JP5957631B2 - 非水電解質二次電池用炭素質材料の製造方法 - Google Patents

非水電解質二次電池用炭素質材料の製造方法 Download PDF

Info

Publication number
JP5957631B2
JP5957631B2 JP2014039741A JP2014039741A JP5957631B2 JP 5957631 B2 JP5957631 B2 JP 5957631B2 JP 2014039741 A JP2014039741 A JP 2014039741A JP 2014039741 A JP2014039741 A JP 2014039741A JP 5957631 B2 JP5957631 B2 JP 5957631B2
Authority
JP
Japan
Prior art keywords
carbonaceous material
electrolyte secondary
carbon precursor
carbon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014039741A
Other languages
English (en)
Other versions
JP2015164110A (ja
Inventor
有紀 太田
有紀 太田
桂一 佐野
桂一 佐野
奥野 壮敏
壮敏 奥野
岩崎 秀治
秀治 岩崎
靖浩 多田
靖浩 多田
誠 今治
誠 今治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Kureha Corp
Kuraray Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Kureha Corp
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd, Kureha Corp, Kuraray Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP2014039741A priority Critical patent/JP5957631B2/ja
Priority to PCT/JP2015/000734 priority patent/WO2015129200A1/ja
Priority to TW104106149A priority patent/TWI644859B/zh
Publication of JP2015164110A publication Critical patent/JP2015164110A/ja
Application granted granted Critical
Publication of JP5957631B2 publication Critical patent/JP5957631B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池に代表される非水電解質二次電池の負極に適した炭素質材料の製造方法に関する。
リチウムイオン二次電池は、携帯電話やノートパソコンのような小型携帯機器に広く用いられている。リチウムイオン二次電池の負極材としては、黒鉛の理論容量372mAh/gを超える量のリチウムのドープ(充電)及び脱ドープ(放電)が可能な難黒鉛化性炭素が開発され(例えば特許文献1)、使用されてきた。
難黒鉛化性炭素は、例えば石油ピッチ、石炭ピッチ、フェノール樹脂、植物を炭素源として得ることができる。これらの炭素源の中でも、植物は栽培することによって持続して安定的に供給可能な原料であり、安価に入手できるため注目されている。また、植物由来の炭素原料を焼成して得られる炭素質材料には、細孔が多く存在するため、良好な充放電容量が期待される(例えば特許文献1、特許文献2)。
一方、近年、環境問題への関心の高まりから、リチウムイオン二次電池の車載用途での開発が進められ、実用化されつつある。
特開平9−161801号公報 特開平10−21919号公報
特に車載用途でのリチウムイオン電池に用いられる炭素質材料には、良好な充放電容量とともに、さらに炭素質材料の劣化が生じにくいことが求められる。
従って、本発明の目的は、良好な充放電容量とともに、さらに低い吸湿性とを有し、炭素質材料の劣化の生じにくい、非水電解質二次電池(例えばリチウムイオン二次電池)の負極に用いる炭素質材料(非水電解質二次電池用炭素質材料)の製造方法を提供することにある。
本発明は、
非水電解質二次電池用炭素質材料の製造方法であって、
炭素前駆体と揮発性有機物とを800〜1400℃の不活性ガス雰囲気下で焼成し、炭素質材料を得る工程、
を具備し、
広角X線回折法においてBragg式を用いて算出される、前記炭素質材料の(002)面の平均面間隔d002が0.38〜0.40nmの範囲にあり、
窒素吸着BET3点法により求めた前記炭素質材料の比表面積が1〜10m2/gの範囲にあり、
ラマンスペクトルにおいて観察される前記炭素前駆体の1360cm-1付近のピークの半値幅の値と、前記炭素質材料の1360cm-1付近のピークの半値幅の値との差が50〜84cm-1である、
非水電解質二次電池用炭素質材料の製造方法、を提供する。
本発明によれば、良好な充放電容量とともに、さらに低い吸湿性とを有し、炭素質材料の劣化の生じにくい、非水電解質二次電池用炭素質材料の製造方法を提供することができる。
以下は本発明の実施形態を例示する説明であって、本発明を以下の実施形態に制限する趣旨ではない。なお、本明細書において、常温とは25℃を指す。
(非水電解質二次電池用炭素質材料)
本実施形態の非水電解質二次電池用炭素質材料は、炭素前駆体と揮発性有機物との混合物を800〜1400℃の不活性ガス雰囲気下で焼成して得られる。
炭素前駆体は、炭素質材料を製造する際に炭素成分を供給する炭素質材料の前駆体であり、植物由来の炭素材(以下、「植物由来のチャー」と称することがある)を原料に用いて製造することができる。なお、チャーとは、一般的には、石炭を加熱した際に得られる溶融軟化しない炭素分に富む粉末状の固体を示すが、ここでは有機物を加熱して得られる溶融軟化しない炭素分に富む粉末状の固体も示す。
植物由来のチャーの原料となる植物(以下、「植物原料」と称することがある)には、特に制限はない。例えば、椰子殻、珈琲豆、茶葉、サトウキビ、果実(例えば、みかん、バナナ)、藁、籾殻、広葉樹、針葉樹、竹を例示できる。この例示は、本来の用途に供した後の廃棄物(例えば、使用済みの茶葉)、あるいは植物原料の一部(例えば、バナナやみかんの皮)を包含する。これらの植物は、単独で又は2種以上組み合わせて使用することができる。これらの植物の中でも、大量入手が容易な椰子殻が好ましい。
椰子殻としては、特に限定されるものではなく、例えばパームヤシ(アブラヤシ)、ココヤシ、サラク、オオミヤシの椰子殻を挙げることができる。これらの椰子殻は、単独又は組み合わせて使用することができる。食品、洗剤原料、バイオディーゼル油原料等として利用され、大量に発生するバイオマス廃棄物である、ココヤシ及びパームヤシの椰子殻が特に好ましい。
植物原料からチャーを製造する方法は特に限定されるものではないが、例えば植物原料を、300℃以上の不活性ガス雰囲気下で、熱処理(以下、「仮焼成」と称することがある)することによって製造することができる。
