WO2018179976A1 - 金属粉末の製造方法 - Google Patents

金属粉末の製造方法 Download PDF

Info

Publication number
WO2018179976A1
WO2018179976A1 PCT/JP2018/005545 JP2018005545W WO2018179976A1 WO 2018179976 A1 WO2018179976 A1 WO 2018179976A1 JP 2018005545 W JP2018005545 W JP 2018005545W WO 2018179976 A1 WO2018179976 A1 WO 2018179976A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal powder
oxide
powder
coated
Prior art date
Application number
PCT/JP2018/005545
Other languages
English (en)
French (fr)
Inventor
一元 西島
浅井 剛
貢 吉田
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to JP2018542292A priority Critical patent/JP6431650B1/ja
Priority to CN201880021359.3A priority patent/CN110461505B/zh
Priority to KR1020197032221A priority patent/KR102361011B1/ko
Publication of WO2018179976A1 publication Critical patent/WO2018179976A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide

Definitions

  • One embodiment of the present invention relates to a method for producing a metal powder such as nickel, copper, or silver suitable for various uses such as a conductive paste filler, a titanium material bonding material, and a catalyst used in electronic parts.
  • the present invention relates to a method for producing metal powder suitable for heat treatment by uniformly coating metal powder with an oxide.
  • Conductive metal powders such as Ni, Cu, and Ag are useful for forming internal electrodes of multilayer ceramic capacitors.
  • nickel powder has recently attracted attention in such applications.
  • nickel ultrafine powder produced by a dry production method is considered promising in the above applications.
  • the particle size of 0.1 ⁇ m or less is required as well as the particle size of 0.1 ⁇ m or less due to the demands for thinning the internal electrode and reducing the resistance as the capacitor becomes smaller and larger in capacity.
  • ultrafine powder having a particle size of 5 ⁇ m or less, and further having a particle size of 0.3 ⁇ m or less.
  • the manufacturing process of a multilayer ceramic capacitor there is a step of performing heat treatment to crystallize the dielectric layer.
  • the sintering temperature of the dielectric layer is higher than the sintering temperature of the nickel powder, The temperature is excessive. Further, the sintering temperature of the nickel powder tends to decrease due to the above-described ultrafine pulverization of the nickel powder.
  • the heat treatment causes the nickel powder to sinter and cause thermal shrinkage, which causes the delamination and cracks of the internal electrodes, thereby degrading the performance of the multilayer ceramic capacitor.
  • Patent Document 1 describes a method of mixing a dielectric with nickel powder.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 11-124602 shows that an oxide or a hydroxide is generated by hydrolysis of a metal salt, and the oxide generated in the liquid is adsorbed to the metal powder. ing.
  • Japanese Patent Publication “JP 2000-282102 A” (published on October 10, 2000)
  • Japanese Patent Publication “Japanese Patent Laid-Open No. 11-124602” Japanese Patent Laid-Open No. 11-124602” (published on May 11, 1999)
  • Patent Document 1 is a method of suppressing the sintering of the metal powder by the dielectric, but as the metal powder is atomized, it becomes difficult to mix the metal powder and the dielectric, and the metal powder and the dielectric. There is a problem that the body separates.
  • Patent Document 2 has a problem that the metal powder cannot be uniformly coated because the oxide formed with a high hydrolysis rate of the metal salt forms an aggregate.
  • an object of one embodiment of the present invention is to provide a method for producing an oxide-coated metal powder capable of uniformly coating metal particles with an oxide and preventing the formation of oxide aggregates. There is to do.
  • the inventors of the present invention have made extensive studies on the coating of metal particles with oxides. As a result, metal alkoxide is stabilized by a complexing agent and mixed with water containing an acid or alkali to increase the surface coverage of the oxide. And the inventors have found that oxide aggregates can be prevented from being generated, and completed one embodiment of the present invention.
  • one embodiment of the present invention is a manufacturing method for manufacturing a metal powder in which at least a part of a surface is coated with an oxide,
  • the surface of the metal powder is mixed with an oxide generated from the metal complex by mixing a dispersion containing the metal powder and a metal complex having a ligand represented by Formula 1 and water containing an acid or an alkali. It is characterized by covering at least a part of.
  • R 1 and R 2 each represent a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, and may be the same or different from each other, and R 1 and R 2 are bonded to each other to form a ring; May be formed.
  • the present invention it is possible to coat more uniformly than the conventional oxide-coated metal powder, so that the heat resistance can be increased as compared with the conventional one and oxide aggregates are formed. Can be prevented.
  • FIG. 2 is a STEM photograph and an EDS mapping image of the SiO 2 coated nickel powder obtained in Example 1.
  • FIG. 4 is a STEM photograph and an EDS mapping image of the TiO 2 coated nickel powder obtained in Example 2.
  • FIG. 4 is a STEM photograph and an EDS mapping image of the ZrO 2 -coated nickel powder obtained in Example 3. It is a STEM photograph and EDS mapping image of the Al 2 O 3 coated nickel powder obtained in Example 4. It is a STEM photograph and EDS mapping image of La 2 O 3 coated nickel powder obtained in Example 5. It is a STEM photograph and EDS mapping image of the TiO 2 coating nickel powder obtained in Comparative Example.
  • a dispersion of metal powder and water containing acid or alkali are mixed.
  • the dispersion of the metal powder contains a metal alkoxide and a complexing agent.
  • the surface of the metal particles is coated with an oxide obtained by hydrolyzing the metal alkoxide and the metal complex formed from the metal alkoxide and the complexing agent.
  • the metal powder is an aggregate of metal particles, and the metal constituting the metal particles includes nickel, copper, silver, aluminum, titanium, iron, cobalt, tungsten, molybdenum, and alloys of these metals. Is mentioned. Among these, the metal constituting the metal particles is more preferably nickel, copper, and silver. These metal powders are suitably used for various applications such as paste fillers, titanium composites, or catalysts. For example, nickel, copper, silver, and the like are suitably used for paste fillers.
  • the average particle diameter of the metal particles is not particularly limited, but is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, further preferably 0.3 ⁇ m or less, further preferably 0.2 ⁇ m or less, and further preferably 0.1 ⁇ m or less.
  • the metal powder having such an average particle diameter can be suitably produced by, for example, a gas phase reduction method or a liquid phase reduction method.
  • the advantage of the production method according to one aspect is that the surface of the metal particles produced by the gas phase reduction method or the liquid phase reduction method, in which the average particle size is 1 ⁇ m or less, can be uniformly coated with the oxide. It is one of.
  • a metal powder having such a fine average particle diameter can form a uniform film, and the 5% shrinkage temperature and sintering temperature of the metal powder than before.
