WO2018221944A1 - 폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품 - Google Patents

폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품 Download PDF

Info

Publication number
WO2018221944A1
WO2018221944A1 PCT/KR2018/006111 KR2018006111W WO2018221944A1 WO 2018221944 A1 WO2018221944 A1 WO 2018221944A1 KR 2018006111 W KR2018006111 W KR 2018006111W WO 2018221944 A1 WO2018221944 A1 WO 2018221944A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
reaction
mol
reactor
dicarboxylic acid
Prior art date
Application number
PCT/KR2018/006111
Other languages
English (en)
French (fr)
Inventor
이유진
김성기
이부연
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Priority to EP18809897.4A priority Critical patent/EP3632953A4/en
Priority to US16/615,500 priority patent/US11447603B2/en
Priority to CN201880013921.8A priority patent/CN110382591A/zh
Priority to JP2019565538A priority patent/JP7194123B2/ja
Publication of WO2018221944A1 publication Critical patent/WO2018221944A1/ko
Priority to US17/886,182 priority patent/US11713373B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/80Solid-state polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances

Definitions

  • the present invention relates to a polyester resin capable of providing a resin molded article exhibiting high transparency despite a thick thickness, a method for producing the same, and a resin molded article formed therefrom.
  • PET Polyethylene terephthalate
  • PET Polyethylene terephthalate
  • PET is represented by polyester resins
  • the high crystallinity requires a high temperature during processing and there is a problem that the transparency of the molded product is poor.
  • PET does not have good heat resistance, resulting in a problem that the shape of the bottle shaped PET is deformed during the high temperature filling process of the beverage.
  • bottle heat crystallization process and heat settling process before and after the bottle forming may increase the heat resistance of the bottle, but this decreases the transparency of the bottle.
  • isosorbide i sosorbide
  • isosorbide is attracting attention as a comonomer applicable to PET due to the fact that it is a vegetable raw material, can increase the glass transition temperature, and can improve the mechanical strength after the solid state polymerization.
  • the present invention is to provide a polyester resin and a method for producing the same.
  • the present invention is to provide a resin molded article exhibiting high transparency even when formed from the polyester resin and manufactured to a thick thickness.
  • dicarboxylic acid black containing terephthalic acid or a derivative thereof is polymerized with a derivative thereof and a diuretic containing isosorbide and ethylene glycol, and dicarboxylic acid or A polyester resin having a structure in which an acid moiety derived from a derivative and a diol moiety derived from a diol are repeated, wherein the diol moiety derived from isosorbide is 6 to 5 to the total diol moiety derived from diol .
  • the polyester resin according to the embodiment of the present invention has a melting point during the first scan through DSC, and can be molded by stretching, and has a specimen having a thickness of 6 mm. It is manufactured to exhibit a haze of less than 3% to enable the provision of a transparent resin molded article having a thick thickness. Accordingly, the polyester resin may provide a resin molded article suitable for various applications such as a hot fill jar and a high pressure vessel.
  • polyester resin according to a specific embodiment of the present invention, a method for manufacturing the same, and a resin molded article formed therefrom will be described.
  • dicarboxylic acid black derivatives comprising terephthalic acid black derivatives thereof and diols containing isosorbide and ethylene glycol are polymerized, and dicarboxylic acid black is derived from derivatives thereof.
  • a polyester resin having a structure in which the diol portion derived from an acid moiety and the diol repeat, and this induced "diol portion from children Sound carbide from 6 to 12 mol% based on the total diol portion derived from a diol, diethylene from glycol
  • the diol fraction derived is 2 to 5 mol%, has a melting point in the first scan through a differential scanning calorimeter (DSC) and is measured according to ASTM D1003-97 for specimens having a thickness of 6 mm obtained from the polyester resin.
  • a polyester resin having a haze of less than 3> is provided.
  • PET represented by polyester resin
  • the crystallinity of the polymer chain is high, thereby forming crystals, and thus, melting points exist during the first scan through DSC.
  • PET has a low glass transition temperature and its application has been limited in applications requiring high heat resistance such as high temperature bottles (Hot f l l bott le).
  • the existing polymer backbone A method of introducing isosorbide has been introduced.
  • residues derived from isosorbide lowered the regularity of the polymer chain and lowered the crystallization rate of the resin.
  • the polyester resin should include a large amount of the diol portion derived from isosorbide, but due to the diol portion derived from the large amount of isosorbide, a problem of inability to function as a crystalline resin has been caused. .
  • Amorphous resins cannot be molded by stretching because of their low molecular structure, and in particular, existing PET processing equipment cannot be used. Due to this problem, there was a limitation in the amount of isosorbide that can be introduced into the polymer backbone.
  • the glass transition temperature is less than 85 ° C and does not exhibit a sufficient heat resistance.
  • Low isosorbide content may not achieve the desired level in terms of heat resistance, since glass transition temperatures are usually required to be at least 85 ° C for applications such as hot fill bottles.
  • PET resin can improve heat resistance and mechanical strength through an additional heat treatment process after injection molding, but in this case, the heat generated crystal causes haze In general, the haze was observed with the naked eye, and there was a limitation in using it for food containers or bottles.
  • the polyester resin according to the embodiment includes a diol moiety derived from isosorbide and diethylene glycol in the above-mentioned range, and exhibits excellent heat resistance and mechanical properties, despite the thick wall thickness.
  • a resin molded article showing high transparency can be provided.
  • the polyester resin according to the embodiment has an advantage that the existing PET processing equipment can be used because the melting point is present in the primary scan through the DSC and can be formed by stretching.
  • the polyester resin according to an embodiment of the present invention has a haze of less than 3%, less than 2.5%, less than 2%, less than 1.5% or less according to ASTM D1003-97 when manufactured with a specimen having a thickness of 6 mm. May be less than 1.0%.
  • the polyester resin according to one embodiment of the present invention may not be observed at all when manufactured with a specimen having a thickness of 6 mm, the lower limit of the haze may be ⁇ %.
  • dicarboxylic acid black derivatives thereof including (a) terephthalic acid black derivatives thereof, and from 6.5 mol to 25 moles of isosorbide and 80 mol to 100 mol of total dicarboxylic acid black derivatives thereof
  • esterification reaction or transesterification reaction of diols comprising 200 moles of ethylene glycol
  • esterification or transesterification so as to dissolve in orthochlorophenol at a concentration of 1.2 g / dl for 15 minutes at 150 ° C. to achieve an intrinsic viscosity of 0.45 dl / g to 0.75 dl / g at 35 ° C.
  • the polyester resin may be prepared through a polycondensation reaction of the reaction product.
  • the preparation method of the polyester resin may be carried out in a batch, semi-continuous or continuous manner, the esterification reaction black transesterification reaction and the polycondensation reaction is preferably carried out under an inert gas atmosphere.
  • the mixing of the polyester resin and other additives may be a simple mixing or a mixing through extrusion.
  • the solid phase polymerization reaction may be subsequently performed.
  • crystallizing the polymer produced by (c) polycondensation reaction (melt polymerization) after step (b); And (d) intrinsic viscosity measured at 35 ° C. for 15 minutes at 150 ° C. in a concentration of 1.2 g / dl in orthochlorophenol, at 0. 10 to 0.40 dl / g may further comprise solid phase polymerizing the crystallized polymer to reach high values.
  • dicarboxylic acid or derivative thereof refers to one or more compounds selected from dicarboxylic acids and derivatives of dicarboxylic acids.
  • a derivative of dicarboxylic acid is an alkyl ester of dicarboxylic acid (lower alkyl ester having 1 to 4 carbon atoms such as monomethyl, monoethyl, dimethyl, diethyl or dibutyl ester) It means anhydride.
  • terephthalic acid or a derivative thereof is selected from the group consisting of terephthalic acid; Monoalkyl or dialkyl terephthalates; And compounds that react with diol to form a terephthaloyl moiety, such as terephthalic anhydride.
  • the dicarboxylic acid black (i) is mainly used as a derivative thereof terephthalic acid or a derivative thereof. Specifically, as (i) dicarboxylic acid or derivatives thereof, terephthalic acid or derivatives thereof may be used alone. In addition, (i) dicarboxylic acid or derivatives thereof include terephthalic acid or derivatives thereof, dicarboxylic acids other than terephthalic acid or derivatives thereof or derivatives thereof, aromatic dicarboxylic acids having 8 to 14 carbon atoms or derivatives thereof and carbon atoms of 4 to 14 The aliphatic dicarboxylic acid black of 12 to 12 may be used in combination of one or more selected from the group consisting of derivatives thereof.
  • aromatic dicarboxylic acids having 8 to 14 carbon atoms or derivatives thereof include naphthalene dicarboxylic acids such as isophthalic acid, dimethyl isophthalate, phthalic acid, dimethyl phthalate, phthalic anhydride, 2,6-naphthalene dicarboxylic acid, dimethyl 2, Aromatic dicarboxylic acids or derivatives thereof commonly used in the production of polyester resins such as dialkyl naphthalene dicarboxylates such as 6'naphthalene dicarboxylate and diphenyl dicarboxylic acid may be included.
  • naphthalene dicarboxylic acids such as isophthalic acid, dimethyl isophthalate, phthalic acid, dimethyl phthalate, phthalic anhydride, 2,6-naphthalene dicarboxylic acid, dimethyl 2
  • Aromatic dicarboxylic acids or derivatives thereof commonly used in the production of polyester resins such as dialkyl naphthalene dicarboxylate
  • the aliphatic dicarboxylic acid black of 12 or its derivatives includes cyclonucleic acid dicarboxylic acids such as 1,4-cyclonucleic acid dicarboxylic acid, 1,3-cyclonucleic acid dicarboxylic acid, dimethyl 1,4-cyclonucleic acid dicarboxylic acid Cyclonucleic acid dicarboxylates such as carboxylate, dimethyl 1,3-cyclonucleic acid dicarboxylate, sebacic acid, succinic acid, isodecyl succinic acid, maleic acid, maleic anhydride, fumaric acid, adipic acid, glutaric acid, azela Linear, branched or cyclic aliphatic dicarboxylic acids or derivatives thereof commonly used in the preparation of polyester resins such as diacids may be included.
  • cyclonucleic acid dicarboxylic acids such as 1,4-cyclonucleic acid dicarboxylic acid, 1,3-cyclonucleic
  • dicarboxylic acid or derivatives thereof are terephthalic acid black derivatives thereof
  • dicarboxylic acid black silver derivatives of at least 50 mol%, 60 mol%, 70 mol%, 80 mol% It may contain more than or 90 mol% subphase.
  • dicarboxylic acid black is 0 to 50 mol%, 0 mol% relative to the derivative thereof Greater than 50 mol3 ⁇ 4> or less than 0.1 to 40 mol%. Within this content range it can be produced a polyester resin that implements the proper physical properties.
  • the isosorbide i sosorbide, 1, 4: 3, 6 ⁇ di anhydrogluci tol
  • the isosorbide has a diol portion derived from isosorbide 6 to 12 relative to the total diol portion derived from the diol of the prepared polyester resin It is used to be mol%.
  • the isosorbide is 100 moles of the total dicarboxylic acid or a derivative thereof. It can be used in the range of 6.5 to 25 moles relative to. If the content of isosorbide exceeds the above range, the melting point does not exist during the first scan through DSC, making it difficult to process through stretching, and if it is below the above range, it does not exhibit sufficient heat resistance and mechanical strength and haze occurs. Can be.
  • the melting point is present during the first scan through DSC and the specimen has a thickness of 6 ⁇ .
  • a ' polyester resin showing high transparency can be provided.
  • the content of diuretic moieties derived from diethylene glycol introduced into the polyester resin is not directly proportional to the content of ethylene glycol used for the production of the polyester resin.
  • ethylene glycol may be used in an amount of 80 to 200 moles based on 100 moles of the total dicarboxylic acid or derivatives thereof such that 2 to 5 mole% of the diol portion derived from diethylene glycol is relative to the total diol portion derived from the diol of the polyester resin. Can be used as a mole. If the content of the diol portion derived from diethylene glycol introduced into the polyester resin exceeds the above range, it does not exhibit a sufficient heat resistance and haze may occur if it is below the above range.
  • the diol (ii) may include a compound commonly used in the preparation of other dilopolyester resins in addition to isosorbide and ethylene glycol, for example, aromatic dicarbon having 8 to 40 or 8 to 33 carbon atoms, 2 to 20 blacks may include 2 to 12 aliphatic diol blacks and their combinations and the like. >
  • aromatic diol examples include polyoxyethylene-(2.0) -2,2-bis (4-hydroxyphenyl) propane, polyoxypropylene _ (2.0) -2,2-ti 1s (4-hydroxy) Phenyl propane, polyoxypropylene— (2.2) -polyoxyethylene (2.0) -2, 2-bis (4-haohydroxyphenyl) propane, polyoxyethylene- (2.3) -2,2-w 1 s ( 4-hydroxyphenyl propane, polyoxypropylene-(6) -2,2 1s (4-hydroxyphenyl propane, polyoxypropylene-(2.3) -2,2-ti 1s (4-hydroxyphenyl propane , Polyoxypropylene-(2.4) -2,2-ti 1s (4-hydroxyphenyl propane, polyoxypropylene ⁇ (3.3) -2,2-ti 1s (4-hydroxyphenyl propane, polyoxye Ethylene oxide and // such as halene _ (3.0) -2,2-ti 1s (4—hydroxyphenyl propane, polyoxyethylene— (6)
  • Linear, branched or cyclic aliphatic diols such as 1,3-cyclonucleodimethanol, 1,4-cyclonucleodimethanol, tetramethylcyclobutanediol and the like can be exemplified.
  • the (H) diol may be included in the form of a combination of two or more of the above-mentioned diels, for example, the 1,4—cyclonucleic acid in the isosorbide and ethylene glycol.
  • Dimethanol, polyoxyethylene- (2.0) -2,2-bis (4-hydroxyphenyl) propane and the like may be included alone or in combination of two or more thereof.
  • the content of other diols used for improving physical properties in addition to isosorbide and ethylene glycol is, for example, 0 to 50 mol% or 0.1 to . 30 mol% can be adjusted.
  • dicarboxylic acid black (i) dicarboxylic acid or derivatives thereof such that (ii) the molar ratio of diol to 1.01 or more relative to its derivatives ( ii) DI can be added to the reactor.
  • the diol (ii) may be fed into the reactor at one time before the polymerization reaction, or may be added during the polymerization reaction several times black if necessary.
  • dicarboxylic acid black in the initial reaction, (i) dicarboxylic acid black may be prepared to produce a polyester resin that satisfies a specific molecular weight distribution by controlling the initial dose of the derivative and (ii) the diol in a specific range.
  • dicarboxylic acid when used as (i) dicarboxylic acid or derivative thereof, the initial mixed molar ratio of diol to (G) dicarboxylic acid is 1: 1.01 to 1.05 (I) dicarboxylic acid alkyl ester 3 ⁇ 4 or dicarboxylic acid or derivatives thereof.
  • derivatives such as dicarboxylic acid anhydride
  • polycarboxylic acid black can adjust the initial mixed molar ratio of (ii) diol to 1: 2.0-1: 2.1 with respect to its derivative (s).
  • This initial mixed molar ratio may refer to the mixed molar ratio at the time of initiation of the polymerization reaction in the reactor, during which further (i) dicarboxylic acids or derivatives thereof and / or (ii) diols will be added as needed. It may be.
  • the catalyst may be used in the (a) esterification reaction or transesterification reaction.
  • Such catalysts include methylate of sodium and magnesium; Zn, Cd. Acetates, borates, fatty acids, carbonates, alkoxy salts such as Mn, Co, Ca, Ba, and Ti; Metal Mg; Oxides, such as Pb, Zn, Sb, Ge, etc. can be illustrated.
  • the ( a ) esterification reaction or transesterification reaction may be carried out in a batch, semi-continuous or continuous, each raw material may be added separately, but dicarboxylic acid black in the diol is its Preference is given to adding the derivatives in the form of a compatible slurry. '
  • the polycondensation catalyst in the product after banung complete a stabilizer, a colored agent, crystal, antioxidants, different topic (branching agent) and the like.
  • the input timing of the above-described additives is not limited to this may be added at any point of the i dwal production step of the polyester resin.
  • the polycondensation catalyst one or more of conventional titanium, germanium, antimony, aluminum, tin compound, etc. may be appropriately selected and used.
  • Useful titanium-based catalysts include tetraethyl titanate, acetyltripropyl titanate, tetrapropyl titanate, tetrabutyl titanate, polybutyl titanate, 2-ethylnucleosil titanate, octylene glycol titanate, lactate titanate , Triethanolamine titanate, acetyl acetonate titanate, ethyl acetoacetic ester titanate, isostearyl titanate, titanium dioxide, titanium dioxide / silicon dioxide copolymer, A titanium dioxide / zirconium dioxide copolymer round can be illustrated.
  • useful germanium-based catalysts include germanium dioxide and copolymers using the same.
  • the stabilizer phosphorus-based compounds such as phosphoric acid, trimethyl phosphate and triethyl phosphate are generally used, and the amount of the stabilizer is 10 to 200 ppm based on the weight of the final polymer (polyester resin) based on the amount of phosphorus element. If the amount of the stabilizer is less than 10 ppm, the stabilization effect is insufficient, and the color of the polymer may be changed to yellow. If the amount is more than 200 ppm, the desired high polymerization degree and the polymer may not be obtained.
  • a colorant added to improve the color of the polymer conventional colorants such as cobalt acetate and cobalt propionate can be exemplified, and the addition amount thereof is based on the amount of cobalt element and the final polymer (polyester resin) 10 to 200 ppm by weight.
  • anthraquionone-based compounds and perrin may be used as perinone-based compounds, azo-based compounds, methine-based compounds, etc.
  • Toner may be used such as Cl Synient's Polysynthren Blue RLS or Cl Orient's Solvaperm Red BB.
  • the addition amount of the organic compound colorant may be adjusted to 0 to 50 ppm relative to the final polymer weight. If the colorant is used in a content outside the above range, the yellow color of the polyester resin may not be sufficiently covered or the physical properties may be reduced.
  • crystallizing agent examples include crystal nucleating agents, ultraviolet absorbers, polyolefin resins, polyamide resins, and the like.
  • antioxidants examples include hindered phenolic antioxidants, phosphite antioxidants, thioether antioxidants, and mixtures thereof.
  • the branching agent is a conventional branching agent having three or more functional groups, for example, trimellitic anhydride, trimethylol propane, trimellitic acid Black can illustrate these mixtures, etc.
  • the ( a ) esterification reaction or transesterification reaction is 150 to 300 ° C or 200 to 270 ° C temperature and 0 to 10.0 kgf / cm 2 (0 to 7355.6 ⁇ Hg), 0 to 5.0 kgf / cm 2 (0 to 367 that 8mmHg) graphite is 0.1 naeja 3.0 kgf / It may be carried out under pressure conditions of cm 2 (73.6 to 2206.7 Pa Hg).
  • the pressures listed outside the parentheses refer to gauge pressures (in kgf / cm 2 ) and the pressures in parentheses refer to absolute pressures (in 3 ⁇ 4).
  • the reaction time (average residence time) is usually 1 to 24 hours, black to 2 to 8 hours, and may vary depending on the reaction temperature, pressure, and molar ratio of dieul to dicarboxylic acid or derivative thereof used.
  • the product obtained through the esterification or transesterification reaction may be made of a polyester resin of higher polymerization degree through polycondensation reaction.
  • the polycondensation reaction may be performed at 150 to 300 ° C, 200 to 290 ° C or Temperatures of 250 to 29 TC and 0.01 to 400 mmHg, 0.05 to 100 Pa Hg black are carried out under reduced pressure conditions of 0.1 to 10 Pa Hg.
  • the pressure here means the range of absolute pressure.
  • the decompression conditions of 0.01 to 400 Pa Hg are for removing glycol and the like and isosorbide, which are byproducts of the polycondensation reaction. Therefore, when the decompression condition is out of the above range, there is a fear that the removal of by-products and untreated water is insufficient. Moreover, when the said polycondensation reaction temperature is out of the said range, there exists a possibility that the physical property of a polyester resin may fall.