また、チャー(例えば、椰子殻チャー)の形態で入手することも可能である。
植物由来のチャーから製造された炭素質材料は、多量の活物質をドープ可能であることから、非水電解質二次電池の負極材料として基本的には適している。しかし、植物由来のチャーには、植物に含まれていた金属元素が多く含有されている。例えば、椰子殻チャーでは、カリウムを0.3%程度、鉄元素を0.1%程度含んでいる。このような金属元素を多く含んだ炭素質材料を負極として用いると、非水電解質二次電池の電気化学的な特性や安全性に好ましくない影響を与えることがある。
また、植物由来のチャーは、カリウム以外のアルカリ金属(例えば、ナトリウム)、アルカリ土類金属(例えば、マグネシウム、カルシウム)、遷移金属(例えば、鉄、銅)及びその他の金属類も含んでいる。炭素質材料がこれらの金属類を含むと、非水電解質二次電池の負極からの脱ドープ時に不純物が電解液中に溶出し、電池性能に好ましくない影響を与え、安全性を害する可能性がある。
さらに、本発明者等の検討により、灰分により炭素質材料の細孔が閉塞され、電池の充放電容量に悪影響を及ぼすことがあると確認されている。
従って、植物由来のチャーに含まれているこのような灰分(アルカリ金属、アルカリ土類金属、遷移金属、及びその他の元素類)は、炭素質材料を得るために焼成する前に、脱灰処理によって灰分を減少させておくことが望ましい。脱灰方法は特に制限されないが、例えば塩酸、硫酸等の鉱酸、酢酸、蟻酸等の有機酸等を含む酸性水を用いて金属分を抽出脱灰する方法(液相脱灰)、塩化水素などのハロゲン化合物を含有した高温の気相に暴露させて脱灰する方法(気相脱灰)を用いることができる。適用する脱灰方法を限定する趣旨ではないが、以下では、脱灰後に乾燥処理の必要が無い点で好ましい気相脱灰について説明する。
気相脱灰としては、植物由来のチャーを、ハロゲン化合物を含む気相中で熱処理することが好ましい。ハロゲン化合物は特に制限されないが、例えば、フッ素、塩素、臭素、ヨウ素、フッ化水素、塩化水素、臭化水素、臭化ヨウ素、フッ化塩素(ClF)、塩化ヨウ素(ICl)、臭化ヨウ素(IBr)、塩化臭素(BrCl)等を挙げることができる。熱分解によりこれらのハロゲン化合物を発生する化合物、又はこれらの混合物を用いることもできる。好ましくは塩化水素である。
気相脱灰は、ハロゲン化合物と不活性ガスとを混合して使用してもよい。不活性ガスは、植物由来のチャーを構成する炭素成分と反応しないガスであれば特に制限されない。例えば、窒素、ヘリウム、アルゴン、クリプトン、又はそれらの混合ガスを挙げることができる。好ましくは窒素である。
気相脱灰において、ハロゲン化合物と不活性ガスとの混合比は、十分な脱灰が達成できる限り、限定されるものではないが、例えば不活性ガスに対するハロゲン化合物の量は0.01〜10.0体積%であり、好ましくは0.05〜8.0体積%であり、さらに好ましくは0.1〜5.0体積%である。
気相脱灰の温度は、脱灰の対象物である植物由来のチャーにより変えることが好ましいが、例えば500〜950℃、好ましくは600〜940℃、より好ましくは650〜940℃、さらに好ましくは850〜930℃で実施することができる。脱灰温度が低すぎると、脱灰効率が低下し、十分に脱灰できないことがある。脱灰温度が高くなりすぎると、ハロゲン化合物による賦活が起きることがある。
気相脱灰の時間は、特に制限されるものではないが、例えば5〜300分であり、好ましくは10〜200分であり、より好ましくは20〜150分である。
本実施形態における気相脱灰は、植物由来のチャーに含まれているカリウム、鉄等を除去するものである。気相脱灰処理後に得られる炭素前駆体に含まれるカリウム含有量は0.1重量%以下が好ましく、0.05重量%以下がより好ましく、0.03重量%以下がさらに好ましい。気相脱灰処理後に得られる炭素前駆体に含まれる鉄含有量は0.02重量%以下が好ましく、0.015重量%以下がより好ましく、0.01重量%以下がさらに好ましい。炭素前駆体に含まれるカリウムや鉄の含有量が多くなると、得られる炭素質材料を用いた非水電解質二次電池において、脱ドープ容量が小さくなることがある。また、非脱ドープ容量が大きくなることがある。さらに、これらの金属元素が電解液中に溶出し、再析出した際に短絡が生じ、非水電解質二次電池の安全性に大きな問題が生じることがある。
気相脱灰の対象となる植物由来のチャーの粒子径は、特に限定されるものではないが、粒子径が小さすぎる場合、除去されたカリウム等を含む気相と、植物由来のチャーとを分離することが困難になり得ることから、粒子径の平均値の下限は100μm以上が好ましく、300μm以上がより好ましく、500μm以上が更に好ましい。また、粒子径の平均値の上限は10000μm以下が好ましく、8000μm以下がより好ましく、5000μm以下が更に好ましい。
気相脱灰に用いる装置は、植物由来のチャーとハロゲン化合物を含む気相とを混合しながら加熱できる装置であれば、特に限定されない。例えば、流動炉を用い、流動床等による連続式又はバッチ式の層内流通方式を用いることができる。気相の供給量(流動量)は特に限定されないが、例えば植物由来のチャー1g当たり1ml/分以上、好ましくは5ml/分以上、さらに好ましくは10ml/分以上の気相を供給する。
レーザーラマン分光法により観測されるラマンスペクトルにおいて、気相脱灰後に得られる炭素前駆体の1360cm-1付近のピークの半値幅の値は230〜260cm-1の範囲にあることが好ましく、235〜250cm-1の範囲にあることがより好ましい。ラマンスペクトルの1360cm-1付近のピークの半値幅は、炭素質材料の非晶質の量を表すと考えられる。ピークの半値幅の値が小さすぎる場合には、非晶質の量が少ないため、その後の焼成工程により収束することのできる構造が少なく、炭素前駆体の有する微細欠陥を収束により軽減できないことがある。一方、半値幅の値が大きすぎる場合には、その後の焼成工程により収束することのできる非晶質の量が多すぎて、その結果、得られた炭素質材料を用いた非水電解質二次電池の電気抵抗が大きくなることがある。
なお、ラマンスペクトルは後述する方法を用いて測定することができる。本明細書において、半値幅とは、半値全幅(FWHM)を示す。1360cm-1付近のピークは、Dバンドと呼ばれ、炭素材料における非弾性散乱を伴う二重共鳴効果によってラマンスペクトルに現れるピークである。
炭素前駆体は、必要に応じて粉砕工程、分級工程を経て、平均粒子径を調製される。粉砕工程、分級工程は、脱灰処理の後、実施することが好ましい。
粉砕工程では、炭素前駆体を、焼成工程後の平均粒子径が例えば3〜30μmの範囲になるように粉砕する。すなわち、本実施形態の炭素質材料の平均粒子径を、例えば3〜30μmの範囲になるように調製する。
炭素前駆体は、後述する熱処理工程を実施しても溶解しないため、粉砕工程の順番は、脱灰工程後であれば特に限定されない。炭素質材料の比表面積の低減の観点から、焼成工程の前に実施することが好ましい。しかしながら、焼成工程後に粉砕工程を実施することを排除するものではない。
粉砕工程に用いる粉砕機は特に限定されるものではなく、例えばジェットミル、ボールミル、ハンマーミル、又はロッドミルなどを使用することができる。微粉の発生が少ない観点からは、分級機能を備えたジェットミルが好ましい。ボールミル、ハンマーミル、又はロッドミルなどを用いる場合は、粉砕工程後に分級を行うことで微粉を取り除くことができる。
