WO2018173940A1 - Li3PS4を有する固体電解質の製造方法 - Google Patents

Li3PS4を有する固体電解質の製造方法 Download PDF

Info

Publication number
WO2018173940A1
WO2018173940A1 PCT/JP2018/010374 JP2018010374W WO2018173940A1 WO 2018173940 A1 WO2018173940 A1 WO 2018173940A1 JP 2018010374 W JP2018010374 W JP 2018010374W WO 2018173940 A1 WO2018173940 A1 WO 2018173940A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solution
solid
organic solvent
production method
Prior art date
Application number
PCT/JP2018/010374
Other languages
English (en)
French (fr)
Inventor
亜希 香取
功太郎 川上
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP18772416.6A priority Critical patent/EP3604216B1/en
Priority to PL18772416T priority patent/PL3604216T3/pl
Priority to JP2019507624A priority patent/JP6984652B2/ja
Priority to US16/493,924 priority patent/US11271245B2/en
Priority to KR1020197030445A priority patent/KR102495416B1/ko
Priority to CN201880019320.8A priority patent/CN110462757B/zh
Priority to RU2019130757A priority patent/RU2751545C2/ru
Publication of WO2018173940A1 publication Critical patent/WO2018173940A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a solid electrolyte.
  • lithium ion secondary batteries In recent years, demand for lithium ion secondary batteries has increased in applications such as portable information terminals, portable electronic devices, electric vehicles, hybrid electric vehicles, and stationary power storage systems.
  • the current lithium ion secondary battery uses a flammable organic solvent as an electrolyte, and requires a strong exterior so that the organic solvent does not leak.
  • the structure of the device such as the need to take a structure in preparation for the risk that the electrolyte should leak.
  • oxides, phosphate compounds, organic polymers, sulfides, and the like as solid electrolytes in all solid lithium ion secondary batteries is being studied.
  • Patent Document 2 it is known to have a plurality of crystal states (Non-Patent Document 2).
  • the method of Patent Document 1 performs the vitrification process in two stages, and the process becomes complicated.
  • this method has a problem that, when suspended and mixed in THF, a by-product is generated and the reaction solution is colored yellow. It was found that when the solid electrolyte having Li 3 PS 4 containing this by-product was operated as an all-solid battery, charging / discharging was not performed normally.
  • the present invention is as follows. ⁇ 1> a solution forming step of preparing a homogeneous solution by mixing Li 2 S and P 2 S 5 in an organic solvent; A precipitation step of further adding Li 2 S to the homogeneous solution and mixing to form a precipitate; A method for producing a solid electrolyte having Li 3 PS 4, characterized in that it comprises a. ⁇ 2> The production method according to ⁇ 1>, wherein a molar ratio of Li 2 S and P 2 S 5 (Li 2 S / P 2 S 5 ) in the solution step is 1.0 to 1.85. It is.
  • ⁇ 5> In the solution of step, such that the sum of the concentrations of Li 2 S and P 2 S 5 is 1 to 40% by weight, dissolved in the organic solvent in order of Li 2 S and P 2 S 5, the ⁇ The manufacturing method according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> The production method according to any one of ⁇ 1> to ⁇ 5>, wherein the organic solvent is an ether solvent.
  • ⁇ 7> The production method according to ⁇ 6>, wherein the ether solvent is tetrahydrofuran.
  • ⁇ 8> The production method according to any one of ⁇ 1> to ⁇ 7>, wherein the solution step and the precipitation step are performed in an inert gas atmosphere.
  • the production method of the present invention can be applied to mass production.
  • the solid electrolyte having Li 3 PS 4 obtained by the production method of the present invention are those having the following characteristics.
  • Li 3 PS 4 has an ortho composition.
  • ortho generally refers to one having the highest degree of hydration among oxo acids obtained by hydrating the same oxide.
  • Li 2 S—P 2 S 5 the crystal composition to which Li 2 S is added most in the sulfide is called an ortho composition.
  • Li 3 PS 4 has an amorphous body and a crystalline body.
  • ⁇ -form, ⁇ -form and ⁇ -form are known (Non-patent Document 2), and in the production method of the present invention, ⁇ -form can be easily obtained.
  • Li 2 S / P 2 S 5 1.4 to 1.6
  • Li 2 S and P 2 S 5 can be suitably made into a solution at room temperature. If the molar ratio is out of the range, precipitation may occur. However, if the undissolved precipitate is separated from the solution by filtration or the like, the composition in the solution becomes the same as that implemented within the above range.
  • Li 2 S can be used as a synthetic product or a commercial product. Since the mixing of moisture degrades other raw materials and precursors, the moisture content is preferably low, more preferably 300 ppm or less, and particularly preferably 50 ppm or less. A smaller Li 2 S particle size is preferable because the reaction rate becomes faster.
  • the particle diameter is preferably in the range of 10 nm to 100 ⁇ m, more preferably 10 nm to 30 ⁇ m, and still more preferably in the range of 100 nm to 10 ⁇ m. The particle diameter can be measured by SEM measurement or a particle size distribution measuring device by laser scattering.
  • P 2 S 5 can be a synthetic product or a commercial product.
  • a higher purity of P 2 S 5 is preferable because less impurities are mixed in the solid electrolyte.
  • a smaller P 2 S 5 particle size is preferable because the reaction rate becomes faster.
  • the particle diameter is preferably in the range of 10 nm to 100 ⁇ m, more preferably 10 nm to 30 ⁇ m, and still more preferably in the range of 100 nm to 10 ⁇ m.
  • the organic solvent is not particularly limited as long as it is an organic solvent that does not react with Li 2 S and P 2 S 5 .
  • ether solvents, ester solvents, hydrocarbon solvents, nitrile solvents, and the like can be given.
  • Specific examples include THF (tetrahydrofuran), cyclopentyl methyl ether, diisopropyl ether, diethyl ether, dimethyl ether, dioxane, methyl acetate, ethyl acetate, butyl acetate, and acetonitrile.
  • THF tetrahydrofuran
  • cyclopentyl methyl ether diisopropyl ether
  • diethyl ether dimethyl ether
  • dioxane methyl acetate
  • ethyl acetate ethyl acetate
  • butyl acetate acetonitrile.
  • acetonitrile Particularly preferred is THF.
  • the water content is preferably 100 ppm or less, more preferably 50 ppm or less.
  • the total concentration of Li 2 S and P 2 S 5 in the organic solvent is preferably 1 to 40% by weight, more preferably 5 to 30% by weight, and particularly preferably 10 to 20% by weight. If the total concentration of Li 2 S and P 2 S 5 in the organic solvent is higher than 40% by weight, the viscosity of the slurry may increase and mixing may be difficult. On the other hand, when the total concentration of Li 2 S and P 2 S 5 in the organic solvent is lower than 1% by weight, a large amount of the organic solvent is used, which increases the load of solvent recovery and increases the large substrate. However, the size of the reactor may become excessively large.
  • Li 2 S gradually reacts with P 2 S 5 suspended in an organic solvent, and a solution can be obtained. Therefore, when the reaction rate is high, it is preferable to add P 2 S 5 to the organic solvent and suspend it first, and add Li 2 S thereto. This is because, when the reaction rate is fast, Li 3 PS 4 may be generated and partially precipitated if P 2 S 5 is added where Li 2 S is excessive.
  • the mixing in the solution process is preferably performed in an inert gas atmosphere.
  • the inert gas include nitrogen, helium, and argon, and argon is particularly preferable.
  • argon is particularly preferable.
  • Both concentrations of oxygen and moisture in the inert gas are preferably 1000 ppm or less, more preferably 100 ppm or less, and particularly preferably 10 ppm or less.
  • the substrate is in a slurry state in which the substrate is dispersed, but eventually reacts and becomes uniform.
  • a special stirring operation for crushing the particles is not necessary, and it is sufficient that the stirring power is sufficient to suspend and disperse the slurry.
  • the reaction temperature in the solution step the reaction proceeds slowly even at room temperature, but it can be heated to increase the reaction rate. In the case of heating, it is sufficient to carry out at the boiling point or lower of the organic solvent, and although it varies depending on the organic solvent used, it is usually less than 120 ° C. Although it can be carried out in a pressurized state using an autoclave or the like, if mixing is performed at a high temperature of 120 ° C. or higher, there is a concern that a side reaction proceeds.
  • the reaction time in the solution forming step varies depending on the type of organic solvent, the particle diameter and concentration of the raw material, but for example, the reaction can be completed and made into a solution by performing for 0.1 to 24 hours.
  • Some precipitates may be formed in the uniform solution, depending on the added composition ratio and the amount of raw material impurities. In this case, it is desirable to remove the precipitate by filtration or centrifugation.
  • Precipitation can be obtained by additionally adding Li 2 S to the homogeneous solution obtained in the solution step and mixing.
  • it is preferable to further add Li 2 S so that the molar ratio of Li 2 S / P 2 S 5 2.7 to 3.3 is obtained with respect to the homogeneous solution.
  • a solid electrolyte having high purity Li 3 PS 4 can be obtained.
  • the precipitation may become a solvate.
  • THF is used as the organic solvent
  • Li 3 PS 4 ⁇ 3THF crystals are obtained.
  • the Li 2 S to be added may be the same as that used in the solution process.
  • the reaction proceeds slowly even at room temperature, but can be heated to increase the reaction rate. In the case of heating, it is sufficient to carry out at the boiling point or lower of the organic solvent, and although it varies depending on the organic solvent used, it is usually less than 120 ° C. Although it can be carried out in a pressurized state using an autoclave or the like, if it is carried out at a high temperature of 120 ° C. or higher, there is a concern that a side reaction proceeds. Although the reaction time in the precipitation step varies depending on the type of organic solvent, the particle diameter and concentration of the raw material, for example, the reaction can be completed and precipitated by performing for 0.1 to 24 hours.