  • the polycondensation reaction is carried out for a necessary time until the desired intrinsic viscosity is reached, for example, for an average residence time of 1 to 24 hours.
  • the esterification reaction is intentionally subjected to a vacuum reaction at the end of the transesterification reaction or at the beginning of the polycondensation reaction, that is, when the viscosity of the resin is not sufficiently high.
  • a vacuum reaction at the end of the transesterification reaction or at the beginning of the polycondensation reaction, that is, when the viscosity of the resin is not sufficiently high.
  • the polycondensation reaction reaction pre-esterification reaction black is about 400 to ImmHg or about Unreacted substances, such as isosorbide remaining in a polyester resin, can be removed effectively by leaving it to stand for 0.2 to 3 hours at 200-3 Pa Hg reduced-pressure conditions.
  • the temperature of the product may be controlled to be equal to or between the esterification reaction black and the transesterification reaction temperature and the polycondensation reaction temperature.
  • the contents of the non-reactive raw material flowing out of the system were added, thereby reducing the content of the unreacted material of the isosorbed dung remaining in the polyester resin.
  • the stratified polyester resin can be obtained more effectively.
  • the intrinsic viscosity of the polymer after the polycondensation reaction is preferably 0.45 to 0.75 dl / g.
  • the inherent viscosity of the polymer after polycondensation reaction is 0.45 to 0.75 dl / g, 0.45 to 0.70 dl / g or 0.50 to 0.65 dl / g. I can regulate it. If the intrinsic viscosity of the polymer is less than 0.45 dl / g after the polycondensation reaction, the reaction rate in the solid phase polymerization reaction is significantly lowered, a polyester resin having a very high molecular weight distribution is obtained, and the intrinsic viscosity is 0.75 dl / g.
  • the intrinsic viscosity of the polymer after the polycondensation reaction can be adjusted to 0.65 to 0.75 dl / g. If the intrinsic viscosity is less than 0.65 dl / g, it is difficult to provide a polyester resin with excellent heat resistance and transparency due to the high crystallization rate due to the low molecular weight polymer, the melt during melt polymerization if the intrinsic viscosity exceeds 0.75 dl / g As the viscosity increases, the possibility of discoloration of the polymer due to shear stress between the stirrer and the reactor increases. Bubanung substances such as acetaldehyde will also increase.
  • the steps (a) and (b) it can be prepared a polyester resin according to one embodiment. Then, if necessary, after the (b) polycondensation reaction step, (C) the crystallization step and (d) the solid phase polymerization step may be further performed to provide a polyester resin having a higher degree of polymerization.
  • the polymer obtained through the polycondensation reaction (b) is discharged out of the reaction vessel to granulate.
  • the method of granulation is a strand type, which is a strand cut ting method that is extruded into a hexagonal solution after solidification in an extruded liquid, or an underwater cut ting that is cut by a cutter by dipping the die hole into the liquid solution and extruding directly into the liquid solution. Law can be used.
  • the Strand cut ting method keeps the coolant and temperature low, so that the Strand is solidified so that there is no problem in cutting.
  • the temperature of the water at the time of washing is preferably the same as the glass transition temperature of the polymer or about 5 to 20 ° C, which is lower than black, and may not be preferable because fusion may occur at higher silver. If the particles of the polymer induced crystallization at the time of discharge, fusion does not occur even at a temperature higher than the glass transition temperature, so the temperature of water may be set according to the degree of crystallization.
  • Water washing of the granulated polymer enables removal of raw materials that are dissolved in water in uncoated raw materials. The smaller the particles, the larger the surface area relative to the weight of the particles, so the size of the particles is advantageous. To achieve this stack, the particles can be prepared to have an average weight of about 14 mg or less.
  • the granulated polymer undergoes a crystallization step to prevent fusion in the solid phase polymerization reaction. It can proceed in an atmosphere of inert gas, water vapor, inert gas atmosphere containing water vapor or in solution, and crystallize from 110 ° C to 180 ° C black at 120 " C to 180 ° C.
  • the rate of formation is too slow, and if the temperature is high, the surface of the particles melts faster than the rate at which crystals are formed, causing the particles to stick together and generate fusion.
  • the crystallization of the particles increases the heat resistance of the particles, it is also possible to crystallize the crystallization by dividing the crystallization into several steps and increasing the temperature step by step.
  • the solid state polymerization reaction may be carried out in an inert gas atmosphere such as nitrogen, carbon dioxide, argon or at a reduced pressure of 400 to 0.01 mmHg and a temperature of 180 to 22 CTC for an average residence time of 1 hour or more, preferably 10 hours or more.
  • the molecular weight is further increased through the solid state polymerization reaction, and cyclic oligomers, acetaldehyde, etc. generated during the reaction with the remaining raw materials which are not reacted in the molten reaction reaction can be removed.
  • the solid phase polymerization may be performed until the intrinsic viscosity reaches 0.10 to 0.40 dl / g higher than the intrinsic viscosity of the resin obtained in the polycondensation reaction step. Can be. If the difference between the intrinsic viscosity of the resin after the solid state polymerization reaction and the intrinsic viscosity of the resin before the solid state polymerization reaction is less than 0.1 dl / g, the effect of improving the polymerization degree is not obtained.
  • the difference in intrinsic viscosity of the reaction resin exceeds 0.40 dl / g, the molecular weight distribution becomes wider, and it may not show sufficient heat resistance, and the content of low-molecular-weight polymers increases relatively, and the possibility of haze increases as the crystallization rate increases. .
  • the intrinsic viscosity of the resin is 0. 10 to 0.40 dl / g higher than the intrinsic viscosity of the resin before the solid state polymerization reaction, 0.70 dl / g or more, 0.70 to 1.0 dl / g, black is 0.70 to 0.95 dl / g This can be done until the value of is reached. Solid phase polymerization until the intrinsic viscosity of this range is reached can narrow the molecular weight distribution of the polymer, thereby lowering the crystallization rate during molding. Thereby, heat resistance and crystallinity can be improved, without reducing transparency.
  • the polyester resin prepared according to the above-described method has a structure in which an acid moiety derived from dicarboxylic acid or a derivative thereof and a diol moiety derived from diol are repeated.
  • the acid moiety and the diol moiety refer to a residue in which a dicarboxylic acid or a derivative thereof and a diol are polymerized to remove hydrogen, a hydroxyl group or an alkoxy group from them.
  • the polyester resin is prepared according to the above-described method is 6 to 12 mol% of the diol portion derived from isosorbide relative to the total diol portion derived from the diol, the diol portion derived from diethylene glycol is 2 to It is 5 mol%, has a melting point in the first scan through DSC, and can exhibit haze of less than 3% when fabricated with 6 mm thick specimens.
  • the diol moiety derived from the diethylene glycol may be one in which two ethylene glycols react to form diethylene glycol, and such diethylene glycol is introduced by reacting with dicarboxylic acid or a derivative thereof.
  • Polyester resin according to an embodiment of the present invention has a high heat resistance and mechanical properties, including a diol portion derived from diethylene glycol in the above-described content range as prepared by the above-described method and high transparency despite the thick thickness
  • the resin molded article which shows can be provided.
  • the polyester resin may have a number average molecular weight (Mn) of about 15, 000 to 50, 000 g / mol or about 18, 000 to 40, 000 g / mol.
  • the polyester resin may have a weight average molecular weight (Mw) of about 50, 000 to .150, 000 g / mol black and about 60, 000 to 110, 000 g / mol.
  • the molecular weight distribution (PDI) of the polyester resin may be 2.5 to 4.0 black 2.8 to 3.85. If the molecular weight is less than the above range, the bottle, sheet, multilayer sheet, stretched film or the fiber is not stretched in a difficult way to secure the desired mechanical properties, and if the molecular weight exceeds the above range, the molding processability may be lowered.
  • the polyester resin may have a melting point (Tm) of about 200 to 250 ° C., about 200 to 240 ° C., and black to 210 to 236 ° C. measured at the first scan through a differential scanning calorimeter (DSC). Within this range, the polyester resin has appropriate crystallinity, exhibits good heat resistance and mechanical properties, and can be processed at an appropriate temperature so that there is no fear of yellowing.
  • Tm melting point
  • DSC differential scanning calorimeter
  • the polyester resin may have a glass transition temperature (Tg) of about 85 ° C. or more, 85 ° C. to 95 ° C., or black 85 ° C. to 92 ° C. Within these ranges, it can be used for applications such as hot fill jars, and can exhibit good physical properties of polyester resins without yellowing.
  • Tg glass transition temperature
  • the polyester resin according to the exemplary embodiment of the present invention may provide a resin molded article having excellent heat resistance and mechanical properties and exhibiting high transparency while having a thick wall thickness. Accordingly, the polyester resin may be utilized in various fields, and particularly, it is expected to be useful in bottles, hot fill jars, high pressure containers, sheets, stretched films, and textile applications due to its excellent heat resistance and transparency.
  • a resin molded article formed from the polyester resin is pored.
  • the resin molded article may have a very thick wall thickness of 4.5 mm or more, 4.5 mm to 30 mm, 4.5 mm to 10 mm 3, 4.5 mm to 7 mm, and black about 6 mm. Nevertheless, the resin molded article can exhibit very high transparency.
  • the resin molded article may be a bottle, a hot fill jar, a high pressure container, a sheet, a stretched film, or a fiber.
  • Intrinsic Viscosity Samples were prepared in 0—chlorophenol at a concentration of 1.2 g / dl. After dissolving at 150 ° C. for 15 minutes, the inherent viscosity of the sample was measured using a Ubbelohde viscous tube. Specifically, the viscosity of the viscous tube is maintained at 35 ° C., the time it takes for the solvent to pass between certain internal sections of the viscous tube (efflux time) t 0 and the time for the solution ion to pass (t) Was obtained. Then, the specific viscosity was calculated by substituting the t 0 value and the t value into Equation 1, and the intrinsic viscosity was calculated by substituting the calculated specific viscosity value into Equation 2.
  • Equation 2 A was 0.247, and c was 1.2 g / dl as the Huggins constant.
  • Tm and Tg of the polyester resins prepared in Examples and Comparative Examples were measured by differential scanning calor imetry (DSC).
  • DSC differential scanning calor imetry
  • a measuring device a DSC 1 model manufactured by Mettler Toledo was used. Specifically, the polyester resin sample to be used for analysis was dried for 5 to 10 hours in a nitrogen atmosphere at 120 ° C using a dehumidifying dryer (Model name D2T of Moreto Co., Ltd.). Thus, Tm and Tg were measured with water content remaining below 500 ppm in the sample.
  • the sample was rapidly cooled to room temperature, and then heated at a rate of lCrC / min from room temperature to 280 ° C. (second scan) to obtain a DSC curve.
  • the Tg peak (glass transition temperature) value was analyzed in the DSC secondary scan through the gl ass transit ion function in the DSC menu of the STARe software.
  • Tg is defined as the temperature at which the DSC curve obtained during the 2nd scan shows the maximum slope of the curve at the first step of the process, and the temperature range of the scan is -20 ° of the midpoint calculated by the program. C to 15 ° C to 15 ° C to 20 ° C was set.
  • the molecular weight and molecular weight distribution of the polyester resins prepared in Examples and Comparative Examples were measured by Gel Permeat ion Chromatography (GPC). Specifically, 0.03 g of a polyester resin to check the molecular weight in 3 mL of o-chlorophen was dissolved in 15CTC for 15 minutes, and 9 mL of chloroform was added to the sample at room temperature. Then, gel permeation chromatography was performed on the sample using two columns (Shodex LF804) at a flow rate of 0.7 mL / min at a temperature of 40 ° C.
  • GPC Gel Permeat ion Chromatography
  • a 6 ⁇ thick specimen was prepared using the polyester resins prepared in Examples and Comparative Examples, and Haze of the specimen was measured using a CM-3600A measuring device manufactured by Minol ta, by the ASTM D1003-97 measuring method.
  • the pressure of the reactor was lowered over 30 minutes to 5 Torr (absolute pressure: 5 ⁇ Hg) at atmospheric pressure, and at the same time, the temperature of the reactor was increased to 280 ° C. It raises over time and polycondensation reaction was performed, maintaining the pressure of reaction reaction below 1 Torr (absolute pressure: 1 mmHg).
  • the stirring speed is set rapidly. However, as the condensation reaction proceeds, the stirring speed becomes weak due to the increase in the viscosity of the reactants, or when the temperature of the reaction product rises above the set temperature, the stirring speed can be properly adjusted. .
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the complex (melt) in the reaction mixture became 0.60 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the counterunggi to be stranded, and after solidification with a shell angle solution, it was granulated to have an average weight of about 12 to 14 mg.
  • the particles were left to crystallize at 150 ° C for 1 hour, and then charged into a 20 L volume solid state polymerization reactor.
  • Ah Nitrogen was loaded into the reactor at a rate of 50 L / min. At this time, increase the temperature of the counterunggi at a temperature of 40 ° C. / hour to 140 ° C. at room temperature, maintained at 14 ° C. 3 hours, and then heated up at a rate of 40 ° C. / hour to 200 ° C. at 200 ° C. Maintained.
  • the solid phase polymerization reaction proceeded until the intrinsic viscosity (IV) of the particles in the reactor was 0.75 dl / g.
  • the moiety derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin thus prepared.
  • the moiety derived from isosorbide was 6 mol% based on the total diol-derived residue, and the residue derived from ethylene glycol. 91 mol 3 ⁇ 4>, residue from diethylene glycol was 3 mol>.
  • the physical property of the said polyester resin was measured by the method mentioned above.
  • Tm at DSC 1 st scan is 236 ° C, Tg (2 nd scan) 85 ° C, Mn 19,000, Mw 70,000,
  • Example 2 Preparation of Polyester Resin 3215 g terephthalic acid (19.4 mol), 1135 g ethylene glycol (18.3 mol) and 240 g isosorbide (1.6 mol) were added to a 10 L volume reactor with a column and a water cooled condenser. 1.0 g of Ge0 2 as catalyst, 1.46 g of phosphoric acid as stabilizer, 0.7 g of cobalt acetate as colorant, and 100 ppm of trimellitic anhydrate as branching agent (dicarboxylic acid or derivatives thereof).
  • the mixture in the reaction was visually observed to maintain the silver in the reactor at 260 ° C. until the mixture became clear.
  • the nitrogen in the pressurized reaction vessel was discharged to the outside to lower the pressure of the reaction vessel to normal pressure, and then the mixture in the reaction vessel was transferred to a 7 L volume of the reaction vessel capable of vacuum reaction.
  • the pressure of the reaction vessel is lowered over a period of 30 minutes to 5 Torr (absolute pressure: 5 ⁇ Hg) at atmospheric pressure, and at the same time, the temperature of the reaction vessel is raised over an hour until 280 ° C, and the pressure of the reaction vessel is 1
  • the polycondensation reaction was carried out while maintaining below Torr (absolute pressure: 1 Pa Hg).
  • Torr absolute pressure: 1 Pa Hg
  • the stirring speed is set rapidly. However, as the condensation reaction proceeds, the stirring force becomes weak due to the increase in the viscosity of the reactants, or when the temperature of the reaction product rises to the set temperature, the stirring speed can be properly adjusted. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reaction was 0.65 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the counterunggi and stranded.
  • the solids were granulated so as to have an average weight of about 12 to 14 mg after solidification with a liquid solution.
  • the particles were left to crystallize at 150 ° C. for 1 hour and then charged into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was introduced to the reaction vessel at a rate of 50 L / min.
  • the residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin thus prepared, and the residue derived from isosorbide was 6 mol 3 ⁇ 4>, and the residue derived from ethylene glycol 90 mol%, the residue from diethylene glycol were 4 mol%.
  • the physical property of the said polyester resin was measured by the method mentioned above.
  • Tm in DSC 1 st scan is 236: 0, Tg (2 nd scan) 85 ° C, Mn 28,000, Mw 95,000
  • the pressure of the reaction vessel is reduced over 30 minutes to 5 Torr (absolute pressure: 5 ⁇ Hg) at atmospheric pressure, and at the same time, the temperature of the reaction vessel is raised to 280 ° C over 1 hour, and the pressure of the reaction vessel is increased by 1 Torr.
  • the polycondensation reaction was performed, keeping (absolute pressure: 1 PaHg) or less.
  • the stirring speed is set rapidly. However, as the condensation reaction proceeds, the stirring power becomes weak due to the increase in the viscosity of the reaction product. Can be.
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reaction was 0.60 dl / g.
  • the mixture When the intrinsic viscosity of the mixture in the reactor reached the desired level, the mixture was discharged to the outside of the semi-ungunggi strands (strand), and after the solidification with a coolant was granulated to an average weight of about 12 to 14 mg.
  • the particles thus obtained were stored in 70 ° C. water for 5 hours to remove the non-banung raw materials contained in the particles.
  • the particles were left to crystallize at 140 ° C for 3 hours and then charged into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was flowed in the reaction vessel at a rate of 50 L / min. At this time, raising the temperature of the reactor at a rate of 40 ° C / hour from room temperature to 14CTC, was maintained at 140 ° at C and then maintained for 3 hours, 195 ° C 40 ° C / hour 195 ° C the temperature was raised at a rate of up to. The solid phase polymerization reaction was performed until the intrinsic viscosity (IV) of the particles in the reaction vessel became 0.85 dl / g.
  • IV intrinsic viscosity
  • the moiety derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin thus prepared. 10 mole% of the residue derived from isosorbide, 86.5 mole% of the residue derived from ethylene glycol, and 3.5 mole 3/4 of the residue derived from diethylene glycol with respect to the residue.
  • the physical properties of the polyester resin were measured according to the method described above. Tm in the DSC 1 st scan was 220 ° C., Tg (2 nd scan) 90 ° C., Mn 25,000, Mw 83,000, PDI 3.32, Haze 1>. Confirmed.
  • the mixture in the reactor was kept for 2 hours at 220 ° C, to 240 ° C raised over a period of 2 hours. Then, the mixture in the reactor was visually observed and the transesterification reaction proceeded while maintaining the temperature of the reaction vessel at 240 ° C. until the mixture became transparent. In this process, 650 g of by-product were leaked through the column and the condenser. Upon completion of the transesterification reaction, the mixture in the reaction vessel was transferred to a 7 L volume reactor capable of vacuum reaction.
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.60 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the semi-ungunggi strands (strand), and after the solidification with a coolant was granulated to an average weight of about 12 to 14 mg.
  • the particles were left to crystallize at 115 ° C. for 6 hours and then charged to a 20 L volume solid phase reactor. Thereafter, the reaction vessel was nitrogen at 50 L / min rate. At this time, up to the temperature of the half unggi from room temperature to 140 ° C 40 ° C / hour rate, 140 ° and kept for 3 hours at C, the temperature was raised to 40 ° rate of C / hour to 205 ° C 205 ° C Maintained at. The solid phase polymerization reaction was performed until the intrinsic viscosity (IV) of the particles in the reaction vessel became 0.95 dl / g.
  • IV intrinsic viscosity
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the prepared 3 ⁇ 4-ester resin.
  • the residue derived from isosorbide was 6 mol% based on the total diol-derived residue, and the residue derived from ethylene glycol. 91 mole%, the residue derived from diethylene glycol was 3 mole 3 ⁇ 4>.