分級工程によって、炭素質材料の平均粒子径をより正確に調製することが可能となる。例えば、粒子径が1μm以下の粒子を除くことが可能となる。
分級方法は、特に制限されないが、例えば篩を用いた分級、湿式分級、乾式分級を挙げることができる。湿式分級機としては、例えば重力分級、慣性分級、水力分級、遠心分級等の原理を利用した分級機を挙げることができる。乾式分級機としては、沈降分級、機械的分級、遠心分級等の原理を利用した分級機を挙げることができる。
粉砕工程と分級工程は、1つの装置を用いて実施することもできる。例えば、乾式の分級機能を備えたジェットミルを用いて、粉砕工程と分級工程を実施することができる。更に、粉砕機と分級機とが独立した装置を用いることもできる。この場合、粉砕と分級とを連続して行うこともできるが、粉砕と分級とを不連続に行うこともできる。
炭素前駆体と揮発性有機物との混合物を焼成することによって、本実施形態の炭素質材料が得られる。炭素前駆体と揮発性有機物とを混合して焼成することにより、得られる炭素質材料の比表面積を低減させることができ、非水電解質二次電池用の負極材として好適な比表面積とすることができる。更に、炭素質材料への二酸化炭素の吸着量を調製することができる。
揮発性有機物は、常温で固体状態であり、残炭率が5%未満である有機物であることが好ましい。揮発性有機物は、植物由来のチャーから製造される炭素前駆体の比表面積を低減させることのできる揮発物質(例えば、炭化水素系ガスやタール)を発生させるものが好ましい。なお、揮発性有機物において、比表面積を低減させることのできる揮発物質(例えば、炭化水素系ガス、又はタール成分)の含量は特に限定されるものではない。
揮発性有機物としては、例えば熱可塑性樹脂、低分子有機化合物が挙げられる。具体的には、熱可塑性樹脂としては、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル等を挙げることができる。なお、この明細書において、(メタ)アクリルとは、メタクリルとメタアクリルの総称である。低分子有機化合物としては、トルエン、キシレン、メシチレン、スチレン、ナフタレン、フェナントレン、アントラセン、ピレン等を挙げることができる。焼成温度下で揮発し、熱分解した場合に炭素前駆体の表面を酸化賦活しないものが好ましいことから、熱可塑性樹脂としてはポリスチレン、ポリエチレン、ポリプロピレンが好ましい。低分子有機化合物としては、さらに安全上の観点から常温下において揮発性が小さいことが好ましく、ナフタレン、フェナントレン、アントラセン、ピレン等が好ましい。
残炭率は、試料を不活性ガス中で強熱した後の強熱残分の炭素量を定量することにより測定する。強熱とは、揮発性有機物およそ1g(この正確な重量をW1(g)とする)を坩堝に入れ、1分間に20リットルの窒素を流しながら坩堝を電気炉にて、10℃/分の昇温速度で常温から800℃まで昇温、その後800℃で1時間強熱する。このときの残存物を強熱残分とし、その重量をW2(g)とする。
次いで上記強熱残分について、JIS M8819に定められた方法に準拠して元素分析を行い、炭素の重量割合P1(%)を測定する。残炭率P2(%)は以下の式により算出する。
Figure 0005957631
本実施形態において焼成される混合物は、特に限定されるものではないが、好ましくは炭素前駆体と揮発性有機物とを97:3〜40:60の重量比で含む混合物である。炭素前駆体と揮発性有機物との混合量は、より好ましくは95:5〜60:40、更に好ましくは93:7〜80:20である。例えば、揮発性有機物が3重量部以上であると比表面積を十分に低減させることができる。一方、揮発性有機物が多すぎると、比表面積の低減効果が飽和し、揮発性有機物を無駄に消費してしまうことがあるため好ましくない。
炭素前駆体と揮発性有機物との混合は、粉砕工程の前あるいは粉砕工程の後のいずれの段階で行ってもよい。
粉砕工程の前に混合する場合には、炭素前駆体と揮発性有機物とを計量しながら、粉砕装置に同時に供給することにより粉砕と混合を同時に行うことができる。
粉砕工程の後に混合する場合には、混合方法は両者が均一に混合される手法であれば、公知の混合方法を用いることができる。揮発性有機物は、粒子の形状で混合されることが好ましいが、粒子の形や粒子径は特に限定されない。揮発性有機物を粉砕された炭素前駆体に均一に分散させる観点からは、揮発性有機物の平均粒子径は好ましくは0.1〜2000μm、より好ましくは1〜1000μm、更に好ましくは2〜600μmである。
上述した混合物は、炭素前駆体及び揮発性有機物以外の他の成分を含んでいてもよい。例えば、天然黒鉛、人造黒鉛、金属系材料、合金系材料、又は酸化物系材料を含むことができる。他の成分の含有量は、特に限定されるものではないが、好ましくは炭素前駆体と揮発性有機物との混合物100重量部に対して、50重量部以下であり、より好ましくは30重量部以下であり、更に好ましくは20重量部以下であり、最も好ましくは10重量部以下である。
本実施形態の製造方法における焼成工程は、炭素前駆体と揮発性有機物との混合物を800〜1400℃で焼成する。
焼成工程は、
(a)粉砕された混合物を、800〜1400℃で焼成し、本焼成を行う焼成工程、を具備していてもよく、
(b)粉砕された混合物を、350℃以上800℃未満で予備焼成し、その後800〜1400℃で本焼成を行う焼成工程、を具備していてもよい。
焼成工程(a)を実施する場合、本焼成の工程で炭素前駆体へのタール成分及び炭化水素系ガスの被覆が起こると考えられる。焼成工程(b)を実施する場合には、予備焼成の工程で炭素前駆体へのタール成分及び炭化水素系ガスの被覆が起こると考えられる。
以下に、本発明の一実施形態として、予備焼成及び本焼成の手順の一例を説明するが、本発明はこれに制限されるものではない。
(予備焼成)
本実施形態における予備焼成工程は、例えば粉砕された混合物を350℃以上800℃未満で焼成することによって行うことができる。予備焼成工程によって、揮発分(例えばCO2、CO、CH4、H2等)とタール分とを除去できる。予備焼成工程後に実施する本焼成工程における揮発分やタール分の発生を軽減でき、焼成機の負担を軽減することができる。
予備焼成工程は、350℃以上で実施することが好ましく、400℃以上で実施することがより好ましい。予備焼成工程は、通常の予備焼成の手順に従って実施することができる。具体的には、予備焼成は、不活性ガス雰囲気中で行うことができる。不活性ガスとしては、窒素、アルゴン等を挙げることができる。また、予備焼成は、減圧下で実施してもよく、例えば、10kPa以下で行うことができる。予備焼成の時間も特に限定されるものではないが、例えば0.5〜10時間の範囲で実施することができ、1〜5時間がより好ましい。
(本焼成)
本焼成工程は、通常の本焼成の手順に従って行うことができる。本焼成を行うことにより、非水電解質二次電池用炭素質材料を得ることができる。