  • a metal powder having high heat resistance that is, high heat resistance can be obtained. Therefore, when the metal powder is used as the internal electrode of the multilayer capacitor, it is possible to prevent the occurrence of cracks and delamination when the multilayer capacitor is fired. Since such a metal powder can be uniformly coated, it is possible to prevent the internal electrode from being short-circuited by generating a coarse metal powder due to the metal powder being connected to form a film. it can.
  • “oxide-coated metal powder” which is a metal powder whose particle surface is coated with an oxide may be simply referred to as “metal powder” for convenience.
  • An organic solvent may be included in the dispersion liquid in which the metal powder before being coated with the oxide is dispersed.
  • the organic solvent is not particularly limited as long as it can dissolve the metal alkoxide and the complexing agent.
  • alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, ethylene glycol, and propylene glycol, dioxane , Ethers such as tetrahydrofuran, 2-methoxyethanol, and diethylene glycol, and solvents such as aromatics such as toluene and xylene can be used.
  • the organic solvent may be ketones such as acetone, methyl ethyl ketone, and cyclohexane, and esters such as ethyl acetate, isopropyl acetate, and butyl acetate.
  • the organic solvent is more preferably an alcohol from the viewpoint of ease of handling.
  • the dispersion contains a metal alkoxide.
  • the metal alkoxide generates an oxide while being inhibited from being hydrolyzed by the complexing agent, and the oxide covers the surface of the metal particle.
  • a metal alkoxide of the following formula 2 can be preferably used.
  • M (OR 3 ) P (Formula 2) (Wherein M is one metal selected from the group consisting of Si, Ti, Zr, Al, La, Cr, and Ba, and R 3 is a linear alkyl group having 1 to 4 carbon atoms, And a branched alkyl group having 3 to 4 carbon atoms, p is determined by the type of M and is an integer of 2 to 4.)
  • examples of the linear alkyl group represented by R 3 include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group.
  • examples of the branched alkyl group having 3 to 4 carbon atoms include isopropyl group, isobutyl group, and t-butyl group.
  • One type of metal alkoxide may be used, or two or more types may be used simultaneously.
  • the metal alkoxide that forms a metal complex with the complexing agent is not particularly limited as long as it hydrolyzes to generate an oxide.
  • a part of the metal alkoxide is included in the dispersion as an oligomer. Also good.
  • the metal alkoxide is an alkyl bonded to the metal part. It preferably has no organic group such as a group and an allyl group.
  • One type of metal alkoxide may be used, or two or more types may be used simultaneously.
  • the metal element (metal part M) contained in the metal alkoxide may also be referred to as a coating element.
  • the coating element may be the same type of metal as the metal powder, or another type of metal.
  • the amount of the metal alkoxide blended in the dispersion may be adjusted as appropriate according to the amount of the metal powder dispersed in the organic solvent and the particle size of the metal powder.
  • the amount of the metal powder contained is preferably 100% by weight, and preferably 0.5% by weight or more and 5% by weight or less based on the metal powder. Thereby, the metal powder whose surface coverage of the metal particle by an oxide is 80% or more and 100% or less can be manufactured suitably.
  • the complexing agent slows the hydrolysis rate of the metal alkoxide by forming a metal complex with the metal part of the metal alkoxide.
  • generated from a metal alkoxide and the said metal alkoxide can be made fine. Therefore, the oxide can be uniformly attached to the surface of the metal particles.
  • any complexing agent can be used as long as it can coordinate to the metal part of the metal alkoxide.
  • a ⁇ -diketone represented by the following formula 1 can be used. (Wherein R 1 and R 2 each represent a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms, and may be the same or different from each other, and R 1 and R 2 are bonded to each other to form a ring; May be formed.)
  • R 1 and R 2 in Formula 1 are, for example, a hydrogen atom, a linear alkyl group having 1 to 5 carbon atoms, and a branched alkyl group having 3 to 5 carbon atoms. If R 1 and R 2 are the groups listed above, the hydrolysis rate of the metal alkoxide can be suitably reduced.
  • the linear alkyl group of R 1, R 2 having 1 to 5 carbon atoms, a methyl group, an ethyl group, n- propyl group, n- butyl group, and n- pentyl.
  • Examples of the branched alkyl group having 3 to 5 carbon atoms of R 1 and R 2 include isopropyl group, isobutyl group, t-butyl group, isopentyl group, and neopentyl group.
  • R 1, R 2 is a linear alkyl - 1 carbon atoms in the case of group 3, when the branched alkyl group Preferably it has 3 carbon atoms, more preferably the complexing agent is acetylacetone.
  • the amount of the complexing agent to be added is not limited, but it is preferably 1 to 3 times the total number of moles of the added metal alkoxide.
  • the hydrolysis rate of the metal alkoxide is optimized. Therefore, the formation of oxide aggregates is suppressed by the fact that oxide growth does not occur rapidly. Thereby, a uniform coating of metal particles can be realized by forming fine oxides to coat the metal particles.
  • the metal complex is a metal complex that forms an oxide by hydrolysis, and more specifically, the metal complex can have a structure represented by the following formula 3 or formula 4, for example.
  • M 1 (OR 3 ) q X r (Formula 3)
  • M 1 is one metal selected from the group consisting of Si, Ti, and Zr
  • X is a ligand represented by Formula 1, and when q is 0, r is 4.
  • M 2 X s (Formula 4) (Wherein M 2 is one metal selected from the group consisting of Al, La, Cr, and Ba, X is a ligand shown in Formula 1, and s is a kind of M 2 Depending on 2 or 3.)
  • the metal complex as shown in the above formula 3 or 4 is preferably generated by, for example, coordination of a complexing agent with the metal part of the metal alkoxide.
  • it will replace with producing
  • the said Formula 3 or the said which was previously manufactured by the other method No. 4 metal complex may be added to the dispersion.
  • the metal compound is hydrolyzed to produce an oxide.
  • the pH of water is adjusted by acid or alkali so that the surface charge of the metal powder is opposite to the surface charge of the oxide generated by hydrolysis of the metal compound.
  • the water whose pH has been adjusted is also referred to as pH-adjusted water.
  • the oxide can have a surface charge opposite to that of the metal powder, so that the oxide can be uniformly coated on the metal powder by electrostatic attraction.
  • the amount of pH-adjusted water to be mixed with the dispersion may be at least an amount capable of completely hydrolyzing the metal alkoxide and metal complex.
  • the temperature at the time of mixing the dispersion and pH adjusting water may be not less than the freezing point of the dispersion, pH adjusting water and the mixture, and is preferably 0 to 25 ° C.
  • the procedure of mixing the pH-adjusted water into the dispersion composed of metal powder, metal alkoxide and complexing agent can be both a method of adding pH-adjusted water to the dispersion and a method of adding the dispersion to pH-adjusted water
  • the method of adding pH-adjusted water to the dispersion is more preferable because the metal particles can be more uniformly coated with the oxide.
  • any acid or alkali can be used as long as the acid or alkali added to control the pH can be adjusted.
  • an acid is used.
  • hydrochloric acid and sulfuric acid are preferable, and when alkali is used, aqueous ammonia and sodium hydroxide are preferable.
  • the obtained metal powder is filtered, washed and dried to make a product.