  • the physical property of the said polyester resin was measured by the method mentioned above.
  • DSC Tm 1 st scan is at 236 '° C, Tg (2 nd scan) 85 ° C, Mn 27,000,. Mw 103,000 PDI 3.81, Haze 1.3%.
  • the temperature of the reactor was raised over 90 minutes to 220 ° C., maintained at 2201 for 2 hours, and then raised to 255 ° C over 2 hours. Then, the mixture in the reaction was visually observed and the esterification reaction was carried out while maintaining the temperature of the reaction at 255 ° C until the mixture became transparent. In the process, 650 g of by-product were leaked through the column and the condenser.
  • the nitrogen in the pressurized reactor was discharged to the outside to lower the pressure of the reaction vessel to atmospheric pressure, and then the mixture in the reaction vessel was transferred to a 7 L volume of the reaction vessel capable of vacuum reaction.
  • the pressure of the reaction vessel was lowered over 30 minutes to 5 Torr (absolute pressure: 5 mmHg) at atmospheric pressure, and at the same time, the temperature of the reaction vessel was raised to 280 ° C over 1 hour, and the pressure of the reaction vessel was increased to 1 Torr ( The polycondensation reaction was performed, keeping absolute pressure: 1 PaHg) or less.
  • the stirring speed is set quickly. However, as the condensation reaction proceeds, the stirring power becomes weak due to the increase in the viscosity of the reaction product or the temperature of the black reaction product rises above the set temperature. have.
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.60 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the counterunggi and stranded, and then granulated with argon shell to give an average weight of about 12 to 14 mg. .
  • the particles were left to crystallize at 140 ° C for 3 hours and then charged into a 20 L volume solid state polymerization reactor. Afterwards, 50 It was held at L / min speed. In this case, raising the temperature of the reactor at a rate of 40 ° C / hour from room temperature to 140 ° C, at 140 ° at C and then maintained for 3 hours and then to 200 ° C temperature was raised at a rate of 40 ° C / hour 200 ° C Maintained. The solid phase polymerization reaction proceeded until the intrinsic viscosity (IV) of the particles in the reactor became 0.90 dl / g.
  • IV intrinsic viscosity
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin thus prepared.
  • Mol%, residue from diethylene glycol was 3.5 mol 3 ⁇ 4 Ltd.
  • the physical property of the said polyester resin was measured by the method mentioned above.
  • Tm at DSC 1 st scan is 236 ° C
  • the esterification reaction was carried out while maintaining at 255 ° C. In the process, 650 g of by-product were leaked through the column and the condenser. When the esterification reaction was completed, the nitrogen in the pressurized reactor was discharged to the outside to lower the pressure of the reaction vessel to normal pressure, and then transferred to a 7 L volume of the reaction vessel capable of vacuum reaction of the mixture in the reaction vessel.
  • the pressure of the reaction vessel was lowered over 10 minutes from the normal pressure to 100 Torr (absolute pressure: 100 Pa Hg), and the pressure was maintained for 1 hour. Thereafter, the temperature of the reaction vessel was raised to 275 ° C. over 1 hour, and the polycondensation reaction was conducted while maintaining the pressure of the reaction vessel at 1 Torr (absolute pressure: 1 Pa Hg) or less.
  • the stirring speed is set rapidly. However, as the polycondensation reaction proceeds, the stirring power becomes weak due to the increase in the viscosity of the reaction product, or when the silver reactant reaches the temperature higher than the set temperature, the stirring speed is properly adjusted. Can be.
  • the polycondensation reaction is intrinsic viscosity (IV) of the complex (melt) in the reactor. It progressed until it became 0.50 dl / g. When the intrinsic viscosity of the mixture in the reactor reached the desired level, the mixture was discharged to the outside of the semi-ungunggi and stranded. The solid was granulated to a solid weight of 12 to 14 mg after solidification with a liquid solution.
  • the particles were left to crystallize at 140 ° C for 3 hours and then charged into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was introduced to the reaction vessel at a rate of 50 L / min. In this case, raising the temperature of the reactor at a rate of 40 ° C / hour from room temperature to 140 ° C, at 140 ° at C and then maintained for 3 hours and then to 190 ° C temperature was raised at a rate of 40 ° C / hour 190 ° C Maintained. The solid phase polymerization reaction was performed until the intrinsic viscosity (IV) of the particles in the reactor became 0.70 dl / g.
  • IV intrinsic viscosity
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residues contained in the polyester resin prepared.
  • the isosorbate-derived residues were 12 mol% based on the total diols and the residues.
  • Mol%, the residue derived from diethylene glycol was 5 mol%.
  • the physical property of the said polyester resin was measured by the method mentioned above.
  • Tm at DSC 1 st scan was found to be 210 ° C., Tg (2 nd scan) 90 ° C., Mn 22,000, Mw 68,000, PDI 3.09, Haze 0.8%.
  • the silver of the reactor was cured over 90 minutes to 22C C, maintained at 220 ° C. for 2 hours, and then raised over 2 hours to 255 ° C. Then, the mixture in the reaction was visually observed and the esterification reaction was carried out while maintaining the temperature of the reaction at 255 ° C until the mixture became transparent. In the process, 650 g of by-product were leaked through the column and the condenser. When the esterification reaction was completed, the nitrogen in the pressurized reaction vessel was discharged to the outside to lower the pressure of the reactor to atmospheric pressure, and then the mixture in the reactor was transferred to a 7 L volume reactor capable of vacuum reaction.
  • the pressure of the reactor was reduced over 30 minutes to 5 Torr (absolute pressure: 5 ⁇ Hg) at atmospheric pressure, and at the same time, the reactor temperature was raised to 270 ° C for 1 hour, and the pressure of the reactor was increased to 1 Torr ( The polycondensation reaction was performed, keeping absolute pressure: 1 PaHg) or less.
  • the stirring speed is set quickly, as the polycondensation reaction proceeds, when the stirring force becomes weak due to the increase in the viscosity of the reactant or the temperature of the black reactant rises above the set temperature, the stirring speed may be properly adjusted.
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.70 dl / g.
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin prepared.
  • the residue derived from isosorbide was 12 mol% and the residue derived from ethylene glycol was 86 with respect to the total diol-derived residue.
  • the mole% and the residue derived from diethylene glycol were 2 mol%.
  • the physical property of the said polyester resin was measured by the method mentioned above.
  • Tm in DSC 1 st scan was found to be 210 ° C., Tg (2 nd scan) 92 ° C., Mn 22,000, Mw 68,000, PDI 3.09, Haze 0.8%.
  • the mixture was kept for 2 hours at 220 ° C, geolcha raised to 260 ° C for 2 hours. Then, the mixture in the reactor was visually observed, and the esterification reaction was performed while maintaining the silver banung group at 260 ° C. until the mixture became transparent. In the process 650 g of by-product were spilled through the condenser. When the esterification reaction was completed, the nitrogen in the pressurized reactor was discharged to the outside to lower the pressure of the reaction vessel to atmospheric pressure, and then the mixture in the reaction vessel was transferred to a reactor having a volume of 7 L capable of vacuum reaction.
  • the reactor pressure was lowered over 30 minutes to 5 Torr (absolute pressure: 5 ⁇ Hg) at atmospheric pressure, and at the same time, the temperature of the reactor was raised to 280 ° C for 1 hour, and the pressure of the reactor was increased to 1 Torr ( The polycondensation reaction was performed, keeping absolute pressure: 1 PaHg) or less.
  • the stirring speed is quickly set. However, as the condensation reaction proceeds, the stirring speed becomes weak due to the increase in the viscosity of the reaction product or when the temperature of the reaction product rises above the set temperature, the stirring speed can be properly adjusted. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.60 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the counterunggi and stranded, which was granulated to have an average weight of about 12 to 14 mg after solidification with a liquid solution.
  • the particles were left to crystallize at 150 ° C. for 1 hour and then charged into a 20 L volume solid state polymerization reactor. Thereafter, the reaction vessel was nitrogen at 50 L / min rate. At this time, hitting the back to the temperature of the half unggi from room temperature to 140 ° C 40 ° C / hour rate, the mixture was kept for 3 hours at 140 ° C, by up to 210 ° C temperature was raised at a rate of 40 ° C / hour 210 ° Maintained at C. The solid phase polymerization reaction proceeded until the intrinsic viscosity (IV) of the particles in the reaction mixture became 0.80 dl / g.
  • IV intrinsic viscosity
  • the residues derived from terephthalic acid were 100 mol> relative to the total acid-derived residues contained in the polyester resin thus prepared, and the residues derived from ethylene glycol were 96.5 mol 3/4, and the residues derived from diethylene glycol 3.5 mol%.
  • the physical properties of the polyester resin were measured according to the above-described method. As a result of DSC 1 st scan and Tm were 250 ° C., Tg (2 nd scan) 70 ° C., Mn 23, 000, Mw 75, 000, PDI 3.26, Haze 10.4% was confirmed.
  • the polycondensation was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.60 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to be stranded (strand), which was granulated with solid solution so that the average weight was about 12 to 14 mg.
  • the particles were left to crystallize for 3 hours at 14 CTC, and then charged into a 20 L solid phase polymerization reactor. Thereafter, the reaction vessel was nitrogen at 50 L / min rate. In this case, raising the temperature of the reactor at a rate of 40 ° C / hour from room temperature to 140 ° C, at 140 ° at C and then maintained for 3 hours and then to 205 ° C temperature was raised at a rate of 40 ° C / hour 205 ° C Maintained. The solid phase polymerization reaction proceeded until the intrinsic viscosity (IV) of the particles in the reaction mixture became 0/75 dl / g.
  • IV intrinsic viscosity
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin prepared.
  • the residue derived from isosorbide was 3 mol% and the residue derived from ethylene glycol was 94 with respect to the total diol-derived residue. Mol%, the residue derived from diethylene glycol was 3 mol%.
  • the physical property of the said polyester resin was measured by the method mentioned above.
  • Tm at DSC 1 st scan is 240 ° C, Tg (2 nd scan) 82 ° C, Mn 20,000, Mw 72,000
  • the pressure of the reactor is reduced over 30 minutes to 5 Torr (absolute pressure: 5 ⁇ Hg) at atmospheric pressure, and at the same time the temperature of the reactor is raised to 280 ° C over 1 hour, and the pressure of the reactor is increased to 1 Torr ( Polycondensation reaction was performed, keeping absolute pressure: 1 mmHg) or less.
  • the stirring speed is set quickly. However, as the polycondensation reaction proceeds, the stirring power becomes weak due to the increase in the viscosity of the reactants or when the temperature of the black reactant goes above the set temperature, the stirring speed is properly adjusted. Can be.
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.40 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the counterunggi to be stranded and granulated so that the average weight was about 12 to 14 mg after solidification with a liquid solution. It was.
  • the particles were left to crystallize at 150 ° C. for 1 hour and then charged into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was introduced into the reactor at a rate of 50 L / min. At this time, the temperature of the counterunggi at room temperature. Up to 140 ° C at a rate of 40 ° C / hour, and maintained at 140 ° C and kept at 3 hours, to 20CTC w at a rate of 40 ° C / hour 200 ° C. The solid phase polymerization reaction was carried out until the intrinsic viscosity (IV) of the particles in the reactor became 0.75 dl / g. Proceeded.
  • IV intrinsic viscosity
  • the residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin thus prepared, and the residue derived from isosorbide was 6 mol 3/4) and the residue derived from ethylene glycol 92 mol%, the residue derived from diethylene glycol was 2 mol%.
  • Tm in DSC 1 st scan is 237 ° C
  • the temperature of the reaction was raised over 90 minutes to 220 ° C., maintained at 22 CTC for 2 hours, and then raised to 260 ° C over 2 hours. Then, the mixture in the reactor was visually observed, and the esterification reaction was carried out while maintaining the temperature of the reaction vessel at 260 ° C. until the mixture became transparent. In the process, 650 g of by-product were leaked through the column and the condenser.
  • the nitrogen in the pressurized reactor is discharged to the outside to lower the pressure of the reactor to atmospheric pressure, and then the mixture in the reactor has a volume of 7 L capable of vacuum reaction. Transferred to the reactor.
  • the pressure of the reactor is reduced over 30 minutes to 5 Torr (absolute pressure: 5 mmHg) at atmospheric pressure, and at the same time the temperature of the reactor is raised to 270 ° C over 1 hour, and the pressure of the reactor is increased to 1 Torr ( Polycondensation reaction was performed, keeping absolute pressure: 1 PaHg) or less.
  • the stirring speed is set quickly. However, as the condensation reaction proceeds, the stirring speed becomes weak due to the increase in the viscosity of the reactant, or when the temperature of the reaction product rises above the set temperature, the stirring speed can be properly adjusted. .
  • the polycondensation reaction was carried out until the intrinsic viscosity (IV) of the complex (melt) in the reactor became 0.50 dl / g.
  • IV intrinsic viscosity
  • the mixture was discharged to the outside of the reactor to be stranded (stranded), and after the solidification with the liquid solution, the average weight was about 12 to 14 mg.
  • the particles were left to crystallize at 140 ° C for 3 hours and then charged into a 20 L volume solid state polymerization reactor. Thereafter, nitrogen was introduced into the reactor at a rate of 50 L / min. At this time, up to the temperature of the half unggi in phase to 140 ° C 40 ° C / hour rate, the mixture was kept for 3 hours at 140 ° C, and at a rate of 40 ° C / hour the temperature was raised to 20CTC was held at 20CTC. The solid phase polymerization reaction proceeded until the intrinsic viscosity (IV) of the particles in the reactor became 0.95 dl / g.
  • IV intrinsic viscosity
  • the total residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin prepared.
  • the residue derived from isosorbide was 6 mol% based on the total diol-derived residue, and the residue derived from ethylene glycol was 88. Mol%, The residue derived from diethylene glycol was 6 mol%.
  • the physical property of the malleable polyester resin was measured by the above-mentioned method.
  • Tm in the DSC 1 st scan was found to be 230 ° C, Tg (2 nd scan) 82 ° C, Mn 26, 000, Mw 107, 000, PDI 4. 12, Haze 1.5%.
  • Comparative Example 5 Preparation of Polyester Resin 3325 g of terephthalic acid (20.0 mol), 1143 g of ethylene glycol (18.4 mol), and 1111 g of isosorbide (7.6 mol) are connected to a 10 L volume reactor with a column and a water-condenser condenser.
  • the pressure of the reaction vessel was lowered over 10 minutes from the normal pressure to 100 Tor r (absolute pressure: 100 mmHg) and maintained at this pressure for 1 hour. Thereafter, the temperature of the reaction vessel was raised to 270 ° C. over 1 hour, and the pressure of the reactor was maintained at 1 Torr (absolute pressure: 1 Pa Hg) or less to conduct a polycondensation reaction.
  • the stirring speed is set rapidly. However, as the polycondensation reaction proceeds, the stirring power becomes weak due to the increase of the viscosity of the reactant or the silver reaction rate of the black reaction product rises above the set temperature. have.
  • the polycondensation reaction proceeded until the intrinsic viscosity (IV) of the complex (melt) in the counterunggi was 0.70 dl / g.
  • the residue derived from terephthalic acid was 100 mol% based on the total acid-derived residue contained in the polyester resin thus prepared.
  • the residue derived from isosorbide was 20 mol% from the total diol-derived residue, cetylene glycol.
  • the residue derived was 77.5 mol 3>, and the residue derived from diethylene glycol was 2.5 mol%.
  • melting point (Tm) was not observed in 1 st scan through DSC, Tg (2 nd scan) 95 ° C, Mn 25,000, Mw 68,000, PDI 2.72 Haze was found to be 0.8%.
  • G / A molar ratio of diol to dicarboxylic acid or derivatives thereof (moles of diol / dicarboxylic acid black is the number of moles of derivatives thereof; Initial mixed molar ratio + additional input molar ratio Listed separately in form. )
  • I / T molar ratio of isosorbide to dicarboxylic acid or derivatives thereof (moles of isosorbide / moles of dicarboxylic acid or derivatives thereof)
  • E / T molar ratio of ethylene glycol to its derivatives (moles of ethylene glycol / moles of dicarboxylic acid black is derivatives thereof)
  • ISB Residual Ratio The molar ratio of isosorbide introduced to the polyester resin to the total isosorbide used for the production of the polyester resin ( ⁇ moles of diol moiety derived from isosorbide / dicarboxylic acid or Moles of acid moieties derived from derivatives thereof / moles of isosorbide / moles of dicarboxylic acids or derivatives thereof * 100)
  • ISB content molar ratio of residues derived from isosorbide to residues derived from total diol contained in the polyester resin
  • DEG content Referring to diethylene glycol molar ratio of residues derived from the "Table 1 for the moiety of the entire diol origin contained in the polyester resin, one stage Bott le molding process is blowing using a product molded free latent heat ( It is confirmed that haze is generated due to intramolecular crystallization at a temperature suitable for blowing by not including a diol moiety derived from isosorbide as in the polyester resin of Comparative Example 1. In order to prevent the occurrence of haze, when the molded preform is sufficiently modified, a subsequent blowing becomes impossible.
  • polyester resin of Comparative Example 2 contained too little of the diol portion derived from isosorbide, so that haze occurred after molding due to the high regularity of the polymer chain.
  • the polyester resin is a portion of the diol derived from the same content of isosorbide It is confirmed that haze occurs when the content of the diol moiety derived from diethylene glycol relative to the total diol moiety is less than 2.5 mol%, and the molecular weight distribution is greater than 4.
  • Comparative Example 4 it is confirmed that the heat resistance is lowered if the polyester resin contains a diol portion derived from a large amount of diethylene glycol even if the polyester resin contains a diol portion derived from an appropriate content of isosorbide. Considering that 3 ⁇ 4 required for the use of a hot bottle or the like is at least about 85 ° C., it can be seen that the polyester resin prepared in Comparative Example 4 is not suitable to be used for the use of a hot bottle or the like.
  • Example 6 Example 7, and Comparative Example 5
  • the polyester resin of Comparative Example 5 having 20 mol% of the diol portion derived from isosorbide relative to the total diol portion derived from the diol has no Tm peak observed in the first scan through DSC, and thus, the stretching of the molecule Orientation does not occur. Therefore, it is confirmed that the two-stage bottle molding with a large draw ratio of the above-mentioned preform and bottle is impossible with the polyester resin of the comparative example 5.
  • the diol moiety derived from isosorbide and the diol moiety derived from diethylene glycol in the polymer chain were prepared under specific process conditions such that the initial dosing / mixing ratio of diol was controlled to an appropriate range. It should be confirmed that it has a certain level of glass transition temperature, which shows high heat resistance and excellent mechanical properties, and high transparency despite thick wall thickness.
  • the molecular weight distribution of the polyester resin must be narrowly controlled by adjusting the intrinsic viscosity of the resin before the solid state polymerization reaction to provide a thick resin molded article without haze generation. It is confirmed that it can.
  • the resin molded articles made from the polyester resins of all the above examples showed very low haze of less than 3% despite the thick wall thickness, and had a melting point in the first scan through DSC and had a high glass transition temperature. And two stage bottle molding is possible, it was confirmed that it is effective to be applied to various applications such as bott le.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 폴리에스테르 수지에 관한 것이다. 상기 폴리에스테르 수지는 아이소소바이드 및 디에틸렌 글리콜로부터 유도된 디올 부분을 특정 함량을 포함하여 두꺼운 벽 두께에도 불구하고 고투명도를 나타내는 수지 성형품을 제공할 수 있다.