具体的な本焼成工程の温度は、800〜1400℃であり、好ましくは1000〜1350℃であり、より好ましくは1100〜1300℃である。本焼成は、不活性ガス雰囲気下で実施する。不活性ガスとしては、窒素、アルゴン等を挙げることができ、ハロゲンガスを含有する不活性ガス中で本焼成を行うことも可能である。また、本焼成工程は、減圧下で行うこともでき、例えば、10kPa以下で実施することも可能である。本焼成工程を実施する時間は特に限定されるものではないが、例えば0.05〜10時間で行うことができ、0.05〜8時間が好ましく、0.05〜6時間がより好ましい。
本実施形態で得られる非水電解質二次電池用炭素質材料は、窒素吸着BET3点法により求められる比表面積が、1m2/g〜10m2/gであり、好ましくは1.2m2/g〜9.5m2/gであり、より好ましくは1.4m2/g〜9.0m2/gである。小さすぎる比表面積では、炭素質材料へのリチウムイオンの吸着量が少なくなり、非水電解質二次電池の充電容量が少なくなることがある。高すぎる比表面積では、リチウムイオンが炭素質材料の表面で反応し、リチウムイオンの利用効率が低くなることがある。
本実施形態で得られる炭素質材料は、広角X線回折法からBragg式を用いて算出される(002)面の平均面間隔d002が、0.38nm以上0.40nm以下の範囲にあり、0.381nm以上0.389nm以下の範囲にあることが好ましい。(002)面の平均面間隔d002が小さすぎる場合には、リチウムイオンが炭素質材料に挿入される際の抵抗が大きくなることがあり、出力時の抵抗が大きくなることがあり、リチウムイオン電池としての入出力特性が低下することがある。また、炭素質材料が膨張収縮を繰り返すため、電池材料としての安定性を損なうことがある。平均面間隔d002が大きすぎる場合には、リチウムイオンの拡散抵抗は小さくなるものの、炭素質材料の体積が大きくなり、体積あたりの実行容量が小さくなることがある。
本実施形態で得られる炭素質材料が含む窒素原子量は、少ないほどよいが、通常、元素分析によって得られた分析値より、0.5重量%以下であることが好ましい。窒素原子量が多すぎると、リチウムイオンと窒素とが反応し、リチウムイオン効率を低下させるだけでなく、保存中に空気中の酸素と反応することがある。
本実施形態で得られる炭素質材料が含む酸素原子量は、少ないほどよいが、通常、元素分析によって得られた分析値より、0.25重量%以下であることが好ましい。酸素原子量が多すぎると、リチウムイオンと酸素とが反応し、リチウムイオン効率を低下させるだけでなく、空気中の酸素、水分を誘引し、炭素質材料と反応する確率を高めるだけでなく、水を吸着したとき、容易に脱離させないなど、リチウム効率が低下することがある。
レーザーラマン分光法により観測されるラマンスペクトルにおいて、焼成工程後に得られる炭素質材料の1360cm-1付近のピークの半値幅の値は、175〜190cm-1の範囲にあることが好ましく、175〜180cm-1の範囲にあることがより好ましい。炭素質材料の1360cm-1付近のピークの半値幅が上記の範囲にあることによって、リチウムクラスターが形成されやすくなり、導電性を確保できやすくなり、実効容量として十分な放電特性を発揮しやすくなる。なお、リチウムクラスターとは、リチウムイオン間の相互作用によりリチウムイオンが集合し、ひとつの塊となった状態を示し、リチウムイオンはリチウムクラスターを形成しつつ吸蔵される。リチウムイオンは、リチウムイオン及びリチウムクラスターの状態で吸蔵されるが、リチウムクラスターを形成することによってより高い電池特性を得ることができると考えられる。
焼成前の炭素前駆体のレーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値と、焼成後に得られる炭素質材料の1360cm-1付近のピークの半値幅の値との差は、50cm-1以上84cm-1以下である。半値幅の値は55cm-1以上83cm-1以下であることがより好ましく、60cm-1以上80cm-1以下であることがさらに好ましい。半値幅の値の差が50cm-1以上であると、焼成による炭素の構造収束により、結晶が発達し、充放電における効率が高くなりやすい。さらに、炭素質材料の微細孔が閉塞されやすく、炭素質材料の吸湿性が低下しやすくなる。従って、本実施形態の炭素質材料は、非水電解質二次電池用炭素質材料として好ましい。一方、焼成前後の半値幅の差が大きくなりすぎると、炭素の構造の収束により、新たな欠陥が発生することがあり、充放電の効率が低下することがある。さらに、炭素質材料の吸湿性が高まり、電解液の加水分解に伴う酸の発生や水の電気分解によるガスの発生が問題を引き起こすことがあり、炭素質材料の劣化が生じることがあり、電極材料としての保存安定性が低下することがある。
本実施形態で得られる炭素質材料の平均粒子径(Dv50)は、好ましくは3〜30μmである。平均粒子径が小さすぎると、微粉が増加し、炭素質材料の比表面積が増加する。その結果、炭素質材料と電解液との反応性が高くなり、不可逆容量が増加し、正極の容量が無駄になる割合が増加することがある。ここで不可逆容量とは、非電解質二次電池に充電した容量のうち、放電しない容量である。平均粒子径が小さすぎる炭素質材料を用いて負極電極を製造した場合、炭素質材料間に形成される空隙が小さくなり、電解液中のリチウムの移動が制限されることがあるため、好ましくない。炭素質材料の平均粒子径は、より好ましくは4μm以上、特に好ましくは5μm以上である。平均粒子径が30μm以下の場合、粒子内でのリチウムの拡散自由行程が少なく、急速な充放電が可能となり好ましい。更に、リチウムイオン二次電池では、入出力特性の向上には電極面積を大きくすることが重要であり、そのため電極調製時に集電板への活物質の塗工厚みを薄くする必要がある。塗工厚みを薄くするには、活物質の粒子径を小さくする必要がある。このような観点から、平均粒子径の上限としては30μm以下が好ましいが、より好ましくは19μm以下であり、更に好ましくは17μm以下であり、更に好ましくは16μm以下、最も好ましくは15μm以下である。
(非水電解質二次電池用負極)
本実施形態の非水電解質二次電池用負極は、本発明の非水電解質二次電池用炭素質材料を含むものである。
以下において、本実施形態の非水電解質二次電池用の負極の製造方法を具体的に述べる。本実施形態の負極電極は、本発明の炭素質材料に結合剤(バインダー)を添加し、適当な溶媒を適量添加、混練し、電極合剤とした後に、金属板等からなる集電板に塗布・乾燥後、加圧成形することにより製造することができる。
本発明の炭素質材料を用いることにより、導電助剤を添加しなくとも高い導電性を有する電極を製造することができる。更に高い導電性を賦与することを目的として、必要に応じて電極合剤の調製時に、導電助剤を添加することができる。導電助剤としては、導電性のカーボンブラック、気相成長炭素繊維(VGCF)、ナノチューブ等を用いることができる。導電助剤の添加量は、使用する導電助剤の種類によっても異なるが、添加する量が少なすぎると期待する導電性が得られないことがあり、多すぎると電極合剤中の分散が悪くなることがある。このような観点から、添加する導電助剤の好ましい割合は0.5〜10重量%(ここで、活物質(炭素質材料)量+バインダー量+導電助剤量=100重量%とする)であり、更に好ましくは0.5〜7重量%、特に好ましくは0.5〜5重量%である。結合剤としては、PVDF(ポリフッ化ビニリデン)、ポリテトラフルオロエチレン、及びSBR(スチレン・ブタジエン・ラバー)とCMC(カルボキシメチルセルロース)との混合物等の電解液と反応しないものであれば特に限定されない。中でもPVDFは、活物質表面に付着したPVDFがリチウムイオン移動を阻害することが少なく、良好な入出力特性を得るために好ましい。PVDFを溶解し、スラリーを形成するためにN−メチルピロリドン(NMP)等の極性溶媒を好ましく用いられるが、SBR等の水性エマルジョンやCMCを水に溶解して用いることもできる。結合剤の添加量が多すぎると、得られる電極の抵抗が大きくなることがあるため、電池の内部抵抗が大きくなり電池特性を低下させることがある。また、結合剤の添加量が少なすぎると、負極材料の粒子相互間及び集電材との結合が不十分となることがある。結合剤の好ましい添加量は、使用するバインダーの種類によっても異なるが、例えばPVDF系のバインダーでは好ましくは3〜13重量%であり、更に好ましくは3〜10重量%である。一方、溶媒に水を使用するバインダーでは、SBRとCMCとの混合物など、複数のバインダーを混合して使用することが多く、使用する全バインダーの総量として0.5〜5重量%が好ましく、更に好ましくは1〜4重量%である。