  • the mixing in the precipitation step is preferably performed in an inert gas atmosphere.
  • the inert gas include nitrogen, helium, and argon, and argon is particularly preferable.
  • Deterioration of the raw material composition can be suppressed by removing oxygen and moisture in the inert gas. Both concentrations of oxygen and moisture in the inert gas are preferably 1000 ppm or less, more preferably 100 ppm or less, and particularly preferably 10 ppm or less.
  • the obtained precipitate can be separated from the precipitate and the solution by filtration or centrifugation.
  • the generation of by-products is extremely small, it can be purified by separating the precipitate and the solution.
  • the degree of purification can be further increased by washing the separated precipitate with a solvent. Since little by-product is generated, a large amount of washing solvent is not required. For example, 50 to 600 parts by weight of the solvent is sufficient for 100 parts by weight of the precipitate.
  • the washing solvent is preferably the same organic solvent used in the solution step, but is not particularly limited as long as it is an organic solvent that does not react with Li 3 PS 4 .
  • a solid electrolyte having Li 3 PS 4 can be obtained by heat drying or vacuum drying the obtained precipitate.
  • the optimum temperature varies depending on the type of solvent. It is possible to shorten the solvent removal time by applying a temperature sufficiently higher than the boiling point.
  • the temperature at which the solvent is removed is preferably in the range of 60 to 280 ° C, more preferably 100 to 250 ° C. Note that, by removing the solvent under reduced pressure such as vacuum drying, the temperature at which the solvent is removed can be lowered and the required time can be shortened. Moreover, the time required for solvent removal can be shortened also by flowing an inert gas such as nitrogen or argon with sufficiently low moisture. When the drying temperature is 120 ° C. or higher, crystallization proceeds.
  • ⁇ -Li 3 PS 4 is formed.
  • THF is used in the solution forming step
  • Li 3 PS 4 ⁇ 3THF crystals obtained in the precipitation step are dried, an amorphous is obtained when dried at 100 ° C. or lower, and when dried at 120 ° C. or higher.
  • Produces ⁇ -Li 3 PS 4 .
  • the drying time varies slightly depending on the heating temperature, it is usually sufficiently dried in the range of 1 to 24 hours. Heating at a high temperature beyond the above range for a long time is not preferable because the solid electrolyte may be deteriorated.
  • the solid electrolyte having Li 3 PS 4 of the present invention obtained as described above can be formed into a desired molded body by various means, and can be used for various applications including all-solid batteries described below.
  • the molding method is not particularly limited. For example, a method similar to the molding method of each layer constituting the all solid state battery described in the all solid state battery described later can be used.
  • the solid electrolyte having Li 3 PS 4 of the present invention can be used, for example, as a solid electrolyte for an all-solid battery.
  • the all-solid-state battery containing the solid electrolyte for all-solid-state batteries mentioned above is provided.
  • FIG. 1 is a schematic cross-sectional view of an all solid state battery according to an embodiment of the present invention.
  • the all solid state battery 10 has a structure in which a solid electrolyte layer 2 is disposed between a positive electrode layer 1 and a negative electrode layer 3.
  • the all-solid-state battery 10 can be used in various devices including a mobile phone, a personal computer, and an automobile.
  • the solid electrolyte having Li 3 PS 4 of the present invention may be included as a solid electrolyte in any one or more of the positive electrode layer 1, the negative electrode layer 3, and the solid electrolyte layer 2.
  • the positive electrode active material or negative electrode active solid electrolyte for a known lithium ion secondary battery having a Li 3 PS 4 of the present invention Use in combination with substances.
  • the amount ratio of the solid electrolyte having Li 3 PS 4 of the present invention contained in the positive electrode layer 1 or the negative electrode layer 3 is not particularly limited.
  • the solid electrolyte layer having the Li 3 PS 4 of the present invention is included in the solid electrolyte layer 2, the solid electrolyte layer 2 may be composed of the solid electrolyte having the Li 3 PS 4 of the present invention alone or as necessary.
  • Oxide solid electrolytes for example, Li 7 La 3 Zr 2 O 12
  • sulfide-based solid electrolytes for example, Li 2 SP—S 2 S 5
  • other complex hydride solid electrolytes for example, LiBH 4 , 3LiBH 4 -LiI or the like may be used in appropriate combination.
  • the all-solid-state battery is manufactured by molding and laminating the above-described layers, but the molding method and the laminating method of each layer are not particularly limited.
  • a method in which a solid electrolyte and / or an electrode active material is dispersed in a solvent to form a slurry, which is applied by a doctor blade or spin coating, and then rolled to form a film vacuum deposition, ion plating Gas phase method for forming and laminating films using sputtering method, sputtering method, laser ablation method, etc .; pressure forming method for forming powder by hot pressing or cold pressing without applying temperature, and laminating it .
  • the solid electrolyte having Li 3 PS 4 of the present invention is relatively soft, it is particularly preferable to form and laminate each layer by a pressure molding method to produce an all-solid battery.
  • a pressure molding method there are a hot press that is heated and a cold press that is not heated, but the cold press can be sufficiently molded.
  • the present invention is compact is included which is formed by hot forming the solid electrolyte having a Li 3 PS 4 of the present invention.
  • the molded body is suitably used as a solid electrolyte layer for an all-solid battery.
  • the present invention includes a step of hot forming a solid electrolyte having a Li 3 PS 4 of the present invention, a method of manufacturing the all-solid-state cell for a solid electrolyte layer, and the like.
  • tetrahydrofuran made by Wako Pure Chemical Industries, Ltd., ultra-dehydrated grade
  • This pot was attached to a planetary ball mill (“P-7” manufactured by Fritsch), and mechanical milling was performed at a rotation speed of 510 rpm for 10 hours to obtain an amorphous body.
  • P-7 planetary ball mill
  • mechanical milling was performed at a rotation speed of 510 rpm for 10 hours to obtain an amorphous body.
  • the obtained amorphous body was heat-treated at 300 ° C. for 8 hours in an argon atmosphere to obtain ⁇ -Li 3 PS 4 .
  • Example 1 The result of the Raman spectroscopic measurement of Example 1 and Comparative Examples 1 and 2 is shown in FIG. In any sample, a peak at 420 cm ⁇ 1 corresponding to PS 4 ⁇ was confirmed.
  • Example 1 and Comparative Examples 1 and 2 were subjected to uniaxial molding (292 MPa) to obtain a disk having a thickness of about 0.8 mm and a diameter of 10 mm.
  • an AC impedance measurement was performed by a four-terminal method using an In (indium) electrode (“SI1260 IMPEDANCE / GAIN-PHASE ANALYZER” manufactured by Solartron), and lithium ion conductivity was calculated. Specifically, the sample was placed in a thermostat set at 25 ° C. and held for 30 minutes, and then the lithium ion conductivity was measured.
  • SI1260 IMPEDANCE / GAIN-PHASE ANALYZER manufactured by Solartron
  • the temperature of the thermostat was increased by 10 ° C. from 30 ° C. to 100 ° C.
  • the ionic conductivity was measured after holding for 25 minutes.
  • the temperature of the thermostat is lowered by 10 ° C. from 90 ° C. to 30 ° C., by 5 ° C. from 30 ° C. to ⁇ 20 ° C., and further by 5 ° C. from ⁇ 20 ° C. to 25 ° C.
  • the lithium ion conductivity was measured after raising the temperature and holding at each temperature for 25 minutes.
  • the measurement frequency range was 0.1 Hz to 1 MHz, and the amplitude was 50 mV.
  • the results of the lithium ion conductivity measurement of Example 1 and Comparative Examples 1 and 2 are shown in FIG. In any sample, the same ionic conductivity was obtained.
  • Lithium titanate Li 4 Ti 5 O 12
  • the positive electrode active material Lithium titanate (Li 4 Ti 5 O 12 ) was used as the positive electrode active material.
  • the sulfide solid electrolyte powder prepared in Example 1 and Comparative Example 2 was placed in a powder tablet molding machine having a diameter of 10 mm and pressed into a disk shape at a pressure of 46 MPa (hereinafter also referred to as a sulfide solid electrolyte layer). Without taking out the molded product, the positive electrode layer powder prepared above was put on the upper part of the sulfide solid electrolyte layer, and an In foil punched out at 8 ⁇ was stuck on the lower part, and integrally molded at a pressure of 292 MPa.
  • Table 1 shows the ionic conductivity of the battery cell at 60 ° C.
  • FIG. 5 shows the result of the charge / discharge test. From Table 1, it was found that Comparative Example 2 had higher cell resistance and lower ionic conductivity than Example 1. Therefore, a charge / discharge test was attempted, but Comparative Example 2 was not cycleable, and only Example 1 was chargeable / dischargeable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本発明によれば、Li2SおよびP2S5を有機溶媒に混合させることによって均一溶液を調製する溶液化工程と、前記均一溶液に更にLi2Sを添加して混合し沈殿を形成する沈殿化工程と、を含むことを特徴とするLi3PS4を有する固体電解質の製造方法を提供することができる。前記溶液化工程におけるLi2SおよびP2S5のモル比(Li2S/P2S5)が、1.0~1.85である態様や、前記沈殿化工程において、前記均一溶液に対し、Li2S/P2S5=2.7~3.3のモル比となるように、更にLi2Sを添加する態様が好ましい。

