WO2019009332A1 - 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法 - Google Patents
非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法 Download PDFInfo
- Publication number
- WO2019009332A1 WO2019009332A1 PCT/JP2018/025388 JP2018025388W WO2019009332A1 WO 2019009332 A1 WO2019009332 A1 WO 2019009332A1 JP 2018025388 W JP2018025388 W JP 2018025388W WO 2019009332 A1 WO2019009332 A1 WO 2019009332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbonaceous material
- electrolyte secondary
- aqueous electrolyte
- temperature
- negative electrode
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/78—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/14—Pore volume
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a carbonaceous material suitable for a negative electrode active material of a non-aqueous electrolyte secondary battery, a negative electrode for a non-aqueous electrolyte secondary battery containing the carbonaceous material, a non-aqueous electrolyte secondary battery having the negative electrode and the carbonaceous material It relates to a method of manufacturing a material.
- Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries have a high energy density and excellent output characteristics, and thus are widely used in small portable devices such as mobile phones and notebook computers.
- application to vehicle applications such as hybrid vehicles and electric vehicles has also been promoted.
- Nitrogen-containing non-graphitizable carbon capable of doping (charging) and de-doping (discharging) of lithium in an amount exceeding the theoretical capacity of 372 mAh / g of graphite as a negative electrode material of a lithium ion secondary battery has been developed (eg, patent Documents 1, 2 and 3) have been used.
- the nitrogen-containing non-graphitizable carbon can be obtained, for example, by heat treatment using a phenol resin as a carbon source and an amine as a nitrogen source, or using a resin having an amine group such as an aniline resin as a carbon source.
- a step of fixing the nitrogen element is required to increase the nitrogen element content, and the productivity is poor as well as the productivity is lowered.
- the process also tends to increase the oxygen and hydrogen element content.
- the nitrogen element in the carbon material is a lithium ion storage site, and has a smaller adsorption / desorption energy as compared with the case where lithium ions are stored in a carbon layer or a space between carbon crystals or in a defect portion, so There is a tendency for movement to be performed efficiently, leading to low resistance.
- the present invention relates to a non-aqueous electrolyte secondary battery (for example, lithium ion secondary battery, sodium ion secondary battery, lithium sulfur battery, lithium air) having high charge and discharge capacity, and preferably high charge and discharge efficiency and low resistance. It is an object of the present invention to provide a carbonaceous material suitable for a negative electrode active material of a battery), a negative electrode containing the carbonaceous material, a non-aqueous electrolyte secondary battery having the negative electrode, and a method of producing the carbonaceous material.
- a non-aqueous electrolyte secondary battery for example, lithium ion secondary battery, sodium ion secondary battery, lithium sulfur battery, lithium air
- the method for producing a carbonaceous material according to any one of [1] to [7], comprising the step of heat treating with 5 g of carbide at a flow rate of 0.5 to 5.0 L / min with an inert gas at a temperature of .
- the non-aqueous electrolyte secondary battery using the negative electrode containing the carbonaceous material of the present invention has high charge and discharge capacity, and preferably high charge and discharge efficiency and low resistance.
- the content of the nitrogen element determined by elemental analysis is 3.5% by mass or more. If the content of the nitrogen element in the carbonaceous material is less than 3.5% by mass, the sites for adsorbing and desorbing lithium ions during charge and discharge tend to decrease, and the charge and discharge capacity tends to decrease. From the viewpoint of expressing a sufficient discharge capacity, the content of nitrogen element in the carbonaceous material of the present invention is preferably 3.55% by mass or more, more preferably 3.65% by mass or more, and further preferably It is 3.75 mass% or more, more preferably 3.85 mass% or more.
- nitrogen not incorporated into the carbon skeleton is expected to be present as a surface functional group such as, for example, -NH 2 group, and may be generated during charge and discharge when the amount of such surface functional group is large. Irreversible side reactions can not be suppressed, the discharge capacity is reduced, and the charge and discharge efficiency is reduced.
- the method of adjusting the nitrogen element content to the above range is not limited, for example, the saccharide is mixed with a substance capable of generating ammonia gas, and the temperature is raised at 100 ° C./hour or more in an inert gas atmosphere.
- a heat treatment can be used at a temperature of 500 to 1200 ° C., with an inert gas flow rate of 0.5 to 5.0 L / min for 5 g of saccharide.
- the inert gas flow rate is increased or the temperature raising rate is decreased too much, the nitrogen element in the carbonaceous material is easily desorbed, and the amount of nitrogen element in the obtained carbonaceous material is reduced. It is preferable to adjust the flow rate of the active gas, the heating rate, and the temperature of the heat treatment.
- the content of the nitrogen element is in the above range, an effect is also obtained that the value of impedance after carrying out charge / discharge a plurality of times (for example, 2 times, 3 times, 5 times or more) is small.
- the content of hydrogen element determined by elemental analysis is preferably 0.50% by mass or less, more preferably 0.40% by mass or less, and still more preferably 0.35% by mass It is below. It is preferable that the content of the hydrogen element in the carbonaceous material is less than or equal to the above upper limit from the viewpoint of reducing the edge portion of carbon, expanding the carbon plane, and facilitating the movement of electrons.
- the content of hydrogen element in the carbonaceous material of the present invention is preferably 0.10 mass% or more, more preferably 0.15 mass% or more, from the viewpoint of facilitating adsorption and desorption of lithium ions.
- the details of the measurement of the hydrogen element content are as described later, and are measured by an elemental analysis method (inert gas dissolution method).
- an elemental analysis method inert gas dissolution method.
- the method of adjusting the hydrogen element content to the above range is not limited, for example, the saccharide is mixed with a substance capable of generating ammonia gas, and the temperature is raised at 100 ° C./hour or more in an inert gas atmosphere.
- a heat treatment can be used at a temperature of 500 to 1200 ° C., with an inert gas flow rate of 0.5 to 5.0 L / min for 5 g of saccharide.
- the content of the oxygen element in the carbonaceous material of the present invention is preferably 3.0% by mass or less, from the viewpoint of suppressing irreversible side reactions during charge and discharge and easily enhancing the discharge capacity and the charge and discharge efficiency. More preferably, it is 2.75 mass% or less, More preferably, it is 2.50 mass% or less. In addition, in the case where higher discharge capacity and charge / discharge efficiency are required, the content of the oxygen element in the carbonaceous material of the present invention is preferably 1.5 mass% or less. The details of the measurement of the oxygen element content are as described later, and are measured by an elemental analysis method (inert gas dissolution method).
- the carbon interplanar spacing (d 002 ) calculated by the Bragg equation from the peak position (diffraction angle 2 ⁇ ) observed by powder X-ray diffraction method is 3.70 ⁇ or more.
- d 002 is about 3.35 to 3.40 ⁇ when the carbon planes are closest to each other like graphite, and when it exceeds 4.00 ⁇ , the carbon planes can not interact with each other, and the layer structure can not be maintained.
- the carbonaceous material of the present invention is preferably as wide as d 002 does not exceed 4.00 ⁇ from the viewpoint that lithium ions can efficiently move.
- the value of the half width of the peak in the vicinity of 1650 cm ⁇ 1 of the Raman spectrum observed by laser Raman spectroscopy be in a range exceeding 100 cm ⁇ 1 .
- the peak in the vicinity of 1650 cm -1 is a Raman peak generally referred to as a G band, which is a peak due to the disturbance / defect of the graphite structure.
- the peak near 1650 cm -1 is usually observed in the range of 90 cm -1 to 120 cm -1 , preferably in the range of 100 cm -1 to 110 cm -1 .
- the full width at half maximum of these peaks is related to the amount of disorder / defect of the graphite structure contained in the carbonaceous material. Such structural disorder can be caused by introducing nitrogen element into the carbon skeleton. If the full width at half maximum of the Raman peak in the D band is 250 cm -1 or less, structural development proceeds too much, and there is a tendency that lithium ions can not efficiently enter and exit due to the development of the graphite structure. Therefore, problems such as an increase in resistance may occur. From the viewpoint of easily reducing the resistance, the half-width of the peak near 1360 cm -1 is preferably in the range exceeding 250 cm -1 , more preferably 260 m -1 or more, and still more preferably 270 cm -1 or more.
