WO2019146507A1 - ポリカーボネート樹脂組成物、その製造方法及び光学レンズ - Google Patents
ポリカーボネート樹脂組成物、その製造方法及び光学レンズ Download PDFInfo
- Publication number
- WO2019146507A1 WO2019146507A1 PCT/JP2019/001375 JP2019001375W WO2019146507A1 WO 2019146507 A1 WO2019146507 A1 WO 2019146507A1 JP 2019001375 W JP2019001375 W JP 2019001375W WO 2019146507 A1 WO2019146507 A1 WO 2019146507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polycarbonate resin
- general formula
- carbon atoms
- resin composition
- group
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/04—Aromatic polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/04—Aromatic polycarbonates
- C08G64/06—Aromatic polycarbonates not containing aliphatic unsaturation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/005—Stabilisers against oxidation, heat, light, ozone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
- C08K5/134—Phenols containing ester groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/524—Esters of phosphorous acids, e.g. of H3PO3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/524—Esters of phosphorous acids, e.g. of H3PO3
- C08K5/526—Esters of phosphorous acids, e.g. of H3PO3 with hydroxyaryl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/16—Applications used for films
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/30—Applications used for thermoforming
Definitions
- the present invention relates to a polycarbonate resin composition and a method for producing the same.
- the invention also relates to an optical lens comprising a polycarbonate resin composition.
- An optical glass or a resin composition for optics is used as a material of an optical lens used for an optical system of various cameras, such as a camera, a film integral type camera, and a video camera.
- Optical glass is excellent in heat resistance, transparency, dimensional stability, chemical resistance and the like, but has problems such as high material cost, poor moldability, and low productivity.
- an optical lens made of an optical resin composition has an advantage that mass production is possible by injection molding.
- polycarbonate resin compositions and the like are used.
- development of a resin composition having a high refractive index has been required due to the reduction in size and weight of products.
- lens elements having the same refractive index can be realized with a surface having a smaller curvature, so that the amount of aberration generated on this surface can be reduced.
- aberration correction is performed by combining a plurality of concave lenses and a convex lens. That is, the chromatic aberration is synthetically canceled by combining the chromatic aberration made by the convex lens with the concave lens having the chromatic aberration of the opposite sign to the convex lens.
- the concave lens is required to have high dispersion (that is, low Abbe number).
- Patent Document 1 discloses that a copolymer of a bisphenol A type polycarbonate structural unit and a structural unit represented by the following formula (E) has an improved refractive index.
- the example of Patent Document 1 describes that a refractive index of 1.62 to 1.64 and an Abbe number of 23 to 26 are achieved.
- the improvement of the refractive index is considered to be due to the constituent unit represented by the formula (E).
- Patent Document 2 discloses a copolymer of a polycarbonate resin containing a structural unit having a fluorene structure and bisphenol A.
- the examples in this document describe achieving a refractive index of 1.616 to 1.636, but not a low Abbe number.
- the structural unit disclosed in this document is different from the formula (E).
- polycarbonate resins or resin compositions and optical lenses having high refractive index and low Abbe number have not been provided yet.
- optical lenses made of optical resin compositions used for electronic devices have not only high refractive index and low Abbe number, but also heat stability. Sex is also sought.
- a polycarbonate resin composition comprising a polycarbonate resin and an antioxidant
- the polycarbonate resin includes a structural unit represented by the following general formula (1), (In general formula (1), X represents an alkylene group having 1 to 4 carbon atoms, and a and b each independently represent an integer of 1 to 10).
- the composition, wherein the content of the antioxidant is 1 to 3000 ppm.
- composition according to [1], wherein the antioxidant is a phosphite antioxidant and / or a phenolic antioxidant.
- the polycarbonate resin further contains a structural unit represented by the following general formula (2) and / or general formula (3).
- Y represents an alkylene group having 1 to 4 carbon atoms, and c and d each independently represent an integer of 1 to 10).
- Z represents an alkylene group having 1 to 4 carbon atoms
- R 1 to R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a cycloalkoxyl group having 5 to 20 carbon atoms
- Each of e and f independently represents an integer of 0 to 5.
- a method for producing a polycarbonate resin composition comprising Providing a polycarbonate resin containing a structural unit represented by the following general formula (1), (In general formula (1), X represents an alkylene group having 1 to 4 carbon atoms, and a and b each independently represent an integer of 1 to 10). Melt-kneading after adding an antioxidant to the said polycarbonate resin, Manufacturing method. [12] The molded object containing the resin composition in any one of [1]-[10]. [13] The molded object as described in [12] whose said molded object is an optical film. [14] The molded object as described in [12] whose said molded object is an optical lens.
- the polycarbonate resin composition of the present invention has a high refractive index and a low Abbe's number, and has a high thermal stability. Further, by using the resin composition of the present invention, an excellent optical lens can be obtained.
- the polycarbonate resin composition of the present invention comprises a polycarbonate resin containing a predetermined structural unit and a predetermined amount of an antioxidant.
- the polycarbonate resin composition of the present invention has a high refractive index and a low Abbe number, and a high thermal stability, with such a configuration.
- the polycarbonate resin composition of the present invention may further contain optional additives. Each component will be described below.
- the polycarbonate resin used in the present invention is a polycarbonate resin having a structural unit represented by the general formula (1) (hereinafter, also referred to as “structural unit (1)”).
- structural unit (1) a polycarbonate resin having a structural unit represented by the general formula (1) (hereinafter, also referred to as “structural unit (1)”).
- X represents an alkylene group having 1 to 4 carbon atoms, and a and b each independently represent an integer of 1 to 10).
- X is an alkylene group having 2 carbon atoms, and a and b are each independently 1.
- the polycarbonate resin used in the present invention may contain one or more structural units other than the structural unit (1).
- a fluorene derivative unit, a binaphthol derivative unit and the like are preferable.
- the polycarbonate resin used in the present invention preferably further comprises a binaphthol derivative unit represented by the following general formula (2) and / or a fluorene derivative unit represented by the following general formula (3).
- Y represents an alkylene group having 1 to 4 carbon atoms, and c and d each independently represent an integer of 1 to 10).
- Z represents an alkylene group having 1 to 4 carbon atoms
- R 1 to R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a cycloalkoxyl group having 5 to 20 carbon atoms
- Each of e and f independently represents an integer of 0 to 5.
- Y is an alkylene group having 2 carbon atoms
- c and d are each independently an integer of 1.
- Z is an alkylene group having 2 carbon atoms
- R 1 to R 6 are each independently a hydrogen atom or a phenyl group
- e and Each f is independently 1.
- preferred substitution positions of R 1 to R 4 are the position of 3-position from the fluorene group, and specifically, the positions described in the chemical formula below.
- the ratio of the structural unit represented by the general formula (1) in the polycarbonate resin is 10 to 50 mol% Is preferable, 15 to 48 mol% is more preferable, 20 to 45 mol% is more preferable, and 25 to 35 mol% is still more preferable.
- the proportion of the structural unit represented by the general formula (2) in the polycarbonate resin is preferably 10 to 70 mol%, more preferably 15 to 60 mol%. 20 to 55 mol% is more preferable, and 40 to 55 mol% is even more preferable.
- the proportion of the structural unit represented by the general formula (3) in the polycarbonate resin is preferably 10 to 70 mol%, more preferably 15 to 60 mol%. 20 to 55 mol% is more preferable, and 20 to 30 mol% is even more preferable.
- the polycarbonate resin used in the present invention preferably contains the structural units represented by the general formulas (1) and (2), and more preferably substantially from the structural units represented by the general formulas (1) and (2) become.
- "consisting essentially of” means that the polycarbonate resin used in the present invention may contain other structural units as long as the effects of the present invention are not impaired.
- the structural units of the polycarbonate resin used in the present invention preferably 90% or more, more preferably 95% or more, still more preferably 98% or more from the structural units represented by the general formulas (1) and (2) Become.
- the proportion of the constitutional unit represented by the general formula (1) is 10 to 50 mol%, and the general formula The proportion of the structural unit represented by (2) is preferably 50 to 90 mol%.
- the polycarbonate resin used in the present invention preferably contains the structural units represented by the general formulas (1) and (3), and more preferably substantially from the structural units represented by the general formulas (1) and (3) Become.
- the structural units of the polycarbonate resin used in the present invention preferably 90% or more, more preferably 95% or more, still more preferably 98% or more from the structural units represented by the general formulas (1) and (3) Become.
- the ratio of the structural unit represented by the general formula (1) is 10 to 50 mol%
- the general formula The proportion of the structural unit represented by (3) is preferably 50 to 90 mol%.
- the polycarbonate resin used in the present invention preferably contains the structural units represented by the general formulas (1) to (3), and more preferably substantially from the structural units represented by the general formulas (1) to (3) Become.
- the structural units of the polycarbonate resin used in the present invention preferably 90% or more, more preferably 95% or more, still more preferably 98% or more from the structural units represented by the general formulas (1) to (3) Become.
- the ratio of the structural unit represented by the general formula (1) is 10 to 50 mol%, and the general formula It is preferable that the ratio of the structural unit represented by (2) is 10 to 60 mol%, and the ratio of the structural unit represented by the general formula (3) is 10 to 40 mol%.
- the polycarbonate resin used in the present invention contains the structural units represented by the general formulas (1) and (2), it contains the structural units represented by the general formulas (1) and (3), or When the structural units represented by (3) to (3) are contained, it is not particularly limited how these structural units are contained in the resin.
