to the plunger 22 is the contact
  • the end of the coarsely wound portion 23a is press-fitted into the boss portion 21b, while the end of the tightly wound portion 23b is press-fitted into the boss portion 22c.
  • the probe 2 has the coil spring 23 curved and at least a part of the tightly wound portion 23b is in contact with the shaft portion 21c.
  • probe 2 described here is merely an example, and can be configured using any of various types of probes that have been conventionally known.
  • the probe head 3 is formed using an insulating material.
  • holes 31 for individually accommodating the probes 2 according to the arrangement of the electrodes 101 of the semiconductor wafer 100 are provided penetrating in the thickness direction of the probe head 3 (vertical direction in FIG. 3).
  • the hole 31 has a small-diameter hole 31a formed from the end surface on the semiconductor wafer 100 side to a length smaller than the length in the longitudinal direction of the tip 22a, and the same central axis as the small-diameter hole 31a.
  • a large-diameter hole 31b having a diameter larger than the diameter of 31a.
  • the inner diameter of the small diameter hole 31a is slightly larger than the outer diameter of the distal end portion 22a and slightly smaller than the outer diameter of the flange portion 22b. For this reason, the hole 31 prevents the plunger 22 from coming off.
  • the number and arrangement pattern of the probes 2 accommodated in the probe head 3 are determined according to the number of semiconductor chips formed on the semiconductor wafer 100 and the arrangement pattern of the electrodes 101. For example, when a semiconductor wafer 100 having a diameter of 8 inches (about 200 mm) is to be inspected, several tens to several thousand probes 2 are required. When a semiconductor wafer having a diameter of 12 inches (about 300 mm) is to be inspected, several hundred to several tens of thousands of probes 2 are required.
  • the wiring board 4 is a ceramic having a thermal expansion coefficient of 2.5 ⁇ 10 ⁇ 6 to 5.0 ⁇ 10 ⁇ 6 / ° C., more preferably 2.9 ⁇ 10 ⁇ 6 to 3.9 ⁇ 10 ⁇ 6 / ° C. It has a substrate 41, three thin film wiring sheets 42 a, 42 b, 42 c laminated on one surface of the ceramic substrate 41, and a thin film multilayer wiring sheet 43 laminated on the other surface of the ceramic substrate 41.
  • the thermal expansion coefficient of the ceramic substrate 41 has a value close to the thermal expansion coefficient of silicon (3.4 ⁇ 10 ⁇ 6 / ° C.).
  • the thin film wiring sheets 42a, 42b, and 42c and the thin film multilayer wiring sheet 43 are, for example, Cu / PI thin film multilayer wirings, and wiring with a fine pitch of about 100 ⁇ m is possible.
  • the thin film wiring sheets 42a, 42b, 42c and the thin film multilayer wiring sheet 43 are fixed to the ceramic substrate 41 by adhesion or the like.
  • the three thin film wiring sheets 42a, 42b and 42c are collectively denoted by reference numeral 42.
  • the ceramic substrate 41 has a plurality of through holes 411 penetrating in the thickness direction.
  • the through-hole 411 is formed by any processing method such as drilling, punching, laser processing, electron beam processing, ion beam processing, wire electric discharge processing, press processing, wire cut processing, or etching processing, and on the surface.
  • Plating with a conductive material 412 such as silver or copper is performed.
  • one thin film wiring sheet 42d may be provided on one surface of the ceramic substrate 41, and a four-layer thin film multilayer wiring sheet 46 may be provided on the other surface.
  • 1 shows the case where the surface area of the thin film wiring sheet 42d has the same surface area as that of the probe head 3, the surface area of the thin film wiring sheet 42d may be equal to the surface area of the ceramic substrate 41. .
  • a wiring board having a thermal expansion coefficient close to that of silicon, and a probe card including the wiring board. Can be provided.
  • the thermal expansion coefficient of the wiring board is close to that of silicon and wiring with a fine pitch can be performed on the wiring board, it is necessary to use a space transformer as in a conventional probe card. Absent. For this reason, an interposer for electrically connecting the space transformer and the wiring board is not required, and there is no problem that the electrical characteristics are deteriorated due to an increase in the number of junctions unlike the conventional probe card. Therefore, it is possible to provide a wiring board and a probe card that are excellent in transmission characteristics of high-frequency electrical signals.
  • the number of parts is small, assembly is easy, and the time required for manufacturing can be shortened. Therefore, the cost required for manufacturing can be reduced and the price can be reduced.
  • the thermal expansion coefficient of the wiring board by causing the thermal expansion coefficient of the wiring board to be close to the thermal expansion coefficient of the semiconductor wafer, it is possible to prevent the positional deviation and warpage of the wiring board during inspection. As a result, uniform contact of all the probes to the semiconductor wafer can be realized, the difference in the degree of wear between the probes can be prevented, and the durability of each probe can be improved. Become.
  • FIG. 5 is a diagram showing a configuration of a probe card according to a modification of the first embodiment.
  • the probe card 8 shown in the figure is provided on a plurality of probes 2, probe heads 3, a wiring board 9, a connector 10 for connecting an inspection device provided on the side surface of the wiring board 9, and a surface of the wiring board 9, and noise reduction
  • a mounting component 11 including a capacitor for operation is provided.
  • the wiring substrate 9 is laminated and fixed on one surface of the ceramic substrate 91 and the ceramic substrate 91 made of the same material as the ceramic substrate 41 of the first embodiment, and is interposed between the ceramic substrate 91 and the probe head 3.
  • the resin substrate 93 has a surface flush with the surface of the ceramic substrate 91 in a state in which the ceramic substrate 91 is fitted, and thin film wiring sheets 92a, 92b, and 92c are laminated on the surface.
  • the three thin film wiring sheets 92a, 92b, and 92c are collectively denoted by reference numeral 92.
  • FIG. 6 is a diagram showing the configuration of the main part of the probe card 8.
  • the ceramic substrate 91 and the resin substrate 93 are formed with a plurality of through-holes 911 and 931 which are paired and communicate with each other.
  • the surfaces of the through holes 911 and 931 are plated with conductive materials 912 and 932, respectively.
  • the mounting component 11 is electrically connected to the probe 2 through the through holes 911 and 931 and the three thin film wiring sheets 92a, 92b and 92c.
  • the flatness of the ceramic substrate 91 can be easily adjusted by minimizing the volume of the ceramic substrate 91.
  • the less expensive resin substrate 93 than the ceramic substrate 91 is used as the remaining portion of the wiring substrate 9, the cost can be further reduced.
  • FIG. 7 is a diagram showing a configuration of a main part of the probe card in this case.
  • the wiring substrate 4 ′ shown in the figure has a ceramic substrate 41, three thin film wiring sheets 42a, 42b, 42c, and a thin film multilayer wiring sheet 43 formed with through holes 431 communicating with the through holes 411 of the ceramic substrate 41.
  • a thin film multilayer wiring sheet 43 ′ By using the wiring board 4 ′ having such a configuration, a linear wiring between the mounting component 11 and the probe 2 can be realized, and therefore the distance from the semiconductor wafer 100 to the mounting component 11 can be shortened. Can do. Therefore, for example, when a noise reduction capacitor is provided as the mounting component 11, a good noise reduction effect can be obtained.
  • FIG. 8 is a diagram showing a configuration of a probe card according to Embodiment 2 of the present invention.
  • 9 is a plan view in the direction of arrow B in FIG.
  • FIG. 10 is a diagram illustrating a configuration of a main part of the probe card according to the second embodiment.
  • the probe card 12 shown in these figures is radially with respect to the center of the wiring board 13 in order to connect the plurality of probes 2, the probe head 3, the wiring board 13, the leaf spring 5, the reinforcing member 7, and the inspection device.
  • a plurality of connectors 14 are provided.
  • the wiring substrate 13 is made of the same material as the ceramic substrate 41 described above (thermal expansion coefficient is 2.5 ⁇ 10 ⁇ 6 to 5.0 ⁇ 10 ⁇ 6 / ° C., more preferably 2.9 ⁇ 10 ⁇ 6 to 3.9).
  • the four thin film wiring sheets 132a, 132b, 132c, and 132d are collectively denoted by reference numeral 132.
  • FIG. 11 is a diagram showing a schematic configuration of the connector 14.