Description

【명세서】 '、
【발명의 명칭]
폴리에스테르 수지, 이의 제조 방법 및 아로부터 형성된 수지 성형품
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2017년 5월 31일자 한국 특허 출원 제 10-2017-0067962호에 기초한 우선권의: 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 두꺼운 두께에도 불구하고 고투명도를 나타내는 수지 성형품을 제공할 수 있는 폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품에 관한 것이다.
【배경기술】
폴리에스테르 수지로 대표되는 PET (polyethylene terephthalate)는 저렴한 가격 및 우수한 물리 /화학적 성질로 인해 상업적으로 널리 사용되고 있다. 하지만, 결정성이 높아 가공 시 높은 온도를 요구하며 성형 제품의 투명성이 떨어지는 문제가 있다. 또한, PET는 내열성이 좋지 않아 음료의 고온 충진 과정에서 PET로 성형된 병의 형태가 변형되는 문제를 초래하게 된다. 이를 막기 위해 병 성형 전 /후 병목 결정화 공정 및 Heat sett ing 공정을 거쳐 병의 내열도를 높이기도 하나, .이로 인해 병의 투명도는 감소하게 된다.
이러한 문제점을 극복하기 위하여 다양한 모노머를 공증합하여 PET의 유리전이온도를 높이려는 기술이 개발되어 왔다. 이 중에서도 아이소소바이드 ( i sosorbide)는 식물성 원료 물질이라는 점과 유리전이온도를 높일 수 있다는 점, 고상 중합 후 기계적 강도를 향상시킬 수 있다는 장점으로 인해서 PET에 적용 가능한 공단량체로서 주목을 받고 있다.
하지만, 내열도를 증가시키기 위해서 아이소소바이드의 함량을 증가시킬수록 고분자 사슬의 규칙성이 낮아지고, 결정화 속도가 감소된다. 또한, 아이소소바이드의 첨가량이 일정 수준 이상이 되면 결정성 수지로 기능할 수 없게 된다. 비결정성 수지는 연신이 불가능하므로 비결정성 수지를 병으로 성형하려면 프리폼의 길이를 병의 길이와 유사하게 디자인할 필요가 있다. 이에 따라, 기존 PET 수지를 가공하기 위한 설비를 사용하지 못하게 되어 현실적으로 아이소소바이드를 사용한 공중합체를 이용하여 수지 성형품을 생산하는데 매우 큰 장애가 있다.
【발명의 상세한 설명]
【기술적 과제】
본 발명은 폴리에스테르 수지 및 이의 제조 방법을 제공하기 위한 것이다.
또한, 본 발명은 상기 폴리에스테르 수지로부터 형성되어 두꺼운 두께로 제조되어도 고투명도를 나타내는 수지 성형품을 제공하기 위한 것이다 ·
【기술적 해결방법】
상기 목적을 달성하기 위해, 발명의 일 구현예에 따르면 테레프탈산 혹은 이의 유도체를 포함하는 디카르복실산 흑은 이의 유도체와 아이소소바이드 및 에틸렌 글리콜을 포함하는 디을이 중합되어, 디카르복실산 혹은 이의 유도체로부터 유도된 산 부분 및 디올로부터 유도된 디올 부분이 반복되는 구조를 가지는 폴리에스테르 수지로서, 디을로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된 디올 부분이 6 내지 . 12 몰¾>이며, 디에틸렌 글리콜로부터 유도된 디을 부분이 2 내지 5 몰%이고, 시차주사열량계 (DSC)를 통한 1차 스캔 시에 융점이 존재하고, 상기 폴리에스테르 수지로부터 얻은 두께 6 mm의 시편에 대해 ASTM D1003-97에 따라 측정된 헤이즈가 3 > 미만인 폴리에스테르 수지가 제공된다.
발명의 다른 일 구현예에 따르면 상기 폴리에스테르 수지의 제조 방법과 상기 폴리에스테르 수지로부터 형성된 수지 성형품이 제공된다.
【발명의 효과】
발명의 일 구현예에 따른 폴리에스테르 수지는 DSC를 통한 1차 스캔 시에 융점이 존재하여 연신을통한 성형이 가능하며, 두께 6 mm의 시편으로 제작되어 3% 미만의 헤이즈를 나타내 두꺼운 두께를 가지면서도 투명한 수지 성형품의 제공을 가능케 한다. 따라서, 상기 폴리에스테르 수지는 고온 병 (hot f i l l j ar) , 고압 용기 등의 다양한 용도에 적합한 수지 성형품을 제공할 수 있다.
【발명의 실시를 위한 형태】
이하 발명의 구체적인 구현예에 따른 폴리에스테르 수지와 이의 제조 방법 및 이로부터 형성된 수지 성형품 등에 대해 설명하기로 한다.
본 명세서에서 특별한 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하려는 의도로 사용되지 않는다. 그리고, 명백히 반대의 의미가 기재되어 있지 않는 한, 단수 형태들은 복수 형태들을 포함한다. 명세서에서 사용되는 '포함 '의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소「성분 및 /또는 군의 존재나 부가를 제외시키는 것은 아니다.
발명의 일 구현예에 따르면, 테레프탈산 흑은 이의 유도체를 포함하는 디카르복실산 흑은 이의 유도체와 아이소소바이드 및 에틸렌 글리콜을 포함하는 디올이 중합되어, 디카르복실산 흑은 이의 유도체로부터 유도된 산 부분 및 디올로부터 유도된 디올 부분이 반복되는 구조를 가지는 폴리에스테르 수지로서, 디올로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된' 디올 부분이 6 내지 12 몰%이며, 디에틸렌 글리콜로부터 유도된 디올 부분이 2 내지 5 몰%이고, 시차주사열량계 (DSC)를 통한 1차 스캔 시에 융점이 존재하고, 상기 폴리에스테르 수지로부터 얻은 두께 6 腿의 시편에 대해 ASTM D1003-97에 따라 측정된 헤이즈가 3 > 미만인 폴리에스테르 수지가 제공된다.
폴리에스테르 수지로 대표되는 PET와 경우, 고분자 사슬의 규칙성이 높아 결정을 이루게 되고, 이에 따라 DSC를 통한 1차 스캔 시에 융점이 존재하게 된다. 그러나, PET는 유리전이온도가 낮아 고온 병 (Hot f i l l bott le) 등 고내열성이 요구되는 용도에는 적용이 제한되어 왔다.
이러한 문제점을 해결하기 위해 기존 고분자 주쇄에 아이소소바이드를 도입시키는 방법이 소개되었다. 하지만, 아이소소바이드로부터 유래한 잔기는 고분자 사슬의 규칙성을 낮게 하여 수지의 결정화 속도를 저하시켰다. 층분한 내열도를 확보하기 위해, 폴리에스테르 수지는 아이소소바이드로부터 유도된 디올 부분을 다량 포함해야 하지만, 다량의 아이소소바이드로부터 유도된 디을 부분으로 인해 결정성 수지로 기능하지 못하는 문제가 초래되었다. 비결정성 수지는 분자 구조의 규칙성이 낮아 연신을 통한 성형이 불가하며, 특히 기존 PET 가공 설비를 이용할 수 없다. 이러한 문제로 인해 고분자 주쇄에 도입될 수 있는 아이소소바이드의 함량에 제약이 있었다.
반면에, 아이소소바이드의 도입 함량이 6 몰% 미만으로 충분하지 못한 경우에는 유리전이온도가 85°C 미만으로 층분한 내열도를 나타내지 못하게 된다. 보통 고온 병 (Hot f i l l j ar ) 등의 용도에 적용하기 위해서는 유리전이온도가 최소 85°C 이상일 것이 요구되기 때문에 낮은 아이소소바이드의 함량은 내열도 측면에서 목표하는 수준을 달성할 수 없게 한다. 이러한 문제 둥을 해결하기 위해 PET 수지의 경우 사출 성형 후 추가의 열처리 공정을 거쳐 내열도 및 기계적 강도를 향상시킬 수는 있으나, 이런 경우에는 열에 의해 생성된 결정으로 인해 사출품에 헤이즈 (haze)가 발생하게 되며 일반적으로 육안으로도 그 헤이즈가 관찰되어 식품 용기나 병 (bot t l e) 용도로 사용함에 있어 제한이 있었다.
이러한 기술적 한계에도 불구하고, 상기 일 구현예에 따른 폴리에스테르 수지는 상술한 범위의 아이소소바이드 및 디에틸렌 글리콜로부터 유도된 디올 부분을 포함하여 우수한 내열도 및 기계적 특성을 나타내면서 두꺼운 벽 두께에도불구하고 고투명도를 나타내는 수지 성형품을 제공할 수 있다.
^한, 상기 일 구현예에 따른 폴리에스테르 수지는 DSC를 통한 1차 스캔 시에 융점이 존재하여 연신을 통한 성형이 가능하기 때문에 기존의 PET 가공 설비를 이용할 수 있다는 장점이 있다.
PET 수지의 경우 결정화 속도가 매우 빨라, 두꺼운 두께로 성형하면 헤아즈가 발생된다. 특히, PET 수지로는 두께 6 隱의 시편을' 투명하게 제작하기 어렵다. 이에 반해, 본 발명의 일 구현예에 따른 폴리에스테르 수지는 두께 6 mm의 시편으로 제작되었을 때 ASTM D1003-97에 따라 측정된 헤이즈가 3% 미만, 2.5% 미만, 2% 미만, 1.5% 미만 혹은 1.0% 미만일 수 있다. 본 발명의 일 구현예에 따른 폴리에스테르 수지는 두께 6 mm의 시편으로 제작되었을 때 전혀 헤이즈가 관찰되지 않을 수 있으므로, 상기 헤이즈의 하한은 ◦%일 수 있다 .
이하, 이러한 폴리에스테르 수지의 제조 방법에 대해 상세히 설명한다.
(a) 테레프탈산 흑은 이의 유도체를 포함하는 (i) 디카르복실산 흑은 이의 유도체와, 전체 디카르복실산 흑은 이의 유도체 100 몰에 대하여 6.5 몰 내지 25 몰의 아이소소바이드 및 80 몰 내지 200 몰의 에틸렌 글리콜을 포함하는 ( ii) 디올의 에스테르화 반웅 또는 에스테르 교환 반웅 단계; 및 (b) 오르토클로로페놀에 1.2 g/dl의 농도로 150°C에 15 분간 용해시켜 35°C에서 측정한 고유점도가 0.45 dl/g 내지 0.75 dl/g에 도달하도록 상기 에스테르화 또는 에스테르 교환 반웅 생성물을 중축합 반응하는 단계를 통해 상기 폴리에스테르 수지를 제조할 수 있다.
보다 구체적으로, (a) 상기 (i) 디카르복실산 혹은 이의 유도체와 상기 (Π) 디올을 0 내지 10.0 kgf/cm2의 압력 (0 내지 7355.6 mmHg의 절대 압력) 및 150 내지 300°C의 온도에서 평균 체류시간 1 내지 24 시간 동안 에스테르화 반웅 또는 에스테르 교환 반웅시킨 다음, (b) 상기 에스테르화 또는 에스테르 교환 반웅 생성물을 400 내지 0.01 mmHg의 감압 조건 및 150 내지 30CTC의 온도에서 평균 체류시간 1 내지 24 시간 동안 중축합 반웅시켜 폴리에스테르 수지를 얻는다.
여기서, 폴리에스테르 수지의 제조 방법은 배치 (batch)식, 반-연속식 또는 연속식으로 수행될 수 있고, 상기 에스테르화 반웅 흑은 에스테르 교환 반응과 중축합 반응은 불활성 기체 분위기 하에서 수행되는 것이 바람직하며, 상기 폴리에스테르 수지와 기타 첨가제의 흔합은 단순 흔합이거나, 압출을 통한 흔합일 수 있다.
추가적으로 필요에 따라, 고상 중합 반웅을 이어서 진행할 수 있다. 구체적으로, 본 발명의 일 구현예에 따른 폴리에스테르 수지의 제조 방법은
(b) 단계 후에 (c) 중축합 반응 (용융 중합)으로 제조된 폴리머를 결정화하는 단계 ; 및 (d) 오르토클로로페놀에 1.2 g/dl의 농도로 150 °C에서 15 분간 용해시켜 35°C에서 측정한 고유점도가 (b) 단계에서 얻은 수지의 고유점도 보다 0. 10 내지 0.40 dl /g 높은 값에 도달하도록 결정화된 폴리머를 고상 중합하는 단계를 추가로 포함할 수 있다.
본 명세서에서 용어 '디카르복실산 혹은 이의 유도체 '는 디카르복실산과 디카르복실산의 유도체 중 선택되는 1종 이상의 화합물을 의미한다. 그리고, '디카르복실산의 유도체 '는 디카르복실산의 알킬 에스테르 (모노메틸, 모노에틸, 디메틸, 디에틸 또는 디부틸 에스테르 등 탄소수 1 내지 4의 저급 알킬 에스테르) 흑은 디카르복실산의 무수물을 의미한다. 이에 따라, 예를 들어, '테레프탈산 혹은 이의 유도체는 테레프탈산; 모노알킬 혹은 디알킬 테레프탈레이트; 및 테레프탈산 무수물과 같이 디올과 반웅하여 테레프탈로일 부분 ( terephthaloyl moiety)을 형성하는 화합물을 통칭하게 된다.
상기 ( i ) 디카르복실산 흑은 이의 유도체로는 주로 테레프탈산 혹은 이의 유도체를 사용한다. 구체적으로, ( i ) 디카르복실산 혹은 이의 유도체로는 테레프탈산 혹은 이의 유도체를 단독으로 사용할 수 있다. 또한, ( i ) 디카르복실산 혹은 이의 유도체로는 테레프탈산 흑은 이의 유도체와, 테레프탈산 혹은 이의 유도체 외의 디카르복실산 혹은 이의 유도체로서 탄소수 8 내지 14의 방향족 디카르복실산 혹은 이의 유도체 및 탄소수 4 내지 12의 자방족 디카르복실산 흑은 이의 유도체로 이루어진 군에서 선택된 1 종 이상을 흔합하여 사용할 수 있다. 상기 탄소수 8 내지 14의 방향족 디카르복실산 혹은 이의 유도체에는 이소프탈산, 디메틸 이소프탈레이트, 프탈산, 디메틸 프탈레이트, 프탈산 무수물, 2 , 6-나프탈렌 디카르복실산 등의 나프탈렌 디카르복실산, 디메틸 2 , 6ᅳ나프탈렌 디카르복실레이트 등의 디알킬 나프탈렌 디카르복실레이트, 디페닐 디카르복실산 등 폴리에스테르 수지의 제조에 통상적으로 사용되는 방향족 디카르복실산 혹은 이와 유도체가 포함될 수 있다. 상기 탄소수 4 내지 12의 지방족 디카르복실산 흑은 이의 유도체에는 1, 4-사이클로핵산 디카르복실산, 1, 3-사이클로핵산 디카르복실산 등의 사이클로핵산 디카르복실산, 디메틸 1,4-사이클로핵산 디카르복실레이트, 디메틸 1,3- 사이클로핵산 디카르복실레이트 등의 사이클로핵산 디카르복실레이트, 세바식산, 숙신산, 이소데실숙신산, 말레산, 말레산 무수물, 푸마르산, 아디픽산, 글루타릭산, 아젤라이산 등 폴리에스테르 수지의 제조에 통상적으로 사용되는 선형, 가지형 또는 고리형 지방족 디카르복실산 혹은 이의 유도체가 포함될 수 있다.
상기 ( i ) 디카르복실산 혹은 이의 유도체는 테레프탈산 흑은 이의 유도체를 전체 ( i ) 디카르복실산 흑은 이의 유도체에 대하여 50 몰% 이상, 60 몰% 이상, 70 몰% 이상, 80 몰% 이상 혹은 90 몰% 아상으로 포함할 수 있다. 그리고, 상기 ( i ) 디카르복실산 혹은 이의 유도체는 테레프탈산 혹은 이의 유도체 외의 디카르복실산 혹은 이의 유도체를 전체 ( i ) 디카르복실산 흑은 이의 유도체에 대하여 0 내지 50 몰%, 0 몰% 초과 50 몰¾> 이하 혹은 0. 1 내지 40 몰%로 포함할 수 있다. 이러한 함량 범위 내에서 적절한 제반 물성을 구현하는 폴리에스테르 수지를 제조할 수 있다.
한편, 상기 아이소소바이드 ( i sosorbide , 1 , 4 : 3 , 6ᅳ di anhydrogluci tol )는 제조된 폴리에스테르 수지의 디을로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된 디올 부분이 6 내지 12 몰%가 되도록 사용된다.
폴리에스테르 수지의 합성 중 아이소소바이드의 일부가 휘발되거나 반응하지 않을 수 있으므로, 폴리에스테르 수지에 상술한 함량의 아이소소바이드를 도입하기 위해, 아이소소바이드는 전체 디카르복실산 혹은 이의 유도체 100 몰에 대하여 6.5 몰 내지 25 몰로 사용될 수 있다. 만일 아이소소바이드의 함량이 상기 범위를 초과하면 DSC를 통한 1차 스캔 시에 융점이 존재하지 않아 연신을 통한 가공이 어려워지고, 상기 범위 미만아면 층분한 내열도 및 기계적 강도를 나타내지 못하며 헤이즈가 발생할수 있다. 하지만, 아이소소바이드의 함량을 상술한 범위로 조절하여 DSC를 통한 1차 스캔 시에 융점이 존재하며 두께 6 腿의 시편으로 제작되었을 때 고투명도를 나타내는'폴리에스테르 수지를 제공할 수 있다. 폴리에스테르 수지에 도입된 디에틸렌 글리콜로부터 유도된 디을 부분의 함량은 폴리에스테르 수지의 제조를 위해 사용된 에틸렌 글리콜의 함량에 직접적으로 비례하는 것은 아니다. 하지만, 폴리에스테르 수지의 디올로부터 유도된 전체 디올 부분에 대하여 디에틸렌 글리콜로부터 유도된 디을 부분이 2 내지 5 몰%가 되도록 에틸렌 글리콜을 전체 디카르복실산 혹은 이의 유도체 100 몰에 대하여 80 몰 내지 200 몰로 사용할 수 있다. 만일 폴리에스테르 수지에 도입된 디에틸렌 글리콜로부터 유도된 디을 부분의 함량이 상기 범위를 초과하면 층분한 내열도를 나타내지 못하며 상기 범위 미만이면 헤이즈가 발생할 수 있다.
상기 (ii) 디올은 아이소소바이드 및 에틸렌 글리콜 외에 다른 디을로 폴리에스테르 수지의 제조에 통상적으로 사용되는 화합물을 포함할 수 있으며, 예를 들면, 탄소수 8 내지 40 혹은 8 내지 33의 방향족 디을, 탄소수 2 내지 20 흑은 2 내지 12의 지방족 디올 흑은 이들의 흔합물 등을 포함할 수 있다. >
상기 방향족 디올의 구체적인 예로는, 폴리옥시에틸렌 -(2.0 )-2,2- 비스 (4-하이드록시페닐)프로판, 폴리옥시프로필렌 _(2.0)-2,2-ti 1스 (4- 하이드록시페닐 프로판, 폴리옥시프로필렌— (2.2)-폴리옥시에틸렌 (2.0)- 2, 2-비스 (4-하 o드록시페닐)프로판, 폴리옥시에틸렌 -(2.3)-2,2-w 1스 (4- 하이드록시페닐 프로판, 폴리옥시프로필렌 -(6)-2,2 1스 (4- 하이드록시페닐 프로판, 폴리옥시프로필렌 -(2.3)-2,2-ti 1스 (4- 하이드록시페닐 프로판, 폴리옥시프로필렌 -(2.4)-2,2-ti 1스 (4- 하이드록시페닐 프로판, 폴리옥시프로필렌ᅳ (3.3)-2,2-ti 1스 (4- 하이드록시페닐 프로판, 폴리옥시에될렌 _(3.0)-2,2-ti 1스 (4— 하이드록시페닐 프로판, 폴리옥시에틸렌— (6)-2,2-ΰ 1스 (4- 하이드록시페닐 프로판 등의 에틸렌 옥사이드 및 /또는 프로필렌 옥사 o 가 부가된 비스페놀 A 유도체 (폴리옥시에틸렌— (n)-2,2-ti 1스 (4- 하이드록시페닐 프로판, 폴리옥시프로필렌— (n)-2,2-ti 1스 (4- 하이드록시페닐 프로판 또는 폴리옥시프로필렌 -(n)-폴리옥시에틸렌 Hn)— 2, 2-비스 (4-하이드록시페닐)프로판, 여기서 n은 폴리옥시에틸렌 또는 폴리옥시프로필렌 유닛 (unit)의 개수 (number)를 나타냄)를 예시할 수 있고, 상기 지방족 디올의 구체적인 예로는, 디에틸렌 글리콜, 트리에틸렌 글리콜, 프로판디을 (1,2-프로판디올, 1,3-프로판디올 등), 1,4-부탄디을, 펜탄디을, 핵산디올 (1,6-핵산디올 등), 네오펜틸 글리콜 (2,2-디메틸 -1,3ᅳ프로판디을),
1,2-사이클로핵산디올, 1,4-사이클로핵산디올, 1,2-사이클로핵산디메탄올,
1, 3-사이클로핵산디메탄올, 1, 4-사이클로핵산디메탄올, 테트라메틸사이클로부탄디올 등의 선형, 가지형 또는 고리형 지방족 디올을 예시할 수 있다. 상기 (H) 디올에는 상기 아이소소바이드 및 에틸렌 글리콜 외에 상기 나열된 디을이 단독 또는 둘 이상이 배합된 형태로 포함될 수 있으며, 예를 들면, 상기 아이소소바이드 및 에틸렌 글리콜에 상기 1,4—사이클로핵산디메탄올, 폴리옥시에틸렌 -(2.0)-2,2-비스 (4- 하이드록시페닐)프로판 등이 단독 또는 둘 이상 배합된 형태로 포함될 수 있다. 상기 (ii) 디을에 있어서, 아이소소바이드 및 에틸렌 글리콜 외에 물성 개선을 위한 상기 사용되는 다른 디올의 함량은 예를 들면, 전체 (ii) 디올에 대하여 , 0 내지 50 몰% 혹은 0.1 내지.30 몰%로 조절될 수 있다.
상기 일 구현예에 따른 폴리에스테르 수지를 제조하기 위해, (i) 디카르복실산 흑은 이의 유도체에 대하여 (ii) 디올의 몰비가 1.01 이상이 되도록 (i) 디카르복실산 혹은 이의 유도체와 (ii) 디을을 반응기에 투입할 수 있다. 또한, 상기 (ii) 디올은 필요에 따라 중합 반응 전 한 번에 반응기로 공급되거나 흑은 여러 번에 걸쳐 중합 반응 중에 투입될 수 있다. 보다 구체적인 일 예에 따르면, 반웅 초기에 (i)디카르복실산흑은 이의 유도체와 (ii) 디올의 최초 투입량을 특정 범위로 조절하여 특정 분자량 분포를 충족하는 폴리에스테르 수지 제조를 제조할 수 있으며, 이를 사용하여 일 구현예의 폴리에스테르 수지를 보다 효과적으로 얻을 수 있다. 일 예에서, (i) 디카르복실산 혹은 이의 유도체로 디카르복실산을 사용하는 경우에는, 상기 G) 디카르복실산에 대하여, (ii) 디올의 초기 흔합 몰 비율을 1:1.01 내지 1.05로 조절할 수 있으며, 상기 (i) 디카르복실산 혹은 이의 유도체로 디카르복실산 알킬 에스테 ¾ 혹은 디카르복실산 무수물 등의 유도체를 사용하는 경우에는, (i) 다카르복실산 흑은 이의 유도체에 대하여, (ii) 디을의 초기 흔합 몰 비율을 1:2.0 내지 1:2.1로 조절할 수 있다.
이러한 초기 흔합 몰 비율은 반응기에서의 중합 반웅 개시 시점에서의 흔합 몰 비율을 의미할 수 있고, 반웅 도중에는 필요에 따라 (i) 디카르복실산 혹은 이의 유도체 및 /또는 (ii) 디올이 더 추가될 수도 있다.
한편, 상기 (a) 에스테르화 반웅 또는 에스테르 교환 반응에서는 촉매가 사용될 수 있다. 이러한 촉매로는 나트륨, 마그네슘의 메틸레이트 (methylate); Zn, Cd. Mn, Co, Ca, Ba, Ti 등의 초산염, 붕산염, 지방산염, 탄산염, 알콕시염; 금속 Mg; Pb, Zn, Sb, Ge 등의 산화물 등을 예시할 수 있다.
. 상기 (a) 에스테르화 반응 또는 에스테르 교환 반웅은 배치 (batch)식, 반一연속식 또는 연속식으로 수행될 수 있고, 각각의 원료는 별도로 투입될 수 있으나, 디올에 디카르복실산 흑은 이의 유도체를 흔합한 슬러리 형태로 투입하는 것이 바람직하다. '
상기 (a) 에스테르화 반응 또는 에스테르 교환 반웅 시작 전 슬러리에 흑은 반웅 완료 후 생성물에 중축합 촉매, 안정제, 정색제, 결정화제, 산화방지제, 가지화제 (branching agent ) 등을 첨가할 수 있다. 그러나, 상술한 첨가제들의 투입 시기가 이에 한정되는 것은 아니며 폴리에스테르 수지의 제조 단계 중 임의의 시점에 투입돨 수도 있다. 상기 중축합 촉매로는, 통상의 티타늄, 게르마늄, 안티몬, 알루미늄, 주석계 화합물 등을 하나 이상 적절히 선택하여 사용할 수 있다. 유용한 티타늄계 촉매로는, 테트라에틸티타네이트, 아세틸트리프로필티타네이트, 테트라프로필티타네이트, 테트라부틸티타네이트, 폴리부틸티타네이트, 2- 에틸핵실 티타네이트, 옥틸렌글리콜티타네이트, 락테이트티타네이트, 트리에탄올아민 티타네이트, 아세틸 아세토네이트티타네이트, 에틸아세토아세틱에스테르티타네이트, 이소스테아릴티타네이트, 티타늄디옥사이드, 티타늄디옥사이드 /실리콘디옥사이드공중합체, 티타늄디옥사이드 /지르코늄디옥사이드 공중합체 둥을 예시할 수 있다. 또한, 유용한 게르마늄계 촉매로는 게르마늄 디옥사이드 및 이를 이용한 공중합체 등이 있다. 상기 안정제로는, 일반적으로 인산, 트리메틸포스페이트, 트리에틸포스페이트 등의 인계 화합물을 사용할 수 있으며 , 그 첨가량은 인 원소량을 기준으로 최종 폴리머 (폴리에스테르 수지 )의 중량 대비 10 내지 200 ppm이다. 상기 안정제의 첨가량이 10 ppm 미만이면, 안정화 효과가 미흡하여, 폴리머의 색상이 노랗게 변할 우려가 있으며, 200 ppm을 초과하면 원하는 고중합도와 폴리머를 얻지 못할 우려가 있다. 또한, 폴리머의 색상을 향상시키기 위해 첨가되는 정색제로는, 코발트 아세테이트, 코발트 프로피오네이트 등의 통상의 정색제를 예시할 수 있고, 그 첨가량은 코발트 원소량을 기준으로 최종 폴리머 (폴리에스테르 수지 )의 중량 대비 10 내지 200 ppm이다. 필요에 따라, 유기화합물 정색제로서 안트라퀴논 (Anthraquionone)계 회합물, 페린은 (Per inone)계 화합물, 아조 (Azo)계 화합물, 메틴 (Methine)계 화합물 등을 사용할 수 있으며, 시판되는 제품으로는 Cl ar ient사의 Polysynthren Blue RLS 혹은 Cl ar ient사의 Solvaperm Red BB 등의 토너를 사용할 수 있다. 상기 유기화합물 정색제의 첨가량은 최종 폴리머 중량 대비 0 내지 50 ppm으로 조절될 수 있다. 만일 정색제를 상기 범위 밖꾀 함량으로 사용하면 폴리에스테르 수지의 황색을 충분히 가리지 못하거나 물성을 저하시킬 수 있다.