  • a method for filtering, washing and drying known methods can be used. For example, filtration may be performed by vacuum filtration, pressure filtration, or the like, and drying may be performed using a box-type dryer or an air dryer.
  • nickel powder is dispersed in an organic solvent, and the nickel powder is made into a slurry.
  • nickel powder obtained by a method such as a liquid phase reduction method or a gas phase reduction method can be used
  • nickel powder obtained by a gas phase reduction method is preferable from the viewpoint of uniformity of particle size distribution.
  • the nickel powder may have an average particle size of 0.03 ⁇ m to 1.0 ⁇ m and a CV value of particle size distribution of 50% or less.
  • the average particle diameter of the nickel powder is obtained by taking a photograph of the nickel powder particles before coating with a scanning electron microscope, and using the image analysis software from the photograph, measuring the particle diameter of 500 or more nickel powders, The number average particle size is calculated from the particle size distribution of the obtained nickel powder. At this time, the particle diameter is the diameter of the smallest circle that encloses the particles.
  • the CV value of the particle size distribution indicates the standard deviation of the particle size distribution / number average particle size.
  • metal alkoxide and complexing agent are dissolved is added to the metal powder slurry.
  • the metal alkoxide used at this time can use the metal alkoxide shown above. Any complexing agent can be used as long as it can coordinate with the metal part of the metal alkoxide.
  • a ⁇ -diketone represented by Formula 1 can be used.
  • the pH of the water added at this time is pH 1.5 to 14 when coating with SiO 2 , 6 to 10 when coating with TiO 2 , pH 9 to 10 when coating with ZrO 2 , and coating with Al 2 O 3 .
  • the pH is preferably 8 to 11, and in the case of coating with La 2 O 3 , the pH is preferably 1.5 to 10. If the pH is within the above range in each case, the coating can be performed more uniformly.
  • the generated oxide has a surface charge opposite to that of the metal powder, and is therefore adsorbed on the surface of the metal particles by electrostatic attraction.
  • the size of the oxide particles formed from the metal alkoxide and the metal complex is very small, and is uniformly adsorbed on the surface of the metal particles.
  • the acid and alkali added to control the pH of water can be used with any acid and alkali as long as the pH can be adjusted. From the viewpoint of convenience in use and economy, the acid may be hydrochloric acid or sulfuric acid.
  • the alkali is preferably aqueous ammonia or sodium hydroxide.
  • the obtained oxide-coated metal powder is filtered, washed and dried to make a product.
  • An oxide-coated metal powder was produced. Details will be described below.
  • the average particle size of the metal powder is obtained by taking a picture of the metal powder particles with a scanning electron microscope (trade name JSM-7800F, manufactured by JEOL Ltd.), and imaging the particle size of about 1,000 particles. The average value was calculated using analysis software (manufactured by Mountec Co., Ltd., trade name: MacView 4.0). The particle diameter was the diameter of the smallest circle enclosing the particles.
  • the obtained oxide-coated nickel powder was sprinkled on a carbon support film, and photographs of the nickel powder were taken with a scanning transmission electron microscope (STEM) at a magnification of 1,000,000 to 1,500,000 times in several fields of view. Further, element mapping was performed by an EDS (Energy Dispersive X-ray Spectrometry) detector provided in the scanning transmission electron microscope.
  • STEM scanning transmission electron microscope
  • the thermal shrinkage was measured with a thermomechanical analyzer (TMA).
  • TMA thermomechanical analyzer
  • the measurement conditions were temperature range: room temperature to 1350 ° C., rate of temperature increase: 5 ° C./min, atmosphere: 2% H 2 , 98% N 2 300 mL / min.
  • the temperature at which the shrinkage rate reached 5% was read as the 5% shrinkage temperature.
  • Example 1 metallic nickel powder (average particle size 100 nm) was produced according to the method described in JP-A-10-219313. Ethanol was added to the metal nickel powder to make a 10 wt% slurry. On the other hand, apart from the slurry, when the metallic nickel powder contained in the slurry was 100% by weight, an amount of tetraethylorthosilicate (hereinafter also referred to as TEOS) corresponding to 2% by weight was dissolved in ethanol. Furthermore, acetylacetone as a complexing agent was added so as to have a double mole relative to the Si element.
  • TEOS tetraethylorthosilicate
  • the metallic nickel powder slurry was mixed with an ethanol solution of TEOS and acetylacetone and stirred for 1 hour to prepare 200 mL of a dispersion containing nickel powder. Thereafter, 100 mL of water whose pH was adjusted to 8-9 with aqueous ammonia was added at once and stirred for 2 hours. Thereafter, suction filtration was performed, and the target SiO 2 -coated nickel powder was obtained by drying in the atmosphere at 120 ° C. for 1 hour.
  • the STEM photograph and STEM-EDS mapping image of the nickel powder obtained in Example 1 are shown in FIG. Table 1 shows the surface coverage and 5% shrinkage temperature.
  • Example 2 Titanium tetraisopropoxide was used as the metal alkoxide, and the treatment was carried out in the same manner as in Example 1 except that the addition amount was the same as the volume of SiO 2 of 2 wt% to obtain TiO 2 coated nickel powder.
  • the STEM photograph and STEM-EDS mapping image of the obtained nickel powder are shown in FIG. Table 1 shows the surface coverage and 5% shrinkage temperature.
  • Example 3 A ZrO 2 -coated nickel powder was obtained in the same manner as in Example 1 except that zirconium tetraisopropoxide as the metal alkoxide and the amount added were the same as the volume of 2 wt% SiO 2 .
  • the STEM photograph and STEM-EDS mapping image of the obtained nickel powder are shown in FIG. Table 1 shows the surface coverage and 5% shrinkage temperature.
  • Example 4 Treatment was performed in the same manner as in Example 1 except that aluminum tri-n-butoxide was added as the metal alkoxide, and the addition amount was the same as the volume of SiO 2 of 2 wt% to obtain Al 2 O 3 coated nickel powder.
  • the STEM photograph and STEM-EDS mapping image of the obtained nickel powder are shown in FIG. Table 1 shows the surface coverage and 5% shrinkage temperature.
  • Example 5 La 2 O 3 coating was performed in the same manner as in Example 1 except that lanthanum triisopropoxide was used as the metal alkoxide, 2-propanol as the organic solvent, and the addition amount was the same as the volume of 2 wt% SiO 2.
  • Nickel powder was obtained. The STEM photograph and STEM-EDS mapping image of the obtained nickel powder are shown in FIG. Table 1 shows the surface coverage and 5% shrinkage temperature.
  • Example 2 The same treatment as in Example 2 was performed except that acetylacetone was not added to obtain a TiO 2 coated nickel powder.
  • the STEM photograph and STEM-EDS mapping image of the obtained nickel powder are shown in FIG. Table 1 shows the surface coverage and 5% shrinkage temperature.
  • Example 2 the surface coverage is better than that of the comparative example, and the coverage is improved by the complexing agent. Moreover, in each Example, the surface coverage is 80% or more, and as can be seen from FIG. 1, it can be seen that the surface coverage is more uniform than the comparative example. It can be seen that the 5% shrinkage temperature is increased in each example as compared to the reference example and the comparative example.
  • the present invention can be used as an internal electrode of a multilayer ceramic capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