電極活物質層は、集電板の両面に形成されることが基本であるが、必要に応じて片面に形成されてもよい。電極活物質層が厚いほど、集電板やセパレータ等が少なくて済むため、高容量化には好ましい。しかし、対極と対向する電極面積が広いほど入出力特性の向上に有利なため、電極活物質層が厚すぎると入出力特性が低下することがある。好ましい活物質層(片面当たり)の厚みは、10〜80μmであり、更に好ましくは20〜75μm、特に好ましくは20〜60μmである。
(非水電解質二次電池)
本実施形態の非水電解質二次電池は、本発明の非水電解質二次電池用負極を含むものである。本発明の炭素質材料を使用した非水電解質二次電池用負極電極を用いた非水電解質二次電池は、優れた出力特性及び優れたサイクル特性を示す。
本実施形態の負極材料を用いて、非水電解質二次電池用の負極電極を形成した場合、正極材料、セパレータ、及び電解液など電池を構成する他の材料は特に限定されることなく、非水溶媒二次電池として従来使用され、あるいは提案されている種々の材料を使用することが可能である。
例えば、正極材料としては、層状酸化物系(LiMO2と表されるもので、Mは金属:例えばLiCoO2、LiNiO2、LiMnO2、又はLiNixCoyMoz2(ここでx、y、zは組成比を表わす))、オリビン系(LiMPO4で表され、Mは金属:例えばLiFePO4など)、スピネル系(LiM24で表され、Mは金属:例えばLiMn24など)の複合金属カルコゲン化合物が好ましく、これらのカルコゲン化合物を必要に応じて混合してもよい。これらの正極材料を適当なバインダーと電極に導電性を付与するための炭素材料とともに成形して、導電性の集電材上に層形成することにより正極が形成される。
これらの正極及び負極と組み合わせて用いられる非水溶媒型電解液は、一般に非水溶媒に電解質を溶解することにより形成される。非水溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、γ−ブチルラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、又は1,3−ジオキソラン等の有機溶媒を、一種又は二種以上を組み合わせて用いることができる。また、電解質としては、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiCl、LiBr、LiB(C654、又はLiN(SO3CF32等が用いられる。
非水電解質二次電池は、一般に上記のようにして形成した正極層と負極層とを必要に応じて不織布、その他の多孔質材料等からなる透液性セパレータを介して対向させ電解液中に浸漬させることにより形成される。セパレータとしては、二次電池に通常用いられる不織布、その他の多孔質材料からなる透過性セパレータを用いることができる。あるいはセパレータの代わりに、もしくはセパレータと一緒に、電解液を含浸させたポリマーゲルからなる固体電解質を用いることもできる。
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。なお、以下に非水電解質二次電池用炭素質材料の物性値の測定法を記載するが、実施例を含めて、本明細書中に記載する物性値は、以下の方法により求めた値に基づくものである。
(窒素吸着法による比表面積測定)
以下にBETの式から誘導された近似式を記す。
Figure 0005957631
上記の近似式を用いて、液体窒素温度における、窒素吸着による3点法によりvmを求め、次式により試料の比表面積を計算した。
Figure 0005957631
このとき、vmは試料表面に単分子層を形成するに必要な吸着量(cm3/g)、vは実測される吸着量(cm3/g)、p0は飽和蒸気圧、pは絶対圧、cは定数(吸着熱を反映)、Nはアボガドロ数6.022×1023、a(nm2)は吸着質分子が試料表面で占める面積(分子占有断面積)である。
具体的には、日本BELL社製「BELL Sorb Mini」を用いて、以下のようにして液体窒素温度における炭素材料への窒素の吸着量を測定した。粒子径約5〜50μmに粉砕した炭素材料を試料管に充填し、試料管を−196℃に冷却した状態で、一旦減圧し、その後所望の相対圧にて炭素材料に窒素(純度99.999%)を吸着させる。各所望の相対圧にて平衡圧に達した時の試料に吸着した窒素量を吸着ガス量vとした。
(X線回折法による平均層面間隔d002測定)
「株式会社リガク製MiniFlexII」を用い、炭素質材料粉末を試料ホルダーに充填し、Niフィルターにより単色化したCuKα線を線源とし、X線回折図形を得た。回折図形のピーク位置は重心法(回折線の重心位置を求め、これに対応する2θ値でピーク位置を求める方法)により求め、標準物質用高純度シリコン粉末の(111)面の回折ピークを用いて補正した。CuKα線の波長を0.15418nmとし、以下に記すBraggの公式によりd002を算出した。
Figure 0005957631
(ラマンスペクトル)
株式会社堀場製作所製、LabRAM ARAMISを用い、レーザー波長532nmの光源を用いて、ラマンスペクトルを測定した。試験は、各サンプルにおいて無作為に3箇所の粒子をサンプリングし、さらにサンプリングした各粒子内から2箇所について測定した。測定条件は、波長範囲50〜2000cm-1、積算回数1000回であり、計6箇所の平均値を計測値として算出した。
半値幅は、上記測定条件にて得られたスペクトルに対し、Dバンド(1360cm-1付近)とGバンド(1590cm-1付近)とのピーク分離を、ガウス関数でフィッティングして実施した後、測定した。
(残炭率の測定)
残炭率は、試料を不活性ガス中で強熱した後の強熱残分の炭素量を定量することにより測定した。強熱は、揮発性有機物およそ1g(この正確な重量をW1(g)とする)を坩堝にいれ、1分間に20リットルの窒素を流しながら坩堝を電気炉にて、10℃/分の昇温速度で常温から800℃まで昇温、その後800℃で1時間強熱した。このときの残存物を強熱残分とし、その重量をW2(g)とした。
次いで上記強熱残分について、JIS M8819に定められた方法に準拠して元素分析を行い、炭素の重量割合P1(%)を測定した。残炭率P2(%)は以下の式により算出した。
Figure 0005957631
(調製例1)