상기 결정화제로는 결정핵제, 자외선 흡수제, 폴리올레핀계 수지, 폴리아마이드 수지 등을 예시할 수 있다. 상기 산화방지제로는 힌더드 페놀계 산화방지제, 포스파이트계 산화방지제, 티오에테르계 산화방지제 혹은 이들의 흔합물 둥을 예시할 수 있다. 상기 가지화제로는 3 이상의 관능기를 가지는 통상의 가지화제로서, 예를 들면, 무수트리멜리틱산 (tr imel l i t i c anhydr ide) , 트리메틸올 프로판 (tr imethylol propane) , 트리멜리틱산 (tr imel l i t i c acid) 흑은 이들의 흔합물 등을 예시할 수 있다.
상기 (a) 에스테르화 반웅 또는 에스테르 교환 반웅은 150 내지 300 °C 혹은 200 내지 270°C의 온도 및 0 내지 10.0 kgf/cm2 (0 내지 7355.6匪 Hg) , 0 내지 5.0 kgf/cm2 (0 내지 367그 8mmHg) 흑은 0. 1 내자 3.0 kgf/cm2 (73.6 내지 2206.7匪 Hg)의 압력 조건에서 실시될 수 있다. 여기서 괄호 밖에 기재된 압력은 게이지 압력을 의미하며 (kgf/cm2 단위로 기재됨), 괄호 안에 기재된 압력은 절대 압력을 의미한다 (顏¾ 단위로 기재됨) .
상기 반웅 온도 및 압력이 상기 범위를 벗어날 경우, 폴리에스테르 수지의 물성이 저하될 우려가 있다. 상기 반응 시간 (평균 체류시간)은 통상 1 내지 24 시간 흑은 2 내지 8 시간이며, 반웅 온도, 압력, 사용하는 디카르복실산 혹은 이의 유도체 대비 디을의 몰비에 따라 달라질 수 있다. 상기 에스테르화 또는 에스테르 교환 반응을 통해 얻은 생성물은 중축합 반웅을 통해 보다 높은 중합도의 폴리에스테르 수지로 제조될 수 있다ᅳ 일반적으로, 상기 중축합 반응은 150 내지 300°C , 200 내지 290°C 혹은 250 내지 29 TC의 온도 및 0.01 내지 400 mmHg, 0.05 내지 100 隱 Hg 흑은 0. 1 내지 10 瞧 Hg의 감압 조건에서 수행된다. 여기서 압력은 절대 압력의 범위를 의미한다. 상기 0.01 내지 400 隱 Hg의 감압 조건은 중축합 반응의 부산물인 글리콜 등과 미반웅물인 아이소소바이드 등을 제거하기 위한 것이다. 따라서, 상기 감압 조건이 상기 범위를 벗어날 경우, 부산물 및 미반웅물의 제거가 불충분할 우려가 있다. 또한, 상기 중축합 반웅 온도가 상기 범위를 벗어날 경우, 폴리에스테르 수지의 물성이 저하될 우려가 있다. 상기 중축합 반웅은, 원하는 고유점도에 도달할 때까지 필요한 시간 동안, 예를 들면, 평균 체류시간 1 내지 24 시간 동안 실시된다.
폴리에스테르 수지 내에 잔류하는 아이소소바이드 등의 미반웅물의 함량을 감소시킬 목적으로 에스테르화 반응 흑은 에스테르 교환 반웅 말기 혹은 중축합 반응 초기 즉 수지의 점도가 층분히 높지 않은 상태에서 진공 반응을 의도적으로 길게 유지하여 미반웅된 원료를 계외로 유출 사킬 수 있다. 수지의 점도가 높아지면, 반응기 내 잔류하고 있는 원료가 계외로 빠져나오기 어렵게 된다. 일 예로, 중축합 반웅 전 에스테르화 반웅 흑은 에스테르 교환 반웅을 통해 얻은 반응 생성물을 약 400 내지 ImmHg 혹은 약 200 내지 3睡 Hg 감압 조건에서 0.2 내지 3시간 동안 방치하여 폴리에스테르 수지 내에 잔류하는 아이소소바이드 등의 미반응물을 효과작으로 제거할 수 있다. 이때, 상기 생성물의 온도는 에스테르화 반웅 흑은 에스테르 교환 반응 온도와 중축합 반응 온도와 같거나 혹은 그 사이의 온도로 조절될 수 있다.
위 진공 반응의 제어를 통해 미반웅 원료를 계외로 유출시키는 공정 내용을 추가함에 따라, 폴리에스테르 수지 내에 잔류하는 아이소소바이드 둥의 미반응물의 함량을 감소시킬 수 았고, 그 결과 일 구현예의 물성을 층족하는 폴리에스테르 수지를 더욱 효과적으로 얻을 수 있다.
한편, 중축합 반응 후 폴리머의 고유점도는 0.45 내지 0.75 dl /g인 것이 적당하다.
특히, 전술한 (c) 결정화 단계 및 (d) 고상 중합 단계를 채용한다면, 중축합 반웅 후 폴리머의 고유점도를 0.45 내지 0.75 dl /g, 0.45 내지 0.70 dl /g 혹은 0.50 내지 0.65 dl /g으로 조절할 수 있다. 만일 중축합 반웅 후 폴리머의 고유점도가 0.45 dl /g 미만이면, 고상 중합 반응에서의 반웅 속도가 현저히 낮아지게 되며, 분자량 분포가 매우 넓은 폴리에스테르 수지가 얻어지고, 고유점도가 0.75 dl /g를 초과하면, 용융 중합 중 용융물의 점도가 상승됨에 따라 교반기와 반웅기 사이에서의 전단 웅력 (Shear Stress)에 의해 폴리머가 변색될 가능성이 증가하며, 아세트알데히드와 같은 부반웅 물질도 증가하게 된다. 또한 결정화 속도가 현저히 느려져서 결정화 과정 중 융착이 발생하고, 펠렛 모양도 변형되기 쉽다.
한편, 전술한 (c) 결정화 단계 및 (d) 고상 중합 단계를 채용하지 않는다면, 중축합 반응 후 폴리머의 고유점도를 0.65 내지 0.75 dl /g로 조절할 수 있다. 만일 고유점도가 0.65 dl /g 미만이면, 저분자량의 고분자로 인해 결정화 속도가 상승하여 우수한 내열성과 투명성을 갖는 폴리에스테르 수지를 제공하기 어렵고, 고유점도가 0.75 dl /g을 초과하면 용융 중합 중 용융물의 점도가 상승됨에 따라 교반기와 반응기 사이에서의 전단 응력 (Shear Stress)에 의해 폴리머가 변색될 가능성이 증가하며, 아세트알데히드와 같은 부반웅 물질도 증가하게 된다.
상기 (a) 및 (b) 단계를 통해 일 구현예에 따른 폴리에스테르 수지를 제조할 수 있다. 그리고, 필요에 따라 (b) 중축합 반웅 단계 후에 ( C ) 결정화 단계 및 (d) 고상 중합 단계를 추가로 진행하여 보다 높은 중합도를 갖는 폴리에스테르 수지를 제공할 수 있다.
구체적으로, 상기 (c) 결정화 단계에서는 (b) 중축합 반응을 통해 얻은 폴리머를 반웅기 밖으로 토출하여 입자화한다. 입자화하는 방법은 Strand형으로 압출 후 넁각액에서 고화 후 커터로 절단하는 Strand cut t ing법이나, 다이 홀을 넁각액에 침지시켜, 넁각액 중으로 직접 압출하여' 커터로 절단하는 underwater cut t ing법을 사용할 수 있다. 일반적으로 Strand cut t ing법에서는 냉각액와 온도를 낮게 유지하여, Strand가 잘 고화되어야 커팅에 문제가 없다. underwater cut t ing법에서는 냉각액의 은도를 폴리머에 맞게 유지하여, 폴리머의 형상이 균일하게 하는 것이 좋다. 하지만 결정성 폴리머의 경우, 토출 중 결정화를 유도하기 위해서 일부러 넁각액의 온도를 높게 유지할 수도 있다.
한편, 입자화된 폴리머를 추가적으로 수세정하는 것도 가능하다. 수세정 시 물의 온도는 폴리머의 유리전이온도와 같거나 흑은 약 5 내지 20 °C 정도 낮은 것이 바람직하며, 그 이상의 은도에서는 융착이 발생될 수 있어 바람직하지 않다. 토출 시 결정화를 유도한 폴리머의 입자라면 유리전이온도 보다 높은 온도에서도 융착이 발생되지 않으므로 결정화 정도에 따라 물의 온도를 설정할 수 있다. 입자화된 폴리머의 수세정을 통해 미반웅된 원료 중 물에 용해되는 원료의 제거가 가능하다. 입자가 작을수록 입자의 무게 대비 표면적이 넓어지기 때문에 입자의 크기는 작을수톡 유리하다. 이러한 복적을 달성하기 위해 입자는 약 14 mg 이하의 평균 무게를 갖도록 제조될 수 있다.
입자화된 폴리머는 고상 중합 반웅 중 융착되는 것을 방지하기 위해 결정화 단계를 거친다. 대기 불활성 가스, 수증기, 수증기 함유 불활성 가스 분위기 또는 용액 속에서 진행이 가능하며, 110°C 내지 180 °C 흑은 120 "C 내지 180°C에서 결정화 처리를 한다. 온도가 낮으면 입자의 결정이 생성되는 속도가 너무 느려지며, 온도가 높으면 결정이 만들어지는 속도보다 입자의 표면이 용융되는 속도가 빨라 입자끼리 붙어 융착을 발생시킨다. 입자가 결정화됨에 따라 입자의 내열도가 상승되게 되므로 결정화를 여러 단계로 나누어 단계별로 온도를 상승시켜 결정화 하는 것도 가능하다.
고상 중합 반웅은 질소, 이산화탄소, 아르곤 등 불활성 가스 분위기 하 또는 400 내지 0.01 mmHg의 감압 조건 및 180 내지 22CTC의 온도에서 평균 체류시간 1 시간 이상, 바람직하게는 10 시간 이상 동안 진행될 수 있다. 이러한 고상 중합 반웅을 통해 분자량이 추가적으로 상승되며, 용융 반웅에서 반웅되지 않고 잔존해 있는 원료 물질과 반응 중 생성된 환상 을리고머, 아세트알데하이드 등이 제거될 수 있다.
상기 일 구현예에 따른 폴리에스테르 수지를 제공하기 위해서는 고유점도가 (b) 중축합 반웅 단계에서 얻은 수지의 고유점도 보다 0. 10 내지 0.40 dl /g 높은 값에 도달할 때까지 고상 중합을 수행할 수 있다. 만일 고상 중합 반웅 후 수지의 고유점도와 고상 중합 반웅 전 수지의 고유점도 간의 차이가 0. 10 dl /g 미만이면 층분한 중합도 향상 효과를 얻을 수 없고, 고상 중합 반웅 후 수지의 고유점도와 고상 증합 반웅 전 수지의 고유점도 간의 차이가 0.40 dl /g을 초과하면 분자량 분포가 넓어져 충분한 내열도를 나타낼 수 없고 저분자량 고분자의 함량이 상대적으로 증가하여 결정화 속도가 증가함에 따라 헤이즈가 발생할 가능성이 높아진다.
상기 고상 중합 반웅은 수지의 고유점도가 고상 중합 반웅 전의 수지의 고유점도 보다 0. 10 내지 0.40 dl /g 높으며, 0.70 dl /g 이상, 0.70 내지 1.0 dl /g, 흑은 0.70 내지 0.95 dl /g의 값에 도달할 때까지 수행할 수 있다. 이러한 범위의 고유점도에 도달할 때까지 고상 중합하면 고분자의 분자량 분포가 좁아져 성형 시 결정화 속도를 낮출 수 있다. 이에 따라, 투명도를 저하시키지 않으면서 내열도 및 결정화도를 향상시킬 수 있다. 만일 고상 중합 반웅 후 수지의 고유점도가 상기 범위 미만이면 저분자량의 고분자에 의한 결정화 속도 증가로 인해 우수한 내열성과 투명성올 갖는 폴리에스테르 수지를 제공하기 어려워질 수 있다. 상술한 방법에 따라 제조된 폴리에스테르 수지는 디카르복실산 혹은 이의 유도체로부터 유도된 산 부분 (acid moiety) 및 디올로부터 유도된 디을 부분 (diol moiety)이 반복되는 구조를 가진다. 본 명세서에서, 산 부분 (acid moi ety) 및 디을 부분 (diol moiety)은, 디카르복실산 혹은 이의 유도체 및 디올이 중합되어 이들로부터 수소, 히드록시기 또는 알콕시기가 제거되고 남은 잔기 (residue)를 말한다.
특히, 상기 폴리에스테르 수지는 상술한 방법에 따라 제조되어 디올로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된 디올 부분이 6 내지 12 몰%이며, 디에틸렌 글리콜로부터 유도된 디올 부분이 2 내지 5 몰%이고, DSC를 통한 1차 스캔 시에 융점이 존재하고, 두께 6 mm의 시편으로 제작되었을 때 3% 미만의 헤이즈를 나타낼 수 있다. 상기 디에틸렌 글리콜로부터 유도된 디올 부분은, 2 개의 에틸렌 글리콜이 반응하여 디에틸렌 글리콜을 형성하고, 이러한 디에틸렌 글리콜이 디카르복실산 혹은 이의 유도체와 반웅하여 도입된 것일 수 있다. 본 발명의 일 구현예에 따른 폴리에스테르 수지는 상술한 방법으로 제조됨에 따라 상술한 함량 범위의 디에틸렌 글리콜로부터 유도된 디을 부분을 포함하여 우수한 내열도 및 기계적 특성을 가지며 두꺼운 두께에도 불구하고 고투명도를 나타내는 수지 성형품을 제공할 수 있다.
상기 폴리에스테르 수지는 수평균분자량 (Mn)이 약 15 , 000 내지 50 , 000 g/mol 혹은 18 , 000 내지 40 , 000 g/mol 정도일 수 있다. 상기 폴리에스테르 수지는 중량평균분자량 (Mw)이 50 , 000 내지 .150 , 000 g/mol 흑은 60 , 000 내지 110 , 000 g/mol 정도일 수 있다. 또한, 상기 폴리에스테르 수지의 분자량 분포 (PDI )는 2.5 내지 4.0 흑은 2.8 내지 3.85일 수 있다. 만일 분자량이 상기 범위 미만이면 병, 시트, 다층 시트, 연신 필름 혹은 섬유로의 전개 시 층분히 연신되지 않아 원하는 기계적 물성을 확보하기 어려우며, 분자량이 상기 범위를 초과하면 성형 가공성이 저하될 수 있다. 한편, 분자량 분포가 상술한 범위로 조절되면 저분자량 고분자의 상대적인 함량이 적어 결정화 속도가 충분히 느려 수지 성형품의 내열도 및 투명도가 향상되^ 효과가 있다. 상기 폴리에스테르 수지는 시차주사열량계 (DSC)를 통한 1차 스캔 시에 측정된 융점 (Tm)이 약 200 내지 250°C, 약 200 내지 240°C 흑은 210 내지 236°C 정도일 수 있다. 이러한 범위 내에서 폴리에스테르 수지는 적절한 결정성을 가져 양호한 내열성 및 기계적 물성을 나타내고 적절한 온도에서 가공될 수 있어 황변될 우려가 없다.
상기 폴리에스테르 수지는 유리전이온도 (Tg)가 약 85°C 이상, 85°C 내지 95°C 흑은 85°C 내지 92°C 정도일 수 있다. 이러한 범위 내에서 고온 병 (Hot fill jar) 등의 용도로 사용될 수 있으며, 황변 현상 없이 폴리에스테르 수지의 제반 물성을 양호하게 나타낼 수 있다
상술한 바와 같이 본 발명의 일 구현예에 따른 폴리에스테르 수지는 우수한 내열성 및 기계적 특성을 가지며 두꺼운 벽 두께를 가지면서 높은 투명도를 나타내는 수지 성형품을 제공할 수 있다. 이에 따라, 상기 폴리에스테르 수지는 다양한 분야에 활용될 수 있고, 특히 내열성과 투명성이 우수하여 병, 고온 병 (hot fill jar), 고압 용기, 시트, 연신 필름 및 섬유 용도에 유용할 것으로 기대된다.
한편, 본 발명의 다른 일 구현예에 따르면, 상기 폴리에스테르 수지로부터 형성된 수지 성형품이 쎄공된다. 상기 수지 성형품은 벽 두께가 4.5 mm 이상, 4.5 mm 내지 30 mm, 4.5 mm 내지 10 誦, 4.5 mm 내지 7 mm, 흑은 약 6 mm로 매우 두꺼을 수 있다. 그럼에도 블구하고, 상기 수지 성형품은 매우 높은 투명도를 나타낼 수 있다. 상기 수지 성형품은 병, 고온 병 (hot fill jar), 고압 용기, 시트, 연신 필름 또는 섬유 등일 수 있다. 이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 하기의 물성은 다음과 같은 방법에 따라 측정되었다.
(1) 고유점도 (IV): 시료를 0— chlorophenol에 1.2 g/dl의 농도로 150°C에서 15 분간 용해시킨 후 Ubbelohde 점도관을 이용하여 시료의 고유점도를 측정하였다. 구체적으로, 점도관의 은도를 35°C로 유지하고, 점도관의 특정 내부 구간 사이를 용매 (solvent)가 통과하는데 걸리는 시간 (efflux time) t0와 용액 (solut ion)이 통과하는데 걸리는 시간 t를 구하였다. 이후, t0값과 t값을 식 1에 대입하여 비점도 (specific viscosity)를 산출하고, 산출된 비점도 값을 식 2에 대입하여 고유점도를 산출하였다.
[식 1]
[식 2]
Figure imgf000019_0001
상기 식 2에서, A는 Huggins 상수로서 0.247, c는 농도값으로서 1.2 g/dl의 값이 각각 사용되었다.
(2) 융점 (Melting Temperature; Tm) 및 유리전이온도 (glass transition temperature; Tg): 실시예 및 비교예에서 제조한 폴리에스테르 수지의 Tm 및 Tg를 DSC (differential scanning calor imetry)를 통해 측정하였다. 측정장치로는 Mettler Toledo社의 DSC 1 모델을 사용하였다. 구체적으로, 분석에 사용할 폴리에스테르 수지 시료를 제습 건조기 (모레토社의 모델명 D2T)를 이용하여 120°C의 질소 분위기 하에서 5 내지 10 시간 동안 건조하였다. 따라서, Tm 및 Tg는 시료 내에 잔류하는 수분 함량이 500 ppm 미만인 상태에서 측정되었다.
<Tm측정〉
건조된 시료 약 6 내지 10 mg을 취하여, 알루미늄 팬에 채우고, 30°C에서 3 분간 온도 유지 후, 30°C에서 280°C까지 10°C/min의 속도로 가열한 후 280°C에서 3 분간 온도를 유지하였다 (1차 스캔). 그리고, Mettler Toledo社에서 제공하는 관련 프로그램 (STARe 소프트웨어)의 TA 메뉴에 있는 integration 기능을 통해 DSC를 통한 1차 스캔에서 Tm peak (융점) 값을 분석하였다. 1차 스캔 온도 범위는 프로그램이 계산해주는 onset point -10°C부터 Tm peak + 10°C까지로 설정되었다.
<Tg측정 >
Tm을 측정하기 위한 방법과 동일하게 1차 스캔을 진행한 후, 시료를 상온까지 급속 냉각시킨 후, 다시 상온에서 280°C까지 lCrC /min의 속도로 가열하여 (2차 스캔) DSC 곡선을 얻었다. 그리고, 상기 STARe 소프트웨어의 DSC 메뉴에 있는 gl ass trans i t ion 기능을 통해 DSC 2차 스캔에서 Tg peak (유리전이온도) 값을 분석하였다. 이때, Tg는 2차 스캔 시에 얻은 DSC 곡선이 승은 과정 중 처음 계단상으로 변화하는 곳에서 곡선의 최대 경사가 나타나는 온도로 규정되며, 스캔의 온도 범위는 프로그램이 계산ᅳ해주는 midpoint의 -20°C 내지 15°C부터 15°C 내지 20°C로 설정되었다.
(3) 분자량
실시예 및 비교예에서 제조한 폴리에스테르 수지의 분자량 및 분자량 분포는 GPC (Gel Permeat ion Chromatography)를 통해 측정되었다. 구체적으로, 3 mL의 o-chlorophen 에 분자량을 확인하고자 하는 폴리에스테르 수지 0.03 g을 넣고, 15CTC에서 15 분간 용해시킨 후 상온으로 넁각한 상태에서 클로로포름 9 mL를 추가하여 시료를 준비하였다. 그리고, 2 개의 컬럼 (Shodex LF804)을 사용하여 40°C의 온도에서 0.7 mL/min의 유속으로 상기 시료에 대한 겔 투과 크로마토그래피를 진행하였다. 폴리스티렌을 표준 물질로 하여 중량평균분자량 (Mw)과 수평균분자량 (Mn)을 각각 산출하고 Mw와 Mn으로부터 분자량 분포 (PDI = Mw/Mn)를 계산하였다.
(4) 헤이즈 (Haze)
실시예 및 비교예에서 제조한 폴리에스테르 수지를 이용하여 두께 6 瞧의 시편을 준비하고, ASTM D1003-97 측정법으로 Minol ta社의 CM-3600A 측정기를 이용하여 상기 시편의 Haze를 측정하였다.
(5) 1 Stage Bott le 성형: 실시예 및 비교예에서 제조한 폴리에스테르 수지를 이용하여 1 Stage Blow machine (NISSEI ASB)를 사용하여 벽두께 4.5 瞧, 높이 115 mm의 프리품 제작 후 높이 130 隱의 Bott le로 성형하였다. 이후 육안으로 헤이즈 (haze) 발생 여부를 관찰하여 헤이즈가 관찰되지 않으면 '0K'로 표시하고, 헤이즈가 관찰되면 'Haze'로 표시하였다.
(6) 2 Stage Bottle 성형: 실시예 및 비교예에서 제조한 폴리에스테르 수지를 이용하여 벽두께 4.5 隱, 높이 100 mm의 프리품을 제작하였다. 이후 가열 /블로우 (blow) 공정을 통해 상기 프리품을 높이 210 匪의 Bottle로 성형하였다. 2 stage bottle 성형 공정에서 이상이 없고, 최종 성형품의 외관에서 헤이즈가 관찰되지 않으면 '0K'로 표시하고, 성형 공정에 이상이 있거나, 혹은 최종 성형품의 외관에서 헤이즈 (haze)가 관찰되면 'NG'로 표시하였다. 실시예 1: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 3222 g의 테레프탈산 (19.4 mol), 1155 g의 에틸렌 글리콜 (18.6 mol), 227 g의 아이소소바이드 (1.6 mol)을 투입하고, 촉매로 1.0 g의 Ge02, 안정제로 인산 (phosphoric acid) 1.46 g, 정색제로 코발트 아세테이트 (cobalt acetate) 0.7 g을 사용하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1:1.04). 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1495.6 mmHg).
그리고 반응기의 온도를 220°C까지 90 분에 걸쳐 올리고, 22( C에서
2 시간 유지한 후, 260°C까지 2 시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반응기의 온도를 260°C로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 배출하여 반웅기의 압력을 상압으로 낮춘 후, 반응기 내의 흔합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 隱 Hg)까지 30 분에 걸쳐 낮추고, 동시에 반응기의 온도를 280°C까지 1 시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반옹이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 혹은 반웅물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반웅기 내의 흔합물 (용융물)의 고유점도 (IV)가 0.60 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
상기 입자를 150°C에서 1 시간 동안 방치하여 결정화 한 후, 20 L 용적의 고상 중합 반웅기에 투입하였다. 아후,. 상기 반응기에 질소를 50 L/.min 속도로 홀려주었다. 이때, 반웅기의 온도를 상온에서 140°C까지 40°C/시간의 속도로 올리고, 14C C에서 3 시간 유지한 후, 200°C까지 40°C/시간의 속도로 승온하여 200°C에서 유지하였다. 상기 고상 중합 반응은 ᅳ반응기 내의 입자의 고유점도 (IV)가 0.75 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6 몰%, 에될렌 글리콜 유래의 잔기는 91 몰 ¾>, 디에틸렌 글리콜 유래의 잔기는 3 몰 >이었다.
상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과
DSC 1st scan에서의 Tm은 236°C , Tg (2nd scan) 85°C, Mn 19,000, Mw 70,000,