  • four thin film wiring sheets 132a, 132b, 132c, and 132d are collectively denoted by reference numeral 132.
  • the four thin film wiring sheets 132a, 132b, 132c, and 132d are collectively referred to as the thin film wiring sheet 132.
  • the connector 14 is a zero insertion force (ZIF) type connector that requires almost no external force when attaching and detaching paired connectors.
  • ZIF zero insertion force
  • the connector 14 is a male connector, is attached to a notch 133 formed in the wiring board 13, and a female connector (installed on the inspection apparatus side) in which a plurality of lead wires 141 are exposed on the side surfaces to form a pair.
  • a first flange portion 14b that is formed on the base end portion of the coupling portion 14a and is located on one surface (the upper surface of FIG. 11) of the wiring substrate 13 when attached to the wiring substrate 13.
  • the body part 14c inserted in the inside of the notch 133, and the 2nd flange part 14d from which the some lead wire 141 is exposed to the surface at the side of the body part 14c are provided.
  • the plurality of lead wires 141 of the second flange portion 14 d come into contact with the wiring of the thin film wiring sheet 132 to electrically connect the connector 14 and the thin film wiring sheet 132.
  • the opposing surfaces of the first flange portion 14b and the second flange portion 14d have substantially the same area.
  • a plurality of holes 142 for screw insertion are formed in the first flange portion 14b.
  • the second flange portion 14d is formed with a plurality of screw insertion holes 143 that are positioned coaxially with any of the plurality of hole portions 142 formed in the first flange portion 14b.
  • the connector 14 When attaching the connector 14 to the wiring board 13, as shown in FIG. 11, the connector 14 is slid from the outer peripheral side of the notch 133 of the wiring board 13 toward the center of the wiring board 13 and then inserted into the corresponding hole. Screws 201 are attached to the parts 134, 142 and 143. In FIG. 11, only one screw 201 is shown for simplicity.
  • a wiring board having a thermal expansion coefficient close to that of silicon and a probe card including the wiring board are provided. be able to.
  • the second embodiment since a space transformer and an interposer are not required, it is possible to provide an economical probe card that is excellent in transmission characteristics of high-frequency electric signals and is inexpensive. .
  • the reaction force becomes enormous at a terminal having a large number of probes and a spring action, and a probe card or Even if the stress applied to the tester is increased, a reliable electrical connection can be obtained without generating stress. Therefore, even in the case of a probe card having a large number of probes and complicated wiring, it is difficult for continuity failure and probe deterioration to occur, and the durability of the probe card can be improved.
  • FIG. 12 is a plan view showing a configuration of a probe card according to Embodiment 3 of the present invention.
  • the probe card 15 shown in the figure includes a plurality of probes 2, a probe head 3, a wiring board 16, a leaf spring 5, and a plurality of connectors 17 that are arranged radially with respect to the center of the wiring board 16.
  • the wiring substrate 16 includes a ceramic substrate 161 made of the same material as the ceramic substrate 41 (having a thermal expansion coefficient of 3.0 ⁇ 10 ⁇ 6 to 5.0 ⁇ 10 ⁇ 6 / ° C.) and one surface of the ceramic substrate 161. And a plurality of thin film wiring sheets stacked and fixed on the surface facing the probe head 3.
  • a plurality of thin film wiring sheets are collectively denoted by reference numeral 162.
  • the plurality of thin film wiring sheets are collectively referred to as the thin film wiring sheet 162.
  • FIG. 13 is a diagram showing a schematic configuration of the connector 17.
  • a connector 17 shown in the figure is a ZIF type male connector, and is attached to a first connector 171 that can be coupled to a pair of female connectors, and an opening 163 formed in the wiring board 16, and the thin film wiring of the wiring board 16
  • a second connector 172 that is electrically connected to the sheet 162 and coupled to the first connector 171 is combined.
  • the first connector 171 is positioned on one surface (upper surface in FIG. 13) of the wiring board 16 when attached to the wiring board 16 and the convex first coupling portion 171a attached to and coupled to the paired female connectors.
  • a plurality of lead wires 173 are exposed on the respective side surfaces of the first coupling portion 171a and the second coupling portion 171c.
  • a concave fitting portion 172b to be coupled.
  • a plurality of lead wires 174 are exposed on the upper surface of the fourth flange portion 172a and the inner surface of the fitting portion 172b.
  • the lead wire 174 exposed on the upper surface of the fourth flange portion 172a is in contact with the wiring of the thin film wiring sheet 162, thereby electrically connecting the second connector 172 and the thin film wiring sheet 162.
  • the lead wire 174 exposed on the inner surface of the fitting portion 172b is in contact with the lead wire 173 of the first connector 171 to electrically connect the first connector 171 and the second connector 172.
  • the fitting portion 172b of the second connector 172 When attaching the connector 17 to the wiring board 16, the fitting portion 172b of the second connector 172 is fitted into the opening 163, and then the second coupling portion 171c of the first connector 171 is fitted into the fitting portion 172b. Screws 301 are attached to holes 175 provided in one connector 171, holes 164 provided in wiring board 16, and holes 176 provided in second connector 172 (in FIG. Only one screw 301 is shown).
  • the same effect as in the second embodiment described above can be obtained.
  • the third embodiment by dividing the male connector into two connectors, an opening is formed in the wiring board instead of forming the notch as in the second embodiment. And the rigidity of the wiring board can be increased.
  • the ground layer and the power supply layer of the wiring board can be connected without being cut off at the outer periphery of the wiring board, a return current path is ensured. Therefore, transmission characteristics suitable for transmitting high-frequency electrical signals can be realized.
  • the first to third embodiments have been described in detail as the best mode for carrying out the present invention, but the present invention should not be limited to these embodiments.
  • the surface of the ceramic substrate 181 and the surface on which the four thin film wiring sheets 182a, 182b, 182c, and 182d are laminated such as the wiring substrate 18 shown in FIG.
  • a metal 183 having a low thermal expansion coefficient may be laminated on different surfaces (the other surface), and the ceramic substrate 181 and the metal 183 may be joined by diffusion bonding.
  • the “metal” here includes alloys.
  • the wiring is obtained by combining the metal 183 having an appropriate thermal expansion coefficient.
  • the thermal expansion coefficient of the substrate 18 can be brought close to the thermal expansion coefficient of silicon.
  • the ceramic substrate 181 includes, for example, Macerite (registered trademark) HSP (thermal expansion coefficient 9.8 ⁇ 10 ⁇ 6 / ° C.), Photovale (registered trademark) H (thermal expansion coefficient 7.8 ⁇ 10 ⁇ 6 / C.), Photovale (registered trademark) II (thermal expansion coefficient 1.4 ⁇ 10 ⁇ 6 / ° C.), and the like can be applied.
  • metals having different thermal expansion coefficients may be laminated on the ceramic substrate.
  • the wiring board 19 shown in FIG. 15 three metals are laminated on the surface of the ceramic substrate 191 different from the surface on which the four thin film wiring sheets 192a, 192b, 192c, and 192d are laminated, and the diffusion is performed. The case where it adheres by joining is shown.
  • the uppermost metal 193 and the metal 194 directly laminated on the ceramic substrate 191 are made of Kovar (registered trademark) material, and the metal laminated between these two Kovar (registered trademark) materials.
  • An invar material having a thermal expansion coefficient smaller than that of Kovar (registered trademark) material can be used as 195.
  • Embodiments 2 and 3 the case where the ZIF male connector is attached to the wiring board has been described.
  • a ZIF female connector may be attached to the wiring board.
  • the wiring board and the probe card according to the present invention are useful for electrical characteristic inspection of a semiconductor wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 微細なピッチの配線が可能であり、シリコンの熱膨張係数に近い熱膨張係数を有する配線基板および当該配線基板を備えたプローブカードを提供する。この目的のため、熱膨張係数が3×10-6~5×10-6/°Cであるセラミックス基板と、セラミックス基板の一方の表面に積層された一または複数の薄膜配線シートとを有する配線基板と、導電性の複数のプローブを薄膜配線シートの配線に対応させて配置するとともに各プローブの両端を表出させた状態で個別に抜け止めして保持し、各プローブの一端が薄膜配線シートと接触した状態で前記配線基板に積層されたプローブヘッドと、を備える。