金属粒子に酸化物を均一に被覆することができ、酸化物の凝集体が形成されることを防止する。金属粉末の製造方法は、金属粉末、および配位子を有する金属錯体を含む分散液と、酸またはアルカリを含む水とを混合することで、前記金属錯体から生成される酸化物によって前記金属粉末の表面の少なくとも一部を被覆する。

Description

金属粉末の製造方法
 本発明の一態様は、電子部品などに使用される導電ペーストフィラー、チタン材の接合材、さらには触媒などの各種用途に適したニッケル、銅、あるいは銀などの金属粉末の製造方法に関し、特に金属粉末を酸化物で均一に被覆したことで熱処理に対して好適な金属粉末の製造方法に関する。
 Ni、Cu、Agなどの導電性の金属粉末は積層セラミックコンデンサの内部電極形成用として有用である。とりわけニッケル粉末は、そのような用途において最近注目されている。中でも乾式の製造方法によって製造したニッケル超微粉が、前記用途において有望視されている。このようなニッケル超微粉にあっては、コンデンサの小型化および大容量化に伴い、内部電極の薄層化および低抵抗化などの要求から、粒径1μm以下は勿論のこと、粒径0.5μm以下、さらには粒径0.3μm以下の超微粉が要望されている。
 積層セラミックコンデンサの製造工程では、誘電体層を結晶化させるために熱処理を行う工程があるが、誘電体層の焼結温度がニッケル粉末の焼結温度よりも高いことから、加熱処理はニッケル粉末に対しては過剰な温度になっている。また、前述したニッケル粉末の超微粉化により、ニッケル粉末の焼結温度は低下傾向にある。熱処理によりニッケル粉末が焼結して熱収縮が起こり、それにより内部電極のデラミネーションやクラックが発生することで、積層セラミックコンデンサの性能が低下することが問題となっている。
 このような問題に対しては金属粉末を酸化物などにより被覆することで金属粉末の焼結を抑制する方法が考えられる。特開2000-282102号公報(特許文献1)には、ニッケル粉末に誘電体を混ぜる方法が記載されている。
 また、特開平11-124602号公報(特許文献2)には、金属塩の加水分解により酸化物や水酸化物を生じさせ、液中で発生した酸化物を金属粉末に吸着させることが示されている。
日本国公開特許公報「特開2000-282102号公報」(2000年10月10日公開) 日本国公開特許公報「特開平11-124602号公報」(1999年5月11日公開)
 しかしながら、特許文献1に記載の方法は、誘電体により金属粉末の焼結を抑制する方法であるが、金属粉末の微粒化に伴い金属粉末と誘電体との混合が困難になり金属粉末と誘電体とが分離するという問題がある。
 また、特許文献2に記載の方法では、金属塩の加水分解速度が速く生成した酸化物が凝集体を形成するために金属粉末を均一に被覆することができないという問題がある。
 そこで本発明の一態様の目的は、金属粒子に酸化物を均一に被覆することができ、酸化物の凝集体が形成されることを防止することができる酸化物被覆金属粉末の製造方法を提供することにある。
 本発明者らは酸化物による金属粒子の被覆について鋭意検討を行ったところ、錯化剤によって金属アルコキシドを安定化し、酸またはアルカリを含む水と混合することにより、酸化物の表面被覆率を高めることができ、酸化物の凝集体が発生することを防止することができることを見出し、本発明の一態様を完成するに至った。
 すなわち、本発明の一態様は、表面の少なくとも一部が酸化物に被覆された金属粉末を製造する製造方法であって、
 金属粉末、および式1に示される配位子を有する金属錯体を含む分散液と、酸またはアルカリを含む水とを混合することで、前記金属錯体から生成される酸化物によって前記金属粉末の表面の少なくとも一部を被覆することを特徴としている。
Figure JPOXMLDOC01-appb-C000002
 (式中RおよびRはそれぞれ水素原子または炭素数1~5の炭化水素基を示し、互いに同一であっても異なっていてもよく、またRとRとは互いに結合して環を形成してもよい。)
 本発明の一態様によれば、従来の酸化物被覆金属粉よりも均一な被覆が可能であることから耐熱性を従来よりも高めることができると共に、酸化物の凝集体が形成されることを防止することができる。
実施例1で得られたSiO被覆ニッケル粉末のSTEM写真およびEDSマッピング像である。 実施例2で得られたTiO被覆ニッケル粉末のSTEM写真およびEDSマッピング像である。 実施例3で得られたZrO被覆ニッケル粉末のSTEM写真およびEDSマッピング像である。 実施例4で得られたAl被覆ニッケル粉末のSTEM写真およびEDSマッピング像である。 実施例5で得られたLa被覆ニッケル粉末のSTEM写真およびEDSマッピング像である。 比較例で得られたTiO被覆ニッケル粉末のSTEM写真およびEDSマッピング像である。
 <金属粉末の製造方法>
 本実施形態に係る金属粉末の製造方法では、金属粉末の分散液と、酸またはアルカリを含む水とを混合する。ここで、金属粉末の分散液は、金属アルコキシドおよび錯化剤を含んでいる。これによって、金属アルコキシド、および該金属アルコキシドと錯化剤とから生成される金属錯体とを加水分解させることにより得られた酸化物にて金属粒子の表面の少なくとも一部を被覆する。
 (金属粉末)
 金属粉末とは、金属粒子の集合体のことであり、該金属粒子を構成する金属としては、ニッケル、銅、銀、アルミニウム、チタン、鉄、コバルト、タングステン、およびモリブデンなど、並びにこれら金属の合金が挙げられる。これらの中でも、金属粒子を構成する金属は、ニッケル、銅、および銀であることがより好ましい。これら金属粉末は、ペーストフィラー、チタン材の複合材、または触媒などの各種用途に好適に使用され、例えば、ニッケル、銅、および銀などは、ペーストフィラーに好適に使用される。金属粒子の平均粒径は特に限定されないが、好ましくは1μm以下、より好ましくは0.5μm以下、さらに好ましくは0.3μm以下、さらに好ましくは0.2μm以下、さらに好ましくは0.1μm以下である。このような平均粒径を有している金属粉末は、例えば気相還元法または液相還元法によって好適に製造することができる。このように平均粒径が1μm以下であるという、気相還元法または液相還元法によって製造された金属粒子の表面に酸化物を均一に被覆することができることも一態様に係る製造方法の利点の1つである。
 また、本態様に係る製造方法によれば、このような微小な平均粒径を有する金属粉末であっても均一な被膜が可能であり、従来よりも金属粉末の5%収縮温度及び焼結温度の高い、つまり耐熱性の高い金属粉末を得ることができる。よって、該金属粉末を積層コンデンサの内部電極として用いた際、該積層コンデンサを焼成した際に、クラック、及びデラミネーションが発生することを防止することができる。このような金属粉末は、均一な被膜が可能であることから、金属粉末が連結して被膜化されること等により粗大な金属粉末が発生することで、内部電極が短絡することを防ぐことができる。なお、本明細書では、酸化物にて粒子の表面が被覆された金属粉末である「酸化物被覆金属粉末」のことを、便宜上、単に「金属粉末」と称することもある。
 酸化物にて被覆される前の金属粉末を分散する分散液には有機溶媒が含まれていてもよい。有機溶媒としては、金属アルコキシドおよび錯化剤を溶解させることができるものであればよく、たとえばメタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、エチレングリコール、およびプロピレングリコールなどのアルコール類、ジオキサン、テトラヒドロフラン、2-メトキシエタノール、およびジエチレングリコールなどのエーテル類、ならびにトルエンおよびキシレンなどの芳香族などの溶媒が使用できる。その他、有機溶媒には、アセトン、メチルエチルケトン、およびシクロヘキサンなどのケトン類、並びに、酢酸エチル、酢酸イソプロピル、および酢酸ブチルなどのエステル類であってもよい。なかでも、取扱い易さから、有機溶媒は、アルコール類であることがより好ましい。
