WO2019021813A1 - 色変換組成物、色変換フィルムならびにそれを含む光源ユニット、ディスプレイおよび照明 - Google Patents

色変換組成物、色変換フィルムならびにそれを含む光源ユニット、ディスプレイおよび照明 Download PDF

Info

Publication number
WO2019021813A1
WO2019021813A1 PCT/JP2018/026035 JP2018026035W WO2019021813A1 WO 2019021813 A1 WO2019021813 A1 WO 2019021813A1 JP 2018026035 W JP2018026035 W JP 2018026035W WO 2019021813 A1 WO2019021813 A1 WO 2019021813A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
color conversion
general formula
light
resin
Prior art date
Application number
PCT/JP2018/026035
Other languages
English (en)
French (fr)
Inventor
神崎達也
河原佳奈
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020207001092A priority Critical patent/KR102354818B1/ko
Priority to JP2018537540A priority patent/JP6690721B2/ja
Priority to CN201880047595.2A priority patent/CN110945389B/zh
Priority to US16/630,210 priority patent/US11459504B2/en
Publication of WO2019021813A1 publication Critical patent/WO2019021813A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0073Optical laminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133621Illuminating devices providing coloured light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric

Definitions

  • the present invention relates to a color conversion composition, a color conversion film, and a light source unit including the same, a display and illumination.
  • the color conversion is to convert the light emitted from the light emitter into longer wavelength light, and represents, for example, the conversion of blue light to green or red light.
  • the composition having the color conversion function and combining it with, for example, a blue light source By filming the composition having the color conversion function and combining it with, for example, a blue light source, it is possible to take out the three primary colors of blue, green and red from the blue light source, that is, take out white light.
  • a white light source By using a white light source combining such a blue light source and a film having a color conversion function as a backlight unit, and combining it with a liquid crystal driving portion and a color filter, it is possible to manufacture a full color display.
  • a white light source combining such a blue light source and a film having a color conversion function as a backlight unit, and combining it with a liquid crystal driving portion and a color filter, it is possible to manufacture a full color display.
  • if there is no liquid crystal drive part it can be used as a white light source as it is, for example, it can be applied as a white light source such as LED lighting.
  • Improvement of color reproducibility is mentioned as a subject of a liquid crystal display using a color conversion system.
  • it is effective to narrow the full width at half maximum of the blue, green and red emission spectra of the backlight unit and to increase the color purity of each of the blue, green and red colors.
  • a technique using quantum dots of inorganic semiconductor fine particles as a component of the color conversion composition (see, for example, Patent Document 1).
  • the technology that uses quantum dots does narrow the half-width of the green and red emission spectra and improves color reproducibility, but on the other hand, quantum dots are weak to heat and moisture and oxygen in the air, and have sufficient durability. It was not. There are also issues such as containing cadmium.
  • a technique has also been proposed in which an organic light emitting material is used as a component of a color conversion composition instead of a quantum dot.
  • techniques using an organic light emitting material as a component of a color conversion composition include those using a pyridine-phthalimide condensate (see, for example, Patent Document 2) and those using a coumarin derivative (see, for example, Patent Document 3)
  • For red light emitting materials those using perylene derivatives (see, for example, Patent Document 4), those using rhodamine derivatives (see, for example, Patent Document 5), and those using pilomethene derivatives (for example, Patent Document 6) 7) are disclosed.
  • JP 2012-22028 A JP 2002-348568 A JP 2007-273440 A JP 2002-317175 A JP, 2001-164245, A JP, 2011-241160, A JP, 2014-136771, A JP, 2011-149028, A
  • the problem to be solved by the present invention is to achieve both color reproduction improvement and durability in a color conversion composition used for liquid crystal display and LED lighting, and in particular to achieve both light emission with high color purity and durability. It is to
  • the present invention is a color conversion composition for converting incident light into light having a wavelength longer than that of the incident light, and containing the following components (A) and (B): It is a thing.
  • Z 1 and Z 2 may be the same or different, and are a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • Y 1 to Y 4 may be the same or different, each represents a hydrogen atom or an organic group having 1 to 20 carbon atoms, and at least one of Y 1 to Y 4 One is a group containing an aliphatic cyclic hydrocarbon structure.
  • the color conversion composition of the present invention and the color conversion film using the same have both high color purity and durability, it is possible to achieve both color reproducibility and durability.
  • the color conversion composition of the present invention comprises at least one light emitting material.
  • the light emitting material in the present invention means a material which emits light of a wavelength different from that of light when it is irradiated with any light.
  • luminescent materials such as an inorganic fluorescent substance, a fluorescent pigment, a fluorescent dye, and a quantum dot, are mentioned, Especially, an organic luminescent material is preferable.
  • organic light emitting material for example, Compounds having a fused aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene and derivatives thereof; Furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyridine, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine
  • a heteroaryl ring such as Borane derivatives; 1,4-distyrylbenzene, 4,4'-bis (2- (4-diphenylaminophenyl)
  • the organic light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, but in order to achieve high color purity, a fluorescent light emitting material is preferable.
  • compounds having a coordinate bond are preferable.
  • Compounds that contain boron such as boron fluoride complexes, are also preferable in that they have a small half-width and can emit light with high efficiency.
  • pyrromethene derivatives can be suitably used in that they give high fluorescence quantum yield and good durability. More preferably, it is a compound represented by the general formula (3).
  • R 1 to R 9 may be the same or different, and hydrogen, alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, thiol group, alkoxy group, alkylthio group, aryl Ether group, arylthioether group, aryl group, heteroaryl group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group, It is selected from a fused ring and an aliphatic ring formed between a phosphine oxide group and an adjacent substituent.
  • hydrogen may be deuterium.
  • a substituted or unsubstituted aryl group having 6 to 40 carbon atoms is 6 to 40 including the number of carbons contained in the substituent substituted to the aryl group, and The other substituents which are present are the same as this.
  • the alkyl group is, for example, a saturated aliphatic hydrocarbon group such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, etc. Or may not have.
  • the carbon number of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost.
  • the cycloalkyl group is, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl group, cyclohexyl group, norbornyl group, adamantyl group and the like, which may or may not have a substituent.
  • the carbon number of the alkyl group moiety is not particularly limited, but preferably in the range of 3 or more and 20 or less.
  • the heterocyclic group means, for example, an aliphatic ring having an atom other than carbon in the ring, such as a pyran ring, a piperidine ring, and a cyclic amide, which may or may not have a substituent. .
  • the carbon number of the heterocyclic group is not particularly limited, but preferably in the range of 2 or more and 20 or less.
  • the alkenyl group means, for example, an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group or a butadienyl group, which may or may not have a substituent.
  • the number of carbon atoms in the alkenyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the cycloalkenyl group means, for example, an unsaturated alicyclic hydrocarbon group containing a double bond such as cyclopentenyl group, cyclopentadienyl group, cyclohexenyl group and the like, which may have a substituent even if it has one or more substituents. You do not have to.
  • the alkynyl group means, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • the number of carbon atoms in the alkynyl group is not particularly limited, but is preferably in the range of 2 or more and 20 or less.
  • the alkoxy group is a functional group having an aliphatic hydrocarbon group bonded via an ether bond such as, for example, a methoxy group, an ethoxy group or a propoxy group, and this aliphatic hydrocarbon group may have a substituent You do not need to have it.
  • the carbon number of the alkoxy group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the alkylthio group is one in which the oxygen atom of the ether bond of the alkoxy group is substituted by a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent.
  • the carbon number of the alkylthio group is not particularly limited, but is preferably in the range of 1 or more and 20 or less.
  • the aryl ether group refers to, for example, a functional group having an aromatic hydrocarbon group bonded via an ether bond, such as a phenoxy group, and the aromatic hydrocarbon group may or may not have a substituent. Good.
  • the carbon number of the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the arylthioether group is one in which the oxygen atom of the ether bond of the arylether group is substituted by a sulfur atom.
  • the aromatic hydrocarbon group in the aryl ether group may or may not have a substituent.
  • the carbon number of the aryl ether group is not particularly limited, but is preferably in the range of 6 or more and 40 or less.
  • the aryl group is, for example, phenyl group, biphenyl group, terphenyl group, naphthyl group, fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, phenanthryl group, anthracenyl group, benzophenanthryl group, benzoanthrase It shows aromatic hydrocarbon groups such as nyl group, chrysenyl group, pyrenyl group, fluoranthenyl group, triphenylenyl group, benzofluoranthenyl group, dibenzoanthracenyl group, perylenyl group, helicenyl group and the like.
  • phenyl group biphenyl group, terphenyl group, naphthyl group, fluorenyl group, phenanthryl group, anthracenyl group, pyrenyl group, fluoranthenyl group and triphenylenyl group are preferable.
  • the aryl group may or may not have a substituent.
  • the number of carbon atoms in the aryl group is not particularly limited, but is preferably in the range of 6 to 40, and more preferably 6 to 30.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an anthracenyl group, and a phenyl group or a biphenyl group, Terphenyl and naphthyl are more preferred. More preferable are a phenyl group, a biphenyl group and a terphenyl group, and a phenyl group is particularly preferable.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, an anthracenyl group, and a phenyl group, a biphenyl group, Phenyl and naphthyl are more preferred. Particularly preferred is a phenyl group.
  • heteroaryl group examples include pyridyl group, furanyl group, thiophenyl group, quinolinyl group, isoquinolinyl group, pyrazinyl group, pyrimidyl group, pyridazinyl group, pyridazinyl group, triazinyl group, naphthyridinyl group, cinnolynyl group, phthalazinyl group, quinoxalinyl group, quinazolinyl group Benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, benzocarbazolyl group, carborinyl group, indolocarbazolyl group, benzofurocarbazolyl group, benzothienocarba Zoryl group, dihydroindenocarbazolyl group, benzoquinolinyl group, acridinyl
  • the naphthylidinyl group means any of 1,5-naphthylidinyl group, 1,6-naphthylidinyl group, 1,7-naphthylidinyl group, 1,8-naphthylidinyl group, 2,6-naphthylidinyl group, 2,7-naphthylidinyl group Indicate
  • the heteroaryl group may or may not have a substituent.
  • the carbon number of the heteroaryl group is not particularly limited, but preferably 2 or more and 40 or less, more preferably 2 or more and 30 or less.
  • R 1 to R 9 is a substituted or unsubstituted heteroaryl group
  • the heteroaryl group is pyridyl, furanyl, thiophenyl, quinolinyl, pyrimidyl, triazinyl, benzofuranyl, benzothiophenyl, indolyl , Dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, benzoimidazolyl group, imidazopyridyl group, benzoxazolyl group, benzothiazolyl group, phenanthrolinyl group, pyridyl group, furanyl group, thiophenyl group, quinolinyl group More preferable. Particularly preferred is a pyridyl group.
  • heteroaryl group examples include pyridyl group, furanyl group, thiophenyl group, quinolinyl group, pyrimidyl group, triazinyl group, benzofuranyl group, benzothiophenyl group, indolyl group, Dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, benzoimidazolyl group, imidazopyridyl group, benzoxazolyl group, benzothiazolyl group, phenanthrolinyl group is preferable, and pyridyl group, furanyl group, thiophenyl group, quinolinyl group is more preferable. preferable. Particularly preferred is a pyridyl group.
  • Halogen is an atom selected from fluorine, chlorine, bromine and iodine.
  • the carbonyl group, the carboxyl group, the oxycarbonyl group and the carbamoyl group may or may not have a substituent.
  • substituents include an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group and the like, and these substituents may be further substituted.
  • the amino group is a substituted or unsubstituted amino group.
  • substituent when substituted include an aryl group, a heteroaryl group, a linear alkyl group, and a branched alkyl group.
  • the aryl group and the heteroaryl group are preferably a phenyl group, a naphthyl group, a pyridyl group and a quinolinyl group. These substituents may be further substituted.
  • the number of carbon atoms is not particularly limited, but is preferably 2 or more and 50 or less, more preferably 6 or more and 40 or less, and particularly preferably 6 or more and 30 or less.
  • the silyl group is, for example, an alkylsilyl group such as trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, propyldimethylsilyl group, vinyldimethylsilyl group, phenyldimethylsilyl group, tert-butyldiphenylsilyl group, tri It shows an arylsilyl group such as phenylsilyl group and trinaphthylsilyl group.
  • the substituents on silicon may be further substituted.
  • the carbon number of the silyl group is not particularly limited, but preferably in the range of 1 or more and 30 or less.
  • the siloxanyl group means a silicon compound group via an ether bond such as, for example, a trimethylsiloxanyl group.
  • the substituents on silicon may be further substituted.
  • the boryl group is a substituted or unsubstituted boryl group.
  • substituent in the case of substitution include an aryl group, a heteroaryl group, a linear alkyl group, a branched alkyl group, an aryl ether group, an alkoxy group and a hydroxyl group, and among them, an aryl group and an aryl ether group are preferable.
  • R 10 R 11 is selected from the same group as R 1 to R 9 .
  • any adjacent two substituents may be bonded to each other to form a conjugated or non-conjugated fused ring.
  • the constituent element of the condensed ring may contain, in addition to carbon, an element selected from nitrogen, oxygen, sulfur, phosphorus and silicon.
  • the fused ring may be fused to another ring.
  • the compound represented by the general formula (3) exhibits high fluorescence quantum yield and has a small peak half width of emission spectrum, so that efficient color conversion and high color purity can be achieved.
  • the compound represented by the general formula (3) has various characteristics such as luminous efficiency, color purity, thermal stability, light stability, and dispersibility by introducing an appropriate substituent at an appropriate position. ⁇
  • the physical properties can be adjusted. For example, compared to the case where all of R 1 , R 3 , R 4 and R 6 are hydrogen, at least one of R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl The case of a group or a substituted or unsubstituted heteroaryl group shows better thermal stability and light stability.
  • R 1 , R 3 , R 4 and R 6 is a substituted or unsubstituted alkyl group, as an alkyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, Alkyl groups having 1 to 6 carbon atoms such as sec-butyl group, tert-butyl group, pentyl group and hexyl group are preferable, and further, because they are excellent in thermal stability, methyl group, ethyl group, n-propyl group, isopropyl group , N-butyl group, sec-butyl group and tert-butyl group are preferable.
  • a sterically bulky tert-butyl group is more preferable.
  • a methyl group is also preferably used from the viewpoint of easiness of synthesis and easiness of obtaining raw materials.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group or a naphthyl group, more preferably It is a phenyl group or a biphenyl group, and a phenyl group is particularly preferable.
  • the heteroaryl group is preferably a pyridyl group, a quinolinyl group or a thiophenyl group, more preferably a pyridyl group or a quinolinyl group preferable. Particularly preferred is a pyridyl group.
  • R 1 , R 3 , R 4 and R 6 may be the same or different, and are preferably substituted or unsubstituted alkyl groups because of their good solubility in binder resins and solvents.
  • alkyl group a methyl group is preferable from the viewpoint of easiness of synthesis and easiness of obtaining raw materials.
  • R 1 , R 3 , R 4 and R 6 are all the same or different and are substituted or unsubstituted aryl groups or substituted or unsubstituted heteroaryl groups All of R 1 , R 3 , R 4 and R 6 may be the same or different, and are more preferably a substituted or unsubstituted aryl group because they exhibit light stability.
  • R 1 , R 3 , R 4 and R 6 may be all the same or different, and in the case of a substituted or unsubstituted aryl group, for example, R 1 ⁇ R 4 , R 3 ⁇ R 6 , R It is preferable to introduce multiple types of substituents, such as 1 ⁇ R 3 or R 4 ⁇ R 6 .
  • indicates that they are groups of different structures. Fine adjustment is possible because an aryl group that affects color purity and an aryl group that affects efficiency can be introduced at the same time.
  • R 1 ⁇ ⁇ ⁇ R 3 or R 4 ⁇ R 6 is preferable in terms of improving the luminous efficiency and the color purity in a well-balanced manner.
  • One or more aryl groups affecting color purity can be introduced into each pyrrole ring on both sides, and an aryl group affecting efficiency can be introduced in other positions, thus maximizing both properties. be able to.
  • R 1 ⁇ R 3 or R 4 ⁇ R 6 it is more preferable that R 1 RR 4 and R 3 RR 6 from the viewpoint of heat resistance and color purity.
  • an aryl group substituted with an electron donating group is preferable.
  • the electron donating group is an atomic group that donates an electron to a substituted atomic group by an induction effect or a resonance effect in organic electron theory.
  • Examples of the electron donating group include those having a negative value as a Hammett's substituent constant ( ⁇ p (para)).
  • the Hammett's substituent constant ( ⁇ p (para)) can be cited from Chemical Handbook Basic Edition, Rev. 5 Edition (II-380).
  • the electron donating group include, for example, alkyl group ( ⁇ p of methyl group: -0.17), alkoxy group ( ⁇ p of methoxy group: -0.27), amino group ( ⁇ p of -NH 2 :- 0.66) and the like.
  • alkyl group having 1 to 8 carbon atoms or an alkoxy group having 1 to 8 carbon atoms is preferable, and a methyl group, an ethyl group, a tert-butyl group and a methoxy group are more preferable.
  • a tert-butyl group and a methoxy group are particularly preferable to prevent quenching due to aggregation of molecules.
  • substitution position of the substituent is not particularly limited. However, since it is necessary to suppress the twisting of the bond in order to enhance the light stability, it is preferable to attach at the meta position or para position with respect to the bonding position with the pyrromethene skeleton.
  • an aryl group having a bulky substituent such as a tert-butyl group, an adamantyl group or a methoxy group is preferable.
  • R 1 , R 3 , R 4 and R 6 may be all the same or different, and in the case of a substituted or unsubstituted aryl group, they are each selected from the following Ar-1 to Ar-6 Is preferred.
  • preferred combinations of R 1 , R 3 , R 4 and R 6 include, but are not limited to, the combinations shown in Tables 1-1 to 1-11.
  • R 2 and R 5 are preferably hydrogen, an alkyl group, a carbonyl group, an oxycarbonyl group, or an aryl group, but an alkyl group or hydrogen is preferable from the viewpoint of thermal stability, and it is easy to obtain a narrow half width in emission spectrum Hydrogen is more preferred.
  • R 8 and R 9 are preferably an alkyl group, an aryl group, a heteroaryl group, fluorine, a fluorine-containing alkyl group, a fluorine-containing heteroaryl group or a fluorine-containing aryl group, and stable to excitation light and higher fluorescence quantum yield It is more preferable that it is a fluorine or a fluorine-containing aryl group because Fluorine is more preferable from the easiness of synthesis.
  • the fluorine-containing aryl group is a fluorine-containing aryl group, and examples thereof include a fluorophenyl group, a trifluoromethylphenyl group and a pentafluorophenyl group.
  • the fluorine-containing heteroaryl group is a fluorine-containing heteroaryl group, and examples thereof include a fluoropyridyl group, a trifluoromethylpyridyl group and a trifluoropyridyl group.
  • the fluorine-containing alkyl group is a fluorine-containing alkyl group, and examples include a trifluoromethyl group and a pentafluoroethyl group.
  • X is preferably C—R 7 from the viewpoint of light stability.
  • R 7 is preferably a rigid group which has a small degree of freedom of movement and is less likely to cause aggregation, specifically, any of a substituted or unsubstituted aryl group or a substituted or unsubstituted heteroaryl group. Is preferred.
  • X is C—R 7 and R 7 is a substituted or unsubstituted aryl group from the viewpoint of giving higher fluorescence quantum yield and being less difficult to be decomposed by heat and light stability.
  • the aryl group is preferably a phenyl group, a biphenyl group, a terphenyl group, a naphthyl group, a fluorenyl group, a phenanthryl group, and an anthracenyl group from the viewpoint of not impairing the emission wavelength.
  • R 7 is preferably a substituted or unsubstituted phenyl group, a substituted or unsubstituted biphenyl group, a substituted or unsubstituted terphenyl group, or a substituted or unsubstituted naphthyl group, and is preferably a substituted or unsubstituted group.
  • phenyl group is preferably a substituted or unsubstituted biphenyl group, or a substituted or unsubstituted terphenyl group. Particularly preferred is a substituted or unsubstituted phenyl group.
  • R 7 is preferably a moderately bulky substituent. When R 7 has a certain height, aggregation of molecules can be prevented, and luminous efficiency and durability can be further improved.
  • r is hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, an alkylthio group, an arylether group, an arylthioether group, an aryl group, a heteroaryl It is selected from the group consisting of a group, halogen, cyano group, aldehyde group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, amino group, nitro group, silyl group, siloxanyl group, boryl group, phosphine oxide group.
  • k is an integer of 1 to 3. When k is 2 or more, r may be the same or different.
  • r is a substituted or unsubstituted aryl group in that a higher fluorescence quantum yield can be obtained.
  • aryl groups particularly preferred are a phenyl group and a naphthyl group.
  • k in the general formula (4) is preferably 1 or 2, and k is more preferably 2 from the viewpoint of preventing aggregation of molecules.
  • at least one of r is substituted with an alkyl group.
  • the alkyl group in this case, a methyl group, an ethyl group and a tert-butyl group are mentioned as particularly preferable examples from the viewpoint of thermal stability.
  • r is preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group or halogen, in view of controlling the fluorescence wavelength and absorption wavelength and enhancing the compatibility with the solvent, and methyl Group, ethyl group, tert-butyl group and methoxy group are more preferable. From the viewpoint of dispersibility, a tert-butyl group and a methoxy group are particularly preferable to prevent quenching due to aggregation of molecules.
  • At least one of R 1 to R 7 be an electron withdrawing group.
  • the electron withdrawing group is also referred to as an electron accepting group, and in organic electron theory, is an atomic group that attracts an electron from a substituted atomic group by an induction effect or a resonance effect.
  • the electron withdrawing group those having a positive value can be mentioned as Hammett's substituent constant ( ⁇ p (para)).
  • the Hammett's substituent constant ( ⁇ p (para)) can be cited from Chemical Handbook Basic Edition, Rev. 5 Edition (II-380).
  • the electron withdrawing group of the present application does not include a phenyl group.
  • Examples of the electron withdrawing group include, for example, -F ( ⁇ p: + 0.20), -Cl ( ⁇ p: + 0.28), -Br ( ⁇ p: + 0.30), -I ( ⁇ p: + 0.30), -CO 2 R 12 ( ⁇ p: +0.45 when R 12 is ethyl group), -CONH 2 ( ⁇ p: +0.38), -COR 12 ( ⁇ p: +0.49 when R 12 is methyl group),- CF 3 ( ⁇ p: +0.51), -SO 2 R 12 ( ⁇ p: +0. 6 when R 12 is a methyl group), -NO 2 ( ⁇ p: +0.81), etc. may be mentioned.
  • R 12 each independently represents a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, a substituted or unsubstituted heterocyclic group having 5 to 30 ring atoms, a substituted or unsubstituted group It represents a substituted C 1 -C 30 alkyl group or a substituted or unsubstituted C 1 -C 30 cycloalkyl group. Specific examples of these groups include the same examples as described above.