PDI 3.68, Haze 2.4%로 확인되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bottle 성형 시 육안으로 Haze가 관찰되지 않았으며, 2 stage bottle 성형 시에도 성형성 및 외관에 문제가 없었다. 실시예 2: 폴리에스테르 수지의 제조 컬럼과, 물에 의해 냉각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 3215 g의 테레프탈산 (19.4 mol), 1135 g의 에틸렌 글리콜 (18.3 mol), 240 g의 아이소소바이드 (1.6 mol)을 투입하고, 촉매로 1.0 g의 Ge02, 안정제로 인산 (phosphoric acid) 1.46 g, 정색제로 코발트 아세테이트 (cobalt acetate) 0.7 g, 가지화제로 trimellitic anhydrate 100 ppm을 사용하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1:1.03). 이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력 : 1495.6瞧 Hg) . 그리고 반응기의 온도를 220°C까지 90 분에 걸쳐 올리고, 220°C에서 2 시간 유지한 후, 260°C까지 2 시간에 걸쳐 올렸다. 그 다음, 반응기의 온도를 260°C로 유지하였다. 이 과정에서 컬럼과 콘덴서를 거차 500 g의 부산물이 유출된 것을 확인한 이후에 반웅기에 123 g의 에틸렌 글리콜 (2.0 mol)을 추가로 첨가하였다. 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반응기의 은도를 260°C로 유지하였다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 배출하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반응이 가능한 7 L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 隱 Hg)까지 30 분에 걸쳐 낮추 ί, 동시에 반웅기의 온도를 280°C까자 1 시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1 誦 Hg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 혹은 반웅물의 온도가 설정한 온도 어상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 (IV)가 0.65 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다. 상기 입자를 150°C에서 1 시간 동안 방치하여 결정화 한 후, 20 L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반웅기에 질소를 50 L/min 속도로 홀려주었다. 이때, 반응기의 온도를 상온에서 140°C까지 40°C/시간의 속도로 올리고, 14C C에서 3 시간 유지한 후, 200°C까지 40°C/시간의 속도로 승온하여 200°C에서 유지하였다. 상기 고상 중합 반웅은 반웅기 내의 입자의 고유점도 (IV)가 0.95 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6 몰 ¾>, 에틸렌 글리콜 유래의 잔기는 90 몰%, 디에틸렌 글리콜 유래의 잔기는 4 몰%이었다.
상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과
DSC 1st scan에서의 Tm은 236:0, Tg (2nd scan) 85 °C, Mn 28,000, Mw 95,000,
PDI 3.39, Haze 1.2%로 확인되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bottle 성형 시 육안으로 Haze가 관찰되지 않았으며, 2 stage bottle 성형 시에도 성형성 및 외관에 문제가 없었다. 실시예 3: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 3387 g의 테레프탈산 (20.4 mol), 1176 g의 에틸렌 글리콜 (19.0 mol), 357 g의 아이소소바이드 (2.4 mol)을 투입하고, 촉매로 1.0 g의 Ge02, 안정제로 인산 (phosphoric acid) ' 1.46 g, 블루토너로 Clarient사의 Polysynthren Blue RLS 0.016 g, 레드토너로 Clarient사의 Solvaperm Red BB 0.004 g을 사용하였다 (디카르복실산 흑은 이의 유도체와 디올의 몰 비율: 1:1.05). 이어서, 반응기에 질소를 주밉하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1495.6 mmHg).
그리고 반웅기의 온도를 220°C까지 90 분에 걸쳐 올리고, 22CTC에서 2 시간 유지한 후, 26CTC까지 2 시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 260°C로 유지하며 에스테르화 반웅을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출되었다. 에스테르화 반웅이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반응이 가능한 7 L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 隱 Hg)까지 30 분에 걸쳐 낮추고, 동시에 반웅기의 온도를 280°C까지 1 시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1 誦 Hg) 이하로 유지하면서 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅이 진행됨에 따라 반웅물의 점도 상승으로 인해 교반력이 약해지거나 흑은 반웅물의 온도가 설정한 온도 이상으로 을라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반웅기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.60 dl /g이 될 때까지 진행하였다. 반응기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다. 이렇게 얻어진 입자를 70°C의 물에서 5 시간 동안 보관하여 입자에 함유된 미반웅 원료를 제거하였다.
상기 입자를 140°C에서 3 시간 동안 방치하여 결정화 한 후, 20 L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반웅기에 질소를 50 L/min 속도로 흘려주었다. 이때 반응기의 온도를 상온에서 14CTC까지 40°C /시간의 속도로 올리고, 140 °C에서 3 시간 유지한 후, 195°C까지 40°C /시간의 속도로 승온하여 195°C에서 유지하였다. 상기 고상 중합 반웅은 반웅기 내의 입자의 고유점도 ( IV)가 0.85 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디을 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 10 몰%, 에틸렌 글리콜 유래의 잔기는 86.5 몰%, 디에틸렌 글리콜 유래의 잔기는 3.5 몰¾이었다. 상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과 DSC 1st scan에서의 Tm은 220°C, Tg (2nd scan) 90 °C, Mn 25,000, Mw 83,000, PDI 3.32, Haze 1 >로 확인되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bottle 성형 시 육안으로 Haze가 관찰되지 않았으며, 2 stage bottle 성형 시에도 성형성 및 외관에 문제가 없었다. 실시예 4: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 3824 g의 디메틸 테레프탈레이트 (19.7 mol), 2237 g의 에틸렌 글리콜 (36.1 mol), 633 g의 아이소소바이드 (4.3 mol)을 투입하고, 촉매로 Mn(II) acetate tetrahydrate 1.5 g 및 Sb203 1.8 g, 안정제로 인산 (phosphoric acid) 1.0 g, 정색제로 코발트 아세테이트 (cobalt acetate) 1.1 g을 사용하였다 (디카르복실산 혹은 이의 유도쎄와 디올의 몰 비율: 1:2.05). 이어서, 반웅기에 질소를 주입하였으나, 반웅기의 압력을 높이지는 않았다 (절대 압력 : 760mmHg).
그리고 반응기의 온도를 220°C까지 90 분에 걸쳐 올리고, 220°C에서 2 시간 유지한 후, 240°C까지 2 시간에 걸쳐 올렸다. 그 다음, 반응기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 240°C로 유지하며 에스테르 교환 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출돠었다. 에스테르 교환 반웅이 완료되면, 반웅기 내의 흔합물을 진공 반웅이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30 분에 걸쳐 낮추고, 동시에 반웅기의 온도를 285°C까지 1 시간에 걸쳐서 올라고, 반응기의 압력을 1 Torr (절대 압력: 1 匪 Hg) 이하로 유지하면서 중축합 반웅을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 혹은 반웅물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 흔합물 (용융물)의 고유점도 (IV)가 0.60 dl/g이 될 때까지 진행하였다. 반응기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 냉각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
상기 입자를 115°C에서 6 시간 동안 방치하여 결정화 한 후, 20 L 용적의 고상 증합 반응기에 투입하였다. 이후, 상기 반웅기에 질소를 50 L/min 속도로 홀려주었다. 이때, 반웅기의 온도를 상온에서 140°C까지 40°C/시간의 속도로 올리고, 140°C에서 3 시간 유지한 후, 205°C까지 40°C/시간의 속도로 승온하여 205 °C에서 유지하였다. 상기 고상 중합 반웅은 반웅기 내의 입자의 고유점도 (IV)가 0.95 dl/g이 될 때까지 진행하였다.
이렇게 제조된 ¾리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6 몰%, 에틸렌 글리콜 유래의 잔기는 91 몰%, 디에틸렌 글리콜 유래의 잔기는 3 몰 ¾>이었다.
상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과
DSC 1st scan에서의 Tm은 236' °C, Tg (2nd scan) 85°C, Mn 27,000,. Mw 103,000 PDI 3.81, Haze 1.3%로 확인되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bottle 성형 시 육안으로 Haze가 관찰되지 않았으며, 2 stage bottle 성형 시에도 성형성 및 외관에 문제가 없었다. 실시예 5: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반웅기에 3340g의 테레프탈산 (20.1 mol), 104g의 이소프탈산 (0.63 mol), 1248 g의 에틸렌 글리콜 (20.1 mol), 242 g의 아이소소바이드 (1.7 mol)을 투입하고, 촉매로 1.0 g의 Ge02, 안정제로 인산 (phosphoric acid) 1.56 g, 블루토너로 Clarient사의 Polysynthren Blue RLS 0.012 g, 레드토너로 Clarient사의 ᅳ Solvaperm Red BB 0.004 g을 사용하였다 (디카르복실산 흑은 이의 유도체와 디올의 몰 비율: 1:1.05). 이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력 : 1495.6 mmHg).
그리고 반응기의 온도를 220°C까지 90 분에 걸쳐 올리고, 2201에서 2 시간 유지한 후, 255°C까지 2 시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 255°C로 유지하며 에스테르화 반웅을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반웅이 가능한 7 L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30 분에 걸쳐 낮추고, 동시에 반웅기의 온도를 280°C까지 1 시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1 誦 Hg) 이하로 유지하면서 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반웅물의 점도 상승으로 인해 교반력이 약해지거나 흑은 반웅물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 흔합물 (용융물)의 고유점도 (IV)가 0.60 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 아를 넁각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
상기 입자를 140°C에서 3 시간 동안 방치하여 결정화 한 후, 20 L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반옹기에 질소를 50 L/min 속도로 홀려주었다. 이때, 반응기의 온도를 상온에서 140°C까지 40°C/시간의 속도로 올리고, 140°C에서 3 시간 유지한 후, 200°C까지 40°C/시간의 속도로 승온하여 200°C에서 유지하였다. 상기 고상 중합 반응은 반응기 내의 입자의 고유점도 (IV)가 0.90 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6 몰%, 에틸렌 글리콜 유래의 잔기는 90.5 몰%, 디에틸렌 글리콜 유래의 잔기는 3.5 몰 ¾»이었다.
상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과
DSC 1st scan에서의 Tm은 236°C, Tg (2nd scan) 85°C, Mn 27,000, Mw 87,000,
PDI 3.22, Haze 1.2%로 확민되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bottle 성형 시 육안으로 Haze가 관찰되지 않았으며, 2 stage bottle 성형 시에도 성형성 및 외관에 문제가 없었다. 실시예 6: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 3250 g의 테레프탈산 (19.6 mol), 1093 g의 에틸렌 글리콜 (17.6 mol), 400 g의 아이소소바이드 (2.7 mol)을 투입하고, 촉매로 1.0 g의 Ge02, 안정제로 인산 (phosphoric acid) 1.56 g, 블루토너로 Clarient사의 Polysynthren Blue RLS 0.016 g, 레드토너로 Clarient사의 Solvaperm Red BB 0.004 g, 결정화제로 polyethylene 1 ppm, 산화방지제로 lOOppm의 Iganox 1076을 사용하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1:1.04). 이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 0.5 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1127.8隱 Hg).
그리고 반응기의 은도를 220°C까지 90 분에 걸쳐 올리고, 220°C에서 2 시간 유지한 후, 255°C까지 2 시간에 걸쳐 올렸다. 그 다음, 반응기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 은도를
255°C로 유지하며 에스테르화 반웅을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물올 진공 반웅이 가능한 7 L 용적의 반웅기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 100 Torr (절대 압력 : 100 瞧 Hg)까지 10 분에 걸쳐 낮추고, 1 시간 동안 이 압력 상태를 유지하였다. 이후, 반웅기의 온도를 275°C까지 1 시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1 隱 Hg) 이하로 유지하면서 중축합 반웅을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반웅물의 점도 상승으로 인해 교반력이 약해지거나 흑은 반응물의 은도가 설정한 온도 이상으로 을라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반응기 내의 흔합물 (용융물)의 고유점도 ( IV)가. 0.50 dl /g이 될 때까지 진행하였다. 반응기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내자 14 mg 정도가 되도록 입자화 하였다.
상기 입자를 140°C에서 3 시간 동안 방치하여 결정화 한 후, 20 L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반웅기에 질소를 50 L/min 속도로 홀려주었다. 이때, 반응기의 온도를 상온에서 140°C까지 40°C /시간의 속도로 올리고, 140°C에서 3 시간 유지한 후, 190°C까지 40°C /시간의 속도로 승온하여 190 °C에서 유지하였다. 상기 고상 중합 반웅은 반응기 내의 입자의 고유점도 ( IV)가 0.70 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래와 잔기에 대하여 아이소소바아드 유래의 잔기는 12 몰%, 에틸렌 글리콜 —래꾀 잔기는 83 몰%, 디에틸렌 글리콜 유래의 잔기는 5 몰%이었다. 상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과
DSC 1st scan에서의 Tm은 210°C, Tg (2nd scan) 90 °C, Mn 22,000, Mw 68,000, PDI 3.09, Haze 0.8%로 확인되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bottle 성형 시 육안으로 Haze가 관찰되지 않았으며, 2 st ge bottle 성형 시에도 성형성 및 외관에 문제가 없었다. 실시예 7: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 3231 g의 테레프탈산 (19.5 mol), 1098 g의 에틸렌 글리콜 (17.7 mol), 398 g의 아이소소바이드 (2.7 mol)을 투입하고, 촉매로 1.0 g의 Ge02, 안정제로 인산 (phosphoric acid) 1.50 g, 블루토너로 Clarient사의 Polysynthren Blue RLS 0.020 g, 레드토너로 Clarient사의 Solvaperm Red BB 0.004 g을 사용하였다 (디카르복실산 혹은 이의 유도체와 디을의 몰 비율: 1:1.05). 이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 0.5 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1127.8 隱 Hg).
그리고 반응기의 은도를 22C C까지 90 분에 걸쳐 을리고, 220°C에서 2 시간 유지한 후, 255°C까지 2 시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 255°C로 유지하며 에스테르화 반웅을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출되었다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 흔합물을 진공 반웅이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 瞧 Hg)까지 30 분에 걸쳐 낮추고, 동시에 반응기의 온도를 270°C까지 1 시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1 隱 Hg) 이하로 유지하면서 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 흑은 반응물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반응기 내의 흔합물 (용융물)의 고유점도 (IV)가 0.70 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 12 몰%, 에틸렌 글리콜 유래의 잔기는 86 몰%, 디에틸렌 글리콜 유래의 잔기는 2 몰%이었다.
상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과
DSC 1st scan에서의 Tm은 210 °C, Tg (2nd scan) 92 °C, Mn 22,000, Mw 68,000, PDI 3.09, Haze 0.8%로 확인되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bottle 성형 시 육안으로 Haze가 관찰되지 않았으며, 2 stage bottle 성형 시에도 성형성 및 외관에 문제가 없었다. 비교예 1: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 3302 g의 테레프탈산 (19.9 mol), 1480 g의 에틸렌 글리콜 (23.9 mol)을 투입하고, 촉매로 1.0 g의 Ge02, 안정제로 인산 (phosphor ic acid) 1.46 g, 블루토너로 Clarient사의 Polysynthren Blue RLS 0.012 g, 레드토너로 Clarient사의 Solvaperm Red BB 0.004 g을 사용하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1:1.2). 이어서, 반웅기에 질소를 주입하여 반웅기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력 : 1495.6隱 ¾) .