 (金属アルコキシド)
 分散液には、金属アルコキシドが含まれている。金属アルコキシドは、錯化剤によって加水分解することを抑制されつつも、酸化物を生成し、当該酸化物は、金属粒子の表面を被覆する。
 金属アルコキシドとしては、例えば、以下に示す式2の金属アルコキシドを好適に使用することができる。
M(OR・・・(式2)
 (ここで、Mは、Si、Ti、Zr、Al、La、Cr、およびBaからなる群から選択される1つの金属であり、Rは、炭素数1~4の直鎖状アルキル基、および炭素数3~4の分岐アルキル基であり、pは、Mの種類によって決まり、2~4の整数である。)
 前記式2に示すアルコキシル基において、Rとして示されている直鎖状アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基が挙げられる。また、前記式2に示すアルコキシル基において、炭素数3~4の分岐アルキル基としては、イソプロピル基、イソブチル基、t-ブチル基が挙げられる。金属アルコキシドは、1種類を用いてもよく、2種類以上のものを同時に用いてもよい。
 また、錯化剤と共に金属錯体を形成する金属アルコキシドは、加水分解して酸化物を生じるものであれば特に限定されず、たとえば、該金属アルコキシドの一部はオリゴマーとして分散液に含まれていてもよい。また、限定されるものではないが、例えば、積層セラミックコンデンサの内部電極として金属粉末を用いる場合、コンデンサ内に炭素原子が多量に残存することを避けるため、金属アルコキシドは、金属部に結合するアルキル基およびアリル基などの有機基を有していないことが好ましい。金属アルコキシドは、1種類を用いてもよく、2種類以上のものを同時に用いてもよい。以下、金属アルコキシドに含まれる金属元素(金属部M)を、コーティング元素とも称することもある。コーティング元素は、金属粉末と同じ種類の金属であってもよく、別の種類の金属であってもよい。
 分散液に配合される金属アルコキシドの量は、有機溶媒に分散されている金属粉末の量、および該金属粉末の粒度によって適宜調整すればよく、限定されるものではないが、例えば、分散液に含まれる金属粉末を100重量%として、該金属粉末に対して、0.5重量%以上、5重量%以下の量であることが好ましい。これにより、酸化物による金属粒子の表面被覆率が80%以上、100%以下である金属粉末を好適に製造することができる。
 (錯化剤)
 錯化剤は、金属アルコキシドの金属部と金属錯体を形成することにより、該金属アルコキシドの加水分解速度を遅くする。これにより、金属アルコキシドおよび当該金属アルコキシドから生成される金属錯体によって生成される酸化物の粒子を細かくすることができる。よって、酸化物を均一に金属粒子の表面に付着させることができる。
 錯化剤としては、金属アルコキシドの金属部に配位することのできるものであればよく、典型的には下記式1で示されるβ-ジケトンが使用できる。
Figure JPOXMLDOC01-appb-C000003
 (式中RおよびRはそれぞれ水素原子または炭素数1~5の炭化水素基を示し、互いに同一であっても異なっていてもよく、またRとRとは互いに結合して環を形成してもよい。)
 前記式1のR、Rとして好ましい基は、例えば、水素原子、炭素数1~5の直鎖状のアルキル基、および炭素数3~5の分岐アルキル基などである。R、Rが前記で列挙した基であれば、金属アルコキシドの加水分解速度を好適に遅くすることができる。
 前記R、Rの炭素数1~5の直鎖状アルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、およびn-ペンチル基が挙げられる。
 また、前記R、Rの炭素数3~5の分岐アルキル基としては、イソプロピル基、イソブチル基、t-ブチル基、イソペンチル基、およびネオペンチル基などが挙げられる。
 上述した錯化剤の中でも、加水分解のために加える水への溶解性の観点から、R、Rが直鎖状アルキル基の場合は炭素数が1~3、分岐アルキル基の場合は炭素数3であることが好ましく、さらに好ましくは、錯化剤はアセチルアセトンである。
 金属アルコキシドと錯化剤との配合比率を変えることで、加水分解速度を制御することも可能になる。錯化剤の添加量は、限定されるものではないが、加えた金属アルコキシドの総モル数に対して1~3倍モルとなるようにすることが好ましい。錯化剤の添加量が前記の範囲内であることにより、金属アルコキシドの加水分解の速度が最適化される。よって、酸化物の成長が急激に起こらないことで、酸化物の凝集体が形成されることが抑制される。これにより、細かい酸化物が形成されて金属粒子を被覆することで、金属粒子の均一な被覆を実現することができる。
 (金属錯体)
 金属錯体は、加水分解することによって酸化物を形成する金属錯体であって、より具体的には、金属錯体は、例えば、以下の式3または式4に示す構造を取り得る。
(OR ・・・(式3)
 (ここで、Mは、Si、Ti、Zrからなる群から選択される1つの金属であり、Xは、前記式1に示す配位子であり、qが0のとき、rは4であり、qが2のとき、rは2である。)
 ・・・(式4)
 (ここで、Mは、Al、La、Cr、およびBaからなる群から選択される1つの金属であり、Xは、前記式1に示す配位子であり、sは、Mの種類によって決まり、2または3である。)
 なお、上記式3または4に示すような金属錯体は、一例として、金属アルコキシドの金属部に錯化剤が配位することによって好適に生成される。また、一態様に係る製造方法では、上記式3または4に示すような金属錯体であれば、金属アルコキシドから金属錯体を生成することに代えて、予め他の方法によって製造された上記式3または4の金属錯体を分散液に配合してもよい。
 (酸またはアルカリを含む水)
 金属粉末、および金属錯体の混合溶液に対し、酸またはアルカリを含む水を混合することで、金属化合物を加水分解させ酸化物を生じさせる。水は、酸またはアルカリにより、金属粉末の表面電荷が、金属化合物の加水分解により生じた酸化物の表面電荷と反対になるようにpHを調整されている。このようにpHを調整した水を、以下、pH調整水とも称する。金属粉末、および金属錯体の分散液に加えると、酸化物は金属粉末と表面電荷が反対にすることができ、これにより、酸化物を静電引力により金属粉末に均一に被覆することができる。
 分散液と混合するpH調整水の量としては、金属アルコキシドおよび金属錯体を完全に加水分解させることが可能な量以上であればよい。また、分散液とpH調整水との混合時の温度は、分散液とpH調整水と混合液の凝固点以上であればよく、好ましくは0~25℃である。
 金属粉末、金属アルコキシド、錯化剤からなる分散液にpH調整水を混合する手順は、分散液にpH調整水を加える方法とpH調整水に分散液を加える方法の両方が可能であるが、分散液にpH調整水を加える方法のほうが酸化物によって、金属粒子をより均一に被覆することができるためより好ましい。
 pH調整水において、pHを制御するために加えられる酸またはアルカリはpHを調整することができれば、いずれの酸およびアルカリでも使用できるが、使用上の簡便さおよび経済性の観点から、酸を使用する場合、塩酸および硫酸などが好ましく、アルカリを使用する場合は、アンモニア水および水酸化ナトリウムなどが好ましい。
 得られた金属粉末は、濾過、洗浄、乾燥を経て製品とされる。濾過、洗浄、乾燥する方法としては公知の方法が利用でき、例えば濾過は減圧濾過や加圧濾過などによって行えばよく、乾燥は箱型乾燥機や気流乾燥機などを利用すればよい。
 以下、本発明の好適な実施の形態について詳細に説明する。
 <酸化物被覆ニッケル粉末の製造例>
 以下、酸化物被覆ニッケル粉末の製造例をもとに詳細に説明する。なお、本実施形態に係る金属粉末の製造方法によって被覆され得る金属粉末は、ニッケルに限定するものではない。