- the polycarbonate resin is a structural unit represented by the general formulas (1) and (2), a structural unit represented by the general formulas (1) and (3), or a general formula (1) to It may contain a copolymer containing the structural unit represented by 3), or it may be a ternary resin or a binary resin containing a homopolymer consisting of the respective constituent units.
- it may be a blend of a copolymer containing the structural units represented by the general formulas (1) and (2) and a homopolymer containing the structural unit represented by the general formula (3), It may be a blend of a copolymer containing the structural units represented by the formulas (1) and (2) and a copolymer containing the structural units represented by the general formulas (1) and (3) .
- the polycarbonate resin used in the present invention may contain any of random, block and alternating copolymerization structures.
- the preferred weight average molecular weight (Mw) of the polycarbonate resin used in the present invention is 10,000 to 100,000.
- a “weight average molecular weight (Mw)” means "a polystyrene conversion weight average molecular weight (Mw).”
- the weight average molecular weight (Mw) in terms of polystyrene is 10,000 to 50,000, more preferably 15,000 to 45,000, and still more preferably 20,000 to 40,000. And particularly preferably from 30,000 to 40,000.
- Mw is less than 10,000 because the molded article becomes brittle.
- Mw is larger than 100,000, the melt viscosity becomes high, which makes it difficult to take out the resin after production, and the flowability is further deteriorated, which makes the injection molding difficult in the molten state, which is not preferable.
- the refractive index (nD) of the polycarbonate resin used in the present invention at 23 ° C. and a wavelength of 589 nm is preferably 1.635 to 1.695, more preferably 1.640 to 1.690, and still more preferably 1.645 to 1. 685, and particularly preferably 1.660 to 1.685.
- the polycarbonate resin used in the present invention has a high refractive index (nD) and is suitable for an optical lens material.
- the refractive index can be measured by a method of JIS-K-7142 using an Abbe refractometer for a film having a thickness of 0.1 mm.
- the Abbe number ( ⁇ ) of the polycarbonate resin used in the present invention is preferably 24 or less, more preferably 22 or less, and still more preferably 20 or less.
- the polycarbonate resin composition of the present invention contains 1 to 3000 ppm of an antioxidant.
- the amount of antioxidant is preferably 300 to 2800 ppm, more preferably 500 to 2500 ppm, still more preferably 500 to 2000 ppm.
- the amount of the antioxidant is 1 ppm or more, the effect of improving the thermal stability is exhibited, and when it is 3000 ppm or less, the b value increases due to the amount of the antioxidant being too large, and the refractive index decreases. , Tg decrease, and total light transmittance decrease.
- ppm means "mass ppm".
- antioxidant one kind of antioxidant may be used, or plural kinds of antioxidants may be used in combination. In the case of using a plurality of types of antioxidants, the total amount of the antioxidants may be adjusted to be in the above numerical range.
- Antioxidants used in the present invention include phosphite antioxidants, phenol antioxidants, sulfur antioxidants, epoxy antioxidants and hindered amine antioxidants, but phosphite oxide is particularly preferred.
- An inhibitor or a phenol type antioxidant is preferable, and it is more preferable to use a phosphite type antioxidant and a phenol type antioxidant in combination.
- phosphite antioxidants include tricresyl phosphite, tris (2-ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphite, tris (tridecyl) phosphite and trioleyl phosphite, and ADEKA Corporation.
- Adekastab PEP36 manufactured by ADEKA Co., Ltd.
- Adekastab 1500 manufactured by ADEKA Co., Ltd.
- Adekastab 2112 manufactured by ADEKA Inc.
- R p1 and R p2 are each independently a hydrocarbon group having 1 to 10 carbon atoms.
- A is a functional group selected from an ester group, an ether group and an amide group and / or a hydrocarbon group having 1 to 20 carbon atoms which may contain a phosphorus atom.
- B is a hydrocarbon group having 1 to 6 carbon atoms which may contain an oxygen atom and / or a nitrogen atom, a sulfur atom or a single bond.
- g represents an integer of 1 to 4; Specifically, 1,6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylene bis [3- (3,5) -Di-tert-butyl-4-hydroxyphenyl) propionate], tris (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate and N, N'-hexamethylene bis (3,5-di) -Tert-Butyl-4-hydroxy-hydrocinnamide), Adekastab AO-20, Adekastab AO-30, Adekastab AO-50, Adekastab AO-50F, Adekastab AO-60, Adekastab ASO-60GAO- made by Adeka Co., Ltd.
- Adekastab AO-330 including but not limited to No. Adekastab AO60 (manufactured by ADEKA), Adekastab AO80 (manufactured by ADEKA), and Adekastab AO50 (manufactured by ADEKA) have the following structures, respectively.
- the polycarbonate resin composition of the present invention may contain other resins in addition to the above-mentioned polycarbonate resin.
- other resins include polyamide, polyacetal, polycarbonate, modified polyphenylene ether, polyethylene terephthalate, polybutylene terephthalate and the like.
- a light stabilizer for example, a light stabilizer, a polymeric metal deactivator, a flame retardant, a lubricant, an antistatic agent, a surfactant, an antibacterial agent, a releasing agent, ultraviolet light Absorbents, plasticizers, compatibilizers, bluing agents and the like may be added.
- a light stabilizer for example, a light stabilizer, a polymeric metal deactivator, a flame retardant, a lubricant, an antistatic agent, a surfactant, an antibacterial agent, a releasing agent, ultraviolet light Absorbents, plasticizers, compatibilizers, bluing agents and the like may be added.
- ester of alcohol and fatty acid examples include esters of monohydric alcohol and fatty acid, and partial esters or whole esters of polyhydric alcohol and fatty acid.
- ester of a monohydric alcohol and a fatty acid an ester of a monohydric alcohol having 1 to 20 carbon atoms and a saturated fatty acid having 10 to 30 carbon atoms is preferable.
- partial ester or total ester of polyhydric alcohol and fatty acid partial ester or whole ester of polyhydric alcohol having 1 to 25 carbon atoms and saturated fatty acid having 10 to 30 carbon atoms is preferable.
- esters of monohydric alcohol and saturated fatty acid stearyl stearate, palmityl palmitate, butyl stearate, methyl laurate, isopropyl palmitate and the like can be mentioned.
- partial esters or whole esters of polyhydric alcohols and saturated fatty acids stearic acid monoglycerides, stearic acid monoglycerides, stearic acid diglycerides, stearic acid triglycerides, stearic acid monosorbate, behenic acid monoglycerides, capric acid monoglycerides, lauric acid monoglycerides, Di-pentaerythritol monostearate, pentaerythritol tetrastearate, pentaerythritol tetrapelargonate, propylene glycol monostearate, biphenyl biphenate, sorbitan monostearate, 2-ethylhexyl stearate, dip
- stearic acid monoglyceride stearic acid diglyceride or stearic acid triglyceride is preferred.
- the content of these releasing agents is preferably in the range of 0.005 to 2.0 parts by weight, more preferably in the range of 0.01 to 0.6 parts by weight, with respect to 100 parts by weight of the polycarbonate resin. A range of 0.5 parts by weight is more preferred.
- UV absorber at least one UV selected from the group consisting of benzotriazole UV absorber, benzophenone UV absorber, triazine UV absorber, cyclic imino ester UV absorber and cyanoacrylate UV absorber Absorbents are preferred. That is, any of the ultraviolet light absorbers listed below may be used alone, or two or more of them may be used in combination.
- benzotriazole-based UV absorbers examples include 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-) 3,5-Dicumylphenyl) phenylbenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2,2'-methylenebis [4- (1,1) , 3,3-Tetramethylbutyl) -6- (2N-benzotriazol-2-yl) phenol], 2- (2-hydroxy-3,5-di-tert-butylphenyl) benzotriazole, 2- ( 2-hydroxy-3,5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxyphenyl) -3,5-Di-tert-amylphenyl) benzotriazole, 2- (2-hydroxy-5-
- benzophenone-based UV absorbers examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-benzyloxybenzophenone and 2-hydroxy-4- Methoxy-5-sulfoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfoxy trihydrate benzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone 2,2'-Dihydroxy-4,4'-dimethoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-5-sodiumsulfoxybenzophenone, bis (5-benzoyl-4-hydroxy-2-) Methoxy phenyl) Down, 2-hydroxy -4-n-dodecyloxy benzophenone, 2-hydroxy-4-methoxy-2'-carboxy benzophenone.
- cyclic imino ester-based UV absorbers examples include 2,2′-bis (3,1-benzoxazin-4-one) and 2,2′-p-phenylenebis (3,1-benzoxazin-4-one) 2,2'-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 '-(4,4'-diphenylene) bis (3,1-benzoxazin-4-one), 2,2 '-(2,6-naphthalene) bis (3,1-benzoxazin-4-one), 2,2'-(1,5-naphthalene) bis (3,1-benzoxazin-4-one) ), 2,2 ′-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2 ′-(2-nitro-p-phenylene) bis (3,1-) Benzoxazin-4-one) and 2,2 '-(2-chloro-p-f) Ylene) bis (3,1-benz
- cyanoacrylate ultraviolet absorber 1,3-bis-[(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis [(2-cyano-3,3-diphenyl) Acryloyl) oxy] methyl) propane, 1,3-bis-[(2-cyano-3,3-diphenylacryloyl) oxy] benzene and the like.
- the content of the ultraviolet absorber is preferably 0.01 to 3.0 parts by weight, more preferably 0.02 to 1.0 parts by weight, and still more preferably 0 based on 100 parts by weight of the polycarbonate resin. It is from 0.5 to 0.8 parts by weight. If it is the range of this compounding quantity, it is possible to provide sufficient weather resistance to polycarbonate resin according to a use.