椰子殻を破砕し、500℃で乾留して、粒径2.360〜0.850mmの椰子殻チャー(粒径2.360〜0.850mmの粒子を98重量%含有)を得た。この椰子殻チャー100gに対して、塩化水素ガスを1体積%含む窒素ガスを10L/分の流量で供給しながら870℃で50分間気相脱灰処理を実施した。その後、塩化水素ガスの供給のみを停止し、窒素ガスを10L/分の流量で供給しながら、さらに900℃で30分間気相脱酸処理を実施し、炭素前駆体を得た。
得られた炭素前駆体を、ボールミルを用いて平均粒子径10μmに粗粉砕した後、コンパクトジェットミル(株式会社セイシン企業製、コジェットシステムα―mkIII)で粉砕及び分級し、平均粒径9.6μmの炭素前駆体を得た。得られた炭素前駆体のレーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値は245cm-1であった。
(調製例2)
気相脱灰処理温度及び気相脱酸処理温度を900℃に変更した以外は、調製例1と同様にして、炭素前駆体を得た。得られた炭素前駆体のレーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値は237cm-1であった。
(調製例3)
気相脱灰処理温度及び気相脱酸処理温度を980℃に変更した以外は、調製例1と同様にして、炭素前駆体を得た。得られた炭素前駆体のレーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値は220cm-1であった。
(調製例4)
気相脱灰処理温度及び気相脱酸処理温度を800℃に変更した以外は、調製例1と同様にして、炭素前駆体を得た。得られた炭素前駆体のレーザーラマン分光法により観測されるラマンスペクトルの1360cm-1付近のピークの半値幅の値は267cm-1であった。
(実施例1)
調製例2で調製した炭素前駆体9.1gと、ポリスチレン0.9g(積水化成品工業株式会社製、平均粒径400μm、残炭率1.2重量%)を混合した。この混合物10gを、黒鉛製鞘(縦100mm、横100mm、高さ50mm)に入れ、株式会社モトヤマ製高速昇温炉中、毎分5Lの窒素流量下、毎分60℃の昇温速度で1290℃まで昇温した後、11分間保持し、自然冷却した。炉内温度が200℃以下に低下したことを確認し、炉内から焼成物を取り出した。回収された炭素質材料は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭化物の物性を表1に示す。
(実施例2)
調製例1で調製した炭素前駆体を用いた以外は、実施例1と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(実施例3)
焼成温度を1270℃に変更した以外は、実施例1と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(実施例4)
焼成温度を1270℃に変更した以外は、実施例2と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(実施例5)
焼成温度を1300℃に変更した以外は、実施例1と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(実施例6)
焼成温度を1300℃に変更した以外は、実施例2と同様にして、炭素質材料を得た。炭素質材料の回収量は、8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(比較例1)
調製例3で調製した炭素前駆体9.1gと、ポリスチレン0.9g(積水化成品工業株式会社製、平均粒径400μm、残炭率1.2重量%)とを混合した。この混合物10gを、黒鉛製鞘(縦100mm、横100mm、高さ50mm)に入れ、株式会社モトヤマ製高速昇温炉中、毎分5Lの窒素流量下、毎分60℃の昇温速度で1290℃まで昇温、その後11分間保持した後、自然冷却した。炉内温度が200℃以下に低下したことを確認し、炉内から炭素質材料を取り出した。回収された炭素質材料は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(比較例2)
調製例4で調製した炭素前駆体を使用した以外は、比較例1と同様にして、炭素質材料を得た。炭素質材料の回収量は8.1gであり、炭素前駆体に対する回収率は89%であった。得られた炭素質材料の物性を表1に示す。
(電極の作製方法)
実施例1〜6、比較例1〜2で得られた炭素質材料をそれぞれ用いて、以下の手順に従って負極電極の作製を行った。
リチウムイオンキャパシタ負極用炭素質材料92質量部、アセチレンブラック2質量部、PVDF(ポリフッ化ビニリデン)6質量部及びNMP(N−メチルピロリドン)90質量部を混合し、スラリーを得た。厚さ14μmの銅箔に、得られたスラリーを塗布し、乾燥後プレスして、厚さ60μmの電極を得た。得られた電極の密度は、0.9〜1.1g/cm3であった。
(電池初期容量及び充放電効率)
上記で作製した電極を作用極とし、金属リチウムを対極及び参照極として使用した。溶媒として、エチレンカーボネートとメチルエチルカーボネートとを、体積比で3:7となるように混合して用いた。この溶媒に、LiPF6を1mol/L溶解し、電解質として用いた。セパレータにはガラス繊維不織布を使用した。アルゴン雰囲気下のグローブボックス内で電気化学セルを作製した。
上記構成のリチウム二次電池について、充放電試験装置(東洋システム株式会社製、「TOSCAT」)を用いて充放電試験を行った。リチウムのドーピングは、活物質質量に対し70mA/gの速度で行い、リチウム電位に対して1mVになるまでドーピングした。更にリチウム電位に対して1mVの定電圧を8時間印加して、ドーピングを終了した。このときの容量(mAh/g)を充電容量とした。次いで、活物質重量に対し70mA/gの速度で、リチウム電位に対して2.5Vになるまで脱ドーピングを行い、このとき放電した容量を放電容量とした。放電容量/充電容量の百分率を充放電効率(初期の充放電効率)とし、電池内におけるリチウム効率の指標とした。
また、7日後に再度同様の電池性能を測定し、放電容量、充電容量、充放電効率を測定した。初期の充放電効率の値に対する、7日後の充放電効率の値を、効率維持率(%)とし、炭素質材料の劣化に対する耐久性の指標とした。
得られた電池性能を表2に示す。
表1における、焼成前後の半値幅の差は、焼成前の半値幅(炭素前駆体の半値幅の値)と焼成後の半値幅(炭素質材料の半値幅の値)との差である。
Figure 0005957631
Figure 0005957631
実施例1〜6で得られた炭素質材料を用いると、充電容量及び放電容量は、比較例1〜2で得られた炭素質材料と同等の値が得られた。この値は満足できるレベルであった。また、実施例1〜6で得られた炭素質材料の吸湿量は、比較例1〜2の炭素質材料よりも低減できた。さらに、実施例1〜6で得られた炭素質材料を用いると、充放電効率が良好であり、7日後の効率維持率も良好となった。
本発明の炭素質材料を用いた非水電解質二次電池は、良好な充放電容量とともに、さらに低い吸湿性とを有し、炭素質材料の劣化が生じにくい。従って、長寿命が求められるハイブリッド自動車(HEV)及び電気自動車(EV)等の車載用途に特に用いることができる。