그리고 반웅기의 온도를 220 °C까지 90 분에 걸쳐 을리고, 220°C에서 2 시간 유지한 후, 260°C까지 2 시간에 걸차 올렸다. 그 다음, 반응기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 은도를 260 °C로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출되었다. 에스테르화 반웅이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반응기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 隱 Hg)까지 30 분에 걸쳐 낮추고, 동시에 반웅기의 온도를 280°C까지 1 시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1 瞧 Hg) 이하로 유지하면서 중축합 반응을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅이 진행됨에 따라 반웅물의 점도 상승으로 인해 교반력이 약해지거나 혹은 반웅물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반응기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.60 dl/g이 될 때까지 진행하였다. 반웅기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
상기 입자를 150°C에서 1 시간 동안 방치하여 결정화 한 후, 20 L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반웅기에 질소를 50 L/min 속도로 홀려주었다. 이때, 반웅기의 온도를 상온에서 140°C까지 40°C /시간의 속도로 을리고, 140°C에서 3 시간 유지한 후, 210°C까지 40°C /시간의 속도로 승온하여 210°C에서 유지하였다. 상기 고상 중합 반옹은 반웅기 내의 입자의 고유점도 ( IV)가 0.80 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰 >이었으며, 전체 디올 유래의 잔기에 대하여 에틸렌 글리콜 유래의 잔기는 96.5 몰 ¾>, 디에틸렌 글리콜 유래의 잔기는 3.5 몰%이었다.
상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과 DSC 1st scan에서와 Tm은 250 °C , Tg (2nd scan) 70 °C , Mn 23 , 000, Mw 75 , 000 , PDI 3.26 , Haze 10.4%로 확인되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bott le 성형 시 육안으로 Haze가 관찰되었다. 2 stage bott le 성형 시에는 성형성 및 외관에 문제가 없었다. 비교예 2 : 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반웅기에 3492 g의 테레프탈산 (21.0 mol ) , 1748 g의 에틸렌 글리콜 (28.2 mol ) , 184 g의 아이소소바이드 (1.3 mol )을 투입하고, 촉매로 1.0 g의 Ge02 , 안정제로 인산 (phosphor i c acid) 1.46 g, 정색제로 코발트 아세테이트 (cobal t acetate) 0.7 g을 사용하였다 (디카르복실산 혹은 이의 유도체와 디을의 몰 비율: 1 : 1.4) . 이어서, 반응기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1495.6 隱 Hg) .
그리고 반응기의 온도를 220°C까지 90 분에 걸쳐 올리고, 220°C에서
2 시간 유지한 후, 260 °C까지 2 시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 은도를 26CTC로 유지하며 에스테르화 반웅을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출되었다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 배출하여 반웅기의 압력을 상압으로 낮춘 후, 반웅기 내의 흔합물을 진공 반웅이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 隱 Hg)까지 30 분에 걸쳐 낮추고, 동시에 반웅기의 온도를 28CTC까지 1 시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr (절대 압력: 1 誦 Hg) 이하로 유지하면서 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅이 진행됨에 따라 반웅물의 점도 상승으로 인해 교반력이 약해지거나 흑은 반웅물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반응기 내의 흔합물 (용융물)의 고유점도 (IV)가 0.60 dl/g이 될 때까지 진행하였다. 반웅기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반응기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
상기 입자를 14CTC에서 3 시간 동안 방치하여 결정화 한 후, 20 L 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반웅기에 질소를 50 L/min 속도로 홀려주었다. 이때, 반응기의 온도를 상온에서 140°C까지 40°C/시간의 속도로 올리고, 140°C에서 3 시간 유지한 후, 205°C까지 40°C/시간의 속도로 승온하여 205°C에서 유지하였다. 상기 고상 중합 반응은 반웅기 내의 입자의 고유점도 (IV)가 0/75 dl/g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 3 몰%, 에틸렌 글리콜 유래의 잔기는 94 몰%, 디에틸렌 글리콜 유래의 잔기는 3 몰%이었다.
상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과
DSC 1st scan에서의 Tm은 240°C , Tg (2nd scan) 82 °C, Mn 20,000, Mw 72,000,
PDI 3.60, Haze 5.5%로 확인되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bottle 성형 시 육안으로 Haze가 관찰되었다. 2 stage bottle 성형 시에는 성형성 및 외관에 문제가 없었다. 비교예 3: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 3355 g의 테레프탈산 (20.2 mol), 1228 g의 에틸렌 글리콜 (19.8 mol), 207 g의 아이소소바이드 (1.4 mol)을 투입하고, 촉매로 1.0 g의 Ge02, 안정제로 인산 (phosphoric acid) 1.46 g, 정색제로 코발트 아세테이트 (cobalt acetate) 0.7 g을 사용하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1 : 1.05) . 이어서, 반응기에 질소를 주입하여 반웅기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력: 1495.6 mmHg) .
그리고 반웅기의 온도를 220°C까지 90 분에 걸쳐 올리고, 220°C에서 2 시간 유지한 후, 260°C까지 2 시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반옹기의 온도를 260°C로 유지하며 에스테르화 반웅을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출되었다. 에스테르화 반웅이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 흔합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 匪 Hg)까지 30 분에 걸쳐 낮추고, 동시에 반웅기의 온도를 280°C까지 1 시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr (절대 압력: 1 mmHg) 이하로 유지하면서 중축합 반웅을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반응이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 흑은 반응물의 온도가 설정한 온도 이상으로 을라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반응기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.40 dl /g이 될 때까지 진행하였다. 반웅기 내의 혼합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반웅기 외부로 토출하여 스 B랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
상기 입자를 150°C에서 1 시간 동안 방치하여 결정화 한 후, 20 L 용적의 고상 중합 반응기에 투입하였다. 이후, 상기 반응기에 질소를 50 L/min 속도로 홀려주었다. 이때, 반웅기의 온도를 상온에서 . 140°C까지 40°C /시간의 속도로 올리고, 140°C에서 3 시간 유지한 후, 20CTC까지 40°C /시간의 속도로 승은하여 200 °C에서 유지하였다. 상기 고상 중합 반응은 반응기 내의 입자의 고유점도 ( IV)가 0.75 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6 몰 ¾), 에틸렌 글리콜 유래의 잔기는 92 몰%, 디에틸렌 글리콜 유래의 잔기는 2 몰%이었다.
상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과 DSC 1st scan에서의 Tm은 237 °C, Tg (2nd scan) 85 °C, Mn 18,000, Mw 75,000, PDI 4.17, Haze 3.5%로 확인되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bottle 성형 시 육안으로 Haze가 관찰되었다. 2 stage bottle 성형 시에는 성형성 및 외관에 문제가 없었다. 비교예 4: 폴리에스테르 수지의 제조
컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 2652 g의 테레프탈산 (16.0 mol), 1278 g의 에틸렌 글리콜 (20.6 mol), 257 g의 아이소소바이드 (1.8 mol)을 투입하고, 촉매로 1.0 g의 Ge02, 안정제로 인산 (phosphoric acid) 1.46 g, 블루토너로 Clarient사의 Polysynthren Blue RLS 0.010 g, 레드토너로 Clarient사의 Solvaperm Red BB 0.003 g, 결정화제로 polyethylene 1 ppm을 사용하였다 (디카르복실산 흑은 이의 유도체와 디올의 몰 비율: 1:1.4). 이어서, 반웅기에 질소를 주입하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력 : 1495.6讓 Hg).
그리고 반웅기의 온도를 220°C까지 90 분에 걸쳐 올리고, 22CTC에서 2 시간 유지한 후, 260°C까지 2 시간에 걸쳐 올렸다. 그 다음 반응기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반웅기의 온도를 260°C로 유지하며 에스테르화 반웅을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반응기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반응기 내의 흔합물을 진공 반응이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 5 Torr (절대 압력: 5 mmHg)까지 30 분에 걸쳐 낮추고, 동시에 반웅기의 온도를 270°C까지 1 시간에 걸쳐서 올리고, 반웅기의 압력을 1 Torr (절대 압력: 1 匪 Hg) 이하로 유지하면서 중축합 반옹을 실시하였다. 중축합 반웅의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 혹은 반웅물의 온도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반웅은 반응기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.50 dl /g이 될 때까지 진행하였다. 반응기 내의 흔합물의 고유점도가 원하는 수준에 도달하면, 흔합물을 반응기 외부로 토출하여 스트랜드 (strand)화 하였으며, 이를 넁각액으로 고화 후 평균 무게가 12 내지 14 mg 정도가 되도록 입자화 하였다.
상기 입자를 140°C에서 3 시간 동안 방치하여 결정화 한 후, 20 L 용적의 고상 중합 반웅기에 투입하였다. 이후, 상기 반응기에 질소를 50 L/min 속도로 홀려주었다. 이때, 반웅기의 온도를 상은에서 140°C까지 40°C /시간의 속도로 올리고, 140°C에서 3 시간 유지한 후, 20CTC까지 40°C /시간의 속도로 승온하여 20CTC에서 유지하였다. 상기 고상 중합 반응은 반응기 내의 입자의 고유점도 ( IV)가 0.95 dl /g이 될 때까지 진행하였다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 6 몰%, 에틸렌 글리콜 유래의 잔기는 88 몰%, 디에틸렌 글리콜 유래의 잔기는 6 몰%이었다.
상가 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과 ―
DSC 1st scan에서의 Tm은 230 °C , Tg (2nd scan) 82 °C , Mn 26 , 000, Mw 107 , 000 , PDI 4. 12, Haze 1.5%로 확인되었다. 비교예 5 : 폴리에스테르 수지의 제조 컬럼과, 물에 의해 넁각이 가능한 콘덴서가 연결되어 있는 10 L 용적의 반응기에 3325 g의 테레프탈산 (20.0 mol ) , 1143 g의 에틸렌 글리콜 ( 18.4 mol ) , 1111 g의 아이소소바이드 (7.6 mol )을 투입하고, 촉매로 1.0 g의 Ge02 , 안정제로 인산 (phosphor i c acid) 1.50 g, 블루토너로 Cl ar i ent사의 Polysynthren Blue RLS 0.021 g , 레드토너로 Clar ient사의 Solvaperm Red BB 0.004 g, 산화방지제로 lOOppm의 Iganox 1076을 사용하였다 (디카르복실산 혹은 이의 유도체와 디올의 몰 비율: 1 : 1.3) . 이어서, 반웅기에 질소를 주밉하여 반응기의 압력이 상압 보다 1.0 kgf/cm2 만큼 높은 가압 상태로 만들었다 (절대 압력 : 1495.6 隱 Hg) .
그리고 반웅기의 온도를 220°C까지 90 분에 걸쳐 올리고, 220°C에서
2 시간 유지한 후, 255°C까지 2 시간에 걸쳐 올렸다. 그 다음, 반웅기 내의 흔합물을 육안으로 관찰하여 흔합물이 투명해질 때까지 반응기의 온도를 255°C로 유지하며 에스테르화 반응을 진행하였다. 이 과정에서 컬럼과 콘덴서를 거쳐 650 g의 부산물이 유출되었다. 에스테르화 반응이 완료되면, 가압 상태의 반웅기 내의 질소를 외부로 배출하여 반응기의 압력을 상압으로 낮춘 후, 반웅기 내의 혼합물을 진공 반웅이 가능한 7 L 용적의 반응기로 이송시켰다.
그리고, 반웅기의 압력을 상압 상태에서 100 Tor r (절대 압력 : 100 mmHg)까지 10 분에 걸쳐 낮추고, 1 시간 동안 이 압력 상태를 유지하였다. 이후, 반웅기의 온도를 270°C까지 1 시간에 걸쳐서 올리고, 반응기의 압력을 1 Torr (절대 압력: 1瞧 Hg) 이하로 유지하여 중축합 반응을 실시하였다. 중축합 반응의 초기에는 교반 속도를 빠르게 설정하나, 중축합 반웅이 진행됨에 따라 반응물의 점도 상승으로 인해 교반력이 약해지거나 흑은 반웅물의 은도가 설정한 온도 이상으로 올라갈 경우 교반 속도를 적절히 조절할 수 있다. 상기 중축합 반응은 반웅기 내의 흔합물 (용융물)의 고유점도 ( IV)가 0.70 dl /g이 될 때까지 진행하몄다.
이렇게 제조된 폴리에스테르 수지에 포함된 전체 산 유래 잔기에 대하여 테레프탈산 유래의 잔기는 100 몰%이었으며, 전체 디올 유래의 잔기에 대하여 아이소소바이드 유래의 잔기는 20 몰 %, 쎄틸렌 글리콜 유래의 잔기는 77.5 몰 ¾>, 디에틸렌 글리콜 유래의 잔기는 2.5 몰%이었다. 상기 폴리에스테르 수지의 물성을 상술한 방법에 따라 측정한 결과 DSC를 통한 1st scan에서 융점 (Tm)은 관찰되지 않았으며 , Tg (2nd scan) 95 °C, Mn 25,000, Mw 68,000, PDI 2.72, Haze 0.8%로 확인되었다.
상기 폴리에스테르 수지를 사용하여 1 stage bottle 성형 시 육안으로 Haze가 관찰되지 않았으나, 2 stage bottle 성형 시에는 성형성 및 외관에 문제가 있었다. 시험예: 폴리에스테르 수지의 평가 '
실시예 1 내지 7 및 비교예 1 내지 5에서 제조한 폴리에스테르 수지의 물성을 상술한 방법에 따라 평가하고 그 결과를 표 1에 기재하였다. '
【표 1]
Figure imgf000040_0001
0.220 3 몰¾ 236ᅳ C 103,000
1.830 3.81
5 .05 75 0.30 6 몰¾ 85 °C 27,000 1.2% OK OK
0.080 3.5 236 °C 87,000
0.97 몰% 3.22
6 1.04 86 0.20 12 몰% 90 °C 22,000 0.8% OK OK 0.14 5 몰 ¾» 210 °C 68,000
0.9 3.09
7 1.05 86 12 몰% 92 °C 23,000 0.7% OK OK 0.14 2 몰% 212°C 65,000
0.91 2.83
비교예 1 1.200 0.20 0 몰% 70 °C 23,000 10.4% Haze OK
0.000 3.5 250 °C 75,000
1.200 몰% 3.26
2 1.400 50 0.15 3 몰¾ . 82 °C 20,000 5.5% Haze OK 0.060 3 몰 ¾> 240 °C 72,000
1.340 . 3.60
3 1.050 86 0.35 6 몰% 85 °C 18,000 3.5% Haze OK 0.070 2 몰% 237 °C 75,000
0.980 4.17
4 1.400 55 0.45 6 몰% 82 °C 26,000 1.5% 성형 진행 X 0.110 6 몰% 230 °C 107,000
1.290 4.12
5 1.300 54 20 몰¾ 95 °C 25,000 0.8% OK NG 0.380 2.5 68,000
0.920 몰 > 2.72
G/A: 디카르복실산 혹은 이의 유도체에 대한 디올의 몰비 (디올의 몰 수 /디카르복실산 흑은 이의 유도체의 몰 수; 디올을 복수 회로 나누어 투입 /흔합한 경우, 괄호 내에 "디을의 초기 흔합 몰비 + 추가 투입 몰비' '의 형태로 별도 기재함. )
I/T: 디카르복실산 혹은 이의 유도체에 대한 아이소소바이드의 몰비 (아이소소바이드의 몰 수 /디카르복실산 혹은 이의 유도체의 몰 수)
E/T: 디카르복실산 흑은 이의 유도체에 대한 에틸렌 글리콜의 몰비 (에틸렌 글리콜의 몰 수 /디카르복실산 흑은 이의 유도체의 몰 수)
ISB 잔류율: 폴리에스테르 수지의 제조를 위해 사용된 전체 아이소소바이드에 대한 폴리에스테르 수지에 도입된 아이소소바이드의 몰 비율 ({아이소소바이드로부터 유도된 디올 부분의 몰 수 /디카르복실산 혹은 이의 유도체로부터 유도된 산 부분의 몰 수 }/{아이소소바이드의 몰 수 /디카르복실산 혹은 이의 유도체의 몰 수}*100)
용융 IV와고상 IV의 차이 : 중축합 반웅 종료 및 고상 중합 반웅 전 수지의 고유점도 (용융 IV)와 고상 중합 반웅 후 수지의 고유점도 (고상 IV)의 차이
ISB 함량: 폴리에스테르 수지에 포함된 전체 디올 유래의 잔기에 대한 아이소소바이드 유래의 잔기의 몰 비율
DEG 함량: 폴리에스테르 수지에 포함된 전체 디올 유래의 잔기에 대한 디에틸렌 글리콜 유래의 잔기의 몰 비율 ' 상기 표 1을 참조하면, 1 stage Bott le 성형 공정은 성형된 프리품의 잠열을 이용하여 블로잉 (blowing)을 진행하는테 , 비교예 1의 폴리에스테르 수지와 같이 아이소소바이드로부터 유도된 디올 부분을 포함하지 않으면 블로잉을 진행하기에 적절한 온도에서 분자 내 결정화로 인해 헤이즈가 발생되는 것이 확인된다. 헤이즈 발생을 막기 위해, 성형된 프리폼을 충분히 넁각시키면 후속 블로잉이 불가능해지는 문제가 발생한다.
또한, 비교예 2의 폴리에스테르 수지도 아이소소바이드로부터 유도된 디올 부분을 너무 적게 포함하껴 고분자 사슬의 높은 규칙성으로 인해 성형 후 헤이즈가 발생되는 것이 확인된다.
한편, 실시예 1, 실시예 2 및 비교예 3을 참조하면, 폴리에스테르 수지가 동일한 함량의 아이소소바이드로부터 유도된 디을 부분을 포함하더라도 전체 디올 부분에 대한 디에틸렌 글리콜로부터 유도된 디올 부분의 함량이 2.5 몰% 미만이고, 분자량 분포가 4 초과인 경우 헤이즈가 발생되는 것이 확인된다. 특히, 실시예 1, 실시예 2 및 비교예 3으로부터, 고상 중합. 반웅 전 수지의 고유점도 (용융 IV)가 적어도 0.45 dl /g 이상이어야 헤이즈가 발생되지 않도록 적절한 함량의 디에틸렌 글리콜로부터 유도된 디올 부분을 포함하고 적절한 분자량 분포를 나타낼 수 있음이 확인된다.
한편, 비교예 4를 참조하면, 폴리에스테르 수지가 적절한 함량의 아이소소바이드로부터 유도된 디올 부분을 포함하더라도 다량의 디에틸렌 글리콜로부터 유도된 디올 부분을 포함한다면 내열도가 저하되는 것이 확인된다. 고온 병 (hot f i l l j ar) 등의 용도에서 요구되는 ¾가 최소 85°C 정도임을 고려하면 비교예 4로부터 제조된 폴리에스테르 수지는 고온 병 등의 용도로 적용하는 것이 부적합하다는 것을 알 수 있다.
한편, 실시예 6, 실시예 7 및 비교예 5를 참조하면, DSC를 통한 1차 스캔 시에 융점이 존재하는 폴리에스테르 수지를 제공하기 위한 단량체 조성의 한계를 확인할 수 있다. 디올로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된 디올 부분이 20 몰%인 비교예 5의 폴리에스테르 수지는 DSC를 통한 1차 스캔 시에 Tm peak가 관찰되지 않으며 이에 따라 분자의 연신에 의한 배향이 일어나지 않는다. 따라서, 비교예 5의 폴리에스테르 수지로는 전술한 프리품과 병의 연신비가 큰 2 stage 병 성형이 불가능하다는 것이 확인된다.
이로써, 디올의 초기 투입 /흔합 비율이 적절한 범위로 제어되는 등의 특정 공정 조건 하에 제조되고, 고분자 사슬 내 아이소소바이드로부터 유도된 디올 부분과 디에틸렌 글리콜로부터 유도된 디을 부분의 함량이 특정 범위를 충족해야 일정 수준 이상의 유리전이온도를 가져 높은 내열도 및 뛰어난 기계적 물성을 나타내며, 두꺼운 벽 두께에도 불구하고 고투명도를 나타내는 것이 확인된다. 또한, 고상 중합 반웅 전 수지의 고유점도를 조절하여 폴리에스테르 수지의 분자량 분포를 좁게 조절하여야 적절한 결정화 속도를 가져 헤이즈 발생 없이 두꺼운 수지 성형품을 제공할 수 있음이 확인된다.
상기 모든 실시예의 폴리에스테르 수지로부터 제조된 수지 성형품은 두꺼운 벽 두께에도 불구하고 3% 미만의 매우 낮은 헤이즈를 나타냈으며, DSC를 통한 1차 스캔 시에 융점이 존재하고, 높은 유리전이온도를 가져 1 및 2 stage 병 성형이 모두 가능하며, bott l e 등의 다양한 용도로 적용되기에 효과적임을 확인할 수 있었다.