- Solvent Violet 13 As a bluing agent, for example, a common name Solvent Violet 13 [CA. No (color index No) 60725; trade name: “Mexlex Violet B” manufactured by LANXESS, “Diaresine Blue G” manufactured by Mitsubishi Chemical Corporation, “Sumiplast Violet B” manufactured by Sumitomo Chemical Co., Ltd., Solvent Violet 14 , The common name Solvent Violet 31 [CA. No68210; trade name Mitsubishi Chemical Co., Ltd. "diaresin violet D"], Solvent Violet 33 [CA. No60725; trade name: "Diaresin Blue J” manufactured by Mitsubishi Chemical Corp.], Solvent Violet 36 [CA. No.
- the amount of bluing agent added is preferably 0.00001 to 0.005 parts by weight, more preferably 0.00001 to 0.0005 parts by weight, and still more preferably 0 based on 100 parts by weight of the polycarbonate resin. .00001 to 0.0002 parts by weight.
- the polycarbonate resin contained in the polycarbonate resin composition of the present invention has a high refractive index and a low Abbe number.
- the polycarbonate resin composition of the present invention has substantially the same refractive index and Abbe number as such polycarbonate resin.
- “substantially equivalent” means that the difference between the refractive index and Abbe number of the polycarbonate resin and the refractive index and Abbe number of the polycarbonate resin composition containing the polycarbonate resin is ⁇ 10%, ⁇ 9%, ⁇ , respectively. 8%, ⁇ 7%, ⁇ 6%, ⁇ 5%, ⁇ 4, ⁇ 3%, ⁇ 2%, or ⁇ 1%.
- the polycarbonate resin composition of the present invention also has substantially the same value as the polycarbonate resin contained in the composition in terms of total light transmittance and b value.
- the polycarbonate resin composition of the present invention has high thermal stability.
- “high thermal stability” indicates that the rate of change in physical properties of the resin composition before and after heating is small.
- the thermal stability of a polycarbonate resin composition after drying at 110 ° C. for 5 hours and then staying for 10 minutes in a high-rise flow tester heated to 285 ° C., or “PCT test” (pressure cooker test) Can be evaluated by measuring the rate of change of physical properties after the test.
- the PCT test can be performed by holding an injection-molded product having a diameter of 50 mm and a thickness of 3 mm under the conditions of 120 ° C., 0.2 Mpa, 100% RH, and 20 hours.
- the polycarbonate resin in the polycarbonate resin composition of the present invention has a molecular weight retention of 89% or more after the heat retention test, and a molecular weight retention of 95% or more after the PCT test.
- the increase rate of the b value after the heat retention test is 15% or less.
- the b value of the polycarbonate resin composition of the present invention is preferably 5.5 or less. The smaller the b value, the weaker the yellowish color and the better the hue.
- the amount of residual phenol contained in the polycarbonate resin composition of the present invention is preferably 500 ppm or less, more preferably 300 ppm or less, and still more preferably 100 ppm or less.
- the amount of residual phenol contained in the polycarbonate resin composition of the present invention is preferably as small as possible, but the lower limit is, for example, 1 ppm or more, 10 ppm or more, or 70 ppm or more.
- the amount of residual diphenyl carbonate (DPC) contained in the polycarbonate resin composition of the present invention is preferably 500 ppm or less, more preferably 300 ppm or less, still more preferably 200 ppm or less, and 100 ppm or less Is even more preferred.
- the amount of residual diphenyl carbonate contained in the polycarbonate resin composition of the present invention is preferably as small as possible, but the lower limit is, for example, 1 ppm or more, 5 ppm or more, or 10 ppm or more.
- An optical molded article can be produced using the polycarbonate resin composition of the present invention.
- the optical molded article can be produced by any method such as, for example, injection molding, compression molding, extrusion molding, solution casting, and the like. Since the polycarbonate resin composition of the present invention is excellent in moldability and heat resistance, it can be used particularly advantageously in an optical lens that requires injection molding. At the time of molding, the polycarbonate resin composition of the present invention can be used by mixing with other resins such as other polycarbonate resins and polyester resins.
- the polycarbonate resin composition of the present invention also has a high refractive index and a low Abbe number, and therefore, in addition to optical lenses, transparent conductive substrates used for liquid crystal displays, organic EL displays, solar cells, etc., optical disks, liquid crystals It can be advantageously used as an optical molding suitable for structural materials or functional material applications of optical components such as panels, optical cards, sheets, films, optical fibers, connectors, vapor-deposited plastic reflectors, displays and the like.
- a coat layer such as an antireflective layer or a hard coat layer may be provided on the surface of the optical molded article.
- the antireflection layer may be a single layer or a multilayer, and may be organic or inorganic, but is preferably inorganic. Specifically, oxides or fluorides such as silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, cerium oxide, magnesium oxide, and magnesium fluoride are exemplified.
- the preferred glass transition temperature (Tg) is 90 to 180 ° C., more preferably 95 to 175 ° C., still more preferably 100 to 170 ° C., still more preferably The temperature is preferably 130 to 170 ° C., particularly preferably 135 to 150 ° C.
- Tg is lower than 90 ° C.
- the use temperature range becomes narrow, which is not preferable.
- the melting temperature of the resin becomes high, and the resin is likely to be decomposed or colored, which is not preferable.
- the lower limit value of Tg is preferably 130 ° C., more preferably 135 ° C.
- the upper limit value of Tg is preferably 160 ° C., more preferably 150 ° C.
- the total optical transmittance of the optical molded article obtained using the polycarbonate resin composition of the present invention is preferably 85% or more, and more preferably 88% or more. If the total light transmittance is 85% or more, it is comparable to bisphenol A polycarbonate resin and the like.
- the method for producing a polycarbonate resin composition of the present invention comprises preparing a polycarbonate resin containing a structural unit represented by the general formula (1), (In general formula (1), X represents an alkylene group having 1 to 4 carbon atoms, and a and b each independently represent an integer of 1 to 10). Melt-kneading after adding an antioxidant to the said polycarbonate resin.
- a polycarbonate resin containing the structural unit represented by the above general formula (1) is prepared.
- the method for preparing the polycarbonate resin is not particularly limited, and may be prepared by purchasing a resin synthesized in advance or may be prepared by chemical synthesis.
- 9,9-bis (hydroxy (poly) alkoxynaphthyl) fluorenes can be mentioned.
- 9,9-bis [6- (1-hydroxymethoxy) naphthalen-2-yl] fluorene 9,9-bis [6- (2-hydroxyethoxy) naphthalene-2 -Yl] fluorene, 9,9-bis [6- (3-hydroxypropoxy) naphthalen-2-yl] fluorene, and 9,9-bis [6- (4-hydroxybutoxy) naphthalen-2-yl] fluorene and the like
- 9,9-bis [6- (2-hydroxyethoxy) naphthalen-2-yl] fluorene is preferable. These may be used alone or in combination of two or more.
- the compound which one of a and b is 0 may be byproduced as an impurity as an impurity.
- the total content of such impurities in the monomer containing the compound of the general formula (4) as a main component is preferably 1000 ppm or less, more preferably 500 ppm or less, and 200 ppm or less More preferably, it is particularly preferably 100 ppm or less.
- fluorenone which is one of the raw materials, may be contained as an impurity.
- the content of the fluorenone is preferably 1000 ppm or less, more preferably 100 ppm or less, still more preferably 50 ppm or less, in the monomer containing the compound of the general formula (4) as the main component. Is particularly preferred.
- the fluorenone contained in the monomer which has a compound of General formula (4) as a main component may remain in resin after superposition
- compounds which are not impurities but a and b in the general formula (4) are not identical are 50 ppm or less in total in the monomer containing the compound of the general formula (4) as a main component Is preferable, and 20 ppm or less is more preferable.
- the compounds of the general formula (4) can be produced by various synthetic methods. For example, as described in Japanese Patent No. 5442800, (a) a method of reacting fluorenones with hydroxynaphthalenes in the presence of hydrogen chloride gas and mercaptocarboxylic acid, (b) acid catalyst (and alkyl mercaptan) Method of reacting 9-fluorenone with hydroxynaphthalenes in the presence, (c) Method of reacting fluorenones with hydroxynaphthalenes in the presence of hydrochloric acid and thiols (such as mercapto carboxylic acid), (d) sulfuric acid and A method of producing bisnaphthol fluorene by reacting fluorenones with hydroxynaphthalenes in the presence of thiols (such as mercaptocarboxylic acid) and crystallizing with a crystallization solvent composed of hydrocarbons and a polar solvent, etc.
- thiols such as
- 9,9-bis (hydroxynaphthyl) fluorenes are obtained by using an [XO] a group and It can be produced by reacting a compound corresponding to the [XO] b group (alkylene oxide, haloalkanol, etc.).
- a compound corresponding to the [XO] b group alkylene oxide, haloalkanol, etc.
- 9,9-bis [6- (2-hydroxyethoxy) naphthyl] fluorene is obtained by reacting 9,9-bis [6-hydroxynaphthyl] fluorene with 2-chloroethanol under alkaline conditions. May be
- the polycarbonate resin having a structural unit represented by the general formula (1) according to the present invention is, in addition to the compound of the general formula (4), an aromatic dihydroxy compound or an aliphatic dihydroxy compound (for example, a dihydroxy compound having a fluorene skeleton Binaphthols can be used in combination as the dihydroxy component.
- an aromatic dihydroxy compound or an aliphatic dihydroxy compound for example, a dihydroxy compound having a fluorene skeleton Binaphthols can be used in combination as the dihydroxy component.