  • Preferred electron withdrawing groups include fluorine, a fluorine-containing aryl group, a fluorine-containing heteroaryl group, a fluorine-containing alkyl group, a substituted or unsubstituted acyl group, a substituted or unsubstituted ester group, a substituted or unsubstituted amide group, A substituted or unsubstituted sulfonyl group or a cyano group is mentioned. It is because these are hard to be decomposed chemically.
  • More preferable electron-withdrawing groups include a fluorine-containing alkyl group, a substituted or unsubstituted acyl group, a substituted or unsubstituted ester group or a cyano group. This is because it leads to the effect of preventing concentration quenching and improving the emission quantum yield. Particularly preferred are substituted or unsubstituted ester groups.
  • any one of R 1 to R 7 be a group represented by the following general formula (5).
  • M is a linking group and is selected from a single bond, an alkylene group, an arylene group and a heteroarylene group.
  • Each R 10 is independently a substituted or unsubstituted alkyl group.
  • M and n are natural numbers.
  • -OR 10 is an alkoxy group, and its bulkiness can prevent quenching due to aggregation of molecules.
  • m is 2 or more and 7 or less.
  • the aggregation inhibitory effect is preferably improved, and when m is 3 or more, the entire molecule can be covered with a bulky substituent, so that quenching due to aggregation of the molecules can be prevented. And is more preferable in that high luminous efficiency can be realized. More preferably, m is 4 or more.
  • n is preferably independently 1 or more and 5 or less, more preferably 1 or more and 3 or less, and still more preferably 1 from the viewpoint of improving the light emission efficiency of the light emitting material.
  • M is a group other than a single bond
  • the group becomes a spacer between the pyrromethene skeleton and -OR 10.
  • M is preferably selected from an alkylene group, an arylene group and a heteroarylene group.
  • arylene groups and heteroarylene groups having high rigidity are preferable, and phenylene groups are particularly preferable because the twist of carbon-carbon bond does not become excessively large.
  • R 10 examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl and hexyl groups. Although not particularly limited, a methyl group is preferable in terms of easiness of synthesis.
  • R 1 , R 3 , R 4 and R 6 be a group represented by the general formula (5), since the aggregation suppressing effect is improved, R 1 , R 3 , R 4 and R 6 More preferably, at least three of the groups are groups represented by the general formula (5). Furthermore, when all of R 1 , R 3 , R 4 and R 6 are a group represented by general formula (5), it is particularly preferable because the whole molecule can be covered with a bulky substituent.
  • R 7 is a group represented by the general formula (4), or R 7 is a group represented by the general formula (5) preferable.
  • R 1 , R 3 , R 4 and R 6 may be the same or different, and Ar ⁇ It is selected from 1 to Ar-6, and further, the case where X is C—R 7 and R 7 is an aryl group substituted with a substituted aryl group, particularly preferably a methoxy group is mentioned.
  • the compound represented by the general formula (3) can be produced, for example, by the method described in JP-A-8-509471 or JP-A-2000-208262. That is, the desired pyrromethene metal complex can be obtained by reacting the pyrromethene compound and the metal salt in the presence of a base.
  • a method of producing a carbon-carbon bond using a coupling reaction of a halogenated derivative and a boronic acid or a boronic acid esterified derivative can be mentioned, but the method is limited thereto It is not something to be done.
  • a method of producing a carbon-nitrogen bond using a coupling reaction of a halogenated derivative with an amine or a carbazole derivative under a metal catalyst such as palladium is known. Although it is mentioned, it is not limited to this.
  • the color conversion composition of the present invention can appropriately contain other compounds, if necessary, in addition to the compound represented by the general formula (3).
  • an assist dopant such as rubrene may be contained.
  • the above-mentioned organic luminescent material can be added.
  • known light emitting materials such as inorganic phosphors, fluorescent pigments, fluorescent dyes, and quantum dots may be added in combination.
  • organic light emitting material other than the compound represented by the general formula (3) are shown below, but the invention is not particularly limited thereto.
  • the color conversion composition of the present invention is a light emitting material (hereinafter referred to as "light emitting material (a)") which emits light observed in a region of peak wavelength of 500 nm to 580 nm by using excitation light of wavelength 430 nm to 500 nm. Is preferably included.
  • light emission observed in the region of 500 nm to 580 nm peak wavelength is referred to as “green light emission”.
  • the larger the energy of the excitation light the more easily decomposition of the material occurs, but since the excitation light in the wavelength range of 430 nm to 500 nm is a relatively small excitation energy, it causes decomposition of the light emitting material in the color conversion composition. Instead, green light with good color purity can be obtained.
  • the color conversion composition of the present invention comprises (a) a light emitting material which emits light having a peak wavelength of 500 nm to 580 nm by using excitation light in a wavelength range of 430 nm to 500 nm, and (b) a light emitting material having a wavelength of 430 nm to 500 nm
  • a light emitting material (hereinafter referred to as “light emitting material (b), which emits light observed in a region of a peak wavelength of 580 nm or more and 750 nm or less by being excited by either or both of the range of excitation light and light emission from the light emitting material (a) And the like) is preferred.
  • light emission observed in a region of a peak wavelength of 580 nm or more and 750 nm or less is referred to as “red light emission”.
  • coumarin derivatives such as coumarin 6, coumarin 7 and coumarin 153
  • cyanine derivatives such as indocyanine green
  • fluorescein derivatives such as fluorescein, fluorescein isothiocyanate, carboxyfluorescein diacetate
  • phthalocyanine derivatives such as phthalocyanine green Perylene derivatives such as diisobutyl-4,10-dicyanoperylene-3,9-dicarboxylate, etc.
  • pyromethene derivatives stilbene derivatives, oxazine derivatives, naphthalimide derivatives, pyrazine derivatives, benzoimidazole derivatives, benzoxazole derivatives, benzothiazole derivatives
  • pyrromethene derivatives are particularly preferable compounds because they give high fluorescence quantum yield and good durability, and among them, compounds represented by the general formula (3) exhibit luminescence with high color purity. It is preferable from
  • cyanine derivatives such as 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostillyl) -4H-pyran, rhodamine B, rhodamine 6G, rhodamine 101, sulforhodamine 101, etc.
  • Rhodamine derivatives pyridine derivatives such as 1-ethyl-2- (4- (p-dimethylaminophenyl) -1,3-butadienyl) -pyridinium perchlorate, N, N'-bis (2,6-diisopropylphenyl) Perylene derivatives such as -1,6,7,12-tetraphenoxyperylene-3,4: 9,10-bisdicarboximide, porphyrin derivatives, pyrromethene derivatives, oxazine derivatives, pyrazine derivatives, naphthacene and dibenzodiindeno Compounds having a fused aryl ring such as perylene, derivatives thereof, organic metals Body compounds, and the like as preferred but not particularly limited thereto.
  • pyridine derivatives such as 1-ethyl-2- (4- (p-dimethylaminophenyl) -1,3-butadienyl) -pyridinium
  • pyrromethene derivatives are particularly preferable compounds because they give high fluorescence quantum yield and good durability, and among them, compounds represented by the general formula (3) exhibit luminescence with high color purity. It is preferable from
  • the content of the component (A) in the color conversion composition of the present invention depends on the molar absorptivity of the compound, the fluorescence quantum yield and the absorption intensity at the excitation wavelength, and the thickness and transmittance of the film to be produced.
  • the amount is 1.0 ⁇ 10 ⁇ 4 to 30 parts by weight, and more preferably 1.0 ⁇ 10 ⁇ 3 to 10 parts by weight, with respect to 100 parts by weight of the component (B). Particularly preferred is 0 ⁇ 10 ⁇ 2 parts by weight to 5 parts by weight.
  • the color conversion composition contains both a light emitting material (a) exhibiting green light emission and a light emitting material (b) exhibiting red light emission
  • part of the green light emission is converted to red light emission since the content of w a of the light-emitting material (a), the content w b of the luminescent material (b) is, w a ⁇ w is preferably a relationship of b
  • w a and w b are weight percent relative to the weight of the component (B).
  • the resin of component (B) contains, in the molecular structure, a partial structure represented by the general formula (1) and a partial structure represented by the general formula (2).
  • Z 1 and Z 2 may be the same or different, and are a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • Y 1 to Y 4 may be the same or different and each is a hydrogen atom or an organic group having 1 to 20 carbon atoms, and at least one of Y 1 to Y 4 Is a group containing an aliphatic cyclic hydrocarbon structure.
  • the light emitting material contained in the color conversion composition of the present invention is excited by light, but since the light emitting material in the excited state has high reactivity, degradation is promoted when the light emitting materials in the excited state approach each other. Therefore, in order to improve the durability of the light emitting material contained in the color conversion composition of the present invention, it is preferable that the light emitting material be well dispersed without aggregation in the resin.
  • the resin has a partial structure having high compatibility with the light emitting material and a partial structure having low compatibility.
  • the resin it is preferable to be a copolymer which randomly contains a highly compatible partial structure and a poorly compatible partial structure.
  • the light emitting material of the component (A) contained in the color conversion composition of the present invention has good compatibility with the partial structure represented by the general formula (1) in the resin of the component (B).
  • the partial structure represented by 2) is characterized in that the compatibility is not good. Therefore, when the resin of the component (B) has both the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2), the light emitting material of the component (A) is the component (B).
  • the resin can be well dispersed in the resin, and high durability can be realized. This effect is greater when the light emitting material of the component (A) is an organic light emitting material, and is further enhanced when the component (A) contains a compound represented by the general formula (3).
  • the light emitting material contained in the color conversion composition of the present invention may be subjected to radical oxidation to be decomposed / deteriorated by a functional group contained in a molecule of a resin or a radical derived from hygroscopic water.
  • resin is resin which is excellent in heat resistance.
  • Z 1 is preferably a hydrogen atom or a methyl group, and a methyl group More preferable.
  • Z 2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocyclic group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a thiol group, an alkoxy group, an alkylthio group, An aryl ether group, an aryl thioether group, an aryl group or a heteroaryl group is preferred. Moreover, these groups may be further substituted by the above-mentioned substituent.
  • the alkyl group is, for example, a saturated aliphatic hydrocarbon group such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, etc. Or may not have.
  • the carbon number of the alkyl group is not particularly limited, but is preferably 1 or more and 20 or less, more preferably 1 or more and 8 or less, from the viewpoint of availability and cost.
  • the cycloalkyl group is, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl group, cyclohexyl group, norbornyl group, adamantyl group and the like, which may or may not have a substituent.
  • the carbon number of the alkyl group moiety is not particularly limited, but preferably in the range of 3 or more and 20 or less.
  • Z 2 is more preferably a methyl group.
  • Y 1 to Y 4 are hydrogen, an alkyl group, a cycloalkyl group, a heterocyclic ring Groups, alkenyl groups, cycloalkenyl groups, alkynyl groups, hydroxyl groups, thiol groups, alkoxy groups, alkylthio groups, arylether groups, arylthioether groups, aryl groups or heteroaryl groups are preferable. Moreover, these groups may be further substituted by the above-mentioned substituent.
  • At least one of Y 1 to Y 4 is a group containing an aliphatic cyclic hydrocarbon structure.
  • the aliphatic cyclic hydrocarbon structure include a substituted or unsubstituted saturated cyclic hydrocarbon (cycloalkyl) structure, an unsaturated cyclic hydrocarbon (cycloalkenyl) structure, and the like.
  • a saturated cyclic hydrocarbon (cycloalkyl) structure is preferable from the viewpoint of durability.
  • the number of carbon atoms constituting the aliphatic cyclic hydrocarbon structure is not particularly limited, but is usually in the range of 4 to 30, preferably 5 to 20, and more preferably 5 to 15.
  • saturated cyclic hydrocarbon (cycloalkyl) structure examples include, for example, styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, p-hydroxystyrene, p-methylstyrene, p-ethylstyrene, p-isopropylstyrene, p- Hydrogenated aromatic ring part of the polymer of vinyl aromatic monomers such as divinylbenzene, alkoxystyrene, chlorostyrene, stilbene, 1-vinylnaphthalene, diphenylethylene, triphenylethylene, tetraphenylethylene, 4-vinylbiphenyl Etc. It is also possible to use a vinyl monomer having a saturated cyclic hydrocarbon structure such as vinylcyclohexane as a raw material.
  • Y 1 to Y 4 is a group containing an aliphatic cyclic hydrocarbon structure
  • the combination thereof is not particularly limited, but from the viewpoint of availability and cost
  • the content of the repeating unit of the partial structure represented by the general formula (1) in the resin of the component (B) contained in the color conversion composition of the present invention is not particularly limited, the content of the resin of the component (B) Of the total amount, 30% by weight or more is preferable, 50% by weight or more is more preferable, 60% by weight or more is more preferable, and 70% by weight or more is particularly preferable.
  • the ratio of the repeating unit of the partial structure represented by the general formula (1) is in the above range, the compatibility with the light emitting material can be ensured, and higher durability can be obtained.
  • the content of the repeating unit of the partial structure represented by the general formula (1) in the resin of the component (B) contained in the color conversion composition of the present invention is the total amount of the resin of the component (B). 95 weight% or less is preferable, 90 weight% or less is more preferable, and 85 weight% or less is more preferable.
  • the ratio of the repeating unit of the partial structure represented by the general formula (1) is in the above range, when the color conversion composition is a film, the crack resistance is excellent.
  • the content of the repeating unit of the partial structure represented by the general formula (2) in the resin of the component (B) contained in the color conversion composition of the present invention is not particularly limited, the content of the resin of the component (B) Of the total amount, 5% by weight or more is preferable, 10% by weight or more is more preferable, and 15% by weight or more is particularly preferable.
  • the content of the repeating unit of the partial structure represented by the general formula (2) is in the above range, the dispersibility of the light emitting material can be secured, and higher durability can be obtained.
  • the content of the repeating unit of the partial structure represented by the general formula (2) is the total amount of the resin of the component (B). 70 weight% or less is preferable, 50 weight% or less is more preferable, and 30 weight% or less is more preferable.
  • the ratio of the repeating unit of the partial structure represented by the general formula (2) is in the above range, the compatibility with the light emitting material can be secured, and when the color conversion composition is a film, the emission intensity is excellent.
  • the weight average molecular weight (Mw) of the resin of component (B) is 5,000 or more, preferably 15,000 or more, more preferably 20,000 or more, and further 500,000 or less, preferably 100,000 or less, More preferably, it is 50,000 or less.
  • Mw weight average molecular weight
  • the weight average molecular weight is within the above range, a color conversion composition having good compatibility with the light emitting material and higher durability can be obtained.
  • the weight average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC method). Specifically, after filtering the sample through a membrane filter with a pore size of 0.45 ⁇ m, GPC (HLC-82A manufactured by Tosoh Corp.) (developing solvent: toluene, developing speed: 1.0 ml / min, column: Tosoh Corp. TSKgel G2000 HXL ) Is a value determined by polystyrene conversion.
  • GPC gel permeation chromatography
  • the glass transition temperature (Tg) of the resin of the component (B) is preferably 50 to 200 ° C., and more preferably 100 to 160 ° C. Within the above range, higher durability can be obtained in the color conversion film formed from the composition.
  • the glass transition temperature can be measured by a commercially available measuring instrument [for example, a differential scanning calorimeter manufactured by Seiko Instruments Inc. (trade name: DSC 6220, temperature rising rate 0.5 ° C./min)].
  • a commercially available measuring instrument for example, a differential scanning calorimeter manufactured by Seiko Instruments Inc. (trade name: DSC 6220, temperature rising rate 0.5 ° C./min)].
  • the synthesis method of these resins is not particularly limited, and a known method, for example, a method of copolymerizing each raw material monomer in the presence of a polymerization initiator can be appropriately used, or a commercially available product can also be used. .
  • a commercial item applicable to resin of (B) component although Mitsubishi Gas Chemical Co., Ltd. product Optimas 7500, Optimas 6000, etc. are mentioned, It is not limited to these.
  • thermoplastic resin The color conversion composition of the present invention preferably further comprises a thermoplastic resin (C) different from the resin of the component (B).
  • the thermoplastic resin (C) include photocurable resist materials having a reactive vinyl group such as acrylic, methacrylic, polyvinyl cinnamate, polyimide, and ring rubber, epoxy resin, silicone resin ( Silicone rubber, organopolysiloxane cured product (including crosslinked product) such as silicone gel, urea resin, fluorine resin, polycarbonate resin, acrylic resin, methacrylic resin, polyimide resin, polyethylene terephthalate resin, polypropylene resin, polystyrene resin, urethane Resin, melamine resin, polyvinyl resin, polyamide resin, phenol resin, polyvinyl alcohol resin, cellulose resin, aliphatic ester resin, aromatic ester resin, aliphatic polyolefin resin, aromatic polyolefin resin, polystyrene resin, styrene resin, s
  • these copolymer resins may be used, or two or more types may be mixed.
  • these resins from the viewpoints of transparency, heat resistance, etc., polymers of acrylic resins, methacrylic resins, polystyrene resins, or vinyl aromatic monomers such as styrene and ⁇ -methylstyrene, and hydrogen of the aromatic ring portion thereof It is preferable that it is a halide.
  • the content of the thermoplastic resin (C) is preferably 1 to 2000 parts by weight, more preferably 5 to 500 parts by weight, and 10 parts by weight, based on 100 parts by weight of the component (B). Particularly preferred is at least 50 parts by weight. If the content of the thermoplastic resin (C) is within the above range, the peak wavelength and / or half width of the light emitting material can be controlled to further improve the color reproducibility.
  • the color conversion composition of the present invention comprises, in addition to the component (A) and the component (B), a filler, an antioxidant, a processing and heat stabilizer, a light fastness stabilizer such as an ultraviolet light absorber, and a coating film stable. Aids such as dispersing agents for leveling, leveling agents, plasticizers, crosslinking agents such as epoxy compounds, curing agents such as amines, acid anhydrides and imidazoles, pigments, adhesion promoters such as silane coupling agents as modifiers for film surface It is also possible to add etc.
  • filler examples include fine particles of fumed silica, glass powder, quartz powder and the like, titanium oxide, zirconia oxide, barium titanate, zinc oxide and silicone fine particles, but are not particularly limited. These fillers may be used alone or in combination of two or more.
  • antioxidants examples include phenol based antioxidants such as 2,6-di-tert-butyl-p-cresol and 2,6-di-tert-butyl-4-ethylphenol, which are not particularly limited. It is not a thing. These antioxidants may be used alone or in combination of two or more.
  • processing and heat stabilizers include, but are not particularly limited to, phosphorus-based stabilizers such as tributyl phosphite, tricyclohexyl phosphite, triethyl phosphine, diphenylbutyl phosphine and the like.
  • phosphorus-based stabilizers such as tributyl phosphite, tricyclohexyl phosphite, triethyl phosphine, diphenylbutyl phosphine and the like.
  • these stabilizers may be used alone or in combination of two or more.
  • the light resistance stabilizer for example, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis ( ⁇ , ⁇ -dimethylbenzyl) phenyl] -2H-
  • benzotriazoles such as benzotriazole
  • these light resistance stabilizers may be used alone or in combination of two or more.
  • the content of these additives in the color conversion composition of the present invention depends on the molar absorption coefficient of the compound, the fluorescence quantum yield and the absorption intensity at the excitation wavelength, and the thickness and transmittance of the film to be produced, It is more preferably 1.0 ⁇ 10 ⁇ 3 parts by weight or more and 30 parts by weight or less and 1.0 ⁇ 10 ⁇ 2 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the component (B). It is particularly preferable that the amount is 1.0 ⁇ 10 ⁇ 1 to 10 parts by weight.
  • the color conversion composition of the present invention may contain a solvent.
  • the solvent is not particularly limited as long as it can adjust the viscosity of the resin in a fluidized state and does not excessively affect the light emission and the durability of the luminescent material.
  • water, 2-propanol, ethanol, toluene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, hexane, acetone, ethyl acetate, butyl acetate, terpineol, texanol, methyl cellosolve, ethyl cellosolve, butyl carbitol, butyl carbitol acetate 1-methoxy-2-propanol, propylene glycol monomethyl ether acetate, etc. may be mentioned, and it is also possible to use two or more of these solvents in combination.
  • toluene is particularly preferably used in that it does not affect the deterioration of the compound represented by the general formula (3) and the residual solvent after drying is small.
  • the color conversion film is not limited in its configuration as long as it contains a layer obtained by drying or curing the color conversion composition.
  • a color conversion film as shown in FIG. 1, a laminate of a base material layer 10 and a color conversion layer 11 obtained by curing a color conversion composition, or shown in FIG. Thus, a laminate in which the color conversion layer 11 is sandwiched by a plurality of base layers 10 is mentioned.
  • the color conversion film may be further provided with a barrier film 12 as shown in FIG. 3 in order to prevent deterioration of the color conversion layer due to oxygen, moisture or heat.
  • the thickness of the color conversion film is not particularly limited, but the total of all layers is preferably 1 to 5000 ⁇ m. If it is smaller than 1 ⁇ m, there is a problem that the toughness of the film is reduced. If it exceeds 5000 ⁇ m, cracks are likely to occur, and it is difficult to form a color conversion film. More preferably, it is 10 to 1000 ⁇ m, still more preferably 15 to 500 ⁇ m, and particularly preferably 30 to 300 ⁇ m.
  • the film thickness related to the color conversion film in the present invention is a film thickness measured based on JIS K 7130 (1999) plastic film and sheet thickness measurement method by mechanical scanning method A method (average film thickness Say).
  • the substrate layer known metals, films, glasses, ceramics, paper and the like can be used without particular limitation. Specifically, metal plates and foils of aluminum (including aluminum alloy), zinc, copper, iron, etc., cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polyphenylene sulfide, polystyrene, polypropylene, polycarbonate , Polyvinyl acetal, aramid, silicone, polyolefin, thermoplastic fluorine resin, plastic film such as copolymer of tetrafluoroethylene and ethylene (ETFE), ⁇ -polyolefin resin, polycaprolactone resin, acrylic resin, silicone resin, and these Film made of a copolymer of ethylene and ethylene, paper laminated with the plastic, or paper coated with the plastic, front Paper metal is laminated or deposited, the metals and plastic film laminated or deposited.
  • the substrate is a metal plate, the surface may be
  • glass and resin films are preferably used in view of easiness of preparation of the color conversion film and easiness of formation of the color conversion film.
  • a film having high strength is preferable so that there is no fear of breakage or the like when handling the film-like substrate.
  • Resin films are preferable in terms of their required properties and economy, and among these, plastic films selected from the group consisting of PET, polyphenylene sulfide, polycarbonate and polypropylene in terms of economy and handleability are preferable.
  • plastic films selected from the group consisting of PET, polyphenylene sulfide, polycarbonate and polypropylene in terms of economy and handleability are preferable.
