WO2019013532A2 - 아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 l-분지쇄 아미노산 생산 방법 - Google Patents

아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 l-분지쇄 아미노산 생산 방법 Download PDF

Info

Publication number
WO2019013532A2
WO2019013532A2 PCT/KR2018/007821 KR2018007821W WO2019013532A2 WO 2019013532 A2 WO2019013532 A2 WO 2019013532A2 KR 2018007821 W KR2018007821 W KR 2018007821W WO 2019013532 A2 WO2019013532 A2 WO 2019013532A2
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
ilvb
seq
branched chain
acetohydroxy
Prior art date
Application number
PCT/KR2018/007821
Other languages
English (en)
French (fr)
Other versions
WO2019013532A3 (ko
Inventor
전애지
송병철
이지혜
김종현
김혜원
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201880015829.5A priority Critical patent/CN110506112B/zh
Priority to US16/479,813 priority patent/US10844359B2/en
Priority to ES18832634T priority patent/ES2919345T3/es
Priority to AU2018301879A priority patent/AU2018301879B2/en
Priority to BR112019020183-1A priority patent/BR112019020183B1/pt
Priority to MX2019015056A priority patent/MX2019015056A/es
Priority to EP18832634.2A priority patent/EP3553171B1/en
Priority to RU2019138301A priority patent/RU2743964C1/ru
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Priority to CA3064569A priority patent/CA3064569C/en
Priority to JP2019538131A priority patent/JP6794555B2/ja
Publication of WO2019013532A2 publication Critical patent/WO2019013532A2/ko
Publication of WO2019013532A3 publication Critical patent/WO2019013532A3/ko
Priority to US16/692,558 priority patent/US11021697B2/en
Priority to ZA2019/08353A priority patent/ZA201908353B/en
Priority to US17/076,057 priority patent/US11085029B2/en
Priority to US17/225,756 priority patent/US11248220B2/en
Priority to US17/357,196 priority patent/US11345901B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/03Oxo-acid-lyases (4.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)