- the half width is larger than 300 cm -1 , it is difficult to maintain the graphite structure contained in the carbonaceous material, the amount of amorphous is increased, and the sites capable of storing lithium tend to be reduced. Therefore, the storage amount of lithium ions may be reduced, and the discharge capacity may be reduced.
- the half-width of the peak near 1360 cm ⁇ 1 is preferably 300 cm ⁇ 1 or less.
- the half width of the Raman peak in the G band is 100 cm -1 or less, structural development proceeds too much, and lithium ions can not efficiently enter and exit due to the development of the graphite structure. Therefore, problems such as an increase in resistance may occur.
- the half width of the peak near 1650 cm -1 is preferably more than 100 cm -1 , more preferably 102 cm -1 or more, still more preferably 105 cm -1 or more, and usually 115 cm 1 It is at most -1 , preferably at most 110 cm -1 , more preferably at most 107 cm -1 .
- the measurement of the Raman spectrum is performed using a Raman spectrometer (for example, a Raman spectrometer “LabRAM ARAMIS (VIS)” manufactured by Horiba, Ltd.).
- a Raman spectrometer for example, a Raman spectrometer “LabRAM ARAMIS (VIS)” manufactured by Horiba, Ltd.
- the particle to be measured is set on the observation stage stage, the magnification of the objective lens is set to 100 times, focusing is performed, and argon ion laser light of 532 nm is irradiated in the measurement cell, exposure time 1
- the measurement is performed by setting the measurement range to 50-2000 cm -1 in seconds, the number of times of integration 100 times.
- How to adjust 1360cm half width and 1650 cm -1 near half-value width of the peak of the peak in the vicinity of -1 in the range above is not limited in any way, for example, sugars, and with materials capable of generating ammonia gas, Using a method of heating at 100 ° C./hour or more in an inert gas atmosphere and performing heat treatment at a temperature of 500 to 1200 ° C. with an inert gas flow rate of 0.5 to 5.0 L / min for 5 g of saccharides Can.
- the specific surface area as determined by nitrogen adsorption BET method of the carbonaceous material of the present invention will become electrolytic solution easily penetrates, from easy viewpoint of lowering the resistance of the battery, preferably 100 m 2 / g or more, more preferably 150 meters 2 / It is at least g, more preferably at least 200 m 2 / g.
- the specific surface area of the carbonaceous material is at least the above lower limit, there is also obtained an effect that the value of impedance after carrying out charge / discharge several times (for example, twice, three times, five times or more) is small.
- the above-mentioned specific surface area reduces the hygroscopicity of the carbonaceous material and suppresses the generation of an acid or gas involved in the hydrolysis of the electrolytic solution or water due to the water present in the carbonaceous material, air, and the carbonaceous material From the viewpoint of suppressing the oxidation of the carbonaceous material itself by reducing the contact area of the above, it is preferably 400 m 2 / g or less, more preferably 350 m 2 / g or less, still more preferably 300 m 2 / g or less.
- the details of the measurement of the specific surface area by the nitrogen adsorption BET method are as described later.
- the specific surface area determined by the nitrogen adsorption BET method of the carbonaceous material of the present invention further reduces the hygroscopicity of the carbonaceous material, and the acid and the acid accompanying the hydrolysis of the electrolyte and water due to the water present in the carbonaceous material 70 m 2 / g or less when it is required to suppress the generation of gas, or when it is required to suppress the oxidation of the carbonaceous material itself by reducing the contact area between air and the carbonaceous material Is preferably 60 m 2 / g or less, more preferably 40 m 2 / g or less, still more preferably 30 m 2 / g or less, and 20 m 2 / g or less Is particularly preferred, and most preferably 12 m 2 / g or less.
- the method of adjusting the specific surface area to the above range is not limited, for example, the saccharide is mixed with a substance capable of generating ammonia gas, and the temperature is raised at 100 ° C./hour or more in an inert gas atmosphere. It is possible to use a method of heat treatment at a temperature of ⁇ 1200 ° C. with an inert gas flow rate of 0.5 ⁇ 5.0 L / min for 5 g of saccharide.
- the mesopore volume calculated by the DFT method is preferably 0.01 mL / g or more, more preferably 0. More preferably, from the viewpoint of easy penetration of the electrolyte and reduction of battery resistance. It is 02 mL / g or more. It is preferable that the mesopore volume is equal to or more than the above lower limit, since pore blockage due to decomposition products generated during repetitive charge and discharge can be suppressed, and an increase in resistance can be easily avoided. In addition, from the viewpoint of suppressing a decrease in bulk density and increasing the electrode density, the mesopore volume is preferably 0.07 mL / g or less, more preferably 0.06 mL / g or less, and 0. More preferably, it is at most 05 mL / g. In the present specification, mesopores are pores having a pore diameter (pore diameter) of 2 nm or more and 50 nm or less in the DFT method.
- the mesopore volume calculated by the DFT method is preferably 0.02 mL / g or less, more preferably 0.01 mL / g or less.
- the micropore volume calculated by the DFT method is preferably 0.03 mL / g or more, more preferably 0.04 mL, from the viewpoint of easily causing adsorption and desorption of Li ions. / G or more, more preferably 0.05 mL / g or more.
- the micropore volume is preferably 0.15 mL / g or less, and preferably 0.12 mL / g or less, from the viewpoint of easily suppressing the reaction between the carbonaceous material and the moisture generated during charge and discharge due to adsorption of the moisture and the like. And more preferably 0.10 mL / g or less.
- micropores are pores having a pore size (pore diameter) of less than 2 nm in the DFT method.
- the micropore volume calculated by the DFT method is 0 It is preferably not more than .03 mL / g, and more preferably not more than 0.01 mL / g.
- micropore volume / mesopore volume can be calculated by applying the DFT method to the nitrogen adsorption / desorption isotherm measured by the nitrogen adsorption method.
- the sum of micropore volume and mesopore volume (calculated by the formula of mesopore volume + micropore volume, calculated by the above-mentioned method, respectively, and hereinafter “mesopore volume + micropore volume
- the method of adjusting the mesopore volume and the micropore volume, and the mesopore volume + micropore volume to the above range but, for example, saccharides are mixed with a substance capable of generating ammonia gas to be inactive
- the temperature can be raised at 100 ° C./hour or more in a gas atmosphere, and heat treatment can be performed at a temperature of 500 to 1200 ° C. with an inert gas flow rate of 0.5 to 5.0 L / min for 5 g of saccharides. .
- the mesopore volume + micropore volume calculated by the above method is respectively 0.07 mL / g It is preferable that it is the following, It is more preferable that it is 0.05 mL / g or less, It is more preferable that it is 0.03 mL / g or less. In this case, the lower limit of the above-mentioned mesopore volume + micropore volume is, for example, 0.001 mL / g or more.
- the temperature is raised at 100 ° C./hour or more in a gas atmosphere, and heat treatment is performed at a first predetermined temperature between 500 and 1000 ° C., with an inert gas flow rate of 0.5 to 5.0 L / min.
- the temperature of the obtained carbide is raised at 100 ° C./hour or more in an inert gas atmosphere, and the inert gas flow rate is 0.5 to 5 g with 5 g of saccharide at a second predetermined temperature between 800 and 1400 ° C.
- a heat treatment method may be used at 5.0 L / min.
- the average particle size (D 50 ) of the carbonaceous material of the present invention is preferably 2 to 30 ⁇ m from the viewpoint of coatability at the time of electrode production. It is preferable that the average particle size is equal to or more than the above lower limit because it is easy to suppress an increase in specific surface area due to the fine powder in the carbonaceous material and an increase in reactivity with the electrolytic solution and to suppress an increase in irreversible capacity. Moreover, when manufacturing a negative electrode using the obtained carbonaceous material, the space
- the average particle size (D 50 ) of the carbonaceous material of the present invention is more preferably 3 ⁇ m or more, still more preferably 4 ⁇ m or more, particularly preferably 5 ⁇ m or more, and most preferably 7 ⁇ m or more.