- the polycarbonate resin used in the present invention is a compound represented by the following general formula (5) and / or a compound represented by the following general formula (6) It can be manufactured using as a dihydroxy component.
- Y represents an alkylene group having 1 to 4 carbon atoms, and c and d each independently represent an integer of 1 to 10).
- Z represents an alkylene group having 1 to 4 carbon atoms
- R 1 to R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxyl group having 1 to 20 carbon atoms, a cycloalkyl group having 5 to 20 carbon atoms, or a cycloalkoxyl group having 5 to 20 carbon atoms
- Each of e and f independently represents an integer of 0 to 5.
- Examples of dihydroxy compounds represented by the formula (5) include 2,2'-bis (1-hydroxymethoxy) -1,1'-binaphthalene and 2,2'-bis (2-hydroxyethoxy) -1,1.
- Examples include '-binaphthalene, 2,2'-bis (3-hydroxypropyloxy) -1,1'-binaphthalene, 2,2'-bis (4-hydroxybutoxy) -1,1'-binaphthalene and the like.
- BNE 2,2'-bis (2-hydroxyethoxy) -1,1'-binaphthalene (hereinafter sometimes abbreviated as "BNE”) is preferable. These may be used alone or in combination of two or more.
- the compound which either 0 of c and d is 0 may be byproduced as an impurity as an impurity.
- the total content of such impurities in the monomer containing the compound of the general formula (5) as a main component is preferably 1000 ppm or less, more preferably 500 ppm or less, and 200 ppm or less More preferably, it is particularly preferably 100 ppm or less.
- compounds which are not impurities but in which c and d in the general formula (5) are not identical are 50 ppm or less in total in the monomer containing the compound of the general formula (5) as a main component Is preferable, and 20 ppm or less is more preferable.
- 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene and 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene are preferable, and 9,9-bis is more preferable.
- the compound which either 0 of e and f is 0 may be byproduced as an impurity as an impurity.
- the total content of such impurities in the monomer containing the compound of the general formula (6) as a main component is preferably 1000 ppm or less, more preferably 500 ppm or less, and 200 ppm or less More preferably, it is particularly preferably 100 ppm or less.
- compounds which are not impurities but in which e and f in the general formula (6) are not identical that is, e ⁇ f) are 50 ppm or less in total in the monomer containing the compound of the general formula (6) as a main component Is preferable, and 20 ppm or less is more preferable.
- aromatic dihydroxy compound which can be used together other than the above, for example, bisphenol A, bisphenol AP, bisphenol AF, bisphenol B, bisphenol BP, bisphenol C, bisphenol E, bisphenol F, bisphenol G, bisphenol M, bisphenol S, bisphenol P, bisphenol PH, bisphenol TMC, and bisphenol Z are exemplified.
- Examples of the carbonic diester used in the present invention include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like.
- diphenyl carbonate is particularly preferable.
- the diphenyl carbonate is preferably used in a ratio of 0.97 to 1.20 mol, more preferably 0.98 to 1.10 mol, and still more preferably 1 per 1 mol in total of the dihydroxy compound. It is a ratio of .00 to 1.10 moles.
- ester exchange catalysts particularly, as the basic compound catalyst, alkali metal compounds, alkaline earth metal compounds, nitrogen-containing compounds and the like can be mentioned.
- alkali metal compound used in the present invention examples include organic acid salts of alkali metals, inorganic salts, oxides, hydroxides, hydrides or alkoxides.
- alkaline earth metal compound examples include organic acid salts of alkaline earth metal compounds, inorganic salts, oxides, hydroxides, hydrides or alkoxides.
- Magnesium, calcium acetate, strontium acetate, barium acetate, magnesium stearate, calcium stearate, calcium benzoate, magnesium magnesium phenylphosphate and the like are used.
- nitrogen-containing compounds include quaternary ammonium hydroxides and salts thereof, amines, and the like.
- quaternary ammonium hydroxides having an alkyl group such as tetramethyl ammonium hydroxide, tetraethyl ammonium hydroxide, tetrapropyl ammonium hydroxide, tetrabutyl ammonium hydroxide, trimethyl benzyl ammonium hydroxide and the like, an aryl group, etc .
- Tertiary amines such as triethylamine, dimethylbenzylamine and triphenylamine
- secondary amines such as diethylamine and dibutylamine
- primary amines such as propylamine and butylamine
- 2-methylimidazole, 2-phenylimidazole and benzimidazole Imidazoles etc .
- ammonia tetramethyl ammonium borohydride, tetrabutyl ammonium
- salts of zinc, tin, zirconium, lead and the like are preferably used, and these can be used alone or in combination.
- transesterification catalyst examples include zinc acetate, zinc benzoate, zinc 2-ethylhexanoate, tin (II) chloride, tin (IV) chloride, tin (II) acetate, tin (IV) acetate, dibutyltin Dilaurate, dibutyltin oxide, dibutyltin dimethoxide, zirconium acetylacetonate, zirconium oxyacetate, zirconium tetrabutoxide, lead (II) acetate, lead (IV) acetate and the like are used.
- These catalysts are used in a ratio of 1 ⁇ 10 ⁇ 9 to 1 ⁇ 10 ⁇ 3 mol, preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 4 mol, per 1 mol in total of the dihydroxy compounds. .
- melt polycondensation is performed while removing by-products by transesterification under heating and further under normal pressure or reduced pressure using the above-mentioned raw materials and catalysts.
- the melt polycondensation in this composition system is carried out in a state in which the monohydroxy compound to be by-produced is retained after melting the compound represented by the general formula (4) and the carbonic diester in a reaction vessel .
- the pressure can be controlled by closing the reactor, depressurizing or pressurizing.
- the reaction time of this step is 20 minutes or more and 240 minutes or less, preferably 40 minutes or more and 180 minutes or less, and particularly preferably 60 minutes or more and 150 minutes or less.
- the polycarbonate resin finally obtained has a low content of the polymer.
- the polycarbonate resin finally obtained has a high content of the polymer.
- the melt polycondensation reaction may be carried out continuously or batchwise.
- the reaction equipment used to carry out the reaction is a horizontal type equipped with paddle blades, grid blades, glasses wings, etc., even if it is a vertical type equipped with a vertical mixing blade, Max Blend stirring blade, helical ribbon type stirring blade etc. It may be an extruder type equipped with a screw.
- the catalyst may be removed or deactivated in order to maintain the thermal stability and the hydrolytic stability.
- a known method for carrying out the deactivation of the catalyst by the addition of an acidic substance can be suitably carried out.
- the acidic substance include esters such as butyl benzoate and aromatic sulfonic acids such as p-toluenesulfonic acid; and aromatic sulfonic acid esters such as butyl p-toluenesulfonate and hexyl p-toluenesulfonate.
- Phosphoric acids such as phosphorous acid, phosphoric acid, phosphonic acid; Triphenyl phosphite, monophenyl phosphite, diphenyl phosphite, diethyl phosphite, di-n-propyl phosphite, di-phosphorous acid Phosphorous esters such as n-butyl, di-n-hexyl phosphite, dioctyl phosphite, monooctyl phosphite; triphenyl phosphate, diphenyl phosphate, monophenyl phosphate, dibutyl phosphate, phosphate Phosphate esters such as dioctyl and monooctyl phosphate; Phosphonic acids such as diphenylphosphonic acid, dioctylphosphonic acid and dibutylphosphonic acid Phosphonates such as diethyl phenylphosphonic acid; Phos
- deactivators are used in a molar amount of 0.01 to 50 times, preferably 0.3 to 20 times that of the catalyst. If the amount is less than 0.01 times the amount of the catalyst, the deactivation effect is not sufficient, which is not preferable. On the other hand, if the amount is more than 50 times by mole the amount of the catalyst, the heat resistance of the resin is lowered, and the molded body is likely to be colored.
- a step of devolatilizing and removing low boiling point compounds in the polymer at a pressure of 0.1 to 1 mmHg and a temperature of 200 to 350 ° C. may be provided.
- a horizontal apparatus such as a paddle blade, a grid blade, an eyeglass blade, or the like, provided with a stirring blade having an excellent surface renewal capability, or a thin film evaporator is preferably used.
- the polycarbonate resin to be used in the present invention is desirably as small in foreign matter content as possible, and filtration of a molten raw material, filtration of a catalyst solution, and the like are suitably carried out.
- the mesh of the filter is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
- filtration of the produced resin with a polymer filter is suitably carried out.
- the mesh of the polymer filter is preferably 100 ⁇ m or less, more preferably 30 ⁇ m or less.
- the step of collecting the resin pellet must naturally be a low dust environment, preferably class 6 or less, more preferably class 5 or less.
- the polycarbonate resin containing the structural unit represented by General formula (1)-(3) in another one aspect of this invention, or the polycarbonate resin containing the structural unit represented by General formula (1) and (2) In the case of production, structural units represented by General Formulas (1) to (3) or General Formulas (1) and (2), using compounds represented by General Formulas (4) to (6) Copolymers containing structural units, or a ternary resin containing homopolymers consisting of the respective structural units by separately polymerizing the compounds represented by the general formulas (4) to (6) It may be manufactured as a binary resin.
- the copolymer containing the structural unit represented by the general formulas (1) and (2) may be blended with the homopolymer containing the structural unit represented by the general formula (3) after polymerization, After copolymerizing the copolymer containing the structural unit represented by (1) and (2) and the copolymer containing the structural unit represented by General Formula (1) and (3), you may blend.
- an antioxidant is added to the polycarbonate resin .