Definitions

  • the present invention relates to novel acetohydroxy acid synthetase variants and their uses, and more particularly to acetohydroxy acid synthetase variants, microorganisms containing them, or a method for producing L-branched chain amino acids using the same.
  • Branched chain amino acids such as L-valine, L-leucine and L-isoleucine are known to play an important role as an energy source in exercise and to increase protein in an individual and are used in medicines and foods. Because branched chain amino acids use the same enzymes for similar biosynthetic processes, it is difficult to produce one branched chain amino acid on an industrial scale through fermentation. In the production of branched chain amino acids, the role of acetohydroxy acid synthase, which is the first enzyme of branched chain amino acid biosynthesis, is the most important. However, previous researches on this matter have mainly focused on small subunits (acetohydroxy acid synthase small subunit (Protein Expr Purif. 2015 May; 109: 106-12., US2014-0335574, US2009-496475, US2006-303888, US2008-245610), related studies Is very scarce.
  • Acetohydroxyacid synthase plays a role in producing acetolactic acid from two molecules of pyruvic acid and in producing 2-aceto-2-hydroxy-butyrate from ketobutyric acid and pyruvic acid It is an enzyme that plays a role.
  • the acetohydroxy acid synthase catalyzes the decarboyxlation of pyruvate and the condensation reaction with other pyruvic acid molecules to produce acetolactic acid, a precursor of valine and leucine, or a dicarboxylic acid derivative of pyruvic acid, It can catalyze the condensation reaction with 2-ketobutyrate to produce acetohydroxybutyrate, which is a precursor of isoleucine.
  • acetohydroxy acid synthases are very important enzymes involved in the initial process of L-branched chain amino acid biosynthesis.
  • the present inventors have developed mutants of acetohydroxy acid synthase, specifically, acetohydroxoic acid synthase small subunit mutants. Thus, it was confirmed that the L-branched chain amino acid can be produced from the microorganism containing the mutant at a high yield, and the present application was completed.
  • One object of the present application is to provide an acetohydroxy acid synthase mutant.
  • Another object of the present invention is to provide a polynucleotide encoding said acetohydroxy acid synthetase variant, a vector comprising said polynucleotide, and a transformant into which said vector is introduced.
  • the acetohydroxy acid synthetase variant according to the present application significantly increases the L-branched chain amino acid producing ability of the microorganism when the activity is introduced into the microorganism, and thus can be widely used for mass production of L-branched chain amino acids .
  • One aspect of the present application for achieving the above object is to provide a method for producing an acetolactate synthase large-sized subunit (IlvB protein), wherein the threonine at the amino acid sequence position 96 of the acetolactate synthase large- Or an acetohydroxy acid synthase mutant in which tryptophan at amino acid sequence position 503 is replaced with another amino acid other than tryptophan or both threonine at amino acid sequence position 96 and tryptophan at position 503 are substituted with another amino acid.
  • IlvB protein acetolactate synthase large-sized subunit
  • the large subunit of the acetohydroxy acid synthase may have the amino acid sequence shown in SEQ ID NO: 1. More specifically, the acetohydroxy acid synthetase variant is one in which the 96th threonine or tryptophan from the N-terminus of the amino acid sequence of SEQ ID NO: 1 is replaced with another amino acid , Or an acetohydroxy acid synthetase variant in which both the 96th threonine and the 503th tryptophan are replaced with different amino acids.
  • acetohydroxy acid synthase is an enzyme involved in the biosynthesis of L-branched chain amino acids and may be involved in the first step of biosynthesis of L-branched chain amino acids. Specifically, the acetohydroxy acid synthase catalyzes the decarboyxlation of pyruvate and the condensation reaction with other pyruvic acid molecules to produce acetolactate, which is a precursor of valine, or the dicarboxylation of pyruvic acid and 2-keto It can catalyze the condensation reaction with 2-ketobutyrate to produce acetohydroxybutyrate, which is a precursor of isoleucine.
  • the reaction catalyzed by acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and transaminase B starts from acetolactate.
  • L-valine is biosynthesized on a sequential basis.
  • L-leucine is biosynthesized by sequentially catalyzed reactions catalyzed by isopropylmalate isomerase, 3-isopropylmalate dehydrogenase, and transaminase B, respectively.
  • Acetohydroxy acid synthetase is encoded by two genes, ilvB and ilvN, the ilvB gene is a large subunit (IlvB) of acetohydroxysultainase, the ilvN gene is a small molecule of acetohydroxyacid synthase And a small subunit (IlvN), respectively.
  • the acetohydroxy acid synthase may be derived from a microorganism belonging to the genus Corynebacterium, and specifically may be derived from Corynebacterium glutamicum . More specifically, the acetohydroxy acid synthetase large subunit has not only the amino acid sequence shown in SEQ ID NO: 1 but also the amino acid sequence having 70% or more, specifically 80% or more, more specifically 85% or more, More preferably 90% or more, more specifically 95% or more homology or identity, and has IlvB protein activity.
  • a polynucleotide encoding a protein having an IlvB protein activity can change the amino acid sequence of the protein expressed from the coding region in consideration of the codon preference in the organism to which the protein is expressed due to degeneracy of the codon
  • the amino acid sequence of SEQ ID NO: 1 may be any of the nucleotide sequences coding for the nucleotide sequence of SEQ ID NO: 2, but may be specifically the nucleotide sequence of SEQ ID NO: 2.
  • acetohydroxy acid synthetase variant in the present application means a protein in which one or more amino acids are mutated (e.g., added, removed or substituted) on the amino acid sequence of the above-mentioned acetohydroxy acid synthase protein.
  • the acetohydroxy acid synthetase variant is a protein in which the activity of the acetohydroxy acid synthase protein is increased by mutation of the present application in comparison with that before wild-type or deformation.
  • Variations in this application are generally known methods known in the art as methods for improving enzymes and may be used without limitation, including strategies such as rational design and directed evolution.
  • a rational design strategy may involve site-directed mutagenesis or site-specific mutagenesis of amino acids at specific sites, and methods that induce random mutagenesis . It may also be mutated without external manipulation by a natural mutation.
  • the acetohydroxy acid synthetase variant may be isolated, recombinant protein, or non-naturally occurring. However, it is not limited thereto.
  • the acetohydroxy acid synthetase variants of the present application include, but are not limited to, the 96th threonine or the 503th tryptophan from the N-terminus of the IlvB protein having the amino acid sequence of SEQ ID NO: 1, May be a mutated IlvB protein or may be an IlvB protein in which the 96th threonine and 503th tryptophan are simultaneously substituted with another amino acid.
  • the 96th threonine is substituted with serine, cystein or alanine
  • the 503th tryptophan is substituted with glutamine, asparagine or leucine.
  • RTI ID 0.0 > IlvB < / RTI >
  • an amino acid sequence in which a part of the amino acid sequence is deleted, modified, substituted or added is also the same as or equivalent to the acetohydroxy acid synthetase variant of the present application Is included in the scope of the present application.
  • acetohydroxy acid synthetase variants of the present application includes acetohydroxy acid synthetase subunit mutant itself having the above-described mutation, acetohydroxyacetic acid mutant containing the acetohydroxyacid synthase large subunit variant Acid synthase, or an acetohydroxy acid synthase having both a small subunit variant of acetohydroxysultaine and a small subunit, but is not particularly limited thereto.
  • the substituted amino acid in the examples of the present application is merely a representative example showing the effect of the present application, and the scope of the present application is not limited to the examples, and the 96th threonine may be substituted with amino acids other than threonine , It is obvious that the effect corresponding to the effect described in the embodiment can be expected when the 503th tryptophan is replaced with another amino acid other than tryptophan or the 96th threonine and the 503th tryptophan are replaced with different amino acids.
  • the acetohydroxy acid synthetase variant of the present application may have the amino acid sequence shown in any one of SEQ ID NOS: 28 to 33, but is not limited thereto.
  • Homology or identity refers to the degree of association with two given amino acid sequences or nucleotide sequences and can be expressed as a percentage.
  • Sequence homology or identity of conserved polynucleotides or polypeptides is determined by standard alignment algorithms and default gap penalties established by the program used can be used together.
  • Substantially homologous or identical sequences generally have at least about 50%, 60%, 70%, 80% or 90% of the length of the sequence or the entire length of the sequence under moderate or high stringency conditions can be hybridized under stringent conditions.
  • Polynucleotides containing degenerate codons instead of codons in hybridizing polynucleotides are also contemplated.
  • BLAST Altschul, [S.] : 403 (1990); Guide to Huge Computers, Martin J. Bishop, ed., Academic Press, San Diego, 1994; and CARILLO ETA /. (1988) SIAM J Applied Math 48: 1073)
  • BLAST or ClustalW, of the National Center for Biotechnology Information Database can be used to determine homology, similarity, or identity.
  • the homology, similarity or identity of polynucleotides or polypeptides is described, for example, in Smith and Waterman, Adv. Appl. Math (1981) 2: 482, for example, in Needleman et al. (1970), J Mol Biol. 48: 443, by comparing the sequence information using a GAP computer program.
  • the GAP program defines the total number of symbols in the shorter of the two sequences, divided by the number of similar aligned symbols (ie, nucleotides or amino acids).
  • the default parameters for the GAP program are (1) a linear comparison matrix (containing 1 for identity and 0 for non-identity) and Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp.
  • Another aspect of the present application is a polynucleotide encoding an acetohydroxy acid synthase variant of the present application.
  • polynucleotide in the present application has the meaning including DNA and RNA molecules, and the nucleotide, which is a basic constituent unit thereof, includes not only a natural nucleotide but also an analogue in which a sugar or base site is modified.
  • the polynucleotide may be a polynucleotide isolated from a cell or an artificially synthesized polynucleotide, but is not limited thereto.
  • the polynucleotide encoding the acetohydroxy acid synthetase variant of the present application may be included without limitation as long as it is a nucleotide sequence encoding a protein having the acetohydroxy acid synthetase mutant activity of the present application.
  • the polynucleotide may have various modifications to the coding region within a range that does not change the amino acid sequence of the protein, due to codon degeneracy or a codon preferred in the organism to which the protein is to be expressed .
  • the nucleotide sequence encoding the amino acid sequence of SEQ ID NOS: 28 to 33 may be any of the nucleotide sequences shown in SEQ ID NOS: 28 to 33, but may be a nucleotide sequence having any of the nucleotide sequences of SEQ ID NOS: 34 to 39, for example. Also, 70%, 75%, 80%, 85% of the sequences are deleted due to codon degeneracy, as long as they have substantially acetohydroxy acid synthase activity including mutations of the present application. Polynucleotides having 90%, 95%, 97%, or 99% or more homology or identity.
  • a probe which can be prepared from a known gene sequence for example, a hydrolidase under stringent conditions with a complementary sequence to all or part of the above base sequence, so that the activity of the protein consisting of the amino acid sequence of SEQ ID NOS: May be included without limitation as long as it encodes a protein.
  • stringent conditions means conditions that allow specific hybridization between polynucleotides. These conditions are specifically described in the literature (e.g., J. Sambrook et al., Sangdong).
  • Hybridization of genes having a homology or identity of 99% or more and hybridization of genes having less homology or homology with each other or hybridization with normal hybridization conditions such as 60 ° C, 1 x SSC, 0.1 Specifically at a salt concentration and a temperature corresponding to 0.1% SDS, specifically at 60 ⁇ ⁇ , 0.1 ⁇ SSC, 0.1% SDS, more specifically 68 ⁇ ⁇ , 0.1 ⁇ SSC, 0.1% SDS, It is possible to enumerate the conditions for washing.
  • Hybridization requires that two nucleic acids have a complementary sequence, although mismatches between bases are possible, depending on the severity of hybridization.
  • complementary is used to describe the relationship between nucleotide bases that are capable of hybridizing with each other.
  • adenosine is complementary to thymine and cytosine is complementary to guanine.
  • the present application may also include substantially similar nucleic acid sequences as well as isolated nucleic acid fragments complementary to the entire sequence.
  • polynucleotides having homology or identity can be detected using hybridization conditions that include a hybridization step at a Tm value of 55 ° C and using the conditions described above.
  • the Tm value may be 60 ° C, 63 ° C, or 65 ° C, but is not limited thereto and may be suitably adjusted by those skilled in the art according to the purpose.
  • Suitable stringency to hybridize polynucleotides depends on the length and complementarity of the polynucleotide and the variables are well known in the art (see Sambrook et al., Supra, 9.50-9.51, 11.7-11.8).
  • Another embodiment of the present application is a vector comprising a polynucleotide encoding a mutated acetohydroxy acid synthetase variant of the present application.
  • vector refers to any medium for cloning and / or transfer of a base into a host cell.
  • a vector can be a replicon that can bring about the replication of a joined fragment of another DNA fragment.
  • Replication unit refers to any genetic unit that functions in vivo as an autonomous unit of DNA replication, i.e., replicable by self-regulation. Specifically, it may be a plasmid, phage, cosmid, chromosome, or virus in a natural or recombinant state.
  • pWE15, M13, ⁇ MBL3, ⁇ MBL4, ⁇ IXII, ⁇ ASHII, ⁇ APII, ⁇ t10, ⁇ t11, Charon4A and Charon21A can be used as the phage vector or cosmid vector, and as the plasmid vector, pBR, pUC, pBluescriptII, pGEM system, pTZ system, pCL system, pET system, or the like can be used.
  • the vector usable in the present application is not particularly limited, and known expression vectors can be used.
  • the vector may include a transposon or an artificial chromosome.
  • the vector is not particularly limited as long as it contains a polynucleotide encoding an acetohydroxy acid synthetase variant of the present application, but may be a mammalian cell (such as a human, a monkey, a rabbit, a rat, a hamster,
  • the host cell may be a vector capable of replicating and / or expressing the nucleic acid molecule in a eukaryotic or prokaryotic cell comprising a plant cell, a yeast cell, an insect cell or a bacterial cell (for example, Escherichia coli, etc.)
  • the vector may be operably linked to a suitable promoter so that the polynucleotide can be expressed in a cell and comprising at least one selectable marker.
  • operably linked also means that the gene sequence is functionally linked to a promoter sequence that initiates and mediates the transcription of a polynucleotide encoding the protein of interest of the present application.
  • Another aspect of the present application is a transformant into which the vector of the present application has been introduced.
  • the transformant is not particularly limited, but any transformable cell can be included as long as the vector can be introduced to express the acetohydroxy acid synthetase variant of the present application.
  • bacterial cells such as transformed Escherichia, Corynebacterium, Streptomyces, Brevibacterium, Serratia, Propidensia, Salmonella typhimurium; Yeast cells; Fungal cells such as Pichia pastoris; Insect cells such as Drosophila and Spodoptera Sf9 cells; CHO (Chinese hamster ovary cells), SP2 / 0 (mouse myeloma), human lymphoblastoid, COS, NSO (mouse myeloma), 293T, Bowmanella cells, HT-1080, BHK Animal hamster kidney cells, human hamster kidney cells, HEK (human embryonic kidney cells, PERC.6 (human retinal cells), or plant cells.
  • Another embodiment of the present application is a microorganism producing the L-branched chain amino acid, wherein the vector contains the acetohydroxy acid synthetase variant or a polynucleotide encoding the mutant.
  • L-branched chain amino acid refers to an amino acid having a branched alkyl group in the side chain and includes valine, leucine and isoleucine.
  • the L-branched chain amino acid may be, but is not limited to, L-valine or L-leucine.
  • microorganism includes both wild-type microorganisms and microorganisms in which natural or artificially genetically modified microorganisms are included, and a specific mechanism is weakened due to the insertion of an external gene, Or enhanced microorganisms. Refers to any microorganism capable of expressing an acetohydroxy acid synthetase variant of the present application.
  • it may be a microorganism belonging to the genus Corynebacterium, and more specifically, a microorganism belonging to the genus Corynebacterium glutamicum, ammonia to Ness, Brevibacterium Lactobacillus buffer momentum (Brevibacterium lactofermentum), Brevibacterium Plastic pan (Brevibacterium flavum), Corynebacterium thermo amino to Ness (Corynebacterium thermoaminogenes), Corynebacterium epi syeonseu (Corynebacterium efficiens) And so on. More specifically, Corynebacterium glutamicum, but is not limited thereto.
  • microorganism producing L-branched chain amino acid in the present application means a microorganism capable of producing L-branched chain amino acid through natural type or mutation and specifically refers to non-natural occurring microorganisms. But are not limited to, recombinant microorganisms.
  • the microorganism producing the L-branched chain amino acid includes the acetohydroxy acid synthetase variant of the present application or a vector containing a polynucleotide encoding the variant, and is a vector containing a wild-type microorganism, a natural acetohydroxy acid
  • the ability to produce L-branched chain amino acids can be significantly increased as compared with microorganisms containing a synthase protein, non-modified microorganisms containing an acetohydroxy acid synthase protein, or microorganisms not containing an acetohydroxy acid synthase protein.
  • Another aspect of the present application relates to a method for producing L-branched chain amino acids, comprising culturing a microorganism producing the L-branched chain amino acid of the present application; And recovering the L-branched chain amino acid from the microorganism or medium obtained in the above step.
  • cultivation in the present application means cultivation of microorganisms under moderately artificially controlled environmental conditions.
  • the method for producing L-branched chain amino acids using microorganisms having L-branched chain amino acid producing ability in the present application can be carried out by a method widely known in the art. Specifically, the culturing can be carried out continuously in a batch process, an injection batch, or a fed batch or repeated fed batch process, but is not limited thereto.
  • the medium used for the culture should meet the requirements of the particular strain in an appropriate manner.
  • culture media for Corynebacterium spp. Strains are known (see, for example, Manual of Methods for General Bacteriology, American Society for Bacteriology, Washington, D.C., USA, 1981).