- the average particle size is not more than the above upper limit, because the free diffusion process of lithium ions in the particles is small and rapid charge and discharge can be easily obtained.
- the average particle size is more preferably 20 ⁇ m or less, still more preferably 18 ⁇ m or less, particularly preferably 16 ⁇ m or less, and most preferably 15 ⁇ m or less.
- D 50 is a particle size at which the cumulative volume is 50%, and for example, the particle size distribution is measured by a laser scattering method using a particle size / particle size distribution measuring apparatus ("Microtrack MT3300EXII" manufactured by Microtrac Bell Inc.) It can be determined by
- the present invention also provides a negative electrode active material or a conductive material of a non-aqueous electrolyte secondary battery (for example, lithium ion secondary battery, sodium ion secondary battery, lithium sulfur battery, lithium air battery) having high charge and discharge capacity and low resistance.
- a method of producing a carbonaceous material suitable for The manufacturing method comprises the following steps: (1) mixing saccharides with a substance capable of generating ammonia gas; (2) raising the temperature of the obtained mixture to a predetermined temperature between 500 and 1200 ° C. at a temperature rising rate of 100 ° C./hour or more in an inert gas atmosphere, and (3) a temperature of 500 to 1200 ° C.
- the carbonaceous material of the present invention can be obtained by a conventional method such as grinding carbides with a ball mill or jet mill.
- the present invention in the case where it is required to further reduce the irreversible capacity by suppressing side reactions in the charge / discharge process, the present invention comprises the following steps: (1) mixing saccharides with a substance capable of generating ammonia gas; (2A) raising the temperature of the obtained mixture to a first predetermined temperature between 500 and 1000 ° C.
- the method for producing the above-mentioned carbonaceous material includes the step of heat treating with 5 g of the carbide with an inert gas at a flow rate of 0.5 to 5.0 L / min.
- the saccharides used as the raw material are not particularly limited.
- monosaccharides such as glucose, galactose, mannose, fructose, ribose and glucosamine
- disaccharides such as sucrose, trehalose, maltose, cellobiose, maltitol, lactobionic acid and lactosamine
- starch glycogen, agarose, pectin, cellulose, chitin
- polysaccharides such as chitosan
- These saccharides can be used alone or in combination of two or more.
- glucose is preferred because it is readily available in large quantities.
- carbonaceous materials derived from saccharides can be obtained.
- the mixing method of the saccharide and the substance capable of generating ammonia gas is not particularly limited, but dry or wet mixing can be used.
- sugars can be dissolved in a solvent to prepare a solution, and then mixing can be performed by adding a substance capable of generating ammonia gas to the solution.
- mixing may be performed by spraying the solution on a substance capable of generating ammonia gas (spray spraying, etc.).
- saccharides may be added to a solution prepared by dissolving a substance capable of generating ammonia gas in a solvent, and mixing may be performed. After mixing, the solvent may be evaporated if necessary. By such treatment, it is possible to obtain a mixture of sugar and a substance that generates ammonia gas.
- the temperature of the heat treatment may be a temperature at which the thermal decomposition of a substance capable of generating ammonia gas does not occur or a temperature at which the thermal decomposition of saccharides does not occur, and varies depending on the type of solvent, preferably 40 to 150 ° C.
- the temperature is preferably 50 to 120 ° C., more preferably 60 to 100 ° C.
- the amount (addition amount) of the substance capable of generating ammonia gas to be mixed with the saccharide is preferably 0.5 molar equivalent or more, more preferably 0.7 molar equivalent or more, still more preferably with respect to the mass of the resulting mixture. It is 0.9 molar equivalent or more, particularly preferably 1.0 molar equivalent or more, preferably 5.0 molar equivalent or less, more preferably 4.0 molar equivalent or less, further preferably 3.5 molar equivalent or less. It is preferable that the amount of the substance capable of generating ammonia gas to be mixed is the above lower limit or more, since the nitrogen element is efficiently taken in the obtained carbonaceous material.
- the non-aqueous electrolyte secondary battery exhibits high charge and discharge capacity, and can easily exhibit low resistance.
- the mixture obtained from the step (1) of mixing saccharides with a substance capable of generating ammonia gas is heated and fired [step (2) and step (3)].
- a carbide is obtained.
- the mixture obtained from step (1) is heated to a temperature between 500 and 1200 ° C., preferably 600 to 1150 ° C., more preferably 700 to 1100 ° C., still more preferably 800 to 1100 ° C.
- Heat treatment with an inert gas having a flow rate of 0.5 to 5.0 L / min, preferably a flow rate of 0.6 to 4.0 L / min, more preferably a flow rate of 0.7 to 3.0 L / min, based on 5 g of saccharides
- the inert gas include nitrogen gas.
- the mixture obtained from the step (1) of mixing saccharides with a substance capable of generating ammonia gas is suitably 100 ° C./hour or more, preferably 100 in an inert gas atmosphere such as nitrogen gas.
- the temperature is further preferably raised to a predetermined temperature between 800 and 1100 ° C. [Step (2)].
- the temperature rise in step (2) is carried out in an inert gas atmosphere, but the flow rate is 0.5 to 5.0 L / min, preferably 0.6 to 4.0 L / min, more preferably 5 g of saccharides.
- the heat treatment may be performed with an inert gas at a flow rate of 0.7 to 3.0 L / min.
- Step (3A) Heat-treated with an inert gas at a flow rate of 0.7 to 3.0 L / min to obtain a carbide [Step (3A)], followed by Step (2B) at 800 to 1400 ° C., preferably 840 to 1300 ° C.
- the flow rate is preferably 0.5 to 5.0 L / min, preferably 0.6 to 4.0 L / min, for 5 g of saccharide at a temperature of preferably 880 to 1200 ° C., more preferably 920 to 1100 ° C.
- Preferred Ku obtain carbide by heat treatment at a flow rate 0.7 ⁇ 3.0 L / min of an inert gas [step (3B)].
- the negative electrode of the present invention is obtained by adding a binder (binder) to the carbonaceous material of the present invention, adding an appropriate amount of solvent and kneading it to form an electrode mixture, and then applying it to a current collector plate made of metal plate etc. After drying, it can be manufactured by pressure molding.
- a binder binder
- an electrode (negative electrode) having high conductivity can be produced without the addition of a conductive additive.
- a conductive aid can be added at the time of preparation of the electrode mixture, if necessary, for the purpose of imparting higher conductivity.
- the conductive aid conductive carbon black, vapor grown carbon fiber (VGCF), nanotubes, etc. can be used.
- the binder is not particularly limited as long as it does not react with the electrolytic solution, such as PVDF (polyvinylidene fluoride), polytetrafluoroethylene, and a mixture of SBR (styrene-butadiene rubber) and CMC (carboxymethyl cellulose). I will not. Among them, PVDF is preferable because PVDF attached to the surface of the active material hardly inhibits lithium ion migration and good input / output characteristics can be obtained.
- a polar solvent such as N-methyl pyrrolidone (NMP) is preferably used to dissolve PVDF to form a slurry, but an aqueous emulsion such as SBR or CMC can be used by dissolving it in water.
- NMP N-methyl pyrrolidone
- the preferred amount of binder added varies depending on the type of binder used, but it is preferably 3 to 13% by mass, and more preferably 3 to 10% by mass for a PVDF-based binder, for example.
- a mixture of a plurality of binders such as a mixture of SBR and CMC is often used in combination, preferably 0.5 to 5% by mass as a total of all binders used. -4% by mass is more preferable.
- 80 mass% or more is preferable, and, as for the carbonaceous material of this invention in electrode mixture, 90 mass% or more is more preferable.
- 100 mass% or less is preferable, and, as for the carbonaceous material of this invention in electrode mixture, 97 mass% or less is more preferable.
- the electrode active material layer is basically formed on both sides of the current collector plate, but may be formed on one side as needed.
- the thicker the electrode active material layer the smaller the number of collector plates, separators and the like, and so this is preferable for increasing the capacity.