- the method of addition is not particularly limited, and may be performed by any method.
- an antioxidant may be added later to a container containing a polycarbonate resin, or a polycarbonate resin may be added later to a container containing an antioxidant in advance, and the polycarbonate resin and the antioxidant are simultaneously added. You may put it in one container.
- the antioxidant may be attached to the pellet-like polycarbonate resin by using a tumble mixer, a Henschel mixer, a ribbon blender, a super mixer, a roll mixer or a tumble mixer.
- the antioxidant can be uniformly dispersed in the polycarbonate resin composition, and the heat history can be reduced, which is preferable.
- pelletized polycarbonate resin may be mixed with pellets in which the antioxidant is melt-kneaded at a high concentration to a part of the polycarbonate resin.
- melt-kneaded After adding an antioxidant to polycarbonate resin, these are melt-kneaded.
- the method of melt-kneading is not particularly limited, and any method may be used.
- the melt-kneading may be performed by a known kneading method such as a single-screw or twin-screw extruder, a Banbury mixer, a static mixer and the like.
- the polycarbonate resin may be pelletized prior to the addition of the antioxidant.
- the method of pelletization is not particularly limited, and any method can be used. Moreover, you may pelletize polycarbonate resin obtained by melt-kneading, and the method of pelletization here can also use arbitrary methods.
- optical lens produced using the polycarbonate resin composition of the present invention has a high refractive index, a low Abbe number, and a high thermal stability, and therefore, it can be a telescope, binoculars, television projector It can be used in the field where the expensive high refractive index glass lens was used conventionally, and is very useful. If necessary, it is preferable to use in the form of an aspheric lens. Aspheric lenses are capable of substantially eliminating spherical aberration with a single lens, so there is no need to eliminate spherical aberration by combining a plurality of spherical lenses, resulting in weight reduction and reduction in production cost. It will be possible.
- an aspheric lens is particularly useful as a camera lens among optical lenses.
- the optical lens is molded by any method such as, for example, an injection molding method, a compression molding method, and an injection compression molding method. According to the present invention, it is possible to more easily obtain a high refractive index low birefringence aspheric lens which is technically difficult to process with a glass lens.
- the molding environment In order to avoid contamination of foreign matter to the optical lens as much as possible, the molding environment must naturally be a low dust environment, preferably class 6 or less, more preferably class 5 or less.
- An optical film produced using the polycarbonate resin composition of the present invention is suitably used for a film for liquid crystal substrates, an optical memory card and the like because it is excellent in transparency and thermal stability.
- the molding environment In order to avoid the contamination of the optical film as much as possible, the molding environment must naturally be a low dust environment, preferably of class 6 or less, more preferably class 5 or less.
- Mw Polystyrene conversion weight average molecular weight
- GPC gel permeation chromatograph
- tetrahydrofuran was used as a developing solvent
- This plate piece is held by HIRAYAMA PC-305SIII at 120 ° C., 0.2 Mpa, 100% RH for 20 hours, and then the plate piece is taken out and Mw is measured in the same manner as the method 1) described above. did. 8) Polystyrene conversion weight average molecular weight (Mw) after thermal retention: A high-rise type flow tester CFT-500D (manufactured by Shimadzu Corp.) heated to 285 ° C. after drying the polycarbonate resin composition at 110 ° C. for 5 hours It stayed for 10 minutes inside. The Mw of the polycarbonate resin composition withdrawn after the residence was measured in the same manner as in the method 1) described above.
- Amount of residual phenol and residual diphenyl carbonate (DPC) 1.0 g of the weighed polycarbonate resin was precisely weighed, dissolved in 10 ml of dichloromethane, and gradually added to 100 ml of methanol with stirring to reprecipitate the resin. After sufficient stirring, the precipitate was separated by filtration, and the filtrate was concentrated by an evaporator and precisely added 1.0 g of a standard substance solution to the solid obtained. The solution diluted with another 1 g of chloroform was quantified by GC-MS.
- Production Example 8 As raw materials, 9300 g (24.837 mol) of BNE, 5615 g (12.804 mol) of BPEF, 5900 g (9.988 mol) of BPPEF, 10500 g (49.016 mol) of DPC, and 0.034 g of sodium hydrogen carbonate The same operation as in Production Example 1 was carried out except using (4.0 ⁇ 10 -4 mol). Various physical properties of the obtained polycarbonate resin (copolymer) (PC-8) are shown in the table.
- Example 1-1 The polycarbonate resin (PC-1) obtained in Production Example 1 and the type and amount of each antioxidant were blended according to the mass ratio shown in the table and mixed in a tumbler for 20 minutes (after addition), 1 vent The product was supplied to a twin screw extruder (TEX30HSST) manufactured by Japan Steel Works, Ltd., and melt-kneaded under the conditions of a screw rotation speed of 200 rpm, a discharge amount of 20 kg / hour, and a barrel temperature of 260 ° C.
- TEX30HSST twin screw extruder manufactured by Japan Steel Works, Ltd.
- the polycarbonate resin composition obtained by melt-kneading was extruded in a strand shape, and then quenched in a water tank, and pelletized using a pelletizer to obtain pellets of the polycarbonate resin composition.
- Table 2 shows various physical properties of the obtained polycarbonate resin composition.
- Examples 1-2, 2-4, 5-1-5-6 and 6-8, and comparative examples 1 and 3 A polycarbonate resin composition was obtained in the same manner as in Example 1-1, except that the type and the addition amount of each polycarbonate resin and each antioxidant were changed as shown in Table 2 in Example 1-1. .
- Table 2 shows various physical properties of the obtained polycarbonate resin composition. The amount of residual phenol and the amount of residual DPC in the polycarbonate resin composition of Example 5-1 were both 100 ppm.
- Comparative Examples 1-1 and 2 In Comparative Example 1-1, a polycarbonate resin composition was prepared and evaluated in the same manner as in Comparative Example 1 except that the antioxidant was not added in Comparative Example 1. Comparative Example 2 was the same as Example 5-1 except that the antioxidant was not added in Example 5-1, and a polycarbonate resin composition was prepared and evaluated in the same manner.
- Mw retention after thermal retention is the percentage of change in "Mw of polycarbonate resin contained in polycarbonate resin composition after thermal retention test” relative to "Mw of polycarbonate resin”.
- Mw of polycarbonate resin contained in polycarbonate resin composition after heat retention test is determined by dividing by “Mw of polycarbonate resin”.
- the "increasing rate of the b value after thermal retention” is the percentage increase rate of the "b value of the polycarbonate resin composition after the thermal retention test” relative to the "b value of the polycarbonate resin” as a percentage. It can be determined by dividing the difference between the b value of the polycarbonate resin composition after the test and the b value of the polycarbonate resin by the b value of the polycarbonate resin.
- Mw retention after PCT test is a percentage of change in "Mw of polycarbonate resin contained in polycarbonate resin composition after PCT test” relative to "Mw of polycarbonate resin", and "PCT test” It can be obtained by dividing the Mw of the polycarbonate resin contained in the subsequent polycarbonate resin composition by the Mw of the polycarbonate resin. From the results of Table 2, the polycarbonate resin composition containing the polycarbonate resin containing the predetermined structural unit and the antioxidant in a predetermined amount has a high molecular weight retention after thermal retention, a low increase rate of the b value, and a PCT test It turned out that the molecular weight retention rate of the latter is high.
- a polycarbonate resin composition containing a polycarbonate resin containing a predetermined structural unit and an antioxidant in a predetermined amount has high thermal stability.
- Comparative Example 1 does not contain the structural unit of the general formula (1), so that the thermal stability is low.
- Comparative Example 1-1 which does not contain the antioxidant, the thermal stability is further increased. It has fallen.