Claims (4)

  1. 非水電解質二次電池用の負極用炭素質材料の製造方法であって、
    炭素前駆体と揮発性有機物とを800〜1400℃の不活性ガス雰囲気下で焼成し、炭素質材料を得る工程、
    を具備し、
    広角X線回折法においてBragg式を用いて算出される、前記炭素質材料の(002)面の平均面間隔d002が0.38〜0.40nmの範囲にあり、
    窒素吸着BET3点法により求めた前記炭素質材料の比表面積が1〜10m2/gの範囲にあり、
    ラマンスペクトルにおいて観察される前記炭素前駆体の1360cm-1付近のピークの半値幅の値と、前記炭素質材料の1360cm-1付近のピークの半値幅の値との差が50〜84cm-1であ
    前記炭素前駆体が植物由来であり、
    前記揮発性有機物が熱可塑性樹脂又は低分子有機化合物である、
    非水電解質二次電池用の負極用炭素質材料の製造方法。
  2. ラマンスペクトルにおいて観察される前記炭素質材料の1360cm-1付近のピークの半値幅の値が、175〜190cm-1の範囲にある、
    請求項1に記載の非水電解質二次電池用の負極用炭素質材料の製造方法。
  3. 前記揮発性有機物は、常温で固体状態であり、残炭率が5重量%未満である、
    請求項1又は2に記載の非水電解質二次電池用の負極用炭素質材料の製造方法。
    ここで、残炭率とは、前記揮発性有機物1gを、不活性ガス中で常温から10℃/分の昇温速度で800℃まで昇温した後、800℃で1時間灰化して得た残存物の重量と前記残存物の炭素含有率との積により定まる数値である。
  4. ラマンスペクトルにおいて観察される前記炭素前駆体の1360cm-1付近のピークの半値幅の値が、230〜260cm-1の範囲にある、
    請求項1〜のいずれか1項に記載の非水電解質二次電池用の負極用炭素質材料の製造方法。
JP2014039741A 2014-02-28 2014-02-28 非水電解質二次電池用炭素質材料の製造方法 Active JP5957631B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014039741A JP5957631B2 (ja) 2014-02-28 2014-02-28 非水電解質二次電池用炭素質材料の製造方法
PCT/JP2015/000734 WO2015129200A1 (ja) 2014-02-28 2015-02-17 非水電解質二次電池用炭素質材料の製造方法
TW104106149A TWI644859B (zh) 2014-02-28 2015-02-26 非水電解質二次電池用碳質材料之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014039741A JP5957631B2 (ja) 2014-02-28 2014-02-28 非水電解質二次電池用炭素質材料の製造方法