- the wider the electrode area facing the counter electrode which is advantageous for improving the input / output characteristics, the input / output characteristics may deteriorate if the electrode active material layer is too thick.
- the thickness (per one side) of the active material layer is preferably 10 to 80 ⁇ m, more preferably 20 to 75 ⁇ m, and still more preferably 30 to 75 ⁇ m from the viewpoint of the output at the time of battery discharge.
- the non-aqueous electrolyte secondary battery of the present invention includes the negative electrode for a non-aqueous electrolyte secondary battery of the present invention.
- a non-aqueous electrolyte secondary battery having a negative electrode for a non-aqueous electrolyte secondary battery containing the carbonaceous material of the present invention has high charge and discharge capacity, high charge and discharge efficiency, and low resistance.
- the negative electrode for a non-aqueous electrolyte secondary battery is formed using the carbonaceous material of the present invention
- other materials constituting the battery such as a positive electrode material, a separator, and an electrolytic solution, are not particularly limited. It is possible to use various materials conventionally used or proposed as solvent secondary batteries.
- the cathode material one represented layered oxide (LiMO 2, M is a metal: for example LiCoO 2, LiNiO 2, LiMnO 2 or LiNi x Co y Mo z O 2 (where x,, y , Z represents the composition ratio), olivine-based (represented by LiMPO 4 , M is a metal: eg LiFePO 4 ), spinel-based (LiM 2 O 4 represented, M is a metal: eg LiMn 2 O 4 etc.
- Complex metal chalcogen compounds are preferable, and these chalcogen compounds may be mixed and used as needed.
- a positive electrode is formed by forming these positive electrode materials together with a suitable binder and a carbon material for imparting conductivity to the electrode, and forming a layer on the conductive current collector.
- the non-aqueous electrolyte secondary battery is generally formed by immersing the positive electrode and the negative electrode, which are formed as described above, as needed through a separator, in the electrolytic solution.
- a separator a permeable or liquid-permeable separator made of non-woven fabric commonly used for secondary batteries and other porous materials can be used.
- a solid electrolyte comprising a polymer gel impregnated with an electrolytic solution can be used.
- the carbonaceous material of the present invention is suitable, for example, as a carbonaceous material for a battery (typically, a non-aqueous electrolyte secondary battery for driving a vehicle) mounted on a vehicle such as an automobile.
- a vehicle is not limited in particular, and can be a vehicle that is generally used as an electric vehicle, a hybrid vehicle with a fuel cell or an internal combustion engine, etc., but a power supply device comprising at least the above battery And an electric drive mechanism driven by power supply from the power supply device, and a control device for controlling the electric drive mechanism.
- the vehicle may further include a power generation brake and a regenerative brake, and a mechanism for converting energy generated by braking into electricity and charging the non-aqueous electrolyte secondary battery.
- the carbonaceous material of the present invention has low resistance, it can also be used, for example, as an additive for imparting conductivity to an electrode material of a battery.
- the type of battery is not particularly limited, but non-aqueous electrolyte secondary batteries and lead storage batteries are preferable.
- a conductive network can be formed, and as a result, since the irreversible reaction can be suppressed by the increase of the conductivity, the life of the battery can be extended.
- the present invention will be specifically described by way of examples, but these do not limit the scope of the present invention.
- the measuring method of the physical-property value of a carbonaceous material is described below, the physical-property value described in this specification including an Example is based on the value calculated
- Elemental analysis was performed based on an inert gas dissolution method using an oxygen / nitrogen / hydrogen analyzer EMGA-930 manufactured by Horiba, Ltd.
- the detection method of the device is oxygen: inert gas melting-non dispersive infrared absorption method (NDIR), nitrogen: inert gas melting-thermal conductivity method (TCD), hydrogen: inert gas melting-non dispersive infrared absorption Method (NDIR), calibration is carried out with (oxygen ⁇ nitrogen) Ni capsule, TiH 2 (H standard sample), SS-3 (N, O standard sample), pre-treatment water at 250 ° C, about 10 minutes A 20 mg sample of which amount was measured was taken in a Ni capsule and measured after degassing for 30 seconds in an elemental analyzer. In the test, three samples were analyzed, and the average value was taken as the analysis value.
- NDIR inert gas melting-non dispersive infrared absorption method
- TCD inert gas melting-thermal conductivity method
- v m is determined by substituting the actually measured adsorption amount (v) at a predetermined phase pressure (p / p 0 ) by the multipoint method with nitrogen adsorption at liquid nitrogen temperature, and The specific surface area (SSA: unit is m 2 g ⁇ 1 ) of the sample was calculated by the equation.
- v m is the amount of adsorption (cm 3 / g) required to form a monolayer on the sample surface
- v is the amount of adsorption actually measured (cm 3 / g)
- p 0 is the saturation vapor pressure
- p is an absolute pressure
- c is a constant (reflecting heat of adsorption)
- N is an Avogadro's number 6.022 ⁇ 10 23
- a (nm 2 ) is an area occupied by adsorbate molecules on the sample surface (molecular occupancy cross section).
- the amount of nitrogen adsorbed onto the carbonaceous material at liquid nitrogen temperature was measured as follows using “Autosorb-iQ-MP” manufactured by Cantachrome Corporation.
- a sample tube is filled with a carbonaceous material which is a measurement sample, and while the sample tube is cooled to -196 ° C, pressure is once reduced and then nitrogen (purity 99.999%) is adsorbed on the measurement sample at a desired relative pressure. I did.
- the amount of nitrogen adsorbed to the sample when the equilibrium pressure was reached at each desired relative pressure was taken as the amount of adsorbed gas v.
- the adsorption isotherm obtained from the measurement of the adsorption amount of nitrogen described above is analyzed by the DFT method, the volume of pores having a pore diameter (pore diameter) of less than 2 nm is defined as a micropore volume, a pore diameter of 2 nm or more and 50 nm or less The volume of pores having a diameter) was calculated as the mesopore volume.
- the average particle size (particle size distribution) of the plant-derived char and carbonaceous material was measured by the following method.
- the sample was introduced into an aqueous solution containing 5% by mass of a surfactant ("Toriton X 100" manufactured by Wako Pure Chemical Industries, Ltd.), treated with an ultrasonic cleaner for 10 minutes or more, and dispersed in the aqueous solution.
- the particle size distribution was measured using this dispersion.
- the particle size distribution measurement was performed using a particle diameter / particle size distribution measuring apparatus ("Microtrac MT3300EXII" manufactured by Microtrac Bell Inc.).
- D 50 is a particle size at which the cumulative volume is 50%, and this value was used as an average particle size.
- Example 1 Glucose and ammonium chloride (1.1 moles per mole of glucose) were mixed in a mortar. The resulting mixture was heated to 1000 ° C. in a nitrogen gas atmosphere. At this time, the temperature raising rate to 1000 ° C. was 240 ° C./hour (4 ° C./minute). Next, a carbide was obtained by performing carbonization treatment by heat treatment at 1000 ° C. for 60 minutes in a nitrogen gas flow. At this time, the amount of nitrogen gas supplied was 1 L / min per 5 g of glucose. Then, the carbonaceous material was obtained by grinding with a ball mill.
- Example 2 It processed similarly to Example 1 except having used ammonium sulfate instead of ammonium chloride, and obtained carbonaceous material.
- Example 3 A carbonaceous material was obtained in the same manner as in Example 1 except that the amount of ammonium chloride added was 0.33 mol with respect to 1 mol of glucose.
- Example 4 A carbonaceous material was obtained in the same manner as in Example 1 except that the amount of ammonium chloride added was 3.3 mol with respect to 1 mol of glucose.
- Example 3 A carbonaceous material was obtained in the same manner as in Example 1 except that a coconut shell was used as a carbon source and ammonium chloride (36% by mass with respect to the coconut shell) was mixed.
- Example 4 A carbonaceous material was obtained in the same manner as in Example 1 except that the amount of nitrogen gas supplied at the time of carbonization was 10 L / min per 5 g of glucose.