  • Sugar sources that may be used include sugars and carbohydrates such as glucose, saccharose, lactose, fructose, maltose, starch, cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, , Fatty acids such as linoleic acid, glycerol, alcohols such as ethanol, and organic acids such as acetic acid.
  • nitrogen sources examples include peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean meal and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate.
  • the nitrogen source may also be used individually or as a mixture, but is not limited thereto.
  • the number of people that can be used may include potassium dihydrogenphosphate or dipotassium hydrogenphosphate or the corresponding sodium-containing salts.
  • the culture medium may contain a metal salt such as magnesium sulfate or iron sulfate necessary for growth.
  • essential growth materials such as amino acids and vitamins can be used.
  • suitable precursors may be used in the culture medium.
  • the above-mentioned raw materials can be added to the culture in a batch manner or in a continuous manner by an appropriate method. However, it is not limited thereto.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia, or acid compounds such as phosphoric acid or sulfuric acid can be used in a suitable manner to adjust the pH of the culture.
  • bubble formation can be suppressed by using a defoaming agent such as a fatty acid polyglycol ester.
  • An oxygen or oxygen-containing gas e.g., air
  • the temperature of the culture may be 20 to 45 ⁇ , specifically 25 to 40 ⁇ .
  • Cultivation can continue until the desired amount of L-branched chain amino acid is obtained.
  • the incubation time can be 10 to 160 hours.
  • the L-branched chain amino acid may be released into the culture medium or contained in the cell. However, it is not limited thereto.
  • Methods for recovering L-branched chain amino acids from microorganisms or media can be performed using suitable methods known in the art. For example, centrifugation, filtration, treatment with crystallization protein precipitant (salting-out), extraction, ultrasonic disruption, ultrafiltration, dialysis, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity chromatography , And HPLC, and a combination of these methods.
  • the present invention is not limited to these examples.
  • the step of recovering the L-branched chain amino acid may comprise an additional purification step and may be carried out using any suitable method known in the art.
  • Example 1 Construction of a DNA library encoding mutant acetohydroxy acid synthase using the artificial mutation method
  • a vector library for primary cross-linking in a chromosome was prepared by the following method in order to obtain an acetohydroxy acid synthetase mutant.
  • Error-prone PCR was performed on ilvB gene (SEQ ID NO: 2) encoding acetohydroxy acid synthase (SEQ ID NO: 1) derived from Corynebacterium glutamicum ATCC14067 to randomly introduce base substitution mutations Gt ; ilvB < / RTI > mutants (2395 bp).
  • the error-prone PCR was performed using the GenemorphII Random Mutagenesis Kit (Stratagene), and Primer 1 (SEQ ID NO: 3) and Primer 2 (SEQ ID NO: 4) were used as a template for Corynebacterium glutamicum ATCC14067 genomic DNA .
  • Primer 1 (SEQ ID NO: 3): 5'-AACCG GTATC GACAA TCCAA T -3 '
  • Primer 2 (SEQ ID NO: 4): 5'-GGGTC TCTCC TTATG CCTC -3 '
  • PCR conditions were denaturation at 96 ° C for 30 seconds; Annealing 53 ⁇ , 30 seconds; And the polymerization reaction was repeated 30 times at 72 ⁇ for 2 minutes.
  • the amplified gene fragment was ligated to a pCR2.1-TOPO vector (hereinafter referred to as 'pCR2.1') using a pCR2.1-TOPO TA cloning kit (Invitrogen) and transformed into E. coli DH5 ⁇ to obtain kanamycin (25 mg / ). ≪ / RTI > After selection of 20 transformed colonies, plasmids were obtained and the nucleotide sequences were analyzed. As a result, it was confirmed that mutations were introduced at different positions with a frequency of 2.1 mutations / kb. Approximately 20,000 transformed E. coli colonies were picked to extract the plasmid and named it the pCR2.1-ilvB (mt) library.
  • mt pCR2.1-ilvB
  • a plasmid having a wild type ilvB gene for use as a control was prepared .
  • Corynebacterium glutamicum ATCC14067 genomic DNA was used as a template using primer 1 (SEQ ID NO: 3) and primer 2 (SEQ ID NO: 4) under the same conditions as above.
  • PfuUltra High-Fidelity DNA polymerase (Stratagene) was used as the polymerase.
  • the constructed plasmid was named pCR2.1-ilvB (WT).
  • KCCM11201P was prepared ilvB deficient strain for introducing the pCR2.1-ilvB (mt) to the library (the Republic of Korea Patent No. 10-1117022) strain as the parent strain.
  • Primer 3 (SEQ ID NO: 5): 5'-GCGTC TAGAG ACTTG CACGA GGAAA CG-3 '
  • Primer 4 (SEQ ID NO: 6): 5'-CAGCC AAGTC CCTCA GAATT GATGT AGCAA TTATC C -3 '
  • Primer 5 (SEQ ID NO: 7): 5'-GGATA ATTGC TACAT CAATT CTGAG GGACT TGGCT G -3 '
  • Primer 6 (SEQ ID NO: 8): 5'-GCGTC TAGAA CCACA GAGTC TGGAG CC -3 '
  • the PCR conditions were denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and polymerization at 72 ° C for 30 seconds. The reaction was carried out at 72 ° C for 7 minutes.
  • PCR was performed with primers 3 (SEQ ID NO: 5) and 6 (SEQ ID NO: 8) using the amplified SEQ ID NOS: 9 and 10 as a template.
  • the PCR conditions were denaturation at 95 ° C for 5 minutes, denaturation at 95 ° C for 30 seconds, annealing at 55 ° C for 30 seconds, and polymerization at 72 ° C for 60 seconds.
  • the reaction was carried out at 72 ° C for 7 minutes.
  • ilvB fragment a DNA fragment of SEQ ID NO: 11 (hereinafter ilvB fragment) was amplified with 1407 bp in which a DNA fragment containing the forward portion of the ilvB gene and a DNA fragment containing the 3 'end were ligated .
  • the pDZ vector (Korean Patent No. 10-0924065), which can not be cloned in Corynebacterium glutamicum, and the amplified ilvB fragment were treated with a restriction enzyme Xba and then ligated using a DNA joining enzyme, To obtain a plasmid and named it pDZ-ilvB.
  • pDZ-ilvB was transformed into Corynebacterium glutamicum KCCM 11201P by the electric pulse method (Appl. Microbiol. Biothcenol. (1999) 52: 541-545), and then kanamycin 25 mg / , L-leucine, and L-isoleucine were each obtained in a selection medium containing 2 mM each.
  • the ilvB gene was inactivated by the ilvB fragment inserted in the genome through a secondary recombination process (cross-over), and this strain was named KCCM11201P ilvB .
  • the prepared pCR2.1-ilvB (mt) library was transformed by homologous chromosome recombination and plated on a composite plate medium containing kanamycin (25 mg / L) Colonies were obtained and the respective colonies were named KCCM11201P ilvB / pCR2.1- ilvB ( mst) -1 to KCCM11201P ilvB / pCR2.1-ilvB ( mt) -10000.
  • KCCM11201P ilvB / pCR2.1-ilvB (WT) was transformed into KCCM11201P ilvB strain to produce a control strain, which was named KCCM11201P ilvB / pCR2.1-ilvB (WT).
  • the selected 213 strains were repeatedly subjected to the ninhydrin reaction in the same manner as above, and 60 strains having improved L-amino acid production ability were selected for KCCM 11201P ilvB / pCR2.1 -ilvB ( WT) strain.
  • the culture medium components were analyzed by the following method.
  • nucleotide sequences of the ilvB gene were analyzed in order to confirm the random mutations introduced into the acetohydroxy acid synthases of the two strains selected in Example 4 above. PCR was performed using primer 7 (SEQ ID NO: 12) and primer 8 (SEQ ID NO: 13) to determine the nucleotide sequence.
  • Primer 7 (SEQ ID NO: 12): 5'-CGCTT GATAA TACGC ATG-3 '
  • Primer 8 (SEQ ID NO: 13): 5'- GAACA TACCT GATAC GCG -3 '
  • mutant ilvB gene was confirmed by comparing the obtained mutant ilvB gene fragments with the wild type ilvB gene sequence of SEQ ID NO: 2 through the nucleotide sequence analysis of each mutant type ilvB gene fragment, thereby obtaining mutant acetohydroxy acid synthase protein was confirmed.
  • Information on the mutated acetohydroxyacid synthase proteins of the two strains selected is shown in Table 2 below.
  • Example 6 Construction of a vector for introduction of an acetohydroxy acid synthase mutation
  • Primer 9 (SEQ ID NO: 14): 5'-CGCTC TAGAC AAGCA GGTTG AGGTT CC -3 '
  • Primer 10 (SEQ ID NO: 15): 5'-CGCTC TAGAC ACGAG GTTGA ATGCG CG-3 '
  • Primer 11 (SEQ ID NO: 16): 5'-CGCTC TAGAC CCTCG ACAAC ACTCA CC -3 '
  • Primer 12 (SEQ ID NO: 17): 5'-CGCTC TAGAT GCCAT CAAGG TGGTG AC-3 '
  • Two kinds of gene fragments amplified by PCR were treated with restriction enzyme Xba to obtain respective DNA fragments.
  • the DNA fragments were ligated to a pDZ vector for introduction of chromosome with restriction enzyme Xba end, transformed into E. coli DH5 ⁇ , and kanamycin (25 mg / L). < / RTI >
  • Two novel mutation introduction vectors prepared in Example 6 were transformed into Corynebacterium glutamicum KCCM11201P, an L-valine producing strain, by two-step homologous chromosome recombination. Then, the strain into which the ilvB mutation was introduced on the chromosome was selected by base sequence analysis, and the strains into which the ilvB mutation was introduced were designated as KCCM11201P :: ilvB (W503Q) and KCCM11201P :: ilvB (T96S), respectively. Then, pDZ-ilvB (T96S) of the mutation introduction vector was transformed into the prepared strain KCCM11201P :: ilvB (W503Q). Then, the strains into which both ilvB mutations on the chromosome were introduced were designated as KCCM11201P :: ilvB (W503Q / T96S).
  • the cells were cultured in the same manner as in Example 4, from which the concentration of L-valine was analyzed (Table 3).
  • KCCM11201P strain-derived mutant acetohydroxy acid synthase introduced strain L-valine production concentration (g / l) Strain Batch 1 Batch 2 Batch 3 Average Control group KCCM11201P 2.9 2.8 2.8 2.8 One KCCM11201P :: ilvB (W503Q) 3.3 3.2 3.3 3.3 2 KCCM11201P :: ilvB (T96S) 3.2 3.0 3.1 3.1 3 KCCM11201P :: ilvB (W503Q / T96S) 3.3 3.4 3.4 3.4 3.4
  • KCCM11201P increased the productivity of L-valine by a maximum of 17.8% compared to the parent strain
  • the two strains increased the productivity of L-valine by 21.4% compared to the parent strain.
  • the mutant of the acetohydroxysultainase synthetase of the present invention is the first enzyme in the biosynthesis pathway of L-branched chain amino acid, and thus it is also influenced not only by the production ability of L-valine but also by the production ability of L-isoleucine and L-leucine Expected.
  • KCCM11201P :: ilvB (W503Q) and KCCM11201P :: ilvB (T96S), which are the L-valine improved strains, as Corynebacterium glutamicum KCJ-0793 and KCJ-0796, KCCM) on January 25, 2016, and have been granted accession numbers KCCM11809P and KCCM11810P.
  • L-valine over-expression over-expression vector was prepared from L-valine producing strain, Corynebacterium glutamicum KCCM11201P.
  • the L-valine biosynthetic overexpression vector containing the DNA coding for the mutated acetohydroxy acid synthase from each of KCCM11201P :: ilvB (W503Q) and KCCM11201P :: ilvB (T96S) prepared in Example 7 was prepared .
  • Primer 13 (SEQ ID NO: 18) inserted with a BamH restriction site at the 5'-end and primer 14 (SEQ ID NO: 19) inserted with the Xba restriction site at the 3'-end were synthesized for the construction of the vector.
  • primer 14 (SEQ ID NO: 19) inserted with the Xba restriction site at the 3'-end were synthesized for the construction of the vector.
  • the PCR conditions were denaturation at 94 ° C for 5 minutes, denaturation at 94 ° C for 30 seconds, annealing at 56 ° C for 30 seconds, and polymerization at 72 ° C for 4 minutes.
  • the polymerisation reaction was carried out at 72 ° C for 7 minutes.
  • Primer 13 (SEQ ID NO: 18): 5'-CGAGG ATCCA ACCGG TATCG ACAAT CCAAT -3 '
  • Primer 14 (SEQ ID NO: 19): 5'-CTGTC TAGAA ATCGT GGGAG TTAAA CTCGC -3 '
  • the two DNA fragments amplified by the PCR were treated with restriction enzymes BamH and Xba to obtain respective DNA fragments.
  • the DNA fragments were ligated to overexpression vector pECCG117 having restriction enzyme BamH and Xba terminus and then transformed into E. coli DH5 ⁇ And plated on LB solid medium containing kanamycin (25 mg / l).
  • the gene is inserted object by PCR using a commonly known plasmid extraction was obtained a plasmid in accordance with the transition into the ilvB gene of this plasmid respectively pECCG117-ilvBN, pECCG117-ilvB (W503Q) N, pECCG117-ilvB (T96S) N.
  • Example 9 Construction of L-Valine Biosynthetic Overexpression Vector Containing DNA Encoding Acetohydroxyacid Synthase Substituted with Other Amino Acids at the Same Mutation Site
  • the 96th amino acid is an amino acid other than threonine or serine, and the 503th amino acid is tryptophan or an amino acid other than glutamine Was prepared.
  • the substituted amino acid is a representative example of the amino acid that can be substituted, but is not limited thereto.
  • the chromosome of Corynebacterium glutamicum KCCM11201P strain was used as a template and primers 13 (SEQ ID NO: 18) and 15 (SEQ ID NO: 20), primer 16 (SEQ ID NO: 21) and primer 14 No. 19) was used to amplify a DNA fragment of about 2041 bp having a BamH restriction enzyme site at the 5 'end and a DNA fragment of 1055 bp having an Xba restriction enzyme site at the 3' end.
  • the PCR conditions were denaturation at 94 ° C for 5 minutes, followed by denaturation at 94 ° C for 30 seconds, annealing at 56 ° C for 30 seconds, and polymerization at 72 ° C for 2 minutes.
  • the polymerisation reaction was carried out at 72 ° C for 7 minutes.
  • Primer 15 (SEQ ID NO: 20): 5'-CTTCA TAGAA TAGGG TCTGG TTTTG GCGAA CCATG CCCAG -3 '
  • Primer 16 (SEQ ID NO: 21): 5'- CTGGG CATGG TTCGC CAAAA CCAGA CCCTA TTCTA TGAAG -3 '
  • PCR was performed using primer 13 (SEQ ID NO: 18) and primer 14 (SEQ ID NO: 19) using the two amplified DNA fragments as a template.
  • the PCR conditions were denaturation at 94 ° C for 5 minutes, denaturation at 94 ° C for 30 seconds, annealing at 56 ° C for 30 seconds, and polymerization at 72 ° C for 4 minutes.
  • the polymerisation reaction was carried out at 72 ° C for 7 minutes.
  • Primer 13 (SEQ ID NO: 18), Primer 17 (SEQ ID NO: 22), Primer 18 (SEQ ID NO: 23) and Primer 14 (SEQ ID NO: 19) were used as templates in the same manner as the chromosome of Corynebacterium glutamicum KCCM11201P strain PCR was performed to amplify a DNA fragment of about 2041 bp having a BamH restriction enzyme site at the 5 'end and a DNA fragment of 1055 bp having an Xba restriction enzyme site at the 3' end.
  • Primer 17 (SEQ ID NO: 22): 5'-CTTCA TAGAA TAGGG TCTGC AGTTG GCGAA CCATG CCCAG -3 '
  • Primer 18 (SEQ ID NO: 23): 5'-CTGGG CATGG TTCGC CAACT GCAGA CCCTA TTCTA TGAAG -3 '
  • PCR was performed using primer 13 (SEQ ID NO: 18) and primer 14 (SEQ ID NO: 19) using the two amplified DNA fragments as a template.
  • primers 13 (SEQ ID NO: 18) and 19 (SEQ ID NO: 24), primer 20 (SEQ ID NO: 25) and primer 14 (SEQ ID NO: 19) were amplified by using the chromosome of Corynebacterium glutamicum KCCM11201P strain as a template PCR was performed to amplify a DNA fragment of about 819 bp having a BamH restriction enzyme site at the 5 'end and a DNA fragment of 2276 bp having an Xba restriction enzyme site at the 3' end.
  • Primer 19 (SEQ ID NO: 24): 5'-GGTTG CGCCT GGGCC AGATG CTGCA ATGCA GACGC CAAC -3 '
  • Primer 20 (SEQ ID NO: 25): 5'-GTTGG CGTCT GCATT GCAGC ATCTG GCCCA GGCGC AACC -3 '
  • PCR was performed using primer 13 (SEQ ID NO: 18) and primer 14 (SEQ ID NO: 19) using the two amplified DNA fragments as a template.
  • Primer 21 (SEQ ID NO: 26): 5'-GGTTG CGCCT GGGCC AGAGC ATGCA ATGCA GACGC CAAC -3 '
  • Primer 22 (SEQ ID NO: 27): 5'-GTTGG CGTCT GCATT GCATG CTCTG GCCCA GGCGC AACC -3 '
  • PCR was performed using primer 13 (SEQ ID NO: 18) and primer 14 (SEQ ID NO: 19) using the two amplified DNA fragments as a template.
  • Example 8 the above 4 mutant gene fragments amplified by PCR were treated with restriction enzymes BamH and Xba to obtain respective DNA fragments, which were then ligated to the overexpressed vector pECCG117 having restriction enzyme BamH and Xba terminus , Transformed into Escherichia coli DH5 ⁇ , and plated on LB solid medium containing kanamycin (25 mg / L).
  • Example 10 Production of wild-type mutant acetohydroxy acid synthase-introduced strain and comparison of L-valine production ability
  • the vector When the vector is transformed, it has kanamycin resistance. Therefore, the transformation is confirmed by the growth of
  • each strain was inoculated into a 250 ml corn-baffle flask containing 25 ml of the production medium in the same manner as the culture medium used in Example 4, and cultured at 30 DEG C for 72 hours with shaking at 200 rpm Respectively.
  • the concentration of L-valine was analyzed using HPLC (Table 4).
  • Example 11 Production of mutant strains of introduced acetohydroxy acid synthase and comparison of L-leucine production ability
  • Example 6 Two novel mutation introduction vectors prepared in Example 6 were respectively subjected to two-step homologous chromosomal recombination to obtain Corynebacterium glutamicum KCCM11661P (Korean Patent Application No. 10-2015-0119785 , Korean Patent Publication No. 10-2017-0024653). Then, the strain into which the ilvB mutation was introduced on the chromosome was selected by base sequence analysis, and the strains into which the ilvB mutation was introduced were designated as KCCM11661P :: ilvB (W503Q) and KCCM11661P :: ilvB (T96S), respectively.
  • Corynebacterium glutamicum KCCM11661P was obtained by the following method as a mutant strain derived from Corynebacterium glutamicum ATCC 14067 having resistance to norleucine (NL).
  • Corynebacterium glutamicum ATCC 14067 was cultivated in an activated medium for 16 hours, and the activated strain was inoculated into a seed medium sterilized at 121 ° C for 5 minutes and cultured for 14 hours, and then 5 ml of the culture medium was recovered .
  • the recovered culture was washed with 100 mM citric acid buffer, NTG (N-Methyl-N'-nitro-N-nitrosoguanidine) was added to a final concentration of 200 mg / L, And washed with 100 mM phosphate buffer.
  • the mortality rate of the strains treated with NTG was 85%.
  • NTG-treated strains were cultured in a medium containing NL at a final concentration of 20 mM, 30 mL, 40 mM, and 50 mM And then cultured at 30 DEG C for 5 days to obtain NL resistant mutants.
  • NL Norleucine
  • Juice 1% polypeptone 1%, sodium chloride 0.5%, yeast extract 1%, agar 2%, pH 7.2
  • glucose 1.0% of glucose, 0.4% of ammonium sulfate, 0.04% of magnesium sulfate, 0.1% of potassium phosphate, 0.1% of urea, 0.001% of thiamine, 200 ⁇ g of biotin, 2% of agar, pH 7.0
  • the mutant obtained by the above method was named Corynebacterium glutamicum KCJ-24 and deposited on January 22, 2015 with the Korea Microorganism Conservation Center under the Budapest Treaty, No. KCCM11661P.
  • KCCM11661P :: ilvB (W503Q) and KCCM11661P :: ilvB (T96S) were cultured in the same manner as in Example 4, and the concentration of L-leucine was analyzed therefrom (Table 5).
  • Example 12 Preparation of mutant strains of KCCM11662P-derived mutant of acetohydroxy acid synthase and comparison of L-leucine production ability
  • Example 6 Two novel mutation introduction vectors prepared in Example 6 were recombinantly subjected to two-step homologous chromosomes to generate Corynebacterium glutamicum KCCM11662P (Korean Patent Application No. 10-2015-0119785, Korean Patent Publication No. 10-2017-0024653). Then, the strains into which the ilvB mutations were introduced on the chromosome were selected by base sequence analysis, and the strains into which the ilvB mutation was introduced were designated as KCCM11662P :: ilvB (W503Q) and KCCM11662P :: ilvB (T96S), respectively.
  • Corynebacterium glutamicum KCCM11662P was obtained by the following method as a mutant strain derived from Corynebacterium glutamicum ATCC 13869 having resistance to norleucine (NL).
  • Corynebacterium glutamicum ATCC 13869 was used as a parent strain and cultured in the same manner as in the method for obtaining KCCM11662P of Example 11, finally obtaining an NL resistant mutant strain.
  • the mutant obtained by the above method was named Corynebacterium glutamicum KCJ-28, and deposited with the Korean Society for Microbiological Protection, International Depositary under the Budapest Treaty on January 22, 2015, No. KCCM11662P.
  • KCCM11662P :: ilvB (W503Q) and KCCM11662P :: ilvB (T96S) were cultured in the same manner as in Example 4, and the concentration of L-leucine was analyzed therefrom (Table 6).
  • the two novel mutant introduction strains (KCCM11662P :: ilvB (W503Q) and KCCM11662P :: ilvB (T96S)) increased the productivity of L-leucine up to 13.3% compared to the parent strain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 출원은 신규한 아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 L-분지쇄 아미노산의 생산 방법에 관한 것이다.