- Comparative Examples 2 and 3 it was found that sufficient thermal stability was not obtained because the addition amount of the antioxidant was not within the predetermined range.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
本発明は、例えば以下の通りである。
[1]
ポリカーボネート樹脂と酸化防止剤とを含むポリカーボネート樹脂組成物であって、
前記ポリカーボネート樹脂は、下記一般式(1)で表される構成単位を含み、
前記酸化防止剤の含有量が1~3000ppmである、組成物。
[2]
前記酸化防止剤が、ホスファイト系酸化防止剤及び/又はフェノール系酸化防止剤である、[1]に記載の組成物。
[3]
前記ポリカーボネート樹脂が、さらに下記一般式(2)及び/又は一般式(3)で表される構成単位を含む、[1]又は[2]に記載の組成物。
Zは炭素数1~4のアルキレン基を表し、
R1~R6は、各々独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基又は炭素数6~20のアリールオキシ基を表し、
e及びfは、各々独立に、0~5の整数を表す。)
[4]
前記一般式(1)中、Xが炭素数2のアルキレン基であり、a及びbは、各々独立に、1である、[1]~[3]のいずれかに記載の組成物。
[5]
前記一般式(2)中、Yが炭素数2のアルキレン基であり、c及びdは、各々独立に、1である、[3]又は[4]のいずれかに記載の組成物。
[6]
前記一般式(3)中、Zが炭素数2のアルキレン基であり、R1~R6は、各々独立に、水素原子又はフェニル基であり、e及びfは、各々独立に、1である、[3]~[5]のいずれかに記載の組成物。
[7]
前記ポリカーボネート樹脂における前記一般式(1)で表される構成単位の割合が10~50モル%である、[1]~[6]のいずれかに記載の組成物。
[8]
前記ポリカーボネート樹脂における前記一般式(2)で表される構成単位の割合が20~70モル%である、[3]~[7]のいずれかに記載の組成物。
[9]
前記ポリカーボネート樹脂における前記一般式(3)で表される構成単位の割合が10~70モル%である、[3]~[8]のいずれかに記載の組成物。
[10]
前記ポリカーボネート樹脂の重量平均分子量が、10,000~100,000である、[1]~[9]のいずれかに記載の組成物。
[11]
ポリカーボネート樹脂組成物の製造方法であって、
下記一般式(1)で表される構成単位を含むポリカーボネート樹脂を用意することと、
前記ポリカーボネート樹脂へ酸化防止剤を添加した後、溶融混練することと、を含む製造方法。
[12]
[1]~[10]のいずれかに記載の樹脂組成物を含む成形体。
[13]
前記成形体が光学フィルムである、[12]に記載の成形体。
[14]
前記成形体が光学レンズである、[12]に記載の成形体。
(1)ポリカーボネート樹脂組成物
本発明のポリカーボネート樹脂組成物は、所定の構成単位を含むポリカーボネート樹脂と所定量の酸化防止剤とを含む。本発明のポリカーボネート樹脂組成物は、このような構成により、高屈折率及び低アッベ数を有し、かつ、高い熱安定性を有する。また、本発明のポリカーボネート樹脂組成物はさらに任意の添加剤を含んでいてもよい。各構成要素について以下に説明する。
本発明に用いるポリカーボネート樹脂は、一般式(1)で表される構成単位(以下、「構成単位(1)」ともいう)を有するポリカーボネート樹脂である。
Zは炭素数1~4のアルキレン基を表し、
R1~R6は、各々独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基又は炭素数6~20のアリールオキシ基を表し、
e及びfは、各々独立に、0~5の整数を表す。)
ν=(nD-1)/(nF-nC)
nD:波長589nmでの屈折率
nC:波長656nmでの屈折率
nF:波長486nmでの屈折率
本発明のポリカーボネート樹脂組成物は、1~3000ppmの酸化防止剤を含む。酸化防止剤の量は、好ましくは300~2800ppm、より好ましくは500~2500ppmであり、さらに好ましくは500~2000ppmである。酸化防止剤の量を1ppm以上とすることで熱安定性を向上する効果が奏され、かつ、3000ppm以下とすることで酸化防止剤の量が多過ぎることによるb値の増加、屈折率の低下、Tgの低下、および全光線透過率の低下を抑制することができる。なお、本明細書において、「ppm」は「質量ppm」を意味する。
本発明のポリカーボネート樹脂組成物は、上記のポリカーボネート樹脂に加え、他の樹脂を含んでいてもよい。他の樹脂としては、例えば、ポリアミド、ポリアセタール、ポリカーボネート、変性ポリフェニレンエーテル、ポリエチレンテレフタレート、ポリブチレンテレフタレート等が例示される。
本発明のポリカーボネート樹脂組成物に含まれるポリカーボネート樹脂は、高屈折率と低いアッベ数を有する。本発明のポリカーボネート樹脂組成物は、このようなポリカーボネート樹脂と実質的に同等の屈折率とアッベ数を有する。ここで、「実質的に同等」とはポリカーボネート樹脂の屈折率およびアッベ数とそのポリカーボネート樹脂を含むポリカーボネート樹脂組成物の屈折率およびアッベ数との差が、それぞれ±10%、±9%、±8%、±7%、±6%、±5%、±4、±3%、±2%、または±1%であることを意味する。本発明のポリカーボネート樹脂組成物は、全光線透過率とb値についても、該組成物中に含まれるポリカーボネート樹脂と実質的に同等の値を有する。
本発明のポリカーボネート樹脂組成物を用いて光学成形体を製造できる。例えば射出成形法、圧縮成形法、押出成形法、溶液キャスティング法など任意の方法により光学成形体を製造することができる。本発明のポリカーボネート樹脂組成物は、成形性及び耐熱性に優れているので、射出成形が必要となる光学レンズにおいて特に有利に使用することができる。成形の際には、本発明のポリカーボネート樹脂組成物を他のポリカーボネート樹脂やポリエステル樹脂などの他の樹脂と混合して使用することが出来る。
本発明のポリカーボネート樹脂組成物の製造方法は、一般式(1)で表される構成単位を含むポリカーボネート樹脂を用意することと、
前記ポリカーボネート樹脂へ酸化防止剤を添加した後、溶融混練することと、を含む。
本発明のポリカーボネート樹脂組成物の製造方法において、まず上記一般式(1)で表される構成単位を含むポリカーボネート樹脂を用意する。該ポリカーボネート樹脂を用意する方法は特に限定されず、予め合成された樹脂を購入する等して用意してもよく、化学的に合成するなどして製造してもよい。
で表される化合物をジヒドロキシ成分として使用し、炭酸ジエステルなどのカーボネート前駆物質と反応させて製造することができる。具体的には、一般式(4)で表される化合物及び炭酸ジエステルなどのカーボネート前駆物質を、塩基性化合物触媒もしくはエステル交換触媒もしくはその双方からなる混合触媒の存在下、又は無触媒下において、溶融重縮合法により反応させて製造することができる。
Zは炭素数1~4のアルキレン基を表し、
R1~R6は、各々独立に、水素原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシル基、炭素数5~20のシクロアルキル基、炭素数5~20のシクロアルコキシル基、炭素数6~20のアリール基又は炭素数6~20のアリールオキシ基を表し、
e及びfは、各々独立に、0~5の整数を表す。)
一般式(1)で表される構成単位を含むポリカーボネート樹脂を用意した後、該ポリカーボネート樹脂に酸化防止剤を添加する。添加方法は特に限定されず、任意の方法で行ってよい。例えば、ポリカーボネート樹脂を入れた容器に後から酸化防止剤を添加してもよいし、予め酸化防止剤を入れた容器に後からポリカーボネート樹脂を入れてもよいし、ポリカーボネート樹脂と酸化防止剤を同時に一つの容器に入れてもよい。具体的には、ターンブルミキサー、ヘンシェルミキサー、リボンブレンダー、スーパーミキサー、ロールミキサーまたはタンブラーミキサーを用いて、ペレット状のポリカーボネート樹脂に酸化防止剤を付着させてもよい。このような添加方法によれば、ポリカーボネート樹脂組成物中に酸化防止剤を均一に分散することができ、熱履歴を少なくすることができるため好ましい。また、ペレット状のポリカーボネート樹脂と、ポリカーボネート樹脂の一部へ高濃度で酸化防止剤を溶融混練したペレット同士とを混合してもよい。
本発明のポリカーボネート樹脂組成物を用いて製造される光学レンズは、高屈折率であり、低アッベ数であり、かつ、高い熱安定性を有するため、望遠鏡、双眼鏡、テレビプロジェクター等、従来、高価な高屈折率ガラスレンズが用いられていた分野に用いることができ、極めて有用である。必要に応じて、非球面レンズの形で用いることが好ましい。非球面レンズは、1枚のレンズで球面収差を実質的にゼロとすることが可能であるため、複数の球面レンズの組み合わせによって球面収差を取り除く必要がなく、軽量化及び生産コストの低減化が可能になる。従って、非球面レンズは、光学レンズの中でも特にカメラレンズとして有用である。
光学レンズは、例えば射出成形法、圧縮成形法、射出圧縮成形法など任意の方法により成形される。本発明により、ガラスレンズでは技術的に加工の困難な高屈折率低複屈折非球面レンズをより簡便に得ることができる。
本発明のポリカーボネート樹脂組成物を用いて製造される光学フィルムは、透明性及び熱安定性に優れるため、液晶基板用フィルム、光メモリーカード等に好適に使用される。
以下に本発明を実施例により説明するが、本発明はこれらの実施例に何らの制限を受けるものではない。なお、実施例中の測定値は以下の方法あるいは装置を用いて測定した。
2)ガラス転移温度(Tg):示差熱走査熱量分析計(DSC(高感度型示差走査熱量計DSC7000X))により測定した。昇温、及び降下速度は10℃/分に設定し、示差走査熱量計(DSC)内で一度溶融、冷却固化した後、2回目の昇温過程(セカンドラン)でTgを測定した。
3)屈折率(nD):ポリカーボネート共重合体からなる厚さ0.1mmフィルムについて、アッベ屈折計を用い、JIS-K-7142の方法で測定した。0.1mmフィルムはプレス成形により得た。
4)アッベ数(ν):ポリカーボネート共重合体からなる厚さ0.1mmフィルムについて、アッベ屈折計を用い、23℃下での波長486nm、589nm及び656nmの屈折率を測定し、さらに下記式を用いてアッベ数を算出した。0.1mmフィルムはプレス成形により得た。
ν=(nD-1)/(nF-nC)
nD:波長589nmでの屈折率
nC:波長656nmでの屈折率
nF:波長486nmでの屈折率
5)全光線透過率:下記b値の測定用に作成したポリカーボネート樹脂からなる厚さ3mmのプレートについて、日本電色工業(株)製 SE2000型分光式色差計を用い、JIS-K-7361-1の方法で測定した。
6)b値:樹脂サンプルを120℃で4時間真空乾燥した後、射出成型機(FANUC ROBOSHOT α-S30iA)によりシリンダー温度270℃、金型温度Tg-10℃にて射出成形し、直径50mm、厚さ3mmの円盤状試験プレート片を得た。このプレート片を用いて、JIS K7105に準じb値を測定した。b値が小さいほど黄色味が弱いことを示し、色相が良好となる。成形プレートの測定には、日本電色工業(株)製 SE2000型分光式色差計を用いた。熱滞留後のb値は、ポリカーボネート樹脂組成物を、110℃で5時間乾燥後、285℃に加熱した高化式フローテスターCFT-500D(島津製作所(株)製)内で10分間滞留し、滞留後に抜き出したポリカーボネート樹脂組成物について、上述した方法と同様にしてb値を測定した。