  • a polyimide film is preferable in terms of heat resistance. From the ease of peeling of the film, the surface of the substrate layer may be subjected to release treatment in advance.
  • the thickness of the base material layer is not particularly limited, but the lower limit is preferably 5 ⁇ m or more, more preferably 25 ⁇ m or more, and still more preferably 38 ⁇ m or more. Moreover, as an upper limit, 5000 micrometers or less are preferable, and 3000 micrometers or less are more preferable.
  • Drying of the color conversion layer can be performed using a general heating device such as a hot air dryer or an infrared dryer.
  • a general heating device such as a hot air dryer or an infrared dryer is used.
  • the heating conditions are usually 40 minutes to 250 ° C. for 1 minute to 5 hours, preferably 60 ° C. to 200 ° C. for 2 minutes to 4 hours.
  • the substrate After producing the color conversion layer, it is also possible to change the substrate as needed.
  • a method of attaching using a hot plate, a method using a vacuum laminator or a dry film laminator, and the like can be mentioned, but the method is not limited thereto.
  • the thickness of the color conversion layer is not particularly limited, but is preferably 1 to 1000 ⁇ m, and more preferably 10 to 1000 ⁇ m. If it is smaller than 1 ⁇ m, there is a problem that the toughness of the film is reduced. If it exceeds 1000 ⁇ m, cracking is likely to occur, and it is difficult to form a color conversion film. More preferably, it is 10 to 100 ⁇ m, still more preferably 15 to 100 ⁇ m, and particularly preferably 30 to 100 ⁇ m.
  • the barrier film is suitably used in the case of improving the gas barrier property to the color conversion layer, etc.
  • Inorganic oxides such as magnesium, inorganic nitrides such as silicon nitride, aluminum nitride, titanium nitride and silicon carbonitride, or mixtures thereof, or metal oxide thin films and metal nitride thin films obtained by adding other elements to these
  • films made of various resins such as polyvinylidene chloride, acrylic resins, silicone resins, melamine resins, urethane resins, fluorine resins, polyvinyl alcohol resins such as saponified vinyl acetate, and the like can be mentioned.
  • a film having a barrier function against moisture for example, polyethylene, polypropylene, nylon, polyvinylidene chloride, vinylidene chloride and vinyl chloride, copolymer of vinylidene chloride and acrylonitrile, fluorocarbon resin, saponified vinyl acetate And films made of various resins such as polyvinyl alcohol resins.
  • the barrier film may be provided on both sides of the color conversion layer 12 as shown in FIG. 3 or may be provided on only one side.
  • auxiliary layer having a shield function, an infrared cut function, an ultraviolet cut function, a polarization function, and a toning function may be further provided.
  • any excitation light can be used as long as it emits light in a wavelength range in which the mixed light-emitting substance such as the compound represented by the general formula (3) can absorb.
  • any excitation light such as a hot cathode tube, a cold cathode tube, a fluorescent light source such as inorganic EL, an organic electroluminescent element light source, an LED light source, an incandescent light source, or sunlight can in principle be used.
  • An LED is a preferred excitation light, and in display and lighting applications, a blue LED having a 430 to 500 nm range excitation light is a further preferred excitation light in that the color purity of the blue light can be enhanced.
  • the light emitting substance such as the compound to be represented or the organic compound such as the resin is not preferable because it is easily photo-degraded.
  • the excitation light may have one type of emission peak or may have two or more types of emission peaks, but in order to enhance color purity, it is preferable to have one type of emission peak. Further, it is also possible to use a plurality of excitation light sources of different types of emission peaks in arbitrary combination.
  • the light source unit in the present invention is configured to include at least a light source and a color conversion composition or a color conversion film.
  • the arrangement method of the light source and the color conversion composition is not particularly limited, and the color conversion composition may be directly applied to the light source, or a film separated from the light source The color conversion composition may be applied to glass or the like.
  • the arrangement method of the light source and the color conversion film is not particularly limited, and the light source and the color conversion film may be in close contact with each other. It may take a fur format.
  • a configuration including a color filter may be adopted.
  • the excitation light in the range of 430 to 500 nm is a relatively small excitation energy, and the decomposition of the light-emitting substance such as the compound represented by the general formula (3) can be prevented. It is preferable that it is a light emitting diode having maximum light emission.
  • the light source unit in the present invention is useful for various light sources such as space lighting, back light, etc. Specifically, it can be used for display, lighting, interior, sign, signboard, etc. applications, but especially for display and lighting applications It is preferably used.
  • compounds G-1 and R-1 are the compounds shown below.
  • a current of 100 mA is applied to a light emitting device equipped with each color conversion film and a blue LED (made by USHIO EPITEX; model number SMBB450H-1100, emission peak wavelength: 450 nm) to turn on the blue LED, and a spectral radiance meter (CS-1000
  • the emission spectrum and the emission intensity and chromaticity at the peak wavelength were measured using Konica Minolta Co., Ltd.).
  • the distance between each color conversion film and the blue LED element was 3 cm.
  • a current of 100 mA is applied to a light emitting device equipped with each color conversion film and a blue LED (made by USHIO EPITEX; model number SMBB450H-1100, emission peak wavelength: 450 nm) to turn on the blue LED, and a spectral radiance meter (CS-1000 Initial brightness was measured using Konica Minolta Co., Ltd.). The distance between each color conversion film and the blue LED element was 3 cm. Thereafter, the durability of the color conversion film was evaluated by continuously irradiating the light from the blue LED element under an environment of 50 ° C. and observing the time until the luminance decreased by 10% from the initial value.
  • a liquid crystal monitor (SW2700PT) manufactured by BenQ Inc. was disassembled, and color conversion sheets prepared in Examples and Comparative Examples described later were inserted instead of the built-in color conversion sheets, and then assembled as they were.
  • the configuration of the backlight unit at this time was “reflection film / light guide plate / diffusion sheet / color conversion sheet / prism sheet / polarization reflection film”.
  • the respective color coordinates in the (x, y) color space when single colors of blue, green and red were displayed on the obtained monitor were measured using a spectroradiometer (CS-1000, manufactured by Konica Minolta).
  • the area of the color gamut was calculated from the color coordinates of the three obtained points, and the area ratio to the color gamut area of the DCI-P3 standard was calculated.
  • the area ratio of 100% or more is good, and the area ratio of 110% or more is very good.
  • Synthesis example 1 Synthesis Method of Compound G-1 An aqueous solution prepared by dissolving potassium hydroxide (166 g) in ethyl 2,4-dimethylpyrrole-3-carboxylate (100 g), methanol (522 mL) and water (261 mL) was charged into a flask for 4 hours Refluxed. Thereafter, methanol was distilled off by distillation and cooled to an internal temperature of 10 ° C. or less using an ice bath. The pH was adjusted to 1 by dropwise addition of 247 mL of concentrated hydrochloric acid in an ice bath. The precipitated brown solid was filtered and the solid was washed with water to give 2,4-dimethyl-pyrrole-3-carboxylic acid (74 g) as a pale brown solid.
  • G-2 Coumarin 6 manufactured by SIGMA-ALDRICH was used.
  • G-3 Quantum dots made from SIGMA-ALDRICH (Product No. 753777) were used.
  • Synthesis example 2 Synthesis Method of Compound R-1 A mixed solution of 300 mg of 4- (4-t-butylphenyl) -2- (4-methoxyphenyl) pyrrole, 201 mg of 2-methoxybenzoyl chloride and 10 ml of toluene was heated at 120 ° C. under a nitrogen stream. Heated for time. After cooling to room temperature, it was evaporated. After washing with 20 ml of ethanol and vacuum drying, 260 mg of 2- (2-methoxybenzoyl) -3- (4-t-butylphenyl) -5- (4-methoxyphenyl) pyrrole was obtained.
  • R-2 "Lumogen” (registered trademark) F Red 300 manufactured by BASF was used as an organic light emitting material other than the compound represented by the general formula (3).
  • R-3 Quantum dots made from SIGMA-ALDRICH (Product No. 753882) were used.
  • the polymerization solution was withdrawn from the bottom so as to keep the liquid level in the polymerization tank constant, and was introduced into an extruder equipped with a vent port while maintaining the temperature at 150 ° C. to extrude the resin while devolatilizing the volatile components.
  • the obtained resin was dissolved in dioxane to prepare a 10 wt% dioxane solution.
  • 500 parts by weight of a 10% by weight dioxane solution and 1 part by weight of 10% by weight Pd / C are charged in a 1000 mL autoclave and kept at 200 ° C. for 15 hours under a hydrogen pressure of 10 MPa.
  • the hydrogenation reaction of the aromatic ring derived from was performed.
  • resin A was obtained by purifying the resulting resin solution in methanol.
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin A was calculated by 1 H-NMR measurement. It was found that the resin contained 30.0% by weight of the partial structure represented by 1) and 70.0% by weight of the partial structure represented by the general formula (2). Further, it was found that among Y 1 to Y 4 of the partial structure represented by the general formula (2), one is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin B A monomer comprising 49.0% by weight of methyl methacrylate and 51.0% by weight of styrene as a monomer component, and 0.005% by weight of t-amylperoxy 2-ethylhexanoate as a polymerization initiator A resin B was synthesized in the same manner as the resin A except that the composition was used.
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin B was calculated by 1 H-NMR measurement. It was found that the resin contained 50.0% by weight of the partial structure represented by 1) and 50.0% by weight of the partial structure represented by the general formula (2). Further, it was found that among Y 1 to Y 4 of the partial structure represented by the general formula (2), one is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin C A monomer comprising 59.0% by weight of methyl methacrylate and 41.0% by weight of styrene as monomer components, and 0.005% by weight of t-amylperoxy 2-ethylhexanoate as a polymerization initiator A resin C was synthesized in the same manner as the resin A except that the composition was used.
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin C was calculated by 1 H-NMR measurement. It was found that the resin contained 60.0% by weight of the partial structure represented by 1) and 40.0% by weight of the partial structure represented by the general formula (2). Further, it was found that among Y 1 to Y 4 of the partial structure represented by the general formula (2), one is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin D A monomer comprising, as monomer components, 74.5% by weight of methyl methacrylate and 24.5% by weight of styrene, and 0.005% by weight of t-amylperoxy 2-ethylhexanoate as a polymerization initiator
  • a resin D was synthesized by performing the same operation as the resin A except that the composition was used.
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin D was calculated by 1 H-NMR measurement. It was found that the resin contained 75.0% by weight of the partial structure represented by 1) and 25.0% by weight of the partial structure represented by the general formula (2). Further, it was found that one of Y 1 to Y 4 of the partial structure represented by the general formula (2) is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin E Monomer Component 84.0% by weight of methyl methacrylate and 16.0% by weight of styrene, and 0.005% by weight of t-amylperoxy 2-ethylhexanoate as a polymerization initiator
  • a resin E was synthesized in the same manner as the resin A except that the composition was used.
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin E was calculated by 1 H-NMR measurement. It was found that the resin contained 85.0% by weight of the partial structure represented by 1) and 15.0% by weight of the partial structure represented by the general formula (2). Further, it was found that one of Y 1 to Y 4 of the partial structure represented by the general formula (2) is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin F A monomer comprising 94.5% by weight of methyl methacrylate and 5.5% by weight of styrene as a monomer component, and 0.005% by weight of t-amylperoxy 2-ethylhexanoate as a polymerization initiator A resin F was synthesized in the same manner as the resin A except that the composition was used.
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin F was calculated by 1 H-NMR measurement. It was found that the resin contained 95.0% by weight of the partial structure represented by 1) and 5.0% by weight of the partial structure represented by the general formula (2). Further, it was found that one of Y 1 to Y 4 of the partial structure represented by the general formula (2) is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin G Optimas 6000 (PMMA-hydrogenated styrene copolymer manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used.
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin G was calculated by 1 H-NMR measurement. It was found that the resin contained 61.0% by weight of the partial structure represented by 1) and 39.0% by weight of the partial structure represented by the general formula (2). Further, it was found that one of Y 1 to Y 4 of the partial structure represented by the general formula (2) is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin H Optimas 7500 (PMMA-hydrogenated styrene copolymer manufactured by Mitsubishi Gas Chemical Co., Ltd.) was used.
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin H was calculated by 1 H-NMR measurement. It was found that the resin contained 77.0% by weight of the partial structure represented by 1) and 23.0% by weight of the partial structure represented by the general formula (2). Further, it was found that one of Y 1 to Y 4 of the partial structure represented by the general formula (2) is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin I As monomer components, 75.0% by weight of methyl acrylate and 25.0% by weight of styrene, and 0.005% by weight of t-amylperoxy 2-ethylhexanoate as a polymerization initiator A resin I was synthesized in the same manner as the resin A except that the monomer composition was used.
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin I was calculated by 1 H-NMR measurement. It was found that the resin contained 75.7% by weight of the partial structure represented by 1) and 24.3% by weight of the partial structure represented by the general formula (2). Further, it was found that one of Y 1 to Y 4 of the partial structure represented by the general formula (2) is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin J BR-85 (manufactured by Mitsubishi Chemical Corporation, PMMA) was used.
  • Resin K Monomer composition containing 100.0% by weight of styrene as a monomer component and 0.005% by weight of t-amylperoxy 2-ethylhexanoate as a polymerization initiator The same operation as in resin A was carried out to synthesize resin K.
  • the resin K was a resin containing 100% by weight of the structure represented by the general formula (2). Further, it was found that one of Y 1 to Y 4 of the partial structure represented by the general formula (2) is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin L Septon V9827 (Kuraray Co., Ltd. product hydrogenated styrene-ethylene-butylene-styrene copolymer) was used.
  • Resin L has a partial structure represented by the general formula (2), and one of Y 1 to Y 4 is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms, but the general formula
  • the partial structure represented by (1) is a resin not included.
  • Resin M A monomer comprising, as monomer components, 74.5% by weight of ethyl methacrylate and 24.5% by weight of styrene, and 0.005% by weight of t-amylperoxy 2-ethylhexanoate as a polymerization initiator
  • resin M was synthesized in the same manner as the resin A except that the composition was used.
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin M was calculated by 1 H-NMR measurement. It was found that the resin contained 75.0% by weight of the partial structure represented by 1) and 25.0% by weight of the partial structure represented by the general formula (2). Further, it was found that one of Y 1 to Y 4 of the partial structure represented by the general formula (2) is an unsubstituted cyclohexyl group, and the other three are hydrogen atoms.
  • Resin N As monomer components, 74.5% by weight of methyl methacrylate and 24.5% by weight of 1-vinylnaphthalene and 0.005% by weight of t-amylperoxy 2-ethylhexanoate as a polymerization initiator
  • the resin N was synthesized in the same manner as the resin A except that the monomer composition consisting of
  • the content of the partial structure represented by the general formula (1) and the partial structure represented by the general formula (2) in the resin N was calculated by 1 H-NMR measurement. It was found that the resin contained 75.0% by weight of the partial structure represented by 1) and 25.0% by weight of the partial structure represented by the general formula (2). Further, it was found that one of Y 1 to Y 4 of the partial structure represented by the general formula (2) is an unsubstituted decahydronaphthyl group, and the other three are hydrogen atoms.
  • Examples 1 to 9 After mixing 0.40 parts by weight of the compound G-1, 0.01 parts by weight of the compound R-1, and 300 parts by weight of toluene as a solvent with respect to 100 parts by weight of a resin, a planetary stirring / defoaming apparatus “Mazerustar” Stirring and degassing with 1000 rpm for 20 minutes using KK-400 ′ ′ (manufactured by Kurabo Industries, Ltd.) was performed to obtain a color conversion composition as a resin liquid for producing a color conversion layer. Resins used in preparation of the color conversion layer forming resin liquid in each example are as shown in Table 2.
  • the color conversion composition is applied on "Lumirror" U48 (manufactured by Toray Industries, Inc., thickness 50 ⁇ m), heated at 120 ° C. for 20 minutes and dried to give an average film thickness of 20 ⁇ m. A color conversion layer was formed.
  • the above resin composition is applied as an adhesive composition to the PET base layer side of a light diffusion film “chemical mat” 125PW (manufactured by Kimoto Corporation, thickness 138 ⁇ m) using a slit die coater, 120 C. for 20 minutes and dried to form an adhesive layer having an average film thickness of 15 .mu.m.
  • the relative value of the light emission intensity at the peak wavelength of the green light emission in each example when the color conversion characteristic is measured by the above-mentioned method and the green light emission intensity in Comparative Example 1 described later is 1.00
  • the relative value of the light emission intensity at the peak wavelength of the red light emission in each example when the light emission intensity of red in Comparative Example 1 was 1.00 was calculated. Further, the light durability test was conducted by the method described above. The results are shown in Table 2.
  • the color conversion sheet prepared in each example was inserted in place of the color conversion sheet built in the liquid crystal monitor (SW2700PT) manufactured by BenQ, and then assembled as it was.
  • the color coordinates in the (x, y) color space when displaying single colors of blue, green and red on the obtained monitor were measured using a spectroradiometer (CS-1000, manufactured by Konica Minolta).
  • the area of the color gamut was calculated from the color coordinates of the three obtained points, and the area ratio to the color gamut area of the DCI-P3 standard was calculated. The results are shown in Table 2.
  • Example 10 A color conversion film was produced in the same manner as in Example 4 except that G-2 and R-2 were used as light emitting materials when producing the color conversion composition for producing a color conversion layer.
  • green light emission having a peak wavelength of 535 nm and a half width of 80 nm of the light emission spectrum at the peak wavelength is obtained.
  • red emission with a half width of 55 nm of the emission spectrum at a peak wavelength of 615 nm was obtained.
  • the relative value of the light emission intensity at the peak wavelength of the green light emission in each example when the color conversion characteristic is measured by the above-mentioned method and the green light emission intensity in Comparative Example 1 described later is 1.00
  • the relative value of the light emission intensity at the peak wavelength of the red light emission in each example when the light emission intensity of red in Comparative Example 1 was 1.00 was calculated.
  • the light durability test and the color reproducibility measurement were performed by the method described above. The results are shown in Table 3.
  • Example 11 A color conversion film was produced in the same manner as in Example 4 except that G-3 and R-3 were used as light emitting materials when producing the color conversion composition for producing a color conversion layer.
  • the relative value of the light emission intensity at the peak wavelength of the green light emission in each example when the color conversion characteristic is measured by the above-mentioned method and the green light emission intensity in Comparative Example 1 described later is 1.00
  • the relative value of the light emission intensity at the peak wavelength of the red light emission in each example when the light emission intensity of red in Comparative Example 1 was 1.00 was calculated.
  • the light durability test and the color reproducibility measurement were performed by the method described above. The results are shown in Table 3.
  • Example 12 A color conversion film was produced in the same manner as in Example 4 except that the resin M was used as a resin when producing the color conversion composition for producing a color conversion layer.
  • the relative value of the light emission intensity at the peak wavelength of the green light emission in each example when the color conversion characteristic is measured by the above-mentioned method and the green light emission intensity in Comparative Example 1 described later is 1.00
  • the relative value of the light emission intensity at the peak wavelength of the red light emission in each example when the light emission intensity of red in Comparative Example 1 was 1.00 was calculated.
  • the light durability test and the color reproducibility measurement were performed by the method described above. The results are shown in Table 3.
  • Example 13 A color conversion film was produced in the same manner as in Example 4 except that resin N was used as a resin when producing a color conversion composition for producing a color conversion layer.
  • the relative value of the light emission intensity at the peak wavelength of the green light emission in each example when the color conversion characteristic is measured by the above-mentioned method and the green light emission intensity in Comparative Example 1 described later is 1.00
  • the relative value of the light emission intensity at the peak wavelength of the red light emission in each example when the light emission intensity of red in Comparative Example 1 was 1.00 was calculated.
  • the light durability test and the color reproducibility measurement were performed by the method described above. The results are shown in Table 3.
  • the color conversion films of Examples 1 to 13 Compared with the durability of the color conversion film obtained in Comparative Example 1, the color conversion films of Examples 1 to 13 have high durability, and in particular, the colors prepared in Examples 3 to 5 and Examples 7 and 8 It turned out that the durability of the conversion film is particularly high.
  • the relative value of the light emission intensity at the peak wavelength of the green light emission in each example when the color conversion characteristic is measured by the above-mentioned method and the green light emission intensity in Comparative Example 1 described later is 1.00
  • the relative value of the light emission intensity at the peak wavelength of the red light emission in each example when the light emission intensity of red in Comparative Example 1 was 1.00 was calculated. The results are as shown in Table 2.
  • Example 3 A color conversion film was produced in the same manner as in Example 1 except that resin J and resin L were mixed at a ratio of 1: 1 as resin when producing a color conversion composition for producing a color conversion layer.
  • green light emission having a peak wavelength of 535 nm and a half width of 80 nm of the light emission spectrum at the peak wavelength is obtained.
  • the red light emission of 55 nm half width of the light emission spectrum in a peak wavelength of 615 nm peak wavelength was obtained when only the light emission region of the above was extracted.
  • the emission intensity at the peak wavelength of green emission and the emission intensity of red were measured by the above-mentioned color conversion characteristic measurement.
  • the light durability test and the color reproducibility measurement were performed by the method described above. The results are shown in Table 3.
  • Example 10 and 11 when the light emitting material was an organic light emitting material, it turned out that durability is further improved significantly. That is, it turned out that Example 10 which is an organic material is more excellent in durability than Example 11 whose light emitting material is a quantum dot (inorganic material). Furthermore, it was found from the results of Examples 4 and 10 that even when the light emitting material is an organic material, when the structure is represented by the general formula (3), the durability is further excellent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Device Packages (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