 はじめにニッケル粉末を有機溶剤に分散させ、ニッケル粉末をスラリーとする。ニッケル粉末は液相還元法や気相還元法などの方法で得られたものが使用できるが、粒度分布の均一性などの観点から、気相還元法で得られたニッケル粉末が好ましい。なお、ニッケル粉末は、平均粒径が、0.03μm~1.0μm、粒度分布のCV値が50%以下であり得る。なお、ニッケル粉末の平均粒径は、走査電子顕微鏡により被覆前のニッケル粉末の粒子の写真を撮影し、その写真から画像解析ソフトを使用して、ニッケル粉末500個以上の粒径を測定し、得られたニッケル粉末の粒度分布より、その個数平均粒径を算出したものである。このとき、粒径は粒子を包み込む最小円の直径である。また、粒度分布のCV値は、粒度分布の標準偏差/個数平均粒径を指す。
 次に、金属アルコキシドと錯化剤を溶解した溶液を金属粉末のスラリーに加える。この時使用される金属アルコキシドは前記に示した金属アルコキシドが使用できる。錯化剤としては金属アルコキシドの金属部と配位することのできるものであればよく、例えば前記式1に示すβ-ジケトンが使用できる。なお、pH調整水と混合する前の段階において、例えば、分散液を撹拌し、金属ニッケル粉末を十分に分散しておくことが好ましい。
 次に金属粉末、金属アルコキシド、錯化剤を含む分散液に、金属粉末の表面電荷と金属アルコキシドから生じる酸化物の表面電荷とが反対になるように酸もしくはアルカリでpHを制御した水を一挙に加えて撹拌し、金属アルコキシドを加水分解させ酸化物を生じさせる。
 このとき加える水のpHは、SiOで被覆する場合はpH1.5~14、TiOで被膜する場合は6~10、ZrOで被膜する場合はpH9~10、Alで被膜する場合はpH8~11、Laで被膜する場合はpH1.5~10が好ましい。pHがそれぞれの場合で前記の範囲内であれば、より均一に被覆を行うことができる。
 生じた酸化物は金属粉末と表面電荷が反対であるため、静電引力によって金属粒子の表面に吸着される。また、金属アルコキシドおよび金属錯体から形成される酸化物の粒子の大きさは微小であり、金属粒子の表面に均一に吸着する。水のpHを制御するために加えられる酸とアルカリはpHを調整させることができればいずれの酸およびアルカリでも使用できるが、使用上の簡便さおよび経済性などの観点から、酸は塩酸または硫酸など、アルカリはアンモニア水または水酸化ナトリウムなどが好ましい。
 得られた酸化物被覆金属粉末は濾過、洗浄、乾燥を経て製品とされる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。
 酸化物被覆金属粉を製造した。以下、詳細に説明する。
 [評価方法]
 本発明の一態様により生成したニッケル粉末は、酸化物被膜の形状および厚み、化学状態、熱収縮率により品質を評価した。つぎにそれぞれの評価方法について説明する。
 [平均粒径]
 金属粉末の平均粒径は、走査型電子顕微鏡(日本電子株式会社製、商品名JSM-7800F)により金属粉末の粒子の写真を撮影し、その写真から粒子約1,000個の粒径を画像解析ソフト(株式会社マウンテック製、商品名MacView4.0)を使用して求め、その平均値を算出した。なお、粒径は粒子を包み込む最小円の直径とした。
 [酸化物被膜の形状・被膜厚み]
 得られた酸化物被覆ニッケル粉末をカーボン支持膜に振りかけ、走査型透過電子顕微鏡(STEM)によりニッケル粉末の写真を100万~150万倍の倍率で数視野の撮影を行った。また、走査型透過電子顕微鏡に備え付けられているEDS(Energy Dispersive X-ray Spectrometry)検出器により元素マッピングを行った。
 [化学状態]
 得られた酸化物被膜ニッケル粉末をインジウム板(厚み0.5mm)に固定し、光電子分光装置(サーモフィッシャーサイエンティフィック社製、k-alpha+)により、ニッケル、およびコーティング元素の測定を行った。
 [熱収縮率]
 得られた酸化物被覆ニッケル粉末に対して3wt%のショウノウを加えた後、アセトンによりショウノウを溶かし、アセトンが蒸発するまで良くかき混ぜた。酸化物被覆ニッケル粉末とショウノウの混合粉末をφ5mm、高さ2mmのペレットに加圧成形した。
 熱収縮率は熱機械的分析装置(TMA)で測定した。測定条件は温度範囲:室温から1350℃、昇温速度:5℃/分、雰囲気:2%H、98%N 300mL/分とした。収縮率が5%になったときの温度を5%収縮温度として読み取った。
 [表面被覆率]
 STEM-EDSマッピング像において、金属粒子の周上から元素が検出されなかった領域の弧の長さを測定し、以下の式で表面被覆率を計算した。
 表面被覆率[%]
=(L-L)/L×100
:金属粒子の周長さ
:金属粒子の周上において元素が検出されなかった領域の弧の長さ
 [実施例1]
 まず、金属ニッケル粉末(平均粒径100nm)を、特開平10-219313号公報に記載された方法に準じて製造した。該金属ニッケル粉末にエタノールを加え、10wt%のスラリーにした。一方、該スラリーとは別に、上記スラリーに含まれる金属ニッケル粉末を100重量%としたときに、2重量%に相当する量のテトラエチルオルトシリケート(以下、TEOSとも称する)をエタノールに溶かした。さらに、錯化剤としてアセチルアセトンを、Si元素に対して2倍モルになるように加えた。金属ニッケル粉スラリーと、TEOSおよびアセチルアセトンのエタノール溶液とを混合し、1時間撹拌を行い、ニッケル粉末を含む分散液200mLを作製した。その後、アンモニア水でpHを8~9に調整した水100mLを一時に加え、2時間撹拌した。その後、吸引濾過を行い、大気中で120℃1時間乾燥を行うことで目的とするSiO被覆ニッケル粉を得た。実施例1で得られたニッケル粉末のSTEM写真およびSTEM-EDSマッピング像を図1に示す。また、表面被覆率、5%収縮温度を表1に示す。
 [実施例2]
 金属アルコキシドとしてチタニウムテトライソプロポキシド、添加量を2wt%のSiOの体積と同じになるようにした以外は実施例1と同様に処理を行い、TiO被覆ニッケル粉末を得た。得られたニッケル粉末のSTEM写真およびSTEM-EDSマッピング像を図2に示す。また、表面被覆率、5%収縮温度を表1に示す。
 [実施例3]
 金属アルコキシドとしてジルコニウムテトライソプロポキシド、添加量を2wt%のSiOの体積と同じになるようにした以外は実施例1と同様に処理を行い、ZrO被覆ニッケル粉末を得た。得られたニッケル粉末のSTEM写真およびSTEM-EDSマッピング像を図3に示す。また、表面被覆率、5%収縮温度を表1に示す。
 [実施例4]
 金属アルコキシドとしてアルミニウムトリ-n-ブトキシド、添加量を2wt%のSiOの体積と同じになるようにした以外は実施例1と同様に処理を行い、Al被覆ニッケル粉末を得た。得られたニッケル粉末のSTEM写真およびSTEM-EDSマッピング像を図4に示す。また、表面被覆率、5%収縮温度を表1に示す。
 [実施例5]
 金属アルコキシドとしてランタントリイソプロポキシド、有機溶剤として2-プロパノール、添加量を2wt%のSiOの体積と同じになるようにした以外は実施例1と同様に処理を行い、La被覆ニッケル粉末を得た。得られたニッケル粉末のSTEM写真およびSTEM-EDSマッピング像を図5に示す。また、表面被覆率、5%収縮温度を表1に示す。
 [比較例]
 アセチルアセトンを加えなかった以外は実施例2と同様の処理を行い、TiO被膜ニッケル粉末を得た。得られたニッケル粉末のSTEM写真およびSTEM-EDSマッピング像を図6に示す。また、表面被覆率、及び5%収縮温度を表1に示す。
 [参考例]
 実施例1と同様に得た金属ニッケル粉末を、コーティング元素による被覆を行なわず、参考例として用いた。
Figure JPOXMLDOC01-appb-T000004
 表1によれば、実施例2では比較例に比べて表面被覆率が良い結果であり、錯化剤により被覆率が向上していることが判る。また、各実施例では表面被覆率が80%以上であり、図1を見てもわかる通り、比較例に比べて均一に被覆されていることが判る。参考例および比較例に比べて、各実施例では5%収縮温度が高温化していることが判る。
 本発明は、積層セラミックコンデンサの内部電極として利用することができる。