- a resin composition obtained by grinding and mixing 100 parts of the aniline resin obtained as described above and 10 parts of hexamethylenetetramine is treated in the order of the following steps (1) to (4) to obtain a carbonaceous material I got
- the temperature is raised to 500 ° C. with a temperature rising time of 100 ° C./hour (1.7 ° C./min)
- After degreasing treatment at 500.degree. C. for 2 hours it was cooled to obtain carbide.
- the nitrogen gas supply amount was 3 L / min per 5 g of pulverized carbide, and cooled to room temperature to obtain a carbonaceous material.
- an amplitude of 10 mV is given at 25 ° C., centered on 0 V, at 25 ° C. using an electrochemical measurement apparatus (“1255 WB high-performance electrochemical measurement system” manufactured by Solartron), and a frequency of 10 mHz to 1 MHz
- the constant voltage alternating current impedance was measured by frequency, and real part resistance in frequency 1 kHz, 1 Hz, and 0.1 Hz was measured as impedance resistance.
- the electrode produced above was used as a working electrode, and metallic lithium was used as a counter electrode and a reference electrode.
- a solvent propylene carbonate and ethylene glycol dimethyl ether were mixed and used at a volume ratio of 1: 1. In this solvent, 1 mol / L of LiClO 4 was dissolved and used as an electrolyte.
- a polypropylene membrane was used for the separator.
- a coin cell was produced in a glove box under an argon atmosphere. About the lithium secondary battery of the said structure, the charging / discharging test was done after measuring direct-current resistance value before initial charging using the charging / discharging test apparatus (made by Toyo System Co., Ltd. "" TOSCAT ").
- Lithium doping was performed at a rate of 70 mA / g with respect to the active material mass, and was doped to 1 mV with respect to the lithium potential. Furthermore, a constant voltage of 1 mV with respect to the lithium potential was applied for 8 hours to complete the doping. The capacity (mAh / g) at this time was taken as the charge capacity. Next, dedoping was performed at a rate of 70 mA / g with respect to the mass of the active material until it reached 2.5 V with respect to the lithium potential, and the discharged capacity was used as a discharge capacity. The percentage of the discharge capacity / charge capacity was taken as the charge / discharge efficiency (initial charge / discharge efficiency) and used as an index of the utilization efficiency of lithium ions in the battery. Moreover, after repeating said charging / discharging 3 times, the measurement of impedance was performed.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Materials Engineering (AREA)
Abstract
Description
本発明は、非水電解質二次電池の負極活物質に適した炭素質材料、該炭素質材料を含む非水電解質二次電池用負極、該負極を有する非水電解質二次電池ならびに該炭素質材料の製造方法に関する。
すなわち、本発明は以下の好適な態様を包含する。
〔1〕元素分析により求めた、窒素元素含有量が3.5質量%以上であり、窒素元素含有量と水素元素含有量の比(RN/H)が6以上100以下であり、酸素元素含有量と窒素元素含有量の比(RO/N)が0.1以上1.0以下であり、かつ、X線回折測定により観測される炭素面間隔(d002)が3.70Å以上である炭素質材料。
〔2〕レーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値が250cm-1を超え、1650cm-1付近のピークの半値幅の値が100cm-1を超える、上記〔1〕に記載の炭素質材料。
〔3〕BET法により求めた比表面積が100m2/g以上であり、マイクロ孔容積とメソ孔容積の和で表される細孔容積が0.08mL/g以上である、上記〔1〕または〔2〕に記載の炭素質材料。
〔4〕BET法により求めた比表面積が70m2/g以下であり、マイクロ孔容積とメソ孔容積の和で表される細孔容積が0.05mL/g以下である、上記〔1〕または〔2〕に記載の炭素質材料。
〔5〕酸素元素含有量が1.5質量%を超える、〔1〕~〔4〕のいずれかに記載の炭素質材料。
〔6〕炭素質材料が糖類に由来する、上記〔1〕~〔5〕のいずれかに記載の炭素質材料。
〔7〕非水電解質二次電池の負極活物質用である、上記〔1〕~〔5〕のいずれかに記載の炭素質材料。
〔8〕上記〔7〕に記載の炭素質材料を含む非水電解質二次電池用負極。
〔9〕上記〔8〕に記載の非水電解質二次電池用負極を有する非水電解質二次電池。
〔10〕以下の工程:
(1)糖類を、アンモニアガスを発生し得る物質と混合する工程、および
(2)得られた混合物を、不活性ガス雰囲気中、100℃/時間以上の昇温速度で500~1200℃の間の所定温度まで昇温する工程、および
(3)500~1200℃の温度で、糖類5gに対して流量0.5~5.0L/分の不活性ガスで熱処理を施して炭化物を得る工程
を含む、上記〔1〕~〔7〕のいずれかに記載の炭素質材料の製造方法。
〔11〕以下の工程:
(1)糖類を、アンモニアガスを発生し得る物質と混合する工程、
(2A)得られた混合物を、不活性ガス雰囲気中、100℃/時間以上の昇温速度で500~1000℃の間の第1所定温度まで昇温する工程、
(3A)500~1000℃の温度で、糖類5gに対して流量を0.5~5.0L/分の不活性ガスで熱処理を施して炭化物を得る工程、
(2B)得られた炭化物を、不活性ガス雰囲気中、100℃/時間以上の昇温速度で800~1400℃の間の第2所定温度まで昇温する工程、および
(3B)800~1400℃の温度で、炭化物5gに対して流量0.5~5.0L/分の不活性ガスで熱処理を施す工程
を含む、〔1〕~〔7〕のいずれかに記載の炭素質材料の製造方法。
(1)糖類を、アンモニアガスを発生し得る物質と混合する工程、
(2)得られた混合物を、不活性ガス雰囲気中、100℃/時間以上の昇温速度で500~1200℃の間の所定温度まで昇温する工程、および
(3)500~1200℃の温度で、糖類5gに対して流量0.5~5.0L/分の不活性ガスで熱処理を施して炭化物を得る工程
を含む方法であって、かかる方法により本発明の炭素質材料を得ることができる。炭素質材料は、通常の方法、例えば炭化物をボールミルやジェットミルで粉砕すること等により得ることができる。
(1)糖類を、アンモニアガスを発生し得る物質と混合する工程、
(2A)得られた混合物を、不活性ガス雰囲気中、100℃/時間以上の昇温速度で500~1000℃の間の第1所定温度まで昇温する工程、
(3A)500~1000℃の温度で、糖類5gに対して流量を0.5~5.0L/分の不活性ガスで熱処理を施して炭化物を得る工程、
(2B)得られた炭化物を、不活性ガス雰囲気中、100℃/時間以上の昇温速度で800~1400℃の間の第2所定温度まで昇温する工程、および
(3B)800~1400℃の温度で、炭化物5gに対して流量0.5~5.0L/分の不活性ガスで熱処理を施す工程
を含む、上記炭素質材料の製造方法に関する。
株式会社堀場製作所製、酸素・窒素・水素分析装置EMGA-930を用いて、不活性ガス溶解法に基づいて元素分析を行った。
当該装置の検出方法は、酸素:不活性ガス融解-非分散型赤外線吸収法(NDIR)、窒素:不活性ガス融解-熱伝導法(TCD)、水素:不活性ガス融解-非分散型赤外線吸収法(NDIR)であり、校正は、(酸素・窒素)Niカプセル、TiH2(H標準試料)、SS-3(N、O標準試料)で行い、前処理として250℃、約10分で水分量を測定した試料20mgをNiカプセルに取り、元素分析装置内で30秒脱ガスした後に測定した。試験は3検体で分析し、平均値を分析値とした。