色再現性の向上と耐久性を両立させた、液晶ディスプレイやLED照明に用いられる色変換組成物を提供する。 入射光を、その入射光よりも長波長の光に変換する色変換組成物であって、以下の(A)成分および(B)成分を含有する。 (A)成分:少なくとも1種の発光材料 (B)成分:分子構造中に、一般式(1)で表される部分構造と、一般式(2)で表される部分構造とを有する樹脂。 (一般式(1)中、Z1およびZ2は同じでも異なっていてもよく、水素原子または炭素数1以上20以下の有機基である。) (一般式(2)中、Y1~Y4は、それぞれ同じでも異なっていてもよく、水素原子または炭素数1以上20以下の有機基であり、かつ、Y1~Y4のうち少なくとも一つは、脂肪族環状炭化水素構造を含む基である。)

Description

色変換組成物、色変換フィルムならびにそれを含む光源ユニット、ディスプレイおよび照明
 本発明は、色変換組成物、色変換フィルム、ならびにそれを含む光源ユニット、ディスプレイおよび照明に関する。
 色変換方式によるマルチカラー化技術を、液晶ディスプレイや有機ELディスプレイ、照明などへ応用する検討が盛んである。色変換とは、発光体からの発光をより長波長な光へと変換することであり、たとえば青色発光を緑色や赤色発光へと変換することを表す。
 この色変換機能を有する組成物をフィルム化し、例えば青色光源と組み合わせることにより、青色光源から、青、緑、赤色の3原色を取り出すこと、すなわち白色光を取り出すことが可能となる。このような青色光源と色変換機能を有するフィルムを組み合わせた白色光源をバックライトユニットとし、液晶駆動部分と、カラーフィルターと組み合わせることで、フルカラーディスプレイの作製が可能になる。また液晶駆動部分が無ければ、そのまま白色光源として用いることができ、たとえばLED照明などの白色光源として応用できる。
 色変換方式を利用する液晶ディスプレイの課題として、色再現性の向上が挙げられる。色再現性の向上には、バックライトユニットの青、緑、赤の各発光スペクトルの半値幅を狭くし、青、緑、赤各色の色純度を高めることが有効である。これを解決する手段として無機半導体微粒子による量子ドットを色変換組成物の成分として用いる技術が提案されている(例えば、特許文献1参照)。量子ドットを用いる技術は、確かに緑、赤色の発光スペクトルの半値幅が狭く、色再現性は向上するが、反面、量子ドットは熱、空気中の水分や酸素に弱く、耐久性が十分でなかった。また、カドミウムを含むなどの課題もある。
 量子ドットの代わりに有機物の発光材料を色変換組成物の成分として用いる技術も提案されている。有機発光材料を色変換組成物の成分として用いる技術の例としては、ピリジン-フタルイミド縮合体を用いたもの(例えば、特許文献2参照)、クマリン誘導体を用いたもの(例えば、特許文献3参照)、赤色発光材料についてはこれまでペリレン誘導体を用いたもの(例えば、特許文献4参照)、ローダミン誘導体を用いたもの(例えば、特許文献5参照)、ピロメテン誘導体を用いたもの(例えば、特許文献6~7参照)が開示されている。
 また、有機発光材料の劣化を防ぎ、耐久性を向上させるため、光安定化剤を添加する技術も開示されている(例えば、特許文献8参照)。
特開2012-22028号公報 特開2002-348568号公報 特開2007-273440号公報 特開2002-317175号公報 特開2001-164245号公報 特開2011-241160号公報 特開2014-136771号公報 特開2011-149028号公報
 しかし、特許文献8に記載されている安定化剤は耐久性の向上効果はあるものの、不十分であった。さらに、これらの安定化剤は可視域に比較的強い吸収を持つため、発光材料の発光を吸収してしまい、効率が低下するという課題があった。このように、高色純度と高い耐久性を両立できる有機発光材料を色変換組成物の成分として用いる技術は未だ不十分であった。
 本発明が解決しようとする課題は、液晶ディスプレイやLED照明に用いられる色変換組成物において、色再現性の向上と耐久性を両立させることであり、特に高色純度の発光と耐久性を両立させることである。
 すなわち本発明は、入射光を、その入射光よりも長波長の光に変換する色変換組成物であって、以下の(A)成分および(B)を含有することを特徴とする色変換組成物である。
(A)成分:少なくとも1種の発光材料
(B)成分:分子構造中に、一般式(1)で表される部分構造と、一般式(2)で表される部分構造とを有する樹脂。
Figure JPOXMLDOC01-appb-C000005
(一般式(1)中、ZおよびZは同じでも異なっていてもよく、水素原子または炭素数1以上20以下の有機基である。)
Figure JPOXMLDOC01-appb-C000006
(一般式(2)中、Y~Yは、それぞれ同じでも異なっていてもよく、水素原子または炭素数1以上20以下の有機基であり、かつ、Y~Yのうち少なくとも一つは、脂肪族環状炭化水素構造を含む基である。)
 本発明の色変換組成物およびこれを用いた色変換フィルムは、高色純度と耐久性が両立されているため、色再現性と耐久性を両立させることが可能となる。
本発明の色変換フィルムの一例を示す模式断面図。 本発明の色変換フィルムの一例を示す模式断面図。 本発明の色変換フィルムの一例を示す模式断面図。
 以下、本発明の実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。
 <(A)発光材料>
 本発明の色変換組成物は、少なくとも1種の発光材料を含む。ここで、本発明における発光材料とは、何らかの光が照射されたときに、その光とは異なる波長の光を発する材料のことをいう。
 高効率な色変換を達成するためには、量子収率の高い発光特性を示す材料が好ましい。無機蛍光体、蛍光顔料、蛍光染料、量子ドット等の公知の発光材料が挙げられるが、中でも、有機発光材料が好ましい。
 有機発光材料としては、例えば、
 ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデン等の縮合アリール環を有する化合物やその誘導体;
 フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピリジン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン等のヘテロアリール環を有する化合物やその誘導体;
 ボラン誘導体;
 1,4-ジスチリルベンゼン、4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベン等のスチルベン誘導体;
 芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体;
 クマリン6、クマリン7、クマリン153などのクマリン誘導体;
 イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体;
 インドシアニングリーン等のシアニン系化合物;
 フルオレセイン・エオシン・ローダミン等のキサンテン系化合物やチオキサンテン系化合物;
 ポリフェニレン系化合物、ナフタルイミド誘導体、フタロシアニン誘導体およびその金属錯体、ポルフィリン誘導体およびその金属錯体;
 ナイルレッドやナイルブルー等のオキサジン系化合物;
 ヘリセン系化合物;
 N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン等の芳香族アミン誘導体;および
 イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)等の有機金属錯体化合物;
等が好適なものとして挙げられるが、特にこれらに限定されるものではない。
 有機発光材料は、蛍光発光材料であっても、リン光発光材料であっても良いが、高い色純度を達成するためには、蛍光発光材料が好ましい。
 これらの中でも、熱的安定性および光安定性が高いことから、縮合アリール環を有する化合物やその誘導体を好適に用いることができる。
 また、溶解性や分子構造の多様性の観点からは、配位結合を有する化合物が好ましい。半値幅が小さく、高効率な発光が可能である点で、フッ化ホウ素錯体などのホウ素を含有する化合物も好ましい。
 中でも、高い蛍光量子収率を与え、耐久性が良好である点で、ピロメテン誘導体を好適に用いることができる。より好ましくは、一般式(3)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
 XはC-RまたはNである。R~Rはそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。
 上記の全ての基において、水素は重水素であってもよい。以下に説明する化合物またはその部分構造においても同様である。
 また、以下の説明において例えば炭素数6~40の置換もしくは無置換のアリール基とは、アリール基に置換した置換基に含まれる炭素数も含めて6~40であり、炭素数を規定している他の置換基もこれと同様である。
 また、上記の全ての基において、置換される場合における置換基としては、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基が好ましく、さらには、各置換基の説明において好ましいとする具体的な置換基が好ましい。また、これらの置換基は、さらに上述の置換基により置換されていてもよい。
 「置換もしくは無置換の」という場合における「無置換」とは、水素原子または重水素原子が置換したことを意味する。
 以下に説明する化合物またはその部分構造において、「置換もしくは無置換の」という場合についても、上記と同様である。
 アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、ハロゲン、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、好ましくは1以上20以下、より好ましくは1以上8以下の範囲である。
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。
 複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。
 アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。
 アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。
 アリール基とは、例えば、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フェナントリル基、アントラセニル基、ベンゾフェナントリル基、ベンゾアントラセニル基、クリセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基、ベンゾフルオランテニル基、ジベンゾアントラセニル基、ペリレニル基、ヘリセニル基などの芳香族炭化水素基を示す。
 中でも、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基、ピレニル基、フルオランテニル基、トリフェニレニル基が好ましい。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、好ましくは6以上40以下、より好ましくは6以上30以下の範囲である。
 R~Rが置換もしくは無置換のアリール基の場合、アリール基としてはフェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましく、フェニル基、ビフェニル基、ターフェニル基、ナフチル基がより好ましい。さらに好ましくは、フェニル基、ビフェニル基、ターフェニル基であり、フェニル基が特に好ましい。
 それぞれの置換基がさらにアリール基で置換される場合、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましく、フェニル基、ビフェニル基、ターフェニル基、ナフチル基がより好ましい。特に好ましくは、フェニル基である。
 ヘテロアリール基とは、例えば、ピリジル基、フラニル基、チオフェニル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ピリダジニル基、トリアジニル基、ナフチリジニル基、シンノリニル基、フタラジニル基、キノキサリニル基、キナゾリニル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ベンゾカルバゾリル基、カルボリニル基、インドロカルバゾリル基、ベンゾフロカルバゾリル基、ベンゾチエノカルバゾリル基、ジヒドロインデノカルバゾリル基、ベンゾキノリニル基、アクリジニル基、ジベンゾアクリジニル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基などの、炭素以外の原子を一個または複数個環内に有する環状芳香族基を示す。ただし、ナフチリジニル基とは、1,5-ナフチリジニル基、1,6-ナフチリジニル基、1,7-ナフチリジニル基、1,8-ナフチリジニル基、2,6-ナフチリジニル基、2,7-ナフチリジニル基のいずれかを示す。ヘテロアリール基は置換基を有していても有していなくてもよい。ヘテロアリール基の炭素数は特に限定されないが、好ましくは、2以上40以下、より好ましくは2以上30以下の範囲である。
 R~Rが置換もしくは無置換のヘテロアリール基の場合、ヘテロアリール基としてはピリジル基、フラニル基、チオフェニル基、キノリニル基、ピリミジル基、トリアジニル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基が好ましく、ピリジル基、フラニル基、チオフェニル基、キノリニル基がより好ましい。特に好ましくは、ピリジル基である。
 それぞれの置換基がさらにヘテロアリール基で置換される場合、ヘテロアリール基としては、ピリジル基、フラニル基、チオフェニル基、キノリニル基、ピリミジル基、トリアジニル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、ベンゾイミダゾリル基、イミダゾピリジル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、フェナントロリニル基が好ましく、ピリジル基、フラニル基、チオフェニル基、キノリニル基がより好ましい。特に好ましくは、ピリジル基である。
 ハロゲンとは、フッ素、塩素、臭素およびヨウ素から選ばれる原子を示す。
 カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基は、置換基を有していても有していなくてもよい。ここで、置換基としては、例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されてもよい。
 アミノ基とは、置換もしくは無置換のアミノ基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基が挙げられる。アリール基、ヘテロアリール基としては、フェニル基、ナフチル基、ピリジル基、キノリニル基が好ましい。これら置換基はさらに置換されてもよい。炭素数は特に限定されないが、好ましくは、2以上50以下、より好ましくは6以上40以下、特に好ましくは6以上30以下の範囲である。
 シリル基とは、例えば、トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、プロピルジメチルシリル基、ビニルジメチルシリル基などのアルキルシリル基や、フェニルジメチルシリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、トリナフチルシリル基などのアリールシリル基を示す。ケイ素上の置換基はさらに置換されてもよい。シリル基の炭素数は特に限定されないが、好ましくは、1以上30以下の範囲である。
 シロキサニル基とは、例えばトリメチルシロキサニル基などのエーテル結合を介したケイ素化合物基を示す。ケイ素上の置換基はさらに置換されてもよい。
 ボリル基とは、置換もしくは無置換のボリル基である。置換する場合の置換基としては、例えば、アリール基、ヘテロアリール基、直鎖アルキル基、分岐アルキル基、アリールエーテル基、アルコキシ基、ヒドロキシル基が挙げられ、中でもアリール基、アリールエーテル基が好ましい。
 ホスフィンオキシド基とは、-P(=O)R1011で表される基である。R1011はR~Rと同様の群から選ばれる。
 また、任意の隣接する2置換基(例えば一般式(3)のRとR)が互いに結合して、共役または非共役の縮合環を形成していてもよい。縮合環の構成元素としては、炭素以外にも窒素、酸素、硫黄、リンおよびケイ素から選ばれる元素を含んでいてもよい。また、縮合環がさらに別の環と縮合してもよい。
 一般式(3)で表される化合物は、高い蛍光量子収率を示し、かつ、発光スペクトルのピーク半値幅が小さいため、効率的な色変換と高い色純度を達成することができる。
 さらに、一般式(3)で表される化合物は、適切な置換基を適切な位置に導入することで、発光効率・色純度・熱的安定性・光安定性・分散性などのさまざまな特性・物性を調整することができる。
例えば、R、R、RおよびRが全て水素の場合に比べ、R、R、RおよびRの少なくとも1つが置換もしくは無置換のアルキル基や置換もしくは無置換のアリール基、置換もしくは無置換のヘテロアリール基である場合の方が、より良い熱的安定性および光安定性を示す。
 R、R、RおよびRの少なくとも1つが置換もしくは無置換のアルキル基である場合、アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基といった炭素数1~6のアルキル基が好ましく、さらに熱的安定性に優れることから、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基が好ましい。さらに濃度消光を防ぎ発光量子収率を向上させるという観点では、立体的にかさ高いtert-ブチル基がより好ましい。また合成の容易さ、原料入手の容易さという観点から、メチル基も好ましく用いられる。
 R、R、RおよびRの少なくとも1つが置換もしくは無置換のアリール基である場合、アリール基としては、フェニル基、ビフェニル基、ターフェニル基、ナフチル基が好ましく、さらに好ましくは、フェニル基、ビフェニル基であり、フェニル基が特に好ましい。
 R、R、RおよびRの少なくとも1つが置換もしくは無置換のヘテロアリール基である場合、ヘテロアリール基としてはピリジル基、キノリニル基、チオフェニル基が好ましく、ピリジル基、キノリニル基がより好ましい。特に好ましくは、ピリジル基である。
 R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基である場合、バインダー樹脂や溶媒への溶解性が良好なため、好ましい。アルキル基としては、合成の容易さ、原料入手の容易さという観点から、メチル基が好ましい。
 R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基または置換もしくは無置換のヘテロアリール基である場合、より良い熱的安定性および光安定性を示すため好ましく、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基であることがより好ましい。
 複数の性質を向上させる置換基もあるが、全てにおいて十分な性能を示す置換基は限られている。特に高発光効率と高色純度の両立が難しい。そのため、複数種類の置換基を導入することで、発光特性や色純度などにバランスの取れた化合物を得ることが可能である。
 特に、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基の場合、例えば、R≠R、R≠R、R≠RまたはR≠Rなどのように、複数種類の置換基を導入することが好ましい。ここで≠は、異なる構造の基であることを示す。色純度に影響を与えるアリール基と効率に影響を与えるアリール基を同時に導入することができるため、細やかな調節が可能となる。
 中でも、R≠RまたはR≠Rであることが、発光効率と色純度をバランスよく向上させる点において、好ましい。色純度に影響を与えるアリール基を両側のピロール環にそれぞれ1つ以上導入し、それ以外の位置に効率に影響を与えるアリール基を導入することができるため、両方の性質を最大限に向上させることができる。R≠RまたはR≠Rである場合、耐熱性と色純度の点から、R=RおよびR=Rであることがより好ましい。
 主に色純度に影響を与えるアリール基としては、電子供与性基で置換されたアリール基が好ましい。電子供与性基とは、有機電子論において、誘起効果や共鳴効果により、置換した原子団に、電子を供与する原子団である。電子供与性基としては、ハメット則の置換基定数(σp(パラ))として、負の値をとるものが挙げられる。ハメット則の置換基定数(σp(パラ))は、化学便覧基礎編改訂5版(II-380頁)から引用することができる。
 電子供与性基の具体例としては、例えば、アルキル基(メチル基のσp:-0.17)やアルコキシ基(メトキシ基のσp:-0.27)、アミノ基(―NHのσp:-0.66)などが挙げられる。特に、炭素数1~8のアルキル基または炭素数1~8のアルコキシ基が好ましく、メチル基、エチル基、tert-ブチル基、メトキシ基がより好ましい。分散性の観点からは、tert-ブチル基、メトキシ基が特に好ましく、分子同士の凝集による消光を防ぐ。置換基の置換位置は特に限定されないが、光安定性を高めるには結合のねじれを抑える必要があるため、ピロメテン骨格との結合位置に対してメタ位またはパラ位に結合させることが好ましい。
 主に効率に影響を与えるアリール基としては、tert-ブチル基、アダマンチル基、メトキシ基などのかさ高い置換基を有するアリール基が好ましい。
 R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、置換もしくは無置換のアリール基の場合、それらは、それぞれ以下のAr-1~Ar-6から選ばれることが好ましい。この場合、R、R、RおよびRの好ましい組み合わせとしては、表1-1~表1-11に示すような組み合わせが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 RおよびRは、水素、アルキル基、カルボニル基、オキシカルボニル基、アリール基が好ましいが、熱的安定性の観点からアルキル基または水素が好ましく、発光スペクトルにおいて狭い半値幅を得やすい点で水素がより好ましい。