7)PCT試験(プレッシャークッカー試験)後のポリスチレン換算重量平均分子量(Mw):樹脂サンプルを120℃で4時間真空乾燥した後、射出成型機(FANUC ROBOSHOT α-S30iA)によりシリンダー温度270℃、金型温度Tg-10℃にて射出成形し、直径50mm、厚さ3mmの円盤状試験プレート片を得た。このプレート片を、HIRAYAMA社製 PC-305SIIIで、120℃、0.2Mpa、100%RH、20時間の条件で保持後、プレート片を取り出し、上述した1)の方法と同様にしてMwを測定した。
8)熱滞留後のポリスチレン換算重量平均分子量(Mw):ポリカーボネート樹脂組成物を、110℃で5時間乾燥後、285℃に加熱した高化式フローテスターCFT-500D(島津製作所(株)製)内で10分間滞留した。滞留後に抜き出したポリカーボネート樹脂組成物について、上述した1)の方法と同様にしてMwを測定した。
9)残存フェノール及び残存ジフェニルカーボネート(DPC)量:秤量したポリカーボネート樹脂1.0gを精秤し、ジクロロメタン10mlに溶解し、攪拌しながら100mlのメタノールに徐々に添加して樹脂を再沈殿させた。十分に攪拌を行った後、沈殿物を濾別し、濾液をエバポレータにより濃縮して得られた固体へ標準物質溶液1.0gを精秤して加えた。さらに1gのクロロホルムを加えて希釈した溶液をGC-MSにより定量した。
標準物質溶液:200ppm、2,4,6-トリメチルフェノールのクロロホルム溶液
測定装置(GC-MS):Agilent HP6890/5973MSD
カラム:キャピラリーカラム DB-5MS, 30m×0.25mm I.D.,膜厚0.5μm
昇温条件:50℃(5min hold)~300℃(15min hold),10℃/min
注入口温度:300℃、打ち込み量:1.0μl(スプリット比25)
イオン化法:EI法
キャリアーガス:He,1.0ml/min
Aux温度:300℃
質量スキャン範囲:33-700
(製造例1)
原料として、9,9-ビス[6-(2-ヒドロキシエトキシ)ナフタレン-2-イル]フルオレン(以下“BNEF”と省略することがある)8100g(15.038モル)、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン(以下“BPPEF”と省略することがある)19600g(33.180モル)、ジフェニルカーボネート(以下“DPC”と省略することがある)10500g(49.016モル)、及び炭酸水素ナトリウム0.034g(4.0×10-4モル)を攪拌機及び留出装置付きの50L反応器に入れ、窒素雰囲気760mmHgの下、180℃に加熱した。加熱開始30分後に原料の完全溶解を確認し、その後同条件で120分間攪拌を行った。その後、減圧度を200mmHgに調整すると同時に、60℃/hrの速度で200℃まで昇温を行った。この際、副生したフェノールの留出開始を確認した。その後、40分間200℃に保持して反応を行った。さらに、75℃/hrの速度で230℃まで昇温し、昇温終了10分後、その温度で保持しながら、2時間かけて減圧度を1mmHg以下とした。その後、60℃/hrの速度で245℃まで昇温し、さらに50分間攪拌を行った。反応終了後、反応器内に窒素を導入して常圧に戻し、生成したポリカーボネート樹脂をペレタイズして取り出した。得られたポリカーボネート樹脂(共重合体)(PC-1)の各種物性を表に示す。
原料として、BNEFを8100g(15.038モル)、2,2’-ビス(2-ヒドロキシエトキシ)-1,1’-ビナフタレン(以下“BNE”と省略することがある)12500g(33.383モル)、DPCを10500g(49.016モル)、及び炭酸水素ナトリウム0.034g(4.0×10-4モル)を用いた以外は、製造例1と同様の操作を行った。得られたポリカーボネート共重合体(PC-2)の各種物性を表に示す。
原料として、BNEFを8100g(15.038モル)、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン(以下“BPEF”と省略することがある)14500g(33.066モル)、DPCを10500g(49.016モル)、及び炭酸水素ナトリウム0.034g(4.0×10-4モル)を用いた以外は、製造例1と同様の操作を行った。得られたポリカーボネート樹脂(共重合体)(PC-3)の各種物性を表に示す。
原料として、BNEFを11500g(21.350モル)、BNEを4200g(11.217モル)、BPPEFを9100g(15.405モル)、DPCを10500g(49.016モル)、及び炭酸水素ナトリウム0.034g(4.0×10-4モル)を用いた以外は、製造例1と同様の操作を行った。得られたポリカーボネート樹脂(共重合体)(PC-4)の各種物性を表に示す。
原料として、BNEFを8000g(14.852モル)、BNEを7500g(20.030モル)、BPPEFを7600g(12.866モル)、DPCを10500g(49.016モル)、及び炭酸水素ナトリウム0.034g(4.0×10-4モル)を用いた以外は、製造例1と同様の操作を行った。得られたポリカーボネート樹脂(共重合体)(PC-5)の各種物性を表に示す。
原料として、BNEFを6900g(12.810モル)、BNEを9300g(24.837モル)、BPPEFを5900g(9.988モル)、DPCを10500g(49.016モル)、及び炭酸水素ナトリウム0.034g(4.0×10-4モル)を用いた以外は、製造例1と同様の操作を行った。得られたポリカーボネート樹脂(共重合体)(PC-6)の各種物性を表に示す。
原料として、BNEFを8000g(14.852モル)、BNEを7500g(20.030モル)、BPEFを5600g(12.770モル)、DPCを10500g(49.016モル)、及び炭酸水素ナトリウム0.034g(4.0×10-4モル)を用いた以外は、製造例1と同様の操作を行った。得られたポリカーボネート樹脂(共重合体)(PC-7)の各種物性を表に示す。
原料として、BNEを9300g(24.837モル)、BPEFを5615g(12.804モル)、BPPEFを5900g(9.988モル)、DPCを10500g(49.016モル)、及び炭酸水素ナトリウム0.034g(4.0×10-4モル)を用いた以外は、製造例1と同様の操作を行った。得られたポリカーボネート樹脂(共重合体)(PC-8)の各種物性を表に示す。
(実施例1-1)
製造例1で得られたポリカーボネート樹脂(PC-1)と各酸化防止剤の種類及び添加量を表に示す質量比で配合し、タンブラーにて20分混合した後(添加した後)、1ベントを備えた日本製鋼所社製二軸押出機(TEX30HSST)に供給し、スクリュー回転数200rpm、吐出量20kg/時間、バレル温度260℃の条件で溶融混練した。溶融混練によって得られたポリカーボネート樹脂組成物をストランド状に押出した後に水槽にて急冷し、ペレタイザーを用いてペレット化して、ポリカーボネート樹脂組成物のペレットを得た。得られたポリカーボネート樹脂組成物の各種物性を表2に示す。
実施例1-1において、各ポリカーボネート樹脂、各酸化防止剤の種類及び添加量を表2に示すように変更したこと以外は、実施例1-1と同様にしてポリカーボネート樹脂組成物をそれぞれ得た。得られたポリカーボネート樹脂組成物の各種物性を表2に示す。なお、実施例5-1のポリカーボネート樹脂組成物中の残存フェノール量と残存DPC量は、いずれも100ppmであった。
比較例1-1は、比較例1において、酸化防止剤を添加しなかったこと以外は、比較例1と同様にしてポリカーボネート樹脂組成物を調製し、同様にして評価した。比較例2は実施例5-1において、酸化防止剤を添加しなかったこと以外は、実施例5-1と同様にしてポリカーボネート樹脂組成物を調製し、同様にして評価した。
Claims (14)
- 前記酸化防止剤が、ホスファイト系酸化防止剤及び/又はフェノール系酸化防止剤である、請求項1に記載の組成物。
- 前記一般式(1)中、Xが炭素数2のアルキレン基であり、a及びbは、各々独立に、1である、請求項1~3のいずれか一項に記載の組成物。
- 前記一般式(2)中、Yが炭素数2のアルキレン基であり、c及びdは、各々独立に、1である、請求項3又は4のいずれか一項に記載の組成物。
- 前記一般式(3)中、Zが炭素数2のアルキレン基であり、R1~R6は、各々独立に、水素原子又はフェニル基であり、e及びfは、各々独立に、1である、請求項3~5のいずれか一項に記載の組成物。
- 前記ポリカーボネート樹脂における前記一般式(1)で表される構成単位の割合が10~50モル%である、請求項1~6のいずれか一項に記載の組成物。
- 前記ポリカーボネート樹脂における前記一般式(2)で表される構成単位の割合が20~70モル%である、請求項3~7のいずれか一項に記載の組成物。
- 前記ポリカーボネート樹脂における前記一般式(3)で表される構成単位の割合が10~70モル%である、請求項3~8のいずれか一項に記載の組成物。
- 前記ポリカーボネート樹脂の重量平均分子量が、10,000~100,000である、請求項1~9のいずれか一項に記載の組成物。
- 請求項1~10のいずれか一項に記載の樹脂組成物を含む成形体。
- 前記成形体が光学フィルムである、請求項12に記載の成形体。
- 前記成形体が光学レンズである、請求項12に記載の成形体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19743561.3A EP3744791B1 (en) | 2018-01-23 | 2019-01-18 | Polycarbonate resin composition, production method therefor, and optical lens |
KR1020207021736A KR102651213B1 (ko) | 2018-01-23 | 2019-01-18 | 폴리카보네이트 수지 조성물, 그 제조 방법 및 광학 렌즈 |
CN201980009476.2A CN111630109B (zh) | 2018-01-23 | 2019-01-18 | 聚碳酸酯树脂组合物、其制造方法和光学透镜 |
JP2019567033A JP7176535B2 (ja) | 2018-01-23 | 2019-01-18 | ポリカーボネート樹脂組成物、その製造方法及び光学レンズ |
US16/961,592 US11440991B2 (en) | 2018-01-23 | 2019-01-18 | Polycarbonate resin composition, production method therefor, and optical lens |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-009024 | 2018-01-23 | ||
JP2018009024 | 2018-01-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019146507A1 true WO2019146507A1 (ja) | 2019-08-01 |
Family
ID=67395473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/001375 WO2019146507A1 (ja) | 2018-01-23 | 2019-01-18 | ポリカーボネート樹脂組成物、その製造方法及び光学レンズ |