Description

아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 L-분지쇄 아미노산 생산 방법
본 출원은 신규한 아세토하이드록시산 신타아제 변이체 및 이의 용도에 관한 것으로, 구체적으로 아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 L-분지쇄 아미노산의 생산 방법에 관한 것이다.
분지쇄 아미노산, 즉 L-발린, L-류신, L-이소류신은 개체에서 단백질을 증가시키는 작용을 하며, 운동시 에너지원으로 중요한 역할을 하는 것이 알려져, 의약품, 식품 등에 사용되고 있다. 분지쇄 아미노산들은 유사한 생합성 과정에 동일한 효소를 사용하기 때문에 한 가지의 분지쇄 아미노산을 공업적 규모로 발효를 통해 제조하는 데는 어려움이 있다. 분지쇄 아미노산의 제조에 있어서, 분지쇄 아미노산 생합성의 첫 번째 효소인 아세토하이드록시산 신타아제(acetohydroxy acid synthase)의 역할이 가장 중요하나, 이에 관한 선행연구는 주로 작은 소단위체(acetohydroxy acid synthase small subunit; IlvN 단백질)의 변이로 인한 피드백 해제에 관련된 연구가 대부분으로(Protein Expr Purif. 2015 May;109:106-12., US2014-0335574, US2009-496475, US2006-303888, US2008-245610), 관련 연구가 매우 부족한 실정이다.
아세토하이드록시산 신타아제는 피루브산 두 분자로부터 아세토젖산(acetolactic acid)을 생성하는 역할과, 케토부티르산(ketobutyric acid) 및 피루브산으로부터 아세토하이드록시부티르산(2-aceto-2-hydroxy-butyrate)을 생성하는 역할을 수행하는 효소이다. 상기 아세토하이드록시산 신타아제는 피루브산(pyruvate)의 디카르복실화(decarboyxlation)와 다른 피루브산 분자와의 축합 반응을 촉매하여 발린 및 류신의 전구체인 아세토젖산을 생산하거나 피루브산의 디카르복실화와 2-케토부티레이트(2-ketobutyrate)와의 축합 반응을 촉매하여 이소류신의 전구체인 아세토히드록시부티레이트를 생산할 수 있다. 따라서, 아세토하이드록시산 신타아제는 L-분지쇄 아미노산 생합성의 초기 과정에 관여하는 매우 중요한 효소이다.
본 출원자들은 L-분지쇄 아미노산을 효과적으로 생산하기 위하여 노력한 결과, 아세토하이드록시산 신타아제의 변이체, 구체적으로 아세토하이드록시산 신타아제 큰 소단위체 변이체를 개발하였다. 이에, 상기 변이체를 포함하는 미생물로부터 고수율로 L-분지쇄 아미노산을 생산할 수 있음을 확인하고, 본 출원을 완성하였다.
본 출원의 하나의 목적은 아세토하이드록시산 신타아제(acetohydroxy acid synthase) 변이체를 제공하는 것이다.
본 출원의 다른 목적은 상기 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 벡터 및 상기 벡터가 도입된 형질전환체를 제공하는 것이다.
본 출원의 또 다른 목적은 상기 아세토하이드록시산 신타아제 변이체를 포함하거나, 상기 벡터가 도입된, L-분지쇄 아미노산을 생산하는 미생물을 제공하는 것이다.
본 출원의 또 다른 목적은 상기 L-분지쇄 아미노산을 생산하는 미생물을 배지에서 배양하는 단계; 및 상기 미생물 또는 이의 배지로부터 L-분지쇄 아미노산을 회수하는 단계를 포함하는 L-분지쇄 아미노산 생산 방법을 제공하는 것이다.
본 출원에 따른 아세토하이드록시산 신타아제 변이체는 미생물에 그 활성이 도입되는 경우, 상기 미생물의 L-분지쇄 아미노산 생산능을 현저히 증가시키므로, L-분지쇄 아미노산의 대량 생산에 널리 활용될 수 있다.
상기 목적을 달성하기 위한 본 출원의 하나의 양태는, 아세토하이드록시산 신타아제의 큰 소단위체(acetolactate synthase large subunit; IlvB 단백질)의 아미노산 서열 위치 96 번의 쓰레오닌이 쓰레오닌 이외의 다른 아미노산으로 치환되거나, 아미노산 서열 위치 503 번의 트립토판이 트립토판 이외의 다른 아미노산으로 치환되거나, 또는 아미노산 서열위치 96 번의 쓰레오닌 및 503 번의 트립토판 모두가 다른 아미노산으로 치환된, 아세토하이드록시산 신타아제 변이체이다.
구체적으로, 상기 아세토하이드록시산 신타아제의 큰 소단위체는 서열번호 1로 기재되는 아미노산 서열을 가질 수 있다. 보다 구체적으로, 상기 아세토하이드록시산 신타아제 변이체는 서열번호 1로 기재된 아미노산 서열에서, 이의 N-말단으로부터 96 번째 쓰레오닌(threonine) 또는 503 번째 트립토판(tryptophan)이 다른 아미노산으로 치환된 것인, 또는 96 번째 쓰레오닌과 503 번째 트립토판이 모두 다른 아미노산으로 치환된, 아세토하이드록시산 신타아제 변이체일 수 있다.
본 출원에서 용어, "아세토하이드록시산 신타아제(acetohydroxy acid synthase)"는 L-분지쇄 아미노산의 생합성에 관여하는 효소로, L-분지쇄 아미노산의 생합성의 첫 번째 단계에 관여할 수 있다. 구체적으로, 아세토하이드록시산 신타아제는 피루브산(pyruvate)의 디카르복실화(decarboyxlation)와 다른 피루브산 분자와의 축합 반응을 촉매하여 발린의 전구체인 아세토젖산을 생산하거나 피루브산의 디카르복실화와 2-케토부티레이트(2-ketobutyrate)와의 축합 반응을 촉매하여 이소류신의 전구체인 아세토히드록시부티레이트를 생산할 수 있다. 구체적으로는 아세토젖산으로부터 출발하여 아세토하이드록시산 이소메로리덕타아제(acetohydroxy acid isomeroreductase), 디하이드록시산 디하이드레타제(dihydroxy acid dehydratase), 트랜스아미나제 B(transaminase B)에 의하여 촉매된 반응을 순차적으로 거치면 L-발린이 생합성된다. 또한, 아세토젖산으로부터 아세토하이드록시산 이소메로리덕타아제(acetohydroxy acid isomeroreductase), 디하이드록시산 디하이드레타제(dihydroxy acid dehydratase), 2-이소프로필말산 신타아제(2-isopropylmalate synthase), 이소프로필말산 이소메라제(isopropylmalate isomerase), 3-이소프로필말산 디하이드로게나제(3-isopropylmalate dehydrogenase), 트랜스아미나제 B (transaminase B)에 의하여 촉매된 반응을 순차적으로 거치면 L-류신이 생합성된다. 한편, 아세토히드록시부티레이트으로부터 출발하여 아세토하이드록시산 이소메로리덕타아제(acetohydroxy acid isomeroreductase), 디하이드록시산 디하이드레타제(dihydroxy acid dehydratase), 트랜스아미나제 B(transaminase B)에 의하여 촉매된 반응을 순차적으로 거치면 L- 이소류신이 생합성된다. 따라서, L-분지쇄 아미노산의 생합성 경로에 있어서 중요한 효소이다.
아세토하이드록시산 신타아제는 ilvB 및 ilvN, 두 유전자에 의하여 코딩되며, ilvB 유전자는 아세토하이드록시산 신타아제의 큰 소단위체(large subunit; IlvB)를, ilvN 유전자는 아세토하이드록시산 신타아제의 작은 소단위체(small subunit; IlvN)를 각각 코딩한다.
본 출원에서 아세토하이드록시산 신타아제는 코리네박테리움 속 미생물 유래일 수 있고, 구체적으로 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 유래일 수 있다. 더욱 구체적으로는 상기 아세토하이드록시산 신타아제 큰 소단위체는 서열번호 1로 기재된 아미노산 서열뿐만 아니라 상기 서열과 70 % 이상, 구체적으로는 80 % 이상, 더욱 구체적으로는 85 % 이상, 더욱 구체적으로는 90 % 이상, 더욱더 구체적으로는 95 % 이상의 상동성 또는 동일성을 가지며 IlvB 단백질 활성을 갖는 단백질이라면 제한없이 포함될 수 있다. 또한, IlvB 단백질 활성을 가지는 단백질을 코딩하는 폴리뉴클레오타이드는 코돈의 축퇴성(degeneracy)으로 인하여 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 코딩영역으로부터 발현되는 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩영역에 다양한 변형이 이루어질 수 있어 상기 서열번호 1의 아미노산 서열은 코딩하는 염기서열이면 제한없이 포함될 수 있으나, 구체적으로 서열번호 2의 염기서열에 의해 코딩된 것일 수 있다.
본 출원에서 "아세토하이드록시산 신타아제 변이체"란 상기 아세토하이드록시산 신타아제 단백질의 아미노산 서열상 하나 또는 그 이상의 아미노산이 변이 (예, 추가, 제거 또는 치환)된 단백질을 의미한다. 구체적으로 상기 아세토하이드록시산 신타아제 변이체는 아세토하이드록시산 신타아제 단백질이 본 출원의 변이에 의해서 그 활성이 야생형 또는 변형 전과 비교하여 효율적으로 증가된 단백질이다. 본 출원에서 변이는 일반적으로 효소를 개량하기 위한 방법으로 당업계의 알려진 공지된 방법들이 제한없이 사용될 수 있으며, 이에는 합리적 설계(rational design)와 유도 진화(directed evolution) 등의 전략이 있다. 예를 들어, 합리적 설계 전략에는 특정 위치의 아미노산을 위치-지정 돌연변이도입(site-directed mutagenesis 또는 site-specific mutagensis)하는 방법 등이 있고, 유도 진화 전략에는 무작위적 변이(random mutagenesis)를 일으키는 방법 등이 있다. 또한, 자연적인 돌연변이에 의해 외부의 조작 없이 돌연변이된 것일 수 있다. 구체적으로, 상기 아세토하이드록시산 신타아제 변이체는 분리된 것이거나, 재조합 단백질일 수 있으며, 비자연적으로 발생된 것일 수 있다. 그러나, 이에 제한되는 것은 아니다.
본 출원의 아세토하이드록시산 신타아제 변이체는 이에 제한되는 것은 아니나, 구체적으로 서열번호 1로 기재된 아미노산 서열을 갖는 IlvB 단백질의 N-말단으로부터 96 번째 쓰레오닌(threonine) 또는 503 번째 트립토판(tryptophan)이 돌연변이된 IlvB 단백질일 수 있으며, 또는, 이에 제한되는 것은 아니나, 96 번째 쓰레오닌 및 503 번째 트립토판이 동시에 다른 아미노산으로 치환된 IlvB 단백질일 수 있다. 그 예로 상기 96 번째 쓰레오닌이 세린(serine), 시스테인(cystein) 또는 알라닌(alanine)으로 치환된 것이거나, 상기 503 번째 트립토판이 글루타민(glutamine), 아스파라긴(asparagine) 또는 류신(leucine)으로 치환된 IlvB 단백질일 수 있다. 또한, 상기 96번째 또는 503번째 아미노산이 다른 아미노산으로 치환됨과 동시에 아미노산 서열 중 일부 서열이 결실, 변형, 치환 또는 부가된 아미노산 서열을 갖는 경우도 본 출원의 아세토하이드록시산 신타아제 변이체와 동일하거나 상응하는 활성을 나타낸다면 본 출원의 범주에 포함되는 것은 자명하다.
아울러, 본 출원의 아세토하이드록시산 신타아제 변이체의 범주에는 상기 기술된 변이를 가지는 아세토하이드록시산 신타아제 큰 소단위체 변이체 자체, 상기 아세토하이드록시산 신타아제 큰 소단위체 변이체를 포함하는 아세토하이드록시산 신타아제, 또는 아세토하이드록시산 신타아제 큰 소단위체 변이체와 작은 소단위체를 모두 가지는 아세토하이드록시산 신타아제가 포함되나, 특별히 이에 제한되는 것은 아니다.
본 출원에서는 아세토하이드록시산 신타아제 단백질의 96 번째 및 503 번째 아미노산을 다양한 다른 아미노산으로 치환하여 L-분지쇄 아미노산 생산량이 증가하는 것을 확인함으로써, L-분지쇄 아미노산 생산 증가와 관련한 아세토하이드록시산 신타아제 단백질의 변이에 있어서 상기 96 번째 및 503 번째 위치가 중요한 위치임을 확인하였다. 다만, 본 출원의 실시예에서 치환된 아미노산은 본 출원의 효과를 보여주는 대표적인 일 예시에 불과한 것으로 본 출원의 범위가 실시예에 한정되는 것은 아니며, 96 번째 쓰레오닌을 쓰레오닌 이외의 다른 아미노산으로, 503 번째 트립토판을 트립토판 이외의 다른 아미노산으로, 또는 96 번째 쓰레오닌과 503 번째 트립토판을 모두 다른 아미노산으로 치환할 경우 실시예에 기재된 효과와 대응되는 효과를 기대할 수 있음이 자명하다.
또한, 본 출원의 아세토하이드록시산 신타아제 변이체는 서열번호 28 내지 33 중 어느 하나로 기재되는 아미노산 서열을 가질 수 있으나, 이에 제한되지 않는다. 또한, 본 출원의 변이를 포함하여 실질적으로 아세토하이드록시산 신타아제 변이체와 동일하거나 상응하는 활성을 가지는 한, 상기 서열들과 70 %, 80 %, 85 %, 90 %, 95 % 또는 99 % 이상의 상동성 또는 동일성을 가지는 폴리펩티드를 제한없이 포함할 수 있다.
상동성(homology) 또는 동일성(identity)은 두 개의 주어진 아미노산 서열 또는 염기 서열과 관련된 정도를 의미하며 백분율로 표시될 수 있다.
용어 상동성 및 동일성은 종종 상호교환적으로 이용될 수 있다.
보존된 (conserved) 폴리뉴클레오티드 또는 폴리펩티드의 서열 상동성 또는 동일성은 표준 배열 알고리즘에 의해 결정되며, 사용되는 프로그램에 의해 확립된 디폴트 갭 페널티가 함께 이용될 수 있다. 실질적으로, 상동성을 갖거나 (homologous) 또는 동일한 (identical) 서열은 일반적으로 서열 전체 또는 전체-길이의 적어도 약 50%, 60%, 70%, 80% 또는 90%를 따라 중간 또는 높은 엄격한 조건(stringent conditions)에서 하이브리드할 수 있다. 하이브리드하는 폴리뉴클레오티드에서 코돈 대신 축퇴 코돈을 함유하는 폴리뉴클레오티드 또한 고려된다.
임의의 두 폴리뉴클레오티드 또는 폴리펩티드 서열이 상동성, 유사성 또는 동일성을 갖는지 여부는 예를 들어, Pearson et al (1988)[Proc. Natl. Acad. Sci. USA 85]: 2444에서와 같은 디폴트 파라미터를 이용하여 "FASTA" 프로그램과 같은 공지의 컴퓨터 알고리즘을 이용하여 결정될 수 있다. 또는, EMBOSS 패키지의 니들만 프로그램(EMBOSS: The European Molecular Biology Open Software Suite, Rice et al., 2000, Trends Genet. 16: 276-277)(버전 5.0.0 또는 이후 버전)에서 수행되는 바와 같은, 니들만-운치(Needleman-Wunsch) 알고리즘(Needleman and Wunsch, 1970, J. Mol. Biol. 48: 443-453)이 사용되어 결정될 수 있다. (GCG 프로그램 패키지 (Devereux, J., et al, Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul, [S.] [F.,] [ET AL, J MOLEC BIOL 215]: 403 (1990); Guide to Huge Computers, Martin J. Bishop, [ED.,] Academic Press, San Diego,1994, 및 [CARILLO ETA/.](1988) SIAM J Applied Math 48: 1073을 포함한다). 예를 들어, 국립 생물공학 정보 데이터베이스 센터의 BLAST, 또는 ClustalW를 이용하여 상동성, 유사성 또는 동일성을 결정할 수 있다.
폴리뉴클레오티드 또는 폴리펩티드의 상동성, 유사성 또는 동일성은 예를 들어, Smith and Waterman, Adv. Appl. Math (1981) 2:482 에 공지된 대로, 예를 들면, Needleman et al. (1970), J Mol Biol.48 : 443과 같은 GAP 컴퓨터 프로그램을 이용하여 서열 정보를 비교함으로써 결정될 수 있다. 요약하면, GAP 프로그램은 두 서열 중 더 짧은 것에서의 기호의 전체 수로, 유사한 배열된 기호(즉, 뉴클레오티드 또는 아미노산)의 수를 나눈 값으로 정의한다. GAP 프로그램을 위한 디폴트 파라미터는 (1) 일진법 비교 매트릭스(동일성을 위해 1 그리고 비-동일성을 위해 0의 값을 함유함) 및 Schwartz and Dayhoff, eds., Atlas Of Protein Sequence And Structure, National Biomedical Research Foundation, pp. 353-358 (1979)에 의해 개시된 대로, Gribskov et al(1986) Nucl. Acids Res. 14: 6745의 가중된 비교 매트릭스 (또는 EDNAFULL(NCBI NUC4.4의 EMBOSS 버전) 치환 매트릭스); (2) 각 갭을 위한 3.0의 페널티 및 각 갭에서 각 기호를 위한 추가의 0.10 페널티 (또는 갭 개방 패널티 10, 갭 연장 패널티 0.5); 및 (3) 말단 갭을 위한 무 페널티를 포함할 수 있다. 따라서, 본원에서 사용된 것으로서, 용어 “상동성” 또는 "동일성"은 서열들간의 관련성(relevance)를 나타낸다.
본 출원의 또 하나의 양태는, 본 출원의 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드이다.
본 출원에서 용어, "폴리뉴클레오티드"는 DNA 그리고 RNA 분자를 포함하는 의미를 가지며, 이의 기본 구성 단위인 뉴클레오타이드는 천연 뉴클레오타이드 뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다. 본 출원에서 상기 폴리뉴클레오티드는 세포로부터 분리된 폴리뉴클레오티드 또는 인위적으로 합성된 폴리뉴클레오티드일 수 있으나, 이에 제한되는 것은 아니다.
본 출원의 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드는, 본 출원의 아세토하이드록시산 신타아제 변이체 활성을 가지는 단백질을 코딩하는 염기서열이라면 제한없이 포함될 수 있다. 구체적으로 상기 폴리뉴클레오티드는 코돈의 축퇴성(degeneracy)으로 인하여 또는 상기 단백질을 발현시키고자 하는 생물에서 선호되는 코돈을 고려하여, 단백질의 아미노산 서열을 변화시키지 않는 범위 내에서 코딩 영역에 다양한 변형이 이루어질 수 있다. 상기 서열번호 28 내지 33의 아미노산 서열을 코딩하는 염기서열이면 제한없이 포함될 수 있으나, 구체적인 예를 들어, 서열번호 34 내지 39 중 어느 하나로 기재되는 염기서열을 가지는 것일 수 있다. 또한, 본 출원의 변이를 포함하여 실질적으로 아세토하이드록시산 신타아제의 활성을 가지는 한, 코돈의 축퇴성으로 인하여, 상기 서열들과 70 %, 75 %, 80 %, 85 %. 90 %, 95 %, 97 %, 또는 99 % 이상의 상동성 또는 동일성을 가지는 폴리뉴클레오티드를 제한없이 포함할 수 있다.
또는 공지의 유전자 서열로부터 조제될 수 있는 프로브, 예를 들면, 상기 염기 서열의 전체 또는 일부에 대한 상보 서열과 엄격한 조건 하에 하이드리드화하여, 서열번호 28 내지 33의 아미노산 서열로 이루어진 단백질의 활성을 가지는 단백질을 암호화하는 서열이라면 제한없이 포함될 수 있다. 상기 "엄격한 조건"이란 폴리뉴클레오티드 간의 특이적 혼성화를 가능하게 하는 조건을 의미한다. 이러한 조건은 문헌(예컨대, J. Sambrook et al., 상동)에 구체적으로 기재되어 있다. 예를 들어, 상동성 또는 동일성이 높은 유전자끼리, 80 % 이상, 구체적으로는 85 % 이상, 더욱 구체적으로는 90 % 이상, 보다 구체적으로는 95 % 이상, 더욱 구체적으로는 97 % 이상, 특히 구체적으로는 99 % 이상의 상동성 또는 동일성을 갖는 유전자끼리 하이브리드화하고, 그보다 상동성 또는 동일성이 낮은 유전자끼리 하이브리드화하지 않는 조건, 또는 통상의 써던 하이브리드화의 세척 조건인 60 ℃, 1×SSC, 0.1% SDS, 구체적으로는 60 ℃, 0.1×SSC, 0.1% SDS, 보다 구체적으로는 68 ℃, 0.1×SSC, 0.1% SDS에 상당하는 염 농도 및 온도에서, 1회, 구체적으로는 2회 내지 3회 세정하는 조건을 열거할 수 있다. 혼성화는 비록 혼성화의 엄격도에 따라 염기 간의 미스매치(mismatch)가 가능할지라도, 두 개의 핵산이 상보적 서열을 가질 것을 요구한다. 상기 용어, "상보적"은 서로 혼성화가 가능한 뉴클레오티드 염기 간의 관계를 기술하는데 사용된다. 예를 들면, DNA에 관하여, 아데노신은 티민에 상보적이며 시토신은 구아닌에 상보적이다. 따라서, 본 출원은 또한 실질적으로 유사한 핵산 서열뿐만 아니라 전체 서열에 상보적인 단리된 핵산 단편을 포함할 수 있다. 구체적으로, 상동성 또는 동일성을 가지는 폴리뉴클레오티드는 55 ℃의 Tm 값에서 혼성화 단계를 포함하는 혼성화 조건을 사용하고 상술한 조건을 사용하여 탐지할 수 있다. 또한, 상기 Tm 값은 60 ℃, 63 ℃ 또는 65 ℃일 수 있으나, 이에 제한되는 것은 아니고 그 목적에 따라 당업자에 의해 적절히 조절될 수 있다. 폴리뉴클레오티드를 혼성화하는 적절한 엄격도는 폴리뉴클레오티드의 길이 및 상보성 정도에 의존하고 변수는 해당기술분야에 잘 알려져 있다(Sambrook et al., supra, 9.50-9.51, 11.7-11.8 참조).
본 출원의 또 하나의 양태는, 본 출원의 변이된 아세토 하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터이다.