Description

Li3PS4を有する固体電解質の製造方法
 本発明は、固体電解質の製造方法に関する。
 近年、携帯情報端末、携帯電子機器、電気自動車、ハイブリッド電気自動車、更には定置型蓄電システムなどの用途において、リチウムイオン二次電池の需要が増加している。しかしながら、現状のリチウムイオン二次電池は、電解液として可燃性の有機溶媒を使用しており、有機溶媒が漏れないように強固な外装を必要とする。また、携帯型のパソコン等においては、万が一電解液が漏れ出した時のリスクに備えた構造を取る必要があるなど、機器の構造に対する制約も出ている。
 更には、自動車や飛行機等の移動体にまでその用途が広がり、定置型のリチウムイオン二次電池においては大きな容量が求められている。このような状況の下、安全性が従来よりも重視される傾向にあり、有機溶媒等の有害な物質を使用しない全固体リチウムイオン二次電池の開発に力が注がれている。
 例えば、全固体リチウムイオン二次電池における固体電解質として、酸化物、リン酸化合物、有機高分子、硫化物等を使用することが検討されている。
 これらの固体電解質の中で、硫化物はイオン伝導度が高く、比較的やわらかく固体-固体間の界面を形成しやすい特徴がある。活物質にも安定であり、実用的な固体電解質として開発が進んでいる。
 しかし、硫化物固体電解質は水と反応すると硫化水素を発生することから、電池の製造過程に多大な悪影響を与える。この解決方法の一つとして、LiS:P=75:25のモル比で得られるオルト組成のLiPSによれば、硫化水素の発生が極めて少ないことが知られている(特許文献1)と共に、複数の結晶状態を持つことが知られている(非特許文献2)。しかし、特許文献1の手法は、ガラス化処理を2段階実施しており、工程が複雑なものとなる。
 これに対して、非特許文献1では、LiS:P=75:25のモル比の割合にてテトラヒドロフラン(以下、「THF」と略す)中で懸濁混合することにより、LiPS・3THF結晶が沈殿し、これを150℃で乾燥することで、β-LiPSが得られる、という極めて簡便な合成方法が報告されている。しかし、この方法ではTHF中で懸濁混合している際に、副生成物が発生して反応液が黄色に着色するという問題がある。この副生成物が入ったLiPSを有する固体電解質を全固体電池として稼働させると、充放電が正常に行われないことがわかった。
特許第5141675号
J.Am.Chem.Soc.2013,135,975-978. Solid State Ionics.2011,182,53-58.
 このような状況の下、生産性に優れ、副生成物を極力含まない、LiPSを有する固体電解質の製造法の提供が望まれている。
 そこで、本発明者らは、上記課題に鑑みて鋭意研究を行ったところ、以下の本発明によって上記課題を解決することができることを見出した。
 すなわち、本発明は、以下の通りである。
<1> LiSおよびPを有機溶媒に混合させることによって均一溶液を調製する溶液化工程と、
 前記均一溶液に更にLiSを添加して混合し沈殿を形成する沈殿化工程と、
を含むことを特徴とするLiPSを有する固体電解質の製造方法である。
<2> 前記溶液化工程におけるLiSおよびPのモル比(LiS/P)が、1.0~1.85である、上記<1>に記載の製造方法である。
<3> 前記沈殿化工程において、前記均一溶液に対し、LiS/P=2.7~3.3のモル比となるように、更にLiSを添加する、上記<1>または<2>に記載の製造方法である。
<4> 前記沈殿化工程の後に乾燥工程を有し、乾燥工程における乾燥温度が120℃以上であり、前記LiPSがβ-LiPSである、上記<1>から<3>のいずれかに記載の製造方法である。
<5> 前記溶液化工程において、LiS及びPの合計の濃度が1~40重量%となるように、LiS及びPの順に前記有機溶媒に溶かす、上記<1>から<4>のいずれかに記載の製造方法である。
<6> 前記有機溶媒がエーテル系溶媒である、上記<1>から<5>のいずれかに記載の製造方法である。
<7> 前記エーテル系溶媒が、テトラヒドロフランである、上記<6>に記載の製造方法である。
<8> 前記溶液化工程及び前記沈殿化工程を不活性ガス雰囲気下で行う、上記<1>から<7>のいずれかに記載の製造方法である。
 
 本発明によれば、副生成物の極めて少ないLiPSを有する固体電解質を製造することができる。しかも、本発明の製造方法は、大量製造にも応用可能である。
本発明の一実施形態に係る全固体電池の概略断面図である。 実施例1および比較例1、2のX線回折測定の結果を示すグラフである。 実施例1および比較例1、2のラマン分光測定の結果を示すグラフである。 実施例1および比較例1、2のイオン伝導度測定の結果を示すグラフである。 実施例1の充放電試験の結果を示すグラフである。
 以下、本発明のLiPSを有する固体電解質の製造方法、該製造方法によって得られる固体電解質、該固体電解質を加熱成形してなる成形体、該固体電解質を含む全固体電池等について具体的に説明する。なお、以下に説明する材料及び構成等は本発明を限定するものではなく、本発明の趣旨の範囲内で種々改変することができるものである。
<LiPSを有する固体電解質の製造方法>
 本発明の製造方法は、LiSおよびPを有機溶媒に混合させることによって均一溶液を調製する溶液化工程と、前記均一溶液に更にLiSを添加して混合し沈殿を形成する沈殿化工程と、を含むことを特徴とするLiPSを有する固体電解質の製造方法である。
 そして、本発明の製造方法によって得られるLiPSを有する固体電解質は、以下の特徴を有するものである。
 LiPSはオルト組成を形成したものである。ここで、オルトとは、一般的に、同じ酸化物を水和して得られるオキソ酸の中で、最も水和度の高いものをいう。LiSを用いてなる硫化物固体電解質材料においては、硫化物で最もLiSが付加している結晶組成をオルト組成という。LiS-P系ではLiPSがオルト組成に該当し、モル基準でLiS:P=75:25のモル比の割合で原料を混合した場合に得られる。
 LiPSはアモルファス体もあれば、結晶体も存在する。結晶はα体、β体、γ体が知られており(非特許文献2)、本発明の製造方法においては、特にβ体を容易に得ることができる。β体のX線回折(CuKα:λ=1.5405Å)は、少なくとも、2θ=13.5±0.5deg、17.5±0.5deg、18.1±0.5deg、19.8±0.5deg、26.0±0.5deg、27.4±0.5deg、29.0±0.5deg、29.8±0.5deg、31.1±0.5deg、39.3±0.5deg、40.4±0.5deg、44.9±0.5degおよび47.6±0.5degの位置にピークを有することを特徴とする。また、本発明によって得られるLiPSは、ラマン測定において420cm-1にピークを有する。なお、Pは540cm-1にピークを有しており、本発明によって得られるLiPSは、このピークを含まないものである。
<溶液化工程>
 本発明の製造方法では、LiSおよびPのモル比は本発明の効果が得られる範囲であれば特に限定されないが、LiSおよびPをLiS/P=1.0~1.85のモル比で有機溶媒中に混合させることによって、均一溶液を生成させることが好ましい。ここで、上記モル比は、より好ましくはLiS/P=1.2~1.8であり、更に好ましくはLiS/P=1.3~1.7であり、更により好ましくはLiS/P=1.4~1.6であり、最も好ましくはLiS/P=1.5(LiS:P=60:40)である。
 LiS/P=1.0~1.85のモル比の範囲であると、室温においてLiSおよびPを好適に溶液化することができる。上記モル比の範囲を外れると、沈殿が生じる場合がある。ただし、未溶解の沈殿を濾過等によって溶液と分離すれば、溶液中の組成は上記の範囲内で実施したものと同じになる。
 LiSは合成品でも、市販品でも使用することができる。水分の混入は、他の原料や前駆体を劣化させることから、水分は低い方が好ましく、より好ましくは300ppm以下であり、特に好ましくは50ppm以下である。LiSの粒子径は小さい方が反応速度が速くなるため好ましい。好ましくは粒子の直径として10nm~100μmの範囲であり、より好ましくは10nm~30μmであり、更に好ましくは100nm~10μmの範囲である。なお、粒子径はSEMによる測定やレーザー散乱による粒度分布測定装置等で測定できる。
 Pは合成品でも、市販品でも使用することができる。Pの純度が高い方が、固体電解質中に混入する不純物が少なくなることから好ましい。Pの粒子径は小さい方が反応速度が速くなるため好ましい。好ましくは粒子の直径として10nm~100μmの範囲であり、より好ましくは10nm~30μmであり、更に好ましくは100nm~10μmの範囲である。
 有機溶媒は、LiSおよびPと反応しない有機溶媒であれば、特に制限はない。例えば、エーテル系溶媒、エステル系溶媒、炭化水素系溶媒、ニトリル系溶媒などが挙げられる。具体的には、THF(テトラヒドロフラン)、シクロペンチルメチルエーテル、ジイソプロピルエーテル、ジエチルエーテル、ジメチルエーテル、ジオキサン、酢酸メチル、酢酸エチル、酢酸ブチル、アセトニトリルなどが挙げられる。特に好ましくはTHFである。原料組成物が劣化することを防止するために、有機溶媒中の酸素と水を除去しておくことが好ましく、特に水分については、100ppm以下が好ましく、より好ましくは50ppm以下である。
 有機溶媒中におけるLiSおよびPの合計の濃度は、1~40重量%が好ましく、5~30重量%がより好ましく、10~20重量%が特に好ましい。有機溶媒中におけるLiSおよびPの合計の濃度が40重量%より高いと、スラリーの粘度が上昇して混合が困難になる場合がある。一方、有機溶媒中におけるLiSおよびPの合計の濃度が1重量%より低い場合には、大量の有機溶媒を使用することになり、溶媒回収の負荷が増大すると共に、大きな基質に対して反応器の大きさが過度に大きくなる場合がある。
 本発明における溶液化工程では、有機溶媒に懸濁されたPに対しLiSが徐々に反応し、溶液化可能な状態となる。よって、反応速度が速い場合には、先にPを有機溶媒に加えて懸濁させ、そこにLiSを加えることが好ましい。これは、反応速度が速い場合には、LiSが過剰のところにPを加えると、LiPSが生成して一部沈殿する可能性があるためである。
 溶液化工程における混合は、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンなどが挙げられ、アルゴンが特に好ましい。不活性ガス中の酸素および水分も除去していくことで原料組成物の劣化を抑制することができる。不活性ガス中の酸素および水分は、どちらの濃度も1000ppm以下であることが好ましく、より好ましくは100ppm以下であり、特に好ましくは10ppm以下である。
 溶液化工程における混合の際には基質が分散されたスラリー状態であるが、やがて反応して均一となる。粒子を砕く特別な撹拌操作は不要であり、スラリーが懸濁分散できるだけの撹拌動力を与えれば十分である。
 溶液化工程における反応温度は、室温下においても反応が緩やかに進行するが、反応速度を上げるために加熱することもできる。加熱する場合には、有機溶媒の沸点以下で行うことで十分であり、使用する有機溶媒によって異なるものの、通常は120℃未満である。オートクレーブ等を用いて加圧状態で行うことも可能であるが、120℃以上の高い温度で混合を行うと、副反応が進行することが懸念される。
 溶液化工程における反応時間としては、有機溶媒の種類や原料の粒子径、濃度によって異なるものの、例えば0.1~24時間行うことで反応が完結し、溶液化することができる。
 溶液化した均一溶液には、加えた組成割合や原料不純物の混入具合によって、わずかな沈殿物が生じる場合がある。この場合、濾過や遠心分離によって沈殿物を取り除くことが望ましい。
<沈殿化工程>
 溶液化工程で得られた均一溶液に対し、LiSを追添加し、混合することによって沈殿を得ることができる。
 本発明における沈殿化工程では、均一溶液に対し、LiS/P=2.7~3.3のモル比となるように、更にLiSを添加することが好ましい。上記モル比は、より好ましくはLiS/P=2.8~3.2であり、更に好ましくはLiS/P=2.9~3.1であり、最も好ましくはLiS/P=3.0(LiS:P=75:25)である。系内に加えた全原料のモル比がLiS:P=75:25となるようにLiSを均一溶液に加えて混合することにより、副生成物の発生を大幅に抑えた高純度なLiPSを有する固体電解質を得ることができきる。
 沈殿は溶媒和物となることもあり、例えば有機溶媒にTHFを用いた場合、LiPS・3THF結晶が得られる。加えるLiSは溶液化工程で用いたものと同様でよい。加える量としては、上述した通り、系内に加える全量の原料比がLiS/P=2.7~3.3のモル比となるようにする。Pが過剰となると、過剰のPは沈殿してLiPSを有する固体電解質に混入し、後段の工程や、全固体電池を作製するプロセスにおいて硫化水素が発生しやすくなるばかりでなく、全固体電池の充放電に悪影響を与える場合がある。
 沈殿は反応が進行することによってLiPSが生成すると発生する。反応機構は定かではないが、溶液には-(P-S-P-S)n-の状態で溶けていると考えられる。ここに加えたLiSがスラリー上に分散し、P-Sを開裂させ、LiPSが生成すると考えられる。
 沈殿化工程の温度は、室温下においても反応が緩やかに進行するが、反応速度を上げるために加熱することもできる。加熱する場合には、有機溶媒の沸点以下で行うことで十分であり、使用する有機溶媒によって異なるものの、通常は120℃未満である。オートクレーブ等を用いて加圧状態で行うことも可能であるが、120℃以上の高い温度で行うと、副反応が進行することが懸念される。
 沈殿化工程における反応時間としては、有機溶媒の種類や原料の粒子径、濃度によって異なるものの、例えば0.1~24時間行うことで反応が完結し、沈殿化することができる。
 沈殿化工程における混合は、不活性ガス雰囲気下で行うことが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンなどが挙げられ、アルゴンが特に好ましい。不活性ガス中の酸素および水分も除去していくことで原料組成物の劣化を抑制できる。不活性ガス中の酸素および水分は、どちらの濃度も1000ppm以下であることが好ましく、より好ましくは100ppm以下であり、特に好ましくは10ppm以下である。
 得られた沈殿は、濾過や遠心分離によって沈殿物と溶液とを分離することもできる。本発明の製造方法においては、副生成物の発生が極めて少ないものの、沈殿物と溶液とを分離することで精製することができる。分離した沈殿物を溶媒で洗浄することにより、更に精製度を高めることができる。副生成物の生成が極めて少ないことから、多くの洗浄溶媒を必要とせず、例えば、沈殿物100重量部に対して溶媒は50重量部~600重量部で十分である。洗浄溶媒は、溶液化工程で用いた有機溶媒と同じ有機溶媒を用いることが好ましいが、LiPSと反応しない有機溶媒であれば、特に制限されることはない。
<乾燥工程>
 得られた沈殿を加熱乾燥や真空乾燥することで、LiPSを有する固体電解質を得ることができる。その最適な温度は溶媒の種類によって違いがある。沸点よりも十分に高い温度をかけることで溶媒除去時間を短くすることが可能である。溶媒を除去する際の温度は、60~280℃の範囲であることが好ましく、より好ましくは100~250℃である。なお、真空乾燥等のように減圧下で溶媒を除去することで、溶媒を除去する際の温度を下げると共に所要時間を短くすることができる。また、十分に水分の少ない窒素やアルゴン等の不活性ガスを流すことでも、溶媒除去に要する時間を短くすることができる。
 乾燥温度を120℃以上にすると、結晶化が進行する。通常はβ-LiPSが生成する。なお、溶液化工程においてTHFを用いた場合、沈殿化工程で得られるLiPS・3THF結晶を乾燥すると、100℃以下で乾燥した場合にはアモルファスが得られ、120℃以上で乾燥した場合にはβ-LiPSが得られる。このように、必要に応じて乾燥温度を制御することで得られる結晶状態を制御することが可能である。
 乾燥時間は、加熱温度との関係で若干変化するものの、通常は1~24時間の範囲で十分に乾燥される。高い温度で上記範囲を超えて長時間加熱することは、固体電解質の変質が懸念されることから、好ましくない。
 上記のようにして得られる本発明のLiPSを有する固体電解質は、各種手段によって所望の成形体とし、以下に記載する全固体電池をはじめとする各種用途に使用することができる。成形方法は特に限定されない。例えば、後述する全固体電池において述べた全固体電池を構成する各層の成形方法と同様の方法を使用することができる。
<全固体電池>
 本発明のLiPSを有する固体電解質は、例えば、全固体電池用の固体電解質として使用され得る。また、本発明の更なる実施形態によれば、上述した全固体電池用固体電解質を含む全固体電池が提供される。
 ここで「全固体電池」とは、全固体リチウムイオン二次電池である。図1は、本発明の一実施形態に係る全固体電池の概略断面図である。全固体電池10は、正極層1と負極層3との間に固体電解質層2が配置された構造を有する。全固体電池10は、携帯電話、パソコン、自動車等をはじめとする各種機器において使用することができる。
 本発明のLiPSを有する固体電解質は、正極層1、負極層3および固体電解質層2のいずれか一層以上に、固体電解質として含まれてよい。正極層1または負極層3に本発明のLiPSを有する固体電解質が含まれる場合、本発明のLiPSを有する固体電解質と公知のリチウムイオン二次電池用正極活物質または負極活物質とを組み合わせて使用する。正極層1または負極層3に含まれる本発明のLiPSを有する固体電解質の量比は、特に制限されない。
 固体電解質層2に本発明のLiPSを有する固体電解質が含まれる場合、固体電解質層2は、本発明のLiPSを有する固体電解質単独で構成されてもよいし、必要に応じて、酸化物固体電解質(例えば、LiLaZr12)、硫化物系固体電解質(例えば、LiS-P)やその他の錯体水素化物固体電解質(例えば、LiBH、3LiBH-LiI)などを適宜組み合わせて使用してもよい。
 全固体電池は、上述した各層を成形して積層することによって作製されるが、各層の成形方法および積層方法については、特に制限されない。
 例えば、固体電解質および/または電極活物質を溶媒に分散させてスラリー状としたものをドクターブレードまたはスピンコート等により塗布し、それを圧延することにより製膜する方法;真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法等を用いて製膜および積層を行う気相法;ホットプレスまたは温度をかけないコールドプレスによって粉末を成形し、それを積層していく加圧成形法等がある。
 本発明のLiPSを有する固体電解質は比較的柔らかいことから、加圧成形法によって各層を成形および積層して全固体電池を作製することが特に好ましい。加圧成形法としては、加温して行うホットプレスと加温しないコールドプレスとがあるが、コールドプレスでも十分に成形することができる。
 なお、本発明には、本発明のLiPSを有する固体電解質を加熱成形してなる成形体が包含される。該成形体は、全固体電池用固体電解質層として好適に用いられる。また、本発明には、本発明のLiPSを有する固体電解質を加熱成形する工程を含む、全固体電池用固体電解質層の製造方法が包含される。
 以下、実施例により本実施形態を更に詳細に説明するが、本実施形態はこれらの実施例に限定されるものではない。
(実施例1)
 アルゴン雰囲気下のグローブボックス内で、LiS(シグマ・アルドリッチ社製、純度99.8%)およびP(シグマ・アルドリッチ社製、純度99%)を、LiS:P=1.5:1のモル比となるように量り取った。次に、(LiS+P)の濃度が10wt%となるようなテトラヒドロフラン(和光純薬工業社製、超脱水グレード)に対して、LiS、Pの順に加え、室温化で12時間混合した。混合物は徐々に溶解し、わずかな不溶物を含むほぼ均一な溶液を得た。
 得られた溶液に、上記を含めた全原料組成がLiS:P=3:1のモル比となるように、LiSを更に加え、室温化で12時間混合しながら、沈殿を得た。これを150℃、4時間、真空乾燥を行うことにより、β-LiPSを得た。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。
(比較例1)
 アルゴン雰囲気下のグローブボックス内で、LiS(シグマ・アルドリッチ社製、純度99.8%)およびP(シグマ・アルドリッチ社製、純度99%)を、LiS:P=3:1のモル比になるように量り取り、メノウ乳鉢にて混合した。
 次に、得られた混合物を45mLのジルコニア製ポットに投入し、更にジルコニアボール(株式会社ニッカトー製「YTZ」、φ5mm、160個)を投入して、ポットを完全に密閉した。このポットを遊星型ボールミル機(フリッチュ社製「P-7」)に取り付け、回転数510rpmで10時間、メカニカルミリングを行い、アモルファス体を得た。
 次に、得られたアモルファス体をアルゴン雰囲気下で300℃、8時間の熱処理を行うことにより、β-LiPSを得た。
(比較例2)
 アルゴン雰囲気下のグローブボックス内で、LiS(シグマ・アルドリッチ社製、純度99.8%)およびP(シグマ・アルドリッチ社製、純度99%)を、LiS:P=3:1のモル比となるように量り取った。次に、(LiS+P)の濃度が10wt%となるようなテトラヒドロフラン(和光純薬工業社製、超脱水グレード)に対して、LiS、Pの順に加え、室温化で12時間混合した。混合している間、均一溶液になることはなく、スラリー状態のままであった。このスラリーを150℃、4時間、真空乾燥を行うことにより、β-LiPSを得た。一連の操作は、アルゴン雰囲気下のグローブボックス内で実施した。
<X線回折測定>
 実施例1および比較例1、2で得られたイオン伝導体の粉末について、Ar雰囲気下、室温(25℃)にて、X線回折測定(PANalytical社製「X’Pert3 Powder」、CuKα:λ=1.5405Å)を実施した。
 実施例1および比較例1、2のX線回折測定の結果を図2に示す。
 図2に示したとおり、実施例1では、少なくとも、2θ=13.5±0.5deg、17.5±0.5deg、18.1±0.5deg、19.8±0.5deg、26.0±0.5deg、27.4±0.5deg、29.0±0.5deg、29.8±0.5deg、31.1±0.5deg、39.3±0.5deg、40.4±0.5deg、44.9±0.5degおよび47.6±0.5degの13箇所に回折ピークが観測され、このパターンはICSDデータベースのβ-LiPSと一致した。
<ラマン分光測定>
(1)試料調製
 上部に石英ガラス(Φ60mm、厚さ1mm)を光学窓として有する密閉容器を用いて測定試料の作製を行った。アルゴン雰囲気下のグローブボックスにて、試料を石英ガラスに密着させた後、容器を密閉してグローブボックス外に取り出し、ラマン分光測定を行った。
(2)測定条件
 レーザーラマン分光光度計NRS-5100(日本分光株式会社製)を使用し、励起波長532.15nm、露光時間5秒にて測定を行った。
 実施例1および比較例1、2のラマン分光測定の結果を図3に示す。いずれのサンプルにおいても、PS4-に相当する420cm-1におけるピークを確認することができた。
<リチウムイオン伝導度測定>
 実施例1および比較例1、2で得られたイオン伝導体を一軸成型(292MPa)に供し、厚さ約0.8mm、直径10mmのディスクを得た。-20℃から100℃の温度範囲において、In(インジウム)電極を利用した四端子法による交流インピーダンス測定(Solartron社製「SI1260 IMPEDANCE/GAIN―PHASE ANALYZER」)を行い、リチウムイオン伝導度を算出した。
 具体的には、サンプルを25℃に設定した恒温槽に入れて30分間保持した後にリチウムイオン伝導度を測定し、続いて30℃~100℃まで10℃ずつ恒温槽を昇温し、各温度で25分間保持した後にイオン伝導度を測定した。100℃での測定を終えた後は、90℃~30℃まで10℃ずつ、30℃~-20℃まで5℃ずつ恒温槽を降温し、さらに-20℃~25℃まで5℃ずつ恒温槽を昇温し、各温度で25分間保持した後にリチウムイオン伝導度を測定した。測定周波数範囲は0.1Hz~1MHz、振幅は50mVとした。
 実施例1および比較例1、2のリチウムイオン伝導度測定の結果を図4に示す。いずれのサンプルにおいても、同程度のイオン伝導度が得られた。
<充放電試験>
(正極層粉末の調製)
 チタン酸リチウム(LiTi12)を正極活物質として用いた。重量比で、正極活物質:硫化物固体電解質(β-LiPS):アセチレンブラック(導電助剤)=40:60:6とした粉末をグローブボックス内で計り取り、乳鉢にて混合して正極層粉末とした。
(全固体電池の作製)
 実施例1および比較例2で調製した硫化物固体電解質の粉末を直径10mmの粉末錠剤成形機に入れ、圧力46MPaにて円盤状にプレス成形した(以下、硫化物固体電解質層とも称する)。成形物を取り出すことなく、硫化物固体電解質層の上部に上記で調製した正極層粉末を入れ、下部に8φに打ち抜いたIn箔を貼り付け、圧力292MPaにて一体成型した。このようにして、正極層(75μm)、硫化物固体電解質層(800μm)、In箔(100μm)が順次積層された円盤状のペレットを得た。このペレットのIn箔側にさらに10φのIn箔および8φのLi箔を順に貼り付け、SUS304製の電池試験セルに入れて全固体二次電池とした。
(電池セルのリチウムイオン伝導度測定)
 上記のように作製した全固体二次電池について、ポテンショスタット/ガルバノスタット(Bio-Logic製VMP3)を用い、測定温度60℃のリチウムイオン伝導度を算出した。具体的には、サンプルを60℃に設定したマントルヒーターに入れて60分間保持した後にリチウムイオン伝導度を測定した。測定周波数範囲は0.1Hz~1MHz、振幅は50mVとした。
(充放電試験)
 上記のように作製した全固体二次電池について、ポテンショスタット/ガルバノスタット(Bio-Logic製VMP3)を用い、測定温度60℃、カットオフ電圧0.5~1.5V、電流密度0.046mA/cm(35.98μA)の条件の下で定電流にて充放電を行った。なお、充電後と放電後にはそれぞれ3分間の休止を設けた。
 表1に60℃での電池セルのイオン伝導度、図5に充放電試験の結果を示す。表1から比較例2は実施例1よりもセル抵抗が大きくイオン伝導度が小さいことがわかった。そのため、充放電試験を試みたが、比較例2はサイクル不能であり、実施例1のみ充放電可能であった。
Figure JPOXMLDOC01-appb-T000001
1 正極層
2 固体電解質層
3 負極層
10 全固体電池
 

Claims (8)

  1.  LiSおよびPを有機溶媒中に混合させることによって、均一溶液を調製する溶液化工程と、
     前記均一溶液に更にLiSを添加して混合し沈殿を形成する沈殿化工程と、
    を含むことを特徴とするLiPSを有する固体電解質の製造方法。
  2.  前記溶液化工程におけるLiSおよびPのモル比(LiS/P)が、1.0~1.85である、請求項1に記載の製造方法。
  3.  前記沈殿化工程において、前記均一溶液に対し、LiS/P=2.7~3.3のモル比となるように、更にLiSを添加する、請求項1または2に記載の製造方法。
  4.  前記沈殿化工程の後に乾燥工程を有し、乾燥工程における乾燥温度が120℃以上であり、前記LiPSがβ-LiPSである、請求項1から3のいずれかに記載の製造方法。
  5.  前記溶液化工程において、LiS及びPの合計の濃度が1~40重量%となるように、LiS及びPの順に前記有機溶媒に溶かす、請求項1から4のいずれかに記載の製造方法。
  6.  前記有機溶媒がエーテル系溶媒である、請求項1から5のいずれかに記載の製造方法。
  7.  前記エーテル系溶媒が、テトラヒドロフランである、請求項6に記載の製造方法。
  8.  前記溶液化工程及び前記沈殿化工程を不活性ガス雰囲気下で行う、請求項1から7のいずれかに記載の製造方法。
     
PCT/JP2018/010374 2017-03-22 2018-03-16 Li3PS4を有する固体電解質の製造方法 WO2018173940A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP18772416.6A EP3604216B1 (en) 2017-03-22 2018-03-16 Production method for solid electrolyte having li3ps4
PL18772416T PL3604216T3 (pl) 2017-03-22 2018-03-16 Sposób wytwarzania stałego elektrolitu zawierającego Li<sub>3</sub>PS<sub>4</sub>
JP2019507624A JP6984652B2 (ja) 2017-03-22 2018-03-16 Li3PS4を有する固体電解質の製造方法
US16/493,924 US11271245B2 (en) 2017-03-22 2018-03-16 Production method for solid electrolyte having Li3PS4
KR1020197030445A KR102495416B1 (ko) 2017-03-22 2018-03-16 Li3PS4를 갖는 고체 전해질의 제조 방법
CN201880019320.8A CN110462757B (zh) 2017-03-22 2018-03-16 含有Li3PS4的固体电解质的制造方法
RU2019130757A RU2751545C2 (ru) 2017-03-22 2018-03-16 СПОСОБ ПОЛУЧЕНИЯ ТВЕРДОГО ЭЛЕКТРОЛИТА, СОДЕРЖАЩЕГО Li3PS4

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-055755 2017-03-22
JP2017055755 2017-03-22

Publications (1)

Publication Number Publication Date
WO2018173940A1 true WO2018173940A1 (ja) 2018-09-27

Family

ID=63586448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010374 WO2018173940A1 (ja) 2017-03-22 2018-03-16 Li3PS4を有する固体電解質の製造方法

Country Status (10)

Country Link
US (1) US11271245B2 (ja)
EP (1) EP3604216B1 (ja)
JP (1) JP6984652B2 (ja)
KR (1) KR102495416B1 (ja)
CN (1) CN110462757B (ja)
HU (1) HUE056390T2 (ja)
PL (1) PL3604216T3 (ja)
RU (1) RU2751545C2 (ja)
TW (1) TWI741164B (ja)
WO (1) WO2018173940A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119783A (ja) * 2019-01-24 2020-08-06 株式会社Gsユアサ 固体電解質、リチウムイオン蓄電素子、及びこれらの製造方法
WO2021049415A1 (ja) * 2019-09-11 2021-03-18 三井金属鉱業株式会社 硫化物固体電解質
WO2021080134A1 (ko) * 2019-10-25 2021-04-29 한국전기연구원 리튬 이차전지용 lpscl 고체전해질의 제조방법
JP2022513322A (ja) * 2019-01-25 2022-02-07 ソリッド パワー,インコーポレイティド 固体電解質材料合成方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI843811B (zh) * 2019-03-05 2024-06-01 日商三菱瓦斯化學股份有限公司 硫化物系固體電解質之製造方法
CN112397775B (zh) * 2020-10-27 2021-12-03 广东东邦科技有限公司 Li3PS4固态电解质、固态混合电解质、全固态锂硫电池及其制备方法
WO2022159588A1 (en) * 2021-01-20 2022-07-28 Battelle Memorial Institute Method for preparing lithium phosphate sulfide solid electrolytes
CN113471519B (zh) * 2021-06-29 2023-04-07 深圳大学 硫化物固体电解质隔膜及其前驱体溶胶和制备方法
KR20240100799A (ko) 2022-12-23 2024-07-02 (주)하나기술 이차전지용 고체전해질 전구체 제조를 위한 공침 반응장치 및 이를 포함하는 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141675B1 (ja) 1965-09-03 1976-11-11
JP2015201372A (ja) * 2014-04-09 2015-11-12 出光興産株式会社 活物質複合体の製造方法
JP2016018679A (ja) * 2014-07-08 2016-02-01 三菱瓦斯化学株式会社 全固体電池用電極層および全固体電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2066901C1 (ru) * 1993-07-01 1996-09-20 Жуковский Владимир Михайлович Твердый литийпроводящий электролит и способ его получения
RU2136084C1 (ru) * 1997-12-17 1999-08-27 Жуковский Владимир Михайлович Твердый литийпроводящий электролит и способ его получения
JP5141675B2 (ja) * 2009-12-16 2013-02-13 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
CN103003890B (zh) * 2010-07-22 2016-01-20 丰田自动车株式会社 硫化物固体电解质玻璃、硫化物固体电解质玻璃的制造方法和锂固体电池
JP2013114966A (ja) * 2011-11-30 2013-06-10 Idemitsu Kosan Co Ltd 電解質シート
JP2015072773A (ja) * 2013-10-02 2015-04-16 三星電子株式会社Samsung Electronics Co.,Ltd. 硫化物固体電解質、および硫化物固体電解質の製造方法
KR102287814B1 (ko) * 2013-10-02 2021-08-10 삼성전자주식회사 황화물 고체 전해질과 이의 제조 방법, 및 이를 포함하는 고체 전지
US20150093652A1 (en) * 2013-10-02 2015-04-02 Samsung Electronics Co., Ltd. Sulfide solid electrolyte, method of preparing the same, and solid state battery including the same
CN105765778B (zh) * 2013-10-03 2019-07-16 国立研究开发法人科学技术振兴机构 含固体电解质层形成溶液、涂覆活性材料颗粒、电极、全固态碱金属二次电池及其制备方法
CN103500853B (zh) * 2013-10-08 2016-03-30 中国科学院宁波材料技术与工程研究所 硫化物电解质材料及其制备方法
JP6380263B2 (ja) 2015-06-29 2018-08-29 トヨタ自動車株式会社 硫化物固体電解質の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141675B1 (ja) 1965-09-03 1976-11-11
JP2015201372A (ja) * 2014-04-09 2015-11-12 出光興産株式会社 活物質複合体の製造方法
JP2016018679A (ja) * 2014-07-08 2016-02-01 三菱瓦斯化学株式会社 全固体電池用電極層および全固体電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. AM. CHEM. SOC., vol. 135, 2013, pages 975 - 978
SOLID STATE IONICS, vol. 182, 2011, pages 53 - 58

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115337B2 (ja) 2019-01-24 2022-08-09 株式会社Gsユアサ 固体電解質、リチウムイオン蓄電素子、及びこれらの製造方法
JP2020119783A (ja) * 2019-01-24 2020-08-06 株式会社Gsユアサ 固体電解質、リチウムイオン蓄電素子、及びこれらの製造方法
JP7546016B2 (ja) 2019-01-25 2024-09-05 ソリッド パワー オペレーティング, インコーポレイティド 固体電解質材料合成方法
JP2022184854A (ja) * 2019-01-25 2022-12-13 ソリッド パワー,インコーポレイティド 固体電解質材料合成方法
JP7137021B2 (ja) 2019-01-25 2022-09-13 ソリッド パワー,インコーポレイティド 固体電解質材料合成方法
JP2022513322A (ja) * 2019-01-25 2022-02-07 ソリッド パワー,インコーポレイティド 固体電解質材料合成方法
CN113366684A (zh) * 2019-09-11 2021-09-07 三井金属矿业株式会社 硫化物固体电解质
KR20220061049A (ko) * 2019-09-11 2022-05-12 미쓰이금속광업주식회사 황화물 고체 전해질
JP7029573B2 (ja) 2019-09-11 2022-03-03 三井金属鉱業株式会社 硫化物固体電解質
JPWO2021049415A1 (ja) * 2019-09-11 2021-10-07 三井金属鉱業株式会社 硫化物固体電解質
KR102579612B1 (ko) 2019-09-11 2023-09-18 미쓰이금속광업주식회사 황화물 고체 전해질
WO2021049415A1 (ja) * 2019-09-11 2021-03-18 三井金属鉱業株式会社 硫化物固体電解質
WO2021080134A1 (ko) * 2019-10-25 2021-04-29 한국전기연구원 리튬 이차전지용 lpscl 고체전해질의 제조방법

Also Published As

Publication number Publication date
KR102495416B1 (ko) 2023-02-02
KR20190129944A (ko) 2019-11-20
US11271245B2 (en) 2022-03-08
TWI741164B (zh) 2021-10-01
CN110462757A (zh) 2019-11-15
TW201840469A (zh) 2018-11-16
RU2019130757A (ru) 2021-04-22
HUE056390T2 (hu) 2022-02-28
JP6984652B2 (ja) 2021-12-22
EP3604216A4 (en) 2020-02-05
RU2019130757A3 (ja) 2021-05-20
CN110462757B (zh) 2021-04-13
US20200358130A1 (en) 2020-11-12
RU2751545C2 (ru) 2021-07-14
EP3604216B1 (en) 2021-09-22
PL3604216T3 (pl) 2022-04-11
EP3604216A1 (en) 2020-02-05
JPWO2018173940A1 (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
WO2018173940A1 (ja) Li3PS4を有する固体電解質の製造方法
KR102554980B1 (ko) Lgps계 고체 전해질의 제조 방법
CN112074918B (zh) Lgps类固体电解质和制造方法
JP7107087B2 (ja) Lgps系固体電解質の製造方法
JP6996553B2 (ja) Lgps系固体電解質の製造方法
JP7513014B2 (ja) 硫化物系固体電解質の製造方法
WO2021145248A1 (ja) Snを含む硫化物系固体電解質の製造方法
JP7119753B2 (ja) Lgps系固体電解質の製造方法
JP7400491B2 (ja) Lgps系固体電解質の製造方法
WO2022215518A1 (ja) Lgps系固体電解質の製造方法
RU2822115C1 (ru) СПОСОБ ПОЛУЧЕНИЯ СУЛЬФИДНОГО ТВЕРДОГО ЭЛЕКТРОЛИТА, СОДЕРЖАЩЕГО Sn

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18772416

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507624

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197030445

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018772416

Country of ref document: EP

Effective date: 20191022