Description

配線基板およびプローブカード
 本発明は、配線基板および当該配線基板を備え、半導体ウェハの電気特性検査に使用するプローブカードに関する。
 半導体の検査工程では、ダイシングする前の半導体ウェハの状態で導電性を有するプローブをコンタクトさせることによって電気特性検査を行い、不良品を検出する(ウェハレベルテスト)。このウェハレベルテストを行う際には、検査用の信号を半導体ウェハへ伝送するために、多数のプローブを収容するプローブカードが用いられる。ウェハレベルテストでは、半導体ウェハ上のダイをプローブカードでスキャニングしながらプローブをダイごとに個別にコンタクトさせるが、半導体ウェハ上には数百~数万というダイが形成されているため、一つの半導体ウェハをテストするにはかなりの時間を要し、ダイの数が増加するとともにコストの上昇を招いていた。
 上述したウェハレベルテストの問題点を解消するために、最近では、半導体ウェハ上の全てのダイまたは半導体ウェハ上の少なくとも1/4~1/2程度のダイに数百~数万のプローブを一括してコンタクトさせる手法(フルウェハレベルテスト)も用いられている(例えば、特許文献1を参照)。この手法では、プローブを半導体ウェハ上の電極に対して正確にコンタクトさせるため、半導体ウェハの表面に対するプローブカードの平行度や平面度を精度よく保つことによってプローブの先端位置精度を保持する技術や、半導体ウェハを高精度でアライメントする技術が知られている(例えば、特許文献2または3を参照)。
 図16は、上述したフルウェハレベルテストにおいて適用されるプローブカードの一構成例を模式的に示す図である。同図に示すプローブカード401は、半導体ウェハ上の電極の配置パターンに対応して設けられた複数のプローブ402を収容するプローブヘッド403と、プローブヘッド403における微細な配線パターンの間隔を変換するスペーストランスフォーマ404と、スペーストランスフォーマ404から出た配線wを中継するインターポーザ405と、プローブヘッドを保持する板ばね406と、インターポーザ405によって中継された配線wを検査装置へ接続する配線基板407と、配線基板407に設けられ、検査用信号を生成する検査装置側に接続されるコネクタ408と、配線基板407を補強する補強部材409とを備える。
特表2001-524258号公報 特許第3386077号公報 特開2005-164600号公報
 一般に、シリコンを主成分とする半導体ウェハの熱膨張係数(3.4×10-6/℃)は、ガラエポやポリイミド等の樹脂を主成分とする配線基板の熱膨張係数(12×10-6~17×10-6/℃)よりも顕著に小さい。このため、従来のプローブカードでは、スペーストランスフォーマの材料として、半導体ウェハの熱膨張係数よりも大きくかつ配線基板の熱膨張係数よりも小さい熱膨張係数を有する材料を適用することにより、半導体ウェハの熱膨張係数と配線基板の熱膨張係数との差を緩和し、幅広い温度環境下(25~125℃程度)で電気特性検査を行う際にプローブの先端位置と半導体ウェハの電極との間に位置ズレが生じるのを防止している。
 しかしながら、スペーストランスフォーマは、内部の配線を形成するため製造に時間がかかり、幾重にも積層する必要があり高価にならざるを得なかった。このような状況の下、スペーストランスフォーマを用いずにプローブカードを構成することができる配線基板として、100μm程度の微細なピッチの配線が可能であり、シリコンの熱膨張係数に近い熱膨張係数を有する配線基板が待望されていた。
 本発明は、上記に鑑みてなされたものであって、微細なピッチの配線が可能であり、シリコンの熱膨張係数に近い熱膨張係数を有する配線基板および当該配線基板を備えたプローブカードを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る配線基板は、熱膨張係数が3.0×10-6~5.0×10-6/℃であるセラミックス基板と、前記セラミックス基板の一方の表面に積層された一または複数の薄膜配線シートと、を備えたことを特徴とする。
 また、本発明に係る配線基板は、上記発明において、前記セラミックス基板は、厚さ方向に貫通するスルーホールを有することを特徴とする。
 また、本発明に係る配線基板は、上記発明において、各々が前記薄膜配線シートと電気的に接続された複数のゼロインサーションフォース型のコネクタをさらに備えたことを特徴とする。
 また、本発明に係る配線基板は、上記発明において、前記セラミックス基板の他方の表面に積層され、前記セラミックス基板よりも熱膨張係数が小さい一または複数の金属をさらに備えたことを特徴とする。
 また、本発明に係る配線基板は、上記発明において、前記セラミックス基板の他方の表面に積層された薄膜多層配線シートをさらに備えたことを特徴とする。
 また、本発明に係るプローブカードは、長手方向に沿って伸縮自在な導電性のプローブを用いることにより、半導体ウェハと当該半導体ウェハに対して出力する信号を生成する回路構造とを電気的に接続するプローブカードであって、上記いずれかの発明に係る配線基板と、複数の前記プローブを前記薄膜配線シートの配線に対応させて配置するとともに各プローブの両端を表出させた状態で個別に抜け止めして保持し、各プローブの一端が前記薄膜配線シートと接触した状態で前記配線基板に積層されたプローブヘッドと、を備えたことを特徴とする。
 本発明によれば、熱膨張係数が3.0×10-6~5.0×10-6/℃であるセラミックス基板と、このセラミックス基板の一方の表面に積層された一または複数の薄膜配線シートとを備えているため、微細なピッチの配線が可能であり、シリコンの熱膨張係数に近い熱膨張係数を有する配線基板および当該配線基板を備えたプローブカードを提供することができる。
図1は、本発明の実施の形態1に係るプローブカードの構成を示す平面図である。 図2は、図1の矢視A方向の平面図である。 図3は、プローブ、プローブヘッドおよび配線基板の各要部の構成を示す図である。 図4は、配線基板要部の別な構成例を示す図である。 図5は、本実施の形態1の一変形例に係るプローブカードの構成を示す図である。 図6は、本発明の実施の形態1の一変形例に係るプローブカードの要部の構成を示す図である。 図7は、本発明の実施の形態1の別な変形例に係るプローブカードの構成を示す図である。 図8は、本発明の実施の形態2に係るプローブカードの構成を示す図である。 図9は、図8の矢視B方向の平面図である。 図10は、本発明の実施の形態2に係るプローブカードの要部の構成を示す図である。 図11は、本発明の実施の形態2に係るプローブカードが備えるZIF型のコネクタの構成を示す図である。 図12は、本発明の実施の形態3に係るプローブカードの構成を示す平面図である。 図13は、本発明の実施の形態3に係るプローブカードが備えるZIF型のコネクタの構成を示す図である。 図14は、本発明の別な実施の形態に係る配線基板の要部の構成を示す図である。 図15は、本発明のさらに別な実施の形態に係る配線基板の要部の構成を示す図である。 図16は、従来のプローブカードの構成を示す図である。
符号の説明
 1、8、12、15、401 プローブカード
 2、402 プローブ
 3、403 プローブヘッド
 4、4'、9、13、16、18、19、44、407 配線基板