 RおよびRは、アルキル基、アリール基、ヘテロアリール基、フッ素、含フッ素アルキル基、含フッ素ヘテロアリール基または含フッ素アリール基が好ましく、励起光に対して安定でより高い蛍光量子収率が得られることから、フッ素または含フッ素アリール基であることがより好ましい。合成の容易さから、フッ素であることがさらに好ましい。
 ここで、含フッ素アリール基とはフッ素を含むアリール基であり、例えばフルオロフェニル基、トリフルオロメチルフェニル基およびペンタフルオロフェニル基などが挙げられる。含フッ素ヘテロアリール基とは、フッ素を含むヘテロアリール基であり、例えばフルオロピリジル基、トリフルオロメチルピリジル基およびトリフルオロピリジル基などが挙げられる。含フッ素アルキル基とは、フッ素を含むアルキル基であり、トリフルオロメチル基やペンタフルオロエチル基などが挙げられる。
 XはC-Rであることが、光安定性の観点から好ましい。
 XがC-Rであるとき、一般式(3)で表される化合物の耐久性、すなわち発光強度の経時的な低下には、置換基Rが大きく影響する。すなわちRが水素である場合、この水素の反応性が高く、容易に空気中の水分や酸素と反応してしまい分解を引き起こす。また、Rが例えばアルキル基のような分子鎖の運動の自由度が大きい置換基である場合は、確かに反応性は低下するが、組成物中で化合物同士が経時的に凝集し、結果的に濃度消光による発光強度の低下を招く。したがって、Rは剛直で、かつ運動の自由度が小さく凝集を引き起こしにくい基であることが好ましく、具体的には、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基のいずれかであることが好ましい。
 より高い蛍光量子収率を与え、より熱分解しづらい点、また光安定性の観点から、XがC-Rであり、Rが置換もしくは無置換のアリール基であることが好ましい。アリール基としては、発光波長を損なわないという観点から、フェニル基、ビフェニル基、ターフェニル基、ナフチル基、フルオレニル基、フェナントリル基、アントラセニル基が好ましい。
 さらに光安定性を高めるには、Rとピロメテン骨格の炭素-炭素結合のねじれを適度に抑える必要がある。過度にねじれが大きいと、励起光に対する反応性が高まるなど、光安定性が低下する。このような観点から、Rとしては、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基、置換もしくは無置換のナフチル基が好ましく、置換もしくは無置換のフェニル基、置換もしくは無置換のビフェニル基、置換もしくは無置換のターフェニル基であることがより好ましい。特に好ましくは、置換もしくは無置換のフェニル基である。
 また、Rは適度にかさ高い置換基であることが好ましい。Rがある程度のかさ高さを有することで分子の凝集を防ぐことができ、発光効率や耐久性がより向上する。
 このようなかさ高い置換基のさらに好ましい例としては、下記一般式(4)で表される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 rは、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基からなる群より選ばれる。kは1~3の整数である。kが2以上である場合、rはそれぞれ同じでも異なっても良い。
 より高い蛍光量子収率を与えられる点で、rは置換もしくは無置換のアリール基であることが好ましい。アリール基の中でも特にフェニル基、ナフチル基が好ましい例として挙げられる。rがアリール基である場合、一般式(4)のkは1もしくは2であることが好ましく、分子の凝集をより防ぐ観点からkは2であることがより好ましい。さらに、rの少なくとも1つがアルキル基で置換されていることが好ましい。この場合のアルキル基としては、熱的安定性の観点からメチル基、エチル基およびtert-ブチル基が特に好ましい例として挙げられる。
 また、蛍光波長や吸収波長を制御したり、溶媒との相溶性を高めたりする点では、rは置換もしくは無置換のアルキル基、置換もしくは無置換のアルコキシ基またはハロゲンであることが好ましく、メチル基、エチル基、tert-ブチル基、メトキシ基がより好ましい。分散性の観点からは、tert-ブチル基、メトキシ基が特に好ましく、分子同士の凝集による消光を防ぐ。
 また、一般式(3)で表される化合物の別の態様として、R~Rのうち少なくともひとつが電子求引基であることが好ましい。特に、(1)R~Rのうち少なくともひとつが電子求引基であること、(2)Rが電子求引基であること、または(3)R~Rのうち少なくともひとつが電子求引基であり、かつ、Rが電子求引基であること、が好ましい。ピロメテン骨格に電子求引基を導入することで、ピロメテン骨格の電子密度を大幅に下げることができる。これにより、酸素に対する安定性がより向上し、耐久性をより向上させることができる。
 電子求引基とは、電子受容性基とも呼称し、有機電子論において、誘起効果や共鳴効果により、置換した原子団から、電子を引き付ける原子団である。電子求引基としては、ハメット則の置換基定数(σp(パラ))として、正の値をとるものが挙げられる。ハメット則の置換基定数(σp(パラ))は、化学便覧基礎編改訂5版(II-380頁)から引用することができる。
 なお、フェニル基も正の値をとる例もあるが、本願の電子求引基にフェニル基は含まれない。
 電子求引基の例として、例えば、-F(σp:+0.20)、-Cl(σp:+0.28)、-Br(σp:+0.30)、-I(σp:+0.30)、-CO12(σp:R12がエチル基の時+0.45)、-CONH(σp:+0.38)、-COR12(σp:R12がメチル基の時+0.49)、-CF(σp:+0.51)、-SO12(σp:R12がメチル基の時+0.69)、-NO(σp:+0.81)等が挙げられる。R12は、それぞれ独立に、水素原子、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、置換もしくは無置換の環形成原子数5~30の複素環基、置換もしくは無置換の炭素数1~30のアルキル基、置換もしくは無置換の炭素数1~30のシクロアルキル基を表す。これら各基の具体例としては、上記と同様の例が挙げられる。
 好ましい電子求引基としては、フッ素、含フッ素アリール基、含フッ素ヘテロアリール基、含フッ素アルキル基、置換もしくは無置換のアシル基、置換もしくは無置換のエステル基、置換もしくは無置換のアミド基、置換もしくは無置換のスルホニル基またはシアノ基が挙げられる。これらは化学的に分解しにくいからである。
 より好ましい電子求引性基としては、含フッ素アルキル基、置換もしくは無置換のアシル基、置換もしくは無置換のエステル基またはシアノ基が挙げられる。濃度消光を防ぎ発光量子収率を向上させる効果につながるからである。特に好ましいのは、置換もしくは無置換のエステル基である。
 一般式(3)で表される化合物のさらに別の態様として、R~Rのうちいずれかm個が下記一般式(5)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000021
 Mは連結基であり、単結合、アルキレン基、アリーレン基、ヘテロアリーレン基の中から選ばれる。
 R10はそれぞれ独立して、置換もしくは無置換のアルキル基である。
 m、nはそれぞれ自然数である。
 -OR10はアルコキシ基であり、そのかさ高さにより分子同士の凝集による消光を防ぐことができる。mは2以上7以下である。mが2以上である場合、凝集抑制効果が向上するため好ましく、mが3以上である場合、分子全体をかさ高い置換基により覆うことができるため、分子同士の凝集による消光を防ぐことが可能となり高い発光効率を実現することができる点でより好ましい。さらに好ましくはmが4以上である。
 一般式(5)におけるnは発光材料の発光効率向上の観点から、それぞれ独立して1以上5以下が好ましく、1以上3以下がより好ましく、1がさらに好ましい。
 Mが単結合以外の基である場合、その基はピロメテン骨格と-OR10の間のスペーサーとなる。ピロメテン骨格と-OR10の間にスペーサーがある場合、ピロメテン骨格同士の凝集がさらに抑制されるため、好ましく、Mはアルキレン基、アリーレン基、ヘテロアリーレン基の中から選ばれることが好ましい。中でも剛直性の高いアリーレン基、ヘテロアリーレン基が好ましく、炭素-炭素結合のねじれが過度に大きくならないため、フェニレン基が特に好ましい。
 R10としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等が挙げられる。特に限定されないが、合成の容易さの点で、メチル基が好ましい。
 凝集抑制効果が向上するため、R、R、R、Rの少なくとも2つが一般式(5)で表される基であることが好ましく、R、R、R、Rの少なくとも3つが一般式(5)で表される基であることがより好ましい。さらに、R、R、R、Rの全てが一般式(5)で表される基である場合、分子全体をかさ高い置換基により覆えるため、特に好ましい。
 また、熱分解しづらい点および光安定性の観点から、Rが一般式(4)で表される基であるか、またはRが一般式(5)で表される基であることが好ましい。
 また、一般式(3)で表される化合物の特に好ましい例の別の一つとして、R、R、RおよびRが全て、それぞれ同じでも異なっていてもよく、上述のAr-1~Ar-6から選ばれ、さらにXがC-Rであり、Rが置換のアリール基、特に好ましくはメトキシ基で置換されたアリール基である場合が挙げられる。
 一般式(3)で表される化合物の一例を以下に示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
 一般式(3)で表される化合物は、例えば特表平8-509471号公報や特開2000-208262号公報に記載の方法で製造することができる。すなわち、ピロメテン化合物と金属塩を塩基共存下で反応することにより目的とするピロメテン系金属錯体が得られる。
 また、ピロメテン-フッ化ホウ素錯体の合成については、J.Org.Chem.,vol.64,No.21,pp7813-7819(1999)、Angew.Chem.,Int.Ed.Engl.,vol.36,pp1333-1335(1997)などに記載されている方法を参考に製造することができる。例えば、下記一般式(6)で表される化合物と一般式(7)で表される化合物をオキシ塩化リン存在下、1,2-ジクロロエタン中で加熱した後、下記一般式(8)で表される化合物をトリエチルアミン存在下、1,2-ジクロロエタン中で反応させる方法が挙げられるが、これに限定されるものではない。ここで、R~Rは前記と同様である。Jはハロゲンを表す。
Figure JPOXMLDOC01-appb-C000048
 さらに、アリール基やヘテロアリール基の導入の際は、ハロゲン化誘導体とボロン酸あるいはボロン酸エステル化誘導体とのカップリング反応を用いて炭素-炭素結合を生成する方法が挙げられるが、これに限定されるものではない。同様に、アミノ基やカルバゾリル基の導入の際にも、例えば、パラジウムなどの金属触媒下でのハロゲン化誘導体とアミンあるいはカルバゾール誘導体とのカップリング反応を用いて炭素-窒素結合を生成する方法が挙げられるが、これに限定されるものではない。
 本発明の色変換組成物は、一般式(3)で表される化合物以外に、必要に応じてその他の化合物を適宜含有することができる。例えば、励起光から一般式(3)で表される化合物へのエネルギー移動効率を更に高めるために、ルブレンなどのアシストドーパントを含有してもよい。また、一般式(3)で表される化合物の発光色以外の発光色を加味したい場合は、前述の有機発光材料を添加することができる。その他、有機発光材料以外でも、無機蛍光体、蛍光顔料、蛍光染料、量子ドットなどの公知の発光材料を組み合わせて添加することも可能である。
 一般式(3)で表される化合物以外の有機発光材料の一例を以下に示すが、特にこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000049
 本発明の色変換組成物は、波長430nm以上500nm以下の範囲の励起光を用いることによりピーク波長が500nm以上580nm以下の領域に観測される発光を呈する発光材料(以下「発光材料(a)」という)を含むことが好ましい。以後、ピーク波長が500nm以上580nm以下の領域に観測される発光を「緑色の発光」という。一般に、励起光のエネルギーが大きいほど材料の分解を引き起こしやすいが、波長430nm以上500nm以下の範囲の励起光は比較的小さい励起エネルギーであるため、色変換組成物中の発光材料の分解を引き起こすことなく、色純度の良好な緑色の発光が得られる。
 本発明の色変換組成物は、(a)波長430nm以上500nm以下の範囲の励起光を用いることによりピーク波長が500nm以上580nm以下の発光を呈する発光材料、および(b)波長430nm以上500nm以下の範囲の励起光または発光材料(a)からの発光のいずれかまたは両方により励起されることにより、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する発光材料(以下「発光材料(b)」という)、を含むことが好ましい。以後、ピーク波長が580nm以上750nm以下の領域に観測される発光を「赤色の発光」という。
 波長430nm以上500nm以下の範囲の励起光の一部は本発明の色変換フィルムを一部透過するため、発光ピークが鋭い青色LEDを使用した場合、青・緑・赤の各色において鋭い形状の発光スペクトルを示し、色純度の良い白色光を得ることができる。その結果、特にディスプレイにおいては色彩がいっそう鮮やかな、より大きな色域を効率的に作ることができる。また、照明用途においては、現在主流となっている青色LEDと黄色蛍光体を組み合わせた白色LEDに比べ、特に緑色領域と赤色領域の発光特性が改善されるため、演色性が向上し、好ましい白色光源となる。
 発光材料(a)としては、クマリン6、クマリン7、クマリン153等のクマリン誘導体、インドシアニングリーン等のシアニン誘導体、フルオレセイン、フルオレセインイソチオシアネート、カルボキシフルオレセインジアセテート等のフルオレセイン誘導体、フタロシアニングリーン等のフタロシアニン誘導体、ジイソブチル-4,10-ジシアノペリレン-3,9-ジカルボキシレート等のペリレン誘導体、他にピロメテン誘導体、スチルベン誘導体、オキサジン誘導体、ナフタルイミド誘導体、ピラジン誘導体、ベンゾイミダゾール誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、イミダゾピリジン誘導体、アゾール誘導体、アントラセン等の縮合アリール環を有する化合物やその誘導体、芳香族アミン誘導体、有機金属錯体化合物等が好適なものとして挙げられるが特にこれらに限定されるものではない。
 これらの化合物の中でも、ピロメテン誘導体は高い蛍光量子収率を与え、耐久性が良好なので特に好適な化合物であり、中でも一般式(3)で表される化合物は、色純度の高い発光を示すことから好ましい。
 発光材料(b)としては、4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリル)-4H-ピラン等のシアニン誘導体、ローダミンB・ローダミン6G・ローダミン101・スルホローダミン101などのローダミン誘導体、1-エチル-2-(4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル)-ピリジニウム-パークロレートなどのピリジン誘導体、N,N'-ビス(2,6-ジイソプロピルフェニル)-1,6,7,12-テトラフェノキシペリレン-3,4:9,10-ビスジカルボイミド等のペリレン誘導体、他にポルフィリン誘導体、ピロメテン誘導体、オキサジン誘導体、ピラジン誘導体、ナフタセンやジベンゾジインデノペリレン等の縮合アリール環を有する化合物やその誘導体、有機金属錯体化合物等が好適なものとして挙げられるが特にこれらに限定されるものではない。
 これらの化合物の中でも、ピロメテン誘導体は高い蛍光量子収率を与え、耐久性が良好なので特に好適な化合物であり、中でも一般式(3)で表される化合物は、色純度の高い発光を示すことから好ましい。
 本発明の色変換組成物における(A)成分の含有量は、化合物のモル吸光係数、蛍光量子収率および励起波長における吸収強度、ならびに作製するフィルムの厚みや透過率にもよるが、通常は(B)成分の100重量部に対して、1.0×10-4重量部~30重量部であり、1.0×10-3重量部~10重量部であることがさらに好ましく、1.0×10-2重量部~5重量部であることが特に好ましい。
 また色変換組成物に、緑色の発光を呈する発光材料(a)と、赤色の発光を呈する発光材料(b)とを両方含有する場合、緑色の発光の一部が赤色の発光に変換されることから、前記発光材料(a)の含有量wと、発光材料(b)の含有量wが、w≧wの関係であることが好ましく、それぞれの材料の含有比率はw:w=1000:1~1:1であり、500:1~2:1であることがさらに好ましく、200:1~3:1であることが特に好ましい。ただし、wおよびwは(B)成分の重量に対する重量パーセントである。
 <(B)成分:樹脂>
 (B)成分の樹脂は、分子構造中に、一般式(1)で表される部分構造と、一般式(2)で表される部分構造とを含有する。
Figure JPOXMLDOC01-appb-C000050
 一般式(1)中、ZおよびZは同じでも異なっていてもよく、水素原子または炭素数1以上20以下の有機基である。
Figure JPOXMLDOC01-appb-C000051
 一般式(2)中、Y~Yは、それぞれ同じでも異なっていてもよく、水素原子または炭素数1以上20以下の有機基であり、かつ、Y~Yのうち少なくとも一つは、脂肪族環状炭化水素構造を含む基である。
 本発明の色変換組成物に含まれる発光材料は光により励起されるが、励起状態の発光材料は反応性が高いため、励起状態の発光材料同士が近接した場合、劣化が促進される。そのため、本発明の色変換組成物に含まれる発光材料の耐久性を向上させるためには、発光材料が樹脂中で凝集することなく良好に分散していることが好ましい。
 発光材料を樹脂中に良好に分散させるためには、樹脂が、発光材料と相溶性の高い部分構造と、相溶性の低い部分構造とを併せ持つことが好適である。樹脂のさらに好ましい形態として相溶性の高い部分構造と相溶性の低い部分構造をランダムに含む共重合体であることが好ましい。
 本発明の色変換組成物に含まれる(A)成分の発光材料は、(B)成分の樹脂中の一般式(1)で表させる部分構造との相溶性が良好であるが、一般式(2)で表される部分構造とは相溶性が良好ではないという特徴を有する。そのため、(B)成分の樹脂が、一般式(1)で表させる部分構造と、一般式(2)で表される部分構造を併せ持つことにより、(A)成分の発光材料を(B)成分の樹脂中に良好に分散させることができ、高耐久性を実現することが可能となる。なお、この効果は、(A)成分の発光材料が有機発光材料であるときにより大きくなり、(A)成分が一般式(3)で表される化合物を含有するときにさらに大きくなる。
 本発明の色変換組成物に含まれる発光材料は、樹脂の分子中に含まれる官能基や吸湿水分に由来するラジカルにより、ラジカル酸化を受け、分解・劣化することがある。このため、樹脂は耐熱性に優れる樹脂であることが好ましい。樹脂の耐熱性を高める観点から、(B)成分の樹脂中の一般式(1)で表される部分構造において、Zは水素原子またはメチル基であることが好ましく、メチル基であることがより好ましい。
 また、樹脂の耐熱性を高める観点から、Zは、水素原子、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基またはヘテロアリール基が好ましい。また、これらの基は、さらに上述の置換基により置換されていてもよい。
 「置換もしくは無置換の」という場合における「無置換」とは、水素原子または重水素原子が置換したことを意味する。
 以下に説明する化合物またはその部分構造において、「置換もしくは無置換の」という場合についても、上記と同様である。
 アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、ハロゲン、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、好ましくは1以上20以下、より好ましくは1以上8以下の範囲である。
 シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。
 これらの中で、Zとしては、入手の容易性やコストの点から、メチル基であることがより好ましい。
 また、樹脂の耐熱性を高める観点から、(B)成分の樹脂中の一般式(2)で表される部分構造において、Y~Yは、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基またはヘテロアリール基が好ましい。また、これらの基は、さらに上述の置換基により置換されていてもよい。
 ただし、Y~Yのうち少なくとも一つは、脂肪族環状炭化水素構造を含む基である。脂肪族環状炭化水素構造とは、置換もしくは無置換の飽和環状炭化水素(シクロアルキル)構造、不飽和環状炭化水素(シクロアルケニル)構造などが挙げられる。なかでも、耐久性の観点から、飽和環状炭化水素(シクロアルキル)構造が好ましい。
 脂肪族環状炭化水素構造を構成する炭素原子数は、特に限定されないが、通常4~30個、好ましくは5~20個、より好ましくは5~15個の範囲である。
 脂肪族環状炭化水素構造を構成する炭素原子数がこれらの範囲内であることで、発光材料との相溶性を確保しつつ、高い耐久性を得ることができる。
 飽和環状炭化水素(シクロアルキル)構造の具体例としては例えば、スチレン、α-メチルスチレン、β-メチルスチレン、p-ヒドロキシスチレン、p-メチルスチレン、p-エチルスチレン、p-イソプロピルスチレン、p-ジビニルベンゼン、アルコキシスチレン、クロロスチレン、スチルベン、1-ビニルナフタレン、ジフェニルエチレン、トリフェニルエチレン、テトラフェニルエチレン、4-ビニルビフェニルなどの芳香族ビニル系モノマーの重合体の芳香環部分を水素化した構造などが挙げられる。また、ビニルシクロヘキサンなどのように飽和環状炭化水素構造を有するビニルモノマーを原料として使用することも可能である。
 本発明において、Y~Yのうち少なくとも一つが脂肪族環状炭化水素構造を含む基であれば、それらの組み合わせに特に制限はないが、入手の容易性やコストの観点から、Y~Yのうち少なくとも一つが置換もしくは無置換のシクロヘキシル基であることが好ましい。また、Y~Yのうち一つが置換もしくは無置換のシクロヘキシル基であり、その他三つが水素原子であることがより好ましい。