본 출원에서 용어, "벡터"는 숙주 세포로 염기의 클로닝 및/또는 전이를 위한 임의의 매개물을 말한다. 벡터는 다른 DNA 단편이 결합하여 결합된 단편의 복제를 가져올 수 있는 복제단위(replicon)일 수 있다. "복제단위"란 생체 내에서 DNA 복제의 자가 유닛으로서 기능하는, 즉, 스스로의 조절에 의해 복제가능한, 임의의 유전적 단위를 말한다. 구체적으로는, 천연상태이거나 재조합된 상태의 플라스미드, 파지, 코스미드, 염색체, 바이러스일 수 있다. 예를 들어, 파지 벡터 또는 코스미드 벡터로서 pWE15, M13, λMBL3, λMBL4, λIXII, λASHII, λAPII, λt10, λt11, Charon4A 및 Charon21A 등을 사용할 수 있으며, 플라스미드 벡터로서 pBR계, pUC계, pBluescriptII계, pGEM계, pTZ계, pCL계 및 pET계 등을 사용할 수 있다. 본 출원에서 사용 가능한 벡터는 특별히 제한되는 것이 아니며 공지된 발현 벡터를 사용할 수 있다. 또한 상기 벡터에 트랜스포존, 또는 인공 염색체를 포함할 수 있다.
본 출원에서 벡터는 본 출원의 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 한 특별히 제한되지 않으나, 포유류 세포(예를 들어, 사람, 원숭이, 토끼, 래트, 햄스터, 마우스 세포 등), 식물 세포, 효모 세포, 곤충 세포 또는 박테리아 세포(예를 들어, 대장균 등)를 포함하는 진핵 또는 원핵세포에서 상기 핵산 분자를 복제 및/또는 발현할 수 있는 벡터가 될 수 있고, 구체적으로는 숙주세포에서 상기 폴리뉴클레오티드가 발현될 수 있도록 적절한 프로모터에 작동가능하도록 연결되며, 적어도 하나의 선별마커를 포함하는 벡터가 될 수 있다.
또한, 상기에서 용어, "작동 가능하게 연결"된 것이란 본 출원의 목적 단백질을 코딩하는 폴리뉴클레오티드의 전사를 개시 및 매개하도록 하는 프로모터 서열과 상기 유전자 서열이 기능적으로 연결되어 있는 것을 의미한다.
본 출원의 또 하나의 양태는, 본 출원의 벡터가 도입된 형질전환체이다.
본 출원에서 형질전환체는 특별히 이에 제한되지 않으나, 상기 벡터가 도입되어 본 출원의 아세토하이드록시산 신타아제 변이체를 발현할 수 있으면 모든 형질전환 가능한 세포가 포함될 수 있다. 구체적으로 형질전환된 에스케리키아속, 코리네박테리움 속, 스트렙토미세스, 브레비박테리움속, 세라티아속, 프로비덴시아속, 살모넬라 티피뮤리움 등의 박테리아 세포; 효모 세포; 피치아 파스토리스 등의 균류세포; 드로조필라, 스포도프테라 Sf9 세포 등의 곤충 세포; CHO(중국 햄스터 난소 세포, chinese hamster ovary cells), SP2/0(마우스 골수종), 인간 림프아구(human lymphoblastoid), COS, NSO(마우스 골수종), 293T, 보우 멜라노마 세포, HT-1080, BHK(베이비 햄스터 신장세포, baby hamster kidney cells), HEK(인간 배아신장 세포(human embryonic kidney cells), PERC.6(인간망막세포) 등의 동물 세포; 또는 식물 세포가 될 수 있다.
본 출원의 또 하나의 양태는, 상기 아세토하이드록시산 신타아제 변이체를 포함하거나, 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터가 도입된, L-분지쇄 아미노산을 생산하는 미생물이다.
본 출원에서 용어, "L-분지쇄 아미노산"이란 곁사슬에 분지알킬기가 있는 아미노산을 말하며, 발린, 류신 및 이소류신을 포함한다. 구체적으로, 본 출원에서 상기 L-분지쇄 아미노산은 L-발린 또는 L-류신일 수 있으나, 이에 제한되는 것은 아니다.
본 출원에서 상기 "미생물"은 야생형 미생물이나, 자연적 또는 인위적으로 유전적 변형이 일어난 미생물을 모두 포함하며, 외부 유전자가 삽입되거나 내재적 유전자의 활성이 강화되거나 약화되는 등의 원인으로 인해서 특정 기작이 약화되거나 강화된 미생물을 모두 포함하는 개념이다. 본 출원의 아세토하이드록시산 신타아제 변이체를 발현할 수 있는 모든 미생물을 지칭하며, 구체적으로는 코리네박테리움속 미생물일 수 있으며, 더욱 구체적으로는 코리네박테리움 글루타미쿰, 코리네박테리움 암모니아게네스, 브레비박테리움 락토퍼멘텀(Brevibacterium lactofermentum), 브레비박테리움 플라범(Brevibacterium flavum), 코리네박테리움 써모아미노게네스(Corynebacterium thermoaminogenes), 코리네박테리움 에피션스(Corynebacterium efficiens) 등일 수 있다. 보다 더욱 구체적으로는 코리네박테리움 글루타미쿰이나, 이에 한정되는 것은 아니다.
본 출원에서 용어, "L-분지쇄 아미노산을 생산하는 미생물"이란 천연형 또는 변이를 통하여 L-분지쇄 아미노산 생산능을 가지고 있는 미생물을 의미하며, 구체적으로 비자연적으로 발생한(non-natural occuring) 재조합 미생물일 수 있으나, 이에 제한되지 않는다. 상기 L-분지쇄 아미노산을 생산하는 미생물은 본 출원의 아세토하이드록시산 신타아제 변이체를 포함하거나, 상기 변이체를 코딩하는 폴리뉴클레오티드를 포함하는 벡터가 도입된 것으로, 야생형 미생물, 천연형 아세토하이드록시산 신타아제 단백질을 포함하는 미생물, 아세토하이드록시산 신타아제 단백질을 포함하는 비변형 미생물 또는 아세토하이드록시산 신타아제 단백질을 포함하지 않는 미생물에 비하여 L-분지쇄 아미노산 생산능이 현저히 증가될 수 있다.
본 출원의 또 하나의 양태는, 본 출원의 L-분지쇄 아미노산을 생산하는 미생물을 배양하는 단계; 및 상기 단계에서 수득되는 미생물 또는 배지로부터 L-분지쇄 아미노산을 회수하는 단계를 포함하는, L-분지쇄 아미노산 생산 방법이다.
본 출원에서 용어, "배양"은 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 것을 의미한다. 본 출원에서 L-분지쇄 아미노산 생산능을 가지는 미생물을 이용한 L-분지쇄 아미노산 생산 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다. 구체적으로, 상기 배양은 배치 공정, 주입 배치 또는 반복 주입 배치 공정(fed batch or repeated fed batch process)에서 연속식으로 배양할 수 있으나, 이에 제한되는 것은 아니다.
배양에 사용되는 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 한다. 예를 들어, 코리네박테리움 속 균주에 대한 배양 배지는 공지되어 있다(예를 들면, Manual of Methods for General Bacteriology. American Society for Bacteriology. Washington D.C., USA, 1981). 사용될 수 있는 당원으로는 글루코즈, 사카로즈, 락토즈, 프락토즈, 말토즈, 전분, 셀룰로즈와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함될 수 있다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으며, 이에 제한되는 것은 아니다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산암모늄, 염화암모늄, 인산암모늄, 탄산 암모늄 및 질산암모늄이 포함될 수 있다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으며, 이에 제한되는 것은 아니다. 사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있다. 추가적으로, 아미노산 및 비타민과 같은 필수 성장 물질이 사용될 수 있다. 또한, 배양배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있다. 그러나, 이에 제한되는 것은 아니다.
수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체(예, 공기)를 주입할 수 있다. 배양물의 온도는 20 내지 45 ℃, 구체적으로는 25 내지 40 ℃일 수 있다. 배양은 원하는 L-분지쇄 아미노산의 생성량이 최대로 얻어질 때까지 계속될 수 있다. 이러한 목적으로 배양시간은 10 내지 160 시간일 수 있다. L-분지쇄 아미노산은 배양 배지 중으로 배출되거나, 세포 중에 포함되어 있을 수 있다. 그러나, 이에 제한되는 것은 아니다.
미생물 또는 배지로부터 L-분지쇄 아미노산을 회수하는 방법은 당업계에 알려진 적합한 방법을 이용하여 수행될 수 있다. 예컨대 원심분리, 여과, 결정화 단백질 침전제에 의한 처리(염석법), 추출, 초음파 파쇄, 한외여과, 투석법, 분자체 크로마토그래피(겔여과), 흡착크로마토그래피, 이온교환 크로마토그래피, 친화도 크로마토그래피 등의 각종 크로마토그래피, HPLC 및 이들의 방법을 조합하여 사용될 수 있으나, 이들 예에 한정되는 것은 아니다. 또한 상기 L-분지쇄 아미노산을 회수하는 단계는 추가적인 정제단계를 포함할 수 있으며, 당해분야에 공지된 적합한 방법을 이용하여 수행될 수 있다.
이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 인공 돌연변이법을 이용한 변이된 아세토하이드록시산 신타아제 (acetohydroxy acid synthase)를 코딩하는 DNA 라이브러리 제작
본 실시예에서는 아세토하이드록시산 신타아제 변이체를 획득하기 위하여 하기의 방법으로 염색체 내 1 차 교차 삽입용 벡터 라이브러리를 제작하였다. 코리네박테리움 글루타미쿰 ATCC14067 유래의 아세토하이드록시산 신타아제(서열번호 1)를 암호화하는 ilvB 유전자(서열번호 2)를 대상으로 Error-prone PCR 법을 수행하여 염기 치환 변이가 무작위적으로 도입된 ilvB 유전자 변이체(2395bp)들을 획득하였다. Error-prone PCR은 GenemorphII Random Mutagenesis Kit(Stratagene)를 사용하여 수행하였으며, 코리네박테리움 글루타미쿰 ATCC14067 게놈 DNA를 주형으로 하여 프라이머 1(서열번호 3) 및 프라이머 2(서열번호 4)를 사용하였다.
프라이머 1(서열번호 3): 5'- AACCG GTATC GACAA TCCAA T -3'
프라이머 2(서열번호 4): 5'- GGGTC TCTCC TTATG CCTC -3'
증폭된 유전자 단편 내에 변이가 1 kb당 0 내지 3.5 개가 도입되도록 하였으며, PCR 조건은 변성 96 ℃, 30 초; 어닐링 53 ℃, 30 초; 및 중합반응 72 ℃, 2 분을 30 회 반복하였다.
증폭된 유전자 단편을 pCR2.1-TOPO TA 클로닝 키트(Invitrogen 社)를 이용하여 pCR2.1-TOPO 벡터(이하 'pCR2.1')에 연결하였고, 대장균 DH5α에 형질전환하여 카나마이신(25 mg/ℓ)이 포함된 LB 고체배지에 도말하였다. 형질전환된 콜로니 20 종을 선별한 후 플라스미드를 획득하여 염기서열을 분석한 결과 2.1 mutations/kb 빈도로 서로 다른 위치에 변이가 도입된 것을 확인하였다. 약 20,000 개의 형질전환된 대장균 콜로니를 취하여 플라스미드를 추출하였고, 이를 pCR2.1-ilvB(mt) 라이브러리로 명명하였다.
또한, 대조군으로 사용하기 위한 야생형의 ilvB 유전자를 갖는 플라스미드를 제작하였다. 프라이머 1(서열번호 3) 및 프라이머 2(서열번호 4)를 이용하여 코리네박테리움 글루타미쿰 ATCC14067 게놈 DNA를 주형으로 상기와 같은 조건으로 PCR하였다. 중합효소는 PfuUltra High-Fidelity DNA 중합효소(Stratagene)를 사용하였다. 제작된 플라스미드를 pCR2.1-ilvB(WT)으로 명명하였다.
실시예 2: ilvB 결손 균주 제작
KCCM11201P(대한민국 등록특허 제10-1117022호) 균주를 모균주로 하여 pCR2.1-ilvB(mt) 라이브러리를 도입하기 위한 ilvB 결손 균주를 제작하였다.
ilvB 결손 벡터를 제작하기 위하여 야생형 코리네박테리움 글루타미쿰 ATCC14067의 염색체를 주형으로 하여 프라이머 3(서열번호 5) 및 프라이머 4(서열번호 6), 프라이머 5(서열번호 7) 및 프라이머 6(서열번호 8)을 이용하여 PCR을 수행하였다.
프라이머 3(서열번호 5): 5'- GCGTC TAGAG ACTTG CACGA GGAAA CG -3'
프라이머 4(서열번호 6): 5'- CAGCC AAGTC CCTCA GAATT GATGT AGCAA TTATC C -3'
프라이머 5(서열번호 7): 5'- GGATA ATTGC TACAT CAATT CTGAG GGACT TGGCT G -3'
프라이머 6(서열번호 8): 5'- GCGTC TAGAA CCACA GAGTC TGGAG CC -3'
PCR 조건은 95 ℃에서 5 분간 변성 후, 95 ℃ 30 초 변성, 55 ℃ 30 초 어닐링, 72 ℃ 30 초 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다.
그 결과 ilvB 유전자 프로모터 앞 부분과 ilvB 유전자 3'말단을 각각 포함하는 731bp의 서열번호 9의 DNA 단편과 712bp의 서열번호 10의 DNA 단편을 수득하였다.
증폭된 서열번호 9과 서열번호 10을 주형으로 하여, 프라이머 3(서열번호 5) 및 프라이머 6(서열번호 8)으로 PCR을 수행하였다. PCR 조건은 95 ℃에서 5 분간 변성 후, 95 ℃ 30 초 변성, 55 ℃ 30 초 어닐링, 72 ℃ 60 초 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다.
그 결과, ilvB 유전자의 프로모터 앞 부분을 포함하는 DNA 단편과 3'말단을 포함하는 DNA 단편이 연결된 1407bp의 서열번호 11의 DNA 단편(이하 ilvB 단편)이 증폭되었다.
코리네박테리움 글루타미쿰 내에서 복제가 불가능한 pDZ 벡터(대한민국 등록특허 제10-0924065호)와 상기 증폭된 ilvB 단편을 제한효소 Xba로 처리한 뒤, DNA 접합 효소를 이용하여 연결한 후, 클로닝함으로써 플라스미드를 획득하였고 이를 pDZ-ilvB라 명명하였다.
pDZ-ilvB를 코리네박테리움 글루타미쿰 KCCM11201P에 전기펄스법(Appl. Microbiol. Biothcenol.(1999) 52:541-545)으로 각각 형질전환한 후 카나마이신(kanamycin) 25 mg/ℓ 및 L-발린, L-류신, L-이소류신을 각각 2 mM씩 함유한 선별배지에서 형질전환균주를 획득하였다. 2 차 재조합과정(cross-over)으로 게놈상에 삽입된 ilvB 단편에 의하여 ilvB 유전자가 불활성화된 균주를 획득하였고, 이를 KCCM11201PilvB로 명명하였다.
실시예 3: 아세토하이드록시산 신타아제 변이 균주 라이브러리 제작 및 L-아미노산 생산능 증가 균주 선별
상기 제작된 KCCM11201PilvB 균주를 모균주로 하여 상기 제작된 pCR2.1-ilvB(mt) 라이브러리를 상동염색체 재조합에 의해 형질전환하고 카나마이신(25 mg/L)이 포함된 복합평판배지에 도말하여 약 10,000 개의 콜로니를 확보하였으며, 각 콜로니를 KCCM11201PilvB/pCR2.1-ilvB(mt)-1부터 KCCM11201PilvB/pCR2.1-ilvB(mt)-10000까지로 명명하였다.
또한, 상기 제작된 pCR2.1-ilvB(WT) 벡터를 KCCM11201PilvB 균주에 형질전환하여 대조군 균주를 제작하였으며, KCCM11201PilvB/pCR2.1-ilvB(WT)으로 명명하였다.
<복합평판배지(pH 7.0)>
포도당 10 g, 펩톤 10 g, 소고기 추출물 5 g, 효모 추출물 5 g, 뇌심장침출액(brain heart infusion) 18.5 g, NaCl 2.5 g, 요소 2 g, 소르비톨(sorbitol) 91 g, 한천 20 g (증류수 1 리터 기준)
확보된 약 10,000개의 콜로니를 각각 300 ㎕의 선별배지에 접종하여 96-딥 웰 플레이트에서 32 ℃, 1000 rpm으로 약 24 시간 동안 배양하였다. 배양액에 생산된 L-아미노산의 생산량을 분석하기 위하여 닌하이드린 방법을 이용하였다(J. Biol. Chem. 1948. 176:367-388). 배양이 완료된 후 배양 상층액 10 ㎕와 닌하드린 반응용액 190 ㎕를 65 ℃에서 30 분간 반응시킨 후 파장 570 nm에서 분광광도계(spectrophotometer)로 흡광도를 측정하고 대조군 KCCM11201PilvB/pCR2.1-ilvB(WT) 균주의 흡광도와 비교해 10 % 이상 증가된 흡광도를 보이는 변이 균주 약 213개의 콜로니를 선별하였다. 그 외 콜로니들은 대조구 대비 유사 또는 감소한 흡광도를 나타내었다.
<선별배지(pH 8.0)>
포도당 10 g, 황산암모늄 5.5 g, 황산마그네슘7수염 1.2 g, 제1인산칼륨 0.8 g, 제2인산칼륨 16.4 g, 비오틴 100 ㎍, 티아민-HCl 1000 ㎍, 판토텐산칼슘 2000 ㎍, 니코틴아미드 2000 ㎍ (증류수 1 리터 기준)
선별된 213 개의 균주는 상기와 같은 방법으로 닌하이드린 반응을 반복 수행하였으며, KCCM11201PilvB/pCR2.1-ilvB(WT) 균주 대비 L-아미노산 생산능이 향상된 균주 상위 60종을 선별하였다.
실시예 4: 아세토하이드록시산 신타아제 변이 균주 라이브러리 선별주의 L-발린 생산능 확인
상기 실시예 3에서 선별한 60종 균주들의 L-발린 생산능을 비교하고자 아래와 같은 방법으로 배양하여 배양액 성분을 분석하였다.
생산 배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 1백금이 접종하고, 30 ℃에서 72 시간 동안, 200 rpm에서 진탕 배양하였다. HPLC를 이용하여 L-발린의 농도를 분석하였다.
<생산배지(pH 7.0)>
포도당 100 g, 황산암모늄 40 g, 대두단백질 2.5 g, 옥수수침지고형분 Corn Steep Solids) 5 g, 요소 3 g, 제2인산칼륨 1 g, 황산마그네슘7수염 0.5 g, 바이오틴 100 ㎍, 티아민-HCl 1000 ㎍, 판토텐산칼슘 2000 ㎍, 니코틴아마이드 3000 ㎍, 탄산칼슘 30 g (증류수 1리터 기준)
60종의 균주 중 L-발린 농도가 향상된 균주 2종을 선별하여 상기 배양 및 분석을 반복수행 하였으며, 분석된 L-발린의 농도는 하기 표 1과 같다. 나머지 58종의 균주는 L-발린 농도가 오히려 하락하는 결과를 보였다.
선별된 2종의 KCCM11201PilvB/pCR2.1-ilvB(mt) L-발린 생산 농도
균주 L-발린 (g/ℓ)
배치 1 배치 2 배치 3 평균
대조군 KCCM11201PilvB/pCR2.1-ilvB(WT) 2.7 2.9 2.9 2.8
1 KCCM11201PilvB/pCR2.1-ilvB(mt)-5602 3.1 3.5 3.4 3.3
2 KCCM11201PilvB/pCR2.1-ilvB(mt)-7131 2.9 3.3 3.1 3.1
L-발린 농도 분석 결과, 상기 2종 선별주의 L-발린 수율이 대조군 KCCM11201PilvB/pCR2.1-ilvB(WT) 균주 대비 최대 20.7 % 증가함을 확인하였다.
실시예 5: 아세토하이드록시산 신타아제 변이 균주 라이브러리 선별주의 ilvB 유전자 변이 확인
상기 실시예 4에서 선별된 2종 균주들의 아세토하이드록시산 신타아제에 도입된 무작위 변이를 확인하기 위하여 ilvB 유전자의 염기서열을 분석하였다. 염기서열을 결정하기 위해 프라이머 7(서열번호 12) 및 프라이머 8(서열번호 13)을 사용하여 PCR을 수행하였다.
프라이머 7(서열번호 12): 5'- CGCTT GATAA TACGC ATG -3'
프라이머 8(서열번호 13): 5'- GAACA TACCT GATAC GCG -3'
확보된 각각의 변이형 ilvB 유전자 단편들의 염기서열 분석을 통하여, 서열번호 2의 야생형 ilvB 유전자 염기서열과 비교하여 변이형 ilvB 유전자의 염기서열을 확인하였으며, 이를 통해 변이된 아세토하이드록시산 신타아제 단백질의 아미노산 서열을 확인하였다. 선별된 균주 2종의 변이된 아세토하이드록시산 신타아제 단백질의 정보는 하기 표 2와 같다.
선별 2종 KCCM11201P/pCR2.1-ilvB(mt) 변이된 아세토하이드록시산 신타아제 단백질 정보
균주 아세토하이드록시산 신타아제 아미노산 변이
KCCM11201PilvB /pCR2.1-ilvB(mt)-5602 W503Q
KCCM11201PilvB /pCR2.1-ilvB(mt)-7131 T96S
실시예 6: 아세토하이드록시산 신타아제 변이 도입용 벡터 제작
상기 실시예 5에서 확인된 변이된 아세토하이드록시산 신타아제 단백질의 효과를 확인하기 위하여 이를 염색체상에 도입할 수 있는 벡터를 제작하였다.
확인된 염기서열에 근거하여 5' 말단에 Xba 제한효소 부위를 삽입한 프라이머 9(서열번호 14)와 프라이머 10(서열번호 15), 및 프라이머 11(서열번호 16)과 프라이머 12(서열번호 17)를 합성하였다. 이 프라이머 쌍을 이용하여, 상기 선별된 2종의 염색체를 각각 주형으로 PCR을 수행하여 2종의 변이형 ilvB 유전자 단편을 증폭하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 2 분 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다.
프라이머 9(서열번호 14): 5'- CGCTC TAGAC AAGCA GGTTG AGGTT CC -3'
프라이머 10(서열번호 15): 5'- CGCTC TAGAC ACGAG GTTGA ATGCG CG -3'
프라이머 11(서열번호 16): 5'- CGCTC TAGAC CCTCG ACAAC ACTCA CC -3'