 5、406 板ばね
 6、10、14、17、408 コネクタ
 7、409 補強部材
 11 実装部品
 14a 結合部
 14b 第1フランジ部
 14c 胴体部
 14d 第2フランジ部
 21、22 プランジャ
 21a、22a 先端部
 21b、22c ボス部
 21c 軸部
 22b フランジ部
 23 コイルばね
 23a 粗巻き部
 23b 密着巻き部
 31、134、142、143、164、175、176 孔部
 31a 小径孔
 31b 大径孔
 41、91、131、161、181、191 セラミックス基板
 42a、42b、42c、42d、92a、92b、92c、132a、132b、132c、132d、162、182a、182b、182c、182d、192a、192b、192c、192d 薄膜配線シート
 43、43'、46 薄膜多層配線シート
 93 樹脂基板
 100 半導体ウェハ
 101 電極
 133 切り欠き
 141、173、174 リード線
 163 開口部
 171 第1コネクタ
 171a 第1結合部
 171b 第3フランジ部
 171c 第2結合部
 172 第2コネクタ
 172a 第4フランジ部
 172b 嵌入部
 183、193、194、195 金属
 201、301 ねじ
 404 スペーストランスフォーマ
 405 インターポーザ
 411、431、911、931 スルーホール
 412、912、932 導電材
 以下、添付図面を参照して本発明を実施するための最良の形態(以後、「実施の形態」と称する)を説明する。なお、図面は模式的なものであって、各部分の厚みと幅との関係、それぞれの部分の厚みの比率などは現実のものとは異なる場合もあることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれる場合があることは勿論である。
(実施の形態1)
 図1は、本発明の実施の形態1に係る本発明の実施の形態1に係るプローブカードの構成を示す平面図である。また、図2は、図1の矢視A方向の平面図である。これらの図に示すプローブカード1は、検査対象に対応して配設される複数の導電性のプローブ2と、複数のプローブ2を収容する円盤状のプローブヘッド3と、プローブヘッド3に収容されたプローブ2の配置パターンに対応した配線パターンを有し、プローブヘッド3よりも径が大きい円盤状をなす配線基板4と、配線基板4に固着され、プローブヘッド3を保持する板ばね5と、配線基板4の表面のうちプローブヘッド3が積層される表面と反対側の表面に設けられ、検査用の信号を生成する回路構造を備えた検査装置との接続を図るコネクタ6と、配線基板4の一方の面に装着され、配線基板4を補強して変形を防止する補強部材7と、を備える。
 図3は、プローブ2の構成を示すとともにプローブヘッド3および配線基板4の要部の構成を示す図である。プローブ2は、先端が配線基板4に接触するプランジャ21と、プランジャ21と相反する向きに突出し、検査対象である半導体ウェハ100の電極101に接触するプランジャ22と、プランジャ21、22の間に設けられ、プランジャ21、22を伸縮自在に連結するコイルばね23とを備える。互いに連結されるプランジャ21、22、およびコイルばね23は同一の軸線を有している。
 プランジャ21は、先鋭端を有する先端部21aと、先端部21aの基端側に設けられ、先端部21aの径よりも小さい径を有するボス部21bと、ボス部21bの表面のうち先端部21aと接する側と反対側の表面から延びる軸部21cとを有する。また、プランジャ22は、先鋭端を有する先端部22aと、先端部22aの基端側に設けられ、先端部22aの径よりも大きい径を有するフランジ部22bと、フランジ部22bの表面から先端部22aと相反する方向へ突出し、フランジ部22bの径よりも小さい径を有するボス部22cとを有する。コイルばね23は、プランジャ21に取り付けられる側が粗巻き部23aである一方、プランジャ22に取り付けられる側が密着巻き部23bである。粗巻き部23aの端部はボス部21bに圧入される一方、密着巻き部23bの端部はボス部22cに圧入される。
 プローブ2は、図3に示す状態で、コイルばね23が湾曲して密着巻き部23bの少なくとも一部が軸部21cに接触している。これにより、プランジャ22の先端部22aが半導体ウェハ100の電極101に接触した時、プランジャ21、コイルばね23の密着巻き部23bおよびプランジャ22を順次経由した最短経路による電気導通が実現される。
 なお、ここで説明したプローブ2の構成はあくまでも一例に過ぎず、従来より知られているさまざまな種類のプローブのいずれかを用いて構成することが可能である。
 プローブヘッド3は絶縁性材料を用いて形成される。プローブヘッド3には、半導体ウェハ100の電極101の配列に応じてプローブ2を個別に収容する孔部31がプローブヘッド3の厚さ方向(図3の上下方向)に貫通して設けられている。孔部31は、半導体ウェハ100側の端面から、少なくとも先端部22aの長手方向の長さよりも小さい長さにわたって形成された小径孔31aと、この小径孔31aと同じ中心軸を有し、小径孔31aの径よりも大きい径を有する大径孔31bとを備える。小径孔31aの内径は、先端部22aの外径よりも若干大きくフランジ部22bの外径よりも若干小さい。このため、孔部31はプランジャ22を抜け止めしている。
 プローブヘッド3に収容されるプローブ2の数や配置パターンは、半導体ウェハ100に形成される半導体チップの数や電極101の配置パターンに応じて定まる。例えば、直径8インチ(約200mm)の半導体ウェハ100を検査対象とする場合には、数十~数千個のプローブ2が必要となる。また、直径12インチ(約300mm)の半導体ウェハを検査対象とする場合には、数百個~数万個のプローブ2が必要となる。
 配線基板4は、熱膨張係数が2.5×10-6~5.0×10-6/℃、より好ましくは2.9×10-6~3.9×10-6/℃であるセラミックス基板41と、セラミックス基板41の一方の表面に積層された3枚の薄膜配線シート42a、42b、42cと、セラミックス基板41の他方の表面に積層された薄膜多層配線シート43とを有する。セラミックス基板41の熱膨張係数は、シリコンの熱膨張係数(3.4×10-6/℃)に近い値を有している。薄膜配線シート42a、42b、42cおよび薄膜多層配線シート43は、例えばCu/PI薄膜多層配線であり、100μm程度の微細なピッチの配線が可能である。薄膜配線シート42a、42b、42cおよび薄膜多層配線シート43は、接着等によってセラミックス基板41に固着されている。なお、図1では、3枚の薄膜配線シート42a、42b、42cを一括して符号42を付している。
 セラミックス基板41には、板厚方向を貫通するスルーホール411が複数形成されている。スルーホール411は、ドリル加工、打ち抜き加工、レーザ加工、電子ビーム加工、イオンビーム加工、ワイヤ放電加工、プレス加工、ワイヤカット加工、またはエッチング加工などのいずれかの加工方法によって形成され、表面には銀や銅などの導電材412によるメッキ加工が施されている。