Claims

【청구의 범위】
【청구항 1】
테레프탈산 혹은 이의 유도체를 포함하는 디카르복실산 혹은 이의 유도체와 아이소소바이드 및 에틸렌 글리콜을 포함하는 디올이 중합되어, 디카르복실산 흑은 이의 유도체로부터 유도된 산 부분 및 디올로부터 유도된 디올 부분이 반복되는 구조를 가지는 폴리에스테르 수지로서,
디올로부터 유도된 전체 디올 부분에 대하여 아이소소바이드로부터 유도된 디을 부분이 6 내지 12 몰%이며, 디에틸렌 글리콜로부터 유도된 디올 부분이 2 내지 5 몰%이고,
시차주사열량계 (DSC)를 통한 1차 스캔 시에 융점이 존재하고, 상기 폴리에스테르 수지로부터 얻은 두께 6 隱의 시편에 대해 ASTM D1003-97에 따라 측정된 헤이즈가 3 > 미만인, 폴리에스테르 수지 .
【청구항 2】
게 1 항에 있어서, 상기 폴리에스테르 수지로부터 얻은 두께 6 隱의 시편에 대해 ASTM D1003-97에 따라 측정된 헤이즈가 1.5% 이하인, 폴리에스테르 수지 .
【청구항 3】
제 1 항에 있어서, 상기 디카르복실산 혹은 이의 유도체는 테레프탈산 흑은 이의 유도체 외의 디카르복실산 혹은 이의 유도체로서, 탄소수 8 내지 14의 방향족 디카르복실산 혹은 이의 유도체 및 탄소수 4 내지 12의 지방족 디카르복실산 혹은 이의 유도체로 이루어진 군에서 선택된 1 종 이상을 전체 디카르복실산 혹은 이의 유도체에 대하여 0 내지 50 몰%로 포함하는, 폴리에스테르 수지.
【청구항 4】
제 1 항에 있어서, 수평균분자량이 15 , 000 내지 50 , 000 g/irol인, 폴리에스테르 수지 .
【청구항 5】
제 1 항에 있어서, 중량평균분자량이 50, 000 내지 150, 000 g/irol인, 폴리에스테르 수지 .
【청구항 6】
제 1 항에 있어서, 분자량 분포가 2.5 내지 4.0인, 폴리에스테르 수지 .
【청구항 7】
제 1 항에 있어서, 시차주사열량계 (DSC)를 통한 1차 스캔 시에 측정된 융점이 200°C 내지 250 °C인, 폴리에스테르 수지 .
【청구항 8】
게 1 항에 있어서, 유리전이온도가 85 °C 이상인. , 폴리에스테르 수지.
【청구항 9】
제 1 항에 있어서, 병, 고온 병 (hot f i l l j ar) , 고압 용기, 시트, 연신 필름 또는 섬유로 사용되는 폴리에스테르 수지.
[청ᅵ구항 10】
제 1 항의 폴리에스테르 수지의 제조 방법으로서,
(a) 테레프탈산 혹은 이의 유도체를 포함하는 ( i ) 디카르복실산 혹은 이의 유도체와, 전체 디카르복실산 흑은 이의 유도체 100 몰에 대하여 6.5 몰 내지 25 몰의 아이소소바이드 및 80 몰 내지 200 몰의 에틸렌 글리콜을 포함하는 ( ii ) 디올의 에스테르화 반응 또는 에스테르 교환 반응 단계; 및
(b) 오르토클로로페놀에 1.2 g/dl의 농도로 150°C에 15 분간 용해시켜 35°C에서 측정한 고유점도가 0.45 dl/g 내지 0.75 dl/g에 도달하도록 상기 에스테르화 또는 에스테르 교환 반응 생성물을 중축합 반응하는 단계를 포함하는 폴리에스테르 수지의 제조 방법
【청구항 11】
제 10 항에 있어서, 상기 (i) 디카르복실산 흑은 이의 유도체는 디카르복실산이고, 상기 (i) 디카르복실산 : 상기 (ii) 디올의 초기 흔합 몰 비율은 1:1.01 내지 1.05로 조절되거나,
상기 (i) 디카르복실산 혹은 이의 유도체는 디카르복실산 알킬 에스테르 또은 디카르복실산 무수물의 디카르복실산 유도체이고, 상기 (i) 디카르복실산 유도체 : 상기 (ii) 디올의 초기 흔합 몰 비율은 1:2.0 내지 1:2.1로 조절되는 폴리에스테르 수지의 제조 방법.
【청구항 12】
제 10 항 또는 제 11 항에 있어서, 상기 (ii) 디올 중 일부를 반응 중에 추가 투입하는 폴리에스테르 수지의 제조 방법.
【청구항 13】
제 10 항에 있어서, 상기 (a) 에스테르화 반응 또는 에스테르 교환 반웅 시작 전 슬러리에 흑은 반웅 완료 후 생성물에 중축합 촉매, 안정제, 정색제, 결정화제, 산화방지제 또는 가지화제를 첨가하는 폴리에스테르 수지의 제조 방법 .
【청구항 14]
제 10 항에 있어서, 상기 (b) 중축합 반웅 전에, 상기 (a) 에스테르화 반응 또는 에스테르 교환 반웅으로 얻은 생성물을 400 내지 ImmHg 감압 조건에서 0.2 내지 3시간 동안 방치하여 아이소소바이드를 포함한 미반웅물을 제거하는 단계를 더 포함하는 폴리에스테르 수지의 제조 방법.
【청구항 15】 제 10 항에 있어서, (b) 단계 후에 (c) 중축합 반웅으로 제조된 폴리머를 결정화하는 단계; 및 (d) 오르토클로로페놀에 1.2 g/dl의 농도로 150°C에서 15 분간 용해시켜 35°C에서 측정한 고유점도가 (b) 단계에서 얻은 수지의 고유점도 보다 0. 10 내지 0.40 dl /g 높은 값에 도달하도록 결정화된 폴리머를 고상 중합하는 단계를 추가로 포함하는 폴리에스테르 수지의 제조 방법 .
【청구항 16】
제 1 항에 따른 폴리에스테르 수지로부터 형성된 수지 성형품. 【청구항 17】
제 16 항에 있어서, 벽 두께가 4.5 mm 이상인 수지 성형품.
PCT/KR2018/006111 2017-05-31 2018-05-29 폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품 WO2018221944A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18809897.4A EP3632953A4 (en) 2017-05-31 2018-05-29 POLYESTER RESIN, METHOD FOR MANUFACTURING ITEM AND MOLDED RESIN PRODUCT THEREOF
US16/615,500 US11447603B2 (en) 2017-05-31 2018-05-29 Polyester resin, method for preparing same, and resin molded product formed therefrom
CN201880013921.8A CN110382591A (zh) 2017-05-31 2018-05-29 聚酯树脂、其制备方法以及由其形成的树脂模制产品
JP2019565538A JP7194123B2 (ja) 2017-05-31 2018-05-29 ポリエステル樹脂とその製造方法およびこれから形成された樹脂成形品
US17/886,182 US11713373B2 (en) 2017-05-31 2022-08-11 Polyester resin, method for preparing same, and resin molded product formed therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170067962 2017-05-31
KR10-2017-0067962 2017-05-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/615,500 A-371-Of-International US11447603B2 (en) 2017-05-31 2018-05-29 Polyester resin, method for preparing same, and resin molded product formed therefrom
US17/886,182 Division US11713373B2 (en) 2017-05-31 2022-08-11 Polyester resin, method for preparing same, and resin molded product formed therefrom

Publications (1)

Publication Number Publication Date
WO2018221944A1 true WO2018221944A1 (ko) 2018-12-06

Family

ID=64456092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006111 WO2018221944A1 (ko) 2017-05-31 2018-05-29 폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품

Country Status (7)

Country Link
US (2) US11447603B2 (ko)
EP (1) EP3632953A4 (ko)
JP (1) JP7194123B2 (ko)
KR (1) KR102568743B1 (ko)
CN (1) CN110382591A (ko)
TW (1) TWI790237B (ko)
WO (1) WO2018221944A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102568743B1 (ko) 2017-05-31 2023-08-22 에스케이케미칼 주식회사 폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품
US11492444B2 (en) * 2017-06-22 2022-11-08 Sk Chemicals Co., Ltd. Polyester container and manufacturing method therefor
KR102684863B1 (ko) 2017-06-26 2024-07-15 에스케이케미칼 주식회사 폴리에스테르 필름 및 이의 제조 방법
KR20200040615A (ko) * 2018-10-10 2020-04-20 에스케이케미칼 주식회사 내화학성 및 투명도가 우수한 폴리에스테르 공중합체
KR20210009844A (ko) * 2019-07-18 2021-01-27 에스케이케미칼 주식회사 폴리에스테르 수지 혼합물
FR3105232B1 (fr) 2019-12-20 2021-12-24 Roquette Freres Procédé de fabrication d’un polyester contenant au moins un motif 1,4 : 3,6-dianhydrohexitol à coloration réduite et taux d’incorporation dudit motif améliorés
KR102601626B1 (ko) 2020-11-18 2023-11-10 에스케이케미칼 주식회사 비스-2-하이드록시에틸 테레프탈레이트의 고순도화 정제 방법 및 이를 포함하는 폴리에스테르 수지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010034804A (ko) * 1998-04-23 2001-04-25 메리 이. 보울러 이소소르바이드 폴리에스테르를 포함하는 광학 제품 및그의 제조방법
US6699546B2 (en) * 2002-07-22 2004-03-02 Nan Ya Plastics Corporation, America Low haze polyester containers
US20070059465A1 (en) * 2004-05-20 2007-03-15 Thompson David E Polyester Resins for High-Strength Articles
WO2012105770A2 (ko) * 2011-01-31 2012-08-09 에스케이케미칼 주식회사 폴리에스테르 수지 조성물 및 그 제조방법
JP2013047317A (ja) * 2011-02-15 2013-03-07 Fujifilm Corp 2軸延伸ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014818A (ko) 1973-06-19 1975-02-17
US4060516A (en) 1973-06-19 1977-11-29 Teijin Limited Naphthalate polyester filaments
JPS5629006B2 (ko) 1973-06-27 1981-07-06
JPS5752617B2 (ko) 1973-10-06 1982-11-09
JPS593980B2 (ja) 1979-10-27 1984-01-27 三菱瓦斯化学株式会社 ブタジエンのヒドロエステル化法
JPS5752617U (ko) 1980-09-11 1982-03-26
JPS593980U (ja) 1982-06-30 1984-01-11 日産車体株式会社 車輌用スライドドアの拘束装置
US5521278A (en) 1994-08-18 1996-05-28 Ecological Chemical Products Integrated process for the manufacture of lactide
US6063465A (en) 1998-04-23 2000-05-16 Hna Holdings, Inc. Polyester container and method for making same
US5958581A (en) 1998-04-23 1999-09-28 Hna Holdings, Inc. Polyester film and methods for making same
US6063495A (en) 1998-04-23 2000-05-16 Hna Holdings, Inc. Polyester fiber and methods for making same
US6140422A (en) 1998-04-23 2000-10-31 E.I. Dupont De Nemours And Company Polyesters including isosorbide as a comonomer blended with other thermoplastic polymers
US6063464A (en) * 1998-04-23 2000-05-16 Hna Holdings, Inc. Isosorbide containing polyesters and methods for making same
US6025061A (en) 1998-04-23 2000-02-15 Hna Holdings, Inc. Sheets formed from polyesters including isosorbide
US5959066A (en) 1998-04-23 1999-09-28 Hna Holdings, Inc. Polyesters including isosorbide as a comonomer and methods for making same
JPH11323658A (ja) 1998-05-12 1999-11-26 Mitsubishi Rayon Co Ltd ポリエステル繊維及びその製造方法
US6656577B1 (en) * 2002-06-14 2003-12-02 E. I. Du Pont De Nemours & Company Process for making poly(ethylene-co-isosorbide) terephthalate polymer
US6914120B2 (en) 2002-11-13 2005-07-05 Eastman Chemical Company Method for making isosorbide containing polyesters
JP2006070101A (ja) * 2004-08-31 2006-03-16 Mitsubishi Chemicals Corp ポリエステル樹脂および樹脂組成物ならびに延伸ブロー成形用プリフォーム及び中空容器
JP2006214057A (ja) 2005-02-07 2006-08-17 Teijin Ltd ポリエステル系繊維およびその製造法
JP2010215770A (ja) 2009-03-16 2010-09-30 Unitika Ltd 共重合ポリエステル樹脂水性分散体およびその製造方法
KR101060246B1 (ko) 2009-04-14 2011-08-29 코오롱인더스트리 주식회사 에어백용 폴리에스테르 원사 및 그의 제조방법
EP2420600B1 (en) 2009-04-14 2016-10-05 Kolon Industries, Inc. Polyester yarn for an airbag and method manufacturing for manufacturing same
KR20110028696A (ko) * 2009-09-14 2011-03-22 에스케이케미칼주식회사 아이소소바이드와 1,4-사이클로헥산디메탄올이 공중합된 폴리에스테르 수지 및 그 제조방법
KR101775077B1 (ko) 2009-10-09 2017-09-06 에스케이씨 주식회사 다층 광학 필름 및 이의 제조방법
JP5283648B2 (ja) 2010-03-04 2013-09-04 富士フイルム株式会社 ポリエステルフィルム及びその製造方法、並びに太陽電池モジュール
EP2615123B9 (en) 2010-09-08 2019-11-13 Toray Industries, Inc. Method for producing polyester compositions
JP5664201B2 (ja) 2010-12-15 2015-02-04 東洋紡株式会社 成型用二軸配向ポリエステルフィルム
KR101218145B1 (ko) 2010-12-24 2013-01-03 도레이첨단소재 주식회사 성형성이 우수한 이축연신 폴리에스테르 필름 및 이의 제조방법
KR101769560B1 (ko) * 2011-03-29 2017-08-18 에스케이케미칼주식회사 젖산과 아이소소바이드가 공중합된 폴리에스테르 수지 및 그 제조방법
JP5903980B2 (ja) 2012-03-28 2016-04-13 三菱化学株式会社 多層ポリエステルシート及びその成形品
KR101952941B1 (ko) 2012-06-05 2019-02-27 에스케이케미칼 주식회사 폴리에스테르 수지 및 이의 제조 방법
BR112014030555B1 (pt) 2012-06-05 2021-08-03 Mitsubishi Chemical Corporation Métodos de produção de poliol poliéster, poliéster e poliuretano
KR101969004B1 (ko) * 2012-06-05 2019-04-15 에스케이케미칼 주식회사 폴리에스테르 수지 및 이의 제조 방법
EP2999733A1 (en) 2013-05-21 2016-03-30 Ester Industries Limited Heat resistant polyethylene terephthalate and a process for the preparation of the same
JP6005005B2 (ja) * 2013-07-23 2016-10-12 富士フイルム株式会社 二軸延伸ポリエステルフィルム及びその製造方法
JPWO2015016111A1 (ja) 2013-08-02 2017-03-02 東レ株式会社 ポリエステルシート、ポリエステルシートから得られる成形体およびカード
EP2837581A1 (en) 2013-08-14 2015-02-18 La Seda de Barcelona S.A. Aerosol plastic container made from an isosorbide containing copolyester and aerosol dispenser comprising said aerosol plastic container
KR102115405B1 (ko) 2013-11-28 2020-06-08 도레이첨단소재 주식회사 수용성 폴리에스테르를 포함하는 내열성이 우수한 복합섬유
KR101594542B1 (ko) 2013-12-30 2016-02-16 에스케이씨 주식회사 투명 이축연신 폴리에스테르 필름 및 이의 제조방법
KR102251210B1 (ko) * 2014-04-11 2021-05-11 에스케이케미칼 주식회사 다층 폴리에스테르 시트 및 그 성형품
TWI535780B (zh) 2014-10-24 2016-06-01 財團法人工業技術研究院 聚酯混掺物
KR20160083399A (ko) 2014-12-30 2016-07-12 주식회사 효성 광학용 이축연신 폴리에스테르 필름
CA2974719A1 (en) 2015-02-06 2016-08-11 Kao Corporation Three-dimensional-modeling soluble material
US10850485B2 (en) 2015-04-15 2020-12-01 Toray Industries, Inc. Polyester resin composition and production method thereof
FR3036400B1 (fr) * 2015-05-22 2019-04-26 Roquette Freres Polyester de haute viscosite aux proprietes choc ameliorees
US20170136747A1 (en) 2015-11-16 2017-05-18 E I Du Pont De Nemours And Company Articles comprising low temperature heat-sealable polyester
JP6581488B2 (ja) 2015-12-09 2019-09-25 旭化成株式会社 成形品及び成形品の製造方法
US11279799B2 (en) * 2015-12-24 2022-03-22 Sk Chemicals Co., Ltd. Polyester resin, preparation method thereof, and resin molded article formed therefrom
KR102553772B1 (ko) * 2016-04-06 2023-07-07 에스케이케미칼 주식회사 폴리에스테르 수지
KR20170037588A (ko) * 2017-03-21 2017-04-03 에스케이케미칼주식회사 아이소소바이드와 1,4-사이클로헥산디메탄올이 공중합된 폴리에스테르 수지 및 그 제조방법
KR102568743B1 (ko) 2017-05-31 2023-08-22 에스케이케미칼 주식회사 폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품
KR102568693B1 (ko) 2017-06-02 2023-08-21 에스케이케미칼 주식회사 폴리에스테르 섬유, 이의 제조 방법 및 이로부터 형성된 성형체
US11492444B2 (en) 2017-06-22 2022-11-08 Sk Chemicals Co., Ltd. Polyester container and manufacturing method therefor
KR102684863B1 (ko) 2017-06-26 2024-07-15 에스케이케미칼 주식회사 폴리에스테르 필름 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010034804A (ko) * 1998-04-23 2001-04-25 메리 이. 보울러 이소소르바이드 폴리에스테르를 포함하는 광학 제품 및그의 제조방법
US6699546B2 (en) * 2002-07-22 2004-03-02 Nan Ya Plastics Corporation, America Low haze polyester containers
US20070059465A1 (en) * 2004-05-20 2007-03-15 Thompson David E Polyester Resins for High-Strength Articles
WO2012105770A2 (ko) * 2011-01-31 2012-08-09 에스케이케미칼 주식회사 폴리에스테르 수지 조성물 및 그 제조방법
JP2013047317A (ja) * 2011-02-15 2013-03-07 Fujifilm Corp 2軸延伸ポリエステルフィルム及びその製造方法、太陽電池用バックシート、並びに太陽電池モジュール

Also Published As

Publication number Publication date
TW201906893A (zh) 2019-02-16
US20220380529A1 (en) 2022-12-01
JP7194123B2 (ja) 2022-12-21
CN110382591A (zh) 2019-10-25
KR20180131436A (ko) 2018-12-10
US11713373B2 (en) 2023-08-01
EP3632953A4 (en) 2021-01-13
KR102568743B1 (ko) 2023-08-22
TWI790237B (zh) 2023-01-21
US11447603B2 (en) 2022-09-20
JP2020521849A (ja) 2020-07-27
US20200087450A1 (en) 2020-03-19
EP3632953A1 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
US11787901B2 (en) Polyester container and manufacturing method therefor
WO2018221944A1 (ko) 폴리에스테르 수지, 이의 제조 방법 및 이로부터 형성된 수지 성형품
JP6936802B2 (ja) ポリエステル樹脂、その製造方法およびこれから形成された樹脂成形品
JP2019513847A (ja) ポリエステル樹脂
JP2022540546A (ja) ポリエステル樹脂混合物
TWI791114B (zh) 具有優異耐化學性與透明度的聚酯共聚物
JP7431862B2 (ja) ポリエステル樹脂混合物
US20240336729A1 (en) Extrusion blown resin having excellent extrusion processability and recyclable and composition comprising thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019565538

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018809897

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018809897

Country of ref document: EP

Effective date: 20200102