炭素質材料粉末を試料ホルダーに充填し、リガク社製MiniFlexIIを用いて、X線回折測定を行った。CuKα(λ=1.5418Å)を線源とし、走査範囲は10°<2θ<35°とした。
ラマン分光器(堀場製作所製「LabRAM ARAMIS(VIS)」)を用い、炭素質材料である測定対象粒子を観測台ステージ上にセットし、対物レンズの倍率を100倍とし、ピントを合わせ、アルゴンイオンレーザ光を照射しながら測定した。測定条件の詳細は以下のとおりである。
アルゴンイオンレーザ光の波長:532nm
試料上のレーザーパワー:15mW
分解能:5-7cm-1
測定範囲:50-2000cm-1
露光時間:1秒
積算回数:100回
ピーク強度測定:ベースライン補正 Polynom-3次で自動補正
ピークサーチ&フィッテイング処理 GaussLoren
植物由来のチャーおよび炭素質材料の平均粒子径(粒度分布)は、以下の方法により測定した。試料を界面活性剤(和光純薬工業株式会社製「ToritonX100」)が5質量%含まれた水溶液に投入し、超音波洗浄器で10分以上処理し、水溶液中に分散させた。この分散液を用いて粒度分布を測定した。粒度分布測定は、粒子径・粒度分布測定装置(マイクロトラック・ベル株式会社製「マイクロトラックMT3300EXII」)を用いて行った。D50は、累積体積が50%となる粒子径であり、この値を平均粒子径として用いた。
グルコースと塩化アンモニウム(グルコース1モルに対して1.1モル)を乳鉢で混合した。得られた混合物を、窒素ガス雰囲気中、1000℃まで昇温した。この際、1000℃までの昇温速度は240℃/時間(4℃/分)とした。次いで、窒素ガス気流下、1000℃で60分間熱処理することにより炭化処理を行なうことにより炭化物を得た。この際、窒素ガスの供給量は、グルコース5gあたり1L/分であった。その後、ボールミルで粉砕することで、炭素質材料を得た。
塩化アンモニウムの代わりに硫酸アンモニウムを用いた以外は、実施例1と同様に処理を行い、炭素質材料を得た。
塩化アンモニウムの添加量をグルコース1モルに対して0.33モルとした以外は、実施例1と同様に処理を行い、炭素質材料を得た。
塩化アンモニウムの添加量をグルコース1モルに対して3.3モルとした以外は、実施例1と同様に処理を行い、炭素質材料を得た。
グルコースの代わりにでんぷんを用いて、塩化アンモニウムの代わりにクエン酸水素二アンモニウム(でんぷんの単糖ユニット1モルに対して1.1モル)を用いたこと、及び、得られた混合物を、窒素ガス雰囲気中、1000℃まで昇温する工程に先立ち、得られた混合物を、窒素ガス雰囲気中、600℃まで昇温し、この際、600℃までの昇温速度は240℃/時間(4℃/分)とし;次いで、窒素ガス気流下、600℃で60分間熱処理することにより炭化処理を行なうことにより炭化物を得た後に;得られた炭化物に対して実施例1と同様の昇温工程及び熱処理工程を施したこと以外は、実施例1と同様に処理を行い、炭素質材料を得た。
クエン酸水素二アンモニウムの添加量をでんぷんの単糖ユニット1モルに対して0.55モルを用いたこと以外は、実施例5と同様に処理を行い、炭素質材料を得た。
塩化アンモニウムを混合しなかった点以外は実施例1と同様にして、炭素質材料を得た。
炭素源として椰子殻を用いた以外は、比較例1と同様に処理を行い、炭素質材料を得た。
炭素源として椰子殻を用い、塩化アンモニウム(椰子殻に対して36質量%)を混合した点以外は、実施例1と同様に処理を行い、炭素質材料を得た。
炭化処理時の窒素ガス供給量をグルコース5gあたり10L/分とした以外は、実施例1と同様に処理を行い、炭素質材料を得た。
アニリン100部と37%ホルムアルデヒド水溶液697部、蓚酸2部を攪拌装置及び冷却管を備えた3つ口フラスコに入れ、100℃で3時間反応後、脱水し、アニリン樹脂110部を得た。得られたアニリン樹脂の重量平均分子量は約700であった。以上の様にして得られたアニリン樹脂100部とヘキサメチレンテトラミン10部を粉砕混合し得られた樹脂組成物を、以下の工程(1)~(4)の順で処理を行い、炭素質材料を得た。
(1)還元ガス置換、不活性ガス置換、還元ガス流通、不活性ガス流通のいずれも行わないで、昇温時間を100℃/時間(1.7℃/分)として、500℃まで昇温した後に、500℃で2時間脱脂処理後、冷却して炭化物を得た。
(2)ボールミルで粉砕して、粉砕炭化物を得た。
(3)窒素ガス供給量を粉砕炭化物5gあたり3L/分、昇温速度を100℃/時間(1.7℃/分)として、1100℃まで昇温した後に、8時間保持した。
(4)窒素ガス供給量を粉砕炭化物5gあたり3L/分として、室温まで冷却して、炭素質材料を得た。
各実施例および各比較例で得た炭素質材料をそれぞれ用いて、以下の手順に従って負極の作製を行った。
炭素質材料96質量部、PVDF(ポリフッ化ビニリデン)4質量部およびNMP(N-メチルピロリドン)90質量部を混合し、スラリーを得た。厚さ14μmの銅箔に、得られたスラリーを塗布し、乾燥後プレスして、厚さ75μmの電極を得た。得られた電極の密度は、0.8~1.0g/cm3であった。
上記で作製した電極を用いて、電気化学測定装置(ソーラトロン社製「1255WB型高性能電気化学測定システム」)を用い、25℃で、0Vを中心に10mVの振幅を与え、周波数10mHz~1MHzの周波数で定電圧交流インピーダンスを測定し、周波数1kHz、1Hz、0.1Hzにおける実部抵抗をインピーダンス抵抗として測定した。
上記で作製した電極を作用極とし、金属リチウムを対極および参照極として使用した。溶媒として、プロピレンカーボネートとエチレングリコールジメチルエーテルとを、体積比で1:1となるように混合して用いた。この溶媒に、LiClO4を1mol/L溶解し、電解質として用いた。セパレータにはポリプロピレン膜を使用した。アルゴン雰囲気下のグローブボックス内でコインセルを作製した。
上記構成のリチウム二次電池について、充放電試験装置(東洋システム株式会社製、「TOSCAT」)を用いて、初期充電前に直流抵抗値を測定後、充放電試験を行った。リチウムのドーピングは、活物質質量に対し70mA/gの速度で行い、リチウム電位に対して1mVになるまでドーピングした。さらにリチウム電位に対して1mVの定電圧を8時間印加して、ドーピングを終了した。このときの容量(mAh/g)を充電容量とした。次いで、活物質質量に対し70mA/gの速度で、リチウム電位に対して2.5Vになるまで脱ドーピングを行い、このとき放電した容量を放電容量とした。放電容量/充電容量の百分率を充放電効率(初期の充放電効率)とし、電池内におけるリチウムイオンの利用効率の指標とした。また、上記の充放電を3回繰り返した後で、インピーダンスの測定を行った。
各実施例の炭素質材料を用いて作製した電池は、低い抵抗値を有すると共に、高い放電容量を示した。特に、3回充放電測定を実施した後のインピーダンスの値が小さいことが明らかになった。また、実施例5及び6の炭素質材料を用いて作製した電池は、各比較例と比べ、不可逆容量を低減効果が顕著であり、高い充放電効率を有していた。一方で、所定の範囲のRN/HやRO/Nを有さないか、所定の窒素含有量を有さない、各比較例の炭素質材料を用いて作製した電池では、十分に低い抵抗値が達成されず、放電容量が十分であるとはいえなかった。
Claims (11)
- 元素分析により求めた、窒素元素含有量が3.5質量%以上であり、窒素元素含有量と水素元素含有量の比(RN/H)が6以上100以下であり、酸素元素含有量と窒素元素含有量の比(RO/N)が0.1以上1.0以下であり、かつ、X線回折測定により観測される炭素面間隔(d002)が3.70Å以上である炭素質材料。
- レーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値が250cm-1を超え、1650cm-1付近のピークの半値幅の値が100cm-1を超える、請求項1に記載の炭素質材料。
- BET法により求めた比表面積が100m2/g以上であり、マイクロ孔容積とメソ孔容積の和で表される細孔容積が0.08mL/g以上である、請求項1または2に記載の炭素質材料。
- BET法により求めた比表面積が70m2/g以下であり、マイクロ孔容積とメソ孔容積の和で表される細孔容積が0.05mL/g以下である、請求項1または2に記載の炭素質材料。
- 酸素元素含有量が1.5質量%を超える、請求項1~4のいずれかに記載の炭素質材料。
- 炭素質材料が糖類に由来する、請求項1~5のいずれかに記載の炭素質材料。
- 非水電解質二次電池の負極活物質用である、請求項1~6のいずれかに記載の炭素質材料。
- 請求項7に記載の炭素質材料を含む非水電解質二次電池用負極。
- 請求項8に記載の非水電解質二次電池用負極を有する非水電解質二次電池。
- 以下の工程:
(1)糖類を、アンモニアガスを発生し得る物質と混合する工程、
(2)得られた混合物を、不活性ガス雰囲気中、100℃/時間以上の昇温速度で500~1200℃の間の所定温度まで昇温する工程、および
(3)500~1200℃の温度で、糖類5gに対して流量0.5~5.0L/分の不活性ガスで熱処理を施して炭化物を得る工程
を含む、請求項1~7のいずれかに記載の炭素質材料の製造方法。 - 以下の工程:
(1)糖類を、アンモニアガスを発生し得る物質と混合する工程、
(2A)得られた混合物を、不活性ガス雰囲気中、100℃/時間以上の昇温速度で500~1000℃の間の第1所定温度まで昇温する工程、
(3A)500~1000℃の温度で、糖類5gに対して流量を0.5~5.0L/分の不活性ガスで熱処理を施して炭化物を得る工程、
(2B)得られた炭化物を、不活性ガス雰囲気中、100℃/時間以上の昇温速度で800~1400℃の間の第2所定温度まで昇温する工程、および
(3B)800~1400℃の温度で、炭化物5gに対して流量0.5~5.0L/分の不活性ガスで熱処理を施す工程
を含む、請求項1~7のいずれかに記載の炭素質材料の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880044917.8A CN110869317B (zh) | 2017-07-06 | 2018-07-04 | 非水电解质二次电池的负极活性物质用的碳质材料、非水电解质二次电池用负极、非水电解质二次电池以及碳质材料的制造方法 |
KR1020197038268A KR102591739B1 (ko) | 2017-07-06 | 2018-07-04 | 비수 전해질 이차 전지의 부극 활물질용의 탄소질 재료, 비수 전해질 이차 전지용 부극, 비수 전해질 이차 전지 그리고 탄소질 재료의 제조 방법 |