 本発明の色変換組成物に含まれる(B)成分の樹脂中の、一般式(1)で表される部分構造の繰り返し単位の含有量は、特に限定されないが、(B)成分の樹脂の総量のうち、30重量%以上が好ましく、50重量%以上がより好ましく、60重量%以上がさらに好ましく、70重量%以上が特に好ましい。一般式(1)で表される部分構造の繰り返し単位の割合が上記範囲であることにより、発光材料との相溶性を確保でき、より高い耐久性を得ることができる。
 また、本発明の色変換組成物に含まれる(B)成分の樹脂中の、一般式(1)で表される部分構造の繰り返し単位の含有量は、(B)成分の樹脂の総量のうち、95重量%以下が好ましく、90重量%以下がより好ましく、85重量%以下がさらに好ましい。一般式(1)で表される部分構造の繰り返し単位の割合が上記範囲であることにより、色変換組成物をフィルムとした時に、クラック耐性に優れる。
 本発明の色変換組成物に含まれる(B)成分の樹脂中の、一般式(2)で表される部分構造の繰り返し単位の含有量は、特に限定されないが、(B)成分の樹脂の総量のうち、5重量%以上が好ましく、10重量%以上がより好ましく、15重量%以上が特に好ましい。一般式(2)で表される部分構造の繰り返し単位の含有量が上記範囲であることで、発光材料の分散性を確保でき、より高い耐久性を得ることができる。
 また、本発明の色変換組成物に含まれる(B)成分の樹脂中の、一般式(2)で表される部分構造の繰り返し単位の含有量は、(B)成分の樹脂の総量のうち、70重量%以下が好ましく、50重量%以下がより好ましく、30重量%以下がさらに好ましい。一般式(2)で表される部分構造の繰り返し単位の割合が上記範囲であることにより、発光材料との相溶性を確保でき、色変換組成物をフィルムとした時に、発光強度に優れる。
 (B)成分の樹脂の重量平均分子量(Mw)は、5,000以上、好ましくは15,000以上、より好ましくは20,000以上であり、さらに500,000以下、好ましくは100,000以下、より好ましくは50,000以下である。重量平均分子量が上記範囲内にあれば、発光材料との相溶性が良好であり、かつ、より高い耐久性の色変換組成物が得られる。
 本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC法)によって測定した値である。具体的には、サンプルを孔径0.45μmメンブレンフィルターで濾過後、GPC(東ソー(株)製HLC-82A)(展開溶剤:トルエン、展開速度:1.0ml/分、カラム:東ソー株式会社製 TSKgelG2000HXL)を用いてポリスチレン換算により求められる値である。
 (B)成分の樹脂のガラス転移温度(Tg)は、50~200℃が好ましく、100~160℃がより好ましい。上記範囲内であれば、該組成物から形成される色変換フィルムにおいて、より高い耐久性を得ることができる。
 ガラス転移点は、市販の測定器[例えば、セイコー電子工業社製の示差走査熱量計(商品名 DSC6220 昇温速度 0.5℃/min)]によって、測定可能である。
 これらの樹脂の合成方法は特に限定されず、公知の方法、例えば各原料モノマーを重合開始剤の存在下で共重合させるなどの方法を適宜利用することができるし、市販品を用いることもできる。(B)成分の樹脂に該当する市販品としては、三菱瓦斯化学(株)製Optimas7500、Optimas6000などが挙げられるが、これらに限定されない。
 (熱可塑性樹脂)
 本発明の色変換組成物は、上記(B)成分の樹脂と異なる熱可塑性樹脂(C)をさらに含むことが好ましい。熱可塑性樹脂(C)の具体例としては、アクリル系、メタクリル系、ポリケイ皮酸ビニル系、ポリイミド系、環ゴム系等の反応性ビニル基を有する光硬化型レジスト材料、エポキシ樹脂、シリコーン樹脂(シリコーンゴム、シリコーンゲル等のオルガノポリシロキサン硬化物(架橋物)を含む)、ウレア樹脂、フッ素樹脂、ポリカーボネート樹脂、アクリル樹脂、メタクリル樹脂、ポリイミド樹脂、ポリエチレンテレフタラート樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ウレタン樹脂、メラミン樹脂、ポリビニル樹脂、ポリアミド樹脂、フェノール樹脂、ポリビニルアルコール樹脂、セルロース樹脂、脂肪族エステル樹脂、芳香族エステル樹脂、脂肪族ポリオレフィン樹脂、芳香族ポリオレフィン樹脂、ポリスチレン樹脂や、スチレン、α-メチルスチレンなどのビニル芳香族系モノマーの重合体および、その芳香環部分の水素化物などの公知のものを用いることができる。また、これらの共重合樹脂を用いてもよく、2種類以上を混合してもよい。これらの樹脂の中でも、透明性、耐熱性などの観点から、アクリル樹脂、メタクリル樹脂、ポリスチレン樹脂、またはスチレン、α-メチルスチレンなどのビニル芳香族系モノマーの重合体および、その芳香環部分の水素化物であることが好ましい。
 熱可塑性樹脂(C)の含有量は、(B)成分の含有量を100重量部としたとき、1重量部以上2000重量以下が好ましく、5重量部以上500重量部以下がより好ましく、10重量部以上50重量部以下が特に好ましい。熱可塑性樹脂(C)の含有量が上記範囲内であれば、発光材料のピーク波長および/または半値幅を制御し、色再現性をより向上させることができる。
 <その他添加剤>
 本発明の色変換組成物は、前記(A)成分および(B)成分以外に、充填剤、酸化防止剤、加工および熱安定化剤、紫外線吸収剤等の耐光性安定化剤、塗布膜安定化のための分散剤やレベリング剤、可塑剤、エポキシ化合物などの架橋剤、アミン・酸無水物・イミダゾールなどの硬化剤、顔料、フィルム表面の改質剤としてシランカップリング剤等の接着補助剤等を添加することも可能である。
 充填剤としてはフュームドシリカ、ガラス粉末、石英粉末等の微粒子、酸化チタン、酸化ジルコニア、チタン酸バリウム、酸化亜鉛、シリコーン微粒子を挙げることができるが特に限定されるものではない。また、これらの充填剤は単独で使用してもよく、複数併用してもよい。
 酸化防止剤としては、2,6-ジ-tert-ブチル-p-クレゾール、2,6-ジ-tert-ブチル-4-エチルフェノール等のフェノール系酸化防止剤を挙げることができるが特に限定されるものではない。また、これらの酸化防止剤は単独で使用してもよく、複数併用してもよい。
 加工および熱安定化剤としては、トリブチルホスファイト、トリシクロヘキシルホスファイト、トリエチルホスフィン、ジフェニルブチルホスフィン等のリン系安定化剤を挙げることができるが特に限定されるものではない。また、これらの安定化剤は単独で使用してもよく、複数併用してもよい。
 耐光性安定化剤としては、例えば、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3,5-ビス(α、α-ジメチルベンジル)フェニル〕-2H-ベンゾトリアゾール等のベンゾトリアゾール類を挙げることができるが特に限定されるものではない。また、これらの耐光性安定化剤は単独で使用してもよく、複数併用してもよい。
 本発明の色変換組成物におけるこれらの添加剤の含有量は、化合物のモル吸光係数、蛍光量子収率および励起波長における吸収強度、ならびに作製するフィルムの厚みや透過率にもよるが、通常は(B)成分の100重量部に対して、1.0×10-3重量部以上30重量部以下であり、1.0×10-2重量部以上15重量部以下であることがさらに好ましく、1.0×10-1重量部以上10重量部以下であることが特に好ましい。
 <溶媒>
 本発明の色変換組成物は溶媒を含んでいてもよい。溶媒は、流動状態の樹脂の粘度を調整でき、発光物質の発光および耐久性に過度な影響を与えないものであれば、特に限定されない。例えば、水、2-プロパノール、エタノール、トルエン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ヘキサン、アセトン、酢酸エチル、酢酸ブチル、テルピネオール、テキサノール、メチルセルソルブ、エチルセルソルブ、ブチルカルビトール、ブチルカルビトールアセテート、1-メトキシ-2-プロパノール、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、これらの溶媒を2種類以上混合して使用することも可能である。これらの溶媒の中で特にトルエンは、一般式(3)で表される化合物の劣化に影響を与えず、乾燥後の残存溶媒が少ない点で好適に用いられる。
 <色変換組成物の製造方法>
 以下に、本発明の色変換組成物の製造方法の一例を説明する。前述した発光材料、樹脂、溶剤等を所定量混合する。上記の成分を所定の組成になるよう混合した後、ホモジナイザー、自公転型攪拌機、3本ローラー、ボールミル、遊星式ボールミル、ビーズミル等の撹拌・混練機で均質に混合分散することで、色変換組成物が得られる。混合分散後、もしくは混合分散の過程で、真空もしくは減圧条件下で脱泡することも好ましく行われる。また、ある特定の成分を事前に混合することや、エージング等の処理をしても構わない。エバポレーターによって溶剤を除去して所望の固形分濃度にすることも可能である。
 <色変換フィルムの作製方法>
 本発明において色変換フィルムは色変換組成物を乾燥または硬化して得られる層を含んでいればその構成に限定はない。色変換フィルムの代表的な構造例として、図1に示すように、基材層10と、色変換組成物を硬化することにより得られる色変換層11との積層体、または、図2に示すように、色変換層11が複数の基材層10によって挟まれた積層体が挙げられる。色変換フィルムには、色変換層の酸素、水分や熱による劣化を防ぐために、さらに図3に示すようにバリアフィルム12を設けても良い。
 色変換フィルムの厚みは特に制限はないが、全ての層の合計で1~5000μmであることが好ましい。1μmより小さいと、フィルムの強靭性が小さくなるという問題がある。5000μmを超えると、クラックが生じやすくなり、色変換フィルム成型が難しい。より好ましくは、10~1000μmであり、さらに好ましくは15~500μmであり、特に好ましくは30~300μmである。
 本発明における色変換フィルムに関する膜厚は、JIS K7130(1999)プラスチック-フィルム及びシート-厚さ測定方法における機械的走査による厚さの測定方法A法に基づいて測定される膜厚(平均膜厚)のことをいう。
 (基材層)
 基材層としては、特に制限無く公知の金属、フィルム、ガラス、セラミック、紙等を使用することができる。具体的には、アルミニウム(アルミニウム合金も含む)、亜鉛、銅、鉄などの金属板や箔、セルロースアセテート、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリエステル、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール、アラミド、シリコーン、ポリオレフィン、熱可塑性フッ素樹脂で、テトラフルオロエチレンとエチレンの共重合体(ETFE)などのプラスチックのフィルム、α-ポリオレフィン樹脂、ポリカプロラクトン樹脂、アクリル樹脂、シリコーン樹脂およびこれらとエチレンの共重合樹脂からなるプラスチックのフィルム、前記プラスチックがラミネートされた紙、または前記プラスチックによりコーティングされた紙、前記金属がラミネートまたは蒸着された紙、前記金属がラミネートまたは蒸着されたプラスチックフィルムなどが挙げられる。また、基材が金属板の場合、表面にクロム系やニッケル系などのメッキ処理やセラミック処理されていてもよい。
 これらの中でも、色変換フィルムの作製のし易さや色変換フィルムの成形のし易さからガラスや樹脂フィルムが好ましく用いられる。また、フィルム状の基材を取り扱う際に破断などの恐れがないように強度が高いフィルムが好ましい。それらの要求特性や経済性の面で樹脂フィルムが好ましく、これらの中でも、経済性、取り扱い性の面でPET、ポリフェニレンサルファイド、ポリカーボネート、ポリプロピレンからなる群より選ばれるプラスチックフィルムが好ましい。また、色変換フィルムを乾燥させる場合や色変換フィルムを押し出し機により200℃以上の高温で圧着成形する場合は、耐熱性の面でポリイミドフィルムが好ましい。フィルムの剥離のし易さから、基材層は、あらかじめ表面が離型処理されていてもよい。
 基材層の厚さは特に制限はないが、下限としては5μm以上が好ましく、25μm以上がより好ましく、38μm以上がさらに好ましい。また、上限としては5000μm以下が好ましく、3000μm以下がより好ましい。
 (色変換層)
 次に、本発明の色変換フィルムの色変換層の製造方法の一例を説明する。上述した方法で作製した色変換組成物を基材上に塗布し、乾燥させる。塗布は、リバースロールコーター、ブレードコーター、スリットダイコーター、ダイレクトグラビアコーター、オフセットグラビアコーター、キスコーター、ナチュラルロールコーター、エアーナイフコーター、ロールブレードコーター、トゥーストリームコーター、ロッドコーター、ワイヤーバーコーター、アプリケーター、ディップコーター、カーテンコーター、スピンコーター、ナイフコーター等により行うことができる。色変換層の膜厚均一性を得るためにはスリットダイコーターやディップコーターで塗布することが好ましい。
 色変換層の乾燥は熱風乾燥機や赤外線乾燥機等の一般的な加熱装置を用いて行うことができる。色変換フィルムの加熱には、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置が用いられる。この場合、加熱条件は、通常、40℃~250℃で1分~5時間、好ましくは60℃~200℃で2分~4時間である。また、ステップキュア等の段階的に加熱硬化することも可能である。
 色変換層を作製した後、必要に応じて基材を変更することも可能である。この場合、簡易的な方法としてはホットプレートを用いて貼り替えを行なう方法や、真空ラミネーターやドライフィルムラミネーターを用いた方法などが挙げられるが、これらに限定されない。
 色変換層の厚みは特に制限はないが、1~1000μmであることが好ましく、10~1000μmがより好ましい。1μmより小さいと、フィルムの強靭性が小さくなるという問題がある。1000μmを超えると、クラックが生じやすくなり、色変換フィルム成型が難しい。より好ましくは、10~100μmであり、さらに好ましくは15~100μmであり、特に好ましくは30~100μmである。
 (バリアフィルム)
 バリアフィルムとしては、色変換層に対してガスバリア性を向上する場合などにおいて適宜用いられ、例えば、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化タンタル、酸化亜鉛、酸化スズ、酸化インジウム、酸化イットリウム、酸化マグネシウムなどの無機酸化物や、窒化ケイ素、窒化アルミニウム、窒化チタン、炭化窒化ケイ素などの無機窒化物、またはこれらの混合物、またはこれらに他の元素を添加した金属酸化物薄膜や金属窒化物薄膜、あるいはポリ塩化ビニリデン、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、フッ素系樹脂、酢酸ビニルのけん化物等のポリビニルアルコール系樹脂などの各種樹脂から成る膜を挙げることができる。また、水分に対してバリア機能を有する膜としては、例えば、ポリエチレン、ポリプロピレン、ナイロン、ポリ塩化ビニリデン、塩化ビニリデンと塩化ビニル、塩化ビニリデンとアクリロニトリルの共重合物、フッ素系樹脂、酢酸ビニルのけん化物等のポリビニルアルコール系樹脂などの各種樹脂から成る膜を挙げることができる。
 バリアフィルムは、図3に示すように色変換層12の両面に設けられてもよいし、片面だけに設けられてもよい。
 また、色変換フィルムの要求される機能に応じて、光拡散層、反射防止機能、防眩機能、反射防止防眩機能、ハードコート機能(耐摩擦機能)、帯電防止機能、防汚機能、電磁波シールド機能、赤外線カット機能、紫外線カット機能、偏光機能、調色機能を有した補助層をさらに設けてもよい。
 <励起光>
 励起光の種類は、一般式(3)で表される化合物等の混合する発光物質が吸収可能な波長領域に発光を示すものであればいずれの励起光でも用いることができる。例えば、熱陰極管や冷陰極管、無機ELなどの蛍光性光源、有機エレクトロルミネッセンス素子光源、LED光源、白熱光源、あるいは太陽光などいずれの励起光でも原理的には利用可能であるが、中でもLEDが好適な励起光であり、ディスプレイや照明用途では、青色光の色純度を高められる点で、430~500nmの範囲の励起光を持つ青色LEDがさらに好適な励起光である。励起光の波長範囲がこれより長波長側にあると青色光が欠如するために白色光が形成できなくなり、また励起光の波長範囲がこれより短波長側にあると、一般式(3)で表される化合物等の発光物質あるいは樹脂等の有機化合物が光劣化しやすいので好ましくない。
 励起光は1種類の発光ピークを持つものでもよく、2種類以上の発光ピークを持つものでもよいが、色純度を高めるためには1種類の発光ピークを持つものが好ましい。また、発光ピークの種類の異なる複数の励起光源を任意に組み合わせて使用することも可能である。
 <光源ユニット>
 本発明における光源ユニットは、少なくとも光源および色変換組成物または色変換フィルムを含む構成である。色変換組成物を含む場合は、光源と色変換組成物の配置方法については特に限定されず、光源に色変換組成物を直接塗布した構成を取っても良いし、光源とは離したフィルムやガラスなどに色変換組成物を塗布した構成を取っても良い。色変換フィルムを含む場合は、光源と色変換フィルムの配置方法については特に限定されず、光源と色変換フィルムを密着させた構成を取っても良いし、光源と色変換フィルムを離したリモートフォスファー形式を取っても良い。また、色純度を高める目的で、さらにカラーフィルターを含む構成を取っても良い。
 前述の通り、430~500nmの範囲の励起光は比較的小さい励起エネルギーであり、一般式(3)で表される化合物等の発光物質の分解を防止できるので、光源は430~500nmの範囲に極大発光を有する発光ダイオードであることが好ましい。
 本発明における光源ユニットは、空間照明、バックライト等種々の光源に有用であり、具体的にはディスプレイ、照明、インテリア、標識、看板、などの用途に使用できるが、特にディスプレイや照明用途に特に好適に用いられる。
 以下、実施例をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
 下記の実施例および比較例において、化合物G-1、R-1は以下に示す化合物である。
Figure JPOXMLDOC01-appb-C000052
 <色変換特性の測定>
 各色変換フィルムおよび青色LED(USHIO EPITEX社製;型番SMBB450H-1100、発光ピーク波長:450nm)を搭載した発光装置に、100mAの電流を流して青色LEDを点灯させ、分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて、発光スペクトル、ピーク波長における発光強度および色度を測定した。なお、各色変換フィルムと青色LED素子との距離は3cmとした。
 <光耐久性のテスト>
 各色変換フィルムおよび青色LED(USHIO EPITEX社製;型番SMBB450H-1100、発光ピーク波長:450nm)を搭載した発光装置に、100mAの電流を流して青色LEDを点灯させ、分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて初期輝度を測定した。なお、各色変換フィルムと青色LED素子との距離を3cmとした。その後、50℃の環境下で青色LED素子からの光を連続照射し、輝度が初期値から10%低下するまでの時間を観測することで、色変換フィルムの耐久性を評価した。
 <色再現範囲測定>
 BenQ社製液晶モニター(SW2700PT)を分解し、内蔵されていた色変換シートの代わりに後述の実施例および比較例で作製した色変換シートを挿入した後、元通り組み立てた。この時のバックライトユニットの構成は「反射フィルム/導光板/拡散シート/色変換シート/プリズムシート/偏光反射フィルム」であった。得られたモニターで青、緑、赤の単色を表示したときの(x、y)色空間におけるそれぞれの色座標は分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて測定した。得られた3点の色座標から色域の面積を算出し、DCI-P3規格の色域面積に対する面積比を算出した。面積比が100%以上であれば良好であり、110%以上であれば極めて良好であるとした。
 <H-NMRの測定>
 化合物のH-NMRは、超伝導FTNMR EX-270(日本電子(株)製)を用い、重クロロホルム溶液にて測定を行った。
 <発光材料>
 合成例1
 化合物G-1の合成方法
 2,4-ジメチルピロール-3-カルボン酸エチル(100g)、メタノール(522mL)、水(261mL)に水酸化カリウム(166g)を溶かした水溶液をフラスコに入れ、4時間還流した。その後、蒸留によりメタノールを留去し、氷浴を用い、内温10℃以下に冷却した。氷浴中で濃塩酸247mLを滴下し、pH1にした。析出した茶色固体をろ過し、水で固体を洗浄し、2,4-ジメチル-ピロール-3-カルボン酸(74g)を淡茶色固体として得た。
 2,4-ジメチル-ピロール-3-カルボン酸(30.3g)、2,2,3,3,4,4,4-ヘプタフルオロ-1-ブタノール(56.5g)、DCC(44.9g)、DMAP(2.13g)、酢酸エチル(725mL)をフラスコに入れ、2時間還流した。氷浴を用い、内温10℃以下に冷却した後、ろ過し、ろ液に水500mLを加え、10分撹拌した後、有機層を分液した。さらに、有機層を水500mLで2回洗浄し、この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた固体をトルエン500mLに溶解し、シリカゲルクロマトグラフィーにより精製し、中間体Aを39.0g得た。
 3,5-ビス(4-メトキシカルボニルフェニル)ベンズアルデヒド(1.0g)と中間体A(3.6g)をフラスコに入れ、ジクロロメタン(28mL)およびトリフルオロ酢酸(1滴)を加えて、窒素雰囲気下、15時間撹拌した。2,3-ジクロロ-5,6-ジシアノ-1,4-ベンゾキノン(2.5g)を加え、さらに1時間撹拌した。反応終了後、三弗化ホウ素ジエチルエーテル錯体(2.1mL)およびジイソプロピルエチルアミン(3.2mL)を加えて、4時間撹拌した後、さらに水(100mL)を加えて撹拌し、有機層を分液した。この有機層を硫酸マグネシウムで乾燥し、ろ過後、溶媒を留去した。得られた反応生成物をシリカゲルクロマトグラフィーにより精製し、化合物G-1を1.1g得た。