Country Status (7)
Country | Link |
---|---|
US (1) | US11440991B2 (ja) |
EP (1) | EP3744791B1 (ja) |
JP (1) | JP7176535B2 (ja) |
KR (1) | KR102651213B1 (ja) |
CN (1) | CN111630109B (ja) |
TW (1) | TW201940549A (ja) |
WO (1) | WO2019146507A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021261392A1 (ja) * | 2020-06-26 | 2021-12-30 | 三菱瓦斯化学株式会社 | 樹脂組成物 |
WO2023058599A1 (ja) * | 2021-10-05 | 2023-04-13 | 三菱瓦斯化学株式会社 | ジヒドロキシ化合物の製造方法および再生樹脂の製造方法 |
WO2023085339A1 (ja) * | 2021-11-12 | 2023-05-19 | 三菱瓦斯化学株式会社 | 熱可塑性樹脂及びそれを含む光学レンズ |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112961336B (zh) * | 2021-04-09 | 2023-01-13 | 万华化学集团股份有限公司 | 一种具有稳定高折射率的聚碳酸酯树脂及制备方法和应用 |
CN115716912B (zh) * | 2022-11-04 | 2023-09-19 | 万华化学集团股份有限公司 | 一种耐黄变热塑性树脂组合物及其制备方法和应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5442800B2 (ja) | 1975-08-07 | 1979-12-15 | ||
JPH0625398A (ja) | 1992-07-07 | 1994-02-01 | Teijin Chem Ltd | 高屈折率低複屈折性ポリカーボネート樹脂 |
WO2007142149A1 (ja) | 2006-06-05 | 2007-12-13 | Mitsubishi Gas Chemical Company, Inc. | 光学レンズ |
WO2009014050A1 (ja) * | 2007-07-24 | 2009-01-29 | Teijin Chemicals Ltd. | 難燃性樹脂組成物 |
JP2017020043A (ja) * | 2015-04-20 | 2017-01-26 | 住化スタイロンポリカーボネート株式会社 | ポリカーボネート樹脂組成物及び成形品 |
JP2017179323A (ja) * | 2016-03-28 | 2017-10-05 | 大阪ガスケミカル株式会社 | 高屈折率ポリカーボネート系樹脂及び成形体 |
WO2018016516A1 (ja) * | 2016-07-21 | 2018-01-25 | 三菱瓦斯化学株式会社 | ポリカーボネート樹脂、その製造方法及び光学レンズ |
JP2018104691A (ja) * | 2016-12-26 | 2018-07-05 | 大阪ガスケミカル株式会社 | 高耐熱性ポリカーボネート樹脂及び成形体 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4685431B2 (ja) | 2004-09-06 | 2011-05-18 | 帝人化成株式会社 | 帯電防止性樹脂組成物 |
JP6327151B2 (ja) * | 2012-11-07 | 2018-05-23 | 三菱瓦斯化学株式会社 | ポリカーボネート樹脂、その製造方法および光学成形体 |
KR102169539B1 (ko) * | 2014-05-02 | 2020-10-23 | 미츠비시 가스 가가쿠 가부시키가이샤 | 폴리카보네이트 수지 조성물, 그리고 그것을 사용한 광학 재료 및 광학 렌즈 |
EP3483197A1 (en) * | 2014-05-07 | 2019-05-15 | Mitsubishi Gas Chemical Company, Inc. | Resin produced by polycondensation, and resin composition |
JP7117932B2 (ja) | 2017-08-30 | 2022-08-15 | 帝人株式会社 | 熱可塑性樹脂および光学部材 |
CN110741030B (zh) | 2017-08-30 | 2022-06-17 | 帝人株式会社 | 热塑性树脂和光学部件 |
-
2019
- 2019-01-18 JP JP2019567033A patent/JP7176535B2/ja active Active
- 2019-01-18 KR KR1020207021736A patent/KR102651213B1/ko active IP Right Grant
- 2019-01-18 EP EP19743561.3A patent/EP3744791B1/en active Active
- 2019-01-18 CN CN201980009476.2A patent/CN111630109B/zh active Active
- 2019-01-18 US US16/961,592 patent/US11440991B2/en active Active
- 2019-01-18 WO PCT/JP2019/001375 patent/WO2019146507A1/ja unknown
- 2019-01-22 TW TW108102346A patent/TW201940549A/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5442800B2 (ja) | 1975-08-07 | 1979-12-15 | ||
JPH0625398A (ja) | 1992-07-07 | 1994-02-01 | Teijin Chem Ltd | 高屈折率低複屈折性ポリカーボネート樹脂 |
WO2007142149A1 (ja) | 2006-06-05 | 2007-12-13 | Mitsubishi Gas Chemical Company, Inc. | 光学レンズ |
WO2009014050A1 (ja) * | 2007-07-24 | 2009-01-29 | Teijin Chemicals Ltd. | 難燃性樹脂組成物 |
JP2017020043A (ja) * | 2015-04-20 | 2017-01-26 | 住化スタイロンポリカーボネート株式会社 | ポリカーボネート樹脂組成物及び成形品 |
JP2017179323A (ja) * | 2016-03-28 | 2017-10-05 | 大阪ガスケミカル株式会社 | 高屈折率ポリカーボネート系樹脂及び成形体 |
WO2018016516A1 (ja) * | 2016-07-21 | 2018-01-25 | 三菱瓦斯化学株式会社 | ポリカーボネート樹脂、その製造方法及び光学レンズ |
JP2018104691A (ja) * | 2016-12-26 | 2018-07-05 | 大阪ガスケミカル株式会社 | 高耐熱性ポリカーボネート樹脂及び成形体 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021261392A1 (ja) * | 2020-06-26 | 2021-12-30 | 三菱瓦斯化学株式会社 | 樹脂組成物 |
CN115702214A (zh) * | 2020-06-26 | 2023-02-14 | 三菱瓦斯化学株式会社 | 树脂组合物 |
CN115702214B (zh) * | 2020-06-26 | 2024-02-20 | 三菱瓦斯化学株式会社 | 树脂组合物 |
WO2023058599A1 (ja) * | 2021-10-05 | 2023-04-13 | 三菱瓦斯化学株式会社 | ジヒドロキシ化合物の製造方法および再生樹脂の製造方法 |
WO2023085339A1 (ja) * | 2021-11-12 | 2023-05-19 | 三菱瓦斯化学株式会社 | 熱可塑性樹脂及びそれを含む光学レンズ |
Also Published As
Publication number | Publication date |
---|---|
US20210363295A1 (en) | 2021-11-25 |
EP3744791B1 (en) | 2023-09-06 |
CN111630109B (zh) | 2023-03-28 |
EP3744791A4 (en) | 2021-03-17 |
EP3744791A1 (en) | 2020-12-02 |
US11440991B2 (en) | 2022-09-13 |
CN111630109A (zh) | 2020-09-04 |
JP7176535B2 (ja) | 2022-11-22 |
KR102651213B1 (ko) | 2024-03-25 |
TW201940549A (zh) | 2019-10-16 |
KR20200105864A (ko) | 2020-09-09 |
JPWO2019146507A1 (ja) | 2021-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7298669B2 (ja) | ポリカーボネート樹脂、その製造方法及び光学レンズ | |
JP6885852B2 (ja) | ポリカーボネート樹脂、その製造方法および光学成形体 | |
TWI761484B (zh) | 聚碳酸酯樹脂組成物及使用其之光學透鏡 | |
JP7176535B2 (ja) | ポリカーボネート樹脂組成物、その製造方法及び光学レンズ | |
WO2019044875A1 (ja) | ポリカーボネート樹脂、その製造方法、及び、光学レンズ | |
JP6904375B2 (ja) | 熱可塑性樹脂の製造方法 | |
JP5808959B2 (ja) | 高屈折率ポリカーボネート共重合体及び光学レンズ | |
JP2018184519A (ja) | ポリカーボネート樹脂、その製造方法および光学成形体 | |
JP2017201002A (ja) | ポリカーボネート樹脂、その製造方法および光学成形体 | |
JP5808961B2 (ja) | 光学レンズ用ポリカーボネート共重合体及び該ポリカーボネートからなる光学レンズ | |
JP2022032702A (ja) | 樹脂組成物並びにそれを含む光学レンズ及び光学フィルム | |
WO2023100777A1 (ja) | ポリカーボネート樹脂組成物及びそれを用いた光学レンズ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19743561 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019567033 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207021736 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019743561 Country of ref document: EP Effective date: 20200824 |