 なお、図4に示す配線基板44のように、セラミックス基板41の一方の表面に1枚の薄膜配線シート42dを設ける一方、他方の表面に4層の薄膜多層配線シート46を設けてもよい。また、図1では、薄膜配線シート42dの表面積がプローブヘッド3と同じ表面積を有している場合を図示しているが、薄膜配線シート42dの表面積をセラミックス基板41の表面積と等しくしてもよい。
 以上説明した本発明の実施の形態1によれば、熱膨張係数が3.0×10-6~5.0×10-6/℃であるセラミックス基板と、このセラミックス基板の一方の表面に積層された一または複数の薄膜配線シートとを備えているため、微細なピッチの配線が可能であり、シリコンの熱膨張係数に近い熱膨張係数を有する配線基板および当該配線基板を備えたプローブカードを提供することができる。
 また、本実施の形態1によれば、配線基板の熱膨張係数がシリコンに近く、かつ配線基板において微細なピッチの配線が可能であるため、従来のプローブカードのようにスペーストランスフォーマを用いる必要がない。このため、スペーストランスフォーマと配線基板とを電気的に接続するインターポーザも不要であり、従来型のプローブカードのように、接合点が増えて電気特性が悪くなるという問題が生じることがない。したがって、高周波数の電気信号の伝送特性にも優れた配線基板およびプローブカードを提供することができる。
 また、本実施の形態1によれば、スペーストランスフォーマやインターポーザが不要であるため、部品点数が少なく組立が容易であり、製造に要する時間を短縮することができる。したがって、製造に要するコストを削減し、低価格化を実現することができる。
 また、本実施の形態1によれば、配線基板の熱膨張係数を半導体ウェハの熱膨張係数に近づけることにより、検査時の配線基板に位置ズレや反りが生じるのを防止している。この結果、全てのプローブの半導体ウェハへの均一なコンタクトを実現することができ、プローブ間の磨耗の度合いに差が生じるのを防ぐことができ、各プローブの耐久性を向上させることが可能となる。
 図5は、本実施の形態1の一変形例に係るプローブカードの構成を示す図である。同図に示すプローブカード8は、複数のプローブ2、プローブヘッド3、配線基板9、配線基板9の側面に設けられる検査装置接続用のコネクタ10、および配線基板9の表面に設けられ、ノイズ低減用コンデンサを含む実装部品11を備える。
 配線基板9は、上記実施の形態1のセラミックス基板41と同じ材質のセラミックス基板91と、セラミックス基板91の一方の表面に積層して固着され、セラミックス基板91とプローブヘッド3との間に介在する3枚の薄膜配線シート92a、92b、92cと、ガラエポまたはポリイミド等の樹脂を主成分とし、セラミックス基板91を嵌め入れ可能な凹部を有する樹脂基板93とを有する。樹脂基板93は、セラミックス基板91を嵌め入れた状態でセラミックス基板91の表面と面一な表面を有しており、この表面に薄膜配線シート92a、92b、92cが積層されている。なお、図5では、3枚の薄膜配線シート92a、92b、92cを一括して符号92を付している。
 図6は、プローブカード8の要部の構成を示す図である。セラミックス基板91および樹脂基板93には、対をなして互いに連通するスルーホール911,931が複数ずつ形成されている。スルーホール911、931の各表面には導電材912、932によるメッキ加工がそれぞれ施されている。実装部品11は、スルーホール911、931、3枚の薄膜配線シート92a、92b、92cを介してプローブ2に導通する。
 このような構成を有するプローブカード8によれば、セラミックス基板91の体積を必要最小限に抑えることにより、セラミックス基板91の平坦度を調整しやすくなる。また、配線基板9の残りの部分として、セラミックス基板91よりも廉価な樹脂基板93を使用しているため、一段とコストを低減することが可能となる。
 なお、上述したプローブカード1に対して実装部品11を取り付けることもできる。図7は、この場合のプローブカードの要部の構成を示す図である。同図に示す配線基板4'は、セラミックス基板41と、3枚の薄膜配線シート42a、42b、42cと、薄膜多層配線シート43にセラミックス基板41のスルーホール411と連通するスルーホール431を形成した薄膜多層配線シート43’と、を有する。このような構成を有する配線基板4'を用いることにより、実装部品11とプローブ2との直線的な配線を実現することができるため、半導体ウェハ100からの実装部品11までの距離を短縮することができる。したがって、例えば実装部品11としてノイズ低減用コンデンサを設けた場合には、良好なノイズ低減効果を得ることができる。
(実施の形態2)
 図8は、本発明の実施の形態2に係るプローブカードの構成を示す図である。図9は図8の矢視B方向の平面図である。また、図10は、本実施の形態2に係るプローブカードの要部の構成を示す図である。これらの図に示すプローブカード12は、複数のプローブ2、プローブヘッド3、配線基板13、板ばね5、補強部材7、検査装置との接続を行うために配線基板13の中心に対して放射状に配設される複数のコネクタ14を備える。
 配線基板13は、上述したセラミックス基板41と同じ材質(熱膨張係数が2.5×10-6~5.0×10-6/℃、より好ましくは2.9×10-6~3.9×10-6/℃)のセラミックス基板131と、セラミックス基板131の一方の表面であってプローブヘッド3と対向する表面に積層して固着される4枚の薄膜配線シート132a、132b、132c、132dとを有する。なお、図8では、4枚の薄膜配線シート132a、132b、132c、132dを一括して符号132を付している。
 図11は、コネクタ14の概略構成を示す図である。図11では、図8と同様、4枚の薄膜配線シート132a、132b、132c、132dを一括して符号132を付している。以下、本実施の形態2においては、4枚の薄膜配線シート132a、132b、132c、132dのことを一括して薄膜配線シート132という。コネクタ14は、対をなすコネクタ同士を着脱する際に外力をほとんど必要としないゼロインサーションフォース(ZIF)型のコネクタである。具体的には、コネクタ14はオスコネクタであり、配線基板13に形成された切り欠き133に取り付けられ、側面に複数のリード線141が露出して対をなすメスコネクタ(検査装置側に設置)と結合する結合部14aと、結合部14aの基端部に形成され、配線基板13に取り付けたときに配線基板13の一方の表面(図11の上面)に位置する第1フランジ部14bと、切り欠き133の内部に挿入される胴体部14cと、胴体部14c側の表面に複数のリード線141が露出する第2フランジ部14dと、を備える。第2フランジ部14dの複数のリード線141は薄膜配線シート132の配線と接触することにより、コネクタ14と薄膜配線シート132とを電気的に接続する。
 第1フランジ部14bおよび第2フランジ部14dの対向する表面同士はほぼ同じ面積を有している。第1フランジ部14bにはネジ挿通用の孔部142が複数形成されている。また、第2フランジ部14dには、第1フランジ部14bに形成された複数の孔部142のいずれかと同軸上に位置する複数のネジ挿通用の孔部143が形成されている。
 コネクタ14を配線基板13に取り付ける際には、図11に示すように配線基板13の切り欠き133の外周側から配線基板13の中心方向にコネクタ14をスライドして挿着した後、対応する孔部134、142および143にねじ201を取り付ける。なお、図11では、簡単のため一つのねじ201のみ記載している。