Claims (5)

  1.  表面の少なくとも一部が酸化物に被覆された金属粉末を製造する製造方法であって、
     金属粉末、および式1に示される配位子を有する金属錯体を含む分散液と、酸またはアルカリを含む水とを混合することで、前記金属錯体から生成される酸化物によって前記金属粉末の表面の少なくとも一部を被覆することを特徴とする金属粉末の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     (式中RおよびRはそれぞれ水素原子または炭素数1~5の炭化水素基を示し、互いに同一であっても異なっていてもよく、またRとRとは互いに結合して環を形成してもよい。)
  2.  前記分散液が、金属アルコキシドを含むことを特徴とする請求項1に記載の金属粉末の製造方法。
  3.  前記金属錯体を、前記金属アルコキシドと前記配位子である錯化剤とを混合することで生成する工程を含むことを特徴とする請求項2に記載の金属粉末の製造方法。
  4.  前記配位子がアセチルアセトンであることを特徴とする請求項1~3のいずれか1項に記載の金属粉末の製造方法。
  5.  前記酸化物による表面被覆率が80%以上であることを特徴とする金属粉末を製造する請求項1~4のいずれか1項に記載の金属粉末の製造方法。
PCT/JP2018/005545 2017-03-31 2018-02-16 金属粉末の製造方法 WO2018179976A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018542292A JP6431650B1 (ja) 2017-03-31 2018-02-16 金属粉末の製造方法
CN201880021359.3A CN110461505B (zh) 2017-03-31 2018-02-16 金属粉末的制造方法
KR1020197032221A KR102361011B1 (ko) 2017-03-31 2018-02-16 금속 분말의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-072908 2017-03-31
JP2017072908 2017-03-31

Publications (1)

Publication Number Publication Date
WO2018179976A1 true WO2018179976A1 (ja) 2018-10-04

Family

ID=63674994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005545 WO2018179976A1 (ja) 2017-03-31 2018-02-16 金属粉末の製造方法

Country Status (5)

Country Link
JP (1) JP6431650B1 (ja)
KR (1) KR102361011B1 (ja)
CN (1) CN110461505B (ja)
TW (1) TWI765992B (ja)
WO (1) WO2018179976A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671336B (zh) * 2017-11-23 2019-09-11 國立清華大學 粉體材料及其製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162703A (ja) * 1988-12-15 1990-06-22 Ishihara Sangyo Kaisha Ltd 金属磁性粉末の製造方法
JP2008091413A (ja) * 2006-09-29 2008-04-17 Mitsubishi Materials Corp 高強度、高磁束密度および高抵抗を有する鉄損の少ない複合軟磁性材およびその製造方法
JP2009519374A (ja) * 2005-12-06 2009-05-14 エルジー・ケム・リミテッド コアシェル型のナノ粒子及びその製造方法
JP2012102351A (ja) * 2010-11-08 2012-05-31 Murata Mfg Co Ltd 複合酸化物被覆金属粉末、その製造方法、導電性ペーストおよび積層セラミック電子部品
WO2014171220A1 (ja) * 2013-04-17 2014-10-23 株式会社村田製作所 複合酸化物被覆金属粉末、その製造方法、複合酸化物被覆金属粉末を用いた導電性ペースト、および積層セラミック電子部品