 H-NMR(CDCl,ppm):8.16(d,4H)、8.07(s,1H)、7.73(d,4H)、7.60(s,2H)、4.72(t,4H)、3.96(s,6H)、2.87(s,6H)、1.83(s,6H)。
 G-2:SIGMA-ALDRICH製のクマリン6を用いた。
 G-3:SIGMA-ALDRICH製の量子ドット(製品番号753777)を用いた。
 合成例2
 化合物R-1の合成方法
 4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール300mg、2-メトキシベンゾイルクロリド201mgとトルエン10mlの混合溶液を窒素気流下、120℃で6時間加熱した。室温に冷却後、エバポレートした。エタノール20mlで洗浄し、真空乾燥した後、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mgを得た。
 次に、2-(2-メトキシベンゾイル)-3-(4-t-ブチルフェニル)-5-(4-メトキシフェニル)ピロール260mg、4-(4-t-ブチルフェニル)-2-(4-メトキシフェニル)ピロール180mg、メタンスルホン酸無水物206mgと脱気したトルエン10mlの混合溶液を窒素気流下、125℃で7時間加熱した。室温に冷却後、水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、エバポレートし、真空乾燥した。
 次に、得られたピロメテン体とトルエン10mlの混合溶液を窒素気流下、ジイソプロピルエチルアミン305mg、三フッ化ホウ素ジエチルエーテル錯体670mgを加え、室温で3時間攪拌した。水20mlを注入し、ジクロロメタン30mlで抽出した。有機層を水20mlで2回洗浄し、硫酸マグネシウムで乾燥後、エバポレートした。シリカゲルカラムクロマトグラフィーにより精製し、真空乾燥した後、赤紫色粉末0.27gを得た。得られた粉末のH-NMR分析結果は次の通りであり、上記で得られた赤紫色粉末がR-1であることが確認された。
H-NMR(CDCl,ppm):1.19(s,18H)、3.42(s,3H)、3.85(s,6H)、5.72(d,1H)、6.20(t,1H)、6.42-6.97(m,16H),7.89(d,4H)。
 R-2:一般式(3)で表される化合物以外の有機発光材料としてBASF製の“Lumogen”(登録商標)F Red 300を使用した。
 R-3:SIGMA-ALDRICH製の量子ドット(製品番号753882)を用いた。
 <樹脂>
 樹脂Aの合成
 モノマー成分として、メタクリル酸メチル29.5重量%とスチレン70.5重量%、および、重合開始剤として、0.005重量%のt-アミルパーオキシ2-エチルヘキサノエート、からなるモノマー組成物100重量部に対し、溶媒としてジエチレングリコールジエチルエーテルを400重量部の割合で混合し、ヘリカルリボン付き10リットル混合槽に1kg/時間で連続的にフィードして、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。
 重合槽液面が一定となるように、底部から重合液を抜き出し、150℃に維持しながら、ベント口を備えた押出機に導入して揮発分を脱揮しつつ樹脂を押し出した。
 得られた樹脂をジオキサンに溶解し、10重量%ジオキサン溶液を調製した。1000mLオートクレーブ装置に10重量%ジオキサン溶液を500重量部、10重量%Pd/C(和光純薬(株)製)を1重量部仕込み、水素圧10MPaで、200℃で15時間保持して、スチレン由来の芳香環の水素化反応を行った。フィルターによりPd/Cを除去した後、得られた樹脂液をメタノール中に沈殿精製することで、樹脂Aを得た。
 H-NMR測定により、樹脂A中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Aは、一般式(1)で表される部分構造を30.0重量%、一般式(2)表される部分構造を70.0重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち、一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂Bの合成
 モノマー成分として、メタクリル酸メチル49.0重量%とスチレン51.0重量%、および、重合開始剤として0.005重量%のt-アミルパーオキシ2-エチルヘキサノエートからなるモノマー組成物、を用いたこと以外は樹脂Aと同様の操作を行い、樹脂Bを合成した。
 H-NMR測定により、樹脂B中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Bは、一般式(1)で表される部分構造を50.0重量%、一般式(2)表される部分構造を50.0重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち、一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂Cの合成
 モノマー成分として、メタクリル酸メチル59.0重量%とスチレン41.0重量%、および、重合開始剤として0.005重量%のt-アミルパーオキシ2-エチルヘキサノエートからなるモノマー組成物、を用いたこと以外は樹脂Aと同様の操作を行い、樹脂Cを合成した。
 H-NMR測定により、樹脂C中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Cは、一般式(1)で表される部分構造を60.0重量%、一般式(2)表される部分構造を40.0重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち、一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂Dの合成
 モノマー成分として、メタクリル酸メチル74.5重量%とスチレン24.5重量%、および、重合開始剤として0.005重量%のt-アミルパーオキシ2-エチルヘキサノエートからなるモノマー組成物、を用いたこと以外は樹脂Aと同様の操作を行い、樹脂Dを合成した。
 H-NMR測定により、樹脂D中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Dは、一般式(1)で表される部分構造を75.0重量%、一般式(2)表される部分構造を25.0重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂Eの合成
 モノマー成分として、メタクリル酸メチル84.0重量%とスチレン16.0重量%、および、重合開始剤として0.005重量%のt-アミルパーオキシ2-エチルヘキサノエートからなるモノマー組成物、を用いたこと以外は樹脂Aと同様の操作を行い、樹脂Eを合成した。
 H-NMR測定により、樹脂E中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Eは、一般式(1)で表される部分構造を85.0重量%、一般式(2)表される部分構造を15.0重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂Fの合成
 モノマー成分として、メタクリル酸メチル94.5重量%とスチレン5.5重量%、および、重合開始剤として0.005重量%のt-アミルパーオキシ2-エチルヘキサノエートからなるモノマー組成物、を用いたこと以外は樹脂Aと同様の操作を行い、樹脂Fを合成した。
 H-NMR測定により、樹脂F中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Fは、一般式(1)で表される部分構造を95.0重量%、一般式(2)表される部分構造を5.0重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂G:Optimas6000(三菱瓦斯化学(株)製 PMMA-水添スチレン共重合体)を用いた。
 H-NMR測定により、樹脂G中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Gは、一般式(1)で表される部分構造を61.0重量%、一般式(2)表される部分構造を39.0重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂H:Optimas7500(三菱瓦斯化学(株)製 PMMA-水添スチレン共重合体)を用いた。
 H-NMR測定により、樹脂H中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Hは、一般式(1)で表される部分構造を77.0重量%、一般式(2)表される部分構造を23.0重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂Iの合成
 モノマー成分として、アクリル酸メチル75.0重量%とスチレン25.0重量%、および、重合開始剤として0.005重量%のt-アミルパーオキシ2-エチルヘキサノエート、からなるモノマー組成物、を用いたこと以外は樹脂Aと同様の操作を行い、樹脂Iを合成した。
 H-NMR測定により、樹脂I中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Iは、一般式(1)で表される部分構造を75.7重量%、一般式(2)表される部分構造を24.3重量%含む樹脂であることがわかった。
また、一般式(2)で表される部分構造のY~Yのうち一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂J:BR-85(三菱ケミカル(株)製、PMMA)を用いた。
 樹脂Kの合成
 モノマー成分として、スチレン100.0重量%、および、重合開始剤として0.005重量% のt-アミルパーオキシ2-エチルヘキサノエートからなるモノマー組成物、を用いたこと以外は樹脂Aと同様の操作を行い、樹脂Kを合成した。
 H-NMR測定により、樹脂Kは、一般式(2)表される構造を100重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂L:セプトンV9827(クラレ(株)製 水添スチレン-エチレン-ブチレン-スチレン共重合体)を用いた。樹脂Lは、一般式(2)で表される部分構造を有し、かつY~Yのうち一つは無置換のシクロヘキシル基であり、その他三つは水素原子であるが、一般式(1)で表される部分構造は含まない樹脂である。
 樹脂Mの合成
 モノマー成分として、メタクリル酸エチル74.5重量%とスチレン24.5重量%、および、重合開始剤として0.005重量%のt-アミルパーオキシ2-エチルヘキサノエートからなるモノマー組成物、を用いたこと以外は樹脂Aと同様の操作を行い、樹脂Mを合成した。
 H-NMR測定により、樹脂M中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Mは、一般式(1)で表される部分構造を75.0重量%、一般式(2)表される部分構造を25.0重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち一つは無置換のシクロヘキシル基であり、その他三つは水素原子であることがわかった。
 樹脂Nの合成
 モノマー成分として、メタクリル酸メチル74.5重量%と1-ビニルナフタレン24.5重量%、および、重合開始剤として0.005重量%のt-アミルパーオキシ2-エチルヘキサノエートからなるモノマー組成物、を用いたこと以外は樹脂Aと同様の操作を行い、樹脂Nを合成した。
 H-NMR測定により、樹脂N中の、一般式(1)で表される部分構造と一般式(2)表される部分構造との含有量を算出したところ、樹脂Nは、一般式(1)で表される部分構造を75.0重量%、一般式(2)表される部分構造を25.0重量%含む樹脂であることがわかった。また、一般式(2)で表される部分構造のY~Yのうち一つは無置換のデカヒドロナフチル基であり、その他三つは水素原子であることがわかった。
 (実施例1~9)
 樹脂100重量部に対して、化合物G-1を0.40重量部、化合物R-1を0.01重量部、溶媒としてトルエンを300重量部混合した後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ(株)製)を用い、1000rpmで20分間撹拌・脱泡して色変換層作製用樹脂液としての色変換組成物を得た。各実施例において色変換層作製樹脂液作製時に使用した樹脂は表2に示す通りである。
 同様に、樹脂として“Vylon630”(東洋紡(株)製 ポリエステル樹脂)を用い、ポリエステル樹脂100重量部に対して、溶剤としてトルエンを300重量部混合した後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ(株)製)を用い、300rpmで20分間撹拌・脱泡して樹脂組成物を得た。
 次に、スリットダイコーターを用いて色変換組成物を、“ルミラー”U48(東レ株式会社)製、厚さ50μm)上に塗布し、120℃で20分加熱、乾燥して平均膜厚20μmの色変換層を形成した。
 同様に、スリットダイコーターを用いて接着剤組成物として上記樹脂組成物を、光拡散フィルム“ケミカルマット”125PW((株)きもと製、厚さ138μm)のPET基材層側に塗布し、120℃で20分加熱、乾燥して平均膜厚15μmの接着層を形成した。
 次に、上記2つのユニットを、色変換層と接着層が直接積層するように加温ラミネートすることで、「基材層/色変換層/接着層/基材層/光拡散層」という構成の色変換フィルムを作製した。
 各実施例で作製した色変換フィルムを用いて青色光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長529nm、ピーク波長における発光スペクトルの半値幅27nmの緑色発光が得られ、赤色光の発光領域のみ抜粋するとピーク波長622nmピーク波長における発光スペクトルの半値幅54nmの赤色発光が得られた。
 前述の方法にて色変換特性を測定し、後述の比較例1における緑色の発光強度を1.00としたときの各実施例における緑色の発光のピーク波長における発光強度の相対値と、後述の比較例1における赤色の発光強度を1.00としたときの各実施例における赤色の発光のピーク波長における発光強度の相対値を算出した。また、前述の方法にて光耐久性のテストを行った。結果を表2に示す。
 また、BenQ社製液晶モニター(SW2700PT)に内蔵されていた色変換シートの代わりに各実施例で作製した色変換シートを挿入した後、元通り組み立てた。得られたモニターで青、緑、赤の単色を表示したときの(x、y)色空間におけるそれぞれの色座標を分光放射輝度計(CS-1000、コニカミノルタ社製)を用いて測定した。得られた3点の色座標から色域の面積を算出し、DCI-P3規格の色域面積に対する面積比を算出した。結果を表2に示す。
 (実施例10)
 色変換層作製用色変換組成物の作製時に、発光材料としてG-2およびR-2を使用したこと以外は実施例4と同様の操作にて色変換フィルムを作成した。
 作製した色変換フィルムを用いて青色光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長535nm、ピーク波長における発光スペクトルの半値幅80nmの緑色発光が得られ、赤色光の発光領域のみ抜粋するとピーク波長615nmピーク波長における発光スペクトルの半値幅55nmの赤色発光が得られた。
 前述の方法にて色変換特性を測定し、後述の比較例1における緑色の発光強度を1.00としたときの各実施例における緑色の発光のピーク波長における発光強度の相対値と、後述の比較例1における赤色の発光強度を1.00としたときの各実施例における赤色の発光のピーク波長における発光強度の相対値を算出した。また、前述の方法にて光耐久性のテストと色再現性測定を行った。結果を表3に示す。
 (実施例11)
 色変換層作製用色変換組成物の作製時に、発光材料としてG-3およびR-3を使用したこと以外は実施例4と同様の操作にて色変換フィルムを作成した。
 作製した色変換フィルムを用いて青色光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長535nm、ピーク波長における発光スペクトルの半値幅35nmの緑色発光が得られ、赤色光の発光領域のみ抜粋するとピーク波長630nmピーク波長における発光スペクトルの半値幅40nmの赤色発光が得られた。
 前述の方法にて色変換特性を測定し、後述の比較例1における緑色の発光強度を1.00としたときの各実施例における緑色の発光のピーク波長における発光強度の相対値と、後述の比較例1における赤色の発光強度を1.00としたときの各実施例における赤色の発光のピーク波長における発光強度の相対値を算出した。また、前述の方法にて光耐久性のテストと色再現性測定を行った。結果を表3に示す。
 (実施例12)
 色変換層作製用色変換組成物の作製時に、樹脂として樹脂Mを使用したこと以外は実施例4と同様の操作にて色変換フィルムを作成した。
 作製した色変換フィルムを用いて青色光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長529nm、ピーク波長における発光スペクトルの半値幅27nmの緑色発光が得られ、赤色光の発光領域のみ抜粋するとピーク波長622nmピーク波長における発光スペクトルの半値幅54nmの赤色発光が得られた。
 前述の方法にて色変換特性を測定し、後述の比較例1における緑色の発光強度を1.00としたときの各実施例における緑色の発光のピーク波長における発光強度の相対値と、後述の比較例1における赤色の発光強度を1.00としたときの各実施例における赤色の発光のピーク波長における発光強度の相対値を算出した。また、前述の方法にて光耐久性のテストと色再現性測定を行った。結果を表3に示す。
 (実施例13)
 色変換層作製用の色変換組成物の作製時に、樹脂として樹脂Nを使用したこと以外は実施例4と同様の操作にて色変換フィルムを作成した。
 作製した色変換フィルムを用いて青色光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長529nm、ピーク波長における発光スペクトルの半値幅27nmの緑色発光が得られ、赤色光の発光領域のみ抜粋するとピーク波長622nmピーク波長における発光スペクトルの半値幅54nmの赤色発光が得られた。
 前述の方法にて色変換特性を測定し、後述の比較例1における緑色の発光強度を1.00としたときの各実施例における緑色の発光のピーク波長における発光強度の相対値と、後述の比較例1における赤色の発光強度を1.00としたときの各実施例における赤色の発光のピーク波長における発光強度の相対値を算出した。また、前述の方法にて光耐久性のテストと色再現性測定を行った。結果を表3に示す。
 比較例1で得られた色変換フィルムの耐久性と比較して、実施例1~13の色変換フィルムは耐久性が高く、特に実施例3~5、および実施例7、8で作製した色変換フィルムの耐久性が特に高いことがわかった。
 (比較例1および2)
 色変換層作製用の色変換組成物の作製時に樹脂として表2に示す樹脂を用いたこと以外は実施例1と同様の操作にて色変換フィルムを作製した。
 得られた色変換フィルムを用いて青色光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長529nm、ピーク波長における発光スペクトルの半値幅27nmの緑色発光が得られ、赤色光の発光領域のみ抜粋するとピーク波長622nmピーク波長における発光スペクトルの半値幅54nmの赤色発光が得られた。
 前述の方法にて色変換特性を測定し、後述の比較例1における緑色の発光強度を1.00としたときの各実施例における緑色の発光のピーク波長における発光強度の相対値と、後述の比較例1における赤色の発光強度を1.00としたときの各実施例における赤色の発光のピーク波長における発光強度の相対値を算出した。結果を表2に示す通りである。
 樹脂と発光材料の相溶性が悪く、発光材料が凝集しているため緑色および赤色の発光強度が非常に低くなっていることがわかった。
 また、前述の方法にて光耐久性のテストを行ったところ、輝度が初期値から10%低下するまでの時間は10時間であり、耐久性は非常に悪いことがわかった。
 (比較例3)
 色変換層作製用の色変換組成物の作製時に、樹脂として樹脂Jと樹脂Lを1:1で混合して用いたこと以外は実施例1と同様の操作にて色変換フィルムを作製した。
 得られた色変換フィルムを用いて青色光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長529nm、ピーク波長における発光スペクトルの半値幅27nmの緑色発光が得られ、赤色光の発光領域のみ抜粋するとピーク波長622nmピーク波長における発光スペクトルの半値幅54nmの赤色発光が得られた。
 前述の色変換特性測定により、緑色の発光のピーク波長における発光強度と、赤色の発光強度を測定した。また、前述の方法にて光耐久性のテストと色再現性測定を行った。結果を表3に示す。
(比較例4)
 色変換層作製用色変換組成物の作製時に、発光材料としてG-2およびR-2を用いたこと以外は比較例1と同様の操作にて色変換フィルムを作製した。
 得られた色変換フィルムを用いて青色光を色変換させたところ、緑色光の発光領域のみを抜粋すると、ピーク波長535nm、ピーク波長における発光スペクトルの半値幅80nmの緑色発光が得られ、赤色光の発光領域のみ抜粋するとピーク波長615nmピーク波長における発光スペクトルの半値幅55nmの赤色発光が得られた。
 前述の色変換特性測定により、緑色の発光のピーク波長における発光強度と、赤色の発光強度を測定した。また、前述の方法にて光耐久性のテストと色再現性測定を行った。結果を表3に示す。
 実施例1~13、比較例1、比較例2~4を比べると、実施例1~13の輝度10%低下時間が大幅に向上している。つまり用いる樹脂が、分子内に一般式(1)で表される構造と一般式(2)で表される構造を併せ持つ場合、耐久性が向上することがわかった。また実施例10および11を比べると、発光材料が有機発光材料である場合、耐久性がさら大幅に向上していることがわかった。すなわち発光材料が量子ドット(無機材料)である実施例11よりも有機材料である実施例10の方が耐久性がより優れることがわかった。さらに、実施例4および10の結果から発光材料が有機材であっても一般式(3)で表される構造である場合は、耐久性がさらに優れることがわかった。
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
1  色変換フィルム
10 基材層
11 色変換層
12 バリアフィルム