프라이머 12(서열번호 17): 5'- CGCTC TAGAT GCCAT CAAGG TGGTG AC -3'
PCR로 증폭된 2종의 유전자 단편을 제한효소 Xba로 처리하여 각각의 DNA 절편을 획득한 후, 이를 제한효소 Xba 말단을 가지는 염색체 도입용 pDZ 벡터에 연결한 후 대장균 DH5α에 형질전환하고 카나마이신(25 mg/ℓ)이 포함된 LB 고체배지에 도말하였다.
PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 이 플라스미드의 ilvB 유전자에 삽입된 변이에 따라 각각 pDZ-ilvB(W503Q), pDZ- ilvB(T96S)로 명명하였다.
실시예 7: KCCM11201P 유래 아세토하이드록시산 신타아제 변이 도입 균주 제작 및 L-발린 생산능 비교
상기 실시예 6에서 제조한 신규 변이 도입 벡터 2종을 각각 2 단계 상동염색체 재조합에 의해 L-발린 생산 균주인 코리네박테리움 글루타미쿰 KCCM11201P에 형질전환시켰다. 그 후 염색체 상의 ilvB 변이가 도입된 균주를 염기서열 분석에 의하여 선별하였으며, 상기 ilvB 변이가 도입된 균주를 각각 KCCM11201P::ilvB(W503Q) 및 KCCM11201P::ilvB(T96S)로 명명하였다. 그리고 상기 변이 도입 벡터 중 pDZ- ilvB(T96S)를 상기 제작한 균주 KCCM11201P::ilvB(W503Q)에 형질전환시켰다. 그 후 염색체 상의 ilvB 변이 2종이 모두 도입된 균주를 각각 KCCM11201P::ilvB(W503Q/T96S)로 명명하였다.
실시예 4과 동일한 방법으로 배양하여, 이로부터 L-발린의 농도를 분석하였다 (표 3).
KCCM11201P 균주 유래 변이된 아세토하이드록시산 신타아제 도입 균주 L-발린 생산 농도 (g/ℓ)
균주 배치 1 배치 2 배치 3 평균
대조군 KCCM11201P 2.9 2.8 2.8 2.8
1 KCCM11201P::ilvB(W503Q) 3.3 3.2 3.3 3.3
2 KCCM11201P::ilvB(T96S) 3.2 3.0 3.1 3.1
3 KCCM11201P::ilvB(W503Q/T96S) 3.3 3.4 3.4 3.4
2종의 신규 변이 도입 균주(KCCM11201P::ilvB(W503Q), KCCM11201P::ilvB(T96S))는 모균주 대비 L-발린 생산능이 최대 17.8 % 증가하였으며, 2종 변이가 모두 도입된 균주 (KCCM11201P::ilvB(W503Q/T96S))는 모균주 대비 L-발린 생산능이 21.4 % 증가하였다.
이에, 본 발명의 아세토하이드록시산 신타아제 큰 소단위체의 변이체는 L-분지쇄 아미노산의 생합성 경로중 첫번째 효소이므로, L-발린뿐만 아니라, L-이소류신 및 L-류신의 생산능 증가에도 영향을 미칠 것으로 예상된다.
본 발명자들은 상기 L-발린이 향상된 균주인 KCCM11201P::ilvB(W503Q) 및 KCCM11201P::ilvB(T96S)를 코리네박테리움 글루타미쿰 KCJ-0793 및 KCJ-0796라 명명하였고, 한국미생물보존센터(KCCM)에 2016년 1월 25일자로 기탁하여 수탁번호 KCCM11809P 및 KCCM11810P를 부여받았다.
실시예 8: 변이된 아세토하이드록시산 신타아제를 코딩하는 DNA가 포함된 L-발린 생합성 과발현 벡터의 제작
대조군으로서 L-발린 생산 균주인 코리네박테리움 글루타미쿰 KCCM11201P으로부터 L-발린 생합성 과발현 벡터를 제작하였다. 또한 상기 실시예 7에서 제조한 각각의 KCCM11201P::ilvB(W503Q), KCCM11201P::ilvB(T96S)로부터 변이된 아세토하이드록시산 신타아제를 코딩하는 DNA가 포함된 L-발린 생합성 과발현 벡터를 제작하였다.
상기 벡터의 제작을 위해 5' 말단에 BamH 제한효소 부위를 삽입한 프라이머 13(서열번호 18)과 3' 말단에 Xba 제한효소 부위를 삽입한 프라이머 14(서열번호 19)를 합성하였다. 이 프라이머 쌍을 이용하여, L-발린 생산 균주인 코리네박테리움 글루타미쿰 KCCM11201P 및 상기 실시예 7에서 제조한 KCCM11201P::ilvB(W503Q), KCCM11201P::ilvB(T96S)의 염색체를 각각 주형으로 PCR을 수행하여 2종의 변이형 ilvBN 유전자 단편을 증폭하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 4 분 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다.
프라이머 13(서열번호 18): 5'- CGAGG ATCCA ACCGG TATCG ACAAT CCAAT -3'
프라이머 14(서열번호 19): 5'- CTGTC TAGAA ATCGT GGGAG TTAAA CTCGC -3'
상기 PCR로 증폭된 2종의 유전자 단편을 제한효소 BamH와 Xba로 처리하여 각각의 DNA 절편을 획득한 후, 이를 제한효소 BamH와 Xba 말단을 가지는 과발현 벡터 pECCG117에 연결한 후 대장균 DH5α에 형질전환하고 카나마이신(25 mg/ℓ)이 포함된 LB 고체배지에 도말하였다.
PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 이 플라스미드의 ilvB 유전자에 삽입된 변이에 따라 각각 pECCG117-ilvBN, pECCG117-ilvB(W503Q)N, pECCG117-ilvB(T96S)N으로 명명하였다.
실시예 9: 동일 변이 위치에서 다른 아미노산으로 치환된 아세토하이드록시산 신타아제를 코딩하는 DNA가 포함된 L-발린 생합성 과발현 벡터의 제작
실시예 5에서 확인된 변이된 아세토하이드록시산 신타아제 단백질에 있어서, 변이 위치의 효과를 확인하고자, 96 번째 아미노산이 쓰레오닌 또는 세린 이외의 아미노산으로, 503 번째 아미노산이 트립토판 또는 글루타민 이외의 아미노산으로 치환된 변이를 포함하는 벡터를 제작하였다.
구체적으로, L-발린 생산 균주인 코리네박테리움 글루타미쿰 KCCM11201P으로부터 아세토하이드록시산 신타아제의 503 번째 아미노산이 아스파라긴 또는 류신으로 치환된 형태의 변이 또는 96 번째 아미노산이 알라닌 또는 시스테인으로 치환된 형태의 변이가 포함된 L-발린 생합성 과발현 벡터를 제작하였다. 상기 치환된 아미노산은 치환할 수 있는 아미노산의 대표적인 예시일 뿐, 이에 제한 되는 것은 아니다.
상기 벡터의 제작을 위해 먼저, 코리네박테리움 글루타미쿰 KCCM11201P 균주의 염색체를 주형으로 프라이머 13(서열번호 18) 및 프라이머 15(서열번호 20), 프라이머 16(서열번호 21) 및 프라이머 14(서열번호 19)를 이용해 PCR을 수행하여, 5' 말단에 BamH 제한효소 부위를 가지는 약 2041bp의 DNA 단편과 3' 말단에 Xba 제한효소 부위를 가지는 1055bp의 DNA 단편을 증폭하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 2 분 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다.
프라이머 15(서열번호 20): 5'- CTTCA TAGAA TAGGG TCTGG TTTTG GCGAA CCATG CCCAG -3'
프라이머 16(서열번호 21): 5'- CTGGG CATGG TTCGC CAAAA CCAGA CCCTA TTCTA TGAAG -3'
그 후, 증폭된 두 DNA 단편을 주형으로 하여, 프라이머 13(서열번호 18) 및 프라이머 14(서열번호 19)로 PCR을 수행하였다. PCR 조건은 94 ℃에서 5 분간 변성 후, 94 ℃ 30 초 변성, 56 ℃ 30 초 어닐링, 72 ℃ 4 분 중합을 30 회 반복한 후, 72 ℃에서 7 분간 중합반응을 수행하였다.
그 결과, 아세토하이드록시산 신타아제의 503 번째 아미노산이 아스파라긴으로 치환된 형태의 변이가 포함된 ilvBN 유전자 단편을 수득하였다.
동일한 방법으로, 코리네박테리움 글루타미쿰 KCCM11201P 균주의 염색체를 주형으로 프라이머 13(서열번호 18) 및 프라이머 17(서열번호 22), 프라이머 18(서열번호 23) 및 프라이머 14(서열번호 19)를 이용해 PCR을 수행하여, 5' 말단에 BamH 제한효소 부위를 가지는 약 2041bp의 DNA 단편과 3' 말단에 Xba 제한효소 부위를 가지는 1055bp의 DNA 단편을 증폭하였다.
프라이머 17(서열번호 22): 5'- CTTCA TAGAA TAGGG TCTGC AGTTG GCGAA CCATG CCCAG -3'
프라이머 18(서열번호 23): 5'- CTGGG CATGG TTCGC CAACT GCAGA CCCTA TTCTA TGAAG -3'
그 후, 증폭된 두 DNA 단편을 주형으로 하여, 프라이머 13(서열번호 18) 및 프라이머 14(서열번호 19)로 PCR을 수행하였다.
그 결과, 아세토하이드록시산 신타아제의 503 번째 아미노산이 류신으로 치환된 형태의 변이가 포함된 ilvBN 유전자 단편을 수득하였다.
동일한 방법으로, 코리네박테리움 글루타미쿰 KCCM11201P 균주의 염색체를 주형으로 프라이머 13(서열번호 18) 및 프라이머 19(서열번호 24), 프라이머 20(서열번호 25) 및 프라이머 14(서열번호 19)를 이용해 PCR을 수행하여, 5' 말단에 BamH 제한효소 부위를 가지는 약 819bp의 DNA 단편과 3' 말단에 Xba 제한효소 부위를 가지는 2276bp의 DNA 단편을 증폭하였다.
프라이머 19(서열번호 24): 5'- GGTTG CGCCT GGGCC AGATG CTGCA ATGCA GACGC CAAC -3'
프라이머 20(서열번호 25): 5'- GTTGG CGTCT GCATT GCAGC ATCTG GCCCA GGCGC AACC -3'
그 후, 증폭된 두 DNA 단편을 주형으로 하여, 프라이머 13(서열번호 18) 및 프라이머 14(서열번호 19)로 PCR을 수행하였다.
그 결과, 아세토하이드록시산 신타아제의 96 번째 아미노산이 알라닌으로 치환된 형태의 변이가 포함된 ilvBN 유전자 단편을 수득하였다.
동일한 방법으로, 코리네박테리움 글루타미쿰 KCCM11201P 균주의 염색체를 주형으로 프라이머 13(서열번호 18) 및 프라이머 21(서열번호 26), 프라이머 22(서열번호 27) 및 프라이머 14(서열번호 19)를 이용해 PCR을 수행하여, 5' 말단에 BamH 제한효소 부위를 가지는 약 819bp의 DNA 단편과 3' 말단에 Xba 제한효소 부위를 가지는 2276bp의 DNA 단편을 증폭하였다.
프라이머 21(서열번호 26): 5'- GGTTG CGCCT GGGCC AGAGC ATGCA ATGCA GACGC CAAC -3'
프라이머 22(서열번호 27): 5'- GTTGG CGTCT GCATT GCATG CTCTG GCCCA GGCGC AACC -3'
그 후, 증폭된 두 DNA 단편을 주형으로 하여, 프라이머 13(서열번호 18) 및 프라이머 14(서열번호 19)로 PCR을 수행하였다.
그 결과, 아세토하이드록시산 신타아제의 96 번째 아미노산이 시스테인으로 치환된 형태의 변이가 포함된 ilvBN 유전자 단편을 수득하였다.
실시예 8과 같은 방법으로, PCR로 증폭된 상기 4 종의 변이형 유전자 단편을 제한효소 BamH와 Xba으로 처리하여 각각의 DNA 절편을 획득한 후, 이를 제한효소 BamH와 Xba 말단을 가지는 과발현 벡터 pECCG117에 연결한 후 대장균 DH5α에 형질전환하고 카나마이신(25 mg/ℓ)이 포함된 LB 고체배지에 도말하였다.
PCR을 통해 목적한 유전자가 삽입된 벡터로 형질전환된 콜로니를 선별한 후 통상적으로 알려진 플라스미드 추출법을 이용하여 플라스미드를 획득하였고 이 플라스미드의 ilvB 유전자에 삽입된 변이에 따라 각각 순서대로 pECCG117-ilvB(W503N)N, pECCG117-ilvB(W503L)N, pECCG117-ilvB(T96A)N, pECCG117-ilvB(T96C)N으로 명명하였다.
실시예 10: 야생형 유래 변이된 아세토하이드록시산 신타아제 도입 균주 제작 및 L-발린 생산능 비교
상기 실시예 8 및 실시예 9에서 제조한 L-발린 생합성 과발현 벡터 pECCG117-ilvBN, pECCG117-ilvB(W503Q)N, pECCG117-ilvB(T96S)N 및 pECCG117-ilvB(W503N)N, pECCG117-ilvB(W503L)N, pECCG117-ilvB(T96A)N, pECCG117-ilvB(T96C)N를 코리네박테리움 글루타미쿰 야생형 균주 ATCC13032에 전기천공법으로 각각 삽입하였다. 제작된 균주는 각각 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvBN, 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(W503Q)N, 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(T96S)N, 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(W503N)N, 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(W503L)N, 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(T96A)N 및 코리네박테리움 글루타미쿰 ATCC13032::pECCG117-ilvB(T96C)N으로 명명하였다. 벡터가 형질전환 될 경우 카나마이신 내성을 가지게 되므로 카나마이신이 25 mg/ℓ의 농도로 포함된 배지에서의 생장여부를 통해 형질 전환을 확인하였다.
제작된 균주를 평가하기 위해 실시에 4에서 사용한 배지와 동일한 방법으로, 생산배지 25 ㎖을 함유하는 250 ㎖ 코너-바플 플라스크에 각 균주들을 접종하고, 30 ℃에서 72 시간 동안, 200 rpm으로 진탕 배양하였다. HPLC를 이용하여 L-발린의 농도를 분석하였다(표 4).
야생형 유래 변이된 아세토하이드록시산 신타아제 도입 균주의 L-발린 생산 농도
균주 L-발린 (g/ℓ)
배치 1 배치 2 배치 3 평균
대조군 ATCC13032::pECCG117-ilvBN 0.1 0.1 0 0.1
1 ATCC13032::pECCG117-ilvB(W503Q)N 0.8 0.8 0.7 0.8
2 ATCC13032::pECCG117-ilvB(T96S)N 0.4 0.5 0.5 0.5
3 ATCC13032::pECCG117-ilvB(W503N)N 0.7 0.6 0.5 0.6
4 ATCC13032::pECCG117-ilvB(W503L)N 0.7 0.7 0.5 0.5
5 ATCC13032::pECCG117-ilvB(T96A)N 0.2 0.3 0.2 0.2
6 ATCC13032::pECCG117-ilvB(T96C)N 0.4 0.3 0.5 0.4
그 결과, 아세토하이드록시산 신타아제의 96 번째 또는 503 번째 아미노산이 다른 아미노산으로 치환된 신규 변이는 대조군 대비 L-발린 생산능이 최대 700 % 증가된 것을 확인하였다. 이로부터 상기 96번째 503번째 위치의 중요성을 확인하였으며, 또한, L-발린 뿐만 아니라 다른 분지쇄 아미노산의 생산능에도 영향을 미칠 것으로 예상된다.
실시예 11: 변이된 아세토하이드록시산 신타아제 도입 균주 제작 및 L-류신 생산능 비교
본 출원의 아세토하이드록시산 신타아제 큰 소단위체의 변이체가 다른 L-분지쇄 아미노산의 생산능 증가에도 영향을 미치는지 확인하기 위하여, L-분지쇄 아미노산의 또 다른 예로서 L-류신의 생산능을 확인하였다.
구체적으로 상기 실시예 6에서 제조한 신규변이 도입 벡터 2종을 각각 2단계 상동염색체 재조합에 의해 L-류신 생산균주인 코리네박테리움 글루타미쿰 KCCM11661P(대한민국 특허 출원번호 제10-2015-0119785호, 대한민국 공개특허 제10-2017-0024653호)에 형질전환시켰다. 그 후 염색체 상의 ilvB 변이가 도입된 균주를 염기서열 분석에 의하여 선별하였으며, 상기 ilvB 변이가 도입된 균주를 각각 KCCM11661P::ilvB(W503Q) 및 KCCM11661P::ilvB(T96S)로 명명하였다.
상기 코리네박테리움 글루타미쿰 KCCM11661P은 노르류신(Norleucine, NL)에 대한 내성을 갖는 코리네박테리움 글루타미쿰 ATCC 14067 유래 돌연변이주로서 다음과 같은 방법에 의해 수득되었다.
구체적으로, 코리네박테리움 글루타미쿰 ATCC 14067을 활성화 배지에서 16시간 동안 배양하여 활성화된 균주를 121 ℃에서 5분간 멸균한 종배지에 접종하여 14시간 동안 배양한 후, 배양액 5 ㎖를 회수하였다. 회수한 배양액을 100 mM 시트르산 완충용액(citric buffer)으로 세척한 후, NTG(N-Methyl-N'-nitro-N-nitrosoguanidine)를 최종농도 200 mg/L가 되게 첨가한 후, 20분 동안 처리하고, 100 mM 인산 완충용액(phosphate buffer)으로 세척하였다. NTG로 처리된 균주를 최소배지에 도말하여 사멸율을 계산해본 결과 사멸율은 85 %였다. L-류신의 유도체에 해당하는 노르류신(Norleucine, NL)에 대한 내성 변이주를 구하기 위해서, NTG가 처리된 균주를 NL의 최종농도가 각각 20 mM, 30mL, 40 mM 및 50 mM이 되게 첨가된 최소배지에 도말하고, 30 ℃에서 5일간 배양하여 NL 내성 변이주를 획득하였다.
<활성화배지>
육즙 1 %, 폴리펩톤 1 %, 소듐클로라이드 0.5 %, 효모엑기스 1 %, 한천 2 %, pH 7.2
<종배지>
포도당 5 %, 박토펩톤 1 %, 소듐클로라이드 0.25 %, 효모엑기스 1 %, 요소 0.4 %, pH 7.2
<최소배지>
포도당 1.0 %, 황산암모늄 0.4 %, 황산마그네슘 0.04 %, 인산제1칼륨 0.1 %, 요소 0.1 %, 티아민 0.00 1%, 비오틴 200 ㎍/L, 한천 2 %, pH 7.0
상기의 방법으로 얻어진 변이주는 코리네박테리움 글루타미쿰 KCJ-24(Corynebacterium glutamicum KCJ-24)라 명명하였고, 2015년 1월 22일자로 부다페스트 조약하의 국제 기탁기관인 한국미생물보존센터에 기탁하여 각각 수탁번호 KCCM11661P를 부여받았다.
상기 KCCM11661P::ilvB(W503Q) 및 KCCM11661P::ilvB(T96S)를 실시예 4와 동일한 방법으로 배양하여, 이로부터 L-류신의 농도를 분석하였다 (표 5).
KCCM11661P 균주 유래 변이된 아세토하이드록시산 신타아제 도입 균주의 L-류신 생산 농도 (g/ℓ)
균주 배치 1 배치 2 배치 3 평균
대조군 KCCM11661P 2.7 2.6 2.9 2.7
1 KCCM11661P::ilvB(W503Q) 3.1 3.3 3.3 3.2
2 KCCM11661P P::ilvB(T96S) 3.0 3.2 3.1 3.1
2종의 신규 변이 도입 균주(KCCM11661P::ilvB(W503Q), KCCM11661P::ilvB(T96S))는 모균주 대비 L-류신 생산능이 최대 26.9 % 증가하였다.
실시예 12: KCCM11662P 유래 변이된 아세토하이드록시산 신타아제 도입 균주 제작 및 L-류신 생산능 비교
상기 실시예 6에서 제조한 신규변이 도입 벡터 2종을 각각 2단계 상동염색체 재조합에 의해 다른 L-류신 생산균주인 코리네박테리움 글루타미쿰 KCCM11662P(대한민국 특허 출원번호 제10-2015-0119785호, 대한민국 공개특허 제10-2017-0024653호)에 형질전환시켰다. 그 후 염색체 상의 ilvB 변이가 도입된 균주를 염기서열 분석에 의하여 선별하였으며, 상기 ilvB 변이가 도입된 균주를 각각 KCCM11662P::ilvB(W503Q) 및 KCCM11662P::ilvB(T96S)로 명명하였다.
상기 코리네박테리움 글루타미쿰 KCCM11662P은 노르류신(Norleucine, NL)에 대한 내성을 갖는 코리네박테리움 글루타미쿰 ATCC 13869 유래 돌연변이주로서 다음과 같은 방법에 의해 수득되었다.
구체적으로, 코리네박테리움 글루타미쿰 ATCC 13869를 모균주로 하여, 실시예 11의 KCCM11662P를 수득하는 방법과 동일한 방법으로 배양하였으며, 최종적으로 NL 내성 변이주를 획득하였다.
상기의 방법으로 얻어진 변이주는 코리네박테리움 글루타미쿰 KCJ-28(Corynebacterium glutamicum KCJ-28)라 명명하였고, 2015년 1월 22일자로 부다페스트 조약하의 국제 기탁기관인 한국미생물보존센터에 기탁하여 각각 수탁번호 KCCM11662P를 부여받았다.
상기 KCCM11662P::ilvB(W503Q) 및 KCCM11662P::ilvB(T96S)를 실시예 4과 동일한 방법으로 배양하여, 이로부터 L-류신의 농도를 분석하였다 (표 6).
KCCM11662P 균주 유래 변이된 아세토하이드록시산 신타아제 도입 균주의 L-류신 생산 농도 (g/ℓ)
균주 배치 1 배치 2 배치 3 평균
대조군 KCCM11662P 3.1 3.0 3.1 3.1
1 KCCM11662P::ilvB(W503Q) 3.5 3.4 3.3 3.4
2 KCCM11662P P::ilvB(T96S) 3.3 3.3 3.2 3.3
상기 2종의 신규 변이 도입주(KCCM11662P::ilvB(W503Q), KCCM11662P::ilvB(T96S))는 모균주 대비 L-류신 생산능이 최대 13.3 % 증가하였다.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.
Figure PCTKR2018007821-appb-I000001
Figure PCTKR2018007821-appb-I000002