 以上説明した本発明の実施の形態2によれば、熱膨張係数が3.0×10-6~5.0×10-6/℃であるセラミックス基板と、このセラミックス基板の一方の表面に積層された複数の薄膜配線シートとを備えているため、微細なピッチの配線が可能であり、シリコンの熱膨張係数に近い熱膨張係数を有する配線基板および当該配線基板を備えたプローブカードを提供することができる。
 また、本実施の形態2によれば、スペーストランスフォーマやインターポーザは不要であるため、高周波数の電気信号の伝送特性に優れ、コストがかからず経済的なプローブカードを提供することが可能となる。
 また、本実施の形態2によれば、ZIF型のコネクタを適用して電気的な接続を実現することにより、プローブの数が多くスプリング作用のある端子では反力が膨大になってプローブカードやテスターにかかるストレスが大きくなってしまうような場合であっても、ストレスを発生させることなく確実な電気的接続を得ることができる。したがって、プローブの数が多く配線が複雑なプローブカードの場合にも、導通不良やプローブの劣化が生じにくくなり、プローブカードの耐久性を向上させることができる。
(実施の形態3)
 図12は、本発明の実施の形態3に係るプローブカードの構成を示す平面図である。同図に示すプローブカード15は、複数のプローブ2、プローブヘッド3、配線基板16、板ばね5、配線基板16の中心に対して放射状に配設される複数のコネクタ17を備える。
 配線基板16は、上述したセラミックス基板41と同じ材質(熱膨張係数が3.0×10-6~5.0×10-6/℃)のセラミックス基板161と、セラミックス基板161の一方の表面であってプローブヘッド3と対向する表面に積層して固着される複数の薄膜配線シートとを有する。なお、図13では、複数の薄膜配線シートを一括して符号162を付している。以下、本実施の形態3においては、複数の薄膜配線シートのことを一括して薄膜配線シート162という。
 図13は、コネクタ17の概略構成を示す図である。同図に示すコネクタ17はZIF型のオスコネクタであり、対をなすメスコネクタと結合可能な第1コネクタ171と、配線基板16に形成された開口部163に装着され、配線基板16の薄膜配線シート162と電気的に接続するとともに第1コネクタ171と結合する第2コネクタ172とが組み合わさって成る。
 第1コネクタ171は、対をなすメスコネクタに装着されて結合する凸状の第1結合部171aと、配線基板16に取り付けたときに配線基板16の一方の表面(図13の上面)に位置する第3フランジ部171bと、第2コネクタ172に結合される凸状の第2結合部171cとを備える。第1結合部171aおよび第2結合部171cの各側面には複数のリード線173が露出している。第2コネクタ172は、配線基板16に取り付けたときに配線基板16の他方の表面(図13の底面)に位置する第4フランジ部172aと、第1コネクタ171の第2結合部171cを嵌入して結合する凹状の嵌入部172bとを備える。第4フランジ部172aの上面および嵌入部172bの内側面には複数のリード線174が露出している。第4フランジ部172aの上面に露出しているリード線174は、薄膜配線シート162の配線と接触することにより、第2コネクタ172と薄膜配線シート162とを電気的に接続する。また、嵌入部172bの内側面に露出しているリード線174は、第1コネクタ171のリード線173と接触することにより、第1コネクタ171と第2コネクタ172とを電気的に接続する。
 コネクタ17を配線基板16に取り付ける際には、開口部163に第2コネクタ172の嵌入部172bを装着した後、この嵌入部172bに第1コネクタ171の第2結合部171cを嵌合し、第1コネクタ171に設けられた孔部175、配線基板16に設けられた孔部164、および第2コネクタ172に設けられた孔部176に対してねじ301を取り付ける(図13では、簡単のため一つのねじ301のみ記載)。
 以上説明した本発明の実施の形態3によれば、上述した実施の形態2と同様の効果を得ることができる。加えて、本実施の形態3によれば、オスコネクタを2つのコネクタに分割して構成することにより、上記実施の形態2のような切り欠きを配線基板に形成する代わりに配線基板に開口部を設ければよく、配線基板の剛性を高めることができる。また、配線基板のグランド層や電源層が配線基板の外周部で切れることなく繋げておけるので、リターン電流の経路が確保される。したがって、高周波数の電気信号を伝送するのに好適な伝送特性を実現することができる。
(その他の実施の形態)
 ここまで、本発明を実施するための最良の形態として、実施の形態1~3を詳述してきたが、本発明はそれらの実施の形態によって限定されるべきものではない。例えば、セラミックス基板の熱膨張係数によっては、図14に示す配線基板18のように、セラミックス基板181の表面であって4枚の薄膜配線シート182a、182b、182c、182dが積層される表面とは異なる表面(他方の表面)に対して低熱膨張係数を有する金属183を積層させ、セラミックス基板181と金属183とを拡散接合によって接合してもよい。なお、ここでいう「金属」には合金も含まれる。このような配線基板18によれば、セラミックス基板181が従来のセラミックス基板と同程度の熱膨張係数しか有していない場合であっても、適当な熱膨張係数を有する金属183を組み合わせることによって配線基板18の熱膨張係数をシリコンの熱膨張係数へ近づけることができる。この意味で、セラミックス基板181としては、例えばマセライト(登録商標)HSP(熱膨張係数9.8×10-6/℃)、ホトベール(登録商標)H(熱膨張係数7.8×10-6/℃)、ホトベール(登録商標)II(熱膨張係数1.4×10-6/℃)などを適用することができる。
 また、図15に示すように、熱膨張係数が互いに異なる金属をセラミックス基板に積層してもよい。図15に示す配線基板19では、セラミックス基板191の表面であって4枚の薄膜配線シート192a、192b、192c、192dが積層された表面と異なる表面に対して3枚の金属を積層し、拡散接合によって固着した場合を示している。例えば、図15で最上方の金属193とセラミックス基板191に直接積層している金属194とをコバール(登録商標)材とし、この2枚のコバール(登録商標)材の間に積層されている金属195としてコバール(登録商標)材よりも熱膨張係数が小さいインバー材を用いることができる。このようにして熱膨張係数が互いに異なる複数の金属板をセラミックス基板に積層することにより、配線基板全体の熱膨張係数をシリコンの熱膨張係数に近づけることが可能となる。
 なお、上記実施の形態2および3においては、配線基板にZIF型のオスコネクタを装着する場合を説明したが、配線基板にZIF型のメスコネクタを装着するようにしてもよい。
 以上の説明からも明らかなように、本発明は、ここでは記載していない様々な実施の形態等を含みうるものであり、特許請求の範囲により特定される技術的思想を逸脱しない範囲内において種々の設計変更等を施すことが可能である。
 以上のように、本発明に係る配線基板およびプローブカードは、半導体ウェハの電気特性検査に有用である。