Claims (19)

  1. 入射光を、その入射光よりも長波長の光に変換する色変換組成物であって、 以下の(A)成分および(B)を含有することを特徴とする色変換組成物。
    (A)成分:少なくとも1種の発光材料
    (B)成分:分子構造中に、一般式(1)で表される部分構造と、一般式(2)で表される部分構造とを有する樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、ZおよびZは同じでも異なっていてもよく、水素原子または炭素数1以上20以下の有機基である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、Y~Yは、それぞれ同じでも異なっていてもよく、水素原子または炭素数1以上20以下の有機基であり、かつ、Y~Yのうち少なくとも一つは、脂肪族環状炭化水素構造を含む基である。)
  2. 前記一般式(2)のY~Yのうち少なくとも一つが置換もしくは無置換のシクロヘキシル基である、請求項1に記載の色変換組成物。
  3. 前記一般式(2)のY~Yのうち一つが置換もしくは無置換のシクロヘキシル基であり、その他三つが水素原子である、請求項1または2に記載の色変換組成物。
  4. 前記一般式(1)のZがメチル基である、請求項1~3のいずれかに記載の色変換組成物。
  5. 前記一般式(1)のZがメチル基である、請求項1~4のいずれかに記載の色変換組成物。
  6. 前記発光材料が有機発光材料である、請求項1~5のいずれかに記載の色変換組成物。
  7. (A)成分が、一般式(3)で表される化合物を含有する、請求項1~6のいずれかに記載の色変換組成物。
    Figure JPOXMLDOC01-appb-C000003
    (XはC-RまたはNである。R~Rはそれぞれ同じでも異なっていてもよく、水素原子、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基、および隣接置換基との間に形成される縮合環および脂肪族環の中から選ばれる。)
  8. 一般式(3)において、XがC-Rであり、Rが一般式(4)で表される基である、請求項7に記載の色変換組成物。
    Figure JPOXMLDOC01-appb-C000004
    (rは、水素原子、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、水酸基、チオール基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、アルデヒド基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、アミノ基、ニトロ基、シリル基、シロキサニル基、ボリル基、ホスフィンオキシド基からなる群より選ばれる。kは1~3の整数である。kが2以上である場合、rはそれぞれ同じでも異なっても良い。)
  9. 一般式(3)において、R、R、RおよびRがそれぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基である、請求項7または8に記載の色変換組成物。
  10. 一般式(3)において、R、R、RおよびRがそれぞれ同じでも異なっていてもよく、置換もしくは無置換のアルキル基である、請求項7または8に記載の色変換組成物。
  11. (A)成分が、波長400nm以上500nm以下の範囲の励起光を用いることによりピーク波長が500nm以上580nm以下の領域に観測される発光を呈する発光材料を含有する、請求項1~10のいずれかに記載の色変換組成物。
  12. (A)成分が、下記の発光材料(a)および(b)を含有する、請求項1~11のいずれかに記載の色変換組成物。
     (a)波長400nm以上500nm以下の範囲の励起光を用いることによりピーク波長が500nm以上580nm以下の領域に観測される発光を呈する発光材料
     (b)波長400nm以上500nm以下の範囲の励起光または発光材料(a)からの発光のいずれかまたは両方により励起されることにより、ピーク波長が580nm以上750nm以下の領域に観測される発光を呈する発光材料
  13. 前記波長400nm以上500nm以下の範囲の励起光を用いることによりピーク波長が500nm以上580nm以下の発光を呈する発光材料が、一般式(3)で表される化合物である、請求項11および12に記載の色変換組成物。
  14. 前記発光材料(b)が、一般式(3)で表される化合物である、請求項12に記載の色変換組成物。
  15. 請求項1~14いずれかに記載の色変換組成物層またはその硬化物層を含む、色変換フィルム。
  16. 光源および請求項15に記載の色変換フィルムを含む、光源ユニット。
  17. 光源が400nm以上500nm以下の範囲に極大発光を有する発光ダイオードである、請求項16に記載の光源ユニット。
  18. 請求項16または17に記載の光源ユニットを含む、ディスプレイ。
  19. 請求項16または17に記載の光源ユニットを含む、照明。
PCT/JP2018/026035 2017-07-28 2018-07-10 色変換組成物、色変換フィルムならびにそれを含む光源ユニット、ディスプレイおよび照明 WO2019021813A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207001092A KR102354818B1 (ko) 2017-07-28 2018-07-10 색 변환 조성물, 색 변환 필름, 그리고 그것을 포함하는 광원 유닛, 디스플레이 및 조명
JP2018537540A JP6690721B2 (ja) 2017-07-28 2018-07-10 色変換組成物、色変換フィルムならびにそれを含む光源ユニット、ディスプレイおよび照明
CN201880047595.2A CN110945389B (zh) 2017-07-28 2018-07-10 颜色转换组合物、颜色转换膜以及包含其的装置
US16/630,210 US11459504B2 (en) 2017-07-28 2018-07-10 Color conversion composition and color conversion film, and light source unit, display, and lighting including same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-146289 2017-07-28
JP2017146289 2017-07-28

Publications (1)

Publication Number Publication Date
WO2019021813A1 true WO2019021813A1 (ja) 2019-01-31

Family

ID=65041354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026035 WO2019021813A1 (ja) 2017-07-28 2018-07-10 色変換組成物、色変換フィルムならびにそれを含む光源ユニット、ディスプレイおよび照明

Country Status (6)

Country Link
US (1) US11459504B2 (ja)
JP (1) JP6690721B2 (ja)
KR (1) KR102354818B1 (ja)
CN (1) CN110945389B (ja)
TW (1) TWI734921B (ja)
WO (1) WO2019021813A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130786A1 (ja) * 2020-12-18 2022-06-23 富士フイルム株式会社 色変換フィルム用組成物、色変換フィルム、色変換フィルムの製造方法、バックライトユニット及び液晶表示装置
WO2022264896A1 (ja) * 2021-06-14 2022-12-22 東レ株式会社 色変換シート、それを含む光源ユニット、ディスプレイおよび照明装置
WO2023042751A1 (ja) 2021-09-16 2023-03-23 東レ株式会社 色変換部材、それを含む光源ユニット、ディスプレイおよび照明装置
WO2024202764A1 (ja) * 2023-03-24 2024-10-03 東レ株式会社 ポリマー微粒子、その製造方法、組成物、光学部材、光源ユニット、ディスプレイおよび照明装置、インク

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11970556B2 (en) * 2018-10-16 2024-04-30 Asahi Kasei Kabushiki Kaisha Methacrylic resin, method of manufacturing methacrylic resin, methacrylic resin composition, shaped article, optical components, and automotive part
US20220045133A1 (en) * 2020-08-05 2022-02-10 Joled Inc. Display panel and display device
CN113321671A (zh) * 2021-01-29 2021-08-31 南京工业大学 一种氟硼二吡咯类固态发光材料及其制备方法和应用、一种蓝光驱动的led
CN113234008A (zh) * 2021-04-27 2021-08-10 太原理工大学 一种荧光有机物、荧光染料和序列色发光调控的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224982A (ja) * 2007-03-12 2008-09-25 Fujifilm Corp カラーフィルタ用着色硬化性組成物、カラーフィルタ及び液晶表示装置
JP2013087243A (ja) * 2011-10-20 2013-05-13 Hitachi Chemical Co Ltd 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
WO2015147312A1 (ja) * 2014-03-26 2015-10-01 住友化学株式会社 液晶表示装置
WO2016021883A1 (ko) * 2014-08-02 2016-02-11 주식회사 엘지화학 염료 복합체, 광전환 필름, 및 이를 포함하는 전자소자
JP2016130848A (ja) * 2015-01-13 2016-07-21 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 自発光感光性樹脂組成物、これから製造された色変換層を含む表示装置
WO2017018392A1 (ja) * 2015-07-29 2017-02-02 Jsr株式会社 樹脂組成物、膜、波長変換部材、及び膜の形成方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446157A (en) 1990-04-23 1995-08-29 Morgan; Lee R. Boron difluoride compounds useful in photodynamic therapy and production of laser light
JP3159259B2 (ja) 1999-01-13 2001-04-23 日本電気株式会社 有機エレクトロルミネッセンス素子
JP4005749B2 (ja) 1999-12-13 2007-11-14 出光興産株式会社 色変換膜及び有機エレクトロルミネッセンス素子
JP4948713B2 (ja) 2001-04-19 2012-06-06 三井化学株式会社 色変換材料、該材料を含む組成物、該組成物を使用した色変換光学部品および該色変換光学部品を使用した発光素子
JP4948714B2 (ja) 2001-05-24 2012-06-06 三井化学株式会社 色変換材料、該材料を含む組成物、該組成物を使用した色変換光学部品および該色変換光学部品を使用した発光素子
CN1437054A (zh) * 2002-02-04 2003-08-20 铼宝科技股份有限公司 平面化的色转换层
JP2003249372A (ja) * 2002-02-21 2003-09-05 Hayashibara Biochem Lab Inc 有機電界発光素子
US7279234B2 (en) * 2003-08-22 2007-10-09 E.I. Du Pont De Nemours And Company Methods for identity verification using transparent luminescent polymers
JP5221859B2 (ja) 2006-03-09 2013-06-26 株式会社Adeka クマリン化合物を含有してなるフィルム、クマリン化合物とマトリクスを含む色変換層、該色変換層を含む色変換フィルタ、補色層、補色フィルタならびに多色発光デバイス
TW200848803A (en) * 2007-02-23 2008-12-16 Toray Industries Ink for color filter and method for producing color filter
TWI477564B (zh) * 2008-07-28 2015-03-21 Sharp Kk A polymer pigment material, a color conversion film thereof, and a multi-color light emitting organic EL device
JP2010061824A (ja) * 2008-09-01 2010-03-18 Toray Ind Inc 色変換組成物
CN102217419A (zh) * 2008-09-05 2011-10-12 株式会社半导体能源研究所 发光元件、发光器件和电子器件
JP2011241160A (ja) * 2010-05-17 2011-12-01 Yamamoto Chem Inc 色変換材料、該材料を含む組成物、該組成物を使用した色変換光学部品および該色変換光学部品を使用した発光素子
JP2012022028A (ja) 2010-07-12 2012-02-02 Ns Materials Kk 液晶ディスプレイ
JP5527269B2 (ja) 2011-04-06 2014-06-18 セイコーエプソン株式会社 インク組成物、インクジェット記録方法、及び記録物
JP5742439B2 (ja) * 2011-05-02 2015-07-01 信越化学工業株式会社 蛍光性化合物及び蛍光性樹脂組成物
CN103517964B (zh) * 2011-05-10 2018-05-18 巴斯夫欧洲公司 新型颜色转换器
KR101330592B1 (ko) * 2011-06-07 2013-11-18 도레이 카부시키가이샤 수지 시트 적층체, 그 제조 방법 및 그것을 사용한 형광체 함유 수지 시트가 부착된 led칩의 제조 방법
KR101574089B1 (ko) * 2011-12-23 2015-12-03 제일모직 주식회사 감광성 수지 조성물 및 이를 이용한 컬러필터
JP6279209B2 (ja) 2013-01-17 2018-02-14 山本化成株式会社 波長変換層、及びこれを用いた波長変換フィルタ
CN104046350B (zh) * 2013-03-15 2018-08-17 广州熵能创新材料股份有限公司 一种荧光微球及制备方法和应用
EP2969582B1 (en) * 2013-03-15 2021-06-02 Segan Industries, Inc. Compounds for reducing background color in color change compositions
EP3034580B1 (en) * 2013-08-13 2020-04-29 DIC Corporation Resin composition and molded article
WO2015062916A1 (en) * 2013-11-01 2015-05-07 Koninklijke Philips N.V. New class of green/yellow emitting phosphors based on derivatives of benzimidazoxanthenoisoquinolinone for led lighting
KR20150130224A (ko) * 2014-05-13 2015-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
KR102204534B1 (ko) 2015-01-13 2021-01-20 동우 화인켐 주식회사 자발광 감광성 수지 조성물, 이로부터 제조된 색변환층을 포함하는 표시장치
JP6815987B2 (ja) * 2015-06-29 2021-01-20 東レ株式会社 色変換組成物、色変換フィルム並びにそれを含む発光装置、液晶表示装置および照明装置
CN107735699A (zh) * 2015-07-10 2018-02-23 迪睿合株式会社 荧光体片、具备该荧光体片的白色光源装置、以及具备该白色光源装置的显示装置
JP6834213B2 (ja) * 2015-07-29 2021-02-24 Jsr株式会社 樹脂組成物、膜、波長変換部材、及び膜の形成方法
JP2017043682A (ja) * 2015-08-25 2017-03-02 デクセリアルズ株式会社 波長変換部材、蛍光体シート、白色光源装置、及び表示装置
US10472520B2 (en) * 2015-11-16 2019-11-12 StoreDot Ltd. Red enhancement in white LED displays using UV-cured color conversion films
WO2017094832A1 (ja) * 2015-12-04 2017-06-08 東レ株式会社 蛍光体シート、それを用いた発光体、光源ユニット、ディスプレイ、および発光体の製造方法
WO2017104581A1 (ja) * 2015-12-18 2017-06-22 東レ株式会社 色変換組成物、色変換フィルム、それを含む光源ユニット、ディスプレイおよび照明装置
KR102425914B1 (ko) * 2016-01-12 2022-07-27 동우 화인켐 주식회사 자발광 감광성 수지 조성물, 이를 이용하여 제조된 색변환층 및 화상표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224982A (ja) * 2007-03-12 2008-09-25 Fujifilm Corp カラーフィルタ用着色硬化性組成物、カラーフィルタ及び液晶表示装置
JP2013087243A (ja) * 2011-10-20 2013-05-13 Hitachi Chemical Co Ltd 球状蛍光体、波長変換型太陽電池封止材、太陽電池モジュール及びこれらの製造方法
WO2015147312A1 (ja) * 2014-03-26 2015-10-01 住友化学株式会社 液晶表示装置
WO2016021883A1 (ko) * 2014-08-02 2016-02-11 주식회사 엘지화학 염료 복합체, 광전환 필름, 및 이를 포함하는 전자소자
JP2016130848A (ja) * 2015-01-13 2016-07-21 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 自発光感光性樹脂組成物、これから製造された色変換層を含む表示装置
WO2017018392A1 (ja) * 2015-07-29 2017-02-02 Jsr株式会社 樹脂組成物、膜、波長変換部材、及び膜の形成方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130786A1 (ja) * 2020-12-18 2022-06-23 富士フイルム株式会社 色変換フィルム用組成物、色変換フィルム、色変換フィルムの製造方法、バックライトユニット及び液晶表示装置
WO2022264896A1 (ja) * 2021-06-14 2022-12-22 東レ株式会社 色変換シート、それを含む光源ユニット、ディスプレイおよび照明装置
WO2023042751A1 (ja) 2021-09-16 2023-03-23 東レ株式会社 色変換部材、それを含む光源ユニット、ディスプレイおよび照明装置
WO2024202764A1 (ja) * 2023-03-24 2024-10-03 東レ株式会社 ポリマー微粒子、その製造方法、組成物、光学部材、光源ユニット、ディスプレイおよび照明装置、インク

Also Published As

Publication number Publication date
TW201910130A (zh) 2019-03-16
US20200165515A1 (en) 2020-05-28
JP6690721B2 (ja) 2020-04-28
CN110945389A (zh) 2020-03-31
CN110945389B (zh) 2021-08-03
TWI734921B (zh) 2021-08-01
KR20200032091A (ko) 2020-03-25
US11459504B2 (en) 2022-10-04
JPWO2019021813A1 (ja) 2019-07-25
KR102354818B1 (ko) 2022-01-24

Similar Documents

Publication Publication Date Title
JP6866643B2 (ja) 色変換組成物、色変換フィルムならびにそれを含むバックライトユニット、ディスプレイおよび照明
JP6690721B2 (ja) 色変換組成物、色変換フィルムならびにそれを含む光源ユニット、ディスプレイおよび照明
CN107614659B (zh) 吡咯亚甲基硼络合物、颜色转换组合物、颜色转换膜以及包含其的光源单元、显示器及照明
JP6380653B2 (ja) 色変換シート、それを含む光源ユニット、ディスプレイおよび照明装置
WO2017057287A1 (ja) 色変換フィルムならびにそれを含む光源ユニット、ディスプレイおよび照明装置
JP6210169B2 (ja) 色変換組成物、色変換シートならびにそれを含む光源ユニット、ディスプレイ、照明装置、バックライトユニット、ledチップおよびledパッケージ
US11340390B2 (en) Color conversion sheet, light source unit comprising same, display and lighting device
JP6822554B2 (ja) 色変換組成物、色変換シートならびにそれを含む光源ユニット、ディスプレイおよび照明装置
JP6693578B2 (ja) ピロメテンホウ素錯体、色変換組成物、色変換フィルム、光源ユニット、ディスプレイ、照明装置および発光素子
JP6838335B2 (ja) 樹脂組成物、色変換シート、およびそれを含む発光体、照明、バックライトユニットおよびディスプレイ。
TW202136474A (zh) 顏色轉換組成物、顏色轉換膜、含有其的光源單元、顯示器及照明以及化合物
JP6737010B2 (ja) 色変換シート、それを含む光源ユニット、ディスプレイおよび照明
JP2019219512A (ja) 色変換組成物、色変換シートならびにそれを含む光源ユニット、ディスプレイおよび照明装置
JP7163773B2 (ja) 色変換組成物、色変換シートならびにそれを含む光源ユニット、ディスプレイおよび照明装置
JP2021047313A (ja) 色変換シートならびにそれを含む光源ユニット、ディスプレイおよび照明装置
WO2019216200A1 (ja) 色変換組成物、色変換シート、光源ユニット、ディスプレイおよび照明装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537540

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838497

Country of ref document: EP

Kind code of ref document: A1