Claims (14)

  1. 아세토하이드록시산 신타아제의 큰 소단위체(acetolactate synthase large subunit; IlvB 단백질)의 아미노산 서열 위치 96 번의 쓰레오닌이 쓰레오닌 이외의 다른 아미노산으로 치환되거나, 아미노산 서열 위치 503 번의 트립토판이 트립토판 이외의 다른 아미노산으로 치환되거나, 또는 아미노산 서열 위치 96 번의 쓰레오닌 및 503 번의 트립토판 모두가 다른 아미노산으로 치환된, 아세토하이드록시산 신타아제 변이체.
  2. 제1항에 있어서, 상기 IlvB 단백질은 서열번호 1로 기재되는 아미노산 서열을 가지는, 아세토하이드록시산 신타아제 변이체.
  3. 제1항에 있어서, 상기 96 번째 쓰레오닌이 세린(serine), 시스테인(cysteine) 또는 알라닌(alanine)으로 치환된, 아세토하이드록시산 신타아제 변이체.
  4. 제1항에 있어서, 상기 503 번째 트립토판이 글루타민(glutamine), 아스파라긴(asparagine), 또는 류신(leucine)으로 치환된, 아세토하이드록시산 신타아제 변이체.
  5. 제1항에 있어서, 상기 아세토하이드록시산 신타아제 변이체는 서열번호 28 내지 서열번호 33 중 어느 하나로 기재되는 아미노산 서열을 가지는, 아세토하이드록시산 신타아제 변이체.
  6. 제1항 내지 제5항 중 어느 한 항의 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오타이드.
  7. 제1항 내지 제5항 중 어느 한 항의 아세토하이드록시산 신타아제 변이체를 코딩하는 폴리뉴클레오타이드를 포함하는 벡터.
  8. 제7항의 벡터가 도입된 형질전환체.
  9. 제1항 내지 제5항 중 어느 한 항의 아세토하이드록시산 신타아제 변이체를 포함하거나, 제7항의 벡터가 도입된, L-분지쇄 아미노산을 생산하는 미생물.
  10. 제9항에 있어서, 상기 미생물은 코리네박테리움 속(Corynebacterium sp.)인, L-분지쇄 아미노산을 생산하는 미생물.
  11. 제10항에 있어서, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum)인, L-분지쇄 아미노산을 생산하는 미생물.
  12. 제9항에 있어서, 상기 L-분지쇄 아미노산은 L-발린, 또는 L-류신인, L-분지쇄 아미노산을 생산하는 미생물.
  13. (a) 제9항 내지 제12항 중 어느 한 항의 L- 분지쇄 아미노산을 생산하는 미생물을 배지에서 배양하는 단계; 및
    (b) 상기 (a) 단계의 미생물 또는 배지로부터 L-분지쇄 아미노산을 회수하는 단계를 포함하는, L-분지쇄 아미노산 생산 방법.
  14. 제13항에 있어서, 상기 L-분지쇄 아미노산은 L-발린, 또는 L-류신인, L-분지쇄 아미노산 생산 방법.
PCT/KR2018/007821 2017-07-11 2018-07-10 아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 l-분지쇄 아미노산 생산 방법 WO2019013532A2 (ko)