US16/628,189 US11637286B2 (en) | 2017-07-06 | 2018-07-04 | Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material |
EP18828189.3A EP3650409A4 (en) | 2017-07-06 | 2018-07-04 | CARBONATED MATERIAL FOR NEGATIVE ELECTRODE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY NEGATIVE ELECTRODE, NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND CARBON PRODUCTION METHOD |
JP2019527746A JP6647456B2 (ja) | 2017-07-06 | 2018-07-04 | 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法 |
US18/063,092 US12080890B2 (en) | 2017-07-06 | 2022-12-08 | Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-133034 | 2017-07-06 | ||
JP2017133034 | 2017-07-06 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/628,189 A-371-Of-International US11637286B2 (en) | 2017-07-06 | 2018-07-04 | Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material |
US18/063,092 Continuation US12080890B2 (en) | 2017-07-06 | 2022-12-08 | Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019009332A1 true WO2019009332A1 (ja) | 2019-01-10 |
Family
ID=64950998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/025388 WO2019009332A1 (ja) | 2017-07-06 | 2018-07-04 | 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US11637286B2 (ja) |
EP (1) | EP3650409A4 (ja) |
JP (1) | JP6647456B2 (ja) |
KR (1) | KR102591739B1 (ja) |
CN (1) | CN110869317B (ja) |
TW (1) | TWI766062B (ja) |
WO (1) | WO2019009332A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021120331A (ja) * | 2020-01-30 | 2021-08-19 | 国立大学法人広島大学 | 球状炭素粒子およびその製造方法、並びに球状炭素粒子を用いた蓄電デバイス |
JP2021155278A (ja) * | 2020-03-27 | 2021-10-07 | 株式会社クラレ | 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極 |
WO2022059646A1 (ja) * | 2020-09-15 | 2022-03-24 | 株式会社クラレ | 蓄電デバイスの負極活物質に適した炭素質材料、蓄電デバイス用負極、蓄電デバイス |
WO2023008328A1 (ja) | 2021-07-30 | 2023-02-02 | 株式会社クラレ | 炭素質材料、蓄電デバイス用負極、蓄電デバイス、及び炭素質材料の製造方法 |
WO2023058499A1 (ja) | 2021-10-05 | 2023-04-13 | 株式会社クラレ | 炭素質材料、蓄電デバイス用負極、蓄電デバイス、及び炭素質材料の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102343659B1 (ko) * | 2018-11-20 | 2021-12-29 | 전남대학교산학협력단 | 3차원형상의 하드카본, 그 제조방법, 이를 포함하는 음극 |
CN112615011A (zh) * | 2020-12-17 | 2021-04-06 | 惠州亿纬锂能股份有限公司 | 一种锂硫电池负极极片、锂硫电池及其制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233314B2 (ja) | 1974-01-30 | 1977-08-27 | ||
JP2006083012A (ja) | 2004-09-16 | 2006-03-30 | Nec Corp | 炭素材、二次電池用負極材および非水電解液二次電池 |
WO2014034858A1 (ja) * | 2012-08-30 | 2014-03-06 | 株式会社クレハ | 非水電解質二次電池負極用炭素質材料及びその製造方法 |
WO2014038492A1 (ja) * | 2012-09-06 | 2014-03-13 | 株式会社クレハ | 非水電解質二次電池負極用炭素質材料及びその製造方法、並びに前記炭素質材料を用いた負極および非水電解質二次電池 |
JP5477391B2 (ja) | 2009-11-25 | 2014-04-23 | 住友ベークライト株式会社 | リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池 |
WO2015129200A1 (ja) * | 2014-02-28 | 2015-09-03 | 株式会社クレハ | 非水電解質二次電池用炭素質材料の製造方法 |
WO2017022449A1 (ja) * | 2015-08-04 | 2017-02-09 | 株式会社クラレ | 植物原料由来の炭素前駆体 |
JP2017084706A (ja) * | 2015-10-30 | 2017-05-18 | 株式会社クラレ | 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極および非水電解質二次電池 |
JP2017133034A (ja) | 2017-04-19 | 2017-08-03 | Jsr株式会社 | 重合体、樹脂膜および電子部品 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233314U (ja) | 1975-08-30 | 1977-03-09 | ||
JPS5477391U (ja) | 1977-11-11 | 1979-06-01 | ||
JP2630939B2 (ja) * | 1986-11-08 | 1997-07-16 | 旭化成工業株式会社 | 非水系二次電池 |
EP0746047A1 (en) * | 1995-06-01 | 1996-12-04 | Toray Industries, Inc. | An amorphous material, electrode and secondary battery |
US20060093915A1 (en) | 2004-11-04 | 2006-05-04 | Lundquist Eric G | Carbons useful in energy storage devices |
CN101641810B (zh) * | 2007-03-28 | 2012-01-25 | 旭化成化学株式会社 | 电极、使用该电极的锂离子二次电池、双电层电容器和燃料电池 |
JP5233314B2 (ja) | 2008-02-25 | 2013-07-10 | 住友ベークライト株式会社 | 二次電池用炭素材、二次電池用電極、および二次電池 |
EP2634847B1 (en) | 2010-10-29 | 2018-12-12 | Mitsubishi Chemical Corporation | Multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery, negative electrode for nonaqueous secondary battery, lithium ion secondary battery, and method for manufacturing multilayer-structured carbon material for negative electrode of nonaqueous electrolyte secondary battery |
JP5886875B2 (ja) * | 2010-12-31 | 2016-03-16 | エギョン ペトロケミカル カンパニー リミテッドAekyung Petrochemical Co., Ltd. | リチウム二次電池用負極活物質及びその製造方法、これを利用したリチウム二次電池 |
KR101665843B1 (ko) * | 2012-09-06 | 2016-10-12 | 가부시끼가이샤 구레하 | 비수 전해질 2차 전지 음극용 탄소질 재료 및 이의 제조 방법 |
CN104709906B (zh) * | 2013-12-17 | 2017-05-03 | 中国科学院过程工程研究所 | 一种三维分级多孔活性炭材料的制备方法 |
JP5957631B2 (ja) * | 2014-02-28 | 2016-07-27 | 株式会社クレハ | 非水電解質二次電池用炭素質材料の製造方法 |
WO2015137980A1 (en) | 2014-03-14 | 2015-09-17 | Energ2 Technologies, Inc. | Novel methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
CN103992144B (zh) * | 2014-05-20 | 2016-03-30 | 中国科学技术大学 | 一种由生物质热解碳化制备含氮碳材料的方法 |
WO2016116542A1 (en) | 2015-01-21 | 2016-07-28 | Université De Strasbourg | Method for preparing highly nitrogen-doped mesoporous carbon composites |
CN116093317A (zh) | 2015-10-30 | 2023-05-09 | 株式会社可乐丽 | 非水电解质二次电池用碳质材料 |