Claims (6)

  1.  熱膨張係数が3.0×10-6~5.0×10-6/℃であるセラミックス基板と、
     前記セラミックス基板の一方の表面に積層された一または複数の薄膜配線シートと、
     を備えたことを特徴とする配線基板。
  2.  前記セラミックス基板は、厚さ方向に貫通するスルーホールを有することを特徴とする請求項1記載の配線基板。
  3.  各々が前記薄膜配線シートと電気的に接続された複数のゼロインサーションフォース型のコネクタをさらに備えたことを特徴とする請求項1記載の配線基板。
  4.  前記セラミックス基板の他方の表面に積層され、前記セラミックス基板よりも熱膨張係数が小さい一または複数の金属をさらに備えたことを特徴とする請求項1または2記載の配線基板。
  5.  前記セラミックス基板の他方の表面に積層された薄膜多層配線シートをさらに備えたことを特徴とする請求項1または2記載の配線基板。
  6.  長手方向に沿って伸縮自在な導電性のプローブを用いることにより、半導体ウェハと当該半導体ウェハに対して出力する信号を生成する回路構造とを電気的に接続するプローブカードであって、
     請求項1~5のいずれか一項記載の配線基板と、
     複数の前記プローブを前記薄膜配線シートの配線に対応させて配置するとともに各プローブの両端を表出させた状態で個別に抜け止めして保持し、各プローブの一端が前記薄膜配線シートと接触した状態で前記配線基板に積層されたプローブヘッドと、
     を備えたことを特徴とするプローブカード。
PCT/JP2009/053602 2008-02-29 2009-02-26 配線基板およびプローブカード WO2009107747A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010500750A JPWO2009107747A1 (ja) 2008-02-29 2009-02-26 配線基板およびプローブカード
EP09714184.0A EP2249167A4 (en) 2008-02-29 2009-02-26 WIRING PLATE AND NEEDLE CARD
KR1020107019053A KR101232691B1 (ko) 2008-02-29 2009-02-26 배선기판 및 프로브 카드
CN200980105563.4A CN101946183B (zh) 2008-02-29 2009-02-26 配线基板及探针卡
US12/735,929 US8378705B2 (en) 2008-02-29 2009-02-26 Wiring substrate and probe card

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-050888 2008-02-29
JP2008050888 2008-02-29

Publications (1)

Publication Number Publication Date
WO2009107747A1 true WO2009107747A1 (ja) 2009-09-03

Family

ID=41016134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053602 WO2009107747A1 (ja) 2008-02-29 2009-02-26 配線基板およびプローブカード

Country Status (7)

Country Link
US (1) US8378705B2 (ja)
EP (1) EP2249167A4 (ja)
JP (1) JPWO2009107747A1 (ja)
KR (1) KR101232691B1 (ja)
CN (1) CN101946183B (ja)
TW (1) TWI389269B (ja)
WO (1) WO2009107747A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008502A1 (ja) * 2010-07-14 2012-01-19 日本発條株式会社 セラミックス部材、プローブホルダ及びセラミックス部材の製造方法
CN104347445A (zh) * 2013-07-29 2015-02-11 东京毅力科创株式会社 探测装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013108759A1 (ja) * 2012-01-18 2015-05-11 日本発條株式会社 スペーストランスフォーマおよびプローブカード
DE102013008324A1 (de) * 2013-05-08 2014-11-13 Feinmetall Gmbh Elektrische Kontaktiervorrichtung
WO2015108051A1 (ja) * 2014-01-17 2015-07-23 株式会社村田製作所 積層配線基板およびこれを備える検査装置
JP6466128B2 (ja) * 2014-10-08 2019-02-06 株式会社日本マイクロニクス プローブカード
CN106935524B (zh) * 2015-12-24 2020-04-21 台湾积体电路制造股份有限公司 探针卡和晶圆测试系统及晶圆测试方法
US9793226B2 (en) * 2016-02-26 2017-10-17 R & D Circuits, Inc. Power supply transient performance (power integrity) for a probe card assembly in an integrated circuit test environment
TWI583963B (zh) * 2016-04-18 2017-05-21 旺矽科技股份有限公司 探針卡
JP6807252B2 (ja) * 2017-03-03 2021-01-06 東京エレクトロン株式会社 検査システム
US11412111B2 (en) 2017-10-26 2022-08-09 Kyocera Corporation Image sensor mounting board, imaging device, and imaging module
EP3872512A1 (en) * 2020-02-27 2021-09-01 Aptiv Technologies Limited Wiring assembly board and method for verifying connections when assembling a wire harness
EP3872513B8 (en) 2020-02-27 2024-05-01 Aptiv Technologies AG Wire harness test device and method for verifying connections when assembling a wire harness
EP3871928A1 (en) 2020-02-27 2021-09-01 Aptiv Technologies Limited Component connection verification device and method
KR20210121701A (ko) * 2020-03-31 2021-10-08 (주)포인트엔지니어링 프로브 헤드 및 이를 구비하는 프로브 카드
CN114200280B (zh) * 2021-11-29 2022-11-15 强一半导体(苏州)有限公司 一种薄膜探针卡及其探针头
CN114441918B (zh) * 2022-01-07 2023-03-24 强一半导体(苏州)有限公司 一种防探针脱落的薄膜探针头及薄膜探针卡