Priority Applications (15)

Application Number Priority Date Filing Date Title
CA3064569A CA3064569C (en) 2017-07-11 2018-07-10 Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing l-branched-chain amino acid using the same
US16/479,813 US10844359B2 (en) 2017-07-11 2018-07-10 Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing L-branched-chain amino acid using the same
JP2019538131A JP6794555B2 (ja) 2017-07-11 2018-07-10 アセトヒドロキシ酸シンターゼ変異体、これを含む微生物、またはこれを用いるl−分岐鎖アミノ酸の生産方法
BR112019020183-1A BR112019020183B1 (pt) 2017-07-11 2018-07-10 Variante de aceto-hidroxiácido sintase, micro-organismo que compreende a mesma e método de produção de aminoácido de cadeia ramificada l com o uso da mesma
MX2019015056A MX2019015056A (es) 2017-07-11 2018-07-10 Variante de acetohidroxiacido sintasa, microorganismo que comprende la misma, y procedimiento de produccion de aminoacidos de cadena l-ramificada mediante el uso del mismo.
EP18832634.2A EP3553171B1 (en) 2017-07-11 2018-07-10 Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing l-branched-chain amino acid using the same
RU2019138301A RU2743964C1 (ru) 2017-07-11 2018-07-10 Вариант синтазы ацетогидроксикислот, микроорганизм, содержащий этот вариант, и способ получения L-аминокислоты с разветвленной цепью с использованием данного микроорганизма
CN201880015829.5A CN110506112B (zh) 2017-07-11 2018-07-10 乙酰羟酸合酶变体、包含其的微生物和用其生产l-支链氨基酸的方法
ES18832634T ES2919345T3 (es) 2017-07-11 2018-07-10 Variante de la acetohidroxiácido sintasa, microorganismo que comprende la misma, y método para producir L-aminoácidos de cadena ramificada mediante el uso del mismo
AU2018301879A AU2018301879B2 (en) 2017-07-11 2018-07-10 Acetohydroxy Acid Synthase Variant, Microorganism Comprising The Same, And Method Of Producing L-Branched-Chain Amino Acid Using The Same
US16/692,558 US11021697B2 (en) 2017-07-11 2019-11-22 Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing L-branched-chain amino acid using the same
ZA2019/08353A ZA201908353B (en) 2017-07-11 2019-12-13 Acetohydroxy acid synthase mutant and method for producing microorganism comprising same or l-branched chain amino acid using same
US17/076,057 US11085029B2 (en) 2017-07-11 2020-10-21 Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing L-branched-chain amino acid using the same
US17/225,756 US11248220B2 (en) 2017-07-11 2021-04-08 Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing l-branched-chain amino acid using the same
US17/357,196 US11345901B2 (en) 2017-07-11 2021-06-24 Acetohydroxy acid synthase variant and a microorganism comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0087978 2017-07-11
KR1020170087978A KR101996129B1 (ko) 2017-07-11 2017-07-11 아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 l-분지쇄 아미노산 생산 방법

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/479,813 A-371-Of-International US10844359B2 (en) 2017-07-11 2018-07-10 Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing L-branched-chain amino acid using the same
US16/692,558 Continuation US11021697B2 (en) 2017-07-11 2019-11-22 Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing L-branched-chain amino acid using the same
US17/076,057 Division US11085029B2 (en) 2017-07-11 2020-10-21 Acetohydroxy acid synthase variant, microorganism comprising the same, and method of producing L-branched-chain amino acid using the same

Publications (2)

Publication Number Publication Date
WO2019013532A2 true WO2019013532A2 (ko) 2019-01-17
WO2019013532A3 WO2019013532A3 (ko) 2019-04-04

Family

ID=65002267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007821 WO2019013532A2 (ko) 2017-07-11 2018-07-10 아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 l-분지쇄 아미노산 생산 방법

Country Status (13)

Country Link
US (3) US10844359B2 (ko)
EP (1) EP3553171B1 (ko)
JP (1) JP6794555B2 (ko)
KR (1) KR101996129B1 (ko)
CN (2) CN110724679B (ko)
AU (1) AU2018301879B2 (ko)
BR (1) BR112019020183B1 (ko)
CA (1) CA3064569C (ko)
ES (1) ES2919345T3 (ko)
MX (1) MX2019015056A (ko)
RU (1) RU2743964C1 (ko)
WO (1) WO2019013532A2 (ko)
ZA (1) ZA201908353B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023503218A (ja) * 2019-11-22 2023-01-27 シージェイ チェイルジェダン コーポレーション アセトヒドロキシ酸シンターゼ新規変異体及びこれを含む微生物

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112195204B (zh) * 2020-10-21 2022-04-15 通辽梅花生物科技有限公司 一种混菌发酵生产支链氨基酸的方法
KR102619598B1 (ko) * 2021-08-23 2023-12-29 씨제이제일제당 주식회사 신규한 아세토하이드록시산 신타아제 소단위체 변이체 및 이를 이용한 l-발린 생산 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080245610A1 (en) 2005-09-12 2008-10-09 Sang-Ik Lee Personal Emergency Rescue Belt
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
KR101117022B1 (ko) 2011-08-16 2012-03-16 씨제이제일제당 (주) L-발린 생산능이 향상된 미생물 및 이를 이용한 l-발린 제조방법
US20140335574A1 (en) 2006-09-13 2014-11-13 Ajinomoto Co., Inc. Mutant Acetolactate Synthase and a Method for Producing Branched-Chain L-Amino Acids
KR20150119785A (ko) 2014-04-15 2015-10-26 삼성전자주식회사 라이프 로그 서비스 제공 시스템 및 그 서비스 방법
KR20170024653A (ko) 2015-08-25 2017-03-08 씨제이제일제당 (주) L-류신 생산능을 가지는 미생물 및 이를 이용한 l-류신의 제조방법

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9604993B1 (pt) * 1995-04-20 2009-05-05 dna mutante codificando uma proteìna ahas mutante de sìntese de ácido acetohidróxi e proteìnas ahas mutantes.
MXPA02001174A (es) * 1999-08-02 2002-07-30 Archer Daniels Midland Co Ingenieria metabolica de la produccion de aminoacidos.
JP4623825B2 (ja) 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
EP1491634A1 (en) 2003-06-26 2004-12-29 Degussa AG Feedback resistant acetohydroxy acid synthetase mutants
WO2007149069A2 (en) 2006-06-15 2007-12-27 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Resistance to acetolactate synthase-inhibiting herbicides
BR122018070228B1 (pt) 2007-10-05 2023-01-10 Cibus Europe B.V. Método para produção de planta brassica resistente à herbicida
KR101512432B1 (ko) * 2010-06-15 2015-04-16 백광산업 주식회사 미생물을 이용한 아스파테이트 계열 아미노산의 생산방법
CN102286505B (zh) * 2011-05-26 2013-04-03 江南大学 用于发酵生产l-缬氨酸的重组dna、菌株及方法
WO2013027709A1 (ja) 2011-08-22 2013-02-28 公益財団法人地球環境産業技術研究機構 コリネ型細菌形質転換体及びそれを用いるバリンの製造方法
KR101721722B1 (ko) 2013-03-11 2017-04-10 씨제이제일제당 (주) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
EP2811028B1 (de) 2013-06-03 2017-02-01 Evonik Degussa GmbH Verfahren zur Herstellung von L-Valin unter Verwendung rekombinanter Corynebakterien enthaltend das durch Propionat induzierbare ilvBN-Operon
KR101720836B1 (ko) * 2014-08-05 2017-04-03 씨제이제일제당 (주) 피드백 저항성 아세토하이드록시산 신타아제 변이체 및 이를 이용한 l-발린의 생산방법
CN106754807B (zh) 2016-12-29 2020-10-30 廊坊梅花生物技术开发有限公司 生产l-亮氨酸菌株和生产l-亮氨酸的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080245610A1 (en) 2005-09-12 2008-10-09 Sang-Ik Lee Personal Emergency Rescue Belt
US20140335574A1 (en) 2006-09-13 2014-11-13 Ajinomoto Co., Inc. Mutant Acetolactate Synthase and a Method for Producing Branched-Chain L-Amino Acids
KR100924065B1 (ko) 2006-09-15 2009-10-27 씨제이제일제당 (주) L-라이신 생산능이 향상된 코리네박테리아 및 그를 이용한 l-라이신 생산 방법
KR101117022B1 (ko) 2011-08-16 2012-03-16 씨제이제일제당 (주) L-발린 생산능이 향상된 미생물 및 이를 이용한 l-발린 제조방법
KR20150119785A (ko) 2014-04-15 2015-10-26 삼성전자주식회사 라이프 로그 서비스 제공 시스템 및 그 서비스 방법
KR20170024653A (ko) 2015-08-25 2017-03-08 씨제이제일제당 (주) L-류신 생산능을 가지는 미생물 및 이를 이용한 l-류신의 제조방법

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
"Atlas Of Protein Sequence And Structure", 1979, NATIONAL BIOMEDICAL RESEARCH FOUNDATION, pages: 353 - 358
"Guide to Huge Computers", 1994, ACADEMIC PRESS
"Manual of Methods for General Bacteriology", 1981, AMERICAN SOCIETY FOR BACTERIOLOGY
APPL. MICROBIOL. BIOTHCENOL., vol. 52, 1999, pages 541 - 545
ATSCHUL, [S.] [F. ET AL., JMOLEC BIOL, vol. 215, 1990, pages 403
CARILLO, SIAM J APPLIED MATH, vol. 48, 1988, pages 1073
DEVEREUX, J. ET AL., NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 387
GRIBSKOV ET AL., NUCL. ACIDS RES., vol. 14, 1986, pages 6745
J. BIOL. CHEM., vol. 176, 1948, pages 367 - 388
NEEDLEMAN ET AL., J MOL BIOL, vol. 48, 1970, pages 443
NEEDLEMANWUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 - 453
PEARSON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444
PROTEIN EXPR PURIF, vol. 109, May 2015 (2015-05-01), pages 106 - 12
RICE ET AL.: "EMBOSS: The European Molecular Biology Open Software Suite", TRENDS GENET, vol. 16, 2000, pages 276 - 277, XP004200114, doi:10.1016/S0168-9525(00)02024-2
See also references of EP3553171A4
SMITHWATERMAN, ADV. APPL. MATH, vol. 2, 1981, pages 482

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023503218A (ja) * 2019-11-22 2023-01-27 シージェイ チェイルジェダン コーポレーション アセトヒドロキシ酸シンターゼ新規変異体及びこれを含む微生物
JP7470187B2 (ja) 2019-11-22 2024-04-17 シージェイ チェイルジェダン コーポレーション アセトヒドロキシ酸シンターゼ新規変異体及びこれを含む微生物

Also Published As

Publication number Publication date
CN110506112B (zh) 2021-06-08
EP3553171A2 (en) 2019-10-16
MX2019015056A (es) 2020-08-03
US10844359B2 (en) 2020-11-24
US20210324349A1 (en) 2021-10-21
ZA201908353B (en) 2021-04-28
US11085029B2 (en) 2021-08-10
JP6794555B2 (ja) 2020-12-02
BR112019020183B1 (pt) 2023-03-21
BR112019020183A2 (pt) 2020-06-02
CA3064569A1 (en) 2019-01-17
AU2018301879A1 (en) 2020-01-16
KR101996129B1 (ko) 2019-07-04
US20210040457A1 (en) 2021-02-11
AU2018301879B2 (en) 2022-02-17
WO2019013532A3 (ko) 2019-04-04
EP3553171B1 (en) 2022-05-04
CA3064569C (en) 2023-03-14
CN110724679A (zh) 2020-01-24
CN110724679B (zh) 2022-01-11
CN110506112A (zh) 2019-11-26
US11345901B2 (en) 2022-05-31
RU2743964C1 (ru) 2021-03-01
EP3553171A4 (en) 2020-05-13
US20200263149A1 (en) 2020-08-20
JP2020505023A (ja) 2020-02-20
ES2919345T3 (es) 2022-07-26
KR20190007142A (ko) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2019147078A1 (ko) 퓨린 뉴클레오티드를 생산하는 코리네박테리움 속 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2020027362A1 (ko) 신규 아데닐로석시네이트 신세타아제 및 이를 이용한 퓨린 뉴클레오티드 생산방법
WO2019160301A1 (ko) 시트레이트 신타아제의 활성이 약화된 변이형 폴리펩타이드 및 이를 이용한 l-아미노산 생산방법
WO2019190192A1 (ko) 신규한 프로모터 및 이를 이용한 l-아미노산 생산 방법
WO2019117673A2 (ko) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
WO2020130236A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2015199396A1 (ko) O-아세틸 호모세린을 생산하는 미생물 및 상기 미생물을 이용하여 o-아세틸 호모세린을 생산하는 방법
WO2021167414A1 (ko) 퓨린 뉴클레오티드를 생산하는 미생물 및 이를 이용한 퓨린 뉴클레오티드의 생산방법
WO2014148743A1 (ko) 퓨트레신 생산 재조합 미생물 및 이를 이용한 퓨트레신 생산방법
WO2019231159A1 (ko) 변이형 호모세린 디하이드로게나제 및 이를 이용한 호모세린 또는 호모세린 유래 l-아미노산의 생산 방법
WO2019135639A1 (ko) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
WO2019147059A1 (ko) L-아미노산을 생산하는 코리네박테리움 속 미생물 및 이를 이용한 l-아미노산의 생산방법
WO2016148490A1 (ko) 피루브산 디하이드로게나아제 변이체, 이를 포함하는 미생물 및 이를 이용한 l-아미노산 생산 방법
WO2016208854A1 (ko) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2019013532A2 (ko) 아세토하이드록시산 신타아제 변이체, 이를 포함하는 미생물 또는 이를 이용하는 l-분지쇄 아미노산 생산 방법
WO2018230977A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2021060696A1 (ko) 디하이드로디피콜린산 리덕타제 변이형 폴리펩티드 및 이를 이용한 l-쓰레오닌 생산방법
WO2020196993A1 (ko) 변이형 포스포리보실피로포스페이트 아미도트랜스퍼라아제 및 이를 이용한 퓨린 뉴클레오티드 제조방법
WO2018230978A1 (ko) 신규 폴리펩타이드 및 이를 이용한 오르니틴계 산물 생산방법
WO2022050671A1 (ko) L-발린 생산 미생물 및 이를 이용한 l-발린 생산 방법
WO2021177731A1 (ko) 글루타민 신테타아제 변이형 폴리펩티드 및 이를 이용한 l-글루타민 생산 방법
WO2019004779A2 (ko) 신규한 o-숙시닐 호모세린 트랜스퍼라제 변이체 및 이를 이용한 o-숙시닐 호모세린의 제조방법
WO2020256415A1 (ko) L-타이로신을 생산하는 미생물 및 이를 이용한 l-타이로신 생산 방법
WO2021045472A1 (ko) 신규한 프로모터 및 이를 이용한 목적 물질 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832634

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2019538131

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018832634

Country of ref document: EP

Effective date: 20190711

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019020183

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3064569

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018301879

Country of ref document: AU

Date of ref document: 20180710

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019020183

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190926