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3670395B2 (ja) * 1996-06-10 2005-07-13 日鉄鉱業株式会社 多層膜被覆粉体およびその製造方法
JP3475749B2 (ja) 1997-10-17 2003-12-08 昭栄化学工業株式会社 ニッケル粉末及びその製造方法
JP4076107B2 (ja) 1999-03-31 2008-04-16 三井金属鉱業株式会社 複合ニッケル微粉末の製造方法
JP4070397B2 (ja) * 2000-04-11 2008-04-02 Jfeミネラル株式会社 ニッケル超微粉及びその製造方法
KR100770075B1 (ko) * 2001-10-04 2007-10-24 닛데츠 고교 가부시키가이샤 티타니아막 피복 분말체 및 이의 제조방법
JP4344122B2 (ja) 2002-09-06 2009-10-14 株式会社日本触媒 金属酸化物被覆粒子の製造方法
JP4746032B2 (ja) * 2005-02-15 2011-08-10 日本曹達株式会社 チタン酸化物粒子の分散液、チタン酸化物薄膜、有機機能膜形成用溶液、有機機能膜形成基体及びその製造方法
KR101151486B1 (ko) * 2006-03-20 2012-05-30 미쓰이 가가쿠 가부시키가이샤 광학 필름 및 그 제조 방법
JP5439057B2 (ja) * 2009-06-29 2014-03-12 三井金属鉱業株式会社 複合銅粒子
JP5482097B2 (ja) * 2009-10-26 2014-04-23 Tdk株式会社 軟磁性材料、並びに、圧粉磁芯及びその製造方法
KR101175607B1 (ko) * 2010-06-03 2012-08-21 황태경 나노분산 및 통전 변색 특성이 우수한 산화텅스텐 나노분말의 제조방법 및 이 방법에 의해 제조된 산화텅스텐 나노분말 함유 나노분산졸
WO2013035496A1 (ja) * 2011-09-08 2013-03-14 昭和電工株式会社 金属粉末含有組成物の製造方法
JP2014001443A (ja) * 2012-06-21 2014-01-09 Kyoritsu Kagaku Sangyo Kk 酸化物被覆銅微粒子及びその製造方法
WO2014054539A1 (ja) * 2012-10-03 2014-04-10 大日本印刷株式会社 金属粒子分散体、並びに、当該金属粒子分散体を用いた物品、焼結膜及び焼結膜の製造方法
JP6395248B2 (ja) * 2014-02-27 2018-09-26 小林 博 微粒子の集まりで覆われた鱗片状基材の製造方法
JP6530709B2 (ja) * 2014-03-05 2019-06-12 積水化学工業株式会社 伝導性フィラー、伝導性フィラーの製造方法及び伝導性ペースト
CN104550941B (zh) * 2014-11-26 2017-05-03 东华大学 一种二氧化硅@贵金属纳米复合微球的制备方法
JP6209249B2 (ja) * 2016-07-04 2017-10-04 協立化学産業株式会社 酸化物被覆銅微粒子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02162703A (ja) * 1988-12-15 1990-06-22 Ishihara Sangyo Kaisha Ltd 金属磁性粉末の製造方法
JP2009519374A (ja) * 2005-12-06 2009-05-14 エルジー・ケム・リミテッド コアシェル型のナノ粒子及びその製造方法
JP2008091413A (ja) * 2006-09-29 2008-04-17 Mitsubishi Materials Corp 高強度、高磁束密度および高抵抗を有する鉄損の少ない複合軟磁性材およびその製造方法
JP2012102351A (ja) * 2010-11-08 2012-05-31 Murata Mfg Co Ltd 複合酸化物被覆金属粉末、その製造方法、導電性ペーストおよび積層セラミック電子部品
WO2014171220A1 (ja) * 2013-04-17 2014-10-23 株式会社村田製作所 複合酸化物被覆金属粉末、その製造方法、複合酸化物被覆金属粉末を用いた導電性ペースト、および積層セラミック電子部品

Also Published As

Publication number Publication date
KR20190131564A (ko) 2019-11-26
CN110461505A (zh) 2019-11-15
JP6431650B1 (ja) 2018-11-28
JPWO2018179976A1 (ja) 2019-04-11
CN110461505B (zh) 2022-07-08
TWI765992B (zh) 2022-06-01
TW201841703A (zh) 2018-12-01
KR102361011B1 (ko) 2022-02-08

Similar Documents

Publication Publication Date Title
JPH05503502A (ja) 改善されたセラミック誘電体組成物及び誘電性を増強する方法
JP5882960B2 (ja) 表面処理された金属粉、及びその製造方法
JP6212480B2 (ja) 金属粉ペースト、及びその製造方法
JP6297018B2 (ja) 表面処理された金属粉、及びその製造方法
JP6517012B2 (ja) 誘電体セラミックス粒子の製造方法および誘電体セラミックス
US10083793B2 (en) Metal powder, method for producing the same, conductive paste including metal powder, and multilayer ceramic electronic component
JP5843820B2 (ja) 表面処理された金属粉の製造方法
JP6431650B1 (ja) 金属粉末の製造方法
JP2010064938A (ja) チタン酸バリウムのナノ粒子分散溶液及びその製造方法
JP5747480B2 (ja) 複合酸化物被覆金属粉末、その製造方法、導電性ペーストおよび積層セラミック電子部品
JP4320448B2 (ja) 金属超微粒子分散複合体及びその製造方法
JP2015083714A (ja) 複合粉末の製造方法およびこの製造方法により得られた複合粉末を用いた導電性厚膜ペーストおよび積層セラミック電子部品
JP2015036440A (ja) 表面処理された金属粉、及びその製造方法
JP2017001978A (ja) 銅錯体の製造方法およびこれを含有する導電膜形成用組成物
JP2019089705A (ja) 誘電体セラミックス粒子の製造方法および誘電体セラミックス
JP5869538B2 (ja) 表面処理された金属粉の製造方法
JP5986046B2 (ja) 表面処理された金属粉、及びその製造方法
JP2015131982A (ja) 複合粉末とその製造方法およびそれを用いた導電性ペーストとそれを用いた積層セラミック電子部品
TW202146114A (zh) 無機微粉末的製造方法
JP4081387B2 (ja) セラミック多層基板導電材用銀粉末とその製造方法
JP2020164375A (ja) チタン酸バリウム粒子を含む非水系分散体及びその製造方法
JPH06236711A (ja) 導電性材料およびその製造方法
JPH11335176A (ja) セラミック粉末の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018542292

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777666

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197032221

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18777666

Country of ref document: EP

Kind code of ref document: A1