Publications (2)

Publication Number Publication Date
JP2015164110A JP2015164110A (ja) 2015-09-10
JP5957631B2 true JP5957631B2 (ja) 2016-07-27

Family

ID=54186954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014039741A Active JP5957631B2 (ja) 2014-02-28 2014-02-28 非水電解質二次電池用炭素質材料の製造方法

Country Status (1)

Country Link
JP (1) JP5957631B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017296B2 (ja) * 2015-10-30 2022-02-08 株式会社クラレ 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極および非水電解質二次電池
US10734650B2 (en) 2015-10-30 2020-08-04 Kuraray Co., Ltd. Carbonaceous material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing carbonaceous material for non-aqueous electrolyte secondary battery
JP7017297B2 (ja) * 2015-10-30 2022-02-08 株式会社クラレ 非水電解質二次電池用炭素質材料の製造方法
CN116936798A (zh) * 2015-10-30 2023-10-24 株式会社可乐丽 非水电解质二次电池用碳质材料、非水电解质二次电池用负极和非水电解质二次电池
WO2017104145A1 (ja) * 2015-12-16 2017-06-22 国立大学法人東京大学 リチウムイオン二次電池
WO2018034155A1 (ja) 2016-08-16 2018-02-22 株式会社クラレ 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法
JP7032857B2 (ja) * 2016-12-27 2022-03-09 株式会社クラレ 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法
US11492260B2 (en) * 2017-07-06 2022-11-08 Kuraray Co., Ltd. Carbonaceous material for negative electrode active material for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and production method of carbonaceous material
KR102591739B1 (ko) * 2017-07-06 2023-10-19 주식회사 쿠라레 비수 전해질 이차 전지의 부극 활물질용의 탄소질 재료, 비수 전해질 이차 전지용 부극, 비수 전해질 이차 전지 그리고 탄소질 재료의 제조 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2176452C (en) * 1996-05-13 2008-12-02 Qiming Zhong Method for reducing the surface area of carbonaceous powders
JP3565994B2 (ja) * 1996-06-28 2004-09-15 呉羽化学工業株式会社 非水溶媒系二次電池の電極用炭素質材料およびその製造方法、並びに非水溶媒系二次電池
JP2004253363A (ja) * 2002-12-26 2004-09-09 Hitachi Ltd 非水系電解液リチウム二次電池及び負極材
JP5533912B2 (ja) * 2007-04-04 2014-06-25 ソニー株式会社 二次電池用電極材料及びその製造方法、並びに、電気二重層キャパシタ用材料及びその製造方法
KR20130030769A (ko) * 2010-06-18 2013-03-27 비티알 뉴 에너지 머티리얼즈 인코포레이티드 리튬이온 전지의 복합경질 탄소부극재료 및 그의 제조방법
JP2011029197A (ja) * 2010-09-21 2011-02-10 Hitachi Chem Co Ltd リチウム二次電池用負極炭素材料、その製造法、リチウム二次電池用負極及びリチウム二次電池

Also Published As

Publication number Publication date
JP2015164110A (ja) 2015-09-10

Similar Documents

Publication Publication Date Title
JP5957631B2 (ja) 非水電解質二次電池用炭素質材料の製造方法
JP5270050B1 (ja) 複合黒鉛粒子およびその用途
KR101552089B1 (ko) 비수전해질 이차 전지 부극용 탄소질 재료 및 그의 제조 방법
JP6910296B2 (ja) 満充電して用いる非水電解質二次電池用の難黒鉛化炭素質材料、その製造方法、非水電解質二次電池用負極材、および満充電された非水電解質二次電池
TWI644859B (zh) 非水電解質二次電池用碳質材料之製造方法
JP6456474B2 (ja) 非水電解質二次電池用混合負極材料の製造方法及びその製造方法によって得られる非水電解質二次電池用混合負極材料
JP6612507B2 (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
CN104428926A (zh) 非水电解质二次电池用负极电极
JP2015179666A (ja) 非水電解質二次電池用炭素質材料およびその製造方法、非水電解質二次電池用負極ならびに非水電解質二次電池
US20180261875A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode and manufacturing method of same
JP2015130324A (ja) 非水電解液二次電池
WO2018034155A1 (ja) 非水電解質二次電池の負極活物質用の炭素質材料、非水電解質二次電池用負極、非水電解質二次電池ならびに炭素質材料の製造方法
JP2016178049A (ja) リチウムイオン二次電池用炭素質材料
JP2016152225A (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
JP2016152223A (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
JP6396040B2 (ja) リチウム二次電池用負極材料及びその製造方法、並びに該負極材料を用いたリチウム二次電池用負極及びリチウム二次電池
JP2019008910A (ja) 非水電解質二次電池用難黒鉛化炭素質材料、非水電解質二次電池用負極および非水電解質二次電池
JP4026972B2 (ja) リチウム二次電池用負極材料の製造方法
KR102663370B1 (ko) 만충전하여 사용하는 비수 전해질 이차 전지용의 난흑연화 탄소질 재료, 그 제조 방법, 비수 전해질 이차 전지용 부극재, 및 만충전된 비수 전해질 이차 전지
JP6590493B2 (ja) 非水電解質二次電池用微細炭素質材料の製造方法
JP2016152224A (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
JP2016152226A (ja) 非水電解質二次電池用炭素質材料、非水電解質二次電池用負極ならびに非水電解質二次電池
JP2020087670A (ja) 非水電解質二次電池負極用炭素質材料の製造方法
JP2016207464A (ja) 非水電解質二次電池用炭素質材料及びその製造方法、非水電解質二次電池用負極ならびに非水電解質二次電池
JP2021172584A (ja) 炭素質材料、その製造方法、および電気化学デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150727

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150727

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160309

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160419

R150 Certificate of patent or registration of utility model

Ref document number: 5957631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350