US9905373B2 (en) * | 2016-01-04 | 2018-02-27 | Nanotek Instruments, Inc. | Supercapacitor having an integral 3D graphene-carbon hybrid foam-based electrode |
-
2018
- 2018-07-04 JP JP2019527746A patent/JP6647456B2/ja active Active
- 2018-07-04 US US16/628,189 patent/US11637286B2/en active Active
- 2018-07-04 CN CN201880044917.8A patent/CN110869317B/zh active Active
- 2018-07-04 WO PCT/JP2018/025388 patent/WO2019009332A1/ja unknown
- 2018-07-04 EP EP18828189.3A patent/EP3650409A4/en active Pending
- 2018-07-04 KR KR1020197038268A patent/KR102591739B1/ko active IP Right Grant
- 2018-07-04 TW TW107123153A patent/TWI766062B/zh active
-
2022
- 2022-12-08 US US18/063,092 patent/US12080890B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5233314B2 (ja) | 1974-01-30 | 1977-08-27 | ||
JP2006083012A (ja) | 2004-09-16 | 2006-03-30 | Nec Corp | 炭素材、二次電池用負極材および非水電解液二次電池 |
JP5477391B2 (ja) | 2009-11-25 | 2014-04-23 | 住友ベークライト株式会社 | リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池 |
WO2014034858A1 (ja) * | 2012-08-30 | 2014-03-06 | 株式会社クレハ | 非水電解質二次電池負極用炭素質材料及びその製造方法 |
WO2014038492A1 (ja) * | 2012-09-06 | 2014-03-13 | 株式会社クレハ | 非水電解質二次電池負極用炭素質材料及びその製造方法、並びに前記炭素質材料を用いた負極および非水電解質二次電池 |
WO2015129200A1 (ja) * | 2014-02-28 | 2015-09-03 | 株式会社クレハ | 非水電解質二次電池用炭素質材料の製造方法 |
WO2017022449A1 (ja) * | 2015-08-04 | 2017-02-09 | 株式会社クラレ | 植物原料由来の炭素前駆体 |
JP2017084706A (ja) * | 2015-10-30 | 2017-05-18 | 株式会社クラレ | 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極および非水電解質二次電池 |
JP2017133034A (ja) | 2017-04-19 | 2017-08-03 | Jsr株式会社 | 重合体、樹脂膜および電子部品 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021120331A (ja) * | 2020-01-30 | 2021-08-19 | 国立大学法人広島大学 | 球状炭素粒子およびその製造方法、並びに球状炭素粒子を用いた蓄電デバイス |
JP7343861B2 (ja) | 2020-01-30 | 2023-09-13 | 国立大学法人広島大学 | 球状炭素粒子およびその製造方法、並びに球状炭素粒子を用いた蓄電デバイス |
JP2021155278A (ja) * | 2020-03-27 | 2021-10-07 | 株式会社クラレ | 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極 |
JP7520546B2 (ja) | 2020-03-27 | 2024-07-23 | 株式会社クラレ | 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極 |
WO2022059646A1 (ja) * | 2020-09-15 | 2022-03-24 | 株式会社クラレ | 蓄電デバイスの負極活物質に適した炭素質材料、蓄電デバイス用負極、蓄電デバイス |
KR20230069914A (ko) | 2020-09-15 | 2023-05-19 | 주식회사 쿠라레 | 축전 디바이스의 부극 활물질에 적합한 탄소질 재료, 축전 디바이스용 부극, 축전 디바이스 |
WO2023008328A1 (ja) | 2021-07-30 | 2023-02-02 | 株式会社クラレ | 炭素質材料、蓄電デバイス用負極、蓄電デバイス、及び炭素質材料の製造方法 |
KR20240037176A (ko) | 2021-07-30 | 2024-03-21 | 주식회사 쿠라레 | 탄소질 재료, 축전 디바이스용 부극, 축전 디바이스, 및 탄소질 재료의 제조 방법 |
WO2023058499A1 (ja) | 2021-10-05 | 2023-04-13 | 株式会社クラレ | 炭素質材料、蓄電デバイス用負極、蓄電デバイス、及び炭素質材料の製造方法 |
WO2023058500A1 (ja) | 2021-10-05 | 2023-04-13 | 株式会社クラレ | 炭素質材料、蓄電デバイス用負極、蓄電デバイス、及び炭素質材料の製造方法 |
KR20240072175A (ko) | 2021-10-05 | 2024-05-23 | 주식회사 쿠라레 | 탄소질 재료, 축전 디바이스용 부극, 축전 디바이스, 및 탄소질 재료의 제조 방법 |
KR20240072176A (ko) | 2021-10-05 | 2024-05-23 | 주식회사 쿠라레 | 탄소질 재료, 축전 디바이스용 부극, 축전 디바이스, 및 탄소질 재료의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP3650409A4 (en) | 2021-03-17 |
EP3650409A1 (en) | 2020-05-13 |
US20210098788A1 (en) | 2021-04-01 |
US20230105396A1 (en) | 2023-04-06 |
TW201909472A (zh) | 2019-03-01 |
CN110869317B (zh) | 2023-07-21 |
KR102591739B1 (ko) | 2023-10-19 |
US12080890B2 (en) | 2024-09-03 |
CN110869317A (zh) | 2020-03-06 |
TWI766062B (zh) | 2022-06-01 |
JPWO2019009332A1 (ja) | 2019-12-19 |
US11637286B2 (en) | 2023-04-25 |
JP6647456B2 (ja) | 2020-02-14 |
KR20200024783A (ko) | 2020-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6647457B2 (ja) | 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法 | |
JP6647456B2 (ja) | 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法 | |
EP3179543B1 (en) | Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery | |
JP6463875B2 (ja) | 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法 | |
EP3179541B1 (en) | Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery | |
EP3131144B1 (en) | Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and vehicle | |
WO2022059646A1 (ja) | 蓄電デバイスの負極活物質に適した炭素質材料、蓄電デバイス用負極、蓄電デバイス | |
EP3136482A1 (en) | Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrode secondary battery, and vehicle | |
JP2020004589A (ja) | 炭素質材料の製造方法 | |
WO2021215397A1 (ja) | 炭素質材料、その製造方法、および電気化学デバイス | |
WO2020071428A1 (ja) | 炭素前駆体および炭素前駆体の製造方法 | |
JP7520546B2 (ja) | 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極 | |
WO2020071547A1 (ja) | 炭素質材料、非水電解質二次電池用負極、非水電解質二次電池および炭素質材料の製造方法、並びに炭化物および炭化物の製造方法 | |
JP2022003000A (ja) | 炭素質材料、非水電解質二次電池用負極、非水電解質二次電池および炭素質材料の製造方法、並びに炭化物および炭化物の製造方法 | |
JP2022003609A (ja) | 二次電池負極及び導電材用炭素質材料の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18828189 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019527746 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197038268 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018828189 Country of ref document: EP Effective date: 20200206 |