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208773A (ja) * 1999-11-18 2001-08-03 Ibiden Co Ltd 検査装置およびプローブカード
JP2001524258A (ja) 1995-05-26 2001-11-27 フォームファクター,インコーポレイテッド より大きな基板にばね接触子を定置させるための接触子担体(タイル)
JP2002071712A (ja) * 2000-08-31 2002-03-12 Ibiden Co Ltd プローブカード
JP3386077B2 (ja) 1994-11-15 2003-03-10 フォームファクター,インコーポレイテッド プローブカード・アセンブリ及びキット、及びそれらを用いる方法
JP2005164600A (ja) 2000-03-17 2005-06-23 Formfactor Inc 半導体接触器を平坦化するための方法と装置
JP2007064850A (ja) * 2005-08-31 2007-03-15 Nhk Spring Co Ltd プローブカード

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268381A (ja) * 1993-03-11 1994-09-22 Hitachi Ltd 多層配線構造体及びその製造方法
US5559446A (en) * 1993-07-19 1996-09-24 Tokyo Electron Kabushiki Kaisha Probing method and device
KR0140034B1 (ko) * 1993-12-16 1998-07-15 모리시다 요이치 반도체 웨이퍼 수납기, 반도체 웨이퍼의 검사용 집적회로 단자와 프로브 단자와의 접속방법 및 그 장치, 반도체 집적회로의 검사방법, 프로브카드 및 그 제조방법
JPH11260871A (ja) 1998-03-14 1999-09-24 Tokyo Electron Ltd プローブ装置
JP2001185653A (ja) * 1999-10-12 2001-07-06 Fujitsu Ltd 半導体装置及び基板の製造方法
EP1248292A4 (en) 2000-07-25 2007-08-15 Ibiden Co Ltd INSPECTION DEVICE AND PROBE CARD
JP4640738B2 (ja) * 2000-09-04 2011-03-02 Hoya株式会社 ウエハ一括コンタクトボード用コンタクト部品及びその製造方法
JP2002290030A (ja) * 2001-03-23 2002-10-04 Ngk Spark Plug Co Ltd 配線基板
JP4092890B2 (ja) * 2001-05-31 2008-05-28 株式会社日立製作所 マルチチップモジュール
JP2004186665A (ja) * 2002-10-09 2004-07-02 Murata Mfg Co Ltd 多層構造部品およびその製造方法
JP2004205487A (ja) * 2002-11-01 2004-07-22 Tokyo Electron Ltd プローブカードの固定機構
TWI239685B (en) * 2003-05-13 2005-09-11 Jsr Corp Flaky probe, its manufacturing method and its application
KR101104287B1 (ko) * 2004-02-27 2012-01-13 가부시키가이샤 아드반테스트 프로브 카드
TW200600795A (en) * 2004-03-31 2006-01-01 Jsr Corp Probe apparatus, wafer inspecting apparatus provided with the probe apparatus and wafer inspecting method
EP1744166A1 (en) * 2004-04-27 2007-01-17 JSR Corporation Sheet-like probe, method of producing the probe, and application of the probe
JP2006120999A (ja) * 2004-10-25 2006-05-11 Kyocera Corp 多層配線基板
JP2006194620A (ja) * 2005-01-11 2006-07-27 Tokyo Electron Ltd プローブカード及び検査用接触構造体
US7285968B2 (en) * 2005-04-19 2007-10-23 Formfactor, Inc. Apparatus and method for managing thermally induced motion of a probe card assembly
JP2007101373A (ja) 2005-10-05 2007-04-19 Renesas Technology Corp プローブシート接着ホルダ、プローブカード、半導体検査装置および半導体装置の製造方法
JP2007221117A (ja) * 2006-01-23 2007-08-30 Matsushita Electric Ind Co Ltd 部品内蔵基板およびその製造方法
US7898272B2 (en) * 2006-06-08 2011-03-01 Nhk Spring Co., Ltd. Probe card
JP5412029B2 (ja) * 2006-12-28 2014-02-12 株式会社日本マイクロニクス プローブユニット基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3386077B2 (ja) 1994-11-15 2003-03-10 フォームファクター,インコーポレイテッド プローブカード・アセンブリ及びキット、及びそれらを用いる方法
JP2001524258A (ja) 1995-05-26 2001-11-27 フォームファクター,インコーポレイテッド より大きな基板にばね接触子を定置させるための接触子担体(タイル)
JP2001208773A (ja) * 1999-11-18 2001-08-03 Ibiden Co Ltd 検査装置およびプローブカード
JP2005164600A (ja) 2000-03-17 2005-06-23 Formfactor Inc 半導体接触器を平坦化するための方法と装置
JP2002071712A (ja) * 2000-08-31 2002-03-12 Ibiden Co Ltd プローブカード
JP2007064850A (ja) * 2005-08-31 2007-03-15 Nhk Spring Co Ltd プローブカード

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008502A1 (ja) * 2010-07-14 2012-01-19 日本発條株式会社 セラミックス部材、プローブホルダ及びセラミックス部材の製造方法
US9238593B2 (en) 2010-07-14 2016-01-19 Nhk Spring Co., Ltd. Ceramic member, probe holder, and manufacturing method of ceramic member
CN104347445A (zh) * 2013-07-29 2015-02-11 东京毅力科创株式会社 探测装置

Also Published As

Publication number Publication date
TW200945512A (en) 2009-11-01
KR101232691B1 (ko) 2013-02-13
US20100327897A1 (en) 2010-12-30
JPWO2009107747A1 (ja) 2011-07-07
KR20100120176A (ko) 2010-11-12
EP2249167A1 (en) 2010-11-10
US8378705B2 (en) 2013-02-19
CN101946183A (zh) 2011-01-12
TWI389269B (zh) 2013-03-11
EP2249167A4 (en) 2014-05-21
CN101946183B (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
WO2009107747A1 (ja) 配線基板およびプローブカード
JP4979214B2 (ja) プローブカード
JP5426161B2 (ja) プローブカード
TW480692B (en) Contact structure having silicon finger contactors and total stack-up structure using same
TW502390B (en) Contact structure and production method thereof and probe contact assembly using same
TWI452307B (zh) 測試插座
US6953348B2 (en) IC socket
US20100244872A1 (en) Inspection socket and method of producing the same
US20080088331A1 (en) Socket for test
JP2004325306A (ja) 検査用同軸プローブおよびそれを用いた検査ユニット
US6404211B2 (en) Metal buckling beam probe
JP4884749B2 (ja) 導電性接触子ホルダの製造方法および導電性接触子ユニットの製造方法
KR100373692B1 (ko) 프로브 구조체
JP5107431B2 (ja) プローブカード
JP4649248B2 (ja) プローブユニット
JP2003133375A (ja) 半導体装置の製造方法及び半導体装置
JP6494458B2 (ja) 同軸線路形回路、同軸線路形回路の組立方法、および同軸線路形回路を用いたアレイアンテナ装置
WO2002103373A1 (fr) Contacteur conducteur et ensemble de sondes electriques
WO2023228487A1 (ja) 測定ユニットおよび測定装置
US20230138105A1 (en) Probe unit
JP2020020664A (ja) 半導体デバイスの検査治具
JP2009122123A (ja) コンタクトプローブ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980105563.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09714184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010500750

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12010501842

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 12735929

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107019053

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009714184

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009714184

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE