WO2018212343A1 - ポリカーボネート樹脂レンズ、およびポリカーボネート樹脂組成物 - Google Patents

ポリカーボネート樹脂レンズ、およびポリカーボネート樹脂組成物 Download PDF

Info

Publication number
WO2018212343A1
WO2018212343A1 PCT/JP2018/019364 JP2018019364W WO2018212343A1 WO 2018212343 A1 WO2018212343 A1 WO 2018212343A1 JP 2018019364 W JP2018019364 W JP 2018019364W WO 2018212343 A1 WO2018212343 A1 WO 2018212343A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate resin
lens
parts
mass
resin composition
Prior art date
Application number
PCT/JP2018/019364
Other languages
English (en)
French (fr)
Inventor
戸谷 由之
清弘 齊藤
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP18803000.1A priority Critical patent/EP3627193A4/en
Priority to CN201880031397.7A priority patent/CN110622044A/zh
Priority to JP2019518895A priority patent/JP6918102B2/ja
Priority to US16/614,631 priority patent/US11630241B2/en
Publication of WO2018212343A1 publication Critical patent/WO2018212343A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • C08K5/3417Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/132Phenols containing keto groups, e.g. benzophenones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to a polycarbonate resin lens and a polycarbonate resin composition containing an ultraviolet absorber.
  • Non-patent document 1 describes the effect of short-wavelength blue light having a wavelength of about 420 nm on the eye.
  • Non-patent Document 1 retinal nerve cells (rat cultured retinal nerve R28 cells) are irradiated with blue LED light having different peak wavelengths of 411 nm and 470 nm, and the damage to the retinal nerve cells of blue LED light is verified.
  • blue light having a peak wavelength at 411 nm is irradiated (4.5 w / m 2 )
  • cell death of retinal neurons is caused within 24 hours
  • blue light having a peak wavelength at 470 nm It has been shown that the same amount of irradiation does not change the cells. That is, it is shown that it is important to prevent eye damage to suppress exposure by light having a wavelength of 400 to 420 nm.
  • exposure of eyes to blue light for a long time is concerned about eye strain and stress, and is considered to be a factor causing age-related macular degeneration.
  • Polycarbonate resin has a high refractive index and has excellent properties such as transparency and impact resistance, and has recently attracted attention as a material for lenses, particularly a material for eyeglass lenses. Glasses made of polycarbonate resin have a higher impact strength than conventional glass lenses and plastic lenses made by cast polymerization (hereinafter sometimes referred to as cast lenses), so they can be reduced in weight and reduced in weight. Excellent safety and high functionality. Therefore, spectacle lenses made of polycarbonate resin have been used for vision correction lenses, sunglasses, protective glasses, and the like. Furthermore, since polycarbonate resin can be injection-molded, it has higher productivity than the cast lens.
  • the polycarbonate resin itself has an ultraviolet absorbing ability, and since it is a thermoplastic resin, the influence of the addition of an ultraviolet absorber is less than that of a polymerization curable resin.
  • An ultraviolet absorber can be blended when melt molding. Therefore, an arbitrary ultraviolet absorber having ultraviolet absorbing ability can be easily contained in a region different from the polycarbonate resin, and for example, an ultraviolet absorber on the long wavelength side can be blended.
  • the conventional polycarbonate resin is limited to absorbing ultraviolet rays up to a wavelength of 375 nm, and when trying to absorb light having a longer wavelength than this, the content of the ultraviolet absorber is added 2 to 10 times the usual amount.
  • UV absorbers are sublimable, so adding a large amount of UV absorbers adversely affects the appearance of the resulting lens because the UV absorbers sublimate and contaminate the mirror mold during polycarbonate resin injection molding. .
  • Patent Document 1 discloses a method of cutting ultraviolet rays having a wavelength of 400 nm or less by using an ultraviolet absorber having an absorption maximum at a wavelength of 300 to 345 nm and an ultraviolet absorber having an absorption maximum at a wavelength of 346 to 400 nm.
  • the spectral transmittance of ultraviolet light having a wavelength of 400 nm is 10% or less, which is not always sufficient to protect the eyes from ultraviolet light.
  • Patent Document 2 discloses a spectacle lens formed from a polycarbonate resin composition containing a specific amount of a benzotriazole ultraviolet absorber having a specific structure. However, there is only a disclosure regarding the spectral transmittance at a wavelength of 400 nm, and there is no description regarding the light transmittance at a wavelength of 420 nm.
  • Patent Document 3 discloses an aromatic polycarbonate resin composition for eyeglass lenses comprising an aromatic polycarbonate resin, a saturated aliphatic hydrocarbon, a benzotriazole-based ultraviolet absorber, and a phosphite-based stabilizer having a specific structure. Yes. However, there is only a disclosure regarding the spectral transmittance at a wavelength of 400 nm, and there is no description regarding the light transmittance at a wavelength of 420 nm.
  • Patent Document 4 discloses a spectacle lens containing a polycarbonate resin, a saturated aliphatic hydrocarbon, a benzotriazole ultraviolet absorber having a vapor pressure of 1 ⁇ 10 ⁇ 8 Pa or less at 25 ° C., and a phosphite ester stabilizer.
  • An aromatic polycarbonate resin composition is disclosed. This document discloses that when a UV absorber having a high vapor pressure is used, the defective rate of the lens molded product is increased. However, the composition disclosed in Patent Document 4 does not reach the ultraviolet cut wavelengths up to 384 nm and 420 nm.
  • Patent Document 5 discloses a light-shielding lens for protective glasses containing an indole ultraviolet absorber having a specific melting point, and in its detailed description, polycarbonate resin is described as an example of a synthetic resin. However, Patent Document 5 relates to a light-shielding lens, and there is no example of actually blending with a polycarbonate resin, and there is no description about the molecular weight of the polycarbonate resin.
  • a light-shielding lens for example, a resin spectacle lens mainly composed of diethylene glycol bisallyl carbonate resin called CR39 and blended with organic acid cobalt is used, and casting polymerization is performed so that a polarizing film is embedded in the resin.
  • a medical lens having both an antiglare effect and a polarization characteristic is known (Patent Document 6).
  • Patent Document 6 a medical lens having both an antiglare effect and a polarization characteristic is known (Patent Document 6).
  • this light-shielding lens has low impact resistance and exhibits brittle fracture. Accordingly, there is a demand for a lens having a high total light transmittance and a high impact resistance that suppresses ultraviolet / visible light of 420 nm or less.
  • the present invention solves the above-described problems in the prior art, and specifically aims at the following points.
  • the first object of the present invention is a polycarbonate which is excellent in impact resistance, mold stain resistance, transparency, color tone stability, has an excellent effect of cutting off ultraviolet rays of a specific wavelength, and is suppressed from yellowing due to ultraviolet rays.
  • the object is to provide a resin lens.
  • a second object of the present invention is to provide a lens that is excellent in the effect of cutting blue light having a wavelength of 420 nm, has less influence on the eye of the blue light, and has a high total light transmittance.
  • a third object of the present invention is to provide a polycarbonate resin composition in which contamination of a mold surface due to sublimation of an ultraviolet absorber is suppressed during molding such as injection molding, and a desired lens can be obtained with high yield. It is providing the manufacturing method of the lens using the said composition.
  • a lens comprising 0.01 to 0.8 parts by mass of an indole compound represented by the following general formula (1) with respect to 100 parts by mass of a polycarbonate resin having a weight average molecular weight of 40,000 to 60,000.
  • R 1 represents an optionally branched alkyl group or aralkyl group
  • R 2 represents —CN or —COOR 3
  • R 3 represents an optionally substituted alkyl group or aralkyl group.
  • a resin composition comprising 0.01 to 0.8 parts by mass of an indole compound represented by the following general formula (1) with respect to 100 parts by mass of a polycarbonate resin having a weight average molecular weight of 40,000 to 60,000.
  • a resin composition comprising 0.01 to 0.8 parts by mass of an indole compound represented by the following general formula (1) with respect to 100 parts by mass of a polycarbonate resin having a weight average molecular weight of 40,000 to 60,000.
  • a method for producing a lens comprising a step of molding by injection molding. (Wherein R 1 represents an optionally branched alkyl group or aralkyl group, R 2 represents —CN or —COOR 3 , and R 3 represents an optionally substituted alkyl group or aralkyl group. )
  • the present invention it is excellent in impact resistance, mold stain resistance, transparency, and color tone stability, and is excellent in the effect of cutting off ultraviolet rays having a specific wavelength, so that yellowing due to ultraviolet rays is suppressed, and blue having a wavelength of 420 nm is further suppressed. Since it has an excellent light-cutting effect, the influence of the blue light on the eye can be reduced, and a polycarbonate resin lens having a high total light transmittance can be provided. In addition, the lens of the present invention is excellent in storage stability with no change in surface condition even after aging. Furthermore, according to the present invention, it is possible to provide a polycarbonate resin composition capable of suppressing contamination of the mold surface and obtaining a desired lens with a high yield, and a method for producing a lens using the composition.
  • the lens of this embodiment includes 0.01 to 0.8 parts by mass of a predetermined indole compound with respect to 100 parts by mass of a polycarbonate resin having a weight average molecular weight of 40,000 to 60,000.
  • the polycarbonate resin is an aromatic polycarbonate resin obtained by reacting a dihydric phenol and a carbonate precursor.
  • the dihydric phenol include, for example, 2,2-bis (4-hydroxyphenyl) propane (commonly called bisphenol A), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxyphenyl) phenylethane, 2,2-bis (4-hydroxy-) 3-methylphenyl) propane, 1,1-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2-bis (4-hydroxy-3-bromophenyl) propane, 2,2-bis (4 -Hydroxy-3,5-dibromophenyl) propane, bis (hydroxy) such as 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane Geb) al.
  • dihydric phenols 2,2-bis (4-hydroxyphenyl) propane (bisphenol A) is preferred as the main dihydric phenol component, particularly 70 mol% or more, especially 80% of the total dihydric phenol component.
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • the main dihydric phenol component particularly 70 mol% or more, especially 80% of the total dihydric phenol component.
  • the thing whose mol% or more is bisphenol A is preferable.
  • an aromatic polycarbonate resin in which the dihydric phenol component is substantially bisphenol A.
  • the polycarbonate resin is preferably a bisphenol A type polycarbonate.
  • the basic means for producing the polycarbonate resin will be briefly described.
  • the reaction of a dihydric phenol component and phosgene is usually performed in the presence of an acid binder and an organic solvent.
  • the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and amine compounds such as pyridine.
  • the organic solvent for example, halogenated hydrocarbons such as methylene chloride and chlorobenzene are used.
  • a catalyst such as a tertiary amine or a quaternary ammonium salt can be used to promote the reaction
  • a terminal terminator such as an alkyl-substituted phenol such as phenol or p-tert-butylphenol is used as a molecular weight regulator. It is desirable to use it.
  • the reaction temperature is usually 0 to 40 ° C.
  • the reaction time is several minutes to 5 hours
  • the pH during the reaction is preferably maintained at 10 or more.
  • transesterification method using a carbonic acid diester as a carbonate precursor, a predetermined proportion of a dihydric phenol component and a carbonic acid diester are stirred with heating in the presence of an inert gas, and the resulting alcohol or phenols are distilled. It is a method to make it come out.
  • the reaction temperature varies depending on the boiling point of the alcohol or phenol produced, but is usually in the range of 120 to 300 ° C.
  • the reaction is carried out while distilling off the alcohol or phenol produced under reduced pressure from the beginning.
  • a normal transesterification reaction catalyst can be used.
  • Examples of the carbonic acid diester used in the transesterification include diphenyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, and the like, and diphenyl carbonate is particularly preferable.
  • the molecular weight of the polycarbonate resin is preferably 40,000 to 60,000, more preferably 40,000 to 50,000, and more preferably 40,000 to 45,000 as the weight average molecular weight measured by gel permeation chromatography in terms of standard polystyrene. 000 is particularly preferred.
  • Eyeglass lenses are precision molded, and it is important to accurately transfer the mirror surface of the mold to give the specified curvature and power. A low-viscosity resin with good melt flow is desirable, but if it is too low The impact strength that is characteristic of polycarbonate resin cannot be maintained. On the other hand, when the viscosity is high, the handling property is lowered and the productivity of the lens is lowered. Therefore, when the weight average molecular weight of the polycarbonate resin is in the above range, the mold transferability is excellent, the impact resistance is excellent, and the lens productivity is also excellent.
  • the indole compound used in the present embodiment is an ultraviolet absorber represented by the following general formula (1).
  • R 1 represents an optionally branched alkyl group or aralkyl group
  • R 2 represents —CN or —COOR 3
  • R 3 represents an optionally substituted alkyl group or aralkyl group.
  • examples of R 1 include an alkyl group having 1 to 12 carbon atoms or an aralkyl group which may have a branched chain. Specific examples include methyl, ethyl, (iso) butyl, t-butyl, hexyl, octyl, 2-ethylhexyl, dodecyl, benzyl and the like.
  • R 2 is a nitrile (-CN) group or an ester (-COOR 3) group.
  • R 3 include an alkyl group having 1 to 20 carbon atoms or an aralkyl group which may have a substituent. Specific examples of R 3 include those exemplified for R 1 above and ⁇ -cyanoethyl group, ⁇ -chloroethyl group, ethoxypropyl group, hydroxyalkyl group, alkoxyalkoxyalkyl group.
  • the indole compound represented by the general formula (1) is not sublimable, and contamination of the mirror mold during the injection molding of the polycarbonate resin is suppressed, and even when a large amount of the compound is added. Contamination of the mirror mold is suppressed. Furthermore, the lens containing the indole-based compound has no change in surface state even after time, and is excellent in storage stability.
  • the indole compound (1) is obtained by subjecting a compound represented by the following general formula (2) to a condensation reaction of a compound represented by the following general formula (3).
  • R 1 has the same meaning as R 1 in the general formula (1).
  • R 2 has the same meaning as R 2 in the general formula (1).
  • ⁇ -cyanoacetic acid ester examples include cyanoacetic acid methyl ester, cyanoacetic acid ethyl ester (ethyl cyanoacetate), cyanoacetic acid isopropyl ester, cyanoacetic acid butyl ester, cyanoacetic acid tertiary butyl ester, cyanoacetic acid amyl ester, cyanoacetic acid Examples thereof include octyl esters, esters from cyanoacetic acid and higher alcohols (for example, undecyl alcohol, dodecyl alcohol, C13 to C20 aliphatic alcohol), cyanoacetic acid benzyl ester, and the like.
  • the amount of compound (3) used is preferably 0.9 to 1.2 equivalents relative to compound (2).
  • the condensation reaction can be carried out in a solvent at 10 ° C. to the boiling point of the solvent at 0.5 to 20 hours.
  • the solvent alcohols (for example, methanol, ethanol and the like), acetic anhydride and the like can be used.
  • bases for example, pyridine, triethylamine, etc.
  • catalysts for example, pyridine, triethylamine, etc.
  • the compound (1) is obtained by separation and purification if necessary.
  • the separation and purification method is not particularly limited.
  • the reaction product mixture is discharged into water or the like, and the compound (1) is precipitated as a precipitate, and then separated. In general, it can be purified by washing with an alcohol solvent or the like, but if necessary, it may be purified by recrystallization or the like.
  • the starting compound (2) can be easily synthesized by a known method. For example, it can be easily synthesized by adding phosphoryl oxychloride to a dimethylformamide solution of a compound represented by the following general formula (4) to formylate (Vilsmeier reaction).
  • R 1 has the same meaning as R 1 in the general formula (1).
  • a compound represented by the following formula (5) and a compound (3) are subjected to a condensation reaction to obtain a compound represented by the following general formula (6), and then alkyl.
  • the compound (1) can also be obtained by reacting with an agent or an aralkylating agent for N-alkylation or aralkylation.
  • R 3 is hydrogen, the derivative can be obtained by treatment with an alkylating agent.
  • R 2 has the same meaning as R 2 in the general formula (1).
  • the condensation reaction of the compound (5) and the compound (3) can be performed under the same conditions as in the case of the aforementioned condensation reaction.
  • N-alkylation or aralkylation may be performed by a usual method.
  • the alkylating agent or aralkylating agent include alkyl halides or halogenated aralkyls (for example, methyl iodide, benzyl iodide), dialkyl sulfates or diaalkyl sulfates (for example, dimethyl sulfate, dibenzyl sulfate), and aromatic sulfonates. Can be mentioned.
  • the indole compound (1) synthesized as described above generally has a maximum absorption at 380 to 400 nm. Accordingly, it is possible to effectively shield ultraviolet rays having a wavelength in this range.
  • the compounding amount of the indole compound (1) is preferably 0.01 to 0.8 parts by mass, more preferably 0.01 to 0.3 parts by mass with respect to 100 parts by mass of the polycarbonate resin.
  • the amount is more preferably 0.02 to 0.3 parts by mass, and particularly preferably 0.02 to 0.1 parts by mass.
  • the above blending amount is 0.01 parts by mass or more, the ability to shield ultraviolet / visible light of 420 nm or less is clearly expressed, and when it is 0.8 parts by mass or less, the yellowness (YI) of the polycarbonate resin is preferred. Value) is preferable. Moreover, when it is 0.8 mass part or less, since favorable impact strength can be hold
  • the polycarbonate resin composition of the present embodiment can be obtained by mixing a polycarbonate resin and an indole compound represented by the general formula (1).
  • the mixing method is not particularly limited, but the mixing can be performed by melt kneading with a melt extruder (short axis or biaxial).
  • the indole compound represented by the general formula (1) may be mixed with the polycarbonate resin at a high concentration and then mixed as a master batch with the polycarbonate resin.
  • the polycarbonate resin composition according to this embodiment is desired to have as little foreign matter content as possible, and filtration of the polycarbonate resin composition with a polymer filter is preferably performed.
  • the mesh of the polymer filter is preferably 100 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the step of collecting the resin pellet is naturally preferably a low dust environment, and more preferably a cleanness of class 1000 or less.
  • the lens according to this embodiment can be obtained by molding the polycarbonate resin composition according to this embodiment.
  • the manufacturing method of the lens of this embodiment includes the process of shape
  • This step can be performed by an injection molding method such as an injection molding method or an injection compression molding method.
  • the injection molding process can be performed under conventionally known conditions.
  • the polycarbonate resin composition according to the present embodiment is excellent in moldability and can suppress contamination of the mold surface, so that a desired lens can be obtained with high yield by a manufacturing method including an injection molding process. A lens excellent in heat resistance and impact resistance can be obtained.
  • the polycarbonate resin composition according to the present embodiment can use various additives in order to impart various characteristics within a range that does not impair the object of the present invention.
  • Additives include antioxidants, processing heat stabilizers, mold release agents, UV absorbers, bluing agents, polymeric metal deactivators, flame retardants, lubricants, antistatic agents, heat ray shielding agents, fluorescent dyes (fluorescent dyes) Whitening agents), pigments, light scattering agents, reinforcing fillers, surfactants, antibacterial agents, plasticizers, compatibilizers and the like.
  • antioxidants examples include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5 -Di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythritol-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5- Di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N- Hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di tert-Butyl-4-hydroxy-benzylphosphonate-diethyl ester, tris
  • processing heat stabilizer examples include a phosphorus processing heat stabilizer and a sulfur processing heat stabilizer.
  • phosphorus processing heat stabilizer include phosphorous acid, phosphoric acid, phosphonous acid, phosphonic acid and esters thereof.
  • triphenyl phosphite tris (nonylphenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, tris (2,6-di-tert-butylphenyl) phosphite, Tri n-decyl phosphite, tri n-octyl phosphite, tri n-octadecyl phosphite, di n-decyl monophenyl phosphite, di n-octyl monophenyl phosphite, diisopropyl monophenyl phosphite, mono n-
  • sulfur-based processing heat stabilizer examples include pentaerythritol-tetrakis (3-laurylthiopropionate), pentaerythritol-tetrakis (3-myristylthiopropionate), pentaerythritol-tetrakis (3-stearylthiopropioate). Nate), dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, and the like.
  • the content of the sulfur-based processing heat stabilizer in the polycarbonate resin composition is preferably 0.001 to 0.2 parts by mass with respect to 100 parts by mass of the polycarbonate resin.
  • esters of alcohol and fatty acid include esters of monohydric alcohol and fatty acid, partial esters or total esters of polyhydric alcohol and fatty acid.
  • the ester of the monohydric alcohol and the fatty acid is preferably an ester of a monohydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
  • the partial ester or total ester of the polyhydric alcohol and fatty acid is preferably a partial ester or total ester of a polyhydric alcohol having 1 to 25 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms.
  • esters of monohydric alcohol and saturated fatty acid include stearyl stearate, palmityl palmitate, n-butyl stearate, methyl laurate, isopropyl palmitate and the like.
  • partial ester or total ester of polyhydric alcohol and saturated fatty acid include stearic acid monoglyceride, stearic acid monoglyceride, stearic acid diglyceride, stearic acid triglyceride, stearic acid monosorbate, behenic acid monoglyceride, capric acid monoglyceride, lauric acid Monoglycerides, pentaerythritol monostearate, pentaerythritol tetrastearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenyl biphenate, sorbitan monostearate, 2-ethylhexyl stearate, dipentaeryth
  • the content of these release agents is preferably in the range of 0.005 to 2.0 parts by weight, more preferably in the range of 0.01 to 0.6 parts by weight, with respect to 100 parts by weight of the polycarbonate resin.
  • the range of 0.5 parts by mass is more preferable.
  • a benzotriazole UV absorber in addition to the indole compound represented by the general formula (1), a benzotriazole UV absorber, a benzophenone UV absorber, a triazine UV absorber, a cyclic imino ester UV absorber, and a cyanoacrylate It can contain at least 1 sort (s) of ultraviolet absorbers chosen from the group which consists of a system ultraviolet absorber. Any of the ultraviolet absorbers listed below may be used alone or in combination of two or more.
  • benzotriazole ultraviolet absorber examples include 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2- Hydroxy-3,5-dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2′-methylenebis [4- (1 , 1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, -(2-hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy Droxy-3,5-di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-o
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octyloxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone, 2- Hydroxy-4-methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxytrihydride benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4' -Tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4- Hydroxy-2-methoxyphene Nyl) methane, 2-hydroxy-4-n-dodecyloxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone and the like.
  • triazine-based ultraviolet absorber examples include 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(n-hexyl) oxy] -phenol, 2- (4, And 6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl) -5-[(n-octyl) oxy] -phenol.
  • Examples of the cyclic imino ester ultraviolet absorber include 2,2′-bis (3,1-benzoxazin-4-one) and 2,2′-p-phenylenebis (3,1-benzoxazine-4-one). ON), 2,2′-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) bis (3,1-benzoxazin-4-one) ), 2,2 ′-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), 2,2 ′-(1,5-naphthalene) bis (3,1-benzoxazine-4) -One), 2,2 '-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2'-(2-nitro-p-phenylene) bis (3 1-benzoxazin-4-one) and 2,2 ′-(2-chloro-p-pheny) Len) bis (3,1
  • cyanoacrylate ultraviolet absorber examples include 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3 -Diphenylacryloyl) oxy] methyl) propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene and the like.
  • the content of the ultraviolet absorber other than the indole compound (1) is preferably 0.01 to 1.0 part by weight, more preferably 0.02 to 0.8 part by weight with respect to 100 parts by weight of the polycarbonate resin. Part, more preferably 0.05 to 0.8 part by weight. If it is the range of this compounding quantity, it is possible to provide sufficient weather resistance to a polycarbonate resin composition according to a use.
  • bluing agents include Bayer's Macrolex Violet B and Macrolex Blue RR, Clariant's Polysynthrene Blue RLS, Kiwa Chemical's K.K. P. Examples include Plast Violet 2R.
  • the bluing agent is effective for eliminating the yellow color of the polycarbonate resin composition.
  • the polycarbonate resin molded product tends to be yellowish due to the "action and color of the UV absorber".
  • blending with a bluing agent is effective.
  • the blending amount of the bluing agent is, for example, preferably 0.05 to 20 ppm, more preferably 0.1 to 15 ppm with respect to the polycarbonate resin.
  • An ultraviolet / visible light absorbing spectacle lens can be obtained by using the lens of the present embodiment. If necessary, a coating layer may be provided on one side or both sides.
  • the coating layer include a primer layer, a hard coat layer, an antireflection layer, an antifogging coat layer, a stain proof layer, and a water repellent layer.
  • a primer layer a hard coat layer
  • an antireflection layer an antifogging coat layer
  • a stain proof layer a water repellent layer.
  • Each of these coating layers can be used alone, or a plurality of coating layers can be used in multiple layers. When a coating layer is applied to both sides, a similar coating layer or a different coating layer may be applied to each surface.
  • Each of these coating layers is a known ultraviolet absorber other than the indole compound represented by the general formula (1), an infrared absorber for the purpose of protecting the eyes from infrared rays, and a light stabilizer for the purpose of improving the weather resistance of the lens.
  • dyes and pigments for the purpose of enhancing the fashionability of lenses, photochromic dyes, photochromic pigments, antistatic agents, and other known additives for enhancing lens performance may be used in combination.
  • various leveling agents for the purpose of improving coating properties may be used for the layer to be coated by coating.
  • the primer layer is usually formed between a hard coat layer, which will be described later, and the lens.
  • the primer layer is a coating layer for the purpose of improving the adhesion between the hard coat layer formed thereon and the lens, and in some cases, the impact resistance can also be improved.
  • Any material can be used for the primer layer as long as it has high adhesion to the obtained lens, but usually a primer mainly composed of urethane resin, epoxy resin, polyester resin, melamine resin, or polyvinyl acetal.
  • a composition or the like is used.
  • the primer composition may use an appropriate solvent that does not affect the lens for the purpose of adjusting the viscosity of the composition. Of course, you may use it without a solvent.
  • the primer layer can be formed by either a coating method or a dry method.
  • the primer layer is formed by solidifying after applying the primer composition to the lens by a known coating method such as spin coating or dip coating.
  • a dry method it forms by well-known dry methods, such as CVD method and a vacuum evaporation method.
  • the surface of the lens may be subjected to a pretreatment such as an alkali treatment, a plasma treatment, or an ultraviolet treatment as necessary for the purpose of improving adhesion.
  • the hard coat layer is a coating layer for the purpose of imparting functions such as scratch resistance, abrasion resistance, moisture resistance, warm water resistance, heat resistance, and weather resistance to the lens surface.
  • the hard coat layer is generally composed of an organic silicon compound having a curing property and an element selected from the element group of Si, Al, Sn, Sb, Ta, Ce, La, Fe, Zn, W, Zr, In, and Ti.
  • a hard coat composition containing at least one kind of fine particles composed of one or more kinds of oxide fine particles and / or a composite oxide of two or more elements selected from these element groups is used.
  • the hard coat composition includes at least amines, amino acids, metal acetylacetonate complexes, organic acid metal salts, perchloric acids, perchloric acid salts, acids, metal chlorides and polyfunctional epoxy compounds. It is preferable to include any of them.
  • a suitable solvent that does not affect the lens may be used for the hard coat composition, or it may be used without a solvent.
  • the hard coat layer is usually formed by applying a hard coat composition by a known coating method such as spin coating or dip coating and then curing.
  • a known coating method such as spin coating or dip coating and then curing.
  • the curing method include thermal curing, a curing method by irradiation with energy rays such as ultraviolet rays and visible rays, and the like.
  • the refractive index of the hard coat layer is preferably in the range of ⁇ 0.1 in the difference in refractive index from the lens.
  • the antireflection layer is usually formed on the hard coat layer as necessary.
  • inorganic oxides such as SiO 2 and TiO 2 are used, and vacuum deposition, sputtering, ion plating, ion beam assist, and CVD are used. It is formed by the dry method.
  • an organic type it is formed by a wet method using a composition containing an organosilicon compound and silica-based fine particles having internal cavities.
  • the antireflection layer has a single layer and a multilayer, and when used in a single layer, the refractive index is preferably at least 0.1 lower than the refractive index of the hard coat layer.
  • a multilayer antireflection film is preferably used. In that case, a low refractive index film and a high refractive index film are alternately laminated. Also in this case, the refractive index difference between the low refractive index film and the high refractive index film is preferably 0.1 or more.
  • Examples of the high refractive index film include ZnO, TiO 2 , CeO 2 , Sb 2 O 5 , SnO 2 , ZrO 2 , and Ta 2 O 5, and examples of the low refractive index film include an SiO 2 film. .
  • an antifogging layer, an antifouling layer and a water repellent layer may be formed as necessary.
  • the processing method and processing materials are not particularly limited, and a known antifogging treatment is possible. Methods, antifouling treatment methods, water repellent treatment methods, and materials can be used.
  • a method of covering the surface with a surfactant for example, a method of adding a hydrophilic film to the surface to make it water absorbent, a method of covering the surface with fine irregularities and increasing water absorption
  • a method of covering the surface with fine irregularities and increasing water absorption examples thereof include a method of absorbing water by utilizing photocatalytic activity, and a method of preventing water droplet adhesion by applying a super water-repellent treatment.
  • a method of forming a water repellent treatment layer by vapor deposition or sputtering of a fluorine-containing silane compound or the like, or a method of forming a water repellent treatment layer by coating after dissolving the fluorine-containing silane compound in a solvent Etc a method of forming a water repellent treatment layer by vapor deposition or sputtering of a fluorine-containing silane compound or the like, or a method of forming a water repellent treatment layer by coating after dissolving the fluorine-containing silane compound in a solvent Etc.
  • the spectral transmittance of ultraviolet / visible light of 420 nm or less is preferably 0 to 20%, more preferably 0 to 15%, and further preferably 0 to 10%. It is. It is preferable that the spectral transmittance of ultraviolet / visible light is 20% or less because it is effective for preventing eye damage.
  • the spectral transmittance at 450 nm, 550 nm, and 650 nm is preferably 50% or more, more preferably 60% or more, and more preferably 70% or more. Further preferred.
  • the spectral transmittances of 450 nm, 550 nm, and 650 nm do not need to be 50% or more in all cases, and only the spectral transmittance of 450 nm is 50% or more, depending on the function desired.
  • only the spectral transmittance at 550 nm may be 50% or more, and only the spectral transmittance at 650 nm may be 50% or more. Even if the spectral transmittance at two or more wavelengths selected from them is 50% or more, Good.
  • the spectral transmittance at one or more wavelengths is 50% or more, more preferably the spectral transmittance at two or more wavelengths is 50% or more, and more preferably the spectral transmittance at the wavelengths of the three primary colors. 50% or more.
  • the lens of the present embodiment preferably has a total light transmittance of 75% or more, more preferably a total light transmittance of 80% or more, and further preferably a total light transmittance of 85% or more. It is.
  • a film or sheet can also be produced by a melt extrusion molding method.
  • a resin melted by an extruder is extruded from a die into a film or a sheet, and is then brought into close contact with a cooling roll and solidified by cooling.
  • the melt extrusion molding method can be performed under conventionally known conditions.
  • Polycarbonate resin-1 Panlite L-1225, manufactured by Teijin Ltd., bisphenol A type polycarbonate having a weight average molecular weight of 43,000
  • Polycarbonate resin-2 SD-2173M, weight average molecular weight manufactured by Sumika Polycarbonate Co., Ltd.
  • UV absorber-A ethyl -2-Cyano-3- (1N-methyl-2-phenyl-1H-indol-3-yl) acrylate
  • UV absorber-B (hereinafter sometimes abbreviated as UVA-B): 2- [ (1N-butyl-2-phenyl-1H-indol-3-yl) methylene] Rononitrile
  • UV absorber-C (hereinafter sometimes abbreviated as UVA-C): ethyl-2-cyano-3- (1N-benzyl-2-phenyl-1H-indol-3-yl) acrylate
  • UVA-D Ultraviolet absorber-D
  • UVA-D benzyl-2-cyano-3- (1
  • spectrophotometer Multispec manufactured by Shimadzu Corporation was used, and an ultraviolet / visible light spectrum was measured using a planar lens having a thickness of 2 mm.
  • Y. I. Value measurement Measurement was performed with a color difference meter Cute-i manufactured by Suga Test Instruments Co., Ltd. using a planar lens having a thickness of 2 mm.
  • Total light transmittance / Haze Measurement was performed in accordance with JIS K 7136 using NDH2000 manufactured by Nippon Denshoku Co., Ltd. using a planar lens having a thickness of 2 mm.
  • the weight average molecular weight of the polycarbonate resin was measured as a value in terms of standard polystyrene by eluent chloroform using a Waters GPC system (pump: 1515, differential refractometer: 2414, column: Shodex K-806L).
  • [Impact resistance test of molded lenses] A puncture impact test was conducted using a Plano lens having a thickness of 2 mm in accordance with JIS K 7211-2, and a ductile fracture sample was evaluated as “ ⁇ ”, and a brittle fracture sample was evaluated as “X”.
  • Example 1 100 parts by weight of polycarbonate resin-1 and 0.035 parts by weight of UVA-A are fed to a twin-screw extruder with a vent (TEX30 ⁇ manufactured by Nippon Steel, Ltd., cylinder setting temperature 260 ° C.) by a quantitative feeder, and foreign matter is passed through a filter. After being filtered, it was discharged from the die in a strand form, cooled with water and solidified, and then pelletized with a rotary cutter to obtain a polycarbonate resin composition. Thereafter, the polycarbonate resin composition was dried in a clean oven at 120 ° C. for 5 hours. The polycarbonate resin composition was injection molded at a resin temperature of 280 ° C.
  • Example 2 In Example 1, instead of using 0.035 parts by mass of UVA-A, a polycarbonate resin composition was produced according to the procedure described in Example 1, except that 0.021 parts by mass of UVA-A was used. A polycarbonate resin dried by a clean oven was injection molded to obtain a lens. Adherence of contaminants and the like was not observed on the mold of the injection molding machine. The optical characteristics of the obtained lens were measured and summarized in Table 1. This lens was not observed to be deposited on the surface even after being stored at room temperature for 3 months, and no change was observed in the surface condition.
  • Example 3 In Example 1, instead of using 0.035 parts by mass of UVA-A, a polycarbonate resin composition was produced according to the procedure described in Example 1 except that 0.021 parts by mass of UVA-B was used. A polycarbonate resin dried by a clean oven was injection molded to obtain a lens. Adherence of contaminants and the like was not observed on the mold of the injection molding machine. The optical characteristics of the obtained lens were measured and summarized in Table 1. This lens was not observed to be deposited on the surface even after being stored at room temperature for 3 months, and no change was observed in the surface condition.
  • Example 4 In Example 1, instead of using 0.035 parts by mass of UVA-A, a polycarbonate resin composition was produced according to the procedure described in Example 1, except that 0.020 parts by mass of UVA-C was used. A polycarbonate resin dried by a clean oven was injection molded to obtain a lens. Adherence of contaminants and the like was not observed on the mold of the injection molding machine. The optical characteristics of the obtained lens were measured and summarized in Table 1. This lens was not observed to be deposited on the surface even after being stored at room temperature for 3 months, and no change was observed in the surface condition.
  • Example 5 In Example 1, instead of using 0.035 parts by mass of UVA-A, a polycarbonate resin composition was produced according to the procedure described in Example 1, except that 0.020 parts by mass of UVA-D was used. A polycarbonate resin dried by a clean oven was injection molded to obtain a lens. Adherence of contaminants and the like was not observed on the mold of the injection molding machine. The optical characteristics of the obtained lens were measured and summarized in Table 1. This lens was not observed to be deposited on the surface even after being stored at room temperature for 3 months, and no change was observed in the surface condition.
  • Example 6 In Example 1, instead of using 0.035 parts by mass of UVA-A, a polycarbonate resin composition was produced according to the procedure described in Example 1, except that 0.75 parts by mass of UVA-A was used. A polycarbonate resin dried by a clean oven was injection molded to obtain a lens. Adherence of contaminants and the like was not observed on the mold of the injection molding machine. The optical characteristics of the obtained lens were measured and summarized in Table 1. This lens was not observed to be deposited on the surface even after being stored at room temperature for 3 months, and no change was observed in the surface condition.
  • Example 7 In Example 1, instead of using 0.035 parts by mass of UVA-A, a polycarbonate resin composition was produced according to the procedure described in Example 1, except that 0.3 parts by mass of UVA-A was used. A polycarbonate resin dried by a clean oven was injection molded to obtain a lens. Adherence of contaminants and the like was not observed on the mold of the injection molding machine. The optical characteristics of the obtained lens were measured and summarized in Table 1. This lens was not observed to be deposited on the surface even after being stored at room temperature for 3 months, and no change was observed in the surface condition.
  • Example 8 In Example 1, except that 100 parts by mass of polycarbonate resin-1 was used instead of 100 parts by mass of polycarbonate resin-1, a polycarbonate resin composition was produced in accordance with the procedure described in Example 1, and then a clean oven was used. The dried polycarbonate resin was injection molded to obtain a lens. Adherence of contaminants and the like was not observed on the mold of the injection molding machine. The optical characteristics of the obtained lens were measured and summarized in Table 1. This lens was not observed to be deposited on the surface even after being stored at room temperature for 3 months, and no change was observed in the surface condition.
  • Example 9 In Example 1, instead of using 100 parts by weight of polycarbonate resin-1 and 0.035 parts by weight of UVA-A, 100 parts by weight of polycarbonate resin-2 and 0.020 parts by weight of UVA-A were used. A polycarbonate resin composition was produced according to the procedure described in Example 1, and then the polycarbonate resin dried by a clean oven was injection molded to obtain a lens. Adherence of contaminants and the like was not observed on the mold of the injection molding machine. The optical characteristics of the obtained lens were measured and summarized in Table 1. This lens was not observed to be deposited on the surface even after being stored at room temperature for 3 months, and no change was observed in the surface condition.
  • the polycarbonate resin composition was injection molded at a resin temperature of 280 ° C. and a mold temperature of 90 ° C. using an injection molding machine (SE-180DU manufactured by Sumitomo Heavy Industries, Ltd.) to mold a lens having a diameter of 75 mm and a thickness of 2 mm. Adherence of fine powdery contaminants was observed on the mold of the injection molding machine.
  • the spectral transmittance, total light transmittance, haze, and YI value of the obtained lens at 400 nm and 420 nm were measured and summarized in Table 1. This lens had a powdery substance deposited on its surface after storage for 3 months, and poor appearance was observed.
  • the spectral transmittance, total light transmittance, haze, and YI value of the obtained lens at 400 nm and 420 nm were measured and summarized in Table 1.
  • This lens had a powdery substance deposited on its surface after storage for 3 months, and poor appearance was observed.
  • Example 10 Polycarbonate resin-1 100 parts by weight, UVA-A 0.035 parts by weight, processing heat stabilizer A 0.02 parts by weight and bluing agent A 10 ppm with a biaxial extruder equipped with a vent [Nippon Steel Co., Ltd. The product was supplied to TEX30 ⁇ manufactured in the factory, and the cylinder set temperature was 260 ° C., and foreign matter was filtered through a filter. The foreign matter was discharged from the die into strands, cooled with water, solidified, and pelletized with a rotary cutter to obtain a polycarbonate resin composition. Thereafter, the polycarbonate resin composition was dried in a clean oven at 120 ° C. for 5 hours.
  • the polycarbonate resin composition was injection molded with an injection molding machine (SE-180DU manufactured by Sumitomo Heavy Industries Ltd.) at a resin temperature of 280 ° C. and a mold temperature of 90 ° C. to form a lens having a diameter of 75 mm and a thickness of 2 mm. Adherence of contaminants and the like was not observed on the mold of the injection molding machine.
  • the optical characteristics of the obtained lens were measured and summarized in Table 1. This lens was not observed to be deposited on the surface even after being stored at room temperature for 3 months, and no change was observed in the surface condition.
  • Example 11 100 parts by weight of polycarbonate resin-1, 0.025 parts by weight of UVA-A, 0.02 parts by weight of processing heat stabilizer A, 0.4 parts by weight of UVA-F and 10 ppm of bluing agent are biaxially attached with a vent by a quantitative feeder.
  • Supply to an extruder TEX30 ⁇ manufactured by Nippon Steel Works, Cylinder Setting Temperature 260 ° C
  • filter the foreign matter through the filter discharge it from the die into strands, cool with water, solidify, and pelletize with a rotary cutter
  • a polycarbonate resin composition was obtained. Thereafter, the polycarbonate resin composition was dried in a clean oven at 120 ° C. for 5 hours.
  • the polycarbonate resin composition was injection molded at a resin temperature of 280 ° C. and a mold temperature of 90 ° C. using an injection molding machine (SE-180DU manufactured by Sumitomo Heavy Industries, Ltd.) to mold a lens having a diameter of 75 mm and a thickness of 2 mm. Adherence of contaminants and the like was not observed on the mold of the injection molding machine.
  • the optical characteristics of the obtained lens were measured and summarized in Table 1. This lens was not observed to be deposited on the surface even after being stored at room temperature for 3 months, and no change was observed in the surface condition.
  • the lens according to the present invention sufficiently shields ultraviolet and visible light having wavelengths of 400 nm and 420 nm, while having high total light transmittance, excellent transparency and hue, and impact resistance. It was confirmed to be high. Furthermore, it was confirmed that mold contamination was suppressed. In addition, the lens of the present invention was excellent in storage stability with no change in the surface condition after aging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Eyeglasses (AREA)

Abstract

本発明のレンズは、重量平均分子量40,000~60,000のポリカーボネート樹脂100質量部に対し、下記一般式(1)で表されるインドール系化合物を0.01~0.8質量部含む。

Description

ポリカーボネート樹脂レンズ、およびポリカーボネート樹脂組成物
 本発明は、紫外線吸収剤を含むポリカーボネート樹脂レンズおよびポリカーボネート樹脂組成物に関する。
 従来から、眼が紫外線に暴露することによる悪影響が問題視されている。さらに、近年、自然光、オフィス機器の液晶ディスプレイや、スマートフォンまたは携帯電話等の携帯機器のディスプレイ等からの発光に含まれる青色光により、眼の疲れや痛みを感じるなど、眼への影響が問題となってきている。そのため、眼が紫外線から420nm程度の比較的短波長の青色光に暴露する量を低減させることが望まれてきている。
 さらに、紫外線により角膜炎や白内障を誘発する可能性が示唆されており、紫外線から目を保護する為に、紫外線吸収能を賦与したレンズの開発が望まれている。波長420nm程度の短波長青色光の眼への影響については、非特許文献1に記載されている。
 非特許文献1では、411nmと470nmのピーク波長の異なる青色LED光を網膜神経細胞(ラットの培養網膜神経R28細胞)に照射し、青色LED光の網膜神経細胞へのダメージを検証している。その結果、411nmにピーク波長を有する青色光を照射(4.5w/m)した場合、24時間以内に網膜神経細胞の細胞死を引き起こすのに対し、470nmにピーク波長を有する青色光では、同じ量の照射でも細胞に変化は起こらないことが示されている。つまり、400~420nmの波長の光による暴露を抑えることが目の障害防止に重要であることが示されている。
 また、長い間、眼に青色光の照射を浴びることは、眼精疲労やストレスを受けることが懸念されており、加齢黄斑変性を引き起こす要因と考えられている。
 また、ポリカーボネート樹脂は高屈折率であり、透明性や耐衝撃性に優れた特性を有していることから、最近はレンズの素材、なかでも眼鏡レンズの素材として注目を集めている。ポリカーボネート樹脂製の眼鏡レンズは、従来のガラスレンズや注型重合によるプラスチックレンズ(以下注型レンズという場合がある)に比べて衝撃強度が高いため、薄くすることにより軽量化が可能であり、かつ安全性に優れており、さらに機能性が高い。そのため、ポリカーボネート樹脂製の眼鏡レンズは、視力補正用レンズ、サングラスおよび保護眼鏡等に用いられるようになってきた。
 さらにポリカーボネート樹脂は射出成型が可能なため、上記の注型レンズと比較して生産性が高い。
 最近では、眼鏡レンズに紫外線吸収能を付与し、有害な紫外線から目を保護する要望が強くなってきている。例えば、注型レンズやガラスレンズでは、レンズ表面に紫外線吸収能を有するコート層を付与して、これらの要望に応えている。しかしながら、かかるコート方法では高価になり、かつレンズ自身が微黄色化することがあった。また注型レンズでは重合させる際に、紫外線吸収剤を添加することも行われている。しかしながら、かかる方法では、紫外線吸収剤が重合性に影響を与えたり、レンズ自体が黄色に変色する場合があった。
 これに対し、ポリカーボネート樹脂製眼鏡レンズでは、ポリカーボネート樹脂自体が紫外線吸収能を有しており、さらに熱可塑性樹脂であるため重合硬化性樹脂等に比べて紫外線吸収剤の添加による影響が軽微であり、溶融成形する際に紫外線吸収剤を配合することができる。そのため、ポリカーボネート樹脂とは異なる領域に紫外線吸収能を有する任意の紫外線吸収剤を容易に含有させることができ、例えば、長波長側の紫外線吸収剤を配合することができる。しかしながら、従来のポリカーボネート樹脂では、波長375nm迄の紫外線を吸収するのが限度であり、これ以上の長波長の光線を吸収しようとすると、紫外線吸収剤の含有量を通常の2~10倍量添加しなければならない。一般に紫外線吸収剤は昇華性であるため、紫外線吸収剤を多量添加すると、ポリカーボネート樹脂の射出成形時に、紫外線吸収剤が昇華して鏡面金型を汚染するため、得られるレンズの外観に悪影響を及ぼす。
 特許文献1には波長300~345nmに吸収極大を有する紫外線吸収剤と、波長346~400nmに吸収極大を有する紫外線吸収剤を併用して波長400nm以下の紫外線をカットする方法が開示されている。しかしながら波長400nmの紫外線の分光透過率は10%以下であって、紫外線から眼を保護するためには必ずしも充分ではなかった。
 また、特許文献2には特定の構造を有するベンゾトリアゾール系紫外線吸収剤を特定量配合してなるポリカーボネート樹脂組成物から形成された眼鏡レンズが開示されている。しかしながら、波長400nmの分光透過率に関する開示のみで、波長420nmにおける光透過率に関する記載はない。
 さらに、特許文献3には芳香族ポリカーボネート樹脂、飽和脂肪族炭化水素、ベンゾトリアゾール系紫外線吸収剤および特定構造の亜リン酸エステル系安定剤からなるメガネレンズ用芳香族ポリカーボネート樹脂組成物が開示されている。しかしながら、波長400nmの分光透過率に関する開示のみで、波長420nmにおける光透過率に関する記載はない。
 特許文献4には、ポリカーボネート樹脂、飽和脂肪族炭化水素、25℃における蒸気圧が1×10-8Pa以下のベンゾトリアゾール系紫外線吸収剤、および亜リン酸エステル系安定剤を含有するメガネレンズ用芳香族ポリカーボネート樹脂組成物が開示されている。当該文献には、蒸気圧が高い紫外線吸収剤を使用した場合、レンズ成形品の不良率が高くなることが開示されている。しかしながら特許文献4に開示されている組成物は紫外線カット波長が384nmと420nmまでは到達していない。
 特許文献5には、特定の融点を有するインドール系紫外線吸収剤を含有した保護眼鏡用遮光レンズが開示されており、その詳細な説明において合成樹脂の例示としてポリカーボネート樹脂が記載されている。しかしながら、特許文献5は遮光レンズに関するものであり、実際にポリカーボネート樹脂に配合した例示はなく、またポリカーボネート樹脂の分子量に関する記載もない。
 遮光レンズとしては安全のために信号機の色を識別できる程度に防眩性に調整する必要があり、75%以上の全光線透過率で波長420nm以下を抑制することが好ましい。このような遮光レンズとしては、例えばCR39と通称されるジエチレングリコールビスアリルカーボネート樹脂を主成分とし、有機酸コバルトを配合した樹脂製眼鏡レンズが挙げられ、かつ偏光膜を樹脂中に埋め込むようにキャスティング重合し、防眩効果と偏光特性を併有させた医療用レンズが知られている(特許文献6)。しかしながら、この遮光レンズは耐衝撃性が低く、脆性破壊を示す。
 したがって、420nm以下の紫外・可視光線を抑制した全光線透過率の高い、さらには耐衝撃性の高いレンズが求められている。
特開平9-263694号公報 特開2004-325511号公報 特開2004-352828号公報 特開2004-352829号公報 特開2012-58643号公報 特開平5-212103号公報
The European journal of euroscience,vol.34,iss.4,548-558(2011)
 本発明は、上記の従来技術における課題を解決するものであり、具体的には以下の点を目的とする。
 本発明の第1の目的は、耐衝撃性、耐金型汚染性、透明性、色調安定性に優れ、かつ特定波長の紫外線のカット効果に優れており、紫外線による黄変が抑制されたポリカーボネート樹脂製レンズを提供することにある。
 本発明の第2の目的は波長420nmの青色光のカット効果に優れ、当該青色光の眼への影響が軽減され、かつ全光線透過率が高いレンズを提供することにある。
 本発明の第3の目的は、射出成型等の成型加工時において、紫外線吸収剤の昇華による金型表面の汚染が抑制されており、所望のレンズを歩留まりよく得ることができるポリカーボネート樹脂組成物および当該組成物を用いたレンズの製造方法を提供することにある。
 本発明者らは前記目的を達成するため、ポリカーボネート樹脂に用いる紫外線吸収剤に関して鋭意検討した結果、本発明に到達した。
 すなわち、本発明は以下に示すことができる。
[1] 重量平均分子量40,000~60,000のポリカーボネート樹脂100質量部に対し、下記一般式(1)で表されるインドール系化合物を0.01~0.8質量部含むレンズ。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは分岐していてもよいアルキル基もしくはアラルキル基、Rは-CNもしくは-COORを示し、Rは置換基を有してもよいアルキル基もしくはアラルキル基を示す。)
[2] 厚さ2mmにおいて、波長420nm以下の分光透過率が0~20%である、[1]に記載のレンズ。
[3] 厚さ2mmにおいて、波長420nm以下の分光透過率が0~20%であり、波長450nmの分光透過率が50%以上である、[1]または[2]に記載のレンズ。
[4] さらにブルーイング剤を含む、[1]~[3]のいずれかに記載のレンズ。
[5] さらに一般式(1)で表される前記インドール系化合物以外の紫外線吸収剤を含む、[1]~[4]のいずれかに記載のレンズ。
[6] さらに酸化防止剤および/または加工熱安定剤を含む、[1]~[5]のいずれかに記載のレンズ。
[7] 重量平均分子量40,000~60,000のポリカーボネート樹脂100質量部に対し、下記一般式(1)で表されるインドール系化合物を0.01~0.8質量部含む樹脂組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは分岐していてもよいアルキル基もしくはアラルキル基、Rは-CNもしくは-COOR、Rは置換基を有してもよいアルキル基もしくはアラルキル基を示す。)
[8] 重量平均分子量40,000~60,000のポリカーボネート樹脂100質量部に対し、下記一般式(1)で表されるインドール系化合物を0.01~0.8質量部含む樹脂組成物を射出成型により成型する工程を含む、レンズの製造方法。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは分岐していてもよいアルキル基もしくはアラルキル基、Rは-CNもしくは-COORを示し、Rは置換基を有してもよいアルキル基もしくはアラルキル基を示す。)
 本発明によれば、耐衝撃性、耐金型汚染性、透明性、色調安定性に優れ、特定波長の紫外線のカット効果に優れているため紫外線による黄変が抑制され、さらに波長420nmの青色光のカット効果に優れているため当該青色光の眼への影響が軽減され、かつ全光線透過率が高いポリカーボネート樹脂製レンズを提供することができる。また、本発明のレンズは、経時後においても表面状態に変化がなく保存安定性にも優れる。
 さらに、本発明によれば、金型表面の汚染を抑制することができ、所望のレンズが歩留まりよく得られるポリカーボネート樹脂組成物および当該組成物を用いたレンズの製造方法を提供することができる。
 以下、本発明を実施の形態により説明する。
 本実施形態のレンズは、重量平均分子量40,000~60,000のポリカーボネート樹脂100質量部に対し、所定のインドール系化合物を0.01~0.8質量部含む。
[ポリカーボネート樹脂]
 ポリカーボネート樹脂は、二価フェノールとカーボネート前駆体を反応させて得られる芳香族ポリカーボネート樹脂である。
 二価フェノールの具体例としては、例えば2,2-ビス(4-ヒドロキシフェニル)プロパン(通称ビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシフェニル)フェニルエタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-tert-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジクロロフェニル)プロパン等のビス(ヒドロキシアリール)アルカン類、1,1-ビス(ヒドロキシフェニル)シクロペンタン、1,1-ビス(ヒドロキシフェニル)シクロヘキサン等のビス(ヒドロキシフェニル)シクロアルカン類、4,4'-ジヒドロキシジフェニルエーテル、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルエーテル等のジヒドロキシアリールエーテル類、4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類、4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類等を挙げることができる。これら二価フェノールは単独で用いても、二種以上併用してもよい。
 前記二価フェノールのうち、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)を主たる二価フェノール成分とするのが好ましく、特に全二価フェノール成分中、70モル%以上、特に80モル%以上がビスフェノールAであるものが好ましい。最も好ましいのは、二価フェノール成分が実質的にビスフェノールAである芳香族ポリカーボネート樹脂である。
 本実施形態において、本発明の効果の観点から、ポリカーボネート樹脂はビスフェノールA型ポリカーボネートであることが好ましい。
 ポリカーボネート樹脂を製造する基本的な手段を簡単に説明する。
 カーボネート前駆体としてホスゲンを用いる溶液法では、通常酸結合剤および有機溶媒の存在下に二価フェノール成分とホスゲンとの反応を行う。酸結合剤としては例えば水酸化ナトリウムや水酸化カリウム等のアルカリ金属の水酸化物またはピリジン等のアミン化合物が用いられる。有機溶媒としては例えば塩化メチレン、クロロベンゼン等のハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンや第四級アンモニウム塩等の触媒を用いることができ、分子量調節剤として例えばフェノールやp-tert-ブチルフェノールのようなアルキル置換フェノール等の末端停止剤を用いることが望ましい。反応温度は通常0~40℃、反応時間は数分~5時間、反応中のpHは10以上に保つのが好ましい。
 カーボネート前駆体として炭酸ジエステルを用いるエステル交換法(溶融法)は、不活性ガスの存在下に所定割合の二価フェノール成分と炭酸ジエステルとを加熱しながら撹拌し、生成するアルコールまたはフェノール類を留出させる方法である。反応温度は生成するアルコールまたはフェノール類の沸点等により異なるが、通常120~300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応させる。また反応を促進するために通常のエステル交換反応触媒を用いることができる。このエステル交換反応に用いる炭酸ジエステルとしては例えばジフェニルカーボネート、ジナフチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート等があげられ、特にジフェニルカーボネートが好ましい。
 ポリカーボネート樹脂の分子量は、標準ポリスチレン換算でゲルパーミエーションクロマトグラフィーにより測定された重量平均分子量として40,000~60,000が好ましく、40,000~50,000がより好ましく、40,000~45,000が特に好ましい。
 眼鏡レンズは精密成形であり、金型の鏡面を正確に転写して規定の曲率、度数を付与することが重要であり、溶融流動性のよい低粘度の樹脂が望ましいが、あまりに低粘度過ぎるとポリカーボネート樹脂の特徴である衝撃強度が保持できない。一方、粘度が高いとハンドリング性が低下し、レンズの生産性が低下する。したがって、ポリカーボネート樹脂の重量平均分子量が上記範囲であると、金型の転写性に優れるとともに、耐衝撃性にも優れ、さらにレンズの生産性にも優れる。
[インドール系化合物]
 本実施形態において使用されるインドール系化合物は、下記一般式(1)で表される紫外線吸収剤である。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、Rは分岐していてもよいアルキル基もしくはアラルキル基、Rは-CNもしくは-COOR、Rは置換基を有してもよいアルキル基もしくはアラルキル基を示す。
 上記一般式(1)において、Rとしては例えば分岐鎖を有してもよい炭素数1~12のアルキル基若しくはアラルキル基が挙げられる。具体的には、メチル基、エチル基、(イソ)ブチル基、t-ブチル基、ヘキシル基、オクチル基、2-エチルヘキシル基、ドデシル基、ベンジル基等が挙げられる。
 Rは、ニトリル(-CN)基若しくはエステル(-COOR)基である。
 Rとしては、例えば置換基を有してもよい炭素数1~20のアルキル基若しくはアラルキル基が挙げられる。Rの具体例としては、例えば上記Rで例示したもの及びβ-シアノエチル基、β-クロロエチル基、エトキシプロピル基、ヒドロキシアルキル基、アルコキシアルコキシアルキル基が挙げられる。
 本実施形態においては、一般式(1)で表されるインドール系化合物は昇華性ではなく、ポリカーボネート樹脂の射出成形時において鏡面金型の汚染が抑制されるとともに、当該化合物を多量添加した場合でも鏡面金型の汚染が抑制される。さらに、当該インドール系化合物を含むレンズは、経時後においても表面状態に変化がなく保存安定性にも優れる。
 インドール系化合物(1)は、下記一般式(2)で表わされる化合物に、下記一般式(3)で表わされる化合物を縮合反応させることにより得られる。
Figure JPOXMLDOC01-appb-C000008
 一般式(2)中、Rは一般式(1)のRと同義である。
 NC-CH-R   (3)
 一般式(3)中、Rは一般式(1)のRと同義である。
 上記化合物(3)としては、例えばマロノニトリル(NC-CH-CN)及びα-シアノ酢酸エステル(NC-CH-COOR;Rは式(1)におけるRと同義である。)が挙げられる。α-シアノ酢酸エステルの具体例としては、シアノ酢酸メチルエステル、シアノ酢酸エチルエステル(シアノ酢酸エチル)、シアノ酢酸イソプロピルエステル、シアノ酢酸ブチルエステル、シアノ酢酸ターシャリブチルエステル、シアノ酢酸アミルエステル、シアノ酢酸オクチルエステル、シアノ酢酸と高級アルコール(例えば、ウンデシルアルコール、ドデシルアルコール、C13~C20の脂肪族アルコール)からのエステル、シアノ酢酸ベンジルエステル等が挙げられる。
 上記縮合反応において、化合物(3)の使用量は、化合物(2)に対し0.9~1.2当量が好ましい。縮合反応は、溶媒中10℃~溶媒の沸点、0.5時間~20時間で行うことができる。溶媒としては、アルコール類(例えばメタノール、エタノール等)、無水酢酸等を使用できる。アルコール類を溶媒とするときは触媒としては塩基類(例えばピリジン、トリエチルアミン等)を使用できる。
 反応終了後、分離及び必要とあれば精製を行って化合物(1)を得る。分離精製法は特に限定されず、例えば反応生成混合物を水等に排出し、化合物(1)を沈澱物として析出させ、次いでこれを分離する。一般にはアルコール溶剤等に洗浄して精製できるが、必要とあれば再結晶等を行って精製してもよい。
 尚、原料の化合物(2)は公知の方法で容易に合成し得る。例えば、下記一般式(4)で表わされる化合物のジメチルホルムアミド溶液に、オキシ塩化リンを加えてホルミル化(Vilsmeier反応)することにより、容易に合成することができる。
Figure JPOXMLDOC01-appb-C000009
 一般式(4)中、Rは一般式(1)のRと同義である。
 その他の化合物(1)の他の合成法としては、例えば下記式(5)で表わされる化合物と化合物(3)とを縮合反応させて、下記一般式(6)で表わされる化合物とし、次いでアルキル化剤若しくはアラルキル化剤と反応させてN-アルキル化若しくはアラルキル化することによっても、化合物(1)を得ることができる。また、Rが水素のときは、アルキル化剤で処理して誘導体を得ることができる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 一般式(6)中、Rは一般式(1)のRと同義である。
 化合物(5)と化合物(3)の縮合反応は、前述の縮合反応の場合と同様の条件で行うことができる。また、N-アルキル化若しくはアラルキル化は通常の方法で行ってよい。アルキル化剤若しくはアラルキル化剤としては、ハロゲン化アルキル若しくはハロゲン化アラルキル(例えばヨウ化メチル、ヨウ化ベンジル)、ジアルキル硫酸若しくはジアラルキル硫酸(例えば、ジメチル硫酸、ジベンジル硫酸)、芳香族スルホン酸エステル等が挙げられる。
 上記のようにして合成されるインドール系化合物(1)は、一般に380~400nmに極大吸収を有する。従ってこの範囲の波長の紫外線を、効果的に遮光する事ができる。
 インドール系化合物(1)の配合量は、ポリカーボネート樹脂100質量部に対して0.01~0.8質量部であることが好ましく、0.01~0.3質量部であることがより好ましく、0.02~0.3質量部であることがさらに好ましく、0.02~0.1質量部であることが特に好ましい。
 上記の配合量が0.01質量部以上の場合、420nm以下の紫外・可視光線を遮光する能力が明確に発現されるため好ましく、0.8質量部以下の場合、ポリカーボネート樹脂の黄色度(YI値)が低下するため好ましい。また0.8質量部以下の場合、良好な衝撃強度を保持でき、さらに金型汚染がより抑制されるために好ましい。
 すなわち、インドール系化合物(1)を上記の量で含むことにより、420nm以下の紫外・可視光線を効果的に遮光することができるとともに、色相および耐衝撃性に優れ、耐金型汚染性に特に優れる。
 本実施形態のポリカーボネート樹脂組成物は、ポリカーボネート樹脂と一般式(1)で表されるインドール系化合物とを混合して得ることができる。混合方法は特に限定されるものではないが、溶融押し出し機(短軸もしくは2軸)により溶融混練することにより混合することができる。
 また、必要に応じて一般式(1)で表されるインドール系化合物をポリカーボネート樹脂に高濃度に混合した後、これをマスターバッチとしてポリカーボネート樹脂に混合する方法により混合することも可能である。
 本実施形態に係るポリカーボネート樹脂組成物は、異物含有量が極力少ないことが望まれ、ポリカーボネート樹脂組成物のポリマーフィルターによる濾過が好適に実施される。ポリマーフィルターのメッシュは、100μm以下であることが好ましく、より好ましくは30μm以下である。また、樹脂ペレットを採取する工程は、当然低ダスト環境であることが好ましく、クラス1000以下のクリーン度であることがより好ましい。
 本実施形態に係るレンズは、本実施形態に係るポリカーボネート樹脂組成物を成型して得ることができる。
 本実施形態のレンズの製造方法は、本実施形態の樹脂組成物を射出成型により成型する工程を含む。当該工程は、射出成形法および射出圧縮成形法等の射出成型方法により行うことができる。射出成型工程は従来公知の条件で行うことができる。
 本実施形態に係るポリカーボネート樹脂組成物は、成形性に優れ、金型表面の汚染を抑制することができるため、射出成型工程を含む製造方法により、所望のレンズを歩留まりよく得ることができ、さらに耐熱性および耐衝撃性に優れたレンズを得ることができる。
 また、本実施形態に係るポリカーボネート樹脂組成物は、本発明の目的を損なわない範囲で各種特性を付与するために、各種添加剤を使用することができる。添加剤としては、酸化防止剤、加工熱安定剤、離型剤、紫外線吸収剤、ブルーイング剤、重合金属不活性化剤、難燃剤、滑剤、帯電防止剤、熱線遮蔽剤、蛍光染料(蛍光増白剤含む)、顔料、光散乱剤、強化充填剤、界面活性剤、抗菌剤、可塑剤、相溶化剤等を挙げることができる。
 酸化防止剤としては、例えば、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトール-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、N,N-ヘキサメチレンビス(3,5-ジ-tert-ブチル-4-ヒドロキシ-ヒドロシンナマイド)、3,5-ジ-tert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレートおよび3,9-ビス{1,1-ジメチル-2-[β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル}-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等が挙げられる。
 ポリカーボネート樹脂組成物中の酸化防止剤の含有量は、ポリカーボネート樹脂100質量部に対して0.001~0.3質量部であることが好ましい。
 加工熱安定剤としては、例えば、リン系加工熱安定剤、硫黄系加工熱安定剤等が挙げられる。
 リン系加工熱安定剤としては、例えば、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル等が挙げられる。具体的には、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリn-デシルホスファイト、トリn-オクチルホスファイト、トリn-オクタデシルホスファイト、ジn-デシルモノフェニルホスファイト、ジn-オクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノn-ブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノn-オクチルジフェニルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、ビス(n-ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、トリn-ブチルホスフェート、トリエチルホスフェート、トリメチルホスフェート、トリフェニルホスフェート、ジフェニルモノオルソキセニルホスフェート、ジn-ブチルホスフェート、ジn-オクチルホスフェート、ジイソプロピルホスフェート、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、ベンゼンホスホン酸ジプロピル、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4'-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-t-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイトおよびビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等が挙げられる。
 ポリカーボネート樹脂組成物中のリン系加工熱安定剤の含有量は、ポリカーボネート樹脂100質量部に対して0.001~0.2質量部が好ましい。
 硫黄系加工熱安定剤としては、例えば、ペンタエリスリトール-テトラキス(3-ラウリルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ミリスチルチオプロピオネート)、ペンタエリスリトール-テトラキス(3-ステアリルチオプロピオネート)、ジラウリル-3,3'-チオジプロピオネート、ジミリスチル-3,3'-チオジプロピオネート、ジステアリル-3,3'-チオジプロピオネート等が挙げられる。
 ポリカーボネート樹脂組成物中の硫黄系加工熱安定剤の含有量は、ポリカーボネート樹脂100質量部に対して0.001~0.2質量部が好ましい。
 離型剤としては、その90質量%以上がアルコールと脂肪酸とのエステルからなるものが好ましい。アルコールと脂肪酸とのエステルとしては、具体的には一価アルコールと脂肪酸とのエステルや、多価アルコールと脂肪酸との部分エステルあるいは全エステルが挙げられる。上記一価アルコールと脂肪酸とのエステルとしては、炭素原子数1~20の一価アルコールと炭素原子数10~30の飽和脂肪酸とのエステルが好ましい。また、上記多価アルコールと脂肪酸との部分エステルあるいは全エステルとしては、炭素原子数1~25の多価アルコールと炭素原子数10~30の飽和脂肪酸との部分エステルまたは全エステルが好ましい。
 一価アルコールと飽和脂肪酸とのエステルとしては、例えば、ステアリルステアレート、パルミチルパルミテート、n-ブチルステアレート、メチルラウレート、イソプロピルパルミテート等が挙げられる。多価アルコールと飽和脂肪酸との部分エステルまたは全エステルとしては、例えば、ステアリン酸モノグリセリド、ステアリン酸モノグリセリド、ステアリン酸ジグリセリド、ステアリン酸トリグリセリド、ステアリン酸モノソルビテート、ベヘニン酸モノグリセリド、カプリン酸モノグリセリド、ラウリン酸モノグリセリド、ペンタエリスリトールモノステアレート、ペンタエリスリトールテトラステアレート、ペンタエリスリトールテトラペラルゴネート、プロピレングリコールモノステアレート、ビフェニルビフェネ-ト、ソルビタンモノステアレート、2-エチルヘキシルステアレート、ジペンタエリスリトールヘキサステアレート等のジペンタエリスルトールの全エステルまたは部分エステル等が挙げられる。
 これら離型剤の含有量は、ポリカーボネート樹脂100質量部に対して0.005~2.0質量部の範囲が好ましく、0.01~0.6質量部の範囲がより好ましく、0.02~0.5質量部の範囲がさらに好ましい。
 紫外線吸収剤としては、一般式(1)で表されるインドール系化合物以外に、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤、環状イミノエステル系紫外線吸収剤およびシアノアクリレート系紫外線吸収剤からなる群より選ばれる少なくとも1種の紫外線吸収剤を含むことができる。以下に挙げる紫外線吸収剤は、いずれかを単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 ベンゾトリアゾール系紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2'-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾ-ル、2-(2-ヒドロキシ-4-n-オクチルオキシフェニル)ベンゾトリアゾ-ル、2,2'-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2'-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾ-ル等が挙げられる。
 ベンゾフェノン系紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクチルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシトリハイドライドレイトベンゾフェノン、2,2'-ジヒドロキシ-4-メトキシベンゾフェノン、2,2',4,4'-テトラヒドロキシベンゾフェノン、2,2'-ジヒドロキシ-4,4'-ジメトキシベンゾフェノン、2,2'-ジヒドロキシ-4,4'-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2'-カルボキシベンゾフェノン等が挙げられる。
 トリアジン系紫外線吸収剤としては、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(n-ヘキシル)オキシ]-フェノール、2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-[(n-オクチル)オキシ]-フェノール等が挙げられる。
 環状イミノエステル系紫外線吸収剤としては、例えば、2,2'-ビス(3,1-ベンゾオキサジン-4-オン)、2,2'-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2'-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2'-(4,4'-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2'-(2,6-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2'-(1,5-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2'-(2-メチル-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2'-(2-ニトロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)および2,2'-(2-クロロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)等が挙げられる。
 シアノアクリレート系紫外線吸収剤としては、例えば、1,3-ビス-[(2'-シアノ-3',3'-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼン等が挙げられる。
 インドール系化合物(1)以外の紫外線吸収剤の含有量は、ポリカーボネート樹脂100質量部に対して、好ましくは0.01~1.0質量部であり、より好ましくは0.02~0.8質量部であり、さらに好ましくは0.05~0.8質量部である。かかる配合量の範囲であれば、用途に応じ、ポリカーボネート樹脂組成物に十分な耐候性を付与することが可能である。
 ブルーイング剤としては、例えば、バイエル社のマクロレックスバイオレットBおよびマクロレックスブルーRR並びにクラリアント社のポリシンスレンブルーRLS、紀和化学のK.P.Plast Violet 2R等が挙げられる。
 ブルーイング剤は、ポリカーボネート樹脂組成物の黄色味を消すために有効である。特に耐候性を付与したポリカーボネート樹脂組成物の場合は一定量の紫外線吸収剤が配合されるため、「紫外線吸収剤の作用や色」によってポリカーボネート樹脂成型品が黄色味を帯びやすい傾向があり、特にシートやレンズに自然な透明感を付与するためにはブルーイング剤の配合は有効である。
 ブルーイング剤の配合量は、例えば、ポリカーボネート樹脂に対して、好ましくは0.05~20ppmであり、より好ましくは0.1~15ppmである。
 本実施形態のレンズを用いて、紫外・可視光線吸収眼鏡レンズを得ることができる。なお、必要に応じて、片面又は両面にコーティング層を施して用いてもよい。
 コーティング層として、具体的には、プライマー層、ハードコート層、反射防止層、防曇コート層、防汚染層、撥水層等が挙げられる。これらのコーティング層はそれぞれ単独で用いることも複数のコーティング層を多層化して使用することもできる。両面にコーティング層を施す場合、それぞれの面に同様なコーティング層を施しても、異なるコーティング層を施してもよい。
 これらのコーティング層はそれぞれ、一般式(1)で表されるインドール系化合物以外の公知の紫外線吸収剤、赤外線から目を守る目的で赤外線吸収剤、レンズの耐候性を向上する目的で光安定剤や酸化防止剤、レンズのファッション性を高める目的で染料や顔料、さらにフォトクロミック染料やフォトクロミック顔料、帯電防止剤、その他、レンズの性能を高めるための公知の添加剤を併用してもよい。塗布によるコーティングを行う層に関しては塗布性の改善を目的とした各種レベリング剤を使用してもよい。
 プライマー層は通常、後述するハードコート層とレンズとの間に形成される。プライマー層は、その上に形成するハードコート層とレンズとの密着性を向上させることを目的とするコーティング層であり、場合により耐衝撃性を向上させることも可能である。プライマー層には得られたレンズに対する密着性の高いものであればいかなる素材でも使用できるが、通常、ウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、メラミン系樹脂、ポリビニルアセタールを主成分とするプライマー組成物などが使用される。プライマー組成物は組成物の粘度を調整する目的でレンズに影響を及ぼさない適当な溶剤を用いてもよい。無論、無溶剤で使用してもよい。
 プライマー層は塗布法、乾式法のいずれの方法によっても形成することができる。塗布法を用いる場合、プライマー組成物を、スピンコート、ディップコートなど公知の塗布方法でレンズに塗布した後、固化することによりプライマー層が形成される。乾式法で行う場合は、CVD法や真空蒸着法などの公知の乾式法で形成される。プライマー層を形成するに際し、密着性の向上を目的として、必要に応じてレンズの表面は、アルカリ処理、プラズマ処理、紫外線処理などの前処理を行っておいてもよい。
 ハードコート層は、レンズ表面に耐擦傷性、耐摩耗性、耐湿性、耐温水性、耐熱性、耐候性等機能を与えることを目的としたコーティング層である。
 ハードコート層は、一般的には硬化性を有する有機ケイ素化合物とSi,Al,Sn,Sb,Ta,Ce,La,Fe,Zn,W,Zr,In及びTiの元素群から選ばれる元素の酸化物微粒子の1種以上および/またはこれら元素群から選ばれる2種以上の元素の複合酸化物から構成される微粒子の1種以上を含むハードコート組成物が使用される。
 ハードコート組成物には上記成分以外にアミン類、アミノ酸類、金属アセチルアセトネート錯体、有機酸金属塩、過塩素酸類、過塩素酸類の塩、酸類、金属塩化物および多官能性エポキシ化合物の少なくともいずれかを含むことが好ましい。ハードコート組成物にはレンズに影響を及ぼさない適当な溶剤を用いてもよいし、無溶剤で用いてもよい。
 ハードコート層は、通常、ハードコート組成物をスピンコート、ディップコートなど公知の塗布方法で塗布した後、硬化して形成される。硬化方法としては、熱硬化、紫外線や可視光線などのエネルギー線照射による硬化方法等が挙げられる。干渉縞の発生を抑制するため、ハードコート層の屈折率は、レンズとの屈折率の差が±0.1の範囲にあるのが好ましい。
 反射防止層は、通常、必要に応じて前記ハードコート層の上に形成される。反射防止層には無機系および有機系があり、無機系の場合、SiO、TiO等の無機酸化物を用い、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビ-ムアシスト法、CVD法などの乾式法により形成される。有機系の場合、有機ケイ素化合物と、内部空洞を有するシリカ系微粒子とを含む組成物を用い、湿式により形成される。
 反射防止層は単層および多層があり、単層で用いる場合はハードコート層の屈折率よりも屈折率が少なくとも0.1以上低くなることが好ましい。効果的に反射防止機能を発現するには多層膜反射防止膜とすることが好ましく、その場合、低屈折率膜と高屈折率膜とを交互に積層する。この場合も低屈折率膜と高屈折率膜との屈折率差は0.1以上であることが好ましい。高屈折率膜としては、ZnO、TiO、CeO、Sb、SnO、ZrO、Ta等の膜があり、低屈折率膜としては、SiO膜等が挙げられる。
 反射防止層の上には、必要に応じて防曇層、防汚染層、撥水層を形成させてもよい。防曇層、防汚染層、撥水層を形成する方法としては、反射防止機能に悪影響をもたらすものでなければ、その処理方法、処理材料等については特に限定されずに、公知の防曇処理方法、防汚染処理方法、撥水処理方法、材料を使用することができる。例えば、防曇処理方法、防汚染処理方法では、表面を界面活性剤で覆う方法、表面に親水性の膜を付加して吸水性にする方法、表面を微細な凹凸で覆い吸水性を高める方法、光触媒活性を利用して吸水性にする方法、超撥水性処理を施して水滴の付着を防ぐ方法などが挙げられる。また、撥水処理方法では、フッ素含有シラン化合物等を蒸着やスパッタによって撥水処理層を形成する方法や、フッ素含有シラン化合物を溶媒に溶解したあと、コーティングして撥水処理層を形成する方法等が挙げられる。
 本実施形態のレンズは、厚さ2mmにおいて、420nm以下の紫外・可視光線の分光透過率が好ましくは0~20%であり、より好ましくは0~15%であり、さらに好ましくは0~10%である。紫外・可視光線の分光透過率が20%以下であると、眼の障害防止に有効であり好ましい。
 また、本実施形態のレンズは、厚さ2mmにおいて、450nm、550nmおよび650nmの分光透過率が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましい。
 レンズとしての機能性付与の観点から、上記450nm、550nmおよび650nmの分光透過率はすべてにおいて50%以上である必要はなく、求める機能に応じて、それぞれ、450nmの分光透過率のみが50%以上、または550nmの分光透過率のみが50%以上、650nmの分光透過率のみが50%以上であってもよく、それらから選ばれる2種以上の波長の分光透過率が50%以上であってもよい。好ましくは、一種以上の波長における分光透過率が50%以上であり、より好ましくは、二種以上の波長における分光透過率が50%以上であり、さらに好ましくは、三原色の波長における分光透過率が50%以上である。
 また、本実施形態のレンズは、好ましくは、全光線透過率が75%以上であり、より好ましくは、全光線透過率が80%以上であり、さらに好ましくは、全光線透過率が85%以上である。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、本発明の効果を損なわない範囲で、上記以外の様々な構成を採用することができる。
 本実施形態のポリカーボネート樹脂組成物を用い、溶融押し出し成型法によりフィルムまたはシートを製造することもできる。溶融押し出し成型法は、押し出し機で溶融した樹脂をダイからフィルムまたはシート状に押し出し、次いで冷却ロールに密着させ冷却固化させて製造される。溶融押し出し成型法は従来公知の条件で行うことができる。
 以下に、実施例により本発明をさらに詳細に説明するが本発明はこれらに限定されるものではない。なお、本実施例において用いた材料・評価方法は以下の通りである。
〔1〕ポリカーボネート樹脂-1:帝人株式会社製、パンライト L-1225、重量平均分子量43,000のビスフェノールA型ポリカーボネート
〔2〕ポリカーボネート樹脂-2:住化ポリカーボネート株式会社製 SD-2173M 重量平均分子量45,000のビスフェノールA型ポリカーボネート
〔3〕ポリカーボネート樹脂-3:重量平均分子量35,000のビスフェノールA型ポリカーボネート
〔4〕紫外線吸収剤-A(以下、UVA-Aと略記する場合がある):エチル-2-シアノ-3-(1N-メチル-2-フェニル-1H-インドール-3-イル)アクリレート
〔5〕紫外線吸収剤-B(以下、UVA-Bと略記する場合がある):2-〔(1N-ブチル-2-フェニル-1H-インドール-3-イル)メチレン〕マロノニトリル
〔6〕紫外線吸収剤-C(以下、UVA-Cと略記する場合がある):エチル-2-シアノ-3-(1N-ベンジル-2-フェニル-1H-インドール-3-イル)アクリレート
〔7〕紫外線吸収剤-D(以下、UVA-Dと略記する場合がある):ベンジル-2-シアノ-3-(1N-メチル-2-フェニル-1H-インドール-3-イル)アクリレート
〔8〕紫外線吸収剤-E(以下、UVA-Eと略記する場合がある):2-(3-tert-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール
〔9〕紫外線吸収剤-F(以下、UVA-Fと略記する場合がある):2,2’-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕
〔10〕加工熱安定剤A:テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト:〔Hostanox P-EPQ〕
〔11〕ブルーイング剤A:1-ヒドロキシ-4-(p-トリルアミノ)アントラセン-9,10-ジオン〔マクロレックスバイオレットB〕
〔分光透過率の測定〕
 測定機器として、(株)島津製作所社製、分光光度計 Multispecを使用し、2mm厚のプラノーレンズを用いて紫外・可視光スペクトルを測定した。
〔Y.I.値の測定〕
 2mm厚のプラノーレンズを用いてスガ試験機株式会社製色彩色差計Cute-iにて測定した。
〔全光線透過率・Haze〕
 2mm厚のプラノーレンズを用いて日本電色株式会社製NDH2000にてJIS K 7136に準拠して測定した。
〔分子量測定〕
 Waters社製GPCシステム〔ポンプ:1515、示差屈折率計:2414、カラム:Shodex K-806L〕を使用して溶出液クロロホルムにより標準ポリスチレン換算の値として、ポリカーボネート樹脂の重量平均分子量を測定した。
〔レンズ成型品の耐衝撃試験〕
 2mm厚のプラノーレンズを用いてJIS K 7211-2に準拠し、パンクチャー衝撃試験を行い延性破壊のサンプルを○、脆性破壊のサンプルを×として評価した。
[実施例1]
 ポリカーボネート樹脂-1を100質量部およびUVA-A 0.035質量部を定量フィーダーによりベント付き2軸押し出し機〔(株)日本製鋼所製TEX30α、シリンダー設定温度260℃〕に供給し、フィルターを通して異物をろ過した後、ダイからストランド状に排出し、水冷、固化させた後回転式カッターでペレット化しポリカーボネート樹脂組成物を得た。その後、該ポリカーボネート樹脂組成物をクリーンオーブンにて120℃で5時間乾燥させた。
 該ポリカーボネート樹脂組成物を射出成型機〔住友重工業株式会社製 SE-180DU〕にて樹脂温度280℃、金型温度90℃で射出成型し、直径75mm、厚さ2mmのレンズを成型した。射出成型機の金型には汚染物質等の付着は認められなかった。得られたレンズの400nmおよび420nmの分光透過率、全光線透過率、Haze、YI値を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[実施例2]
 実施例1において、UVA-Aを0.035質量部使用する代わりに、UVA-Aを0.021質量部使用した以外は、実施例1に記載の操作に従いポリカーボネート樹脂組成物を製造し、その後クリーンオーブンにより乾燥したポリカーボネート樹脂を射出成型し、レンズを得た。射出成型機の金型には汚染物質等の付着は認められなかった。得られたレンズの光学特性を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[実施例3]
 実施例1において、UVA-Aを0.035質量部使用する代わりに、UVA-Bを0.021質量部使用した以外は、実施例1に記載の操作に従いポリカーボネート樹脂組成物を製造し、その後クリーンオーブンにより乾燥したポリカーボネート樹脂を射出成型し、レンズを得た。射出成型機の金型には汚染物質等の付着は認められなかった。得られたレンズの光学特性を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[実施例4]
 実施例1において、UVA-Aを0.035質量部使用する代わりに、UVA-Cを0.020質量部使用した以外は、実施例1に記載の操作に従いポリカーボネート樹脂組成物を製造し、その後クリーンオーブンにより乾燥したポリカーボネート樹脂を射出成型し、レンズを得た。射出成型機の金型には汚染物質等の付着は認められなかった。得られたレンズの光学特性を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[実施例5]
 実施例1において、UVA-Aを0.035質量部使用する代わりに、UVA-Dを0.020質量部使用した以外は、実施例1に記載の操作に従いポリカーボネート樹脂組成物を製造し、その後クリーンオーブンにより乾燥したポリカーボネート樹脂を射出成型し、レンズを得た。射出成型機の金型には汚染物質等の付着は認められなかった。得られたレンズの光学特性を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[実施例6]
 実施例1において、UVA-Aを0.035質量部使用する代わりに、UVA-Aを0.75質量部使用した以外は、実施例1に記載の操作に従いポリカーボネート樹脂組成物を製造し、その後クリーンオーブンにより乾燥したポリカーボネート樹脂を射出成型し、レンズを得た。射出成型機の金型には汚染物質等の付着は認められなかった。得られたレンズの光学特性を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[実施例7]
 実施例1において、UVA-Aを0.035質量部使用する代わりに、UVA-Aを0.3質量部使用した以外は、実施例1に記載の操作に従いポリカーボネート樹脂組成物を製造し、その後クリーンオーブンにより乾燥したポリカーボネート樹脂を射出成型し、レンズを得た。射出成型機の金型には汚染物質等の付着は認められなかった。得られたレンズの光学特性を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[実施例8]
 実施例1において、ポリカーボネート樹脂-1を100質量部使用する代わりにポリカーボネート樹脂-2を100質量部使用した以外は、実施例1に記載の操作に従いポリカーボネート樹脂組成物を製造し、その後クリーンオーブンにより乾燥したポリカーボネート樹脂を射出成型し、レンズを得た。射出成型機の金型には汚染物質等の付着は認められなかった。得られたレンズの光学特性を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[実施例9]
 実施例1において、ポリカーボネート樹脂-1を100質量部およびUVA-Aを0.035質量部使用する代わりにポリカーボネート樹脂-2を100質量部およびUVA-Aを0.020質量部使用した以外は、実施例1に記載の操作に従いポリカーボネート樹脂組成物を製造し、その後クリーンオーブンにより乾燥したポリカーボネート樹脂を射出成型し、レンズを得た。射出成型機の金型には汚染物質等の付着は認められなかった。得られたレンズの光学特性を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[比較例1]
 ポリカーボネート樹脂-1を100質量部、UVA-E 0.6質量部および加工熱安定剤A 0.02質量部を定量フィーダーによりベント付き2軸押し出し機〔(株)日本製鋼所製TEX30α、シリンダー設定温度260℃〕に供給し、フィルターを通して異物をろ過した後、ダイからストランド状に排出し、水冷、固化させた後回転式カッターでペレット化しポリカーボネート樹脂組成物を得た。その後、該ポリカーボネート樹脂組成物をクリーンオーブンにて120℃で5時間乾燥させた。
 該ポリカーボネート樹脂組成物を射出成型機〔住友重工業株式会社製 SE-180DU〕にて樹脂温度280℃、金型温度90℃で射出成型し、直径75mm、厚さ2mmのレンズを成型した。射出成型機の金型に微粉状の汚染物質の付着が認められた。得られたレンズの400nmおよび420nmの分光透過率、全光線透過率、Haze、YI値を測定し、表1にまとめた。このレンズは3か月保管後表面に粉状の物質が析出しており、外観不良が観察された。
[比較例2]
 ポリカーボネート樹脂-3を100質量部およびUVA-A 0.020質量部を定量フィーダーによりベント付き2軸押し出し機〔(株)日本製鋼所製TEX30α、シリンダー設定温度260℃〕に供給し、フィルターを通して異物をろ過した後、ダイからストランド状に排出し、水冷、固化させた後回転式カッターでペレット化しポリカーボネート樹脂組成物を得た。その後、該ポリカーボネート樹脂組成物をクリーンオーブンにて120℃で5時間乾燥させた。
 該ポリカーボネート樹脂組成物を射出成型機〔住友重工業株式会社製 SE-180DU〕にて樹脂温度280℃、金型温度90℃で射出成型し、直径75mm、厚さ2mmのレンズを成型した。射出成型機の金型には汚染物質等の付着は認められなかった。
 得られたレンズの400nmおよび420nmの分光透過率、全光線透過率、Haze、YI値を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[比較例3]
 ポリカーボネート樹脂-1を100質量部およびUVA-F 7.5質量部を定量フィーダーによりベント付き2軸押し出し機〔(株)日本製鋼所製TEX30α、シリンダー設定温度260℃〕に供給し、フィルターを通して異物をろ過した後、ダイからストランド状に排出し、水冷、固化させた後回転式カッターでペレット化しポリカーボネート樹脂組成物を得た。その後、該ポリカーボネート樹脂組成物をクリーンオーブンにて120℃で5時間乾燥させた。
 該ポリカーボネート樹脂組成物を射出成型機〔住友重工業株式会社製 SE-180DU〕にて樹脂温度280℃、金型温度90℃で射出成型し、直径75mm、厚さ2mmのレンズを成型した。射出成型機の金型に微粉状の汚染物質の付着が認められた。
 得られたレンズの400nmおよび420nmの分光透過率、全光線透過率、Haze、YI値を測定し、表1にまとめた。このレンズは3か月保管後表面に粉状の物質が析出しており、外観不良が観察された。
[比較例4]
 ジエチレングリコールビスアリルカーボネートに重合開始剤IPP(ジイソプロピルパーオキシジカーボネート)3%を添加したもの100質量部に対してUVA-A 1.5質量部を配合し、これらを混合撹拌した後、真空脱気して液状の成型材料を調製した。この液状成型材料を凸面および凹面のガラスモールドにガスケットをセットして厚さが2mmとなるようにしたレンズ成型キャビティ内に注入した。成形材料は40℃で3時間、40~50℃の昇温を7時間、50℃~80℃の昇温を9時間さらに80℃で1時間加熱し、冷却してから取り出し、100℃で2時間アニーリングし、レンズを得た。得られたレンズの400nmおよび420nmの分光透過率、全光線透過率、Haze、YI値を測定し、表1にまとめた。このレンズは3か月保管後表面に粉状の物質が析出しており、外観不良が観察された。
[実施例10]
 ポリカーボネート樹脂-1を100質量部、UVA-A 0.035質量部、加工熱安定剤A 0.02質量部およびブルーイング剤A 10ppmを定量フィーダーによりベント付き2軸押し出し機〔(株)日本製鋼所製TEX30α、シリンダー設定温度260℃〕に供給し、フィルターを通して異物をろ過した後、ダイからストランド状に排出し、水冷、固化させた後回転式カッターでペレット化しポリカーボネート樹脂組成物を得た。その後、該ポリカーボネート樹脂組成物をクリーンオーブンにて120℃で5時間乾燥させた。
 該ポリカーボネート樹脂組成物を射出成型機〔住友重工業株式製 SE-180DU〕にて樹脂温度280℃、金型温度90℃で射出成型し、直径75mm、厚さ2mmのレンズを成型した。射出成型機の金型には汚染物質等の付着は認められなかった。
 得られたレンズの光学特性を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
[実施例11]
 ポリカーボネート樹脂-1を100質量部、UVA-A 0.025質量部、加工熱安定剤A 0.02質量部、UVA-F 0.4質量部およびブルーイング剤10ppmを定量フィーダーによりベント付き2軸押し出し機〔(株)日本製鋼所製TEX30α、シリンダー設定温度260℃〕に供給し、フィルターを通して異物をろ過した後、ダイからストランド状に排出し、水冷、固化させた後回転式カッターでペレット化しポリカーボネート樹脂組成物を得た。その後、該ポリカーボネート樹脂組成物をクリーンオーブンにて120℃で5時間乾燥させた。
 該ポリカーボネート樹脂組成物を射出成型機〔住友重工業株式会社製 SE-180DU〕にて樹脂温度280℃、金型温度90℃で射出成型し、直径75mm、厚さ2mmのレンズを成型した。射出成型機の金型には汚染物質等の付着は認められなかった。
 得られたレンズの光学特性を測定し、表1にまとめた。このレンズは室温にて3か月保管した後も表面に物質の析出等が認められず、表面の状態に変化は認められなかった。
Figure JPOXMLDOC01-appb-T000012
 表1に記載の結果から、本発明に係るレンズは波長400nmおよび波長420nmの紫外・可視光線を充分遮光する一方で全光線透過率が高く、透明性および色相にも優れ、なおかつ耐衝撃性も高いことが確認された。さらに金型汚染が抑制されていることが確認された。また、本発明のレンズは経時後の表面状態に変化がなく保存安定性にも優れていた。
 この出願は、2017年5月19日に出願された日本出願特願2017-099723号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (8)

  1.  重量平均分子量40,000~60,000のポリカーボネート樹脂100質量部に対し、下記一般式(1)で表されるインドール系化合物を0.01~0.8質量部含むレンズ。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは分岐していてもよいアルキル基もしくはアラルキル基、Rは-CNもしくは-COORを示し、Rは置換基を有してもよいアルキル基もしくはアラルキル基を示す。)
  2.  厚さ2mmにおいて、波長420nm以下の分光透過率が0~20%である、請求項1に記載のレンズ。
  3.  厚さ2mmにおいて、波長420nm以下の分光透過率が0~20%であり、波長450nmの分光透過率が50%以上である、請求項1または2に記載のレンズ。
  4.  さらにブルーイング剤を含む、請求項1~3のいずれかに記載のレンズ。
  5.  さらに一般式(1)で表される前記インドール系化合物以外の紫外線吸収剤を含む、請求項1~4のいずれかに記載のレンズ。
  6.  さらに酸化防止剤および/または加工熱安定剤を含む、請求項1~5のいずれかに記載のレンズ。
  7.  重量平均分子量40,000~60,000のポリカーボネート樹脂100質量部に対し、下記一般式(1)で表されるインドール系化合物を0.01~0.8質量部含む樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは分岐していてもよいアルキル基もしくはアラルキル基、Rは-CNもしくは-COOR、Rは置換基を有してもよいアルキル基もしくはアラルキル基を示す。)
  8.  重量平均分子量40,000~60,000のポリカーボネート樹脂100質量部に対し、下記一般式(1)で表されるインドール系化合物を0.01~0.8質量部含む樹脂組成物を射出成型により成型する工程を含む、レンズの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは分岐していてもよいアルキル基もしくはアラルキル基、Rは-CNもしくは-COORを示し、Rは置換基を有してもよいアルキル基もしくはアラルキル基を示す。)
PCT/JP2018/019364 2017-05-19 2018-05-18 ポリカーボネート樹脂レンズ、およびポリカーボネート樹脂組成物 WO2018212343A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18803000.1A EP3627193A4 (en) 2017-05-19 2018-05-18 LENS IN POLYCARBONATE RESIN AND POLYCARBONATE RESIN COMPOSITION
CN201880031397.7A CN110622044A (zh) 2017-05-19 2018-05-18 聚碳酸酯树脂透镜及聚碳酸酯树脂组合物
JP2019518895A JP6918102B2 (ja) 2017-05-19 2018-05-18 ポリカーボネート樹脂レンズ、およびポリカーボネート樹脂組成物
US16/614,631 US11630241B2 (en) 2017-05-19 2018-05-18 Polycarbonate resin lens and polycarbonate resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017099723 2017-05-19
JP2017-099723 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018212343A1 true WO2018212343A1 (ja) 2018-11-22

Family

ID=64274114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019364 WO2018212343A1 (ja) 2017-05-19 2018-05-18 ポリカーボネート樹脂レンズ、およびポリカーボネート樹脂組成物

Country Status (5)

Country Link
US (1) US11630241B2 (ja)
EP (1) EP3627193A4 (ja)
JP (1) JP6918102B2 (ja)
CN (1) CN110622044A (ja)
WO (1) WO2018212343A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020250802A1 (ja) * 2019-06-10 2020-12-17
JP2022517673A (ja) * 2019-01-28 2022-03-09 コーロン インダストリーズ インク 発光素子用紫外線吸収封止材及びこれを含む発光素子

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3575362A1 (de) * 2018-05-29 2019-12-04 Covestro Deutschland AG Abdeckungen für led-lichtquellen
KR102166306B1 (ko) * 2018-08-20 2020-10-15 주식회사 엘지화학 폴리카보네이트 수지 조성물 및 이를 포함하는 광학 성형품
JP7518904B2 (ja) * 2020-06-16 2024-07-18 出光興産株式会社 車両用灯具の内部部品
IT202000030104A1 (it) * 2020-12-07 2022-06-07 Out Of S R L Maschera di protezione per gli occhi per la pratica di sport invernali

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134065A (ja) * 1990-09-25 1992-05-07 Orient Chem Ind Ltd インドール系化合物およびその用途
JPH04292661A (ja) * 1991-03-19 1992-10-16 Teijin Chem Ltd 樹脂組成物
JPH05212103A (ja) 1992-02-06 1993-08-24 Tokyo Keikaku:Kk 医療用レンズ
JPH06161128A (ja) * 1992-11-17 1994-06-07 Mita Ind Co Ltd 電子写真感光体
JPH09263694A (ja) 1996-01-26 1997-10-07 Teijin Chem Ltd 眼鏡レンズ
JP2000206323A (ja) * 1998-11-11 2000-07-28 Nisshinbo Ind Inc 近赤外吸収フィルタ―
JP2004325511A (ja) 2003-04-21 2004-11-18 Sumitomo Dow Ltd 眼鏡レンズ
JP2004352829A (ja) 2003-05-28 2004-12-16 Mitsubishi Engineering Plastics Corp メガネレンズ用芳香族ポリカーボネート樹脂組成物
JP2004352828A (ja) 2003-05-28 2004-12-16 Mitsubishi Engineering Plastics Corp メガネレンズ用芳香族ポリカーボネート樹脂組成物
JP2006241410A (ja) * 2005-03-07 2006-09-14 Nippon Zeon Co Ltd 熱可塑性樹脂組成物及び用途
JP2012058643A (ja) 2010-09-13 2012-03-22 Talex Optical Co Ltd 保護眼鏡用遮光レンズ
JP2012206305A (ja) * 2011-03-29 2012-10-25 Teijin Chem Ltd 樹脂積層体
JP2013054275A (ja) * 2011-09-06 2013-03-21 Nikon-Essilor Co Ltd 染色レンズおよびその製造方法
WO2014002864A1 (ja) * 2012-06-25 2014-01-03 Jsr株式会社 固体撮像素子用光学フィルターおよびその用途
JP2015189933A (ja) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 熱線遮蔽樹脂シート材および自動車、建造物
JP2017014402A (ja) * 2015-07-01 2017-01-19 大阪ガスケミカル株式会社 フルオレンオリゴマー及びそれからなる樹脂用添加剤
JP2017099723A (ja) 2015-12-02 2017-06-08 三星電子株式会社Samsung Electronics Co.,Ltd. ドラム式洗濯機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786675B1 (en) * 1996-01-26 2002-11-06 Teijin Chemicals, Ltd. Spectacle lens
CA2289335A1 (en) 1998-11-11 2000-05-11 Nisshinbo Industries, Inc. Near infrared absorption filter
WO2011132510A1 (ja) * 2010-04-20 2011-10-27 三菱瓦斯化学株式会社 透明難燃性の芳香族ポリカーボネート樹脂組成物及び成形品
WO2014163119A1 (ja) 2013-04-03 2014-10-09 住友金属鉱山株式会社 熱線遮蔽膜、熱線遮蔽合わせ透明基材、熱線遮蔽樹脂シート材、自動車および建造物
WO2015166951A1 (ja) * 2014-05-02 2015-11-05 三菱瓦斯化学株式会社 ポリカーボネート樹脂組成物、ならびにそれを用いた光学材料および光学レンズ

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134065A (ja) * 1990-09-25 1992-05-07 Orient Chem Ind Ltd インドール系化合物およびその用途
JPH04292661A (ja) * 1991-03-19 1992-10-16 Teijin Chem Ltd 樹脂組成物
JPH05212103A (ja) 1992-02-06 1993-08-24 Tokyo Keikaku:Kk 医療用レンズ
JPH06161128A (ja) * 1992-11-17 1994-06-07 Mita Ind Co Ltd 電子写真感光体
JPH09263694A (ja) 1996-01-26 1997-10-07 Teijin Chem Ltd 眼鏡レンズ
JP2000206323A (ja) * 1998-11-11 2000-07-28 Nisshinbo Ind Inc 近赤外吸収フィルタ―
JP2004325511A (ja) 2003-04-21 2004-11-18 Sumitomo Dow Ltd 眼鏡レンズ
JP2004352829A (ja) 2003-05-28 2004-12-16 Mitsubishi Engineering Plastics Corp メガネレンズ用芳香族ポリカーボネート樹脂組成物
JP2004352828A (ja) 2003-05-28 2004-12-16 Mitsubishi Engineering Plastics Corp メガネレンズ用芳香族ポリカーボネート樹脂組成物
JP2006241410A (ja) * 2005-03-07 2006-09-14 Nippon Zeon Co Ltd 熱可塑性樹脂組成物及び用途
JP2012058643A (ja) 2010-09-13 2012-03-22 Talex Optical Co Ltd 保護眼鏡用遮光レンズ
JP2012206305A (ja) * 2011-03-29 2012-10-25 Teijin Chem Ltd 樹脂積層体
JP2013054275A (ja) * 2011-09-06 2013-03-21 Nikon-Essilor Co Ltd 染色レンズおよびその製造方法
WO2014002864A1 (ja) * 2012-06-25 2014-01-03 Jsr株式会社 固体撮像素子用光学フィルターおよびその用途
JP2015189933A (ja) * 2014-03-28 2015-11-02 住友金属鉱山株式会社 熱線遮蔽樹脂シート材および自動車、建造物
JP2017014402A (ja) * 2015-07-01 2017-01-19 大阪ガスケミカル株式会社 フルオレンオリゴマー及びそれからなる樹脂用添加剤
JP2017099723A (ja) 2015-12-02 2017-06-08 三星電子株式会社Samsung Electronics Co.,Ltd. ドラム式洗濯機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3627193A4
THE EUROPEAN JOURNAL OF EUROSCIENCE, vol. 34, no. 4, 2011, pages 548 - 558

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022517673A (ja) * 2019-01-28 2022-03-09 コーロン インダストリーズ インク 発光素子用紫外線吸収封止材及びこれを含む発光素子
JP7232340B2 (ja) 2019-01-28 2023-03-02 コーロン インダストリーズ インク 発光素子用紫外線吸収封止材及びこれを含む発光素子
JPWO2020250802A1 (ja) * 2019-06-10 2020-12-17
WO2020250802A1 (ja) * 2019-06-10 2020-12-17 三井化学株式会社 眼用保護部材、眼の保護方法及び光硬化物の製造方法

Also Published As

Publication number Publication date
EP3627193A4 (en) 2021-03-10
EP3627193A1 (en) 2020-03-25
JPWO2018212343A1 (ja) 2019-11-07
JP6918102B2 (ja) 2021-08-11
CN110622044A (zh) 2019-12-27
US11630241B2 (en) 2023-04-18
US20200200945A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
JP6918102B2 (ja) ポリカーボネート樹脂レンズ、およびポリカーボネート樹脂組成物
JP7298669B2 (ja) ポリカーボネート樹脂、その製造方法及び光学レンズ
JP5542810B2 (ja) ポリカーボネート樹脂組成物およびその成形品
EP0786675B1 (en) Spectacle lens
KR102101161B1 (ko) 폴리카보네이트 수지, 그 제조 방법 및 광학 성형체
US11002883B2 (en) Thermoplastic resin composition and molded article thereof
KR102478201B1 (ko) 폴리카보네이트 수지 조성물 및 그것을 사용한 광학 렌즈
JP5055294B2 (ja) 眼鏡レンズ
EP2963075B1 (en) Polycarbonate molded article
JP5808959B2 (ja) 高屈折率ポリカーボネート共重合体及び光学レンズ
JPWO2009139478A1 (ja) 偏光眼鏡レンズ
JPH09263694A (ja) 眼鏡レンズ
WO2019146507A1 (ja) ポリカーボネート樹脂組成物、その製造方法及び光学レンズ
JP5038601B2 (ja) ポリカーボネート樹脂組成物および眼鏡レンズ
JPH09291205A (ja) 眼鏡レンズ
JP5808960B2 (ja) 高屈折率かつ耐熱性に優れたポリカーボネート共重合体及び光学レンズ
JP7144227B2 (ja) レンズ、組成物およびレンズの製造方法
WO2019131544A1 (ja) インドール系化合物、当該化合物の製造方法およびその用途
WO2020218614A1 (ja) 光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ
JP2021043231A (ja) レンズ
JP5808961B2 (ja) 光学レンズ用ポリカーボネート共重合体及び該ポリカーボネートからなる光学レンズ
EP4442768A1 (en) Polycarbonate resin composition and optical lens using same
JP2021107882A (ja) 光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア及び光学センサー
JP2010168462A (ja) 芳香族ポリカーボネート樹脂組成物および眼鏡レンズ
JP2009251330A (ja) 眼鏡レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803000

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018803000

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018803000

Country of ref document: EP

Effective date: 20191219